
Database Evolution and Maintenance
of their Dependent Applications

via Query Rewriting

Petros Manousis

M A S T E R T H E S I S

Ioannina, February 2013

ΤΜ ΗΜ Α Π Λ Η ΡΟ Φ Ο ΡΙΚ Η Σ
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE
U N I V E R S I T Y O F I O A N N I N A

ΒΙΒΛΙΟΘΗΚΗ
ΠΑΝΕΠΙΙΤΗΜΟϊ ΙΩΑΝΝΙΝΑΝ

026000345278

Εξέλιξη Βάσεων Δεδομένων και Συντήρηση
Εξαρτώμενων Εφαρμογών μέσω Επανεγγραφής

Ερωτήσεων

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ
υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Πέτρο Μανούση

ως μέρος των Υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ
ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΟ ΛΟΓΙΣΜΙΚΟ

Φεβρουάριος 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝ8Ν
Β Ι Β Λ Ι Ο Θ Η Κ Η

ΔΠΡΕΑ:....—

ΑΡ. m . :</.ΡΑ^ΐΜτΜ.

■ y f -·' ■ \ J

t

o q i

v>

Aj

<3

ΐ
* I

«ΓΓ VljV r.:·;.̂

Ϊ

> ,· V : Λ ; Ϊ

i rif/;

T i

1

’: ··.^ ft·

Table o f Contents

1 Introduction 1

2 Background: a formal model for architecture graphs, evolutionary events and
policy annotation 7
2.1 Architecture graph... 8
2.2 Events.. 18

2.2.1 The space of events that pertain to relations...................................... 18
2.2.2 The space of events that pertain to views and queries....................... 19
2.2.3 The space of events that occur due to the propagation of the impact of

a potential change over the graph.. 19
2.2.4 A summary of the space of events ... 20

2.3 Policies ... 20

3 Propagating the impact of an event over the architecture graph 27
3.1 Inter-module propagation of events... 28

3.1.1 Topological sorting.. 29
3.1.2 General algorithm at module level and explanation of queue............ 31
3.1.3 Message structure and content ... 32

3.2 Intra-module processing of arriving events 34
3.2.1 Intra-module processing at relation m odules.................................... 35
3.2.2 Intra-module processing at query or view modules.......................... 37

3.3 Theoretical guarantees... 43
3.3.1 Termination and confluence at inter-module level 44
3.3.2 Termination and confluence at intra-module level 44

3.4 Implementation and comparison to state of the a r t 45

4 Query and view rewriting to accommodate change in the architecture graph 47
4.1 Algorithms for graph rewriting.. 49

1

52
52
53

59
61
63

65
65
67
69
71
76
82

84
84
85
86

88
88
89

4.2 Intra-module rewriting mechanism
4.2.1 Relation maestro for rewrite.................
4.2.2 Query/View maestro for rewrite

Software architecture
5.1 Maestro implementation
5.2 Our contribution..

Experiments
6.1 Experimental setup ..
6.2 Effectiveness of impact assessment and rewriting

,6.2.1 University ecosystem..........................
6.2.2 TPC-DS ecosystem.............................

6.3 Efficiency..
6.4 Discussion/Summary.....................................

Related work
7.1 Related work on data centric ecosystems
7.2 Related work on view rewriting.......................
7.3 Comparison to existing approaches.................

Conclusions and future work
8.1 Conclusions... ..
8.2 Future Work...

u

List o f Figures

2.1 Graph representation of COURSESTD relation... 13
2.2 Graph representation of V_TR view .. 15
2.3 'Graph representation of Q2 query.. 17
2.4 Reference example for a university database and its ecosystem.................... 18

3.1 Summary of the architecture graph of the reference example with the nodes
annotated with the id obtained by the topological sorting of the architecture
graph .. 30

4.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4

Block rewriting example..

Hecataeus packages..
Factory method for maestros ...
Check policy algorithms..

Reference Example - Mixture policies................................
TPC-DS Workload 1 - Status Determination vs Nodes . . .
TPC-DS Workload 1 - Rewrite vs N od es..........................
TPC-DS Workload 1 - Rewrite times - Propagate vs Mixture

48

59
62
64

70
78
80
81

ts

m

List o f Tables

2.1 Incoming events that each node type can receive.. 20

6.1 Two workloads of events for the TPC-DS ecosystem................................... 66
*

6.2 Annotations of column names and meaning... 68
6.3 Abbreviations of events.. 69
6.4 University database - User benefit for the propagate all profile.................... 69
6.5 University database - User benefit for the propagate all profile.................... 70
6.6 TPC-DS database - Workload 1 - User benefit for the propagate all profile . . 72
6.7 TPC-DS database - Workload 1 - User benefit for the mixture profile.......... 74
6.8 TPC-DS database - Workload 2 - User benefit for the propagate all profile . . 75
6.9 TPC-DS database - Workload 2 - User benefit for the mixture profile.......... 76

iv

l is t o f Algorithms

1 Topological sorting algorithm.. 30
2 Status determination algorithm... 31
3 'Path check algorithm ... 50
4 Rewriting algorithm.. 51

U

Abstract

Petros Manousis.
MSc, Computer Science Department, University of Ioannina, Greece.

%

Database Evolution and Maintenance of Dependent Applications via Query Rewriting.
Supervisor: Panos Vassiliadis

Data-intensive ecosystems are collections of databases and application programs that heavily
depend on the underlying databases for their operation, thus, containing queries. The goal of
this Thesis is to provide the means for the smooth evolution of the ecosystems in the presence
of potential changes in their database part; specifically, we assess the impact of a potential
change and present the result of the adaptation of the affected queries to its new structure.
To this end, we trace all the components and interdependencies of the ecosystem via a single,
uniform representation, which we call Architecture Graph. Our approach is also based on a
language for annotating the ecosystem’s modules with policies for their adaptation to future
events. We provide a confluent algorithm for assessing the impact of a tested event as well
as an algorithm for providing rewritings for views and queries of the ecosystem. All these
algorithms have been incorporated into the existing Hecataeus system that allows the modeling,
visualization, and evolution management of data-intensive ecosystems. In the context of this
effort, the system was significantly extended with a new model for software modules (facilitating
the increased modularity of the representation), along with novel, extensible parts responsible
for policy annotation and impact assessment.

Εκτεταμένη Περίληψη στα Ελληνικά

Πέτρος Μανούσης του Βασιλείου και της Αρετής.

MSc, Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων.

Εξέλιξη Βάσεων Δεδομένων και Συντήρηση Εξαρτώμενων Εφαρμογών μέσω
Επανεγγραφής Ερωτήσεων.

Επιβλέπων καθηγητής: Παναγιώτης Βασιλειάδης

Τα οικοσυστήματα δεδομένων αποτελούνται από βάσεις δεδομένων και εφαρμογές
οι οποίες εξυπηρετούν ερωτήσεις και συνεπώς εξαρτώνται σε μεγάλο βαθμό από αυτές.
Στόχος αυτής της διατριβής είναι η παροχή αλγορίθμων για την ομαλή εξέλιξη των
οικοσυστημάτων αυτών μετά από κάποια αλλαγή σε κάποιο τμήμα της βάσης δεδομένων.
Ειδικότερα, αξιολογούμε την επίπτωση μιας επικείμενης αλλαγής και παρουσιάζουμε
ως αποτέλεσμα τη νέα μορφή των επηρεαζόμενων (από την αλλαγή) ερωτήσεων της
βάσης. Για το λόγο αυτό έχουμε αναγάγει όλα τα στοιχεία και τις εξαρτήσεις του οικο
συστήματος σε ένα ενιαίο γράφημα αναπαράστασης εκπροσώπησης το οποίο ονομάζου
με γράφημα αρχιτεκτονικής του οικοσυστήματος. Επιπλέον, η προσέγγισή μας βασίζεται
σε μια γλώσσα που χρησιμοποιείται για την επισημείωση των δομικών στοιχείων (mod
ules) με κανόνες. Παρέχουμε έναν αλγόριθμο για την εκτίμηση των επιπτώσεων που έχει
μια πιθανή αλλαγή καθώς επίσης έναν αλγόριθμο για την επανεγγραφή των όψεων και
ερωτημάτων του οικοσυστήματος. Οι αλγόριθμοι αυτοί έχουν ενσωματωθεί στο υπάρχον
σύστημα Hecataeus το οποίο επιτρέπει την μοντελοποίηση, οπτικοποίηση και διαχείριση
οικοσυστημάτων δεδομένων. Στο πλαίσιο αυτής της προσπάθειας, το σύστημα αυτό
απέκτησε ένα νέο μοντέλο αναπαράστασης των δεδομένων καθώς επίσης και επεκτάσι-
μα κομμάτια κώδικα, υπεύθυνα για την επισημείωση των δομικών στοιχείων με κανόνες
επί των αλλαγών, την εκτίμηση του εύρους των επιπτώσεων των αλλαγών και την επαν
εγγραφή του οικοσυστήματος ώστε να προσαρμοστεί στις αλλαγές αυτές.

Chapter 1

Introduction

Data-intensive ecosystems are configurations of database and software applications that inter
operate. The main characteristic of a data-intensive ecosystem is the co-existence of (a) a central
repository of data, typically in the form of a relational database including relations, views, con
straints, as well as triggers and stored procedures, and (b) a set of software applications that
require access to the central database, typically via queries to its views and relations. Natu
rally, ecosystems can comprise more than one data management repositories, not necessarily
of relational nature (e.g., files, XML databases, sources of streaming data, etc); however, in
the context of this work, we restrict to relational databases surrounded by applications that use
queries over them.

To operate smoothly, an ecosystem must withstand change gracefully. Software maintenance
amounts up to 60% of the resources spent on building an operating a software system [PreOO]
and thus, it is of utmost importance for a system’s life-cycle. In this context, the management
of changes in a data-centric ecosystem is an important problem. In this thesis, we extend the
state of the art concerning several research questions in the area of managing the evolution of
data-intensive ecosystems.

What does evolution of data-intensive ecosystems amounts aft Evolution is of significance
if it affects the syntactic correctness, the semantic validity, the operational effectiveness, or the
administrative overhead of an ecosystem. Here are a few examples of possible changes:

• A certain attribute of the schema of a view is about to be deleted, as the administrator
wants to simplify the definition of the view

• A new attribute is added to a relation, because new content is available

• The WHERE clause of a view is modified with an extra condition, to account for a new
definition of the view’s contents

I

• An index is dropped, as the administrator deems it useless

• A relation has grown too large and has to be moved to another table-space

Why are these changes of interest? First, some changes can lead to failure of existing
applications. A deleted attribute might cause applications using it to crash. In this case, the
applications’ developers have to take care of the change: pinpoint its impact in their code,
assess the necessity for the existence o f this information in the applications and modify their
applications accordingly. If things go wrong, this might even require negotiations with the
DBAs to restore the deleted attribute. Second, applications can be affected semantically. If
a new attribute is added to a relation it is possible that it contains important information that
applications should be exploiting (and thus, have to be synchronized to the new contents of the
relation). If the semantics of a view change, then the data delivered at the view’s clients are
different than the ones delivered before: in this case, the developers of the affected queries and
applications would have to be notified and decide on whether the queries have to adapt to the
new semantics of the view, or, they would have to retain the old semantics (again leading to
the problem of compensating the change performed by the DBAs). Third, performance and
administrations issues can affect the operation and administration of the ecosystem. An index
is dropped and suddenly a large number of queries run unacceptably slow. A table is moved
and suddenly the disk is full and other tables do not have enough space for their own insertions.

In all these occasions, we observe that a change performed by the DBA team can have
several side-effects both for the team itself, the developers of applications of the ecosystem and
the end-users. The problem in all the aforementioned events was that the change was performed
before assessing its impact over the ecosystem. Therefore, addressing the impact assessment
problem in advance of a potential change can be really valuable. We would like to highlight that
all our deliberations operate in a what-if analysis environment, where the DBA is committed to
pre-assess the impact o f his possible modifications, before actually performing them\ in other
words, our environment is not tightly coupled to the databases, but rather a testing environment
for potential, hypothetical modifications.

How can we assess the impact of a change in a data intensive ecosystem? In this Thesis, we
build upon the state of the art to provide concrete results for the problem of impact assessment.
We follow the model of architecture graphs [PVSV07, PVSV09, PVSV10] that capture all
the inter-dependencies between the constructs of databases and the application queries via a
graph. The graph models constraints, attributes, relations, views and queries along with their
internal structure as the nodes of the graph. The edges of the graph denote dependency for data
provision (e.g., between a view and a relation that populates it with data), part of relationships
(e.g., between a relation and its attributes) and semantic relationships (e.g., the construction
of the WHERE clause of a query as a tree of expressions). This way, the architecture graph

2

models all the components of a data-in tensive ecosystem in a uniform way. One of the main
utilities of the architecture graph is that facilitates impact assessment for potential changes in the
ecosystem: whenever a potential change is tested over the architecture graph, the graph allows
us to predict the impact by recursively following edges between affected nodes.

Is it possib le to regulate change in a clata-intensive ecosystem ? Are we helpless in managing
potential changes in the core of the ecosystem? If an application developer is really adamant
on retaining the structure and semantics of a database view, it is possible that he states this
requirement somehow in the architecture graph, to prevent possible modifications? As previous
research [PVS+08, PVSV09] has demonstrated, it is possible to define policies for handling
events. We annotate the nodes of the architecture graph with policies for handling events. For
example, we can annotate the relations of the graph with policies for handling the potential
deletion of an attribute. We assign one of two possible reactions to this event, and specifically,
block to veto the event and demand that the relation retains its previous structure or p ro p a g a te to
allow the event and make the relation ignite the recursive notification of all the affected software
modules in the graph.

This thesis extends the results of the state of the art in modeling data-intensive ecosystems
and assessing the impact of changes in several ways:

• First, it extends the modeling of ecosystem m odules (relations, views, queries) by encap
sulating their structure within input and output schemata. Previous research [PVSV09]
dealt with the architecture graph as a single unified graph where software modules did
not have boundaries; for example, a query that used the attributes of a relation would
directly access these attributes via data-dependency edges. Although this produces a
smaller graph, unfortunately is hinders the separation of modules. As we shall see, this
separation will allow us to provide theoretical guarantees for our algorithms. At the same
time, it inspires the principles of modular design into the modeling o f architecture graphs.

• Second, this thesis describes the concrete implementation of the algorithms proposed in
[PVS11] for impact assessment. The modular design guarantees that the propagation of
a potential evolutionary event over the graph (a) terminates and (b) is performed in a way
that is independent of the internal processing of events within modules. •

• Third, this thesis has implemented a concise language for policy annotation of the ecosys
tem modules. We follow [PVS+08] in spirit and provide a rule-based language that (a)
allows the annotation of all the nodes of the graph with default policies, (b) completely
covers all the space of events (i.e., all nodes have a policy to handle a n y possible event
that comes to them), and, (c) allows the users to customize reaction with policies other
than the default ones for individual modules. We handle events and policies that alter the

3

structure and semantics of the ecosystems by modifying the schema of the database and
the semantics of views (performance related events are outside the scope of this work).

Once the im pact o f a change has been assessed, is it possib le to see h o w the ecosystem w ill

look like i f the change is even tually p e rfo rm ed ! Even with the presence of policies, it is possible
that a potential modification in the database affects several queries and views that are willing to
acc'ept it and adapt to the new structure or semantics of the database. Then, the question that has
to be answered is “what will the new structure and semantics of all the affected modules look
like?”. The core result o f this Thesis is the provision o f a lgorithm s th a t p erform the rew riting o f

affected m odules to a d a p t to the po ten tia l event. Specifically, our method works in the following
three steps:

1. Impact assessment. Given a potential event, a status determination algorithm makes sure
that the nodes of the ecosystem are assigned a status concerning (a) whether they are
affected by the event or not and (b) what their reaction to the event is (block or propagate).

2. Calculation of variants. Assume a view used by two queries is altered. Assume also
that the first query vetoes the change and requires the structure and semantics of the old
view to remain, whereas the second concedes to the change and states it will adapt to
the new structure and semantics of the view. The co-existence o f b locker a n d a d a p ter

d a ta consum ers o f an affected m odu le signifies the n eed to retain both the o ld a n d the n ew

version o f the m odule, w henever this is possible. To this end, we introduce an algorithm
that checks the affected parts of the graph in order to highlight affected nodes with
whether they will adapt to a new version or retain both their old and new variants.

3. Module Rewriting. Once the status and number of variants has been determined for the
modules of the graph, we need to implement the rewritings. This is heavily dependent
upon the nature of the event (obviously, a query adapts differently to the removal of
an attribute and differently to the addition of an attribute, let alone changes in seman
tics). Our algorithm visits affected modules sequentially and performs the appropriate
restructurings of nodes and edges.

The introduction of algorithms for module rewriting in the presence of policies is not the
only contribution of this Thesis in this area. We can also list the following extra contributions
in terms of principles and software construction: •

• The principle o f loca lity independence. Both impact assessment and rewritings take place
within modules, without referring to the entire graph for auxiliary help. The idea is that
each module waits until all the notifications that affect it are produced and then, collects
them and performs status determination, variant calculation and rewriting in isolation

4

of the rest of the graph. We can theoretically guarantee that it is possible to prioritize
the enactment of each module in the appropriate order, such that all its notifications are
present. We can also guarantee that impact assessment is the same independently of the
order of notification generation. The principle of locality independence states that, once
orchestrated and scheduled for activation, we can treat each module on its own. This lays
the groundwork for future explorations concerning the possibility for parallel processing
of non-dependent modules and management of transactions of changes applied over the
graph.

♦ The prin cip led construction o f so ftw a re in order to fa c ilita te the lo ca lity indepen den ce .
Constructing the software that performs the rewritings in a way that each module “wakes”
an impact assessment/rewriting module dedicated to itself is a challenging task in terms
of software engineering. We imposed the extra requirement of extensibility with respect
to the types of events handled. The constructed software parts introduce the notion of
m aestro , which is a module that is (a) responsible for a certain task (impact assessment
or rewriting), (b) over a specific type of nodes (relations, views, queries), and (c) with an
extensible palette of events it can handle.

All the algorithms have been implemented and integrated within an existing software tool,
Hecataeus1 [PAVV08, PVSV10]. Hecataeus can be used for the construction and visualization
of the architecture graph, its annotation with policies, and the testing of hypothetical events over
the annotated graph. The last task includes both impact assessment and rewriting. Moreover,
Hecataeus is equipped with metrics management that allows the assessment of graph-theoretic
metrics in order to identify regions of the graph that might be sensible to evolution events.

We have experimented with our methods in different ecosystems, policy assignments and
event workloads and assessed their effectiveness and efficiency. A first observation on our
experiments, confirms the benefits introduced by our method concerning the effort performed
by the application developers and administrators of the ecosystem. In the absence of our system,
the typical developer would have to perform at least 25% of routine, useless checks to views and
queries that are not related to the event at all; on average, the number of useless checks rises in
the area of 90%.

A second observation has to do with the amount of rewriting: in all occasions, there have
been several modules that had to be rewritten. Although the numbers are not particularly high,
ranging from 1 to 4.5 modules, the automation of the work, equips the involved stakeholders
with correctness guarantees that would otherwise be non-existent.

In terms of time, all the experiments show a completion of the tested changes as fractions
of a second; specifically, the average times range in the area of 0.7 millisecond, whereas the

1 http://www.cs.uoi.gr/ pvassil/projecls/hecataeus/

5

http://www.cs.uoi.gr/

maximum times do not go beyond 5 millisecond. Although the time needed to perform impact
assessment and rewriting is not significant, if we inspect the way different modules respond to
different events, it is clear that the time taken to perform an event can vary a lot as a result of
the popularity of a module as data-provider with its policy on the event. As expected, excessive
peaks in impact assessment and rewriting time concern modules with high fan-in of dependent
modules; these are clearly candidates where evolution should rather be blocked.

Apart from the above contributions, we can also mention that in the context of this Thesis,
the internals of Hecataeus were re-engineered to adapt to the new model and the user-interaction
GUI parts were reshaped to allow the efficient definition of policies and the management of
events. The tool was also enriched with the notion of “project” that introduced structured
storage of the graphs contents, policies and visualization layout for future reuse.

Roadmap. The structure of this Thesis is as follows. In Chapter 2, we give the background
modeling for the architecture graph, policies and events. In Chapter 3, we discuss impact
assessment, and, in Chapter 4, we discuss the module rewriting. In Chapter 5, we discuss the
software architecture of our contribution, and, in Chapter 6, we present the experiments that we
have performed in order to study the behavior of the introduced algorithms and their benefits.
In Chapter 7, we present related work. We conclude in Chapter 8, along with insights for future
work.

Chapter 2

Background: a formal m odel for architecture

. graphs, evolutionary events and policy

annotation

To assess the impact of a potential change over the data centric ecosystem, we construct a graph
of modules (relations, queries and views) where data consuming nodes are linked with edges
to their providers. Whenever an event is applied over a module, the module has to assess the
impact of the event and notify its consumes. This recursive process allows us to assess the
impact of the event over the entire ecosystem. Naturally, to facilitate this process, we need to
establish a formal model for the main constituents of the problem and its solution. So, before
proceeding with the algorithmic parts of the adaptation process, in this Section, we present the
formal background for the modeling of architecture graphs, along with the space of possible
events and policy annotations. First, we present how relations, views and queries construct the
architecture graph of the ecosystem. Then, we move on to present the space of possible events
that can be applied to the nodes of the graph, either directly by the user (initiating the entire
process of assessing the impact of an event) or transitively, as modules affected by the event
notify other modules that depend on them for the change. Moreover, in order to regulate the
propagation of events over the graph, we present the language for policy annotations, along with
its semantics and the rules for policy overriding.

Before proceeding it is worth noting that our modeling improves on the previous versions
of Hecataeus ([PVSV10, PVSV09]) by enforcing that a ll modules have a well defined scope,
“fenced” by input and output schemata. Previous models allow queries and views to directly
refer to the nodes representing the attributes of the involved relations. In our model, all software
modules employ an output schema and in the case o f queries and views a set of input schemata.

7

This way, the internals of software modules can be isolated from the rest of the graph. On the
practical side, this modeling also facilitates the correct passing of notifications from one module
to another.

2.1, Architecture graph

Our modeling technique, following [PVS11]. represents all the aforementioned database con
structs as a directed graph G = (V.E), which we call architecture graph of the ecosystem.
Next, we briefly present the components of the architecture graph. We start with the high level
constructs, such as relations and queries, which we call modules of the architecture graph, and
then we move on to discuss their main properties.

Modules. A module is a semantically high level construct of the ecosystem; specifically, the
modules of the ecosystem are relations, views and queries. These modules are disjoint and they
are connected through edges concerning provider or semantic-level relationships, as we shall
see in the sequel.

Every module defines a scope: within the scope of a module a sub-graph of the architecture
graph is assumed. For example, the attributes and local constraints of a relation live within the
relation's scope. A scope is nothing more than a set of part-of relationships that connect the
component (which is expressed as a node) with its constituents.

Relations, R. Each relation R (Ωι, Ω2.....Ωη) in the database schema is represented as a
directed graph, which comprises: a node, /?, representing the relation; an output schema node,
RJSCHEMA* representing the relation’s output schema; n attribute nodes Ωί=1...„, one for
each of the attributes and n+1 schema relationships Ei=x directing from the schema node
towards the attribute nodes, indicating that the attribute belongs to the relations output schema
and one directing from the relation node towards the output schema node indicating that the
output schema belongs to the relation.

Conditions, C. Conditions refer both to selection conditions of queries and views and
constraints of the database schema. We consider three classes of atomic conditions that are
composed through the appropriate usage of an operator op belonging to the set of classic binary
operators, op (e.g., <, >, =, <, >,! =, IN, EXISTS , ANY): Ω op constant; Ω op Ω’ and Ω
op Q where Ω, Ω’ are attributes of the underlying relations and Q is a query.

A condition node is used for the representation of the condition. Graphically, the node is
tagged with the respective operator and it is connected to the operand nodes of the conjunct
clause through the respective operand relationships, O. Composite conditions are easily con
structed by tagging the condition node with a Boolean operator (e.g., AND or OR) and the
respective edges to the conditions composing the composite condition.

8

Well-known constraints of database relations - i.e., primary/foreign key, unique, not null,
and check constraints - are easily captured by this modeling technique. Foreign keys are
subset relations of the source and the target attribute, check constraints are simple value-based
conditions. Primary keys, which are unique-value constraints, are explicitly represented through
a dedicated node tagged by their names and a single operand node.

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG) query
involves:

(a) a new node representing the query, named qu ery n o d e ,

(b) a set of input schem ata n odes (one for every table appearing in the FROM clause). Each
input schema comprise the set of attributes that participate in the syntax o f the query (i.e.,
SELECT, WHERE clause, etc.)

(c) an output schem a n o d e comprising the set of attributes present in the SELECT clause.

(d) a sem antics node as the root node for the sub-graph corresponding to the semantics of the
query (specifically, the WHERE and GROUP-BY part), and,

(e) attribute nodes belonging to the various input schemata and output schemata of the query.

The query graph is therefore a directed graph connecting the query node with the high level
schemata and semantics nodes. The schema nodes are connected to their attributes via schema
relationships. In order to represent the relationship between the query graph and the underlying
relations, we resolve the query into its essential parts: SELECT, FROM, WHERE, GROUP
BY, HAVING, and ORDER BY. In our current model, we support the representation of the
first four parts via a dedicated sub-graph (HAVING and ORDER BY are parts of future work).

Select part. Each query is assumed to own an output schema that comprises the attributes,
either with their original or with alias names, appearing in the SELECT clause. In this context,
the SELECT part of the query maps the respective attributes of the input schemata to the
attributes of the query’s output schema through <map-select> edges, directing from the output
attributes towards the input schema attributes. We denote this subset of the edges of the graph
by Em-

From part. The FROM clause of a query can be regarded as the relationship between the
query and the relations (or views) involved in this query. Thus, the relations included in the
FROM part are combined with the input schemata of the query node through from edges,
directing from the nodes of the appropriate input schemata towards the output schema nodes
of the relation/view nodes. We denote this subset of the edges of the graph by Ep. The input
schemata of the query comprise only the attributes of the respective relations that participate

9

in any way in the query; the attributes of the input schemata are connected to the respective
attributes of the provider relations or views via map-select relationships.

W here part. We assume that the WHERE clause of a query is in conjunctive normal form.
Thus, we introduce directed edge, namely where relationships. Ew, starting from the semantics
node of a query towards an operator node corresponding to the conjunction o f the highest
level. Then, there is a tree of nodes hanging from this conjunction as previously described for
composite constraints. The edges are operand relationships as mentioned above among binary
comparators, boolean operators, input attributes and constants.

G roup a n d O rder B y p a r t . For the representation of aggregate queries, we employ two
special purpose nodes: (a) a new node denoted as GB, to capture the set of attributes acting as
the aggregators and (b) one node per aggregate function labeled with the name of the employed
aggregate function; e.g., COUNT, SUM, MIN.

For the aggregators, we use edges directing from the semantics node towards the GB
node that are labeled <group-by>, indicating group-by relationships, Eg* The GB node
comprises separate children nodes for all attributes acting as aggregators. These edges are
schema relationships, which are additionally tagged according to the order o f the aggregators;
we use an identifier / to represent the i-th aggregator. Each of these attribute nodes is connected
with the respective input attributes with a <map-select> edge. Moreover, for every aggregated
attribute in the query’s output schema, there exists an edge directing from this attribute towards
the aggregate function node as well as an edge from the function node towards the respective
input attribute. Both edges are labeled <map-select> and belong to EM, as these relationships
indicate the mapping of the query attribute to the corresponding relation attribute through the
aggregate function node.

Functions, F. Functions used in queries are integrated in our model through a special
purpose node F , denoted with the name of the function. Each function has an input parameter
list comprising attributes, constants, expressions, and nested functions, and one (or more) output
parameter(s). The function node is connected with each input parameter graph construct,
nodes for attributes and constants or sub-graph for expressions and nested functions, through an
operand relationship directing from the function node towards the parameter graph construct.
This edge is additionally tagged with an appropriate identifier / that represents the position of
the parameter in the input parameter list. An output parameter node is connected with the
function node through a directed edge from the output parameter towards the function node.

Views, V. Views are treated as queries; however the output schema of a view can be used
as input by a subsequent view or query module.

Summary. A summary of the architecture graph is a zoomed-out variant of the graph that
comprises only of modules and their schema nodes as nodes and edges denoting relationships
between modules and their schemata and any possible form of provider relationship between

1 0

modules. Formally, a summary is a directed acyclic graph Gs = (Vs, Es), with Vs comprising
the graph’s module nodes including their schema nodes and Es comprising relationships between
modules and their schemata and pairs of providers and consumers as from-relationship edges,
EK.

Example. The following example shows a small university database. The database con
tains information on semesters, standard, recurring data for the courses offered by a department,
specific data for the courses offered by the department in a particular semester, as well as infor
mation for students and their transcript - i.e., what course they have enrolled to and with what
grade. The names of the relations and their attributes are self-explanatory.

CREATE TABLE semester
(

mid INTEGER,
mdescr VARCHAR(50),
PRIMARY KEY (mid)

);

CREATE TABLE coursestd
(

csid INTEGER,
csname VARCHAR(50),
cspts FLOAT,
PRIMARY KEY (csid)

CREATE TABLE course
(

cid INTEGER,
csid INTEGER,
mid INTEGER,
FOREIGN KEY (mid) REFERENCES semester (mid),
FOREIGN KEY (csid) REFERENCES coursestd (csid),
PRIMARY KEY (cid)

);

CREATE TABLE student
(

11

sid INTEGER,
sname VARCHAR(50),
PRIMARY KEY (sid)

);

CREATE TABLE transcript
I

(
cid INTEGER,
sid INTEGER,
tgrade FLOAT,
FOREIGN KEY (sid) REFERENCES student (sid),
FOREIGN KEY (cid) REFERENCES course (cid),
PRIMARY KEY (cid, sid)

On top of this set of relations, we define two views and two queries. The first view,
V COURSE, combines three relations: SEMESTER, COURSESTD and COURSE into
a single view that contains both the identifiers and the descriptions of the involved entities.
The second view: V_TR joins V_COURSE with the relation TRANSCRIPT, resulting in a
view that outputs all the information needed for every student’s enrollment. Then, we have
two queries. The first query performs a self-join over view V_TR and presents a report that
compares the grades for two courses, DB_I and DB_II for those students who enrolled in both
of them. The second query reports the average grade (i.e., over successfully passed courses)
for every student; the report requires students names, so the relation STUDENT is joined to
the view V_TR.

Views:
CREATE VIEW v_course AS
SELECT semester.mid, semester.mdescr, coursestd.csid, coursestd.csname,
course.cid
FROM semester, coursestd, course
WHERE semester.mid=course.mid AND coursestd.csid=course.csid;

CREATE VIEW v_tr AS
SELECT v_course.mid, v_course.mdescr, v_course.csid, v_course.csname,
v_course.cid, transcript.sid, transcript.tgrade
FROM v_course, transcript

1 2

WHERE v_course.cid=transcript.cid;

Queries:
SELECT v1 .sid, v1 .csname AS csnamel, v1 .tgrade AS tgradel, v2.csname AS
csname2, v2.tgrade AS tgrade2
FROM v j r AS v1, v j r AS v2
WHEiRE v1 .mid=v2.mid AND v1 .sid=v2.sid AND v1 .csname='BJ' AND v2.csname=
ΌΒ_ΙΓ;

SELECT student.sid, student.sname, avg(vjr.tgrade) AS gpa
FROM v jr , student
WHERE vjr.sid=student.sid AND v_tr.tgrade > 4 / 1 0
GROUP BY student.sid, student.sname;

Figure 2.1 graphically depicts the graph structure of the relation COURSESTD. Observe
that the module of the relation comprises the following kinds of nodes: (a) a node for the
relation per se, (b) a node for its schema (actually, we treat the schema of a relation as its output

schema), (c) three nodes for its attributes. The edges of the sub-graph include directed p a r t-q f

edges from container, higher-level nodes to their lower-level constituents, and specifically, (a)
the relation with its output schema and (b) the output schema with the attributes.

Figure 2.1: Graph representation of COURSESTD relation

Figure 2.2 graphically depicts the graph structure of a view. The view has a composite
structure of four parts:

1. The view module comprises two Input schemata, named after their providers (in this case,
the relation TRANSCRIPT and the view V_COURSE. Each input schema comprises
all the attributes that are necessary for the other parts of the view definition to operate.

* In other words, the input schemata contain only the attributes that are used by selection
conditions or groupers in the Sem antics schema, or as output attributes under the Output

schema of the view; the rest of the attributes of the module’s providers are not included
in the module’s input schemata. The part-of edges are directed again from container to
constituent nodes

13

2. The Semantics schema contains a single atomic equality operator representing the join
condition of the SQL query defining the view. Observe the edges linking the equality
operator to the operands of the equality and the edge linking the semantics schema to the
equality operator.

3. The Output schema comprises the attributes appearing in the SELECT clause of the
-i

query. Observe the provider edges stemming from the attribute nodes o f the output
schema and reaching their respective provider nodes in the input schemata o f the module.
In our modeling, data provision is modeled as a dependency edge; thus data consumers
point towards their providers.

4. Finally, a node representing the view per se at the highest level of abstraction.

14

Figure 2.2: Graph representation of V_TR view

Queries are represented in a similar fashion with views. Figure 2.3 graphically depicts the
graph structure of a query. The query has a composite structure o f four parts:

’ 1. The query module comprises two Input schemata, named after their providers (in this
case, the relation STUDENT and the view V_TR. In a similar vein to the input schemata
of the view of the previous example, each input schema comprises all the attributes that
are necessary for the other parts of the query definition to operate (in figure 2.2 we see
that V__TR view has 7 attributes in its output schema, while we have in our input schema

15

only 2 of them).

2. The Sem antics schema contains an equality operator representing the join condition of the
SQL query defining and an atomic grater than operator wanting an attribute to have values
grater than the result of a mathematical operation. Observe the edges linking the equality
operator to the operands of the equality and the edge linking the semantics schema to the

' equality operator. The Sem antics schema also contains the group b y node. Observe how
the annotation of the edges streaming from the group by node denotes the order of the
groupers. In our example we group by student.sid first and student.sname second.
Finally, the Sem antics schema contains the aggregate functions that are used in the query.
In our example we use the aggregate function avg on attribute v_tr.tgrade. Observe how
the semantics schema connects to the node representing the aggregate function; this node,
in turn, depends on some input attribute, linked via the appropriate edge and populates
an attribute node at the output schema, again via an appropriate edge.

3. The Output schema comprises the attributes appearing in the SELECT clause of the
query. Observe the provider edges stemming from the attribute nodes of the output
schema and reaching their respective provider nodes in the input schemata of the module
or the aggregate functions of the semantic schema.

4. Finally, a node representing the query per se at the highest level o f abstraction.

16

GPA

Figure 2.4 represents the small university database example displaying all relations, views
and queries at high-level module mode. From the definition of V_COURSE view we see
that COURSE, COURSESTD and SEMESTER are used in the FROM clause denoting
that V_COURSE depends on these three relations. V_TR view uses V C O U R S E and
TRANSCRIPT relation in its FROM clause denoting that the view depends on these two
modules. The first query uses V_TR view in its FROM clause (two times) denoting that the
query depends on that view. Finally, the second query uses V_TR view and STUDENT relation

17

in its FROM clause denoting that the query depends on the view and the relation respectively.

2.2 Events

In this section we list the set of possible events that our method handles. We organize our dis
cussion by classifying these events in three classes: (a) events pertaining to relations, (b) events
pertaining to views or queries, and (c) events that occur as one module notifies another for the
event it just received. In our discussion, for reasons of clarity and intuition, we relate each event
to its respective SQL command, whenever possible.

We can classify the impact of an event as structural whenever the exported schemata and
their attributes are changed in terms of structure or naming. At the same time, the impact of
an event is sem antic whenever the internals of the semantics schema (i.e., the WHERE or the
GROUP-BY clause of the respective SQL query) change.

2.2.1 The space of events that pertain to relations

The events that pertain to relations are the following:

ADD_ATTRIBUTE: in this case, a Relation should obtain another column (ALTER TABLE
<TABLE> ADD <COLUMN> <TYPE>).

DELETE_ATTRIBUTE: in this case, a Relation should drop a column (ALTER TABLE
<TABLE> DROP COLUMN <COLUMN>). This event is system generated and only

18

occurs in the initialization of messages that we discuss in subsection 3.1.3. This initial
ization is currently a function at evolution graph class.

RENAME_ATTRIBUTE: in this case, a Relation should rename a column (ALTER TABLE
<TABLE> RENAME COLUMN <OLD> TO <NEW>). This event is system generated
and only occurs in the initialization of messages.

DELETE_SELF: in this case, a Relation will be deleted (DROP TABLE <TABLE>).

RENAME_SELF: in this case, a Relation will be called with a new name from now on
(ALTER TABLE <TABLE> RENAME TO <NEW>).

2.2.2 The space of events that pertain to views and queries

The events that pertain to Views/Queries are the following:

ADD_ATTRIBUTE: in this case, a Query/View should have another attribute (column, ag
gregate function or value) in its output (SELECT X, Y instead of SELECT X).

DELETE_ATTRIBUTE: in this case, a Query/View should have less attributes in its output
(SELECT X instead of SELECT X, Y). This event is system generated and only occurs
in the initialization of messages.

RENAME_ATTRIBUTE: in this case, an attribute is going to be called with a new name
from now on (SELECT X AS Y instead of SELECT X). This event is system generated
and only occurs in the initialization of messages.

DELETE_SELF: in this case, a View will be deleted (DROP VIEW <VIEW>).

RENAME_SELF: in this case, a View will be called with a new name from now on (ALTER
VIEW <OLD> RENAME TO <NEW>).

ALTERjSEMANTICS: in this case, a View is going to have another WHERE clause or an
other GROUP BY clause (REPLACE VIEW <VIEW> AS SELECT <COLUMN>
FROM <TABLE> WHERE <COLUMN>=<VALUE> instead of SELECT <COL-
UMN> FROM <TABLE>).

2.2.3 The space of events that occur due to the propagation of the impact
of a potential change over the graph

Besides those events, there is the following list of events that accrue from the flow of an event
to the graph:

19

ADD_ATTRIBUTE_PROVIDER: this event is generated by a module in order to inform its
consumers that the module has added an attribute to its output schema.

DELETE_PROVIDER: this event is generated by a module in order to inform its consumers
that this module has deleted one or all its attributes (we will see more at messages in
section 3.1.3) from its output schema.

RENAME_PROVIDER: this event is generated by a module to inform its consumers that the
module itself or one of the attributes that exist in output schema of the module want to
change their name.

ALTER_SEMANTICS: this event is generated by a module to inform its consumers that the
semantics (as described previously: change of WHERE or/and GROUP BY clause) of a
module have changed.

2 .2 .4 A summary of the space of events

Summarizing the previous subsections, in that Table 2.1 we present how each category o f nodes
can sustain its own set of incoming evolution events either due to the user’s input or due to the
system’s event propagation mechanism. Note that the each type of nodes is linked to kinds of
events it can receive; as we shall see later, event emission is performed only by modules (once
a module has internally processed all its arriving events).

R.OUT R.OUT.ATTRS QV.IN QV.IN.ATTRS QV.OUT QV.OUT.ATTRS QV.SMTX
DELETE_SELF / / / /
RENAME.SELF / / / /
ADD_ ATTRIBUTE / /
DELETE_PR0V1 DER / /
RENAME_PROVIDER / /
ADD_ATTRIBUTE_PROVIDER /
ALTER.SEMANTICS / /

Table 2.1: Incoming events that each node type can receive.

Notation: In Table 2.1, R stands for relations, QV stands for queries and views and ATTRS
stands for attributes (of any kind); OUT/SMTX/IN stand for output/semantics/input schemata,
respectively.

2.3 Policies

In this section we present the management of policies for regulating the response of the ecosys
tem to a hypothetical event. First, we discuss which are the supposed policies and their se-

2 0

mantics. Second we present a language for the declarations of these policies in an ecosystem.
Moreover we introduce a com plete set of policy declarations that covers a ll possible events in
an ecosystem. Finally we return to our reference example for a university database and its
ecosystem to discuss policy annotation of the architecture graph.

Policies for each kind of node. Whenever a node receives an event that concerns either
itself or its constituents (e.g., the attributes of a schema), the node has to respond with a reaction
to the incoming event. The policy of a node for responding to an incoming event can be one of
the following:

• PROPAGATE, which means that the node accepts the change and will adapt to the new
reconfiguration of the graph that will be produced by the propagation of the event over
the graph, or,

• BLOCK, which means that the node wants to retain the previous structure and semantics
of the graph

Requirements for the policy annotation language. We wish to provide a language that
facilitates the annotation of the ecosystem with policies in a way that increases the users’ pro
ductivity. To this end, we employ a rule-based language, in the spirit of [PVS+08]. Moreover,
we address the following usability requirements:

• Com pleteness: we need to be able to define annotations for all the possible events that can
arrive to a node

• Conciseness: we need to make it easy for the user to annotate the ecosystem with policies,
without going to great lengths of coding

• Custom izability: we need to allow the users to define rules that are tailored to specific
subparts of the ecosystem.

Language for policy annotation. In order to annotate the graph, we utilize an annotation
language that follows [PVS+08] in its philosophy. The space that the language has to cover is
defined by the available combinations of events and node types; thus, each type of nodes can
(in fact, has to) be annotated by a rule for its response to an incoming event. The language
simply comprises rules that abide to the following structure:

creceiver node> : on <event> t h e n <policy>

where:

2 1

1. <receiver node> can be any of the following:

(a) QUERY.OUT.SELF standing for the node representing the output schema of all

queries

(b) QUERY.OUT.ATTRIBUTES standing for the nodes representing the attributes of
the output schema of all queries

»
(c) QUERY.SMTX.SELF standing for the node representing the semantics tree of all

queries

(d) QUERY.IN.SELF standing for the node representing the input schema(-ta) of all
queries

(e) QUERY.IN.ATTRIBUTES standing for the nodes representing the attributes of
the input schema(-ta) of all queries

(f) VIEW.OUT.SELF standing for the node representing the output schema of a view

(g) VIEW.OUT.ATTRIBUTES standing for the nodes representing the attributes of
the output schema of all views

(h) VIEW.SMTX.SELF standing for the node representing the semantics tree of a view

(i) VIEW.IN.SELF standing for the node representing the input schema(-ta) of a view

(j) VIEW.IN.ATTRIBUTES standing for the nodes representing the attributes of the
input schema(-ta) of all views

(k) RELATION.OUT.SELF standing for the node representing the output schema of
a relation

(l) RELATION.OUT.ATTRIBUTES standing for the nodes representing the attributes
of the output schema of all relations

(m) <NAMED SCHEMA NODE>.ATTRIBUTES standing for the nodes represent
ing the attributes of the <named schema node> of the graph.

(n) <NAMED NODE> standing for the <named node> node o f the graph.

2. <event> can be any of the events listed in section 2.2, with the constraint it has to be
applicable to its accompanying <node type> (as dictated by Table 2.1)

3. <policy> can be either PROPAGATE or BLOCK

Conciseness and completeness considerations. We achieve the conciseness requirement
by providing a small list of generic rules that cover all possible combinations of events and
nodes. To address the completeness requirement, we have to be certain that we cover the entire

2 2

space of the combination of events with their receiving nodes. To this end. we provide a com
plete set of rules that once completed by the user, guarantee that all nodes are able to address
any possible event that arrives to them.
QUERY.OUT.SELF: on ADD_ATTRIBUTE then <policy>;
QUERY.OUT.SELF: on DELETE_SELF then <policy>;
QUERY.OUT.SELF: on RENAME_SELF then <policy>;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>;
QUERY.IN.SELF: on DELETE_PROVIDER then <policy>;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;
QUERY.IN.SELF: on RENAME_PROVIDER then <policy>;
QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>;
QUERY.IN.ATTRIBUTES: on RENAME PROVIDER then <policy>;
QUERY.SMTX.SELF: on ALTER_SEMANTICS then <policy>;
VIEW.OUT.SELF: on ADD_ATTRIBUTE then <policy>;
VIEW.OUT.SELF: on DELETE_SELF then <policy>;
VIEW.OUT.SELF: on RENAMESELF then <policy>;
VIEW.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;
VIEW.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;
VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>;
VIEW.IN.SELF: on DELETE_PROVIDER then <policy>;
VIEW.IN.SELF: on RENAME_PROVIDER then <policy>;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then <policy>;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then <policy>;
RELATION.OUT.SELF: on ADD_ATTRIBUTE then <policy>;
RELATION.OUT.SELF: on DELETE_SELF then <policy>;
RELATION.OUT.SELF: on RENAME_SELF then <policy>;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;

Property. The list o f a llo w ed even ts is com plete. This can be easily verified by checking the
following list of rules against the contents of Table 2.1.

2 3

Customizability. Whereas our small list of generic, default rules can cover all possible
combinations of events and node types, it is quite possible that we want to define different
reaction to the same event for different modules. For example, we might wish a certain view to
block attribute addition, whereas we would allow another view to adapt to the same event. To
facilitate this possibility we allow three layers of rules:

1 General rules about a ll modules and their attributes.

2. Rules that apply to all the attributes of a specific schem a.

3. Rules that apply to specific attribute nodes.

If one observes the syntax of the policy annotation language, all the instantiations of receiver
node from (a) to (1) refer to the case of layer 1 (i.e., default rules for all the nodes and modules
of the graph), the case (m) refers to all the attributes of a specific schema (layer 2), and, finally,
the case (n) refers to individual nodes of the graph (layer 3). In our approach, the semantics of
the layers of rules state that each la yer overrides the p o licy o f its previou s layers. This way, if
we have a default policy for all relations (layer 1) for a certain event (e.g., rename) we can cus
tomize the behavior of a specific relation to be different than the default by defining a specific
rule for it (layer 2).

Reference Example. Returning to our reference example, the following text represents
a set of rules of how policy rules should be written in order to have all nodes of the graph
propagating all possible events for all modules, except for V_TR view (in which only the CID
attribute will propagate any of its incoming events. The following text covers the 1st set of rules
mentioned previously.

QUERY.OUT.SELF: on ADD__ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on DELETE_SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;

2 4

QUERY.SMTX.SELF: on ALTERSEMANTICS then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on DELETE_SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETESELF then PROPAGATE;
VIEW.OUT. ATTRIBUTES: on RENAMESELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETEPROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;
RELATION.OUT.SELF: on ADDATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;

Assuming that the user wanted for V_TR view to have BLOCK policy, the following text
describes the set or rules needed to be written under the general rules that we saw just above.

VTROUT.SELF: on ADD_ATTRIBUTE then BLOCK;
VTROUT.SELF: on DELETE SELF then BLOCK;
V TR OUT.SELF: on RENAME SELF then BLOCK;
V TR OUT.ATTRIBUTES: on DELETE_SELF then BLOCK;
V_TR_OUT.ATTRIBUTES: on RENAME SELF then BLOCK;
V_TR_OUT.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_OUT.ATTRIBUTES: on RENAMEPROVIDER then BLOCK;
V_TRJN_TRANSCRIPT.SELF: on DELETE PROVIDER then BLOCK;
V_TRJN_TRANSCRIPT.SELF: on RENAME_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.SELF: on ADD_ATTRIBUTE_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.ATTRIBUTES: on RENAME_PROVIDER then BLOCK;
V_TR_lN_V_TR.SELF: on DELETE_PROVIDER then BLOCK;
V_TRJN_V_TR.SELF: on RENAME_PROVIDER then BLOCK;

25

V_TR_IN_V_TR.SELF: on ADD_ATTRIBUTE_PROVIDER then BLOCK;
V_TRJN_V_TR.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_IN_V_TR.ATTRIBUTES: on RENAME_PROVIDER then BLOCK;
V_TR_SMTXSELF: on ALTER_SEMANTICS then BLOCK;

1 Finally, the user decided that the CID attribute o f the output schema o f the V_TR module
should have again different policy (PROPAGATE instead o f BLOCK that was set in the previ
ous set o f rules). This is achieved by the following set of policies:

V_TR_OUT.CID: on DELETE_SELF then PROPAGATE;
V_TR_OUT.CID: on RENAME_SELF then PROPAGATE;
V_TR_OUT.CID: on DELETE_PROVIDER then PROPAGATE;
V_TR_OUT.CID: on RENAME_PROVIDER then PROPAGATE;

2 6

Chapter 3

Propagating the impact of an event over the
architecture graph

The main goal o f our method is to assess the impact of a hypothetical event over an architecture
graph. As we have seen, we allow the involved stakeholders to regulate the effect of an event
by annotating modules and their components with policies that can either (a) BLOCK the event
(requesting thus that the module remains structurally and semantically immune to the tested
change), or, (b) accept to adapt to the change and PROPAGATE the event to both the module’s
internal structure and to subsequent data consumers. In the context of this goal, two tasks are
possible, and specifically, (a) the assessment of the impact of the hypothetical change over the
architecture graph (i.e., the detection of which modules are affected by the change), and, (b) the
rewriting of the graph’s modules to adapt to the applied change. In this Chapter, we cover the
first of the two tasks and provide a method that highlights which nodes can be affected by a
hypothetical event.

We follow [PVSV09, PVS11] in our approach and exploit the nature of the graph’s summary
at the module level. We want to enforce the principle of loca lity independence which states
that each m odule receives a ll the inform ation necessary to assess the im pact o f an even t from

its environm ent (i.e., the other m odules in the architecture graph) a n d dec ides its reaction a n d

possib le adapta tion on its ow n (a .k .a l o c a l l y , independently). In other words, we would like
to visit each module once, provide it with all the information necessary on what has happened
to its environment of related modules and let it decide on its reaction without interacting with
other modules or some form of central management.

Implementing the principle of locality independence is feasible. As already shown in pre
vious work ([PVSV09, PVS11]), due to the nature of view and query definitions, at the high
level, the nodes of the graph’s summary form a directed acyclic graph of provider-consumer

2 7

dependencies. Thus, it is straightforward to obtain a topological sorting of the summary of the
architecture graph. We can easily enforce the rule that modules communicate with each other
via a single means: the output schema of a provider module notifies the input schema of a
consumer module. In such cases, the following protocol is used:

(i) We topologically sort the graph at the module level.
>

(ii) We visit each affected module with its topological order and we process there all the
incoming messages it has. If this is the case, the topological sort guarantees that all
messages pending for the input schemata of the module are ready.

(iii) Every module processes locally the incoming events and also, locally decides the status
for its semantics and output schema. Next, it is ready to propagate this information to all
its consumers (if any).

In this chapter, we will first start with the description of our method at a high, inter-module
level; i.e., we will first present the first two steps of the aforementioned strategy. Then, we will
delve into the details of intra-module reaction to change and see how a module reacts to an
incoming event internally.

3.1 Inter-module propagation of events

In this section, we will present the high-level behavior of our method at the module level. In a
nutshell, our algorithm works as follows.

(i) Before any event is to be tested, we topologically sort the modules of the architecture
graph. This is performed once, in advance of any impact assessment. The topological sort
starts from the relations (that are the fountains of data provision) and moves on to views
and queries (that are the intermediaries and targets of data consumption).

(ii) Whenever a hypothetical event is assessed we start from the module over which it is
assessed and visit the rest of the nodes by following the topological sorting of the modules.
This way, we can ensure that a module is visited after a ll of its data providers have been
visited. The visited node assesses the impact of the event internally (see the following
section for this) and obtains a status, which can be only one of the following: •

• BLOCK, meaning that the module is requesting that it remains structurally and
semantically immune to the tested change; this also means that the module will block
the event (as its immunity obscures the event from its data consumers), or,

28

• PROPAGATE, meaning that the modules concedes to adapt to the change and prop
agate the event to any subsequent data consumers.

• NOJ5TATUS, meaning that the module is not affected by the change.

(iii) If the status of the module is PROPAGATE, the event must be propagated to the subse-
, quent modules. To this end, the visited module prepares m essages for its data consumers,

notifying them about its own changes. These messages are pushed to a central, common
message queue (where messages are sorted by their target module’s topological sorting
identifier).

(iv) The process terminates whenever there are no more messages and no more modules to be
visited.

In this section, we start our discussion with the topological sorting o f the graph’s summary at the
module level. Second, we present the algorithm for the assessment o f which nodes are affected
by a hypothetical change. Then, we give some implementation details on the messages that are
used to allow the communication of modules.

3.1.1 Topological sorting

We perform a topological sort of high-level nodes (Queries, Views, Relations) before doing
any step that can cause changes to our graph. This way we are sure that the messages that
are transferred between high-level nodes are transferred in the right order from providers to
consumers. This sorting is done by setting incremental numbers at nodes, called IDs. At the
end of the algorithm, all high level nodes have a unique ID. Relations have the smallest IDs,
followed by Views and Queries.

We follow a traditional approach to our topological sorting, which proceeds as follows: first
we find the nodes with zero incoming edges. These nodes are removed from the examination
set with their outgoing edges (uses edges). This gives as a result a new set of nodes with zero
incoming edges. The algorithm stops when there are no more nodes to visit.

29

Algorithm 1 Topological sorting algorithm________________ ____________________________
Input: A summary of an architecture graph GS(VS,E S) that comprises the modules of an

architecture graph G(V, E)
Ouput: A topologically sorted architecture graph summary GS(VS, Es), i.e. an annotation of

the nodes of Gs with a sequential id’s, via a mapping Y : Vs —> N
Begin

2: n o t Y e tV i s i t e d = (R e la t io n U V ie w U Q u e r y);

3: a lg o ID = ύ τ£ ,(η ο ίΥ e tV is i te d) \
4 : n o d e — n u l l ;

5 : while n o t Y e tV i s i t e d > 0 do
6: find n o d e with 0 incoming edges from n o t Y e t V i s i t e d ;
7: remove n o d e from n o tY e tV i s i t e d \

8: remove edges starting from node;
9: n o d e .ID = a lg o I D ;

10: a lg o ID = a lg o ID — 1;
11: end while
12: End

Returning to our reference example the above algorithm of topological sorting produces the
following output:

Figure 3.1: Summary of the architecture graph of the reference example with the nodes annotated with
the id obtained by the topological sorting of the architecture graph

3 0

3.1.2 General algorithm at module level and explanation of queue

Once the graph is topologically sorted, we exploit this order to propagate an event through it.
Whenever the user initiates a hypothetical event on a graph’s node, we start from the affected
node’s module and visit each module in the order dictated by the topological sorting algorithm.
Each visited module has to check what its policy towards this event is and, if the policy is
to further propagate the event, notify its consumer modules for the change. To facilitate the
module level communication, we use a g lo b a l q u eu e of messages that is sorted with respect
to the topological order of the modules. This allows us to use the following protocol of
communication:

Algorithm 2 Status determination algorithm
Input: A topologically sorted architecture graph summary GS(VS, Es) (output of algorithm 1),

a global queue Q that facilitates the exchange of messages between modules
Ouput: A list of modules A f f e c t e d M o d u le s C Vs that were affected by the event and

acquire a status other than N O _ S T A T U S

I: function SetStatus(ModuZe, M e s s a g e s)

2: C o n s u m e r s M e s s a g e s = 0;
3: for all M e s s a g e €. M e s s a g e s do
4: decide status of M o d u le ;
5: put messages for M o d u le 's consumers in C o n s u m e r s M e s s a g e s ;
6: end for
7: end function
8: Begin
9: for all n o d e € GS(VS, Es) do

10: n o d e .s ta tu s = N O _ S T A T U S ;

11: end for
12: while size(Q) > 0 do
13: visit module (n o d e) in head of Q \

14: insert n o d e in A f f e c t e d M o d u le s list;
15: get all messages, M e s s a g e s , that refer to n ode;

16: SetStatus(node, M e s s a g e s);
17: if n o d e .s ta tu s = = P R O P A G A T E then

* 18: insert n o d e .C o n s u m e r s M e s s a g e s to the Q \

19: end if
20: end while
21: return A f f e c t e d M o d u le s ;
22: End

31

Whenever a module is processed by the algorithm it receives a ll messages that pertain to
this module. This happens because there can be more than one messages for a module in the
g lo b a l q u eu e . For example, with the deletion of an attribute that was used in the output schema
of a module and in the semantics schema of a module, the module should inform its consumers
that (a) the attribute was deleted and (b) its semantics has changed. If n o d e .s ta tu s = = b lo c k ,
then the messages that were produced for n o d e consumers will not be inserted in the global
queue. If there are still messages in the queue, these messages will be processed by the
Status D eterm ination. In our reference example, we can see that there are two final destinations
(the two queries) from a event that initiated in V_TR module, for example. This means that
even if one of Q1 or Q2 sets its status as block, the other might want to accept the imminent
change.

Having discussed the body of the algorithm, we now turn our attention to some implemen
tation details on the structure and recipients of the emitted messages.

3.1.3 Message structure and content

Each message m s g is a quadruple m s g (n , s ,e ,p) with the following parts:

• a recipient module n that is the target of the message, to be used in order to place the
message appropriately in the common message queue, which is sorted by the id of the
modules (as dictated by the topological sorting).

• the specific schema s of n , to which the message is sent (note that due to this information,
we can also find who the sender o f the message was, since an input schema has exactly
one provider)

• the event e that this message carries.

• any parameters p containing additional information needed for some events (e.g., addition
or renaming events).

Since the user can select only one event to take place, in the beginning there is going to
be only one initial message. Depending on the user selection this message should carry among
nodes (to node and to schema) and needed parameter the following event information:

DELETE_ATTRIBUTE: when the user wants to delete one attribute from the output schema
(the user selects DELETE_SELF on an attribute but on initialization, since we know that
the user selected an attribute and not a module we change the event from DELETE_SELF
to DELETE.ATTRIBUTE).

3 2

RENAME_ATTRIBUTE: when the user wants to rename one attribute from the output
schema (likewise the user selects RENAME_SELF on an attribute but on initialization
we change that from RENAMEJSELF to RENAME_ATTRIBUTE).

ADD_ATTRIBUTE: when the user wants to add another attribute to the output schema of a
module.

j

DELETEJSELF: when the user wants to delete a module.

RENAMEjSELF: when the user wants to rename a module.

ALTER_SEMANTICS: when the user wants to change the semantics of a module.

Depending on the type of event, when once the module has determined its reaction, it
constructs messages for its data consumers. Here, we list some examples of such cases.

• When a message is processed saying that an attribute is going to be deleted, the input
schema of the consumers that are connected to that attribute is informed that the attribute
will be deleted.

• If the whole module is going to be deleted then the consumers of this module will receive
a message in their input schema saying that the provider of that input schema is going to
be deleted.

• Likewise when an attribute is going to be renamed, the input schema of the consumers
that are connected to that attribute is informed that the attribute will have a new name
from now on.

• If the whole module is going to be renamed, then the consumers of this module will
receive a message in their input schema saying that the provider o f that input schema is
going to be renamed.

• When a module processes a message saying that a new attribute is going to be added to its
output schema, it informs all of its consumers in their input schema that a new attribute
was added to their provider. •

• Finally when a module processes a message saying that its semantics have changes, it
informs all its consumers that it changed its semantics.

3 3

3.2 Intra-module processing of arriving events

As already mentioned, a guiding principle of our design is the principle of locality independence.
The crux of the principle is that as events flow over the graph, each module (a) assesses its
reaction and (b) adapts to the changes, independently. To allow the smooth scale-up of our
algorithm concerning the size of the architecture graph, we wish to avoid having any central
mechanism to dictate what each module does; on the contrary, we wish that each module
can process incoming events without negotiating with other modules or central mechanisms.
We exploit the topological ordering of the graph to make sure that whenever a module is
to be processed, a ll the messages that concern it have been delivered to the message queue.
Therefore, the module retrieves all these messages from the common queue and processes them
internally. In the rest of this section, we discuss how this processing takes place. However, before
proceeding, we stop to make a few comments with observations and explanations that will allow
the better understanding of our technical decisions and methods.

Algorithmic steps. Independently of the type of event, or the kind of module that receives a
message, the main algorithmic steps of the module in order to assess its reaction to the incoming
message are as follows.

1. Whenever visited, a module starts by retrieving from the common queue all the messages
that concern it. Then, it processes all these messages sequentially, under the following
order of actions.

2. First, the module probes its schemata for their reaction to the incoming event, starting
from the input schemata, next to the semantics and Finally to the output schema. Natu
rally, relations deal only with the output schema.

3. Within each schema, the schema has to probe both itself and its contained nodes (at
tributes)1 for their reaction to the incoming event. At the end of this process (to be
detailed in a case by case mode right next) the schema assumes a status

4. Once all schemata have assumed status, it is the output schema of the module that decides
the reaction of the overall module; if any of the schemata raises a veto (BLOCK) the
module assumes the BLOCK status too; otherwise, it assumes the PROPAGATE status

5. Finally, if the module assumes the PROPAGATE status, it prepares messages for all its
consumers and inserts them in the common queue.

Interestingly, within each module, the schemata communicate also with a local queue. Also,
it is noteworthy that every time a module is visited, it is possible that there are more than

‘For reasons of efficiency, in our implementation we have simplified the reaction of the semantics schema to
avoid examining its constituents; however, in principle, this is feasible too

3 4

one messages that concern it. Typically this is due to one of the following two phenomena
(not excluding other possibilities): (a) cases of self-join, where a provider feeds (directly or
indirectly) a consumer with more than one paths (and thus, a change in the provider concerns
more than one schemata of the consumer - observe here that it is not obligatory that these
schemata have identical reaction towards the event) and (b) a deletion of an attribute in a view
might affect both the semantics and the output schema of the view, producing thus, two messages
to its consumers: one that notifies them that the set of attributes that was exported to them has
changed and another notifying them that the semantics o f the view has changed (e.g., a part of
the SELECT clause has been dropped due to the attribute deletion).

Maestros for the local processing. To facilitate the local, independent nature of message
processing by the modules, each module awakes a maestro that handles the probing of schemata
as well as the decision making on what status will the schema assume. A maestro is a simple
piece of software (implemented as an abstract interface, later materialized on a case by case
basis) that is specialized on the combination ty p e o f e v e n t x m o d u le ty p e . For each type of
module, there is a specialized maestro that takes care of status determination for each possible
event that can be received.

In terms of software architecture, the decision for this structuring of the code was done
in order to decentralize event processing. It allows the reasonably smooth extension of the
architecture with new types of events or modules at the price o f some code reusability. In terms
of algorithmic principles, we gain the benefits of module independence at the price of a common
queue of messages.

In the following, we present how events are processed inside modules, organized by the type
of the incoming message that the module is called to handle. For each event, we explain the
structure of the incoming message and the list of steps that have to take place (organized per
schema, if more than one schemata of the module are involved).

3.2.1 Intra-module processing at relation modules

In this subsection, we discuss how events are processed inside relation modules.

• Incoming message for attribute deletion.
To node Relation
To schema Relation output schema
Event DELETE_ATTRIBUTE
Parameters Attribute name (A N)

1. Probing the output schema.

35

(a) Output schema searches for the attribute that is named as A N (denoted as
R .O .A).

(b) R .O .A policy is checked for deletion, if R .O .A has block policy then R .O .A

and output schema statuses are set to B L O C K , otherwise statuses are set to
PROPAGATE.

(c) Finally if output schema status is PROPAGATE a new set o f messages is inserted
in the local queue of outgoing messages for this module’s consumers, these
messages say that this module deleted this (R .O .A) attribute.

• Incoming message for attribute renaming.
To node Relation
To schema Relation output schema
Event RENAME_ ATTRIBUTE
Parameters Attribute name (A N)

1. Probing the output schema.

(a) Output schema searches for the attribute that is named as A N (denoted as
R .O .A).

(b) R .O .A policy is checked for renaming, if R .O .A has block policy then R .O .A and
output schema statuses are B L O C K , otherwise statuses are set to PROPAGATE.

(c) Finally if output schema status is assumed PROPAGATE a new set of messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module renamed this (R .O .A) attribute.

• Incoming message for self deletion.
To node Relation
To schema Relation output schema
Event DELETE_SELF
Parameters

1. Probing the output schema.

(a) Output schema checks for each one of its attributes policy for deletion, if
any has block policy then that attribute and output schema get status B L O C K ,
otherwise status PROPAGATE is set to all (attributes and output schema).

(b) Finally if output schema status is assumed PROPAGATE a new set of messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module is deleted.

3 6

• Incoming message for: s e lf re n a m in g .

To node Relation
To schema Relation output schema
Event RENAME.SELF
Parameters

1. Probing the output schema,

(a) Output schema checks its policy for renaming, if it has block policy then output
schema gets status B L O C K , otherwise its status is set to PROPAGATE.

(b) Finally if output schema status is assumed PROPAGATE a new set of messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module is renamed.

• Incoming message for attribute addition.
To node Relation
To schema Relation output schema
Event ADD_ATTRIBUTE
Parameters

1. Probing the output schema.

(a) Output schema checks its policy for adding attributes, if it has block policy then
output schema gets status B L O C K , otherwise its status is set to PROPAGATE .

(b) Finally if output schema status is assumed PROPAGATE a new set o f messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module has added a new attribute.

3.2.2 Intra-module processing at query or view modules

In this subsection, we discuss how events are processed inside query or view modules.

* Incoming message for provider attribute deletion.
To node Query/View
To schema Query/View input schema
Event DELETE_PRO VIDER
Parameters Attribute name (A N)

1. Probing the input schema.

3 7

(a) Input schema searches for the attribute named as A N (denoted as Q .I.A).

(b) Q .L A policy is checked for deletion, if Q .L A has block policy then Q .L A and
input schema statuses are set to B L O C K , otherwise both nodes assume status
PROPAGATE.

2. Probing the semantics schema.

(a) Semantics schema searches if it has connection with the attribute Q .L A .

(b) If semantics schema has connection with Q .L A then semantics policy is checked
for alteration, if it has block policy then semantics schema status is set to
B L O C K , otherwise it is set to PROPAGATE.

(c) Finally if semantics schema has status PROPAGATE then a new set of messages
is inserted in the local queue of outgoing messages for this modules consumers
that say that this module has changed its semantics.

3. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .LA

(denoted as Q .O .A s).

(b) If none Q .O .A exists, output schema stops further execution for this message.

(c) If any Q .O .A exists, then for each Q .O .A its policy is checked for deletion, if
any of the Q .O .A s has block policy then this Q .O .A and output schema assume
B L O C K status otherwise their statuses are set to PROPAGATE.

(d) Finally if output schema has status PROPAGATE , then for each Q .O .A a new
set of messages is inserted in the local queue of outgoing messages for this
modules consumers that say that this module deleted this (Q .O .A) attribute.

• Incoming message for provider schema deletion.
To node Query/View
To schema Query/View input schema
Event DELETE_PROVI DER
Parameters Schema name (S N)

1. Probing the input schema.

(a) For each one of the attributes of input schema (denoted as Q .I.A s) policy is
checked for deletion, i f any of Q .LA has block policy then Q .LA and input
schema statuses are set to BLOCK.

(b) If all Q .I.A s statuses are PROPAGATE then the policy of the input schema is
checked for deletion. If it has block policy then the status of input schema is
set to B L O C K else it is set to PROPAGATE.

38

2. Probing the semantics schema.

(a) Semantics schema searches if it has connection with any of the attributes
Q.I.As.

(b) If semantics schema has connection with a Q .I.A then semantics policy is
checked for alteration, if it has block policy then semantics schema status is
set to B L O C K , otherwise it is set to PROPAGATE.

(c) Finally if semantics schema has status PROPAGATE then a new set of messages
is inserted in the local queue of outgoing messages for this modules consumers
that say that this module has changed its semantics.

3. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .I.A s

(denoted as Q .O .A s).

(b) If none Q .O .A exists, output schema stops further execution for this message.

(c) If any Q .O .A exists, then for each Q .O .A its policy is checked for deletion, if
any of the Q .O .A s has block policy then this Q .O .A and output schema assume
B L O C K status otherwise their statuses are set to PROPAGATE.

(d) Finally if output schema has status PROPAGATE , then for each Q .O .A a new
set of messages is inserted in the local queue of outgoing messages for this
modules consumers that say that this module deleted this (Q .O .A) attribute.

• Incoming message for attribute deletion.

To node Query/View
To schema , Query/View output schema
Event DELETE_ ATTRIBUTE
Parameters Attribute name (AN)

1. Probing the output schema.

(a) Output schema searches for the attribute that is named as A N (denoted as
Q .O .A).

(b) Q .O .A policy is checked for deletion, if Q .O .A has block policy then Q .O .A

and output schema statuses are set to B L O C K , otherwise statuses are set to
PROPAGATE .

(c) Finally if output schema status is PROPAGATE a new set o f messages is inserted
in the local queue of outgoing messages for this module’s consumers, these
messages say that this module deleted this (Q .O .A attribute.

39

• Incoming message for provider attribute renaming (generated by a provider).
To node Query/View
To schema Query/View input schema
Event RENAME_PROVIDER
Parameters Attribute name (AN)

1. Probing the input schema.

(a) Input schema searches for the attribute named as A N (denoted as Q .I.A).

(b) Q.I.A policy is checked for renaming, if Q .I.A has block policy then Q .I.A and
input schema statuses are set to B L O C K , otherwise both nodes assume status
PROPAGATE.

2. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .I.A and
are named as A N (denoted as (Q .O .A).

(b) If Q .O .A does not exist, output schema stops further execution for this message.

(c) If Q .O .A exists, then we check Q .O .A 's policy for renaming, if it has block
policy then this Q .O .A and output schema status are set to B L O C K , otherwise
their statuses are set toPROPAGATE.

(d) Finally a new set of messages is inserted in the local queue of outgoing messages
for this modules consumers that say that this module renamed this (Q .O .A)

attribute.

• Incoming message for provider schema renaming.
To node Query/View
To schema Query/View input schema
Event RENAME_PROVIDER
Parameters Schema name (SN)

1. Probing the input schema.

(a) Input schema policy is checked for deletion, if it has block policy then input
schema status is set to B L O C K , else it is set to PROPAGATE.

♦ Incoming message for attribute renaming.
To node Query/View
To schema Query/View output schema
Event REN AME_ATTRIBUTE
Parameters Attribute name (A N)

40

1. Probing the output schema.

(a) Output schema searches for the attribute that is named as A N (denoted as
Q .O .A).

(b) Q .O .A policy is checked for renaming, if Q .O .A has block policy then Q .O .A and
output schema statuses are BLO CK , otherwise statuses are set to PROPAGATE.

(c) Finally if output schema status is assumed PROPAGATE a new set of messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module renamed this (Q .O .A) attribute.

• Incoming message for self deletion.

To node Query/View
To schema Query/View output schema
Event DELETE_SELF
Parameters ,

1. Probing the output schema.

(a) Output schema checks for each one of its attributes policy for deletion, if
any has block policy then that attribute and output schema get status B L O C K ,

otherwise status PROPAGATE is set to all (attributes and output schema).

(b) Finally if output schema status is assumed PROPAGATE a new set o f messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module is deleted.

• Incoming message: self renaming.
To node Query/View
To schema Query/View output schema
Event RENAME_SELF
Parameters

1. Probing the output schema.

(a) Output schema checks its policy for renaming, if it has block policy then output
schema gets status B L O C K , otherwise its status is set to PROPAGATE.

(b) Finally if output schema status is assumed PROPAGATE a new set o f messages
is inserted in the local queue of outgoing messages for this module’s consumers,
these messages say that this module is renamed.

41

• Incoming message for provider attribute addition.
To node Query/View
To schema Query/View input schema
Event ADD_ATTRIBUTE_PROVIDER
Parameters

1. Probing the input schema.

(a) Input schema checks for its policy for adding attribute, if it has block policy
then it sets its status to BLO CK , otherwise its status is set to PROPAGATE.

2. Probing the semantics schema.

(a) Semantics schema checks for its policy for alter semantics, if it has block
policy then semantics schema get status B L O C K , otherwise its status is set to
PROPAGATE.

(b) Finally if semantics schema has status PROPAGATE then a new set of messages
is inserted in the local queue of outgoing messages for this modules consumers
that say that this module has changed its semantics.

3. Probing the output schema.

(a) Output schema checks for its policy for adding attributes, if it has block policy
then output schema get status B L O C K , otherwise its status is set to PR O PA

GATE.

(b) Finally if output schema has status PROPAGATE then a new set of messages is
inserted in the local queue of outgoing messages for this modules consumers
that say that this module has added an attribute.

• Incoming message for attribute addition.
To node Query/View
To schema Query/View output schema
Event ADD.ATTRIBUTE
Parameters

1. Probing the output schema.

(a) Output schema checks for its policy for adding attribute, if it has block policy
then output schema get status BLO CK , otherwise its status is set to PROPA

G ATE.

42

(b) Finally if output schema has status PROPAGATE then a new set of messages is
inserted in the local queue of outgoing messages for this modules consumers
that say that this module has added an attribute.

• Incoming message for alter semantics (user generated).

To node Query/View
To schema Query/View semantics schema
Event ALTER_SEMANTICS
Parameters

1. Probing the semantics schema.

(a) Semantics schema checks for its policy for altering its semantics, if it has block
policy then semantics schema get status B L O C K , otherwise its status is set to
PROPAGATE.

(b) Finally if semantics schema has status PROPAGATE then a new set of messages
is inserted in the local queue of outgoing messages for this modules consumers
that say that this module has changed its semantics.

• Incoming message for alter semantics (system generated).

To node Query/View
To schema Query/View input schema
Event ALTER_SEMANTICS
Parameters

1. Probing the semantics schema.

(a) Semantics schema checks for its policy for altering its semantics, if it has block
policy then semantics schema get status B L O C K , otherwise its status is set to
PROPAGATE.

(b) Finally if semantics schema has status PROPAGATE then a new set of messages
is inserted in the local queue of outgoing messages for this modules consumers
that say that this module has changed its semantics.

' 3.3 Theoretical guarantees

The theoretical foundations and guarantees for this chapter have been laid out in [PVS11]. We
adapt the proofs to our implementation in this section. We also refer the interested reader to
the following section for a discussion of similarities and differences with [PVS11].

4 3

3.3.1 Termination and confluence at inter-module level

First, we prove that the mechanism for message propagation works correctly at the inter-module
level.

Theorem 1 (term ination). The message propagation at the inter-module level terminates.
P ro o f: The summary of the architecture graph is a directed acyclic cycle. This is due to the

fa,ct that a query depends only on views and relations and relations do not depend on anything
(in the context of this paper, we do not consider cyclic foreign key dependencies). Since the
summary graph is a DAG, we can topologically sort it and propagate the messages according to
this topological order. Thus, all that it takes for the message propagation mechanism to terminate
is: (a) each module emits message only once for each session to its consumers that are related
with the event/parameter; (b) the graph is finite. Since both assumptions hold, the algorithm
terminates.

Theorem 2 (unique status). Each module in the graph will assume a status once the message
propagation terminates.

P ro o f: Each module gathers from the common message queue all the messages that concern
it. For each message, the module and its schemata, assume a status. A module’s status can
change only in the following order: NO_STATUS < PROPAGATE < BLOCK, meaning that if
a module has assumed PROPAGATE status, it can not change it to NO_STATUS but it may
change it to BLOCK. At the end of the message processing, the module retains the final status
it assumed.

Theorem 3 (correctness). Messages are correctly propagated to the modules of the graph.
P ro o f: The modules that must be appropriately notified are these for which an event occurs

at their providers. By definition, at the summary level, the architecture graph is a connected
graph, where one (or more) input schema node(s) of a consumer module is connected via
directed edges to the output schema node(s) of its providers. The messaging mechanism dictates
that each message is propagated from the output node of the provider module towards the input
schema node of all consumer modules, unless a block policy explicitly halts the propagation.
Thus, the connectivity of the graph assures that the modules, which are eventually visited by
the message propagation mechanism, have at least one of their providers affected. On the other
hand, the modules that are not visited by the mechanism (a) either do not have any provider
affected, or, (b) a block policy exists.

3.3.2 Termination and confluence at intra-module level

Theorem 4 (term ination a n d correctness). The message propagation at the intra-module level
terminates and each node assumes a unique status according to its policy and the status prece
dence constraints.

44

P ro o f: We visit the schemata of a module in a fixed order: input schema, semantics schema,
output schema. For each of these schemata, we may visit its attributes. All these constructs
are finite and visited only once. Therefore, the algorithm terminates. Every time a schema
is probed on an event, (depending on the event) (a) the appropriate nodes within a schema
are probed (depending on the event), and, (b) the schema itself is also prompted. If a more
detailed construct is affected, it overrides the policy of the schema in all occasions. For cases
where only the schema should be prompted (e.g. attribute addition) we do not interfere with its
attributes. This is the correct and desired behavior. The completeness of the language guarantees
that a ll nodes have a policy for any incoming event that can arrive to them. Therefore, in all
occasions (a) the correct nodes are prompted for a response, (b) the policy of the appropriate
nodes prevails, (c) it is impossible that such a policy does not exist. Therefore, for each message
all nodes acquire the correct status. For the case of multiple messages in the same module, as
already mentioned, vetoes override propagation. If a module has received a message (e.g. delete
attribute) for which it has responded with BLOCK and later it processes a second message (e.g.
alter semantics) for which it responds with PROPAGATE, it will be the BLOCK status that will
prevail in the end. Overall:

• p e r m essage , all the appropriate nodes (and only them) are visited exactly once and the
status of the most detailed nodes overrides the decision of the status o f the schema

• f o r a ll m essages, vetoes override adaptation and thus the status acquisitions is confluent

• if any of the schemata of a module has status BLOCK, the module assumes status
BLOCK.

3.4 Implementation and comparison to state of the art

The main ideas that have been implemented int the context of this thesis have first appeared in
[PVS11]. Following the proposal of [PVS11], in our intra-module processing of the messages,
we start by checking the policy for the event of nodes at the input schema, then we proceed by
checking if there is any connection to the semantics schema, in order to check its policy for the
event and finally we check if there exist connections to the output schema, so as to check the
policy about the event, there too.

However, the concrete implementation of the ideas proposed in [PVS11] led to several
differences and improvements that are listed below:

1. We let modules to send more than one message to their consumers. The authors of
[PVS11] proposed that a module should obtain one status containing the information of

45

all o f its incoming messages and after status determination the module would send to its
receivers only one message containing that information.

2. Instead of using a big number of statuses (equal to the number o f events x number of
provider nodes), we use only 2 statuses (PROPAGATE and BLOCK) along with the
incoming messages of the module. This combination produces the same number of
statuses as the ones in (PVSII].

3. The policies are written in a simpler way. Previously, the user had to write 4 parts on a
policy sentence (the provider node of the event, the receiver node of the event, the event
and finally the acceptance or declination of the event). Now the user has to write 3 parts
on a policy sentence (this happens because we make a better use of the new model of the
architecture graph, since each receiver node has only one provider).

4. Messages are constructed only for the module’s consumers that are related to the node
that accepts the event, for example a deletion of attribute on a relation module that no-one
uses, produces no message at all. Before inserting the produced messages in the global
queue we check the status of the module. If it is PROPAGATE we insert the messages to
the queue, otherwise we ignore them.

5. We do not visit all modules of the graph that are topologically sorted after the module
that initialized the event to see if it has messages. We use the global queue of messages to
see what module we will visit next. Since our global queue is sorted with respect to the
topological sort, and, as previously said, we do not produce messages for all but only for
the affected modules, we can reduce the number of messages to only the necessary ones.

6. As previously mentioned, for reasons of efficiency, we have simplified the reaction of
the semantics schema to avoid examining its constituents. In other words, we do not set
policies for each node of the semantics tree individually, but rather we set a single policy
for the entire tree. However, this extension is clear feasible in the same mentality we have
treated the other schemata.

46

Chapter 4

Query and view rewriting to accommodate
change in the architecture graph

In Chapter 3, we have described how we can identify which pans of the architecture graph
are affected by a hypothetical event. Our method works as follows: we follow each module
(relation/view/query) of the graph in the order dictated by the topological sort with the aim to
determine in which way the module is affected by the propagation o f the event. Internally, the
module checks the policies of its component schemata and based on these policies it adopts a
status and notifies its consumers if necessary.

If however, we wish not only to identify affected nodes, but also to present the user with
a view of how the architecture graph will look like if the hypothetical event is actually applied
over the ecosystem, there are three steps in order for the adaptation of the architecture graph to
take place:

1. Status Determination

2. Path Check

3. Graph Rewrite

Our goal is to rewrite the architecture graph in order to reflect the response o f the modules
t to the events that arrive to them. The first step of the method, Status Determination, has been

already covered in Chapter 3. Then, the problem would intuitively seem simple: the status
determination algorithm has determined the status of each module; then each module gets
rewritten if the status is PROPAGATE and remains the same if the status is BLOCK. This would
require only the execution o f the Graph Rewrite step - in fact, one could envision cases where

47

Status Determination and Graph Rewrite could be combined in a single pass. Unfortunately,
although the decision on Status Determination can be made locally in each module, taking into
consideration only the events generated by previous modules and the local policies, the decision
on rewriting has to take extra information into consideration. This information is not local, and
even worse, it pertains to the subsequent, consumer modules of an affected module, making
thus impossible to weave this information in the first step of the method, Status Determination.
Observe the following example:

Figure 4.1: Block rewriting example

In the example of Figure 4.1, we have a relation R and a view V ie w o that gets data from the
relation. Two views (V i e w \ and V i e w 2) use V ie w o in order to get data. V i e w 2 is further used
by two queries (Q u e r y i and Q u e r y 2). The database administrator wants to change V ie w o ,

in a way that all modules depending on V i e w o are going to be affected by that change (e.g.,
attribute deletion, for an attribute common to all the modules of the example). Assume now
that all modules except Q u e r y 2 accept to adapt to the change, as they have a PROPAGATE
policy annotation. Q u e r y 2 module that vetoed must be kept immune to the change; to achieve
this we must retain the previous version of a ll the nodes in the path from the origin of the
evolution (V i e w 0) to the blocking Q u e r y 2. As one can see in the figure, we now have two
variants of V i e w 0 and V i e w 2: the new ones (named V i e w £ and V i e w ^) that are adapted to
the new structure of V i e w 0 - now named V i e v % - and the old ones, that retain their name and

t are depicted in the rightmost part of the figure. The latter are immune to the change and their
existence serves the purpose o f correctly defining Q u e r y 2.

The crux of the problem is as follows: if a module has PROPAGATE status and none of its
consumers, including both the immediate of the transitive consumers (i.e., the consumers of the
consumers) raises a BLOCK, then both the module and all of these consumers are rewritten to

48

a new version.
However, if any o f the immediate consumers, or any o f the transitive consumers o f a module

raises a veto, BLOCK status, then the whole path towards this vetoing node must hold two
versions of each module: (a) the new version, as the module has accepted to adapt to the
change by assuming a PROPAGATE status and (b) the old version in order to server the correct
definition o f the vetoing module.

To correctly serve the above purpose, the second step o f our method, Path Check, works
from the consumers towards the providers in order to inform each module about its path that it
has to retain both its old and a its new version.

The third part o f the method visits each module and rewrites the module as follows:

• If the module needs to retain only the new version, we visit that module and perform the
needed change, then we connect it correctly to the providers that it should have.

• If the module needs both the old and the new versions, we make a clone of the module to
our graph and we perform the needed change over the cloned module, then we connect
it correctly to the providers that it should have.

• If the module needs to retain only the old version, we do not perform any change. This
happens when the module we are visiting is the one that raised the veto.

The details of the rewriting process are presented in sections 4.2.1 and 4.2.2.

4.1 Algorithms for graph rewriting

In the Path Check step of our algorithm, we have already set the statuses o f the nodes and we
use them for the rewriting o f the modules or not. If we have a BLOCK at any o f the nodes
then we start a reverse traversal o f the nodes starting from the blocker modules to the module
that initialized the flow and we inform each module in that path that he should keep his present
form and create a new version o f itself with the change that user wants.

The only exception to rewriting is when the module of the initial message is a relation
module.

49

Input: A summary of an architecture graph GS(VS, Es), a list of modules A f f e c t e d m o d u l e s ,
that were affected by the event (output of algorithm 2)

Ouput: Annotation o f the modules of A f f e c t e d m o d u le s on the action needed to take, and
specifically whether we have to make a new version of it, or, implement the change the user
asked on the current version

I*: function CheckModule(Mo d u le , A f f e c t e d m o d u le s)

2: if M o d u le has been marked then
3: return; c> notified by previous block path
4: end if
5: mark M o d u le to keep current version and apply the change on a clone;
6: for all N e w m o d u le £ A f f e c t e d m o d u le s feeding M o d u le do
7: CheckModule(iVeu; m o d u le , A f f e c t e d m o d u l e s); > notify path
8: end for
9: end function

10: Begin
11: for all M o d u le £ A f f e c t e d m o d u le s do
12: if M o d u l e . s t a t u s —= B L O C K then
13: CheckModule(Mo d u le , A f f e c t e d m o d u l e s);
14: mark M o d u le not to change; t> blockers keep only current version
15: end if
16: end for
17: End

Algorithm 3 Path check algorithm

Finally, all nodes that can be rewritten are getting their new definition according to their
incoming events as described in relation maestro for rewrite and query/view maestro for rewrite
(Sections 4.2.1 and 4.2.2 recursively).

50

Algorithm 4 Rewriting algorithm
Input: A list of modules A f f e c t e d m o d u le s , knowing the number of versions they have to

retain (output of algorithm 3), initial messages of A f f e c t e d m o d u le s

Ouput: Architecture graph after the implementation of the change the user asked

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22

Begin
if any of A f f e c t e d m o d u le s has status BLOCK then

if initial message started from Relation module type then
return > Relations do not change at all

else
for all M odu le E A f f e c t e d m o d u le s do

if M o d u le needs only new version then
proceed with rewriting of M o d u l e ;
connect M o d u le to new providers; d> new version goes to new path

else
clone M o d u l e ; i> clone module, to keep both versions
connect cloned M o d u le to new providers; > clone is the new version
proceed with rewriting of cloned M o d u l e ;

end if
end for

end if
else

for all M o d u le E A f f e c t e d m o d u le s do
proceed with rewriting of M o d u le

end for
end if

> no blocker node;

End

As in the case of Status Determination, the rewriting of graph modules has been imple
mented via the appropriate m aestros. Every maestro, is again customized for the combination
t y p e o f e v e n t x m o d u le t y p e . For each type of module, there is a specialized maestro for
the rewriting of the module for each possible event that can be received. The functionality of
the rewriting maestros is simpler as they simply have to check with each schema whether a
modification of its structure is required, via the addition or deletion of nodes.

51

4.2 Intra-module rewriting mechanism

In the following, we detail the functionality of rewrite maestros, organized by the type o f the
incoming message that the maestro is called to handle.

4.2.1 Relation maestro for rewrite
I

In this subsection, we discuss how events are processed inside relation modules.

• Initial message for attribute deletion.

To node Relation
To schema Relation output schema
Event DELETE_ATTRIBUTE
Parameters Attribute name (A N)

1. Probing the output schema.

(a) Output schema searches for the attribute that is named as A N (denoted as
R .O .A).

(b) R .O .A is deleted and its name is propagated to other rewrite maestros.

• Initial message for attribute renaming.

To node Relation
To schema Relation output schema
Event REN AME_ATTRIBUTE
Parameters Attribute name (A N)

1. Probing the output schema.

(a) Output schema searches for the attribute that is named as A N (denoted as
R .O .A).

(b) User is asked for the new name of R .O .A and then R .O .A is renamed to what
user selected if that name is not already present at the output schema of the
module, then this name is propagated to other rewrite maestros.

• Initial message for self deletion.

To node Relation
To schema Relation output schema
Event DELETE_SELF
Parameters

52

(a) Output schema gets deleted.

(b) Module node gets deleted.

1. Probing the output schema.

• Initial message for: self renaming.

To node Relation
To schema Relation output schema
Event RENAME_SELF
Parameters

1. Probing the output schema.

(a) User is asked for the new name of the module. Then the module is renamed
to what the user selected if this module is not already present at the graph and
this name is propagated to other rewrite maestros.

• Initial message for attribute addition.

To node Relation
To schema Relation output schema
Event ADD_ATTRI BUTE
Parameters

1. Probing the output schema.

(a) User is asked for the name of the new attribute. When that name is not already
present at the output schema of the module, a new attribute is added to the
output schema of the module, then this name is propagated to other rewrite
maestros.

4.2.2 Query/View maestro for rewrite

In this subsection, we discuss how events are processed inside query or view modules.

• Initial message for provider attribute deletion.

To node Query/View
To schema Query/View input schema
Event DELETE_PROVIDER
Parameters Attribute name (A N)

1. Probing the input schema.

53

(a) Input schema searches for the attribute named as A N (denoted as Q .I.A).

(b) Q.I.A is deleted from input schema.

2. Probing the semantics schema.

(a) Semantics schema searches if it has connection with the attribute Q .I.A .

(b) If semantics schema has connection with Q .I.A then this sub tree of semantics
is set to always true if the parent of the tree is an AND node or always false if
the parent of the tree is an OR node.

3. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .I.A

(denoted as Q .O .A s).

(b) If any Q .O .A exists, it is deleted from output schema.

• Initial message for provider schema deletion.

To node Query/View
To schema Query/View input schema
Event DELETEJPROVIDER
Parameters Schema name (SN)

1. Probing the input schema.

(a) Input schema deletes itself.

2. Probing the semantics schema.

(a) Semantics schema searches if it has connection with any of the attributes of
input schema that got deleted (denoted as Q .L A s).

(b) If semantics schema has connection with & Q .I.A then this sub tree of semantics
is set to always true if the parent of the tree is an AND node or always false if
the parent of the tree is an OR node.

3. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .L A s

(denoted as Q .O .A s).

(b) If any Q .O .A exists, it is deleted from output schema.

• Initial message for attribute deletion.

To node Query/View
To schema Query/View output schema
Event DELETE. ATTRIBUTE
Parameters Attribute name (A N)

54

(a) Output schema searches for the attribute that is named as A N (denoted as
Q O .A).

(b) Q.O. A is deleted.

1. Probing the output schema.

• Initial message for provider attribute renaming (generated by a provider).

To node Query/View
To schema Query/View input schema
Event RENAME_PROVIDER
Parameters Attribute name (A N)

1. Probing the input schema.

(a) Input schema searches for the attribute named as A N (denoted as Q .I.A).

(b) Q.I.A is renamed with the name that was given to this rewrite maestro from the
previous rewrite maestro.

2. Probing the output schema.

(a) Output schema searches for the attributes that have connection with Q .I.A and
are named as A N (denoted as (Q .O .A).

(b) If Q.O. A exists, then it is renamed with the name that was given to this rewrite
maestro from the previous rewrite maestro.

• Initial message for provider schema renaming.

To node Query/View
To schema Query/View input schema

Event RENAME_PROVIDER
Parameters Schema name (SN)

1. Probing the input schema.

(a) Input schema is renamed with the name that was given to this rewrite maestro
from the previous rewrite maestro.

• Initial message for attribute renaming.

To node Query/View
To schema Query/View output schema

Event RENAME_ATTRIBUTE

Parameters Attribute name (A N)

55

(a) Output schema searches for the attribute that is named as A N (denoted as
Q .O .A).

(b) User is asked for the new name of Q .O .A and then Q .O .A is renamed to what
user selected if that name is not already present at the output schema of the
module, then this name is propagated to other rewrite maestros.

1. Probing the output schema.

• Initial message for self deletion.

To node Query/View
To schema Query/View output schema
Event DELETE_SELF
Parameters

1. Probing the input schema.

(a) Input schema gets deleted.

2. Probing the semantics schema.

(a) Semantics schema gets deleted.

3. Probing the output schema.

(a) Output schema gets deleted.

(b) Module node gets deleted.

• Initial message: self renaming.

To node Query/View
To schema Query/View output schema
Event RENAME_SELF
Parameters

1. Probing the input schemata.

(a) User is asked for the new name of the module and then all input schemata are
renamed to what user selected if that name is not already present at the graph,
this name in the end is propagated to other rewrite maestros.

2. Probing the semantics schema.

(a) Semantics schema is renamed to what user selected.

3. Probing the output schema.

(a) Output schema is renamed to what user selected.

56

(b) Module node is rename to what user selected.

• Initial message for provider attribute addition.

To node Query/View
To schema Query/View input schema
Event ADD_ATTRI BUTE_PROVIDER
Parameters

1. Probing the input schema

(a) Input schema adds a new attribute with the name given to this rewrite maestro
from the previous rewrite maestro.

2. Probing the semantics schema

(a) If semantics schema has a group by clause then user is asked if this new attribute
should become a grouper or an aggregate function should be used for it.

3. Probing the output schema

(a) Output schema adds a new attribute with the name given to this rewrite maestro
from the previous rewrite maestro.

• Initial message for attribute addition.

To node Query/View
To schema Query/View output schema
Event ADD_ATTRIBUTE
Parameters

1. Probing the output schema.

(a) User is prompted to select from its providers the attribute he wants to add to
this module’s output schema. If module has a group by clause in its semantics
schema, user is asked if the new attribute should become a grouper or have an
aggregate function over it. Then new attributes are added to output schema and
to input provider schema (if attribute was not already there). Also the needed
connections between nodes and semantics schema are made if they have to (for
group by clause presence that was mentioned earlier).

• Incoming message for alter semantics (user generated).

To node Query/View
To schema Query/View semantics schema

Event ALTER_SEMANTICS
Parameters

57

(a) User is prompted to write a new where and group by clause for the semantics
schema. From the user input a new semantics tree is generated.

1. Probing the semantics schema

• Incoming message for alter semantics (system generated).

To node Query/View
To schema Query/View input schema
Event ALTER_SEM ANTICS
Parameters

1. Here nothing happens, this is a system generated message that happened because
user had asked for a change somewhere else (deletion o f an attribute, addition o f an
attribute or alter of semantics of a module) and the spread o f the messages to the
graph, gave this message as result.

58

Chapter 5

Software architecture

Our project, Hecataeus, has its source code structured as described in Figure 5.1.

Figure 5.1: Hecataeus packages

The D a o package is responsible for the connection o f Hecataeus to database management
systems (DBMS). The main class in this package is HecataeusDatabase and it provides the

* needed functions for obtaining the table and view definitions of the database schema.

The G r a p h package is composed of i) the E v o lu t io n sub-package and ii) the V is u a l sub
package.

59

• The Evolution sub-package contains the E v o lu t io n g r a p h that describes the connections
(edges of the architecture graph) between attributes, schemata and modules (nodes of the
architecture graph). The Evolution graph is also responsible for the message propagation
mechanism and rewriting methods contained in its sub-package Messages.

• The Visual sub-package contains the V is u a l g r a p h , which extends the Evolution graph
and is responsible for the representation of the evolution graph to users, by giving colors,
shapes, icons and labels to the evolution nodes. The Visual graph is also responsible for
the visibility of the nodes depending on the user selections (for example user may want
to see the module graph or only the nodes that have status or all nodes contained in his
graph). Finally, the visual graph is responsible for the topological layout of the nodes
and the graph that user sees.

The M e tr i c s package is responsible for producing reports that have to do with the number
of nodes of the graph, how many policies exist in the graph, the number of incoming and/or
outgoing edges of nodes, the incoming and/or outgoing transitive (number of nodes that are con
nected to this one through the paths that this node is part of, as end of the path -for incoming-
or as beginning of the path -for outgoing) degree of a node.

The H s q l package is responsible for parsing the SQL statements from files containing a
database schema and the views and queries that are related to that schema. In case of direct con
nections to databases through the D a o package there is no need for such files, since Hecataeus
can retrieve that information from a database connection.

The P a r s e r package is responsible for the creation of the graph by adding the needed nodes
and edges, having as input the statements that Hsql previously parsed. The class that we have
changed in order to implement the new model (with input, semantics and output schemata) was
HecataeusGraphCreator. Besides the new model, a new “language” was created for the policies
that were discussed in chapter 2.3, which was done on the HecataeusSQLExtensionParser class.

Finally, the H e c a ta e u s package is responsible for the communication of all the packages
mentioned previously. Hecataeus package is also responsible for the graphic user interface that
is needed for user to interact with the graph. For that reason we created the needed classes that
provide the user the ability to interact with the policies of the graph and try an imminent change
on the graph. We also added on Hecataeus package a class in order to organize as projects the
graphs, policies and SQL files that a user works with.

60

5.1 Maestro implementation

As previously said, a m aestro is a simple piece of software that is specialized on the combination
type o f event x module type. Over the different design alternatives to be described next, we
eventually decided to implement the maestros using the factory pattern for both the message
propagation and rewrite mechanism, letting the future developers work flawlessly in the new
event types that may arise. In case of a new event over a node or a new kind of nodes over
the existing events, one should adapt the create function of MaestroFactory class, finally in
the class that will handle the new combination one should implement the abstract functions
propagateM essages and doRew rite. Alternatives over the selected implementation were the
creation of a matrix containing as columns the type o f even ts and as rows the module types
and in the cells a generic algorithm that starts its execution in the node representing the module,
and in status determination would: (1) ask modules schemata about the event (2) ask module
about the event and set statuses according to the policy they have over the message and its
parameters. This approach, although it has many advantages in metrics, would complicate the
algorithms that we use in status determination. Another approach was to use a special design
pattern where a class would instantiate all the available combinations of type o f event x
module type and when a new message would arrive, it would pass through all the available
instances, where each instance would see if the message refers to it. This implementation would
add additional complexity in the instances in order to check where a message refers to them or
not.

As Figure 5.2 depicts, the class that implements the pattern is MaestroFactory which in
stantiates one of the following classes:

Query View AddAttribute: responsible for the addition of an attribute to the output schema of
a Query or View module.

Query View AddAttributeProvider: responsible for the addition of an attribute to the output
schema of a Query or View module, because one of the providers of the module added
that attribute from its output schema.

Query View AlterSemantics: responsible for the change of the semantics tree.

Query ViewDeleteAttribute: responsible for the deletion of an attribute of a Query or View
module, because one of the providers of the module deleted that attribute from its output
schema.

Query ViewDeleteProvider: responsible for the deletion o f an input schema and its attributes
of a Query or View module, because one of the providers of the module was deleted.

Query ViewDeleteSelf: responsible for the deletion of a Query or View module.

61

Figure 5.2: Factory method for maestros

QueryViewRenameAttribute: responsible for the renaming o f an attribute o f a Query or
View module, because one of the providers of the module renamed that attribute to its
output schema.

Query ViewRenameProvider: responsible for the renaming of an input schema of a Query or
View module, because one of the providers of the module was renamed.

QueryViewRenameSelf: responsible for the renaming of a Query or View module.

RelationAddAttribute: responsible for the addition of an attribute to the output schema of a
Relation module.

RelationDeleteAttribute: responsible for the deletion of an attribute from the output schema

6 2

of a module (regardless of module type).

RelationDeleteSelf: responsible for the deletion of a Relation module.

RelationRenameAttribute: responsible for the renaming of an attribute of an output schema
of a module (regardless of the module type).

RelationRenameSelf: responsible for the renaming of a Relation module.

5.2 Our contribution

In the content of this thesis we have performed the following extensions to Hecataeus:

• We have implemented the rewriting mechanism letting the user of Hecataeus see how the
ecosystem will look like after a change.

• The new model of architecture graph with input, semantics and output schemata, letting
the user work over nicely isolated modules, with clear boundaries.

• The new message propagation mechanism, letting the user of Hecataeus confluently push
events over the graph.

• New visualization to assign policies and handle events, clear from previously noisy graph
ical user interface of Hecataeus, using the observer pattern when the user selects a node
for either changing its policies or initiating an event on it.

• We have implemented project management, letting the user of Hecataeus have an overview
of scenarios at his disk.

• New language for policy annotation as described in Section 2.3.

• New Algorithms for policy checking, status determination and consumers notification
have been implemented, as depicted in Figure 5.3, where:

FCASS: searches in a schema node for the attribute that is named as message parameter
and asks what policy it has for an event.

FCASSNO: works as above and finally notifies the consumers of the module that are
connected with the found attribute for the imminent change.

ASSS: asks a schema node about its policy for an event.

63

ASSSNO: works as above and finally notifies the consumers of the module about the
imminent change.

AACSS: asks all attributes of a schema node about their policy for an event

AACSSNO: works as above and finally notifies the consumers of the module about the
imminent change.

\

Algorithm

AACSSNO

Figure 53: Check policy algorithms

64

Chapter 6

Experiments

We have performed several experiments in order to assess the behavior of our method. In the
rest of this section, we discuss the setup of our experiments and then we move on to present our
results, organized per research goal.

6.1 Experimental setup

In order to arrange our experimental setup, we need to fix the following parameters: (a) an
ecosystem comprising a database schema surrounded by a set of queries and possibly a set
of views, (b) a workload o f events that are sequentially applied to the above configuration and
(c) a palette of “profiles” that determine the way the ecosystem’s architecture graph is annotated
with policies towards the management of hypothetical events; hence, these profiles simulate the
intention o f the administrating team for the management o f the ecosystem. We have employed
the following ecosystems as the testbed for our experiments.

University Ecosystem. The first ecosystem that we have experimented with is the miniature
ecosystem of the university database presented as reference example in the previous chapters.

TPC-DS Ecosystem. We have employed the TPC-DS schema as the testbed for our second
experiment. TPC-DS is a benchmark that involves star schemata of a company that has the
ability to S e l l and receive R e t u r n s o f its I t e m s with the following ways:(i) the W e b or (ii) a
C a ta lo g or (iii) directly at the S t o r e . Moreover, the company keeps data of C u s t o m e r s ,
regarding their I n c o m e band, or their D e m o g r a p h ic s data and additionally they keep data
about the P r o m o t io n of their I t e m s . We used the TPC-DS version 1.1.0 [Coul2] which
includes a set of database queries. Since our parser can not handle all kind of queries (e.g.
queries containing keywords as LIMIT, HAVING etc) we had to remove parser offending parts

65

from any such queries in order to use them.
Events. Concerning the workload of events, we have created two workloads of events to

test different contexts for the warehouse evolution. The distribution of events is shown in Table
6.1. The events were chosen randomly, having in mind to cover all the possible events that
our implementation can handle. The first workload includes 48 events and is oriented towards
changes of relation modules, whereas workload 2, that includes 14 events, is more oriented

I

towards view modifications.

Operation Workload 1 Workload 2
Relation Delete 2% 13.3%
Relation Attribute Delete 20.8% 0%
Relation Rename 8.3% 13.3%
Relation Attribute Rename 10.4% 6.6%
Relation Add Attribute 27.3% 0%
Query/View Delete 2% 13.3%
Query/View Attribute Delete 10.4% 0%
Query/View Rename 4.2% 0%
Query/View Attribute Rename 0% 20.1%
Query/View Add Attribute 14.6% 13.3%
Query/View Alter Semantics 0% 20.1%

Table 6.1: Two workloads of events for the TPC-DS ecosystem

Policies. We have annotated the graph with policies, in order to allow the management
of evolution events. We have used two annotation “profiles”, specifically; (a) propaga te a ll,
meaning that every change will be flooded to all the modules that should be notified about
it and (b) m ixture , consisting of 80% of the modules with propagate policies and 20% with
blocking.

The first profile practically refers to a situation without any annotation. The second policy
simulates a rather liberal environment, where most events are allowed to spread over the graph,
so that their full impact can be observed; yet, 20% of modules are equipped with blocking
policies to simulate the case of modules that should be handled with special care.

Execution of experiments. In our experiments, we have used an experimental prototype,
Hecataeus, for the identification of the impact of hypothetical evolution events. For all the
tested ecosystems, policy annotations and event testing, we have used the following sequence of
actions. First, we annotate the architecture graph with policies. Next, we sequentially apply the
events over the graph and in order to keep our measurements accurate we count their values each
time. This means that each event is applied over the graph that resulted from the application of

66

the previous event. We also performed our experiments with hot cache (meaning that we did
not keep the first output on all of our experiments) since the first event, consistently displayed 10
times bigger values in the time calculation measurement than the mean time of the rest events
of the set1. For each event that we test, we monitor all the nodes of the graph. We collect
measurements for the number of affected modules, along with the number of affected internal
nodes, both for the phase of Status Determination and the phase of Rewriting. Moreover, we
measure the elapsed time for each of the three phases: Status Determination, Path Check and
Rewriting. All the experiments have been performed in a typical PC with the following setup:
Intel Quad core CPU @ 2.66GHz with 1.9GB main memory.

6.2 Effectiveness of impact assessment and rewriting

In this experiment we evaluate the gain that we obtain for a developer that uses our tool.
The parameters of the experimentation are as follows. The architecture graph representing a

database ecosystem with relations, views and queries. The policies used are all kinds of profiles
that we have created. The workload of events is described in the first column of the following
tables. For each policy, we vary the events and the nodes on which the events take place and in
order to achieve our goal we made the following measurements that are displayed in the tables
that follow:

1 Although we tried to perform our experiments with hot cache, there still might be a small overhead on the
execution of some events

Annotation Meaning
A M Number of affected modules: for each event, we measure the number of

modules with status either BLOCK or PROPAGATE. We exclude the object
that initiates the sequence of events from the computation, as it would be
counted in both occasions.

% A M Effort gains of the developer at module level. We assess the gain of a developer
using Hecataeus compared to the situation where he would have to perform
all checks by hand. This gains amounts to the percentage of useless checks
the user would have made. We exclude the object that initiates the sequence
of events from the computation, as it would be counted in both occasions.
Formally, % A M is given by the equation 6.1.

A I Number of affected internal nodes: for each event, we measure the number of
the internal nodes of the graph with status either BLOCK or PROPAGATE.
We exclude the object that initiates the sequence of events from the compu
tation, as it would be counted in both occasions.

ΨοΑΙ Effort gains of the developer at node level. We assess the gain of a developer
using Hecataeus compared to the situation where he would have to perform
all checks by hand. This gains amounts to the percentage of useless checks
the user would have made. We exclude the object that initiates the sequence
of events from the computation, as it would be counted in both occasions.
Formally, % A I is given by the equation 6.2.

N M Number of cloned modules: for each event, we measure the number of mod
ules that were cloned.

E R M Number o f existing adapted modules: for each event, we measure the number
of modules that adapted the change

R M Sum of cloned and existing adapted modules

Table 6.2: Annotations of column names and meaning

The formula for the definition of developer gains are the following:

A f f e c t e d M o d u le s
% A M = 1 -

% A I = 1 -

(Q u e r ie s U V i e w s)

A f f e c t e d I n te r n a l n o d e s

(6.1)

(6.2)
I n te r n a l n o d e s o f (Q u e r ie s U V ie w s)

In the following tables, we will refer to the type of event performed via the abbreviations of
Table 6.3.

68

Abbreviation Meaning
RS Rename self
DS Delete self
AA Add attribute
AS Alter semantics

Table 6.3: Abbreviations of events

6.2.1 University ecosystem

Propagate policy. In this experiment, we annotate the University ecosystem with propagate

policy for all its nodes and apply a small workload of events described in detail in Table 6.4.

Impact assessment Adaptation assessment
Event:Node AM % AM ΑΪ % AI NM ERM RM
RS:V_COURSE 2 50 2 98.37 0 2 2
RS:V_TR 3 25 4 96.75 0 3 3
RS:SEM ESTER.MDESCR 2 50 10 91.87 0 3 3
RS:TRANSCRIPT,SID 3 25 14 88.62 0 4 4
RS :TR ANSCRIPT.TGR ADE 3 25 12 90.24 0 4 4
RS:TRANSCRIPT I 75 2 98.37 0 2 2
AA:TRANSCRIPT 3 25 11 91.06 0 4 4
AArSTUDENT 1 75 4 96.97 0 2 2
AA:COURSESTD 4 0 14 89.63 0 5 5
AA:SEM ESTER 4 0 14 90.41 0 5 5
AA:V_COURSE 4 0 II 92.99 0 4 4
DS:SEMESTER.SEMDESCR 2 50 10 94.01 0 3 3
DS:TRANSCRIPT.CID 3 25 8 95.06 0 4 4
DSrCOURSESTD 4 0 54 66.25 0 5 5
Minimum 1 0 2 66.25 0 2 2
Maximum 4 75 54 98.37 0 5 5
Average 2.79 3036 12.14 91.47 0 3.57 337

Table 6.4: University database - User benefit for the propagate all profile

As someone can see in Table 6.4, when the propaga te a ll policy is used, the user gains on
average 30% in module checking. This happens because our reference example ecosystem is too
cohesive, with both queries depending only in one view for their input, meaning that a change in
a relation that is provider of this view will have to check all the queries and views of the graph.

Mixture 20% block - 80% propagate policy. In this experiment, we annotate the Univer
sity ecosystem with m ixture policy for its nodes and apply a small workload of events described
in detail in Table 6.5.

The blocking modules on our reference example are modules Q2 and STUDENT, depicted
in Figure 6.1 with red color, painted in thicker line, placed in the upper right comer of the figure.

69

Im pact assessm ent A dap tation assessm ent
E v e n t:N o d e A M % A M A1 % A I N M E R M R M
R S :V _C O U R S E 2 5 0 2 98 .3 7 0 2 2
R S :V _T R 3 25 4 96 .7 5 1 2 3
R S :S E M E ST E R .M D E S C R 3 4 0 14 9 0 .2 8 0 4 4
R S:T R A N SC R 1PT .SID 4 2 0 18 87 .5 0 0 0
R S :T R A N S C R IP T .T G R A D E 4 20 16 88 .89 0 0 0
R S :T R A N S C R IP T 2 60 3 97 .9 2 0 3 3
A A :T R A N S C R IP T 4 20 14 90 .28 0 0 0
A A :S T U D E N T 0 100 I 99.31 0 0 0
A A : C O U R SE ST D 5 0 17 88 .19 0 0 0
A A :S E M E STER 5 0 17 88 .19 0 0 0
A A :V _C O U R S E 5 0 14 90 .2 8 2 5 7
D S :S E M E S T E R .SE M D E S C R 5 28 .5 7 22 89 0 7 7
D S :T R A N S C R IP T .C ID 5 28 .5 7 16 91 .53 0 0 0
D S .C O U R S E S T D 7 0 64 66 .14 0 0 0
M inim um 0 0 1 66 .1 4 0 0 0
M axim um 7 100 64 99.31 2 7 7
A verage 3.86 28.01 15.86 90 .1 9 0.21 1.64 1.86

Table 6.5: University database - User benefit for the propagate all profile

As previously discussed in propagate all policy, since our reference example is too cohesive
and the fact that not all modules propagate the events (which means that some of the views
might be cloned on a blocking event) makes the average profit of the user a little smaller (28%)
in module checking.

70

6.2.2 TPC-DS ecosystem

We now move on to assess our method on a more realistic environment, the TPC-DS ecosystem.
TPC-DS consists of 15 relations, 5 views and 27 queries. We examine TPC-DS with two pol
icy annotation profiles (propagate all and mixture) and two workloads of events (see Table 6.1).

• Workload 1 - Propagate policy. In this experiment, we annotate the TPC-DS ecosystem
with propagate policy for all its nodes and apply a workload, as described in detail in Table 6.6.

71

E v e n trN o d e

DS:WEB_SALES
DS:INCOME_BAND.IB_INCOME_BAND_SK
DS:Q25
DS:CUSTOMER_ADDRESS.CA_STREET_NAME
RS:STRORE_RETURNS
RS:CUSTOMER_DEMOGRAPHICS
RS: HOUSEHOLD_DEMOGRGR APHICS

' RS:VIEW38
RS:CUSTOMER_TOTAL_RET
RS:INVENTORY
RS:INVENTORY.INV_WAREHOUSE_SK
DS:INVENTORY.INV_WAREHOUSE_SK
DS:ITEM.I_ITEM_SK
RS:CUSTOMER_ADDRESS.CA_ADDRESS_SK
RS:HOUSEHOLD_DEMOGRGRAPHICS.HD_DEMO_SK
RS:CATALOG_SALES.CS_ORDER_NUMBER
RS:CUSTOMER.C_CUSTOMER_ID
AA:INVENTORY
AA:CTJSTOMER_DEMOGRAPHICS
AA:DATE_DIM
AA:CUSTOMER
AA:STORE_SALES
AA:ITEM
AA:SSTORE
AA:INCOME_BAND
AA:CUSTOMER_ADDRESS
AA:HOUSEHOLD_DEMOGRGRAPHICS
AArPROMOnON
AA:CATALOG_SALES
AA:STRORE_RETURNS
AA:VIEW38
AA:CUSTOMER_TOTAL_RETRN
AA:Q17
AA:Q4
AA:Q3
AA:Q6
AA:Q27
DS: ITEM. LCONTAINER
DS:\VEB_RETURNS.WR_RETURNED_DATE_SK
DS:CUSTOMER_DEMOGRAPHICS.CD_MARITAL_STATUS
DS:Q26.CA_ZIP
DS:Q 12.STORE_RETURNS_LOSS
DS:STRORE_RETURNS.SR_RETURN_TAX
DS:CUSTOMER.C_CUSTOMER_SK
DS:CUSTOMER.C_CUSTOMERJD
DS:CUSTOMER_TOTAL_RET.CTR_STORE_SK
DS:VIEW38.D_DATE
DS:CUSTOMER_TQTAL_RETRN.CTR_STATE ._______
Minimum
Maximum
Average

AM
Impact assessment
% AM AI % AI

Adaptation assessment
NM ERM RM

0 100 6 99.59 0 1 1
2 93.75 10 99.32 0 3 3
1 96.88 4 99.73 0 I 1
0 100 2 99.86 0 I 1
3 90.32 4 99.72 0 4 4
3 9032 4 99.72 0 4 4
3 9032 4 99.72 0 4 4
2 9335 2 99.86 0 2 2
3 9032 3 99.79 0 3 3
1 96.77 2 99.86 0 2 2
0 100 2 99.86 0 1 1
0 100 2 99.86 0 1 1
9 70.97 39 97.27 0 10 10
8 74.19 18 98.74 0 9 9
3 9032 8 99.44 0 4 4
0 100 2 99.86 0 I 1
6 80.65 18 98.74 0 7 7
I 96.77 4 99.72 0 2 2
3 9032 10 99.3 0 4 4

24 2238 80 94.44 0 25 25
15 51.61 49 96.74 0 16 16
14 54.84 46 97.01 0 15 15
9 70.97 28 98.22 0 10 10
7 77.42 22 98.62 0 8 8
2 9335 7 99.56 0 3 3

10 67.74 32 98.01 0 11 11
4 87.1 13 99.2 0 5 5
2 9335 7 99.57 0 3 3
5 83.87 16 99.03 0 6 6
5 83.87 16 99.04 0 6 6
2 9335 4 99.76 0 2 2
3 9032 7 99.58 0 3 3

96.77 1 99.94 0 1 1
96.77 1 99.94 0 1 1
96.77 1 99.94 0 I 1
96.77 I 99.94 0 1 1
96.77 I 99.94 0 1 1

0 100 2 99.88 0 I 1
3 9032 8 99.53 0 4 4
2 9335 10 99.41 0 3 3

96.77 2 99.88 0 1 1
96.77 2 99.88 0 1 1

0 100 2 99.88 0 1 1
II 6432 38 97.74 0 12 12
6 80.65 38 97.72 0 7 7
3 9032 10 99.4 0 3 3
2 9335 4 99.76 0 2 2
2 9335 6 99.64 0 2 2
0 22.58 I 94.44 0 1 1

24 100 80 99.94 0 25 25
3.88 87.51 12.46 99.19 0 4.56 4.56

Table 6.6: TPC-DS database - Workload 1 - User benefit for the propagate all profile

72

In the case of the TPC-DS ecosystem we can see that the user gains on average 88%
in module checking, having the smallest gain when the events took place on relations with
high in-degree (meaning that these relations are used by many queries/views), as for example
Date_Dim. This means that if user was not equipped with Hecataeus. he would have to perform
useless checks on more than 98% of the ecosystem’s queries in module level for the 48 events.
The numbers go very high when the internals are considered; however this is due also to the »
fact that we had only a few module deletions that would affect many internal nodes on the
consumers of the modules.

In term of rewritings, the system reports 4.5 module rewritings on average, with a 10% of
occasions with more than 10 modules containing rewritings. Observe that due to the propagate
all nature of the profile, there are no clones produced.

Workload 1 - Mixture 20% block - 80% propagate policy. In this experiment we
annotate the TPC-DS ecosystem with mixture policy for its nodes and apply a workload, as
described in detail in Table 6.7. The nodes that were assigned the BLOCK policy for all the
incoming messages were: (i) WEB_RETURNS, (ii) INCOME_BAND, (iii) Q1, (iv) Q3,
(v) Q4, (vi) Q17, (vii) Q19, (viii) Q20 and (ix) Q21.

73

Impact assessment Adaptation assessment
EventrNode AM % AM AI % AI NM ERM RM
DS:WEB_SALES 0 100 6 99.59 0 1 1
DS:INCOMH_BAND.IBJNCOME„BAND_SK 0 100 2 99.86 0 0 0
DS:Q25 I 96.88 4 99.73 0 1 1
DS:CUSTOMER_ADDRESS.CA_STREET_NAME 0 100 2 99.86 0 1 1
RS:STRORE_RETURNS 3 9032 4 99.72 0 4 4
RS:CUSTOMER_DEMOGRAPHICS 3 9032 4 99.72 0 4 4
RS:HOUSEHOLD_DEMOGRGRAPHICS 3 9032 4 99.72 0 4 4

'RS:VIEW38 2 9335 2 99.86 1 1 2
RS:CUSTOMER_TOTAL_RET 3 90.63 3 99.79 1 2 3
RStINVENTORY 1 96.97 2 99.86 0 0 0
RS:INVENTORY.INV_WAREHOUSE_SK 0 100 2 99.86 0 1 1
DS:INVENTORY.INV_WAREHOUSE_SK 0 100 2 99.86 0 1 1
DS:ITEM.I_ITEM_SK 9 72.73 39 97.36 0 0 0
RS:CUSTOMER_ADDRESS.CA_ADDRESS_SK 8 75.76 18 98.78 0 0 0
RS:HOUSEHOLD_DEMOGRGRAPHICS.HD_DEMO_SK 3 90.91 8 99.46 0 4 4
RS:CATALOG_SALES.CS_ORDER_NUMBER 0 100 2 99.86 0 1 1
RS: CUSTOM ER. C_CU STOM ER_ID 6 81.82 18 98.78 0 0 0
AA:INVENTORY 1 96.97 4 99.73 0 0 0
AA:CUSTOMER_DEMOGRAPHICS 3 90.91 10 99.32 0 4 4
AA:DATE_DIM 26 2131 86 94.2 0 0 0
AA.CUSTOMER 16 5132 52 96.49 0 0 0
A A: STOR E_S A LES 15 5435 49 96.69 0 0 0
AA:ITEM 9 72.73 28 98.11 0 0 0
AA:SSTORE 7 78.79 22 98.52 0 0 0
AA:INCOME_BAND 0 100 1 99.93 0 0 0
AA:CUSTOMER_ADDRESS 10 69.7 32 97.84 0 0 0
AA:HOUSEHOLD_DEMOGRGRAPHICS 4 87.88 13 99.12 0 0 0
AA:PROMOTION 2 93.94 7 99.53 0 3 3
AA:CATALOG_SALES 6 81.82 19 98.72 0 0 0
AA:STRORE_RETURNS 6 81.82 19 98.72 0 0 0
AA:VIEW38 2 93.94 4 99.73 1 1 2
AA:CUSTOMER_TOTAL_RETRN 3 91.18 7 99.54 t 2 3
AA:QI7 1 97.14 I 99.94 0 0 0
AA:Q4 I 97.14 1 99.94 0 0 0
AA:Q3 1 97.14 \ 99.94 0 0 0
AA:Q6 1 97.14 1 99.94 0 1 1
AA:Q27 1 97.14 1 99.94 0 I 1
DS: ITEM. l_CONTAl NER 0 100 2 99.87 0 1 1
DS:WEB_RETURNS.WR_RETURNED_DATE_SK 0 100 2 99.87 0 0 0
DS:CUSTOMER_DEMOGRAPHICS.CD_MARITAL_STATUS 2 9439 10 99.35 0 3 3
DS:Q26.CA_ZIP 1 97.14 2 99.87 0 1 1
DS:Q12.STORE_RETURNS_LOSS 1 97.14 2 99.87 0 I 1
DS:STRORE_RETURNS.SR_RETURN_TAX 0 100 2 99.87 0 1 1
DS:CUSTOMER.C_CUSTOMER_SK 13 62.86 46 97.01 0 0 0
DS:CUSTOMER.C_CUSTOMER_ID 7 80 40 97.4 0 0 0
DS:CUSTOMER TOTAL_RET.CTR_STORE__SK 3 91.43 10 99.35 1 2 3
DS:VIEW38.D_DATE 2 94.44 4 99.74 1 1 2
DSiCUSTOMER TOTAL RETRN.CTR_STATE 2 9439 6 99.62 0 2 2

Minimum 0 21.21 1 94.2 0 0 0

Maximum 26 100 86 99.94 1 4 4

Average 3.92 88.22 12.63 99.15 0.13 1.02 1.15

Table 6.7: TPC-DS database - Workload 1 - User benefit for the mixture profile

74

We observe a large drop in the number of rewritten modules. This is due to the blocking
nature of the annotation of a subset of the graph. Most of our blocker modules are queries
that use a great number of relations (the only relations that do not have connection with any
of the blocker queries are PROMOTION and CUSTOMER_DEMOGRAPHICS). Since our
workload contains many events happening on relations and our algorithm does not perform any
rewriting when there is a veto of event that started from a relation node, this is something we
were expecting. The effort gains of the developer in module checking, when the mixture policy
is used, is the same as the gain of propagate all policy. The minimum gain is also smaller here
(21% as opposed to 23%) because of the cloning of some views that happened in the previous
events, which got connected to the Date_Dim relation.

Workload 2 - Propagate policy. We now move on to assess our method on TPC-DS
using a new workload that is more oriented towards view modifications. In this experiment, we
annotate the TPC-DS ecosystem with propagate policy for all its nodes and apply workload 2,
as described in detail in Table 6.9.

E v e n t:N o d e

DS:WEB_SALES
RS:CUSTOMER_DEMOGRAPHICS.CD_DEMO_SK
RS: VIEW 3 8 .C_LAST_N AME
RS:CUSTOMER_TOTAL_RET.CTR_TOTAL_RETURN
RS:CUSTOMER_TOTAL_RETRN.CTR_TOTAL_RETURN
AS:VIEW38
AS :CUSTOM ER_TOTA L_RET
AS :CUSTOM ER_TOTAL_R ETRN
AA:VIEW38
AA:QI8
DS:Q18
DS:CUSTOMER_DEMOGRAPHICS
RS:ITEM
RS: PROMOTION_________________________________
Minimum
Maximum
Average

Impact assessment Adaptation assessment
AM % AM A I % A I NM ERM RM

0 100 6 99.59 0 1 1
3 90.63 8 99.46 0 4 4
2 93.75 4 99.73 0 2 2
2 93.75 4 99.73 0 2 2
2 93.75 6 99.59 0 2 2
2 93.75 2 99.86 0 2 2
3 90.63 3 99.8 0 3 3
3 90.63 3 99.8 0 3 3
2 93.75 4 99.73 0 2 2
1 96.88 1 99.93 0 1 1
1 96.88 3 99.8 0 1 1
3 90.32 34 97.68 0 4 4

10 67.74 II 99.24 0 11 11
2 93.55 3 99.79 0 3 3
0 67.74 1 97.68 0 1 1

10 100 34 99.93 0 II 11
2.57 91.86 6.57 99.55 0 2.93 2.93

Table 6,8: TPC-DS database - Workload 2 - User benefit for the propagate all profile

In the case of workload 2, the average gain in module checking for the user is 92%. Compar
ing the minimum gain in both workloads we observe that it is now 68%. This happens because,
on workload 2 we didnot use the Date_Dim relation (the relation with the highest in-degree
in our ecosystem) in any of our events. Actually, the module with the highest in-degree used
in workload 2 is relation Item, which has nearly half incoming edges compared to Date_Dim.
Observe equation 6.1: the numerator of our fraction is smaller (due to smaller in-degree) and
thus the fraction is smaller, resulting in higher benefits. We also observe an increase of the

75

gain. This happens because the workload has only three events related to relations that would
affect a majority of modules.

Workload 2 - Mixture 20% block - 80% propagate policy. As in Workload 1, the nodes
that were assigned the BLOCK policy for all the incoming messages were: (i) WEB_RETURNS,
(ii) INCOME_BAND, (iii) Q1, (iv) Q3, (v) Q4, (vi) Q17, (vii) Q19, (viii) Q20 and (ix) Q21 out
*

of a total of 47 modules.

EvenUNodc
DS:WEB_SALES
RS :CUSTO\fER_DEMOGRAPHICS.CD_DEMO_SK
RS:VIEW38.C_LAST_NAME
RS:CUSTONiER_TOTAL_RET.CTR_TOTAL_RETURN
RS:CUSTOMER_TOTAL_RETRN.CTR_TOTAL_RETURN
AS:ViEW38
AS:CUSTOMER_TOTAL_RET
AS :Ct'STOMER_TOTAL_RETRN
AA:VTEW38
AA:QI8
DS:Q!8
DS:CUSTOMER_DEMOGRAPHICS
RS:ITEM
RS:PRQM0TlON_________________________________
Minimum
Maximum
Average

Impact assessment Adaptation assessment
AM % AM Al * AI NM ERM RM

0 100 6 99_59 0 1 1
3 90.63 8 99.46 0 4 4
2 93.75 4 99.73 1 1 2
2 93.94 4 99.73 1 l 2
2 94.12 6 99.6 1 1 2
2 94.29 2 99.87 I 1 2
3 91.67 3 99.81 1 2 3
3 91.89 3 99.81 I 2 3
2 94.74 4 99.75 1 I 2
1 97.44 1 99.94 0 1 1
1 97.44 3 99.82 0 1 1
3 92.11 34 97.9 0 4 4

10 73.68 11 9932 0 0 0
2 94.74 3 99.81 0 3 3
0 73.68 1 97.9 0 0 0

10 100 34 99.94 1 4 4
237 92*9 6.57 9938 03 1.64 2.14

Table 6.9: TPC-DS database - Workload 2 - User benefit for the mixture profile

Here we can see more clearly that modules get cloned. This fact, is the reason that the
minimum gain of the user is increasing (causing the average gain to also increase). Since we
create new modules that are not connected to relation Item we actually increase the denominator
of the fraction used in our gain equation 6.1

6.3 Efficiency

In this subsection, we study the behavior of the three algorithms needed to perform impact
assessment and adaptation with respect to the time needed for their completion. We will focus

* the discussion on the first workload of events for TPC-DS and complement it with the deviations
observed in the rest of the experiments that we have performed.

Time breakdown. As one can see. the average time needed for the status determination
is quite similar in both cases of propagate all and mixture profiles. In the case of mixture, the
average status determination time and the average rewriting time are slightly lower due to the

76

blockers (i.e., in some cases, there is no propagation of the events). For exactly the same reason,
however, the path check time is more 3 times higher in the m ixture case: whenever blockers
exist, we possibly need to retain more than one variants per view, thus resulting in higher path
check times; on the contrary, pro p a g a te a ll has no blockers and no variants. The percentage of
time spent in the different tasks is equally divided between status determination and rewriting
with a very small fraction of time to path check.

Average time (nanosecs) Percentage Breakdown
Status

Determination
Path

Check Rewriting Total Status
Determination

Path
Check Rewriting

Propagate all 358161 4947 367071 730179 49% 1% 50%
Mixture 327488 18340 341735 687563 48% 2% 50%

Time spent vs number o f modules affected. What is the relationship o f time spent versus
the number of modules affected by a potential event?

We assess the time spent for status determination in each event and compare it to the number
of internal nodes affected by the event. By internal nodes, we refer to the nodes that are internal
to the modules of the graph (e.g., schema attributes, comparison nodes in selection conditions,
etc). In Figure 6.2, the horizontal axis depicts the sequence of events. The left vertical axis
depicts the time spent for status determination (with the respective data depicted via a dotted
blue line) and the right vertical axis depicts the number of affected internal nodes (with the
respective data depicted via a solid red line). We employ lines instead o f scatter plots only for
intuition purposes.

77

St
at

us
 D

et
er

m
in

at
io

n
tim

e
(n

an
os

ec
on

ds
)

St
at

us
 D

et
er

m
in

at
io

n
tim

e
(n

an
os

ec
on

ds
)

• 1 0 6

100

80

60

40

20

0

(a) Propagate

• io 6

0 10 20 30 40 50
Event Id

(b) Mixture

Figure 6.2: TPC-DS Workload 1 - Status Determination vs Nodes

78

#I
nt

em
al

 n
od

es
 a

ff
ec

te
d

#I
nt

em
al

 n
od

es
 a

ff
ec

te
d

As one can see, the time spent for status determination is similar for both experiments
(slightly lower for the mixture profile). The number o f nods is practically in synchronization with
the time spent with a few conspicuous exceptions, in which the time spent is disproportionately
higher than the respective number o f affected nodes. We observed that this happens every time
a new kind of event is executed. Therefore, we attribute this phenomenon to the fact that the
factory creating the new maestro for handling the event takes some extra time the first time it is
needed; in subsequent executions the respective class information is cached and executes faster.

Similarly, there are some cases where the execution time is disproportionately lower that the
number of nodes, this happens in cases o f popular nodes with high fan-in (e.g., the Date_Dim
relation or the Customer.C_Clistomer_SK attribute are used too often by many queries). In
these cases, although the number of internal nodes are high, the number of modules is similar
to the average (in other words, the node has a deep effect in many internal nodes o f the same
module); as the nodes are retrieved per module by the system, this explains why the time is
lower than anticipated.

Concerning the rewriting time (Figure 6.3), it is clear that it highly depends on the combi
nation of event with policy: if the event arrives on blockers, then, although there are affected
nodes with a BLOCK status, there is no rewriting. Thus, although the rewriting time closely
follows the status determination pattern for the propagate all profile, it is completely in disarray
with it for the mixture profile.

79

R
ew

ri
te

 t
im

e
(n

an
os

ec
on

ds
)

R
ew

ri
tin

g
tim

e
(n

an
os

ec
on

ds
)

• 1 0 6

80

60

40

20

0

1 0 0

(a) Propagate

• io 6

0 10 20 30 40 50
Event Id

(b) Mixture

Figure 6.3: TPC-DS Workload 1 - Rewrite vs Nodes

80

#I
nt

em
al

 n
od

es
 a

ff
ec

te
d

#I
nt

er
na

l n
od

es
 a

ff
ec

te
d

Profile and rewriting times. Although the profile has small effect on the status determina
tion time, the rewriting times are quite different. We perform a focused study on the behavior
of the rewriting times and depict the rewriting time for the two profiles in Figure 6.4. Again, the
horizontal axis presents the sequence of the executed events, and the vertical axis the rewriting
time for each profile (in nanoseconds). The blue dotted line concerns the pro p a g a te a ll profile
and the solid red line concerns the m ixture profile.

C/5
r s
aoo<D
O
Ga
G
CD
B

eP
u-

&

•1 0 6

Figure 6.4: TPC-DS Workload 1 - Rewrite times - Propagate vs Mixture

There are two specific phenomena that present different behavior in the execution times.
The first of them, concerns “solid red” peaks contrasted to “dotted blue” low-lands: i.e., we
observe high times in the m ixture profile compared to average times in the pro p a g a te a ll profile.
This is attributed to view cloning: in all these cases, the combination of blocker and an adapting

, query, caused a view to clone. This costs highly in execution time. As the pro p a g a te a ll profile
does not have blockers, there is no cloning at all. On the other hand, there are several occasions
where “dotted blue” peaks are contrasted to “solid red” floors: in this case, it is all blockers that
veto a change in a relation. Vetoed relation changes have no adaptation cost, as we do not go
for multiple versions for (materialized) relation data (as opposed to multiple versions for view

81

definitions that have no storage or migration cost).

6.4 Discussion/Summary

A first observation on our experiments confirms the benefits introduced by our method con
cerning the effort performed by the application developers and administrators of the ecosystem.
In the absence of our system, the typical developer would have to perform at least 25% of rou
tine, useless checks to views and queries that are not related to the event at all; on average, the
number of useless checks rises in the area of 90%.

A second observation has to do with the amount of rewriting; in all occasions, there have
been several modules that had to be rewritten. When the propagate all policy was used the mean
number of rewritings was 3.5 modules per workload. For instance, in the TPC-DS ecosystem
(which is composed by 15 relations, 5 views and 27 queries) there were, on average, 4.5 rewrites
of modules per event in the first workload and nearly 3 rewrites of modules per event in the
second workload, whilst in the University ecosystem (which is composed by 5 relations, 2 views
and 2 queries) there were on average 3.5 rewrites of modules. Naturally, when the policy profile
changed to mixture the rewrites decreased. For TPC-DS ecosystem there was on average 1
rewrite in the first workload and 2 in the second workload. On the other hand, on the University
ecosystem there were nearly 2 rewrites per event.

In terms of time, all the experiments show a completion o f the tested changes as fractions
of a second; specifically, the average times range in the area of 0.6 to 0.7 millisecond, whereas
the maximum times do not go beyond 5 millisecond.The least time demanding part of our work
is the Path Check algorithm, although it is highly impacted by the existence of blocker nodes.
Path Check has as main task to mark the affected nodes of a blocker path to retain their form
and to clone themselves in order their clone to accept the change, which in our experiments
happened within some thousands of nanoseconds.

Although the time needed to perform impact assessment and rewriting is not significant, if
we inspect the way different modules respond to different events, it is clear that the time taken to
perform an event can vary a lot as a result of the popularity of a module as data-provider with its
policy on the event. As Figure 6.4 depicts, when we use the mixture policy profile we can see
that a number of events that is associated with relation changes takes no time at all. This happens
because these events are vetoed at some point and we do not perform any kind or rewriting
on blocking events of relations (e.g. event number 20, that says that relation Date_Dim will
acquire a new attribute). The same event, when the propagate a ll policy profile is used, takes
quite some time. This happens because the Date_Dim relation has a high in-degree and has to
inform many consumers. On the other hand, there are some events that their rewrite time takes

82

quite a while in the mixture policy profile. This happens when a module is cloned, in order to
keep the old path for the blocker module and to adapt the change for the non blocker modules
it provides. For instance, event number 9 that says that view Customer_tOtal_ret will rename
itself. Here Q1 blocks the event while Q2 accepts iL

As expected, excessive peaks in impact assessment and rewriting time concern modules with
high fan-in of dependent modules; these are clearly candidates where evolution should rather
be blocked.

83

Chapter 7

Related work

In this chapter we are going to see other approaches that pertain to the adaption of database
ecosystems in the presence of events, we will discuss their characteristics and how we relate to
them. We structure our discussion along two groups of works. The first group of papers deals
with efforts in the area of modeling and managing the evolution of data centric ecosystems.
The second group of efforts are concerned with the rewriting of views and schema mappings
in the presence of changes. Before we proceed, we have to mention a recent survey [HTR11]
that done by Hartung, Terwilliger and Rahm that covers the management of schema evolution
in three areas: XML, ontologies and relational data. This survey concentrates the commercial
and academic attempts of relational schema evolution tools and summarizes for what each one
offers to its users. Although there is a vast number of efforts in the areas of conceptual modeling,
XML and ontologies, concerning the management of changes, we constrain our discussion to
works that pertain to the scope of this thesis and refer the interested reader to [HTR11] for a
detailed discussion of these areas.

7.1 Related work on data centric ecosystems

The current version of Hecataeus [PVSV10], is the one on which our work is based on. The
provided framework is able to handle a great variety of evolution changes by transforming them

» into graph operations and by the policies that the authors introduced, it manages to regulate in
which way the parts of the architecture graph are affected by evolution changes. The authors in
[PVS+08] introduced an early form of policy annotation language and a status determination
mechanism for the architecture graph, trying to perform an impact assessment on real-world
ecosystem scenarios, while in [PVSV09] they provide an improved form of language for policy

84

annotation, that we based our approach on. The authors in [PVS11] provide the new model of
the architecture graph and a new message propagation algorithm, on which we based our work
on Chapter 3.

Similar to that approach is PRISM++, a tool of Curino, Moon, Deutsch and Zaniolo [CMDZ10]
that lets the user define his policies about imminent changes. The authors use ICMOs (Integrity
Constraints Modification Operators) and SMOs (Schema Modification Operators) in order to
rewrite the queries/views in a way that the results of the query/view are the same as before.

7.2 Related work on view rewriting

View rewriting with replacements Nica, Lee and Rundensteiner [NLR98] attempt to make
legal rewritings of views affected by changes and they primarily deal with the case of relation
deletion which (under their point of view) is the most difficult change of a schema: to attain this
goal one should find valid replacements for the affected (deleted) components of the existing
view. In order to achieve that, the authors of [NLR98] keep a meta-knowledge base on the
semantic constraints. The algorithm of CVS. has as input the following: (a) a change in a
relation, (b) old MKB entities (MKB is an hyper-graph that keeps meta-information about
attributes and their join equivalence attributes on other tables) and (c) new MKB entities.
Assuming valid replacements exist, someone can rewrite the view via a number of joins and
provide the same output as if there was no deletion.

The main steps of the CVS algorithm are: (a) find all entities that are affected for Old MKB
to became New MKB, (b) mark these entities and for each one of them find a replacement from
Old MKB, using join equivalences and (c) rewrite view.

View rewriting for data migration Gupta, Mumick. Rao and Ross [GMRR01] attempt to
redefine a materialized view as a sequence of primitive local changes in the view definition. On
more complex adaptations, those local changes can be pipelined in order to avoid intermediate
creations of results of the materialized view.

This approach uses a different algorithm for each different change in a view, in order to
avoid a full re-computation of the results of the view.

The following changes are supported as primitive local changes to view definitions:

1. Addition or deletion of an attribute in the SELECT clause.

2. Addition, deletion, or modification of a predicate in the WHERE clause (with and
without aggregation).

3. Addition or deletion of a join operand (in the FROM clause), with associated equijoin
predicates and attributes in the SELECT clause.

85

4. Addition or deletion of an attribute from the GROUP BY list.

5. Addition or deletion of an aggregate function to a GROUP BY view.

6. Addition, deletion or modification of a predicate in the HAVING clause. Addition of the
first predicate of deletion of the last predicate corresponds to addition and deletion of the
HAVING clause itself.

7. Addition of deletion of an operand to the UNION and EXCEPT operators.

8. Addition or deletion of the DISTINCT operator.

Rewritings for schema mappings via SPJ queries In another line of research, Velegrakis,
Miller and Popa [VMP04], deal with the maintenance of a set of mappings in an environment
where source and target schemata are integrated under schema mappings. The queries that
the authors of [VMP04] investigate on their approach, belong to the SPJ class and the events
that they investigate are the addition and deletion of constraints and the addition and deletion
of nodes. The algorithm the authors suggest, needs as input: (a) the schemata of database,
(b) their mappings and (c) the event that occursand produces as output the rewriting of the
mappings after the event.

7.3 Comparison to existing approaches

Although the state of the art provides some solutions to the problems that this thesis addresses,
there are potentials for improvement, which we discuss right away.

The authors of [NLR98], through the rewriting they make, they actually block the flooding
of the event at the view. This way none of the view’s consumers will notice any difference.
Of course, this works only in case where the deleted attributes can be replaced by other join
equivalence attributes. The method of [NLR98] has to be extended in order to deal with addition
or renaming of attributes of a view.

The [GMRR01] approach does not handle the flow of events via policies. On the contrary,
it employs the equivalent of a propagation all policy, trying to keep the data of the materi
alized view intact. Whenever a view changes, a user does not know what impact this has to
other views/queries that are related to that, which might lead to inconsistencies of the view’s
consumers.

The work of [VMP04] has as main disadvantages the facts that they only relate to the SPJ
class of views/queries and their approach lacks a policy mechanism.

[CMDZ10] support the ecosystem idea, to a certain extent. The approach of [CMDZ10] is
like an one hop propagation of an event on our architecture graph, from a relation (they perform

86

rewritings only on a relation change) to its neighbors. Also, as they mention, one of their policies
(IGNORE policy) may produce inconsistent results on a query execution, but they inform the
user of PRISM++ about that.

The current version of Hecataeus ([PVSV10]), lacks our implementation of rewritings.

In this thesis, on the other hand we, manage to perform valid rewritings not only of a single
view or query or relation, but for the entire ecosystem, through our architecture graph model.
We manage to do so, regardless of the complexity of the queries and by following the user’s
desires, that were set via policy annotation on the architecture graph. Moreover, compared to
the previous works in the context of Hecataeus, this Thesis improves the state of the art and the
implementation of the tool in the following ways:

1. New model for the architecture graph

2. Rewritings of modules

3. New graphic user interface in policy assignment and event handling

4. Project management of an ecosystem, its policy files and graphs

87

Chapter 8

Conclusions and future work

8.1 Conclusions

The core result of this thesis is the provision of algorithms that perform the rewriting of affected
modules to adapt to the potential event.

This thesis extended the results of the state of the art in modeling data-intensive ecosystems
and assessing the impact of changes in several ways:

• First, we have extended the modeling of ecosystem modules (relations, views, queries)
by encapsulating their structure within input and output schemata. Previous research
[PVSV09] dealt with the architecture graph as a single unified graph where software
modules did not have boundaries. This separation allowed us to provide theoretical
guarantees for our algorithms. At the same time, it inspired the principles of modular
design into the modeling of architecture graphs.

• Second, we have described the concrete implementation of the algorithms proposed in
[PVS11] for impact assessment. The modular design guarantees that the propagation of
a potential evolutionary event over the graph (a) terminates and (b) is performed in a way
that is independent of the internal processing of events within modules.

• Third, we have implemented a concise language for policy annotation of the ecosystem
modules. We followed [PVS+08] in spirit and provided a rule-based language that (a)
allows the annotation of all the nodes of the graph with default policies, (b) completely
covers all the space of events (i.e., all nodes have a policy to handle any possible event
that comes to them), and, (c) allows the users to customize reaction with policies other
than the default ones for individual modules. We handle events and policies that alter the

88

structure and semantics of the ecosystems by modifying the schema of the database and
the semantics of views.

We have implemented a method that performs impact assessment and rewriting in the
presence of a change. Our method (a) follows each affected module with its topological order,
process the incoming messages of the module and notify its consumers, (b) checks the modules
Of the architecture graph for having BLOCK status and if so, notifies the paths from the module
that vetoed to the module that initiated the change to also keep their current versions, and,
(c) performs the rewrite of the architecture graph, letting the user see how his ecosystem would
look after the change.

We have assessed our method over two ecosystems, a small university ecosystem comprising
few relations and queries and TPC-DS comprising 15 relations, 5 views and 27 queries. We
measured the user benefits from our method and observed that on average the user gains up to
90% of useless checks he would have to perform on views and queries that are not related to
the event at all. We also observed that depending on the policy profile, the use would have to
do at least 1 module rewrite per event for the m ixture profile, and up to 4.5 module rewrites
when the propaga te a ll profile is used. We also assessed the performance o f our method and
observed that the maximum time needed for the completion of a rewrite is 5 millisecond.

8.2 Future Work

Naming a few of the things that could get implemented in the near future based on the work we
have done are:

• Creation of maestros for events that we have not covered.

• Creation of maestros for indexes of attributes and how they affect (depending on the type
of the index: bitmap, dense, sparse or reverse) the views/queries of the ecosystem. •

• Work in the evolution manager in order to accept events that start from relations but get
vetoed later in status determination.

• Add representation of HAVING and ORDER-BY on architecture graph.

• Move from graph representation back to SQL.

89

Bibliography

[CMDZ10]

[Cou 12]

[GMRR01]

[HTR11]

[NLR98]

[PAVV08]

[PreOO]

Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Update Rewriting
and Integrity Constraint Maintenance in a Schema Evolution Support System:
PRISM++. P\W B , 4(2): 117-128, 2010.

Transaction Processing Performance Council. TPC-DS: The New Decision Sup
port Benchmark Standard, h t t p : / / w w w . t p c . o r g / t p c d s / d e f a u l t .
a sp . April 2012.

Ashish Gupta. Inderpal Singh Mumick, Jun Rao. and Kenneth A. Ross. Adapt
ing materialized views after redefinitions: techniques and a performance study.
Information Systems, 26(5):323-362, 2001.

Michael Hartung, James F. Terwilliger, and Erhard Rahm. Recent Advances in
Schema and Ontology Evolution. In Zohra Bellahsene, Angela Bonifati, and
Erhard Rahm. editors, Schema Matching and Mapping, pages 149-190. Springer,
2011.

Anisoara Nica, Amy J. Lee, and Elke A. Rundensteiner. The CVS Algorithm for
View' Synchronization in Evolvable Large-Scale Information Systems. In Advances
in Database Technology - (EDBT98), 6th International Conference on Extending
Database Technology, Valenciat Spain, March 23-271998, Proceedings, pages
359-373, 1998.

George Papastefanatos, Fotini Anagnostou, Yannis Vassiliou, and Panos Vassil-
iadis. Hecataeus: A What-If Analysis Tool for Database Schema Evolution. In
/ 2th European Conference on Software Maintenance and Reengineering, (CSMR
2008), April 1-4, 2008, Athens, Greece, pages 326-328, 2008.

Roger Pressman. Software Engineering: A Practitioner's Approach: European
Adaption. McGraw-Hill, 5th edition, April 2000.

90

http://www.tpc.org/tpcds/default

[PVS+08]

[PVS11]

[PVSV07]

[PVSV09]

[PVSV10]

[VMP04]

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, Konstantinos Aggistalis,
Fotini Pechlivani, and Yannis Vassiliou. Language Extensions for the Automation
of Database Schema Evolution. In Proceedings o f the Tenth In ternational C onfer

ence on Enterprise Inform ation System s (ICEIS 2 0 0 8), Volume D IS l B arcelona,

Spain, June 12-16, 2 0 0 8 , pages 74-81, 2008.

George Papastefanatos, Panos Vassiliadis, and Alkis Simitsis. Propagating evolu
tion events in data-centric software artifacts. In Serge Abiteboul, Klemens Bohm,
Christoph Koch, and Kian-Lee Tan, editors, ICD E W orkshops, pages 162-167.
IEEE, 2011.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
What-If Analysis for Data Warehouse Evolution. In 9th In ternational Conference

on D a ta W arehousing a n d K now ledge D iscovery, (D a W a K 2 0 0 7), Regensburg,

G erm any, Septem ber 3 -7 , 2007 , P roceedings, pages 23-33, 2007.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
Policy-Regulated Management of ETL Evolution. 7. D a ta Sem antics, 13:147-177,
2009.

George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou.
HECATAEUS: Regulating schema evolution. In P roceedings o f the 26 th Inter

national Conference on D a ta Engineering, (IC D E 2 0 1 0), M arch 1-6, 2 0 1 0 , Long

Beach, California, USA , pages 1181-1184, 2010.

Yannis Velegrakis, Renee J. Miller, and Lucian Popa. Preserving mapping con
sistency under schema changes. VLDB 7 , 13(3):274-293, 2004.

91

Short Vita

Petros Manousis was bom in Ioannina in 1985. He was admitted at the Computer Science
Department of the University of Ioannina in 2003, and he received his BSc degree in computer
science in February 2008. Since then he worked for Siemens Enterprise Communications in
Athens till September 2009, when he returned to Ioannina in a new work position at Natech SA
and simultaneously started his postgraduate studies. Since 2011 he is a member of Distributed
Management of Data Laboratory (DMOD). His academic interests lie in the area of software
engineering and data management with a particular emphasis on database evolution.

