
H igh P e r fo rm a n ce D y n a m ic s D esi]
o f A r ith m e tic C ircu its

Z a h e r O w d a

M A S T E R T H E S I S

— ♦ -

Ioannina, July 2010

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE
U N I V E R S I T Y OF I O A N N I N A

026000321452

Μ

ΥΨΗΛΗΣ ΑΠΟΔΟΣΗΣ ΔΥΝΑΜΙΚΗ ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

Η
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
του Τμήματος Πληροφορικής

Εξεταστική Επιτροπή

από τον

ZAHER OWDA

ως μέρος των Υποχρεώσεων

για τη λήψη

του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ-ΕΦ ΑΡΜΟΓΕΣ

Ιούλιος 2010

11

HIGH PERFORMANCE DYNAMIC DESIGNS OF ARITHMETIC CIRCUITS

MASTER THESIS

ZAHER OWDA

POST GRADUATE DIPLOMA IN COMPUTER SCIENCE

IN APPLICATIONS AND TECHNOLOGIES

July 2010

in

IDICATIO]

This thesis is dedicated to my parents.

IV

ACKNOW LEDGEM ENTS

I need to thank my family and friends for their unabated support, their

encouragement, patience and understanding.

I am most grateful to my supervisor, Assist. Prof. Yiorgos Tsiatouhas for his guidance

throughout this thesis and for giving me the opportunity to work on an interesting

subject, such as this one.

Special thanks to the Assist. Prof. Themistoklis Haniotakis from the University of

Patras and Prof. Kostas Efstathiou from the TEI of Athens for the productive

cooperation we had on dynamic circuit and the Manchester adder designs

respectively.

I would like to extend my deepest expressions of gratitude to all the people that have

assisted me in the completion of this thesis.

V

CONTENTS

Page

DEDICATION Ui
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
ABSTRACT x
ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ
CHAPTER 1. Introduction 1

1.1. Scope 1
1.2. Manuscript organization 1

CHAPTER 2. cmos LOGIC Design 3
2.1. Introduction to CMOS 3
2.2. Complementary Static CMOS logic 4
2.3. Dynamic CMOS logic 5

2.3.1. Signal Integrity 8
2.3.2. Cascading dynamic gates 11
2.3.3. Domino logic 12
2.3.4. Domino Circuits Operation 14

CHAPTER 3. Adder Circuits 19
3.1. Introduction to CMOS Adders’ Design 19
3.2. Adder Types 20
3.3. Multiple-bit adders 22

3.3.1. Ripple Carry Adder 22
3.3.2. Carry Look-Ahead Adders 24

3.4. Kogge-Stone Lookahead Adder 27
3.5. Manchester Carry Chains (MCC) 31

3.5.1. Carry Bypass in MCC Adder 36
CHAPTER 4. Memory-less Pipeline Dynamic Circuit Design Technique 39

4.1. Introduction 39
4.2. The Pipeline Dynamic Technique 39
4.3. Enhanced Performance Pipeline Dynamic Design 47
4.4. Kogge-Stone Adder Design and Simulation Results 49

CHAPTER 5. NEW HIGH SPEED MANCHESTER CARRY CHAIN ADDERS 58
5.1. Introdution 58
5.2. New High-Speed Double Carry Chain Adders 59
5.3. Manchester Carry Chain Design Issues and Comparisons 64

CHAPTER 6. Conclusions 74

VI

REFERENCES
‘PUBLICATIONS

76
80
81

LIST OF TABLES

Table Page
Table 3.1 Adding two binary bits 20
Table 3.2 The basis of the carry look-ahead algorithm 25
Table 3.3 Propagate, generate and carry-kill values 32
Table 4.1 The pipeline operation of the proposed dynamic logic. 43
Table 4.2 Clock signal selection according to the level of the gate. 44
Table 5.1 Simulation results on the best clock cycle period. 72
Table 5.2 Energy consumption simulation results. 72
Table 5.3 Energy x clock cycle product simulation results. 73

v iii

LIST OF FIGURES

Figure Page
Figure 2.1 Static CMOS gate 5
Figure 2.2 Dynamic CMOS gate 7
Figure 2.3 Adding a keeper to face leakage current 9
Figure 2.4 Demonstrating clock feedthrough effect 11
Figure 2.5 Domino CMOS logic 13
Figure 2.6 Differential Domino Logic (DDL) 14

. Figure 2.7 Classic domino including clock skew 15
Figure 2.8 Wave pipeline Domino design 17
Figure 3.1 Half adder using an XOR and an AND gate. 20
Figure 3.2 Schematic symbol for a 1-bit full adder and its gate level design 21
Figure 3.3 Four-bit ripple-carry adder topology 23
Figure 3.4 4-bit adder with Carry Look Ahead 27
Figure 3.5 Structure of a 16-bit Kogge-Stone adder 28
Figure 3.6 The Domino gate design of the first structural unit (AND, OR) 29
Figure 3.7-The Domino gate design of the second structural unit
(AND, AND-OR) 30
Figure 3.8 The XOR gate of third structural unit 31
Figure 3.9 Switching network for the carry-out equation 33
Figure 3.10 (a) Static circuit, (b) Dynamic circuit 33
Figure 3.11 Conventional domino 4-bit MCC 34
Figure 3.12 Domino implementation for the inclusive propagate (a),
generate (b), and exclusive propagate (c) signals. 35

Figure 3.13 Static CMOS implementation of the XOR gate
for the sum calculation. 36
Figure 3.14 MCC implementation of the bypass adder 37
Figure 3.15 First and Second 4bit Manchester chains using SK signals 38
Figure 4.1 a) The proposed dynamic gate, b) The NAND gate
c) The proposed dynamic gate with keeper 41
Figure 4.2 Clock signals’ waveforms 42
Figure 4.3 The three phases clocking scheme 44
Figure 4.4 Pipeline structure. 45
Figure 4.5 Circuit design example: a) function to be realized,
b) CMOS design and c) memory-less pipeline dynamic design 46
Figure 4.6 Enhanced performance pipeline dynamic design style 48
Figure 4.7 The 16-bit Kogge-Stone adder architecture 50
Figure 4.8 Enhanced dynamic gates 52
Figure 4.9 Best clock cycle of Kooge-Stone implementations 53
Figure 4.10 Energy consumption per cycle of Kooge-Stone implementations 54

IX

Figure 4.11 Energy-Clock cycle product of Kooge-Stone implementations 55
Figure 4.12 Internal node precharging during the precharge phase 56
Figure 4.13 Silicon area comparisons. 57
Figure 5.1 Proposed carries implementation the even cany chain (a),
odd carry chain (b) 62

Figure 5.2 The new generate (a) and propagate
(b) signals implemented in domino CMOS logic. 62

Figure 5.3 Sum bit implementation 63
Figure 5.4 Static CMOS implementation of the 2-»l multiplexer 64
Figure 5.5 Ripple carry chains based on k-bit MCC adder modules 65
Figure 5.6 Propagation delay timeslots for the 16-bit adder PROP vs. CONV 66
Figure 5.7 Best clock cycle period for the implementations of the 8-bit
and 16-bit adders 67

Figure5.8 Energy consumption per cycle for the implementations
of the 8-bit and 16-bit adders 68
Figure 5.9 Energy-Clock Cycle product for the 8-bit and 16-bit adders 69
Figure 5.10 Best clock cycle period for the adder implementations 69

. Figure 5.11 Energy consumption for the adder implementations 70
Figure 5.12 Energy x clock cycle product for the adder implementations 71

X

ABSTRACT

Zaher Owda, MSc, Computer Science Department, University of Ioannina,Greece.

February, 2010. High Performance Dynamic Designs Of Arithmetic Circuits.

Thesis Supervisor: Tsiatouhas Yiorgos.

A desirable characteristic of VLSI circuits is high speed operation. The use of

dynamic circuit design techniques can provide high speed operation at lower silicon

area requirements, compared to full static CMOS designs. Another common design

technique in order to achieve high operating speed is the use of pipeline schemes.

However, the higher the required operating frequency, the higher the number of stages

we must implement in the pipeline. In addition, a limiting factor in cases with a large

number of stages, are the restrictions imposed from the required memory elements.

These memory elements not only increase the silicon area of the implementation but

also restrict the maximum achievable frequency due to their internal delays. In this

Thesis, a memory-less pipeline design style is proposed, where the combinational part

is implemented with dynamic circuits that offer the desirable high speed operation

while the memory elements are eliminated due to an intelligent clocking scheme.

Thus, the proposed design technique provide the advantage of high performance

operation and at the same time compares favourably to pre-existing approaches with

respect to silicon overhead and power requirements. According to the experimental

results on dynamic designs of the Kogge-Stone carry-lookahead adder topology, the

proposed technique can improve the propagation delay of the evaluation phase up to

76.96% and 59.11% over the pertinent Domino and Wave Domino dynamic designs.

Furthermore, an efficient implementation of an 8-bit Manchester carry chain adder in

multi-output domino CMOS logic is introduced in this work. The carries of this adder

are computed in parallel by two independent 4-bit carry chains, one for the odd and

one for the even carries respectively. This adder module can be used for the

XI

implementation of wider adders leading to significant operating speed improvement

compared to the corresponding adders based on alternative Manchester carry chain

adder modules proposed in the open literature. The simulation results on a 64-bit

Manchester adder provided propagation delay improvements up to 35.08% over

earlier designs.

XU

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Zaher Owda, MSc, Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2010.

Υψηλής Απόδοσης Δυναμική Σχεδίαση Αριθμητικών Κυκλωμάτων.

Επιβλέπων: Τσιατούχας Γεώργιος.

Ένα επιθυμητό χαρακτηριστικό των VLSI κυκλωμάτων είναι η λειτουργία με υψηλές

ταχύτητες. Η χρήση δυναμικών τεχνικών σχεδιασμού κυκλωμάτων μπορεί να

παρέχουν υψηλής ταχύτητας λειτουργία εκμαιεύοντας μικρότερη επιφάνεια πυριτίου,

σε σύγκριση με την πλήρη στατική CMOS τεχνική σχεδίασης. Μια άλλη κοινή

τεχνική σχεδιασμού ώστε να επιτευχθούν υψηλές ταχύτητες λειτουργίας είναι η

χρήση δομών διοχέτευσης. Ωστόσο, όσο μεγαλύτερη είναι η απαιτούμενη συχνότητα

λειτουργίας, τόσο μεγαλύτερος είναι ο αριθμός των σταδίων που θα πρέπει να

εφαρμόσουμε στην δομή διοχέτευσης. Επιπλέον, ένας περιοριστικός παράγοντας σε

υλοποιήσεις με μεγάλο αριθμό σταδίων, είναι οι περιορισμοί που επιβάλλονται από

τα απαιτούμενα στοιχεία μνήμης. Αυτά τα στοιχεία μνήμης δεν αυξάνουν μόνο την

επιφάνεια του πυριτίου της υλοποιούμενης δομής, αλλά επίσης περιορίζουν και την

μέγιστη εφικτή συχνότητα λειτουργίας, λόγω των εσωτερικών τους καθυστερήσεων.

Σε αυτή την εργασία, προτείνεται μια τεχνική σχεδίασης δομών διοχέτευσης χωρίς

την χρήση στοιχείων μνήμης, όπου το συνδυαστικό μέρος υλοποιείται με δυναμικά

κυκλώματα που προσφέρουν υψηλή ταχύτητα λειτουργίας, ενώ τα στοιχεία μνήμης

έχουν εξαλειφθεί με την χρήση ενός ευφυούς συστήματος χρονισμού. Έτσι, η

προτεινόμενη τεχνική παρέχει το πλεονέκτημα της υψηλής απόδοσης λειτουργίας και

ταυτόχρονα μικρότερη κατανάλωση ισχύος και μείωση της επιφάνειας πυριτίου σε

σύγκριση με προϋπάρχουσες υψηλών επιδόσεων τεχνικές.

Αρχικός σκοπός μας είναι η δημιουργία μιας δυναμικής λογικής οικογένειας, όπου σε

κάθε πύλη θα ενσωματώνεται η δυνατότητα λειτουργίας της και ως μνήμης. Για να το

επιτύχουμε αυτό εισάγουμε ένα δεύτερο ρολόι στην λειτουργία μιας δυναμικής πύλης

I

xm

κατά τρόπο τέτοιο ώστε το PMOS τρανζίστορ προφόρτισης και το NMOS τρανζίστορ

υπολογισμού να οδηγούνται από διαφορετικό σήμα ρολογιού. Ο νέος τρόπος

λειτουργίας δεν απαιτεί την παρουσία του αντιστροφέα, καθότι επιτυγχάνεται η

εξάλειψη των συνθηκών ανταγωνισμού {race conditions), που ταλαιπωρούν την

τυπική δυναμική λογική. Στο σχήμα που ακολουθεί, παρουσιάζονται η τοπολογία της

προτεινόμενης δυναμικής λογικής και οι κυματομορφές των δύο σημάτων ρολογιού

με τις οποίες καταφέρνουμε να εισαγάγουμε την επιπλέων φάση μνήμης στη

λειτουργία της πύλης.

Vdd

p r e c b a r g e

C l k j

e v a l u a t e J m e m o r y

r
I
<

p r e c h a r g e \ e v a i u a t e m e m o r y

1 1

c,k> |_ | \
t

Η τοπολογία της προτεινόμενης δυναμικής λογικής και οι τρεις φάσεις λειτουργίας με
τη χρήση δύο σημάτων ρολογιού.

Η προτεινόμενη δυναμική λογική σχεδίασης εφαρμόστηκε στην σχεδίαση της

βαθμίδας πρόβλεψης κρατουμένου ενός 16-bit Kogge-Stone, αθροιστή με χρήση έξι

φάσεων ρολογιού (τρία ρολόγια και τα συμπληρώματά τους). Η νέα σχεδίαση

προσφέρει σύμφωνα με τα αποτελέσματα των προσομοιώσεων, βελτίωση στην

συχνότητα λειτουργίας μέχρι και 76.96% σε σχέση με την τυπική Domino σχεδίαση

και μέχρι 59,11% σε σχέση με την πολύ υψηλών επιδόσεων Wave Domino τεχνική

σχεδίασης. Η βελτίωση στην ταχύτητα λειτουργίας έχει ένα κόστος στην μέση

κατανάλωση ενέργειας μέχρι 28.49% ως προς την τυπική Domino και μείωση στην

κατανάλωση κατά 29,54% ως προ της Wave Domino, όμως το γινόμενο ενέργεια x

κύκλος ρολογιού βελτιώνεται και στις δύο περιπτώσεις πάνω από 70%. Οι

προηγούμενες επιδόσεις απαίτησαν επιφάνεια πυριτίου αυξημένη κατά 8,7% ως προς

την τυπική Domino και μειωμένη κατά 9% ως προς τη Wave Domino τεχνική.

XIV

Ακολούθως στην εργασία, παρουσιάζεται μια αποτελεσματική δυναμική υλοποίηση

του Manchester αθροιστή με χρήση πολλαπλών εξόδων Domino CMOS λογικής. Τα

κρατούμενα του αθροιστή υπολογίζονται παράλληλα και από δύο ανεξάρτητες

αλυσίδες κρατουμένου. Αυτό επιφέρει σημαντική βελτίωση της ταχύτητας

λειτουργίας σε σύγκριση με τις αντίστοιχες τοπολογίες υλοποίησης αθροιστών οι

οποίες βασίζονται στη Manchetser δομή.

Η καινούρια προτεινόμενη τοπολογία βασίζεται στις εξισώσεις του Manchester

αθροιστή μετασχηματίζοντάς τες έτσι ώστε να δίνεται η δυνατότητα υπολογισμού

των άρτιων κρατουμένων παράλληλα με τα περιττά. Αυτός ο διαχωρισμός επιτρέπει

π.χ. την υλοποίηση του 8-bit Manchester αθροιστή με δυο ανεξάρτητες παράλληλες

αλυσίδες των 4-bit, όπου η πρώτη αλυσίδα υπολογίζει τα άρτια κρατούμενα και η

δεύτερη υπολογίζει τα περιττά. Γίνεται φανερό πως ο υπολογισμός των κρατουμένων

επιταχύνεται σημαντικά με τη χρήση της νέας τεχνικής. Στο σχήμα που ακολουθεί

παρουσιάζονται οι δυο αλυσίδες ενός 8-bit Manchester αθροιστή για τον υπολογισμό

των νέων κρατούμενων ho-h6 και του τελικού κρατούμενου εξόδου Οη.

XV

Τα αποτελέσματα των προσομοιώσεων των Manchester σχεδιασμών σύμφωνα με την

προτεινόμενη τεχνική ήταν εντυπωσιακά σε ότι αφορά την ταχύτητα. Η καθυστέρηση

διάδοσης μειώνεται έως και 35,08% σε σχέση με τη συμβατική τοπολογία ενός 64-bit

Manchester αθροιστή. Η νέα τοπολογία επιτυγχάνει υψηλές επιδόσεις στην ταχύτητα

λειτουργίας, πληρώνοντας ωστόσο το απαιτούμενο κόστος σε καταναλισκόμενη

ενέργεια ανά κύκλο ρολογιού, το οποίο μεταφράζεται σε αύξηση 44.29% συγκριτικά

με το συμβατικό 64-bit Manchester αθροιστή. Όμως το γινόμενο ενέργεια x κύκλο

ρολογιού είναι αυξημένο μόνο κατά 14,37% με τάσεις μείωσης όσο αυξάνουν τα bit

του αθροιστή.

XVI

I

ί·':··..ν- ’-V':;·

Λ ι:*<Γ·;̂ ·«*.
^ίϊΤφ-Ιν· -.■

iyhhiViM ·.<???■

■ *r= if:i -;./.

: ? ' κ i ^ ί Μ φ , ψ η ^ ι Μ Φ .,^^·^··

, * 1 ι > f,i,, »r ’ ,*■ *»*. "

^!ί;'ΟΐΚί'ί :.;.ii

, ’■'.' :.·.7

u v

 ̂ r- ·ΉΓ-4;ΐ:

ί Ι-Ϊ -.>

I

λ \l·.
\ "i "■ "■ :ΐ:· i / f: *; V . ί ..-.·

■.a 'n·

V -i.;i.V iifc,

"'*-■ %$. u^y^mMsyy '&?':4 ϊ δ ' - ΐ ^ό^ν ' :ΐ 4 ’ a^fcv·: u

’ s t * ' Ay v - ' * -t (i ?- * i.' * f 1 . * \ * r v > n * \ ' , >· * '

CHAPTER 1. INTRODUCTION

1.1. Scope

1.2. Manuscript organization

1.1. Scope

Over decades, the semiconductor industry is continuously increasing its research

efforts to ,provide higher performance microelectronic circuits and systems.

Dynamic circuit design techniques can provide the desirable high speed operation

at lower silicon area requirements compared to other CMOS design techniques.

The scope in this thesis is to present new high performance dynamic design

techniques suitable for the implementation of high speed arithmetic circuits, where

the pertinent demands are crucial, and to compare them with existing solutions in

the open literature.

1.2. Manuscript organization

This manuscript is organized as follows. In chapter 2 an introduction to the CMOS

logic design is provided, where the complementary static CMOS logic and the

common dynamic and Domino CMOS logic design styles are discussed.

Next, in chapter 3 an introduction to the theory of CMOS adders design is given,

that is followed by a detailed presentation of the Carry Lookahead adder

topologies, especially focusing on the Kooge-Stone Lookahead adder as well as on

the Manchester Carry Chain adder.

A new dynamic design technique and its enhanced performance version is

introduced and analyzed in chapter 4. This technique is applied on a Kooge-Stone

adder design and simulation results are provided in comparison to the

corresponding Domino and Wave Domino designs.

Next, in chapter 5, the architecture of a new high performance double carry chain

.Manchester adder is presented, which is based on a multi output Domino topology.

Comparisons among the proposed Manchester carry chain design and earlier

Manchester topologies in the open literature are discussed. Finally, the conclusions

are drawn in chapter 6.

CHAPTER 2. CMOS LOGIC

DESIGN

2.1. Introduction to CMOS

2.2. Complementary Static CMOS logic

2.3. Dynamic CMOS logic

2.3.1. Signal Integrity

2.3.2. Cascading Dynamic Gates

2.3.3. Domino Logic

2.3.4. Domino Circuits Operation

2.1. Introduction to CMOS

Complementary Metal Oxide Semiconductor (CMOS) is a technology for

integrated circuits construction; CMOS technology is used in a wide range of

circuit designs such as microcontrollers, microprocessors, static RAM, and digital

logic design [3-7]. An important characteristic of this technology is the low static

power consumption, compared to earlier technologies, since power is mainly

drown only when the internal circuit nodes are changing state. Moreover, CMOS

technology permits the implementation of high density logic functions in a chip.

CMOS circuits use both types of semiconductor field effect transistors, the PMOS

(positive polarity) and the NMOS (negative polarity) transistors, in order to

implement logic gates and consequently digital circuits. The most common

measures to evaluate a circuit design are: the surface, the speed (performance), the

energy consumption, the reliability and the generated noise [1]. Considering the

above measures, static CMOS design offers low noise sensitivity and high

reliability at acceptable speeds and relatively low power consumption.

2.2. Complementary Static CMOS logic

The circuits that are designed using CMOS technology are separated into two

categories depending on whether they store or not a previous response of the

circuit as a subsequent input: the combinational logic circuits, and the sequential

logic circuits [1]. In combinational logic the output is defined by the current input

signals, without any type of feedback from the output to the circuit input. On the

contrary, the output of the sequential circuits depends on both the current input and

the pervious response of the circuit (which is called “circuit state”). Consequently,

the circuit consists of a combinational logic part and a register which holds the

circuit state.

A static CMOS gate is a combination of two networks, the pull up network that

consists of pMOS transistors and it is called pMOS network and the pull down

network which is composed of nMOS transistors and is called nMOS network, as

it is shown in Fig. 2.1. These two networks are structured in a mutually executive

fashion such that one and only one of the networks is conducting in steady state. In

this way, once the transients have settled, a path always exists between Vdd and the

output F for a high output “1”, or between Gnd (ground) and F for a low output

“0”. This is equivalent to stating that the output node is always a low-impedance

node in steady state.

5

Figure 2.1 Static CMOS gate

2.3. Dynamic CMOS logic

An alternative use of CMOS technology in digital circuit design, targeting to

provide increased performance, is the dynamic logic [1], [2]. According to the

typical dynamic design style, the gate output is periodically precharged to high

through a single pMOS control transistor (precharge transistor). This phase in the

circuit operation is called precharge phase. Then, in-between the precharge phases,

an nMOS network is exploited to calculate the gate response according to the input

data. In case that a logic low value is required at the output an active path in the

nMOS network discharges the output while in case that a logic high value is

required no path is formed in the nMOS network to discharge the output which

simply remains charged to V d d - This phase in the circuit operation is called

6

evaluation phase. An additional nMOS control transistor (evaluation transistor)

isolates the nMOS network from the ground and ensures that no discharge path is

formed through the nMOS network during the precharge phase. During the

evaluation phase the pMOS precharge transistor is inactive. Thus, during this

phase, no low to high transitions can take place at the output. This implies that

during the evaluation phase if an input combination discharges the output, the

latter will remain discharged regardless of the input combinations that may follow

during the same evaluation phase. Consequently, we must ensure_that only a single

and valid input combination is applied during each evaluation phase. A clock

signal is used to drive the control transistors and form the two circuit operating

phases.

In Fig. 2.2 the topology of a dynamic gate is presented. During the precharge

phase, CLK value becomes “0” and so the output is precharged to Vdd

independently of the input values, because the evaluation transistor is turned off.

When the CLK turned to “1” during the evaluation, a conducting path is created

between the output and the Gnd (ground) ground if the function that has been

implemented in the nMOS network is true. Otherwise, the output remains at the

precharged state of Vdd·

Figure 2.2 Dynamic CMOS gate

Next, the main attributes of the dynamic gates are discussed:

The logical function is realised by the pull down network, which is designed the

same way as in the static CMOS.

The number of transistors is almost half the corresponding number in static

CMOS.

The size of the PMOS device is not important for the functionality of the gate.

High dynamic power consumption is reported, due to the clock signal CLK

switching activity.

Faster switching speed is observed due to the decreased gate capacitance as a

result of the small number of transistors (low input load) and the absence of short

circuit current, because all the current that goes through the nMOS network mainly

concerns the discharge of the output.

Consequently, the basic advantages of the dynamic logic are the increased speed

and the reduced silicon area requirements with respect to the static CMOS logic

[9], [10]. However the speed is affected by the presence of the evaluation

transistor, which is used to prevent short-circuit power consumption.

2.3.1. Signal Integrity
Aiming to exploit the high performance efficiency of dynamic logic we have to

consider a number of critical design issues, like leakage currents, charge sharing,

capacitive coupling and clock power consumption, in order to ensure that the

dynamic logic operates properly [1].

2.3.1.1. Leakage Current

The operation of a dynamic gate is based on the dynamic storing of the output

value in a capacitor. Consequently, if the nMOS network isn’t conductive in an

ideal circuit the output must retain the precharge value during the evaluation

phase. However, the normal transistor leakage current may lead to an erroneous

circuit operation. The charge that is stored at the output capacitance leaks due to

the various leakage current mechanisms, like the parasitic diode reverse current or

the subthreshold leakage current of the transistors in the nMOS network.

Consequently, a minimum clock rate must be guaranteed although this could not

be characterized as a robust design. The problem worsens in the modem CMOS

nanotechnologies.

In order to confront the leak problem, a reduction of the output impedance, in the

output node is suggested, during the evaluation. This is achieved by adding a

feeder transistor (see Fig. 2.3). Its operation is to compensate for the charge loss

due to the pull down leakage paths. To avoid the pull-up and pull-down network

ratio problems associated with this style of circuits and the associated static power

consumption, the keeper’s resistance is made high (use of a high L). This allows

the pull down devices to discharge the output node substantially below the

switching threshold of the NOT gate and switch off the keeper.

2.3.1.2. Charge sharing

A subject of major importance concerning the design of dynamic logic is the

charge redistribution (sharing). During the precharge phase the output node is set

to high. Next assume that during the evaluation phase no conducting path is form

in the nMOS network from the output node to the ground. However, many paths

may be formed from the output node to internal nodes of the nMOS network,

depending on the input values. This may lead to charge redistribution between the

parasitic capacitance of the output node and the internal parasitic capacitances of

the nMOS network, which will reduce the voltage of the output node and cause

reliability problems in the circuit operation. The most effective way to confront

this situation is to precharge (during the precharge phase) important (high

capacitance) internal nodes in order to prevent charge redistribution, although this

will increase the cost and power consumption and will decrease the circuit

performance.

2.3.1.3. Capacitive coupling

The rather high impedance of the output node exposes the circuit to the influence

of capacitive coupling. Capacitive coupling appears when a capacitance exists

between two signal lines. In dynamic logic serious capacity coupling can occur

between the dynamic node and a wire routed over or next to the dynamic node.

This may corrupt the logic state of the dynamic node especially when it is in a

floating condition.

2.3.1.4. Clock Feedthrough

The feedthrough of the clock signal is a special case of capacitive coupling, which

is related to the parasitic capacitance between the gate of the precharge transistor,

which is fed by the clock signal, and the dynamic output node. This capacitive

coupling makes the output signal of the dynamic node to rise above the value of

V d d during a low to high transition of the clock (Fig. 2.4), when the nMOS

network is not in a conducting state. Consequently, the fast rising and falling edges

of the clock couple onto the signal node, as it is shown in the simulation graph of

Fig. 2.4. The danger of the clock feedthrough is that it may force the normally

reverse-biased junction diodes of the pMOS precharge transistor to become

forward biased causing the injection of charges from the floating drain node to the

substrate. This reduces the noise margins and may lead the circuit to an erroneous

operation.

Vdd

Figure 2.4 Demonstrating clock feedthrough effect

2.3.2. Cascading dynam ic gates

Besides the signal integrity issues, there is a major problem that complicate the

design of the dynamic circuits: straightforward cascading of dynamic gates to

create multilevel logic structures does not work.

This problem exists because the output of the each gate of a level (and thus the

input of the next level) is precharged to high. This may result to the unintended

discharge of the output at the beginning of the evaluation cycle due to race

conditions. Changing all the input values to “0” during the precharge phase solves

this issue. In this way we deactivate the transistors of the nMOS network after the

precharge and we avoid the unintended discharge of the output node during the

evaluation phase. The conclusion is that the input can make only one transition

from “0” to “1” during the phase of evaluation in order to ensure the correct

operation of the circuit.

Race conditions during the evaluation phase, when a dynamic gate drives another

dynamic gate, are a known problem of dynamic logic. In that case the precharged

node of the first gate can discharge the output of the following gate before the first

gate is correctly evaluated [1], In order to overcome this problem, the most

common design technique is the Domino logic family.

2.3.3. Domino logic

Domino logic gates are composed of a dynamic gate which is followed by a static

inverter, as it is shown in Fig. 2.5 [17]. As in any dynamic logic there are two

phases in the Domino CMOS circuits operation:

Precharge phase: When the clock CLK signal is low, the PMOS precharge

transistor is conductive and charges the dynamic node, which gives a logical “0” at

the output of the inverter.

Evaluation phase: When the clock CLK signal is high, the PMOS transistor isn’t

conductive, while the NMOS evaluation transistor is conductive. This transistor

allows the discharge or not of the dynamic node depending on the input values of

the NMOS network. As a result the output turns to high.

13

Figure 2.5 Domino CMOS logic

After evaluation, a Domino gate must be precharged before it can be used for a

subsequent evaluation in the next clock cycle. According to the above discussion,

all Domino gates in a circuit are precharged simultaneously. During the precharge

phase the circuit wastes time since not useful computation takes place. Therefore,

the operation of a Domino circuit is conventionally divided into two blocks with

complementary clocks, so that when the first block evaluates the second block is in

the precharge phase, while when the first block precharges the second is in die

evaluation phase (see Fig. 2.7).

Let’s consider a circuit consisting of cascaded Domino gates, where all gate input

and output lines are set to low during the precharge. Then, during the evaluation

phase the output of the first gate either remains “0” or makes a transition to “1”,

activating the next gate. This high value may continue its propagation along the

gate chain, like the falling of the tiles in the well known structure of the domino

game, so that’s why this logic design style is called Domino logic.

A basic restriction of Domino logic is that we can only implement non-inverted

logic since each dynamic gate is followed by a static inverter. However, there are

few solutions to this problem: a) the reorganization of the logic using simple

Boolean transformations, like De Morgan’s law, b) the use of Differential Domino

Logic (DDL) as in Fig. 2.6 where the function F and its complement are realized,

although this is design approach is characterized by increased cost, and c) the use

of the NORA logic [36] which is an alternative dynamic design style where

subsequent gates are realized using successionally pMOS and nMOS networks in

the dynamic part without the insertion of the NOT gate at the output node. In that

case the complement of the clock is also required.

2.3.4. Domino Circuits Operation

Designers are increasingly interested in faster circuit families, like Domino logic

[12], [14]. Domino is a tempting choice because of the high speeds it achieves due

to the decrease of the logical effort, which is a result of the standard pMOS

network elimination. This is the reason it is used in critical sections of processing

units like the arithmetic and logic units. The main disadvantage of the Domino

logic is the high dynamic energy consumption due to the frequent alternations of

the output values.

15

A real pipeline like that shown in Fig. 2.7 experiences clock skew. In the worst

case, the dynamic gate and latch may have greatly skewed clocks. Therefore, the

dynamic gate may not begin evaluation until the latest skewed clock, while the

latch must set up before the earliest skewed clock. Hence, clock skew must be

subtracted not just from each cycle, as it was in the case of a flip-flop based

design, but from each half-cycle.

S5 <j o a , «>
^ ■

<* ■ v , «

— J2
·.··*■* '.··· S

• ·*<**·.·
... ^*.·· ■c . ' . 2 '

' g j g · 0m
*

«
— *>

« ■
.·*** ·

■·
Λ

*

> 5 if t >> f » > y ■ 1 e .

v X ;
O a

CLK .
CLK B.

CLK
M i

CLK B

GLK

'id:d-q\m
lsketf

H?!

$shm\

Figure 2.7 Classic domino including clock skew

Available Time for Logical Evaluation:

C L K
r p ___ | - ί

-*■ logic
. 9 +

^ Si-q * * Lskew

Traditional Domino pipelines also suffer from imbalanced logic. In summary,

classic Domino circuits lose efficiency because they pay overhead for latch delay,

clock skew and imbalanced logic [13].

2.3.4.1. Wave pipeline Domino logic

Wave pipelining is a technique to construct high-performance circuit designs

which implements pipelining in logic without the use of intermediate latches or

flip-flops. Wave pipelining can increase the clock frequency of practical circuits

without increasing the number of internal storage elements. Using this technique,

new set of input data can be applied to a combinational block before the previous

responses are available at the output. In this way, pipelining of combinational logic

blocks has been used effectively to maximize the utilization of the logic without

inserting internal registers. This concept is applicable for single stage as well as for

multi stage circuits [11], [13].

The basic problem with traditional Domino circuits is that data must arrive by the

end of one half-cycle but will not depart until the beginning of the next half-cycle.

Therefore, the circuits are infected by skew between the clocks and cannot borrow

time. We can overcome this problem by using overlapping clocks, as shown in

Figure 2.8. This figure presents a wave pipeline Domino clocking scheme with two

overlapping clock phases. Instead of using one clock and its complement, we now

use overlapping clocks CLK1 and CLK2 and we partition the logic into phases

instead of half-cycles because in general we will allow more than two overlapping

phases.

17

o O O' O o o .

' ■P+ ·. ■ KJ Ή Α» o ’· *̂4 .· 3

' ■?? ·■' ' *2 · ■·-.·|3·. v \<4m0 . ■·δ·' · •L* ' «ν\· ' <4* ■ ' « •.'.ifcrf · •4*·.
'vlM . ' . • -m y· ■ <5 ■.n* ···.· <5 ■■· « .··' ' (5

"a ■ > v . >> > . Xfi Vt

a a Q P r a ■

CLK1
______________ ___4 --1--------------------

; T cL K i
1 1 j <

1

t
1

m m r

C X K 2 \ _______ _ M T ~
1 ! ! m .

! '

i phase l
t
i \phase 2 ;
1
N Λ._________λ I

overlap·
fym

Figure 2.8 Wave pipeline Domino design

The clocks overlap enough so that even under worst-case clock skews, providing a

minimum overlap, the first gate in the second phase has time to evaluate before the

last gate in the first phase begins to precharge. As with static latches, the gates are

guaranteed to be ready to operate when the data arrives even if skews cause

modest variation in the arrival time of the clock. Therefore, the circuit is not

affected by clock skew in the cycle time. Another advantage of wave pipeline

Domino circuits is that latches are not necessary within the Domino pipeline. We

ordinarily need latches to hold the result of the first phase's evaluation for use by

the second phase when the first phase precharges. In wave pipeline domino, the

overlapping clocks insure that the first gate in the second phase has enough time to

evaluate before CLK1 falls and the first phase begins precharge. When the first

phase precharges, the dynamic gates will pull high and therefore the static gates

will fall low. This means that the input to the second phase falls low. The first gate

of the second phase will remain at whatever value it evaluated to, based on the

results of the first half-cycle, when its inputs fall low because both the nMOS

network and the precharge transistor will be off. Finally, wave pipeline domino

circuits can allow time borrowing if the overlap between clock phases is larger

than the clock skew. The guaranteed overlap is the nominal overlap minus

uncertainty due to the clock skew. Gates in either Phase 1 or Phase 2 may evaluate

during the overlap period, allowing time borrowing by letting gates that nominally

evaluate during Phase 1 to run late into the second phase.

19

CHAPTER 3. ADDER CIRCUITS

2.1. Introduction to CMOS Adders’ Design

2.2. Adder Types

2.3. Multiple-bit Adders

2.3.1. Ripple Carry Adder

2.3.1. Carry Look-Ahead Adder

2.4. Kogge-Stone Lookahead Adder

2.5. Manchester Carry Chains

2.5.1 Carry Bypass MCC Adder Design

3.1. Introduction to CMOS Adders’ Design

An adder is a digital circuit that executes addition of numbers in many numerical

representations, such as Binary-code, decimal e.t.c.. Manly, this circuit resides in

the arithmetic logic unit where other operations are performed. The most common

adders operate on binary numbers. The main requirement of digital computers is

the ability to use logical functions to perform arithmetic operations. The basis of

this is addition; if we can add two binary numbers, we can just as easily subtract

them, or get a little further and perform multiplication and division.

20

3.2. Adder Types

Let's start by adding two binary bits. Since each bit has only two possible values, 0

or 1, there are only four possible combinations of inputs. These four possibilities,

and the resulting sums, are shown in Table 3.1:

Table 3.1 Adding two binary bits

ppjp Outputs w * m
A B Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Circuits that perform this kind of addition on two one-bit binary numbers often

written as A and B, are called Half Adders. As we can see in Fig. 2.1, a Half Adder

can be built with the use of an XOR and an AND gate.

J D —

Figure 3.1 Half adder using an XOR and an AND gate.

The second adder type called Full Adder and is a logical circuit that performs an

addition on three one-bit binary numbers. A full adder can be implemented in

many different ways either at transistor level or gate level. An implementation,

which is based on the next equations, is shown in Fig. 3.2:

S = (A θ B) e c in

Cout= (A · B) + (Cin · (A 0 B))

where Θ is the XOR operation.

In this implementation, the final OR gate before the carry-out (Cout) output may be

replaced by an XOR gate without altering the resulting operation.

A . .B

Cout

s

Figure 3.2 Schematic symbol for a 1-bit full adder and its gate level design

A full adder can be constructed from two half adders by connecting A and B to the

input of one half adder, connecting the sum from that adder to an input of the

second adder, connecting C, to the other input with the sum output of the second

half adder be the final sum and OR the two carry outputs to provide the final carry.

Equivalently, S could be realized by a three-bit XOR of A, B, and C„ and C0 could

be realized by the three-bit majority function of A, B, and Q. [1].

3.3. Multiple-bit adders

High speed adder architectures include the ripple cany adders, carry look-ahead

(CLA) adders, carry-skip adders, carry-select adders, conditional sum adders, and

combinations of these structures presented in [19-22]. High speed adders based on

the CLA principle remain dominant, since the carry delay can be improved by

calculating each stage in parallel.

3.3.1. Ripple Carry Adder

It is possible to create a logical circuit using multiple full adders to add N-bit

numbers. Each full adder inputs a Cin, which is the Cout of the previous adder. This

kind of adder is the ripple carry adder, since each carry bit "ripples" to the next

full adder. We have to note that the first (and only the first) full adder may be

replaced by a half adder.

23

Figure 3.3 Four-bit ripple-carry adder topology

An N-bit adder can be constructed by cascading N full-adder circuits in series [17],

by connecting Co,k-i to Q* for k=l to N-l, and setting the first carry-in Q,o to 0

(see Fig. 3.3). The delay through the circuit depends upon the number of the logic

stages that must be traversed and is a function of the applied input signals. For

some input signals, no rippling effect occurs at all, while for others, the carry has

to ripple all the way from the least significant bit to the most significant bit. The

propagation delay of each a structure is defined as the worst-case delay over all

possible input patterns, also called the critical path.

The layout of ripple carry adder is simple, which allows for fast design time;

however, the ripple carry adder is relatively slow, since each full adder must wait

for the carry bit to be calculated from the previous full adder. The overall delay

depends on the characteristics of the full-adders circuits; different CMOS

implementation will produce different worst-case delay paths. The gate delay can

easily be calculated by inspection of the full adder circuit. Each full adder requires

three levels of logic.

In the case of ripple carry adder, the worst-case delay happens when a carry

generated at the least significant bit position propagates all the way to the most

significant bit position. This carry is finally consumed in the last stage to produce

the sum. The delay is then proportional to the number of bits in the input words N

and is approximated by:

T a d d e r ~ (N - l)tcarry + tsum

where tcarry and tsUm equal the propagation delays from Q to Co and S, respectively

DL

3.3.2. Carry Look-Ahead Adders

A carry look-ahead adder improves speed by reducing the amount of time required

to calculate carry bits [23]. The carry look-ahead adder calculates one or more

carry bits before the sum, which reduces the wait time to calculate the result of the

larger value bits. The Kogge-Stone adder and Brent-Kung adder are examples of

this type of adder [17].

As mentioned above, carry look-ahead (CLA) adders are designed to overcome the

latency introduced by the rippling effect of the carry bits. The CLA algorithm is

based on the origin of the carry-out in the equation

Ci+i = Aj · Bi + Ci · (Aj Θ Bj)

For the cases that gives Q+i = 1, since either term may cause this output, we treat

each one separately. First, if Aj · Bj = 1, then Q+i = 1. We define the generate term

(Gj = A, · Bj), since the inputs are viewed as “generating” the carry-out bit. If Gj

=1, then we must have Aj = Bj = 1. The second term represents the case where

inputs carry Ci = 1 may be “propagated” through the full-adder. This will happened

if the propagate term (Pi = Aj Θ B,) is equal to ‘Γ: if Pj =1 then Gi = 0 since the

XOR operation produces a ‘Γ iff the inputs are not equal. With these definitions,

the equation for the carry-out bit is:

Table 3.2 The basis of the carry look-ahead algorithm

Table 3.2 shows the behaviour of the generate and propagate terms. The main idea

of the CLA is to first calculate the values of Pj and Gj for every bit, then use them

to find the carry bits Ci+i. Once these are found, the sum bits are given by Si = Pj Θ

Cj for every i. This avoids the need to ripple the carry bits serially down the chain.

Implementation Details

For each bit in a binary sequence to be added, the CLA logic will determine

whether that bit pair will generate a carry or propagate a carry. This allows the

circuit to "pre-process" the two numbers being added to determine the carry ahead

of time. Then, when the actual addition is performed, there is no delay from

waiting for the ripple carry effect. Below is a simple 4-bit generalized CLA circuit

is discussed.

For the example provided, the logic for the generate (G) and propagate (P) values
$
i are given below. Note that the numeric value determines the signal, starting from 0

I on the far left to 3 on the far right:

26

i

C j = Go + P o · C o

C 2 = G i + P i · C i

C 3 = G 2 + P 2 · C 2

C 4 = G 3 + P 3 · C 3

Substituting Ci into C2, then C2 into C3, then C3 into C4 yields the expanded

equations:

Ci = Go + Po * Co

C 2 = G i + G o P i + C o P 0 P 1

C 3 = G 2 + G 1 P 2 + G 0 P 1 P 2 + C 0 P 0 P 1 P 2

C4 = G3 + G 2 P 3 + G,P,P3 + G 0 P 1 P 2 P 3 + C 0 P 0 P 1 P 2 P 3

These equations show that every carry bit can be found from the generate and

propagate terms. Moreover, the algorithm yields nested expressions. The Carry

CLA 4-bit adder can also be used in a higher-level circuit by having each CLA

Logic circuit produce a propagate and generate signal to a higher-level CLA Logic

circuit (see Fig. 3.4). The group propagate (PG) and group generate (GG) for a 4-

bit CLA are:

P G = P 0 P i P 2 P 3

GG = G 3 + G 2 P 3 + G 1 P 3 P 2 + G 0 P 3 P 2 P 1

27

C0

i

Bi A2 B2

1 I 1

GG PG

Figure 3.4 4-bit adder with Carry Look Ahead

3.4. Kogge-Stone Lookahead Adder

The Kogge-Stone adder is a parallel prefix form CLA adder. It has been developed

by Peter M. Kogge and Harold S. Stone, which they published their work in 1973

[16]. It generates the carry signals in 0(log n) time, and is widely considered the

fastest adder design possible. It is the common design for high-performance adders

in industry. Wiring congestion is often a problem for Kogge-Stone adders [17].

In order to build this adder, it is necessary to organize carry propagation and

generation into recursive trees, by hierarchically decomposing the carry

propagation into sub-groups of N bits:

C0,o = Go + PoCj,o

C0,i = Gi + PiGo +PiPoQ,o = (Gi + PiGo) + (PiPo)Ci,o= Gj;o+ Pi:0Cii0

Co,2 — G 2 + P2G1+ P2PlGo+P2PlPoCi,0=G2+ P 2 C o , l

Co,3 = G3 + P3G2 +P3P2G1 + P3P2P1G0 +P3P2PlPoCi)0

= (G 3 + P 3 G 2) + (P 3P 2) C o , l = G 3:2 + P 3 :2 C o , l

G i ; j and P i:j denote the generate and propagate functions, respectively, for a group

of bits (from bit position i to j). G i;j equals “1” if the group generates carry,

independent of the incoming cany. The block propagate Piy is true if an incoming

cany propagate through the complete group. For example, G3:2, is equal to 1 when

a carry either is equivalent to the bit position 3 or is generated at position 2 and

propagated through position 3. In Fig. 3.5 an example of the structure of a 16-bit

Kogge-Stone adder is provided, where carry at position 15 is computed by

combining the results of blocks (0:7) and (8:15). Each of these, in turn, is

composed hierarchically. For instance, (0:7) is the composition of (0:3) and (4:7),

while (0:3) consists of (0:1) and (2:3), etc. The circuit of the 16-bit Kogge-Stone

adder consists of three structural units. The first one is denoetd by the square

symbol (□) and produces the generate and propagate signals, from the values of

input signals according to the following equations:

Pi = A i + Bi

Gi = AiBi

*T tn « Γ < /f tn in *T

Φί* Φ,ί* Ο,Ι· O.l· O.,

□ □ □ 0 □ a □ □ □ □ 0 0 □ O
5* * £ 2 or

i
«F
i

2 2£ £ £ i £ £ £ £ £ tk
€

QM1
01
i

Figure 3.5 Structure of a 16-bit Kogge-Stone adder

The second structural unit, that is denoted by a black dot (·), is presented in Fig.

3.7 and represents two gates (AND, AND-OR), which calculate the block-level

propagate and generate signals. This unit is used from second up to the fifth level.

In the fifth level, the OR gate is not need. Since these gates are not located at the

primary inputs side, the evaluation transistor is optional. During the precharge

phase, all the outputs of the domino gate are guaranteed to be low, turning off any

discharge path in the succeeding domino stage. Elimination of the foot switch in

stages other than the first lowers effort of the gates and speed up the evaluation but

increases power consumption. The transistor level implementations of the

propagate and generate signals in Domino logic are given in Fig. 3.6

Figure 3.6 The Domino gate design of the first structural unit (AND, OR)

31

J j

~ Γ
B

Figure 3.8 The XOR gate of third
structural unit

3.5. Manchester Carry Chains (MCC)

The Manchester carry chain is a variation of the carry look-ahead adder that uses

shared logic to lower the transistor count. As we know the logic for generating

each carry contains all of the logic used to generate the previous carries [1], [18].

A Manchester carry chain generates the intermediate carries by tapping off nodes

in the gate that calculates the most significant carry value. Not all logic families

have these internal nodes, however, CMOS being a major example. Dynamic logic

can support shared logic, as can transmission gate logic. One of the major

drawbacks of the Manchester carry chain is that the capacitive load of all of these

outputs, together with the resistance of the transistors causes the propagation delay

to increase much more quickly than a regular carry look-ahead.Thus, a Manchester

carry chain section generally won't exceed 4-bits [24].

The Manchester carry topology is based on building a switch-logic network for the

basic equation:

Ci+1 = gi + pi Cj

32

That can be cascaded to feed to successively stages. Consider a full adder with

inputs ai, bj and Cj. We will use the generate and propagate expressions gi = ajbj, pi

= ai Θ b, to introduce the term carry-kill that gets its name from the fact that if kj =

1 , then P i = g i = 0 so that q+i = 0 ; kj = 1 thus “kills” the carry-out bit. This can be

verified from the table below.

Table 3.3 Propagate, generate and carry-kill values

The Manchester carry topology is based on realized exploiting the behaviour

described in Table 3.3. Since only one of the three quantities pi, gi and kj can be

high each time, we can construct the switch-level circuit using such a way so that

one transistor is on (in conducting state) at a time as it is shown in Fig. 3.9.

33

vDd

Figure 3.9 Switching network for the carry-out equation

Two of several different Manchester carry circuit implementations are shown in

Fig. 3.10. The operation of the static logic gate is much complicated than the

dynamic circuit.

VDD VDD

Figure 3.10 (a) Static circuit, (b) Dynamic circuit

34

The logic of the dynamic circuit is similar to the static except that the evaluation

nMOS M3 in Fig. 3.11(b) replaces a logic transistor. During the precharge (CLK =

0), the output node is brought to the logic “1”. Evaluation takes place when the

clock switches to “0”. A carry propagation occurs if pi = 1, while the node

discharges to “0” if gi =1. This circuit can be use to build the Manchester carry

chain shown in Fig. 3.11. Every stage undergoes precharge when CLK = “0”. The

carry bits are available during the evaluation time with the longest delay time for

c4.

Figure 3.11 Conventional domino 4-bit MCC

In binary addition the computation of the carry signals is based on the following

recursive formula:

Ci=gi+zi -clM (1)

g i = ai - b i

z . = t . = a i + b i

Generate signal
~\

>. Propagate signals

Where gi and zt are the carry generate and the carry propagate terms respectively.

In Fig. 3.12, the implementation of the generate and the two types of propagate

signals (inclusive and exclusive) in Domino CMOS logic is shown.

Figure 3.12 Domino implementation for the inclusive propagate (a), generate (b),

and exclusive propagate (c) signals.

Expanding relations in (1) each carry bit c, can be expressed as:

The sum bits of the adder are defined as st = pt Θ cM, where c_x is the input

carry.

For the implementation of the sum signals the Domino chain is terminated and the

sum bits of the Manchester Carry Chain adder are implemented using static CMOS

XOR gates [17], the design of which is shown in Fig. 3.13.

Figure 3.13 Static CMOS implementation of the XOR gate for the sum calculation.

3.5.1. Carry Bypass in MCC Adder

Several variations of the MCC adder in Domino CMOS logic have been proposed

in the literature [17], [24-29]. Moreover, static CMOS MCC implementations are

also available [30]-[31]. All these works, aimed to speed up the addition operation

using different techniques. In the following paragraph we will introduce the Carry

Bypass technique.

Figure 3.14 MCC implementation of the bypass adder

Fig. 3.14 demonstrates the bypass MCC adder design that can speed up the

addition, where the carry propagates either through the bypass path or generated

somewhere in the chain. In both cases, the delay is smaller than the normal ripple

configuration.

A high speed design has been proposed in [29], where the MCC is supported by

the carry-skip capability to improve performance. Each m-bit block has two carry

skip pull-down transistors controlled by a skip signal. This skip signal (skj) is

generated by ANDing all m carry propagate signals, where:

s k j= Pmj Pjnj+1 Pmj+2 ···· Pmj+m-1

The carry skip pull-down transistor speed up the generation of the mth carry bit of

the block and restore signal strength at this node, eliminating the need for

intermediate buffers between the blocks nodes.

In Fig. 3.15, an 8-bit adder is designed using this technique. We have to notice that

the implementation of n-bit adder we need n/m blocks.

38

Μ > ^

■ = " G n d

Figure 3.15 First and Second 4bit Manchester chains using SK signals

CHAPTER 4. MEMORY-LESS

PIPELINE DYNAM IC

CIRCUIT DESIGN

TECHNIQUE

4.1 Introduction

4.2 The Pipeline Dynamic Technique

4.3 Enhanced Performance Pipeline Dynamic Design

4.4 Kogge-Stone Adder Design and Simulation Results

4.1. Introduction

In this chapter we present a new dynamic circuit design techniques that allow the

implementation of pipeline structures without the need of memory elements;

instead they exploit a three phase clocking design style. The pipeline operation

along with the memory elements elimination provides very high speed circuit

realizations. Their efficiency is demonstrated on Kogge-Stone adder designs.

4.2. The Pipeline Dynamic Technique

The proposed logic family is a three phase dynamic logic design style that

overcomes the inherent race condition problems of the conventional dynamic

logic. As in the case of conventional dynamic logic, a gate consists of two control

transistors, one nMOS that is active (in conducting state) during the evaluation

phase (evaluation transistor) and one pMOS that is active in the precharge phase

(precharge transistor), as it is shown in Fig. 4.1(a), and an nMOS network that its

structure depends on the gate functionality (see the NAND gate of Fig. 4.1(b)).

The nMOS network is the same as the corresponding nMOS network of the full

CMOS gate design for the same function. The gate version with a keeper included

is illustrated in Fig. 4.1(c). Two clock signals (CLK1 and CLK2) of equal period

are used to drive each one of the two control transistors and provide the three

operating phases, of equal time duration (called phase time), as it is shown in Fig.

4.2. The three operating phases are the precharge, evaluation and memory phases.

The precharge phase of the proposed design style is exactly the same as the

precharge phase in a dynamic design. The pMOS precharge transistor of the gate is

activated and the output is precharged to high. The nMOS evaluation transistor is

inactive and ensures that there is not any discharging path though the nMOS

network. The precharge operation does not depend on the input values of the

nMOS network and can be completed regardless of these values.

The evaluation phase is analogous to the evaluation phase in a dynamic design.

The pMOS precharge transistor is inactive and the nMOS evaluation transistor is

active. Depending on the inputs combination and the realized function by the gate,

either a conducting path is formed through nMOS network (active path) and the

output {Out) is discharged to low, or there is not any active path through nMOS

network and the output remains charged to high. Thus, the input values of the

nMOS network during this phase, actually determine the response value of the gate

at the end of this phase. According to the proposed design style, a high value at the

output of the gate at the beginning of the evaluation phase is required, while valid

and stable values are assumed at the inputs of the nMOS network during the whole

phase time. Note that input transitions or glitches during the evaluation phase may

discharge the output resulting to an erroneous response since it is not possible to

charge the output in any other phase except the precharge phase.

Figure 4.1 a) The proposed dynamic gate, b) The NAND gate c) The proposed
dynamic gate with keeper

Finally in the memory phase both pMOS and nMOS control transistors are inactive

and the output will retain the state (logic low or high). This phase does not

normally exist in typical dynamic gates. During the memory phase the input values

of the nMOS network should not affect the output of the gate.

precharge

Clkj

Clk,

evaluate
1 i 1 1
1 i i i
I I1 1 1

'hose time

memory

Figure 4.2 Clock signals’ waveforms

For the proper operation of the proposed scheme as a pipeline, each gate level

(pipeline stage) is passing continuously through the three phases precharge,

evaluate and memory in that order, as shown in Fig. 4.2. The existence of the

precharge phase before the evaluation phase ensures that the requirement for a

high value at the output of a dynamic gate at the beginning of the evaluation phase

is fulfilled. The memory phase is after the evaluation phase and ensures that for a

phase time the values calculated during the evaluation phase will remain stable.

The relation of the operating phases in a specific level of the pipeline with the

operating phases of the preceding and the following levels is shown in the example

of Table 4.1. This refers to a four levels design and the evaluation of three sets of

input data. We denote as ej the evaluation of the data set (j) at a level while mj

denotes the memory phase holding these data; finally p denotes a precharge phase.

A phase time duration corresponds to a cycle in the pipeline operation. With this

arrangement we guarantee that during an evaluation phase in a level the preceding

level is at the memory phase. This ensures that during the evaluation phase, the

inputs of the gate are stable since they are outputs of a level in the memory phase.

In addition during the precharge or evaluation phases of a level (where its outputs

may change) the following level in the pipeline is at the memory or precharge

phases respectively where there is not any constraint on the inputs’ status (to be

stable or not).

Table 4.1 The pipeline operation of the proposed dynamic logic.

The above arrangement also ensures the proper operation of the pipeline. The

evaluated response at level Li of the pipeline during the n cycle are retained at the

44

outputs of this level during the (n+1) cycle time (level Li is at the memory phase

during (n+1) cycle) and are used as inputs at level Li+i during the (n+1) cycle.

1

C L K l _

CLK2"

C L K 3 _

c l k 4~

CLKjJ

C L K g -

I I * I
r — 1 ... i................... - - 1 -r
1 1 ! 1
1 f 1 I
1_____ _____ 1__ ___ 1________ ___l

. — i----------------- 1------------------1
\ _____ I I I
1 1 » -------
J____ ____ 1__________ i_
i ------------- I—, — I-------------- 1-
I I --------- I I

Figure 4.3 The three phases clocking scheme

In order to achieve the above pipeline operation, appropriate clock signals are

required at each level. Three clock signals (CLK1, CLK2 and CLK3) and their

complements (CLK2, CLK4 and CLK6) are used as shown in Fig. 4.3. The clock

distribution arrangement is presented at Table 4.2 and ensures that the two clock

signals used at level Lj+i are the clock signals used at level Li delayed by one third

of the clock period (or equivalently a phase time). The pipeline construction along

with the selection of the appropriate clock signals for each gate, according to its

level in the design, is demonstrated in Fig. 4.4.

Table 4.2 Clock signal selection according to the level of the gate.

pM^S]
L mod 3 = 1 Clkl Clk2
L mod 3 = 2 Clk3 Clk4
L mod 3 = 0 Clk5 Clk6

45

1=1-1 :L mod 3 = 1 l=!:Lmod3 = 2 L=i+l:Lmod 3 = 3

GND GND GND

Figure 4.4 Pipeline structure.

An inherent problem in dynamic logic is charge sharing that may lead to erroneous

output values during the evaluation. Common solutions to overcome this problem

are the use of extra precharge transistors (to precharge the internal nodes of the

nMOS network during the precharge phase) or the use of keepers as shown in Fig.

4.1(c). The proposed design technique provides an advantage with regard to the

charge sharing problem. When a gate G (lets say at level L=i) is at the precharge

phase its predecessor gates (at level L=i-1) are in the evaluation phase and their

outputs are settling to the final value that will serve as input for the subsequent

evaluation of gate G. Thus, in the nMOS network of gate G the final conducting

paths are activated during its precharge phase so that the pertinent internal nodes

can be precharged to VoD-Vm (where Vm is the nMOS threshold voltage). Given

that the precharge time is enough the paths will be fully formed and the internal

nodes will be precherged. Consequently, the charge sharing problem is alleviated

and no internal node precharging is required for these nodes as in the design of

complex (high internal parasitic capacitance) Domino gates.

The proposed design technique enables the implementation of both inverting and

non-inverting gates compared to the limitation of non-inverting gate

implementations in the standard Domino logic. However, its main advantage is the

ability to implement pipelines without the need of memory elements. For high

performance applications the use of pipelines is highly desirable but the additional

memory elements require more hardware and introduce extra delays in each

pipeline stage.

A

A

o

1 = 0 — ΐ » i > — 1 >
F

C L K 1 C L K 3 C L K 5 C L K 1 C L K 3

Figure 4.5 Circuit design example: a) function to be realized, b) CMOS design and

c) memory-less pipeline dynamic design

A characteristic of any pipeline design is that the inputs at level L=i+1 are the

outputs of level L=I, while the outputs of any level before L=i cannot be used

without the addition of cascaded memory elements in-between that their number is

equal to the number of intermediate levels. This increases the hardware cost of a

circuit design. However, using the proposed design technique the above restriction

can be easily fulfilled at a very low cost. In case that we need to connect the output

of a gate at level L=i as input to a gate at level L=i+k we have to add k levels in-

between. In case that k is even, the solution is to use a dynamic NOT gate for each

one of the k intermediate levels. Since the number of the added NOT gates is even

we do not alter the functionality of the circuit. In case that k is odd, the solution is

to use a dynamic NOT gate for each one of the k-1 intermediate levels plus a

dynamic buffer (dynamic NOT gate followed by a static NOT gate). Once again,

since the number of the added NOT gates is even we do not alter the functionality

of the circuit. An example of the proposed design approach is shown at Fig. 4.5.

4.3. Enhanced Performance Pipeline Dynamic Design

In order to improve further the performance of the proposed pipeline dynamic

design style a modification in the topology of the dynamic gates is introduced. The

tail nMOS evaluation transistor that lies between the nMOS network and the

ground is moved up between the output and the nMOS network, as it is shown in

Fig 4.6. The new topology provides the ability to exploit the precharge phase of a

gate as a pre-evaluation phase, where part of the evaluation operation is hidden

inside the precharge phase as it is analyzed next.

D 4 - 1 : L n » d 3 = 2 I H : L mod 3 = 1 1>4+1: L m o d 3 = 0

Figure 4.6 Enhanced performance pipeline dynamic design style

When a gate G (lets say at level L=i) is at the precharge phase its predecessor gates

(at level L=i-1) are in the evaluation phase and their outputs are settling to the final

value that will serve as input for the subsequent evaluation of gate G. Thus, in the

nMOS network of gate G the final conducting paths, if any, are activated during its

precharge phase so that the pertinent internal nodes can be discharged (pre

evaluation). Consequently, during the evaluation phase of gate G only its output

node (Out) remains to be discharged. Obviously this operation will be completed

faster than in the initial topology where all internal nodes as well as the output

node of gate G are discharged during the evaluation phase with the output node

last.

Although a keeper circuit can be also used in the new topology, a complex gate

with a deep nMOS network, of high parasitic capacitance, may suffer by charge

sharing phenomena between the output node and the nMOS network that may lead

in reliability loss. Since the internal nodes of the nMOS network is not possible to

49

be precharged during the precharge phase of the actual gate due to the pre

evaluation of the this network, deep nMOS networks may not be feasible to be

realized according to the enhanced dynamic design approach. To overcome this

problem, complex gates can be split in to two or more simple gates composed of

shallow nMOS networks. Alternatively, complex gates can be designed according

to the initial dynamic design approach presented in section 4.2.

4.4. Kogge-Stone Adder Design and Simulation Results

16-bit Kogge-Stone adders [1], [16] have been designed in a standard 180nm

CMOS technology (V d d= 1 .8 V) using the proposed dynamic design techniques for

the implementation of their carry look-ahead (CLA) units. Their architecture is

shown in Fig. 4.7. In addition, the corresponding CLA unit has been also designed

using the standard Domino design style.

Each line inside the CLA unit of Fig. 4.7 (except the primary inputs) carries a pair

of generate/propagate signals (Gj, Pj). The square symbol at the first level in Fig.

4.7 represents the calculation of the generation/propagation signals by the primary

inputs. Moreover, each circle in Fig. 4.7 represents a “dot” operation between two

pairs of generate/propagate signals (Gj, Pj) (Gs, Ps).

E
xt

ra
 D

yn
am

ic
 Ν

Ο
ΐ

ga
te

s
^

 W
s

50

The above operations are defined as follows [1] for each level in the design:

G1;0 = A B and Pl:0 =A + B for the 1st level

Gj.S ~ Gj (Pj +Gs) and p. = p.+py.s 1 j ^ 1 s for the 2nd and 4th levels

Gj.s = Gj +(pj Gs) and P =P P1 j:s 1 j 1 s for the 3nd and 5th levels

In the proposed design of Fig. 4.7, each gate level is fed by the same pair of clock

signals, while levels that are fed by the same clock signals are denoted with the

same greyscale color. For each gate level the corresponding dynamic gates are

presented in Fig. 4.8, where the enhanced design approach presented in section 4.3

has been used. It is easy to derive the initially proposed dynamic design of these

gates by removing the clocked nMOS evaluation transistor and adding it as the tail

transistor of the nMOS network.

"L
ev

el
s

Figure 4.8 Enhanced dynamic gates

In Figure 4.8 the enhanced dynamic gates for the CLA unit design of the Kogge-

Stone adder is used as follow: a) first level gates (□ symbol) for

generate/propagate signals calculation, b) second and fourth levels (o symbol) dot

operation gates and c) third and fifth levels (o symbol) dot operation gates.

According to the simulation results, the worst case propagation delay in the

evaluation phase for the first one of the proposed dynamic designs is 63.36ps,

while the corresponding delay of the second enhanced dynamic design is 44.80ps,

which results in a delay reduction of 29.3% for second design approach. Note that

considering the corresponding Domino design of the CLA unit for this Kogge-

Stone adder, the worst case propagation delay in the evaluation phase is 291.69ps,

which results in a delay reduction of 78.28% and 84.64% for the initial proposed

and the enhanced proposed dynamic designs respectively. In addition, the worst

case propagation delay in the evaluation phase of the CLA unit for the same

Kogge-Stone adder using a five stages, four phases, Wave Domino design style is

164.345ps (see chapter 2.3.4.1), which results in a delay reduction of 61.45% and

72.74% with respect to the proposed designs.

Best Clock Cycle

600

500

- 400ΙΛa
7 300

15 200

100

0
Kogge-Stone Implementations

■ Enhanced Proposed Dyna mic ■ Proposed Dynamic B Standard Domino ■ Wave Domino

Figure 4.9 Best clock cycle of Kooge-Stone implementations

Since the above worst case evaluation times are at least equal or higher than the

pertinent worst case precharge times, it is implied that clock signals with periods

of at least 190.08ps (3x63.36ps) and 134.40ps (3x44.8ps) for the initial and the

enhanced proposed designs are required, that results in 67.42% and 76.42%

reduction with the respect of the standard Domino where is the clock period must

be at least 583.38ps (2x291.69ps). The initial and the enhanced designs have as

clock cycle reduction of 42.17% and 59.11% respectively with respect to the Wave

Domino design where a clock signal period of at least 328.7ps (2xl64.35ps) is

required. The above comparison results are shown in Fig. 4.9.

The mean energy consumption per cycle is 3.98pJ and 3.50pJ for the initial

proposed and the enhanced proposed dynamic designs respectively, which results

in consumption decrease of 12.06% for second design approach. This energy

consumption improvement is related to the reduced energy requirements during the

precharge phase, since the internal nodes of the nMOS network are not precharged

in the enhanced dynamic design as it is the case in the initial dynamic design. The

mean energy consumption of the standard Domino design is 2.725pJ, which results

in energy consumption increase by 46.10% and 28.49% for the initial proposed,

the enhanced proposed dynamic designs respectively. In the Wave Domino design

the mean energy consumption is 4.97pJ per cycle. Thus, the initial proposed and

the enhanced proposed dynamic designs reduce the energy consumption by

19.88% and 29.54% over the Wave Domino design respectively. The above

comparisons are shown in Fig 4.10.

Energy Consumption per Cycle

Kogge-Stone Implementations

■ Enhanced Proposed Dynamic ■ Proposed Dynamic fii Standard Domino ■ Wave Domino

Figure 4.10 Energy consumption per cycle of Kooge-Stone implementations

The energy consumption increment of the proposed approach over the standard

Domino design is related to the addition of the extra dynamic NOT gates, in order

to maintain the pipeline operation. Due to the construction of the Kogge-Stone

CLA unit, the number of these gates is rather high (a situation which is not the

typical case in a general circuit design).

Energy χ Clock Cycle Product

Kogge-Stone Implementations

■ Enhanced Proposed Dynamic ■ Proposed Dynamic B Standard Domino B W aveD o m in o

Figure 4.11 Energy-Clock cycle product of Kooge-Stone implementations

The energy-clock cycle products of the proposed dynamic designs (initial and

enhanced) are 756.73 pJxps and 470.58 pJxps for the initial proposed and the

enhanced proposed dynamic designs respectively, which results in energy-clock

cycle product reduction by 52.40% and 70.40% respectively over the Standard

Domino design where the product is 1589.66 pJxps. In addition, the energy-clock

cycle products are reduced by 53.67% and 71.19% for the initial proposed and the

enhanced proposed dynamic designs respectively over the Wave Domino design,

in which the energy-clock cycle product is 1633.28 pJxps. Graphical comparisons

are shown in Fig 4.11.

The internal nodes precharging capability of the nMOS networks during the

precharge phase of the first proposed dynamic design has been verified by the

simulations. Next in Fig. 4.12, the precharging of the internal node in the OR-

NAND complex gate used in the design of the CLA unit according to the proposed

design technique is presented. Note, that these waveforms correspond to the worst

case scenario and that this gate has the highest nMOS network parasitic

capacitance in the design.

• Retage

'

Bekde kfercry Ftochage

:

Bduste fjfemiy |

j

A
- \ r - \ / Λ ~oi ------- - v------------

. I
; t j * Iriem&jidB -----

i 1
\ \

\\ J j j
V r / “ O '' ...

*
V

1 .k $ 1.2rs 1 .1b 1.<ms 1.1m 2.1ms 2.2ms 2 .tn s 2.«os 2.1ms M m S.2as l.te s l.ta s (.la s■ •(Iittrul IMe) « «(«ft)
Ti·*

Figure 4.12 Internal node precharging during the precharge phase

Finally, the silicon area, estimated by the sum of the transistor widths in each

design, is increased by 8.02% for both proposed dynamic designs with respect to

the Standard Domino design and it is reduced by 9.9% with respect to the Wave

Domino design, as it shown in Fig. 4.13.

Silicon Area

Figure 4.13 Silicon area comparisons.

CHAPTER 5. NEW HIGH SPEED

M ANCHESTER CARRY

CHAIN ADDERS

5.1 Introduction

5.2 Preliminary Concepts and Previous Work

5.3 New High-Speed Double Carry Chain Adders

5.4 Manchester Carry Chain Design Issues and Comparisons

5.1. Introdution

In this chapter, an efficient implementation of a new dynamic topology of the

Manchester carry chain adder in multi-output domino CMOS logic is proposed.

The carries of this adder are computed in parallel by two independent carry chains.

Due to its limited carry chain length the use of the proposed adder module for the

implementation of wider adders leads to significant operating speed improvement

compared to the corresponding adders based on the standard Manchester carry

chain adder module.

5.2. New High-Speed Double Carry Chain Adders

Manchester Carry Chain adders can efficiently be designed in CMOS logic. As

mentioned previously, due to technological constraints the length of their carry

chains is limited to 4 bits. However, these 4-bit adder blocks are used extensively

in the literature [18], [20], [28] in the design of wider adders.

In the following we propose the design of an 8-bit adder module which is

composed of two independent carry chains which have the same length (measured

as the maximum number of series connected transistors) as the 4-bit Manchester

Carry Chain adders. According to our simulation results, the use of the proposed

adder as the basic block, instead of the 4-bit Manchester Carry Chain adder, can

lead to high-speed adder implementations.

The derived here carry equations are similar to those for the Ling carries proposed

in [32]-[34]. The derived carry equations allow the even carries to be computed

separately of the odd ones. This separation allows the implementation of the

carries by two independent 4-bit carry chains; one chain computes the even carries,

while the other chain computes the odd carries. In the following the design of the

proposed 8-bit Manchester Carry Chain adder is analytically presented.

As we mentioned in section 3.5, the computation of the cany signals is based on

the following recursive formula:

c, = « , + Z , c/-i (1)

8< Zi8i-1 1-2 + ... +■ ZjZj-ι ···Ζχ80+ZjZ,-_| ...ZqC_i (2)

Where,

g , = “, Λ

z, =t,=a, +b,

z, =/>, =a,
>

J

Generate signal

Propagate signals

60

A. Even carry computation

For i = 0 and z0 =t0, from relation (1) we get that c0 = g0 + t0 ■ c_x. Since the

relation gt = gt · tt holds, we get that c0 = f0 · (g0 + c_1)= i0 -h0, where

h0 =g0+ c_j is the new carry.

From relation (2), for i = 2 and zt = p {9 we get that

c2 = g2 + p 2gx + P2Pi8 o + P2PiPoc-i

Since g, + p, · = g, + f, · and />, = p, · t t we have

C2 = f2(g2 +£j + Ρ 2Ρι^ο + /72/7ι/7ο̂ -ι)= *2($2 + *1 +P2P M 80 +C-i))=t2 -h2,

where

^2 = g 2+ g i + P 2PiioUo+c-i) is the new carry.

In the same way the new carries for i = 4,6 are computed as

Λ4 = «4 + $3 + P4Pih(8i + 81 + P2pM 8 o + Ο) » and

h6 = 8 6 +85 + P 6PsU(8a + 83+ P 4P3t2(g 2 + 8 l + Ρ 2Ρ Μ 80 +C-l)))

B. Odd carry computation

The new carries for the odd values of i are computed according to the methodology

proposed for the even carries as follows:

K = 8i+8o + PiPoc-i

83+82 + P3P2t 1 (8l + 80 + Pi PoC-l)

h5= g 5+ g , + P 5P4t3(83 + 82 + P 3 P 2 tl(g l +80 + P lP * C _ x))

^gT+go + PiPeUigs+SA +PSPM83 + 8 i + / W i (S i + 8 o + PiPoc-i)))

Let Gi = g(+ gM and Pt = p t · pM · f(._2 are the new generate and propagate

signals respectively, where g_, = c_,, t_x - 1. Then, the following equations are

derived for the new carries for even values of i:

h2 =G2 +P2Gq

61

hA- G A+ P4G2 + P4P2G0

K = G 6+ P6G4 + P6P4G2 + P6P4P2G0

while for odd values of i, the equations for the new carries are rewritten as follows:

h\ = Gl +Pic_j

hj =G3 + P3Gx + P3Pxc_ j

h 5 ~ G S + P 5 G 3 + P 5 P 3 G l + P 5 P 3 P \ C - l

-hJ=G1+ PjG5 + P7P5G3 + PnP5P3Gx + P1 P5P3Plc_l

From the above equations it is evident that the groups of even and odd new carries

can be computed in parallel by different carry chains in multi-output domino

CMOS logic as shown in Fig. 5.1.

i'
!
I

62

Figure 5.1 Proposed carries implementation the even carry chain (a), odd carry
chain (b)

The new generate and propagate signals G,, Pi can be easily proven that are

mutually exclusive, avoiding false node discharges. Their domino CMOS

implementation is shown in Fig. 5.3.

Figure 5.2 The new generate (a) and propagate (b) signals implemented in domino
CMOS logic.

Between the new and the conventional carries holds that cM= · AM, therefore

the sum bits are computed as s. = p t θ (ί Μ ·ΑΜ) . According to [17], [18] the

computation of the sum bits can be performed as follows:

si =hi_r p i +hi_r (pi ®ti_l) (3)

for i>0, while s0 = p 0 © c_x.

Relation (3) can be implemented using a 2—>1 multiplexer that selects either p. or

■ Ρι Θ according to the value of as shown in Fig. 5.3.

Taking into account that an XOR gate introduces equal delay with a 2—>1

multiplexer and both terms p. and p. Θ are computed faster than Af, then no

extra delay is introduced by the use of the proposed carries for the computation of

the sum bits according to (3).

For the implementation of the sum signals the domino chain is terminated and

static CMOS logic is used for the p. Θ gate and the final 2—>1 multiplexer.

The design of the XOR gate is shown in Fig. 3.13. An efficient static CMOS

implementation of the 2—►! multiplexer is shown in Fig. 5.4.

64

5.3. Manchester Carry Chain Design Issues and Comparisons

To evaluate the speed performance of the Proposed design over the Conventional

one and the Proposed design over the Amin’s design (see chapter 3.5.1), multi-bit

adders have been designed according to the carry chain principle given in Fig.

5.5(a) and 5.5(b) respectively and simulated using SPECTRE in a standard 90nm

CMOS technology (V d d= 1 V) . The conventional 8-bit Manchester Carry Chain

adder is designed by cascading two 4-bit Manchester Carry Chain modules, while

the 16-bit Manchester Carry Chain adder by cascading four 4-bit Manchester

Carry Chain adder modules and so on. The proposed 16-bit Manchester Carry

Chain adder is designed by cascading two of the proposed 8-bit Manchester Carry

Chain adder modules and so on. Amin’s 8-bit adder is designed by cascading two

4-bit Chains that contain the required (sk) signal generation gate, and so on.

65

The performance improvement provided by the proposed design approach can be

easily understood by considering the simplified timeslot diagram presented in Fig.

5.6. The various computations are grouped by the timeslots they require in the

whole process. Each group is represented by a rectangle which in the x-axes

expresses the time duration that is needed for the completion of the pertinent

calculation. The time needed to create the propagation (p) and generation (g)

signals is equal in both techniques. However, in the proposed design technique a

small extra time is required for the computation of the new generate (G) and

propagate (P) signals but after that the odd and the even carries are calculated

simultaneously. This parallel calculation is responsible for the performance

improvements achieved by the new design approach.

66

I *............... w.......t«*<| |
StartTime PROP: CONV:

FinishTlme FinishTime

Figure 5.6 Propagation delay timeslots for the 16-bit adder PROP vs. CONV

The simulation results for the best clock cycle period achieved in the 8-bit and 16-

bit implementations according to the carry propagation delays of the proposed, the

conventional and the Amin’s designs are presented in Fig. 5.7. The clock period

for the proposed 8-bit design should be at least 431ps, which provides a

performance improvement of 4.73% over the conventional design, where the clock

period should be at least 452.42ps, while the proposed design is improved by

7.18% with the respect to the simulation results on the Amin’s design where the

clock period should be at least 464.36ps. Moreover, in the case of 16-bit adders,

the clock period of the proposed design should be at least 704.8ps and it is

increased by 23.08% with respect to the conventional design where the pertinent

time duration should be at least 916.3ps. Moreover, the proposed design

outperforms by 11.8% over the Amin’s design where the clock period should be at

least 799.02ps.

Best Clock Cycle

Figure 5.7 Best clock cycle period for the implementations of the 8-bit and 16-bit
adders

The mean energy consumption per cycle of the proposed 8-bit design is

2.93x10 J, which results in a consumption increment by 44.75% over the

conventional design, where the mean energy is 1.62xlO-13J per cycle. Moreover,

the mean energy consumption of the proposed design is increased by 42.02% with

respect to the pertinent results on the Amin’s design, where the mean energy

consumption is 1.7xlO”13J. Considering the 16-bit adders, the mean energy

consumption of the proposed design is 5.62xl(T13J and it is increased by 42.53%

over the conventional design where the energy consumption is 3.23xl0“13J.

Moreover, the consumption of the proposed design increases by 45.2% over the

energy consumption of the Amin’s design which is 3.08xl0~13J. The above

comparison results are presented in Fig. 5.8.

This energy consumption increment of the proposed design is mainly related to the

additional gates used to generate the new generate and propagate signals G,, Pt .

68

Energy Consumption per Cycle

S? 4.00E-13

•5 2.00E-13
«I

a
go 3.00E-13

O.OOE+OO

6.00E-13

1.00E-13

5Ό0Ε-13

■ CONV

■ PROP

B AMIN

8 b i t 16 b it

Figure5.8- Energy consumption per cycle for the implementations of the 8-bit and
16-bit adders

The energyxclock cycle product of the proposed 8-bit design is 1.26xlCT10Jxps,

which results in an increment of 42.00% over the conventional design, where this

product is 7.33x10-11Jxps. Moreover, the energyxclock cycle product of the

proposed design is increased by 37.53% over the Amin’s design where this

product is 7.89xl0_nJ xps. In addition, in the case of the 16-bit adders, the

energyxclock cycle product of the proposed design is 3.96xlO_10Jxps, which

results in an increment of 25.28% over the conventional design, where this product

is 2.96xlO_10Jxps. The energyxclock cycle product of the proposed design is

increased by 37.87% over the Amin’s design where this product is 2.46xlO~10J

xps. The above comparisons are shown in Fig. 5.9.

Energy x Clock cycle Product

4.00E-10

α 3.50E 10

5 3.00E-10

2.50E-10

.* ?.00F'10

6 1.50E-10

| 1.00E-10

£ b.U 0t-llUi
O.OOE+OO

8bil 16bit

■ CONV

■ PROP

b Amh

Figure 5.9 Energy-Clock Cycle product for the 8-bit and 16-bit adders

Extending the Amin’s technique for higher number of bits does not provide better

results over the standard Manchester design. Therefore, we exclude Amin’s design

in the rest of the document.

Figure 5.10 Best clock cycle period of the various adder implementations

70

Next, considering wider adders, the clock period of the proposed 32-bit design

should be at least 1.23ns, which provides a performance improvement of 30.05%

over the conventional design where the clock period should be at least 1.76ns. In

addition, the clock period for the proposed 64-bit design is improved by 35.08%

with the respect to the corresponding simulation results on the conventional

design, where the clock period should be at least 3.44ns. The performance

comparisons are shown in Fig. 5.10.

Energy Consumption per Cycle

E
iwV

2.50E-12

2.00E-12

1.50E-12

1.00E-12

5.00E-13

O.OOE+OO

. X

_/■

8bit 16bit 32bit 64bit

HCONV

■ PROP

Figure 5.11 Energy consumption of the various adder implementations

The mean energy consumption per cycle of the proposed 32-bit design is

l.lx l(T 12J, which results in a consumption increment of 44.75% over the

conventional design where the energy consumption is 6.43xlO~13J. Moreover, the

energy consumption per cycle of the proposed 64-bit design is 2.19xl0~12J and it is

increased by 44.29% with the respect to the conventional design, where the mean

energy consumption is 1.22xl(T12J. The comparisons are shown in Fig. 5.11.

71

Energy x Clock cycle Product

&
X

u
s·
uoox
§0w«c

5.00E-09
4.50E-09
4.00E-09
3.50E-09
3.00E-09
2.50E-09
2.00E-09
1.50E-09
1.00E-09
5.00E-10
0.00E+00

8bit 16bit 32bit 64bit

■ CONV

■ PROP

Figure 5'12 Energy x clock cycle product of the various adder implementations

The energyxclock cycle product of the proposed 32-bit adder is 1.36xlO_9Jxps,

which results in a 16.44% increment over the conventional design, where the

energyxclock cycle product is 1.13xl(T9Jxps. In addition, the energyxclock cycle

product of the proposed 64-bit adder is 4.89xl(T9Jxps and it increases by 14.19%

with the respect to the conventional design, where the energyxclock cycle product

is 4.19xl(T9Jxps. The comparisons are shown in Fig. 5.12.

Tables 5.1, 5.2 and 5.3 summarize the above experimental results on performance,

energy consumption and energyxclock cycle product, respectively.

72

Table 5.1 Simulation results on the best clock cycle period.

Clock Cycle
(ps) .

8 -b it 1 6 -b it 3 2 -b it 6 4 -b it

Conventional 452.42 916.3 1763.84 . 3436.4
Proposed 431 704.8 1233.84 2230.88

Am in's 46436 799.02 - - , , - “ ~
Proposed vs.
Conventional

4.169c 23.08% 30.05% 35.08%

Proposed vs.
Am in's

7.18% * 11.79% Ι Ι β Ι Ι β ι ^ β Ιΐιιΐ|ΐριϋ^®ιΐρβ

Table 5.2 Energy consumption simulation results.

Energy fp j) 8 -b it 1 6 -b it 3 2 -b it 6 4 -b it
Conventional 1.62X10-13 3.23X10-13 6.43 xlO-13 1.22x1 O’12

Proposed 2.93xl0-13 5.62X10-13 l.lx lO -12 2.19xl0-12
Am in's 1.7xl0*13 3.08X10-13

Proposed vs.
Conventional

-44.75% -42.53% -41.55% -44.29%

Proposed vs.
Am in's

-42.02% -45.20%

Table 5.3 Energy x clock cycle product simulation results.

Energyx
Clock Cycle

ipsxp l)
8 -b it 1 6 -b it 3 2 -b it 6 4 -b it

'C o n v e n tio n a l ' 7.33X10-*1, 2 .96x l0 '10 1.13x10*9 4.19x10-9
Proposed 1.26xl0'10 3.96xl0-10 1.36X10-9 4.89xl0 '9

Am in's 7.89x1ο·11. 2.46X10-10 · a m i

Proposed vs.
. Conventional

-42.00% -25.32% -16.75% -14.37%

Proposed vs.
Am in's

Λ ^ -37.53% -37.87%

CHAPTER 6. CONCLUSIONS

We proposed new dynamic design techniques for the implementation of high

performance arithmetic circuits like the well known Kogge-Stone adders.

According to these design approaches, a three-phase clocking scheme is used that

provides the ability to design high performance pipeline structures without the

need to use memory elements. Furthermore, a pre-evaluation operation is

introduced, which is hidden inside the precharge phase of each gate and provides

significant speed improvements. Simulation results on Kogge-Stone adder

implementations verified the expected gains.

A disadvantage of the proposed approaches is the need of additional clock signals.

However the generation of these clock signals is a one-time cost that does not

increase with circuit complexity. Moreover, in a pipeline design fashion where

each stage is fed with a dedicated clock signal(s), the clock signals distribution is

not a hard design task of increased cost. Especially, in structured circuits, like

arithmetic ones, this cost is quite small. Finally, in order to cope with possible

skew related problems among the clock signals, commonly used skew hardened

dynamic design techniques proposed in the open literature can be adopted [15].

A second research activity in this thesis is related to the dynamic design of

Manchester adders. The Manchester carry chain is an efficient and widely adopted

design approach to construct carry look-ahead adders. We present a new

Manchester design style that is based on two independent cany chains. Each chain

computes, in parallel with the other, half of the carries. This way the speed

performance is significantly improved with respect to earlier Manchester carry

chain topologies. On the other hand, the energy consumption is getting worse and

the same stands for the energyxclock cycle product. However, the latter is

improved as the number of bits is increased. The proposed design technique has

been applied for the implementation of 8-bit, 16-bit, 32-bit and 64-bit adders in

multi-output Domino logic and the simulation results verified its performance

efficiency.

REFERENCES

[1] J.M. Rabaey, A. Chandrakasan and B. Nikolic,: Digital Integrated Circuits:

A Design Perspective. Prentice Hall (2003)

[2] D. Harris and M. A. Horowitz, “Skew-Tolerant Domino Circuits,” IEEE

Journal of Solid-State Circuits, vol. 32, no. 11, pp. 1702-1711, 1997.

[3] K. Bernstein, J. Ellis-Monaghan, and E. Nowak, “High-Speed Design Styles

Leverage IBM Technology Prowess,” IBM Micro News, vol. 4, no. 3, 1998.

[4] R. Heald, K. Aingaran, C. Amir, M. Ang et.al., “A Third-Generation

SPARC V9 64-b Microprocessor,” IEEE Journal of Solid-State Circuits, vol.

35, no. 11, pp. 1526-1538, Nov. 2000.

[5] S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J. Sullivan

and T. Grutkowski, “The Implementation of the Itanium 2 Microprocessor,”

IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1448-1460, May

2002.

[6] C, Cornelius, S. Koppe and D. Timmermann, “Dynamic Circuit Techniques

in Deep Submicron Technologies: Domino Logic Reconsidered,”

International Conference on IC Design and Technology (ICICDT), pp. 53-

56,2006.

[7] S. Wijerante, N. Siddaiah, S. Mathew, M. Anders, R. Krishnamurthy, J.

Anderson, S. Hwang, M. Ernest, M. Nardin, “A 9GHz 65nm Intel Pentium 4

Processor Integer Execution Core,” International Solid-State Circuits

Conference (ISSCC), pp. 353-355, 2006.

[8] Z. Wang, G.A. Jullien, W.C. Miller, J. Wang and S.S Bizzan, “Fast Adders

Using Enhanced Multiple-Output Domino Logic,” IEEE Journal of Solid-

State Circuits, vol. 32, no. 2, pp. 206-214, 1997.

[9] S-M. Yoo and S-M Kang, “Improved Domino Structures Effective for High

Performance Design,” Electronics Letters, vol. 35, no. 5, pp. 367-368,1999.

[10] J-R. Yuan, C. Svensson and P. Larsson, “New Domino Logic Precharged by

Clock and Data,” Electronics Letters, vol. 29, no. 25, pp. 2188-2189,1993.

[11] Rjoub, O. Koufopavlou and S. Nikolaidis, “Low-Power / Low-Swing

Domino CMOS Logic,” IEEE Int. Symp. on Circuits and Systems, pp. 13-

lb, 1998.

[12] Rao, Th. Haniotakis, Y. Tsiatouhas, and H. Djemil, “The Use of Pre

evaluation Phase in Dynamic CMOS Logic,” in Proc. IEEE CS Annual

Symposium on VLSI (ISVLSI), pp. 270-271, 2005.

[13] Amirabady, A. Afzali-Kusha, Y. Mortazavi and M. Nourani, “Clock

Delayed Domino Logic with Efficient Variable Threshold Keeper,” IEEE

Tran, on VLSI Systems, vol. 15, no. 2, pp. 125-134, 2007.

[14] Rao, Th. Haniotakis, Y. Tsiatouhas and V. Kaky,: A New Dynamic Circuit

Design Technique for High Performance TSC Checker Implementations. In:

IEEE Int. On-Line Testing Symposium, pp. 52-57 (2004)

[15] D. Harris,: Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers

(2001)

[16] P.M. Kogge and H.S. Stone,: A Parallel Algorithm for the Efficient Solution

of a General Class of Recurrence Equations, IEEE Transactions on

Computers, 22(8), pp. 786-793 (1973)

[17] John P. Uyemura: Introduction to VLSI Circuits and Systems: John Wiley &

Sons,INC (2002).

[18] Neil Weste and Kamran Eshraghian: Principles of CMOS CLSI Desgign A

System Prespective: ADDISON-WESLEY PUBLISHING COMPANY

(1985).

[19] K. Hwang, “Computer Arithmetic: Principles, Architecture, and Design,”

Wiley, New York, 1979.

[20] Parhami, “Computer Arithmetic, Algorithms and Hardware,” Oxford,

University Press, New York, Oxford, 2000.

[21] Koren, “Computer Arithmetic Algorithms,” A. K. Peters, 2nd edition, 2002.

[22] M. D. Ercegovac and T. Lang, “Digital Arithmetic,” Morgan Kaufmann

Publishers, 2004.

[23] Weinberger and J. L. Smith, “A Logic for High Speed Addition,” Nat. Bur.

Stand. Circ., vol. 591, pp. 3-12, 1958.

[24] N. Weste, D. Harris, “CMOS VLSI Design, A Circuit and System

Perspective,” Addison Wesley, 2004.

[25] P. K. Chan, M. D. F. Schlag, “Analysis and Design of CMOS Manchester

Adders with Variable Carry-Skip,” IEEE Trans, on Computers, vol. 39, no.

8, pp. 983-992, Aug. 1990.

[26] Z. Wang, G. Jullien, W. Miller, J. Wang, S. Bizzan, “Fast Adders Using

Enhanced Multiple-Output Domino Logic,” IEEE J. Solid State Circuits,

vol. 32, no. 2, pp. 206-214, Feb. 1997.

[27] S. Perri, P. Corsonello, F. Pezzimenti, and V. Kantabutra, “Fast and Energy-

Efficient Manchester Carry-Bypass Adders,” IEE Proc. Circuits Devices

Syst., vol. 151, no. 6, pp. 497-502, 2004.

[28] M. Osorio, C. Sampaio, A. Reis, R. Ribas, “Multiple Output Enable-Disable

CMOS Differential Logic,” Proc. of the 17th Symposium on Integrated

Circuits and System Design, pp. 181-185,2004.

[29] Amin, “Area-Efficient High-Speed Carry Chain,” Electronics Letters, vol.

43. no. 23, pp. 1258-1260, Nov. 2007.

' [30] G. A. Ruiz, “New Static Multi-Output Carry Look-Ahead CMOS Adders,”

IEE Proc. Circuits, Devices and Systems, vol. 144, no. 6, pp. 350-354, Dec.

1997.

[31] G. A. Ruiz, M. Granda, “An Area-Efficient Static CMOS Carry-Select

Adder Based on a Compact Carry Look-Ahead Unit,” Microelectronics

Journal, vol. 35, no. 12, pp. 93-106, Dec. 2004.

[32] H. Ling, “High-Speed Binary Adder,” IBM Journal on Research and

Development, vol. 25, pp. 156-166, May 1981.

[33] Efstathiou, Η. T. Vergos, D. Nikolos, “Ling Adders in CMOS Standard Cell

Technologies,” 9th IEEE Inter. Conference on Electronics, Circuits and

Systems, (ICECS 2002), vol. 2, pp. 485-489, Sept. 2002.

[34] G. Dimitrakopoulos, D. Nikolos, “High-Speed Parallel-Prefix VLSI Ling

Adders,” IEEE Trans, on Computers, vol. 54, no. 2, pp. 225-231, Feb. 2005.

[35] S. Vassiliadis, “Recursive Equations for Hardwired Binary Adders,”

International Journal of Electronics, vol. 67, no. 2, pp. 201-213, Aug. 1989.

[36] N.F. Goncalves and H.J. De Man, “NORA: A Race Free Dynamic CMOS

Technique for Pipelined Logic Structures”, IEEE Journal of Solid-State

Circuits, vol. 18, no. 3, pp. 261-266, 1983.

8 0

P u b l i c a t io n s

Themistoklis Haniotakis, Zaher Owda and Yiorgos Tsiatouhas “Memory-less Pipeline

Dynamic Circuit Design Technique” , IEEE Computer Society Annual Symposium on

VLSI (ISVLSI-2010), July 2010.

81

SHORT BIOGRAPHY

Zaher Owda was bora in 1982 and he is from Palestine. He graduated from the

department of Computer Science at the University of Ioannina in 2008. The academic

year 2008-2009 he was accepted in the Graduate Program of the Department of

Computer Science, University of Ioannina, and by November 2009 he is a member of

the Unit of Medical Technology and Intelligent Information Systems which is a

highly innovative and self-contained research unit that resides at the University of

Ioannina.

His research interests are in the area of analog and digital VLSI Design and high

performance digital circuits.

