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ABSTRACT

Skyvalidas, Panagiotis. MSc, Computer Science Department, University of Ioannina,
Greece. April, 2007. Replication of XML Documents in Unstructured P2P Systems.
Thesis Supervisor: Pitoura Evaggelia.

Peer-to-peer (p2p) systems have attracted considerable attention as a means of sharing
content among large and dynamic communities of nodes. A central issue in p2p
systems is locating the nodes that hold data of interest. There have been various
proposals towards building overlays to support efficient content location. Such
proposals vary from building rigid topologies and placing -data on specific nodes in
the overlay to unstructured networks with no correlation between the node content
and its position in the overlay. In all types of overlays, content replication results in

reducing the latency of lookups.

Motivated by the fact that XML is increasingly being used in data intensive
applications, in this work, we study replication in unstructured p2p systems where
participating nodes share content stored in XML. We consider XML replication for
both passive and proactive protocols. XML documents have a hierarchical structure
and thus, different fragments of an XML document can have different access
frequencies. We show that replicating items at the fragment level is preferable to

replicating whole documents.

For proactive replication, we introduce a new data structure that we call replication
routing index. For a peer p, a Replication Routing Index (RepRI) has one entry for
each file that p has processed‘queries for. Each entry keeps statistics about the
requests that p has received for the specific file through its adjacent edges. Our
replication strategy uses these indexes to decide whether to maintain a copy locally or

forward it along a path. A Replication Routing Index for XML, termed RepRIX,
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maintains statistics for fragments. RepRIX allows us to fine-tune the unit of
replication, so that fragments of the same document can have different numbers of
replicas. Further, it allows us to push fragments closer to their requesters. RepRIX
entries are also used as hints during lookup to direct nodes towards paths that most
probably hold replicas of the requested items. We also present experimental results of

the deployment of our indexes in a dynamic unstructured peer-to-peer system.
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INIEPIAHYH

Movayidmg Zxvpodridog tov Tewpyiov ko g Evayyediog. MSc, Tudpa
IMinpogopikng, Iavemotipo Ioavvivov, Arpitog, 2007. Anpovpyia Avirypdowv
XML Apyeiov oe Ad6punta Zvotipate Opdtipwv Koppov. EmBrénovoa: Evayyelio
[Trtovpé.

Ta 1ehevtaic ypdvia, oto ydpo tov Suwdiktdov, £xer mopotnpnel ovénpévo
evdwpépov, Yopw and ta Zvotuora Oudtiuwv Kopfwv (p2p). Ta p2p cvotipara,
QTOTENOVV EQAPHOYEG TOV EMTPEMOVV KO H1EVKOAVVOLV TO Srapopacpd dedopévov
RETOED peydhv Kot SuvapikdV KOwoTnTev ond cvppetéyovies képufovg. To Paoucd
TpOPAnpo. yopow amd To p2p ovoTHHATe givol O ONOSOTIKOG EVIOMICHOG TMV
dedopévav v ta omoia évag kOpPog evdiapépetar. Ot Aoelg mov éyovv mpotabei
nepRapPdavouv T Snpovpyle dopunuévev cvommudtov, ota onoia To Sedopéve
TomofeTovvTal o€ GUYKEKPIUEVOUS KOpPoue, kabhdg eniong kot adduntov cuoTnuaTeOV
ota onolo dev LTAPYEL CLOYETIONOG avaueca oto dedopéva evog kouPov kar ot
Oéom 1ov ato diktvo. AveloptRtog g tomoAoyiog tov Siktdov, aLTé TOL EyEL
amoderyfet eivar 6Tt 1 dnpovpyia avirypdeov Tov dedoptvmv kat 1 Stavoun Tovg 610

dirvo cvpfddrer onpovicd o Pertioon g andS0oNg TOL CLOTAATOC,

2y nopodoa epyacio kat £xovtag wg Kivntpo Ty otadiaky kabiépwon g XML wg
nPoTUNO Y. v avanapdotact ko dwkiviion tov dedopévav oto Sadiktvo,
pz?izroﬁpz mv dnuovpyie aviypleev oe addpnta p2p CLCTAHATA GTO OToia O
ovppetéyovieg xopfBor dwporpdloviar XML apyeia. Ta XML apyeio akolovBovv
pio epapykn Sopn pe O'UVéTtt‘:l(J. dapopeTikd Tuqpata evdg apyeiov va £xouvv
dwpopeTicég ovyvotnteg mpoomélaong. Avtd mov oyvpdpoacte eivar 6Tt M
Mnmovpyie aviyypdgov TuNpATOV £vOg apysiov eivar mpoTindTEPN amS TV

aviypa@r] oAOKANPOL TOL apXEioV OTIS TEPIMTMOEL, KATE TG OMOiEG KGO0, and Ta
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TuApatd tov dev evdupépouv Tovg ovppeTEovieg KopPovg. v mapodoa epyacio
nopovoldfovpe pio véa doun dedopévav v onoio ovopdlovpe Replication Routing
Index (RepRI). 'Eva Replication Routing Index evig xopPov éxet pio gicodo yua kdbe
apyeio yw o onoio €xel eneEepyaatel EpOTNON pe CTUTIOTIKG OYETIKG PE TIG AITHCEL
mov €xel dexBel y1 avtd omd xébe mpookeipevn axun tov. Evag kéufog xpnoiponote
avth T dopt] Y va, amoQocicel av 8o mpémet vo, SMpovpyNoEL avtiypago Koo
apyeiov Tov ko Tpog oe Mo KatevBvvon va 1o Tpowdnoet. ‘Eva Replication Routing
Index yio XML opyeia xokeitan RepRIX war Swtnpei OTaTIOTIKG Y00 THUARQTO
apyeiov. To RepRIX pog emrpéner va pubuicovpe t povada avtypagic, 1ol dote
dwpopetikd TpAuata evog apyeiov vo pmopodv va £xouv SrpopeTikd opdud
avtypdowv. Eriong, pog emrpéner vo npowbicovpe ta aviiypaga mo KOVIA oTig
mnyég evdiopépoviog. To RepRIX pmopei enumAéov va cupfdiet otov amodotikdtepo
evtomopd evog apxeiov, xabdg pmopel va odnyiioet éva kKéuBo 6to vo Tpowdioet pia
gpdTnon mpog pia katevBuvon 1 omoia éxer MOAREG mBavétreg va odnyfoel of
enmuynpévn avalimon.
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CHAPTER 1. INTRODUCTION

1.1 Introduction
1.2 Scope of Thesis
1.3 Thesis Outline

1.1. Introduction

Peer-to-peer (p2p) systems have attracted a lot of attention as a means of data sharing
among a large and dynamic population of nodes. P2p overlay networks are distributed
systems in nature, without any hierarchical organization or centralized control. Peers
form self-organizing networks that are overlaid on the Internet Protocol (IP) networks,
offering a mix of various features such as robust wide-area routing architecture,
efficient search of data items, selection of nearby peers, redundant storage,
permanence, trust and authentication, anonymity, massive scalability and fault
tolerance. P2p overlay systems go beyond services offered by client-server systems by
having symmetry in roles where a client may also be a server. It allows access to its
resources by other systems and supports resource-sharing, which requires fault-
tolerance, self-organization and massive scalability properties. Here, we focus on
unstructured p2p systems. These are systems in which there is neither a centralized
directory nor any precise control over the network topology or data placement. The
network is formed by nodes joining the network following some loose rules. The
resultant topology has certain properties, but the placement of data is not based on any
knowledge of the topology (as it is in structured designs). To find an item, a node
queries its neighbors. The most typical query method is flooding, where the query is
propagated to all neighbors within a certain radius. These unstructured designs are

extremely resilient to nodes entering and leaving the system.
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A central issue in p2p systems is locating the nodes that hold data of interest. Since
knowing all other peers and their content is not feasible, each peer connects (knows
about) a small number of other peers, thus forming an overlay network. There have
been various proposals towards building overlays that support efficient content
location. Such proposals vary from building rigid topologies and placing data on
specific nodes in the overlay to unstructured networks with no correlation between the

nodes content and its position in the overlay.

In all types of overlays, content replication results in reducing the latency of search.
Various replication techniques have been proposed that can be roughly categorized as
passive or proactive. With passive replication, items are replicated after they are
suceessfully located after a request. A commonly used passive replication scheme,
path replication, has been proven to produce the optimal number of copies under
specific conditions [1, 2]. With path replication, data items are cached along the
search path after an item is located. With proactive replication, holders of data items
initiate the creation of replicas not necessarily after a request. Maﬂy issues regarding
replication in p2p systems remain open. One such issue is where to place copies, since

path replication tends to cluster copies on search paths.

We focus on p2p systems where participating nodes share content stored in XML
documents. XML [3] has evolved as the new standard for the representation and
exchange of semistructured data on the Internet. Several application domains for
XML already show that XML is inherently distributed on the Web, for example, Web
services that use XML-based descriptions in WSDL and exchange XML messages
with SOAP, e-commerce and e-business, collaborative authoring of large electronic
documents and management of large-scale network directories. All these applications
dergonstrate that much of the traffic and data available in the Internet are already
represented in XML format. Thus, it is natural to assume that much of the data in a
p2p system is already represented in XML format. XML documents have a
hierarchical structure. Query lanéuages on XML documents, such as XQuery [4] and
XPath, exploit this structure through path-based expressions. Thus different fragments

of an XML document may have different access frequencies.
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1.2. Scope of Thesis

In this work, we show that replicating items at the fragment level is preferable than
replicating whole XML documents. To achieve this and still maintain good response
time for queries at different fragments of a document, we replicate the content of
popular fragments and maintain links to the original document for the rest. We
consider fragment replication for both passive and proactive protocols. For proactive
replication, we introduce a new data structure that we call replication routing index.
For a peer p, a replication routing index (RepRI) has one entry for each file that p has
processed queries for. Each entry keeps statistics about the requests that p has
received for the specific file through its adjacent edges. Our replication strategy uses
these indexes to decide whether to maintain a copy locally or forward it along a path.
For~XML documents, the replication routing indexes, termed REpRIX, maintain
statistics for fragments. REpRIX allows us to fine-tune the unit of replication, so that
fragments of the same document may have different number of replicas. Further, it
allows us to push fragments closer to their requesters. REpRIX entries are also used
as hints during search to direct nodes towards paths that most probably hold replicas

of the requested items.

We experimentally compare both proactive and passive variations of fragment
replication. Both types of fragment replication outperform whole document
replication resulting in increasing the percentage of items located and reducing the
required steps for doing so. Proactive replication with hints is shown to work better
than passive replication. We also present experimental results of the deployment of

our indexes in a dynamic unstructured peer-to-peer system.

1.3. Thesis Outline

Thé remainder of this work is structured as follows. Chapter 2 summarizes in brief the
main issues about content replication in p2p systems and introduces proactive
replication using replication indexes. Chapter 3 extends replication indexes for XML
documents. It presents our approach for fragment replication and describes the two
implemented techniques Skeleton replication and Subtree replication. In chapter 4 we

present our experimental results from the evaluation of our approach and its
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comparison with existing replication strategies. Chapter 5 presents related research on

content replication in p2p systems and fragmentation of XML documents. At last,

chapter 6 concludes this work and presents the open issues for future work.



CHAPTER 2. PROACTIVE REPLICATION

2.1 Replication in Unstructured p2p Systems
2.2 Replication Routing Indexes (REpRI)
2.3 REpRI-Based Replacement and Routing

2.4 Discussion

2.1. Replication in Unstructured p2p Systems
P2p content distribution systems rely on the replication of content on more than one
peer for improving the availability of content, enhancing performance, and resisting
censorship attempts. Replication is traditionally understood as a static configuration
for the placement of copies of data items, for the purpose of increased reliability and
availability as well as better load sharing. In large-scale distributed systems that rely
more on self-organization rather than carefully planned administration, such as p2p
systems, replication is seen as a dynamic mechanism. A new copy may be created
when an existing copy fails (transiently or permanently) or when some peer becomes
overloaded, copies may be migrated, or replicas may simply be the result of cached
copies being kept at peers for a longer time period. The critical issues in dynamic
replication are:

* Determining the number of replicas that we want to have for a given data item,

~ based on goals for reliability, availability, and performance.
* Determining on which peers we should place these replicas.

* Designing a strategy for adjusting the replica placement upon certain events

such as peer failures or load bursts.

* Designing a mechanism and a strategy for keeping replicas updated and

consistent.
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Various replication techniques have been proposed that can be roughly categorized as
passive or proactive. Passive replication occurs naturally in p2p systems as peers
request and copy content from one another. Two easily implementable, passive
replication strategies are owner and path replication. With owner replication, when a
search is successful, the requested data is stored at the requester peer only. When path
replication is used, information is kept along the paths that a query traverses. After a
successful search, the requested data is replicated and stored at all peers on the path
from the provider peer to the requester peer. On the other hand, with proactive
replication, peers can create replicas of their data items without an explicit request for

them. The reasons for disseminating data in a proactive manner are the following:

* To improve the response time of search requests, by means of additional
~ replicas. In blind search situations with limited request flooding in
unstructured networks, the additional replicas may even be needed to improve

the probability of a successful search.

= To improve the load balance in the network and thus increase the overall
throughput of the entire system. This assumes that additional replicas can

effectively be considered in the request routing.

* To improve the availability of data items, in the presence of frequent peer

outages and churn.

* To improve the reliability of the system, in the sense that it guarantees higher
probability of data durability, i.e., not losing a data item regardless what

permanent peer failures may occur.

2.2. Replication Routing Indexes (REpRI)

Here, we propose a new replication strategy that creates and places replicas on the
network, in a proactive manner. We consider first the case where peers store simple
data files without any specified structure. Searching is done using keyword-based
queries that refer to the file names. We introduce a new data structure that we call
Replication Routing Index (RepRI). The RepRI(p) of a peer p has one entry for each
file for which peer p has processed requests. Our replication strategy uses these

indexes to decide whether a peer should replicate some of its files and forward them



Table 2.1 RepRI for Simple Data Files
ilename [.Req eq, Hopi |... Reqx [Hopkx [Ownership

to certain directions. With RepRI the decision about creation and placement of
replicas on the network is based on the use of distributed information. Each peer in
the system keeps some statistics on the queries it processes. Using this information it
dynamically decides if replicas of its local files should be created and sent to another
peer in the network. Our approach tends to create and move replicas towards the

direction that are actually “needed”.

~ ° o Filename LReg Regy | Hopy | Req, { Hop, | Reas | Hopy | Ownership
Talk.mp3 6 | 4 4 1

0 4 2
o 0 Sun.jpg 4 3 2 0 7 1 3 0
o o Precious.mp3 0 5 1 2 5 4 5 1

Figure 2.1 Instance of RepRI for Peer 1

For a peer p with k neighbors, each entry is of the form (Filename, LReq, Req;, Hop,,
..., Reqi, Hop;, Ownership), shown in table 2.1, where Filename is the name of the
file, LReq is the number of queries for this file initiated by peer p, Req; and Hop, with
i=1,...,k are respecfively the number of queries that were forwarded to peer p by its
neighbor i and the corresponding average number of hops required for the queries to
reach p. At last, the field Ownership takes the values 1 and 0 depending on whether
the file is stored locally at p or not. In Figure 2.1, we show the RepRI maintained by
peer with id 1, which has three neighbors, 2, 3 and 4. Peer 1 has processed queries for
two local files, “Talk.mp3” and “Sun.jpg” and for one file “Precious.mp3” stored at
some other peer. When p receives a query, forwarded by its neighbor i, RepRI(p) is
scanned and when the relative entry is found (p has processed queries for that file
before), the value of the field Req; is incremented by 1 and the field Hop; is updated.
If there is not an entry for the file, a new one is inserted. Req; takes the value 1, Hop;

the number of hops required for the query to reach p, the field Ownership takes the
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value 1 or 0 depending on whether the file is stored locally at p or not, while the other

fields are set to 0.

The decision which file to replicate and towards which direction is based on both the
popularity of the file and the cost for locating it. In particular, each peer p with £

neighbors calculates the replication utility, ru(f) of a file f as follows:
ru(f) = a * popularity _factor + (1 —a) * distance_factor
where popularity_factor is defined as:

> popularity _factor =} i<

.....

and distance_factor is defined as:
distance_factor = Avg(Hop;) / TTL, withi=1,...,k

Max(3 -1, .. x Req;) corresponds to the total number of requests that p received from its
neighbors for the most popular file in RepRI(p) and Avg(Hop;) = Yi=;.. x Hopi / k.
The weight a, 0 < a < ], is a tuning parameter that determines how much each of
these two factors affects the replication decision. When all files have similar query
probabilities, a small value for o favors the files with high average search size. On the
contrary, when we have different query probabilities, some files become popular. In
order to favor these files, we increase the value of a. This way popular files are
replicated more easily speeding up the search process. The larger the value of o, the
more efficient the search for popular files.

Perirodically, a peer p decides to create replicas of all files f stored locally (field
Ownership has value 1) that have replication utility greater than or equal to the
average replication utility (aru). For each such file, peer p sends a replication message
to its neighbor m having the maximum corresponding Req.. After completing this
replication phase, the entries for all files fin the RepRI are reset to 0. Before resetting

them to 0 though, the values of the entries are copied in an auxiliary structure. The
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reason for doing this is because we don’t want to lose information about files, for the
last period of time, since this information is used in the replacement policy, as we will

describe below.

The duration of the period of the replication procedure depends on the query
workload. A large value leads to making more informed decisions based on
sufficiently large samples of requests and ignores popularity fluctuations that may be
caused by random variations in the query workload. Furthermore, it reduces the
associated network overhead. On the other hand, the system adapts to workload
changes less promptly. Also, note that resetting the RepRI entries of the peer that
initiated the replication procedure provides a simple yet effective aging scheme.

When p receives a replication message for a file f] it executes the following tasks. It
scans RepRI(p) and locates the entry that corresponds to the file the name of which is
included in the replication message. If the value of the field LReq is greater than 0,
then the peer decides to store the replica. If LReq is equal to 0, then p calculates ru(f)
and compares it with aru. If ru(f) is greater than or equal to aru then the replica is
stored. After storing a replica, the corresponding field Ownership is set to 1. We see.
that a peer decides to store a replica in two cases. When it has initiated queries for it
and when the file is considered hot based on our replication criterion. Finally, the peer
checks if it should further forward the replication message to any of its neighbors, by
checking the fields Req;. The neighbor m having the maximum corresponding Regq
receives the replication message. If all fields Req; have values equal to O then the
forwarding procedure is terminated. In this point we have to mention that the values

that are checked are the values acquired during the last period.

2.3.RepRI-Based Replacement and Routing

Besides repli;:ation decisions, RepRI affects the replacement policy we use for
replicas, when we consider the case of limited storage capacity. When a peer p that
has used all its available space decides to store a new replica, it has to replace it with
an older one. Common replacement policies that can be used in this case include

randomly choosing an entry for replacement or following a fifo (first in first out)
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strategy. In our approach, we use RepRI to decide which item gathers the
prerequisites to be replaced. More specifically, p scans RepRI(p) and calculates for
each existing replica r the replication utility ru(r). The replica with the smallest
replication utility is the one that is replaced. The statistics for each replica refer to the
previous and not the current period, so the values that we use to calculate each ru(r)
are the ones kept at the auxiliary structure. The reason for keeping these values is to
avoid evicting a‘replica which was considered hot during the previous period, after

resetting RepRI.

RepRI can also be used to further improve the routing process by maintaining the
direction of the source of a file. When a peer forwards a replication message to one of
its meighbors, without storing the replica, it can set the corresponding field Req; to a
hint value that indicates that the replica has been copied along this direction. Thus, the
next time the peer receives a query for that file it knows where to forward it.
Networks that use random walkers or flooding as their search mechanism can

significantly benefit from this approach.

2.4. Discussion )

Previous work on replication [1, 2] has shown that square-root replication is the
optimal way to allocate replicas, so that the average search size is minimized. If a p2p
system uses the k-walker random walk as the search algorithm, then on average, the
number of peers between the requester peer and the provider peer is 1/k of the total
peers visited. Path replication in this system should result in square-root distribution.
However, path replication tends to replicate files to peers that are topologically along
the same path. In p2p networks with random topologies, where peers are randomly
chosen to initiate queries, we would like to avoid the topological impact of path
replfcation. Proactive replication using RepRI allow us for a more random distribution

of replicas.
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CHAPTER 3. XML MODEL

3.1 Motivation

3.2 Data and Query Model

3.3 Fragmentation of XML Documents
3.4 Fragment Replication

3.5 Replication Using REpRIX

3.6 Replacement Policy

3.7 Use of External Links

In this chapter we extend Replication Routing Indexes for XML documents. We
present our approach for fragment replication and describe the two implemented

techniques Skeleton replication and Subtree replication.

3.1. Motivation

In most p2p systems, different users and applications employ various formats and
schemas to describe their data. A user is usually unaware of the schemas remote peers
use. Moreover, some application domains use sensitive data that are required not to be
exposed to all users for privacy reasons. Therefore, there is a need for a query
language that can work with incomplete or no-schema knowledge but also capture
whatever semantic knowledge is available. The flexibility of XML in representing
heterogeneous data that follow different schemas makes it suitable for distributed
applications where the data are either native XML documents or XML descriptions of

data or services that are represented in various formats in the underlying sources.

With regards to the query language, in most p2p systems, users specify the data they

are interested in through simple keyword-based queries. These keywords are matched
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against the names of the shared files and results are returned to the user. Often, most
results returned are not relevant to what the user is interested in. Thus, new more
expressive languages are needed to describe and query the shared data. XML seems to
be a promising candidate in this direction, since it enables more precise search based

on context.

3.2. Data and Query Model

In our data model, an XML document is represented by a rooted labeled tree. Labels
correspond to XML tags, tree nodes correspond to document elements, while edges
represent direct element-subelement relationships. Figure 3.1 shows an XML

description of a library catalog provided by a node and the corresponding XML tree.

<library_catelog>
<book> library_catalog

<author></author>
<title><Aitle>

<fbvook> book magazine

<magazine>
<title><Aitle> /\ /\
<issue><fissue> . . )
author title title issue

| </magazine>
<flibrery_catalog>

@ ®)

Figure 3.1 (a) Example of an XML Document (b) The Corresponding Tree

In our distribution scheme, we assume that a query can be issued at any peer and
query results are delivered to that peer. Since we are interested in querying the
structure of documents, we do not use simple keyword queries but path patterns,
called path queries, to be matched against XML documents. Path queries are simple

pathA expressions in an XPath-like query language.

Definition 1. (path query) A patl; query of length n has the form “p; e; p2 €2 ... pa
er” where each ¢; is an element name or the wildcard operator * and each p; is either /

or // denoting respectively parent-child and ancestor-descendant traversal.
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A path query q is evaluated at a node u in an XML tree T and its result is the set of

nodes of T reachable via q from u.

/ (child operator): When used at the beginning of the path expression it refers to the
root of the XML document. The child operator is used to specify the next child to
select. For example, the evaluation of the path query /library _catolg/book (Figure 3.1)
starts at the root of the XML document, selects the library_catalog node and then the
book node. This will return all the book child nodes of the library_catalog node,
which is just one in our example.

// (descendant operator): The descendant operator indicates to include all descendant
nodes in the search. Using the operator at the beginning of the path expression means
you start from the root of the XML document. The path query /library_catalog//title
(Figure 3.1) returns all the title nodes.

* (wildcard operator): The wildcard operator finds any node. The expression "/*"
finds any node under the root. The path query /library catalog/* (Figure 3.1) returns
all nodes under the library_catalog node, which in our example are the book node and

the magazine node.

Definition 2. (path subsumption) A path query q; = p; a; p2 @2 ... pn a, is subsumed
by the path query q> = p; by p2 bz ... pm b if for each path expression /a, /a; /.../a,
extracted from q; exists path expression /by /by /.../by, extracted by g, such that /<k it

holds a;=b; foreachi, i=1,...,/.

For a query g and a document d, we say that g is satisfied by d if the path expression
forming the query exists in the document. Peers that store documents that match the

query are called the matching peers.

3.3. Fragmentation of XML Documents
We allow an XML tree T to be decomposed into a collection of trees, called
fragments, which can be distributed and stored at several peers. An XML fragment F;

is a subtree of T rooted at some node f of T. Each fragment is represented by a simple
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path expression starting from the root node r of T and leading to f. In Figure 3.2, we

- see an example of an XML fragment that is represented by the path “/4/C".

%
D \E: ///<

Figure 3.2 An XML Fragment Represented by the Path "/A/C"

A

Using path queries, peers can query a subset of the information included in an XML
document. Thus, different fragments of a document may have different access
frequencies. In our approach, we try to exploit the fragmentation of XML documents
and replicate only the minimum required information from them. In particular, there
are cases where peers are only interested in a specific fragment of a document. Thus,
it is better for these peers to receive a replica of that fragment instead of the whole
document. This approach is also useful when the storage space of peers is limited. A
épeciﬁc fragment of a document corresponds to a specific amount of data. If we
traverse the tree of an XML document following the path that represents a fragment of
it, we reach at the fragment-root node. The leaf nodes of the subtree rooted at that

node contain all the data we are interested in.

3.4. Fragment Replication

In order to support data replication, we allow peers to replicate their documents or just
fragments of them depending on the queries they have processed. We assume that the
documents stored initially at peers are not fragmented. Fragmentation of documents is
the result of the replication strategy. In order to be able to discern the origin of a
replicated fragment, all elements of the initial documents have unique identifiers. This
is done especially for handling possible updates. When part of the data, in the original
document, is updated, having these ids help us distinguish the fragments originated

. from that specific document and update them as well. For brevity in our examples we
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have omitted most of these ids. The replicas that are created correspond to fragments
defined by path queries. We have implemented two techniques for replica creation,

called skeleton replication and subtree replication that are described below.

3.4.1. Skeleton Replication

In skeleton replication, replicas have similar structure with the original documents.
The only difference is that only part of the data of the original document is replicated.
The approach we follow when we create a replica is the following. For a path
expression, /a) /ay /... /a,, we copy the skeleton (element hierarchy) of the original
document from the root node a; to the fragment-root node a,. For each element node
a; of the original document that has siblings, then the corresponding replica contains
along with the sibling elements an external link to the original document. Finally, we
copy the data contained at the subtree defined by the path query. Data that

corresponds to elements that are not included in the related path is not replicated.

<?zmi version="1.0" encoding="UTF-8"?>

<song>..</song>

<song>..</song>

<song>..<fsong>
<frock>
</song_collection>

<song_collection> <song_collection>
<pop> <pop>
<song>..</song> <externallink>httn//.. </extemnallink>
g P
<fpop>
<song>...</song> <house>
<fpop> <externallink>http.//.. <fexternall ink
<house> <fhouse>
<rock>

</house>
<sock> <frock>
<songp..<fsong> </song_collection>

<?xml version="1.0" encoding="UTF.8"?>

<song>..</song>

<song>..</song>

(&

®

Figure 3.3 (a) Example of an XML Document (b) Skeleton Replica Corresponding to
the Fragment Defined by the Path Expression "/song_collection/rock/*"



16

’
External links are special elements identified by the tag name externalLink. External
links indicate where the data of the element, to which they belong, is located. They
can actually be viewed as an intentional description of this missing data and give the
means to obtain it if needed. From the XML tree perspective, external links play the
role of some kind of external nodes. In Figure 3.3, we see an example of an XML
document and a replica corresponding to the path query “/song_collection/rock/*”. As
we see, only the data contained at the rock element is replicated. Data contained at the
sibling elements pop and house is not replicated. In its position instead, an external

link is placed, pointing to the original document.

Query Processing Algorithm

ln‘put: guery path g, current peer p
Output: set of XML nodes that satisfies g

Begin
fr_root := fragment-roct node of g
res: ={}
for each document di in p do

if match(di, g) then

if fr_root has children then
for each child nij of fr_root do
if ni has external link then //not all-data that satisfy g present
link : = external link url

10 forward(q, link)
11 break
12 glse // query satisfied
13 res : = all children of fr_root
14 break
15 endfor
16 else / fr_root leaf node
17 res . = fr_root
18 [endfor
19 |return res
20 |[End

OONOGO AWK -

Figure 3.4 Query Processing Algorithm for Skeleton Replication

When a peer receives a path query it checks if it can answer it, in order to complete
the lookup. More precisely, for each document it possesses, the path query is matched

against the corresponding XML tree. If there is not any match the query is forwarded
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further to some neighbouring peer. If there is a match, then the peer executes the
- following steps.
» [f the fragment-root node defined by the path query, is a leaf node then the
query is satisfied by this node, the data residing at this node is returned to the

requester peer and the processing is stopped.

= Else if the fragment-root node defines a subtree, then its child nodes are

checked.

o If none of them contains an external link, it means that all the requested
data is present at the current document. The data is collected, returned to

the requester peer and the processing is stopped.

o In the case where one or more child nodes contain an external link a
different approach is followed. The presence of an external link indicates
that the current document is a fragment of another document and that the
data defined by the corresponding external node was not replicated. Thus,
the current fragment cannot completely satisfy the query. For this reason,
the peer uses the link to forward the query to the peer that stores the

document which contains all the requested data.

The query processing algorithm is shown at Figure 3.4. Consider the XML tree shown
_in Figure 3.2. If the peer that stores the corresponding document decides to create a
‘replica for the fragment defined by the path “/4/B/D”, then the replica will also
contain the element E, due to the constraint we pose. The data residing at node E is
not replicated. In its position instead, an external link is placed to the location of the
original document (ip address of the peer that stores the document). Consider the case
that the peer that stores the replica has to evaluate the path query ‘“/4/B”. The
requested data consist of the nodes D and E. If the replica didn’t contain the external
link for the element E the peer would answer the query returning to the requester peer
only the data r;:siding at node D. With our approach, the peer uses the link to forward
the query "/A/B” to the peer that stores the original document ensuring the

correctness and the completeness of the query evaluation process.
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3.4.2. Subtree Replication

-~ In subtree replication, a different approach is followed. The replicas that are created
contain only the fragment defined by a path query and not the whole skeleton of the
original document. Viewing it from the XML tree perspective, a replica consists of

the subtree (of the original document) rooted at the fragment-root node.

<?xml version="1.0" encoding="UTF-3"?>

<rock path="song_collection/rock" parent node="id" hasSiblings="yes">
<song>...</song>

<song>.'.. ..<Isong>
<frock>

Figure 3.5 Subtree Replica Corresponding to the Fragment Defined by the Path
Expression "/song_collection/rock/*"

In order to be able to evaluate a path query over a replica, three attributes are added to
the root element, the path attribute, the parent node attribute and the hasSiblings
attribute. The path attribute contains the sequence of element names from the original
document’s root node to the replica’s root node. As we mentioned before all elements
have a unique id. Thus, the parent node attribute contains the parent node’s id in order
to achieve cohesion between the original document and the replica. Finally, the
hasSiblings attribute takes the values yes or no and indicates whether the replica’s
root node has any sibling nodes or not, which have not been replicated, respectively.
As an example consider the XML document shown in Figure 3.3. The replica

corresponding to the path query “/song_collection/rock/*” has now the form shown in
Figure 3.5.

The query processing procedure for a path query g is described below. When a peer
receives the query it tries to match it against the documents it possesses. If none of the

documents matches the path expression, the query is further forwarded to a

neighbouring peer. In the case of a match:
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» If the current document is not a replica (meaning that the root element does
not contain the path attribute) then all the requested data is gathered and sent

back to the requester peer and the processing procedure is terminated.
» Else if the current document is a replica then:

o If the path query q is subsumed by the value of the path attribute then the
replica contains all the requested data which are gathered and sent back to

the requester peer.

o Else if the value of the path attribute is subsumed by the path query q then
the value of the hasSiblings attribute is checked. If it is no, then the replica
satisfies the query since all the requested data is present. If it is yes, then
part of the requested data is missing, the replica cannot satisfy the query,

so the next document is parsed.

3.5. Replication Using REpRIX

For XML documents, the replication routing indexes, termed REpRIX, can be
modified to find the best unit for replication. The basic modification that takes place,
when dealing with XML documents, is on the information that is maintained by peers.
Instead of maintaining statistics for whole documents, the entries of a REpRIX now
correspond to paths, representing fragments that the peer has processed queries for.
The field Ownership takes the value 1 if the path, representing the fragment, is

contained in a local file.

In skeleton replication, the presence of external links, in the replicated fragments,
requires an addition in the way requests are handled. As mentioned before, during a
lookup, a query might follow a number of external links until it reaches the peer
holding the requested data. Since the peer that uses an external link to forward a query
might not be a neighbor of the peer that receives it, current structure of RepRIX is not
sufficient to handle these kinds of situations. For this reason, whenever a peer
receives a query from a direction outside its neighbouring list, it adds the necessary
extra fields to keep track of these requests. Following this approach peers cache the

location of peers holding data that a part of the network is interested in but is not able
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to reach it unless an external link is used. Thus, during replication process the extra
fields are also taken into account in order to create and send replicas via external links

towards the direction they are considered hot.

As peers process queries, they use RepRIX to keep all the necessary information that
would help them take the right replication decisions. Peers decide to replicate
fragments of theif documents based on the replication criterion we defined in chapter
2. When processing a query, before trying to match it against their documents, a peer
p executes the following check:
= [f there is an entry in RepRIX(p) for the related path, (peer has processed
queries for that fragment in the past) then p just updates the appropriate fileds.

=™ Else if the path is not contained in RepRIX(p), a new entry is inserted. The
corresponding fields take their initial values, while the rest of them are set to

0.

When updating the access frequency of fragments, path subsumption is not taken into
account. The entries of the index are updated separately. Path dependencies have to be
checked during the replication procedure. Entries in the RepRIX that correspond to
paths that one subsumes the other are handled as one. In other words, if a peer has
processed queries for paths p; i=1,...,k, which are subsumed by path p, then the

replication utility for the path p is calculated as follows:
ru(p) = Yi=1,... k ru(p;), for each p; that is subsumed by p

The replication message that is sent refers to the fragment that contains the others.
The fragment that is created and replicated is represented by the path that corresponds
to the larger subtree. For example consider the case that a peer has processed queries
for paths “/a/b/c” and “/a/b”. Since the path “/a/b/c” is subsumed by the path “/a/b”
the fragment that is finally replicated is that defined by the path “/a/b”.
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<?xml version="10" encoding="UTF-8*"?>

<music_catalog>
<rock>
<cd tile = "Hotel"> <fcd>

<cd title = "Exciter™> <fed>
<frock>
<p0p>

<cd titie = "Up"> </cd>

<cd title = "Music™> </cd>
<fpop>
</music_catalog>

Figure 3.6 Document “music_catalog xml”

-

3.6. Replacement Policy

Throughout this work. we assume that peers have limited storage capacity. For this
reason, a replacement policy for replicas has to be used. Each time a peer decides to
store a new replica the following check takes place, in order to avoid data redundancy.
If the fragment that is going to be stored contains a fragment that is already stored,
then the older one is discarded and the new one takes its place. We say that a fragment
f; is contained in a fragment f3, if the path expression representing f; is subsurned by
the path expression representing f>. For example, if a peer that already has a replica of
a fragment represented by the path expression “/a/b/c”, decides to store a fragment
represented by the path expression “/a/b”, then the replica represented by “/a/b/c™ is
replaced.

Replacement also takes place when the storage limit is reached. In this case the peer
uses RepRIX to find the fragment which gathers the prerequisites to be replaced. As
in the case of simple data files, replication utility is used to find the replica that is
going to be replaced. The path with the smallest replication utility is matched against
the replicas stored by the peer. The replica that matches the path is found and the
fragment defined by the path is evicted. In fact, the data corresponding to that
fragment are discarded and in its position instead, an external link is placed pointing
to the document, the replica was originated from. This is done in order to maintain

consistency among external links and ensure the correctness of the search process.
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When a peer follows an external link, during a lookup operation, it may reach a

- replica that won’t contain the requested data, as a result of the replacement strategy.

*

However, another external link will be present to direct the lookup towards a
document that might contain it. In the worst case scenario, the requested fragment
would be evicted form all replicas. In this case, the lookup operation will end when

we follow all the possible external links and finally reach at the original document.

However, since replicas have different sizes, their size has to be taken into account
when the storage limit is reached. More specifically, when the new replica that is
going to be stored is quite large, then evicting a replica with smaller size is not an
adequate solution. In such a case, the peer replaces more than one fragment in order to
make-sufficient space for the new one. The fragments that are discarded are the ones
with the lowest replication utilities. In general, it is preferable to replace two or three

small fragments that are not considered hot than replacing a large hot one.

<%l version="1.0" encoding="UTF.8"?>

<music_catalog>
<rock>
<cd title = "Hotel"> </cd>

<cd title = "Exciter"> </cd>
<frock>
<p0p> e
<externallink>"link {0 music_catalog. xml" </externallink>
</pop>
</music_catalog>

Figure 3.7 Skeleton Replica Corresponding to Path “/music_catalog/rock/*”

3.7. Use of External Links

Consider the following example that shows another use of external links. Assume that
a peer p stores among others the document “music_catalog.xml” shown in Figure 3.6.
Assume as well that RepRI(p) has an entry for the path “/music_catalog/rock/* " and
that the field ownership is set to 1. If the replication utility of this path allows for a

replica to be created, the peer sends a replication message for the relative path to one
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of its neighbors. The replica that is created contains only the information about rock
cds, while information about pop cds is not replicated. This information is replaced by
an external link that points to the source of the document “music_catalog.xml1”. The
replica is shown in Figure 3.7. After receiving the replication message, the peer first
decides whether it should store the replica and then it continues forwarding the
message. Now consider the case that a peer that has stored the replica shown in Figure
3.7 receives a query for path: “/music_catalog/pop/*”. After receiving the query, the
peer checks its local documents to see if it has the requested data. While traversing the
XML tree of the replica, to match the query, the peer will reach the external node,
which refers to pop cds. The peer will use the external link, stored at that node of the
tree to send the query directly to the peer storing the original document
“mustc_catalog.xml”. Thus, external links can act as “jumps” at the search process,
resulting to the reduction of the average number of hops required to answer a query

and the reduction of the total number of messages exchanged among peers.
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CHAPTER 4. EXPERIMENTAL EVALUATION

* 4.1 Simulation Environment

4.2 Experimental Results

In order to evaluate our approach and prove its efficiency we performed a series of
experjments under a simulation environment. In this chapter we present our

experimental results.

4.1. Simulation Environment

All replication techniques were implemented in Java as components of the Peersim[5]
simulator. Peersim is a simulator for unstructured p2p systems composed of many
simple extendable and pluggable components, with a flexible configuration
mechanism. All components of the simulator are completely interchangeable and
specified by object-oriented programmatic interfaces, whose methods describe the
expected behavior of a component. For our experiments we used the cycle-driven
simulation engine of Peersim, meaning that simulation proceeds through time steps
called cycles, in which all nodes get a chance to execute. Every simulation starts with
an initialization phase. During the initialization phase, the topology of the network is
formed and the documents are distributed randomly along the network. The
documents used for the experiments were generated by the ToXgene[6] XML
generator. ToXgene is a template-based tool for generating large, consistent synthetic

collections of complex XML documents.

The queries we use are simple path queries extracted by the data set and the query
load follows a Zipfian distribution. The search mechanism that is used is random

walkers with a TTL parameter. The networks have random and power-law topologies,



25

with sizes ranging from 1000 to 10000 peers and average peer degree 8. Except for
- static networks, we also consider dynamic networks where peers can go offline for a

certain time period. In all experiments, we consider that the system poses a constraint

on the number of replicas that can be stored. Each peer has a limited storage capacity

given as a system parameter.

Table 4.1 Simulation Parameters

Parameters | Default value Range
Network size 5000 1000-10000
Random walkers 16
File distribution Random
b Query distribution) Zipf (alpha = 1.0} | alpha = [0.0, 2.0]
TTL 7
Avg file size 4KB 3.5KB-4.5KB
Avg fragment size 1.3KB 0.6KB-3KB
Storage limit 16KB 8KB-64KB
Weight a 0.6 0.2-0.8

4.2. Experimental Results

The metrics that we are most interested in are the number of replicas created by each
technique, the percentage of the successful queries, the average search size, that'is, the
average number of hops a query must travel to reach an answer and the amount of
hard disk space occupied by replicas. All the reported values were averaged over

multiple runs.

Network characteristics play an important role on the performance of the system. First
of al, the network topology. In our experiments we used two different topologies,
random graphs and power-law graphs. Power-law graphs seem to achieve better
results, especially when they are combined with a random walk search strategy.
However, in the case of failures and high churn rates, power-law graphs appear a
certain disadvantage. A power-law network consists of a few peers with a high degree

and a large number of peers with a low degree. In the case of path replication, the peer
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with a high degree forwards much more data than a peer with a low degree, so that a
- large number of replications will occur at the peers with a high degree. Therefore, the

storage load can be concentrated on a few high-degree peers, which thus play an

important role in the system. When these peers fail or go offline for some period of

time, the system requires a large amount of time to recover the previous performance

standards.

L 4

Another factor that can affect in a high degree the performance of the system is the
query distribution. When a uniform query distribution is used, the search cost
becomes almost the same for all items. With zipf distribution the behavior of the
system is different. As the parameter a of the zipf distribution increases, the search
cost for hot items decreases significantly. Popular items are easier to be found and the
percentage of successful queries is high. However, the search cost for cold items
becomes bigger. Another characteristic of zipf distribution is that as a increases, the
time required to adapt to a change in the query pattern increases, compared to the time
required by a uniform query distribution. By shifting the query distribution we change
the popularity of items. Items that were popular until that point are made unpopular

and reversely, unpopular items become popular.

When fragment replication is performed, the storage capacity of peers and the access
frequencies of fragments play an important role to the results of the replication
strategies. When the storage capacity of peers is quite small then in order to achieve
good performance, with respect to the average search cost and the percentage of
successful queries, the size of popular fragments is required to be small. In other
words, when most queries refer to relatively small fragments the system shows better
performance. The reason for this is that increasing the access frequency of small
fragmrents results in a greater number of replicas stored by each peer making them

easier to be foupd. -

4.2.1. Performance of RepRI for Simple Documents
In our first set of experiments we evaluated the performance of proactive replication

using RepRlI for the case of simple documents. We compared our approach with the
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two most widely used strategies for passive replication, path replication and owner

- replication.
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Figure 4.2 Percentage of Successful Queries for Different Sizes of Networks

Figurgs 4.1 and 4.2 show that proactive replication using RepRI outperforms both
path and owner replication. RepRI replication achieves a lower average search size
and increases the percentage of the successful queries. The gain in the performance is
explained by the following two factors. The statistics maintained by each peer allow

us to find a path with many requests for a document and push replicas towards that
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direction. In addition, during the search process, hints are used to forward queries

. towards peers that are more likely to have an answer.
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Figure 4.3 Average Search Size for Different Values of a of the Zipfian Query
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In Figures 4.3 and 4.4- we show how the skewness of the query distribution affects the
performance of the system. In the experiment we set the value of o in the replication
utility to 1. As the value of the parameter a (of the zipfian query distribution)
increases, all strategies achieve higher standards of performance. For values greater

than 1.0, the gain acquired by RepRI replication is bigger, since the number of
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replicas for popular documents increases significantly. Favoring replication of popular
~ documents help us improve the overall performance, with respect to the average

search size and the percentage of successful queries.

4.2.2. Proactive vs Path Replication for XML Documents

In the next set .of experiments we performed a comparison between skeleton
* replication using RepRIX and path replication. Both techniques were tested under the
same query distribution (zipfian a=1.0). They occupied all the available space for
replica storage, creating approximately the same number of replicas. In RepRIX
replication, RepRIX was used for replicas’ replacement and for assisting the routing

procegs, while in path replication we used a first in first out replacement policy.
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Sizes of Network
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In Figures 4.5 and 4.6 we show how the two replication strategies perform for
different sizes of networks. The value of « is set to 0.6. Our results show that for all
sizes, RepRIX replication outperforms path replication with respect to the average
search size and the percentage of successful queries. The reason for this is that with
RepRIX we manage to distribute replicas along the network in a more efficient
manner than path replication. Replicas are pushed toWards the part of the network that
actually needs them. Moreover, replacement of replicas based on the replication
utility has a positive impact on the performance of the system, since peers manage to
keep replicas that are considered hot based on our replication criterion. We also show

the case where no replication is taken place at the system.
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Next we show the impact of the weight « in the performance of the system. We fixed
the size of the network to 5000 nodes and measured the average search size and the
percentage of successful queries for the 20% most popular and the 20% most
unpopular fragments. As mentioned in chapter 2, the replication utility is defined as:
ru = o * popularity_factor + (1-a) * distance_factor. Figures 4.7 and 4.8 show that as
the value of a increases, RepRIX shows better performance than path replication for
popular fragments. As a increases, the replication utility depends more on the number

of requests. Popular fragments have many requests so they are replicated more easily,
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resulting in high percentage of query hits and low average search size. However, as o
- increases, path replication achieves better results for unpopular fragments. For the

average popularity, we see that RepRIX replication performs best when o is set 0.6.
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Figure 4.10 Percentage of Successful Queries for Different Storage Limits

Regarding storage availability, RepRIX and path replication show similar behavior as
expected. For a fixed size of network and fixed value of a (0.6) for RepRIX, Figures
4.9 and 4.10 show that as the storage capacity of peers increases from 8KB to 64KB,

both strategies achieve better performance with respect to the average search size and

the query hits. When the storage availability of a peer increases, the number. of -«
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replicas stored at the peer also increases. The bigger number of replicas along the

- network explains the gain we have in performance.
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.
In the next experiment, we evaluate the performance of the two techniques under a
dynamic network of 5000 peers. The network is dynamic in the sense that we allow a
percentage of peers to leave the network and stay offline for some period of time. In
Figures 4.11 and 4.12 we see that as the churn rate increases, the performance

standards decrease. However, our results show that for all churn rates, our approach
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continues to work better compared to path. Figures also show how the system behaves

- when no replication is taken place.
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. In Figures 4.13 and 4.14, we show how RepRIX and path adapt when the pattern of
. the query load is changed. When we reach at the middle of the simulation, we shift the
query distribution, meaning that we change the popularity of fragments. Fragments

that were popular till that time become unpopular while unpopular fragments become
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popular. As we see, after the change the average search size increases and the
- percentage of successful queries drops. However, RepRIX replication manages to
reach its standards quicker than path. This is due to the replacement policy we use.
Changes in the popularity of replicas are mapped to their replication utility. Thus,

peers manage to keep those replicas that are considered hor.

® 4.2.3. Fragment Replication vs Whole Document Replication
In the next set of experiments, we show a comparison between fragment replication
and whole document replication, with respect to the average search size and the
percentage of successful queries. We used path and RepRIX in two different ways. In
the ficst case, we follow our approach creating replicas consisting of fragments of the
original documents, while in the second case we replicate whole documents. When
using RepRIX for whole document replication, we keep the same statistics as
mentioned except that the paths are not matched with fragments but with the original

documents.
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In the first experiment, we tested the scalability of both fragment and whole document
replication. Figures 4.15 and 4.16 show that for all sizes of networks replicating at the
fragment level is much more preferable than replicating at the whole document level.
The average search size, for RepRIX replication, is reduced by almost 2 hops, while
the difference in the percentage of successful queries is close to 20% for a network
with 5000 peers. The reason for this behavior is that when peers store fragments of
documents, they store much more data that they are interested in than when they store

whole documents. Thus, the available storage is used more wisely.
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Figure 4.17 Fragment vs Whole Document Replication. Dependence of Average
Search Size on Storage Availability
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Regarding storage availability, Figures 4.17 and 4.18 show that as the storage
capacity increases from 8KB to 64KB, both fragment and whole document replication
achieve better results but still the first outperforms the second. As the storage
availability increases, the number of replicas that a peer can store also increases. This
increase is much bigger in the case of fragment replication. Thus, the fact that the
total number of replicas along the network is proportional to the storage availability

explains the behavior shown in Figures 4.17 and 4.18.
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-

Figures 4.19 and 4.20 show how the two approaches behave in a network where peers
can join and leave dynamically. As expected, the performance of both approaches
drops as the number of peers that can go offline increases. Peers require more hops to
locate an item, while the number of queries that are answered is reduced. However,
since the churn rate is the same for both cases, the number of replicas maintained at
the network by fragment replication remains bigger than that of whole document

replication.

4.2.4. Characteristics of RepRIX Replication
In this set of experiments, we perform a comparison between skeleton and subtree
replication and we investigate other parameters that affect the performance of

RepRIX Replication.

In Figure 4.21 we see a comparison between skeleton and subtree replication with
respect to the ~percer;tage of successful queries. As we see, skeleton outperforms
subtree, since it manages to answer about 6% more queries. Skeleton replication
achieves better results than subtree replication due to the presence of external links.
External links have a positive impact in the search process, since they assist a peer to

locate a fragment that is out of its search range. However, with subtree replication we
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can reduce the size of the messages created by our replication technique. In particular,
- as Figure 4.22 shows, when the average size of fragments is kept small, the messages
created by subtree replication can be 25% smaller than those created by skeleton

replication
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Figure 4.21 Skeleton vs Subtree Replication. Percentage of Successful Queries
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Next, we show how the various values for the size of fragments affect the
performance of the system. Our results in Figures 4.23 and 4.24 show that when most

queries refer to relatively small fragments, both RepRIX and path replication show

d
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better performance, since the percentage of successful queries is higher, while the
- average search size is also reduced. Taking the two extremes, average file size 0.6KB

and 3KB, we see that for RepRIX replication, the difference in performance is 1.7

hops with respect to the average search size and 16% with respect to the percentage of

successful queries. As the access frequency of small fragments increases, peers store

more replicas. The increase in the number of replicas along the network explains the

gain we have in performance.
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Finally we present the impact of routing hints on the performance of RepRIX
replication. As we mentioned in chapter 2, RepRIX can also be used to further
improve the routing process by maintaining the direction of the provider of a
fragment. When a peer forwards a replication message to one of its neighbors, without
storing the replica, it can set the corresponding counter to a hint value (instead of
resetting it to 0) indicating that the file has been copied along this direction. Thus, the
next time the peer receives a query for that file, the peer knows towards which of its

neighbors to forward the request, thus reducing the search cost. Figures 4.25 and 4.26
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show that the use of routing hints can drop the average search size by almost 0.5 hops
- and increase the percentage of successful queries by 5%, for networks consisting of

10000 peers.

4.2.5. Cost of RepRIX Replication
In our final set of experiments we measured the cost of RepRIX replication with

* respect to the number of replication messages and the size of RepRIX.

In Figure 4.27 we show a comparison between RepRIX and path replication with
respect to the number of messages they create for placing replicas along the network.
As it was expected, path replication creates slightly more messages than RepRIX,
since it performs an aggressive replication after each successful query. In RepRIX

replication only fragments that satisfy the replication criterion are replicated.
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Figure 4.27 Cost of Replication with Respect to the Number of Replication Messages

In Figure 4.28 we show the cost, in storage space, that RepRIX replication pays for
. main;aining the statistics. The size of RepRIX depends on the peer’s degree (number
of neighbors). We categorized the peers based on their degree and measured the size
of RepRIX for each case. The minimum degree in our network is 4, the average
degree is 8 and the maximum degree is 20. The values that are reported refer to the
size of RepRIX at the end of a period. We see that in the average case, RepRIX

occupies 4KB of the available storage space, which corresponds to around 4 replicas.
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CHAPTER 5. RELATED WORK

5.1 Replication in Unstructured p2p Systems
5.2 XML Replication and Fragmentation
5.3 XML Processing in Unstructured and Structured p2p Systems

5.1. Replication in Unstructured p2p Systems

As mentioned before, in unstructured p2p systems there is neither a centralized
directory nor any precise control over the network topology or data placement. The
network is formed by nodes joining the network following some loose rules. The
resultant topology has certain properties, but the placement of data is not based on any
knowledge of the topology. The main issue in such systems is locating peers that hold
data of interest. One way to improve the search performance is data replication. In this

section we present the related work on data replication in unstructured p2p systems.

The authors of [1] consider the general problem of what is the best way to replicate
data in unstructured p2p systems given that the total amount of storage in the network
is fixed. Two natural ways to perform replication is uniform and proportional
replication. With uniform replication, the same number of copies is created for all
items, while with proportional replication, the number of copies created for each item
is proportional to the item’s popularity, i.e., its query rate. It is shown that both
replication strategies have the same expected search size for successful queries.
However, they differ in other aspects. Uniform replication distributes the load evenly
to all copies, whereas in the case of proportional replication, copies receive load
proportional to their query rates. Proportional replication also makes popular items
easier to find, at the expense of making less popular ones harder to find. Thus, with
proportional replication, a much higher limit (TTL value) is required for locating

them. On the other hand, uniform replication minimizes this limit. It is also shown
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that in terms of search size, uniform and proportional replication lie at two extremes
where the ratio of allocation of two items is between 1 and the ratio of their query
rates. All replication strategies that lie between these extremes yield better search
sizes for successful queries with square-root replication achieving the optimal such
size. Square-root replication allocates replicas to items proportional to the square root
of their query rate. The gain attained with square root replication grows with the

query skew.

In [2], an evaluation of two easily implementable replication strategies, namely owner
and path replication, is provided, under a realistic setting. Under owner replication,
when a search is successful, the object is stored at the requester peer only. Path
replication is implemented by storing the object at all peers on the path from the
requester peer to the provider peer. The evaluation of the two strategies is done in
conjunction with a k random walkers search strategy. In this case, the numbers of
peers between the requester peer and the provider peer is 1/k of the total number of
peers visited. Since path replication tends to replicate objects to peers that are
topologically along the same path, the authors also consider a third replication
strategy called random replication. Random replication counts the number of peers on
the path between the requester and the provider, say p, then, randomly picks p of the
peers that the k walkers visited and stores the object at them. The evaluation is done
on a random graph network topology. The replica allocation achieved by both path
and random replication are quite close to the square-root. They also reduce the overall
traffic by a factor of three to four mainly by reducing the search size. Random
replication improves over path replication for the cost of a more involved

implementation.

Path replication distributes query load for popular items across multiple peers, reduces
Jatency and alleviates hot spots. However, path replication tends to replicate files to
peers that are topologically along the same path. Moreover, the number of replicas
created can become very large, which eventually may be more than necessary to
achieve the required search performance. In p2p networks with random topologies,
where peers are randomly chosen to initiate queries, we would like to avoid the

topological impact of path replication. Our approach manages to overcome this
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problem, since the use of Replication Routing Indexes allows us to distribute replicas

in a more efficient manner, based on the statistics we keep.

In most p2p networks, the number of neighbors (degree) of each peer follows the
power law; there exist a few high degree peers and a large number of low-degree
peers. Therefore, a huge number of requests can go through these few high-degree
peers, and the storage loads due to reading and writing requested data is concentrated
on them. The authors of [7] consider the problem of how to mitigate the load
concentration on the high-degree peers over a p2p network without deteriorating the
search performance too much. They introduce the replication ratio, which is the ratio
of the created replicas to all the intermediate peers on the path for each requested data.
The teplication ratio is determined in advance. Two replication methods are proposed,
called Path Random Replication and Path Adaptive Replication, which make replicas
on some chosen peers, through which the data passes. In Path Random Replication,
each intermediate peer randomly determines whether or not the replica is created and
placed there based on the probability of the pre-determined replication ratio. In Path
Adaptive Replication, the procedure in the decision to make a replica on a peer
depends on how much storage is still available on it as well as the predetermined

replication ratio.

Path Random Replication and Path Adaptive Replication suffer in the cases where
peers are highly different in their degrees. Constant replication probability may still
cause much load imbalance, because high-degree peers are frequently located in the
data transmission path. Path Random Replication and Path Adaptive Replication
manage to reduce the large number of replicas created by path replication but in
comparison with our approach, they don’t avoid the topological impact of path

replication.

A dynamic data replication algorithm that is used in distributed systems with tree
networks is the Adaptive Data Re};lication algorithm (ADR) [8]. ADR is a distributed
algorithm, in the sense that each peer makes decisions to locally change the
replication scheme, evaluating statistics collected locally. ADR changes the

replication scheme of an object dynamically, as the read-write pattern of the object
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changes in the network. The changes in the read-write pattern may not be known a
_ priori. The changes at the replication scheme result in the decrease of its
communication cost. The communication cost of a replication scheme is the average
number of messages required for a read or a write of the object. The replication
scheme expands as the read activity increases, and it contracts as the write activity
increases. The ADR algorithm works in a read-one-write-all manner. A read of the
object is performed from the closest replica in the network, while a write updates all
° the replicas and is propagated along the edges of a subtree that contains the writer and
the peers of the replication scheme. In the ADR algorithm the initial replication
scheme consists of a connected set of peers and at any time, the peers of the
replication scheme, denoted R, are connected. A peer is considered to be an R-
neighbor if it belongs to R but it has a neighbor that does not belong to R. An R-fringe
peer is defined to be a leaf of the subgraph induced by R. The need for changes at the
replication scheme is determined using three tests, namely, the expansion test, which
is executed by each peer that is an R-neighbor, the contraction test, which is executed
by each peer that is an R-fringe and the switch test. A peer can be both an R-neighbor
and R-fringe. In this case, it first executes the expansion test and if it fails, then it
executes the contraction test. A peer in R that does not have any neighbors that are
also in R executes first the expansion test and if it fails, then it executes the switch
test. Each peer i that is an R-neighbor performs the expansion test. For each neighbor
Jj that is not in R, let x denote the number of reads that i received from j during the last
time period and y the total number of writes that / received in the last time period
from i itself, or from a neighbor other than j. If x>y, then / sends to j a copy of the
object with an indication to save the copy in its local database. Thus j joins R. Except
for i and j, no other peers are informed of the expansion of R. The expansion test is
performed by comparing the counters (one for the reads and the other for the writes).
The counters are initialized to zero at the end of each time period and incremented
during the follgwing time period. The expansion test succeeds if the if condition is
satisfied for at least one neighbor. The expansion test fails if it does not succeed. The
contraction test is performed by an R-fridge peer. A peer i is called an R-fridge peer if
it is in R and has exactly one neighbor j that is in R. Let x denote the number of writes
that 7 received from j during the last time period and y the number of reads that i

received in the last time period (the read requests received by i/ are made by i itself or
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received from a neighbor of i different from ;). If x>y, then i requests permission from
_ j to exit R, that is, to discard its copy. Peer i does not exit unconditionally, since i/ and
j may be the only peers of the current replication scheme, and they may both
announce their exit to each other, leaving an empty replication scheme. Therefore, if
the contraction test succeeds, then i keeps its replica until it receives the next message
from j. If this message is j’s request to leave R, then only one leaves R. Except for i
and j, no other processor is informed of the contraction. When a peer i constitutes the
only peer in the replication scheme, then 7 is an R-neighbor, thus it executes the
expansion test. If the expansion test fails, then i executes the switch test. For each
neighbor J, let x denote the number of requests received by / from j during the last
time period and y the number of all other requests received by 7 during the last time
period. If x>y, then i sends a copy of the object to j with an indication that j becomes
the new singleton peer in the replication scheme, and 7 discards its own copy. When
the if condition of the contraction or switch test is satisfied, then the test succeeds.

Otherwise, it fails.

ADR is similar to our approach in the sense that replication decisions are made
periodically based on statistics. However, in ADR, the only criterion for replicating a
file is its popularity. In our approach we also take into account the cost, measured in
number of hops, for locating it.

Although data replication significantly improves the performance of the system, it
raises the problem of replicas’ consistency, in the case of updates. The most popular
algorithms for update propagation are the epidemic algorithms, presented in [9].
Typical examples of epidemic algorithms are direct mail, anti-entropy and rumor
mongering. In direct mail, when an update occurs, it is immediately mailed from its
originating peer to all other peers. The main advantage of this algorithm is that
updates are propagated very quickly. In anti-entropy, periodically, each peer selects
randomly another peer and resolves any differences between them, by exchanging
content. The anti-entropy strategy-is reliable, but quite slow. In rumor mongering,
when a peer receives a new update, it periodically selects another peer and checks if
this peer has seen the update, in order to send it to it. A peer stops sending the update

to other peers, when many other peers have seen it.
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The update strategy that is proposed in [10] is based on a hybrid push/pull rumor
spreading algorithm and provides a fully decentralized, efficient and robust
communication scheme which offers probabilistic guarantees rather than ensuring
strict consistency. During the first phase of the algorithm, called the push phase, the
peer where the update occurred, pushes the update to a set of peers that have a replica
of the updated object. These peers, in turn propagate the update to another set of peers
and this procedure continues in a manner similar to flooding. The second phase is the
pull phase, where peers coming online or peers that received no update for some time,

contact other peers and ask for newly updated objects.

-

5.2. XML Replication and Fragmentation

The problem of replicating XML data or indexes in p2p systems has not received
much attention yet. An important issue that arises is the granularity of replication and
distribution for XML. In this section, we present related work on replication in p2p
systems where peers store XML documents. Similar approaches to ours for document

fragmentation are also described.

In [11], an approach for replicating XML documents, in unstructured p2p systems, is
presented. The authors consider a new class of documents called dynamic XML
documents. Dynamic XML documents are XML documents that contain materialized
XML data that are part of the document and intentional data that can be produced by
service calls. Since dynamic documents may contain calls to services on other peers,
some form of distribution is inherently part of the model. Fragments of the
documents, including services, can be replicated or distributed along the network.
External edges are added to the replicated documents to point to peers that store other
parts of the documents to allow for a higher form of distribution. The approach is
similar to ours. The focus there is making decisions on whether to materialize the
result of a call or not based on a cost model. The cost model intends to reflect the
observable performance of a given peer: the costs and performance metrics perceived
by this particular peer. This observable performance is influenced by some objective

parameters (e.g. size of data transfers, from/to a given peer, incurred by the
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distributed databases are used. For the second step, the RepositoryGuide is fully
distributed among the nodes. Finally, for the third step, the global context of each
fragment is kept by storing the data path from the global root node to the root of the
local fragment. To this end, three indexes are used: a path index that encodes the
global context of local fragments, a term index that allows processing of queries that
include conditions on terms and an address index that stores the physical addresses of
the fragments. Space efficient path indexes are constructed with the use of a path
identification scheme. Because of their small size, path indexes are replicated at all

system nodes, while term and address indexes are distributed among them.

The problem we address in our work is different in that we do not consider partition
and allocation but dynamic replication of fragments. Moreover, in our systmem peers

have no global knowledge about the location of other fragments.

In [15] an approach for vectorizing and querying large XML repositories is presented.
The idea is based on the decomposition of an XML document into a set of vectors that
contain the data values and a compressed skeleton that describes the structure. In
order to query this representation and produce results in the same vectorized format,
they consider a practical fragment of XQuery and introduce the notion of query
graphs and a novel graph reduction algorithm that allows to leverage relational
optimization techniques as well as to reduce the unnecessary loading of data vectors
and decompression of skeletons. This is similar to our approach of representing
replicas. Again, in this work, we address a different problem, that of dynamically

creating replicated fragments.

5.3. XML Processing in Structured and Unstructured p2p Systems

The use of XML as the format for data representation introduces additional problems
in p2p systems. In unstructured p2p systems, research efforts focus on building space
efficient routing indexes for XML documents. Most approaches build path indexes
with the use of aggregation and suitable encoding schemes for the paths. In structured
p2p systems, recent research focuses on exploiting the content of documents for

determining the keys. In particular, a vector describing each document is extracted
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and used as the key to map the documents to the virtual multi-dimensional space of
the network. In this section we describe proposed techniques for processing XML
documents in both structured and unstructured p2p systems. This research is
complementary to ours since it does not address replication but deals only with query

processing techniques.

Processing of containment queries in p2p systems is presented in [16]. Containment
queries exploit the structure of XML data (i.e. book contains author contains name =
“John Smith”). XML elements and text words are treated uniformly as index keys.
Local indexes at each peer consist of inverted lists, which map keywords to XML
documents stored at the peer. In addition to its local inverted lists, each peer also
maintains routing indexes, called peer inverted indexes that map keywords to the
identifiers of remote peers. A query is forwarded to remote peers by using the peer
inverted index and set operations are used to minimize the number of relevant
destinations. Indexes are built when a peer joins the system by exchanging
information with other peers. These indexes are smaller than local indexes, since a
peer only exchanges a small subset of its keywords, such as words that are often
found in queries or that are representative of its local data. The result is a p2p system
in which each peer has a summary of important data of all other peers. Horizons are
used to limit the number of peers for which a peer has summarized information. A
peer maps keywords outside of its horizon to peers on the boundary of the horizon

that are closer to them.

In [17], each peer maintains a local index, summarizing its local content and one or
more merged indexes summarizing the contents of its neighbors. The peers form
hierarchies in which each peer stores summarized data for the peers belonging to its
subtree. The roots are interconnected and store additional summaries for all other
roots. Each peer that receives a query first checks its local index for any matches.
Then, if it is an internal peer, it checks its merged index and if there is a match it
forwards the query to its subtree. Furthermore, it sends the query to its parent or if it is
a root peer to the other matching roots. The indexes used are based on Bloom filters
that are compact data structures for the representation of a set of elements. To support

the evaluation of regular XPath expressions, multi-level Bloom filters are introduced
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that preserve hierarchical relationships between the inserted elements. These
relationships are preserved by inserting the elements of the XML tree to a different
level of the filter according to their depth in the tree (Breadth Bloom filters), or by
using paths of different lengths as keys and inserting them to the corresponding level

of the filter according to their length (Depth Bloom filters).

A similar fragmentation model with ours is described in [18] and [19]. However, the
fragments that they create do not have any links to the original document and they
focus more on query processing rather than replication. The authors of [18] deal with
the problem of parallel query processing. They develop their idea for the evaluation of
boolean XPath queries over a tree that is fragmented, both horizontally and vertically
over-a number of sites. The key idea is to send the whole query to each site which
partially evaluates, in parallel, the query and sends the results as compact boolean

functions to a coordinator which combines these to obtain the result.

XP2P [19] also extends Chord to support XML data. The system assumes that each
peer stores a set of XML fragments (subtrees of XML data). In addition, each peer
stores the local content of the user's fragments and their related path expressions that
are the lists of each fragment's child fragments (path expressions stored as PCDATA
within subtags in the fragment) and their super fragment (a path expression of the
fragment which is the ancestor of the current fragment). These expressions are hashed
into the Chord virtual space. The hashing technique used is different from that used in
Chord. In particular, a fingerprinting technique is proposed. The produced fingerprints
are shorter than the hash keys used in Chord and support a concatenation property that
allows the computation of the tokens associated with path expressions to proceed
incrementally. Partial and full match lookups are supported, where in the first case, a
match to a fragment is returned without unfolding its child fragments, while in the
latter case, all the sub tags of the fragment are unfolded and the corresponding child
fragments are retricved. The queries are fingerprinted as well and when the fingerprint
of a query (either in full or partial lookup) matches the fingerprint of a data fragment,
the results are located by the lookup functionality of Chord. If the system cannot find

a match, for instance if some peers are temporarily unavailable, additional techniques
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based on gradually pruning the query path are deployed to provide the user with at

; = least a partial match.
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CHAPTER 6. CONCLUSIONS

6.1 Summary
6.2 Future Work

6.1. §ummary

Peer-to-peer (p2p) systems have attracted considerable attention as a means of sharing
content among large and dynamic communities of nodes. A central issue in p2p
systems is locating the nodes that hold data of interest. There have been various
proposals towards building overlays to support efficient content location. Such
proposals vary from building rigid topologies and placing data on specific nodes in
the overlay to unstructured networks with no correlation between the node content
and its position in the overlay. In all types of overlays, content replication results in
}educing the latency of lookups. Motivated by the fact that XML is increasingly being
used in data intensive applications, in this work, we studied replication in unstructured
p2p systems where participating nodes share content stored in XML. We considered

XML replication for both passive and proactive protocols.

XML documents have a hierarchical structure and thus, different fragments of an
XML document can have different access frequencies. We showed that replicating
items at the fragment level is preferable to replicating whole documents. For proactive
replitation, we introduced a new data structure that we call replication routing index.
For a peer p, a Replication Routing Index (RepRl) has one entry for each file that p
has processed queries for. Each entry keeps statistics about the requests that p has
received for the specific file through its adjacent edges. Our replication strategy uses
these indexes to decide whether to maintain a copy locally or forward it along a path.

A Replication Routing Index for XML, termed RepRIX, maintains statistics for
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fragments. RepRIX allows us to fine-tune the unit of replication, so that fragments of
the same document can have different numbers of replicas. Further, it allows us to
push fragments closer to their requesters. RepRIX entries are also used as hints during

lookup to direct nodes towards paths that most probably hold replicas of the requested

items.

6.2. Future Work

One way to improve the efficiency of RepRIX replication in realistic p2p
environments would be the ability to dynamically tune the value of the weight o. In
order to exploit the ability to enhance the system performance for popular fragments
each. peer p could use the statistics maintained at RepRIX(p) to estimate the query
distribution. Based on these estimations peers would be able to adjust the value of a to

the actual requirements of the network.

As mentioned before, the duration of the period of the replication procedure depends
on the query workload. A large value leads to making more informed decisions based
on sufficiently large samples of requests and ignores popularity fluctuations that may
be caused by random variations in the query workload. Furthermore, it reduces the
associated network overhead. On the other hand, the system adapts to workload
changes less promptly. An efficient way to dynamically adjust the duration of the
period, based on the changes of the average replication utility, would improve the

overall performance of RepRI replication.

Additional work could be done in the way path queries are processed. Instead of
searching for the peer that holds all the requested data, partial evaluation could be

executed by peers that hold some part of it.

-
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