

: ‘i?-“f.‘““’g'ﬁ.;?«‘ﬂ"_'.‘&"-s:-.)!k] g

EATES TR R L RN i NS B A oo
TRt A IR B g e

bt - & Minanilits s
.

v

APPROXIMATE JOINS FOR RELATIONAL DATA

’ .ea

H | MnAQ

METAITTYXIAKH EPT'AZIA EEEIAIKEYZHE
YnoBéAreton oty
opwbeica and v Fevucr| Zvvékevon Ebduaig Zoveong

tov Tunpartog ITAnpogopukrig
E&etaoctkr Emrpon

oo ToV

Iodvvn Kpoppbddo

©g PEPOG TOV th"_%gi’-‘*”:ﬂcsemv »
Y10 TN My

0V

METAMNTYXIAKOY AllL:QMATOZ ETHN [TAHPO®OPIKH

ME EEEIAIKEYXH 2TO AOI'TEMIKO

Iobviog 2008

ii

DEDICATION

This thesis is dedicated to my family for supporting me all the way since the
beginning of my studies.

&
¥
=
i
133
H
i
o g

iii

ACKNOWLEGMENTS

I am thankful to my supervisor Dr. Panos Vassiliadis for guiding, encouraging and
motivating me throughout this research work. I would also like to express my
gratitude to Dr. Evangelia Pitoura and Dr. Apostolos Zarras for their valuable remarks

during the course of my research.

At the end of my thesis I would like to thank all those people who made this thesis
possible and an enjoyable experience for me; especially my colleagues and friends,
Eytychia, Fotini, Panos, Tasos, Tzeni and Hara for their help and encouragement

throughout this work.

v

CONTENTS
DEDICATIONcoiiiimiminiien e ssssses s b st i
ACKNOWLEGMENTS ...ttt et assns s ae e sae e 1ii
CONTENTS ...t erecerentecrresite s et ssess bt seasbn s sres s s sras e s s s e s na e s ans e e aeeesnnes v
LIST OF TABLEScuiciiittiieentere st eseesesassss et sssesaesesesssssesbassssssssrsssans s shssnsana s vi
LIST OF FIGURES.......c.ccotiteitntnrecrtetntit e e senae st easarese s ssssssnesss s assssanens vii
EKTENHE ITEPIAHYH ZTA EAAHNIKA ...ttt ix
ABSTRACT ..ottt bbb srre e s b s s X1
CHAPTER 1. INtroQUCHION....cceoiririeniiiieincrtcicsni e e e et seb e s 1
CHAPTER 2. Related Work.......ccoovviiiriiiiienie et s 5
2.1. Frequent Itemsets 5
2.1.1. Frequent Itemsets Definition 6
2.1.2. Closed and Maximal Frequent Itemsets 7
2.1.3. Frequent Pattern Tree (FP-tree) 8
2.1.4. Frequent Itemset Mining Methods 11
2.2. Fault-tolerant Frequent Itemsets 12
2.2.1. Fault-tolerant Frequent Itemsets Definition 13
2.2.2. Fault-tolerant Frequent Itemset Mining Methods 15
2.3. Dense Frequent Itemsets 16
2.3.1. Dense Itemsets Definition 17
2.3.2. Dense Itemsets Mining Methods 19
2.4. Association Rules 19
2.4.1. Association Rule Mining Problem 20
2.5. Maintenance of Association Rules 21
2.5.1. Update Problem of Association Rules 21
2.5.2. Methods for Maintaining Discovered Association Rules 24
2.6. Field Matching Techniques 25
2.6.1. Character-based similarity metrics 25
2.6.2. Token-based similarity metrics 27
2.6.3. Phonetic similarity metrics 29
2.6.4. Numeric similarity metrics 30
2.7. Duplicate Record Detection ' 30
2.7.1. Notation 31
2.7.2. Probabilistic Matching Models 31
2.7.3. Supervised and Semi-Supervised Learning 32
2.7.4. Active-Learning-Based Techniques 33
2.7.5. Distance-Based Techniques 34
2.7.6. Rule-Based Approaches 36
2.8. Experimental Methodology of Existing Methods 38

2.8.1. Duplicates 38

2.8.2. Off-line cleaning

CHAPTER 3. Problem Description and Proposed Method........................

3.1. Problem Description

3.2. Baseline Method (Fuzzy Match Data Cleaning)
3.2.1. Fuzzy Similarity Function (fms)
3.2.2. Fuzzy Match
3.2.3. The Error Tolerant Index (ETI)
3.2.4. Query Processing Algorithm

3.3. Improvements: Online Data Cleaning using Qgram tries
3.3.1. Word Index
3.3.2. Qgram Trie
3.3.3. Qgram Trie Searching Algorithm
3.3.4. Main Memory Maintenance of Qgram Trie
3.3.5. Matching Procedure

CHAPTER 4. Experimental Methodologyccccevecevivrrcvenenncnncninenees

4.1. Data generation
4.2. Alternative methods for cleaning using qgram tries
4.3. Experimental parameters and measures
4.4, Experimental results
4.5. Execution time
4.5.1. The effect of noise on execution time
4.5.2. The effect of repetition on execution time
4.5.3. The effect of available memory on execution time
4.5.4. The effect of reference table size on execution time
4.5.5. Comparison with the state-of-the art method
4.6. Precision of classification
4.6.1. Effect of noise on precision of classification
4.6.2. Effect of repetition on precision of classification

4.6.3. Effect of similarity thresholds on precision of classification

4.6.4. Comparison with the state-of-the-art method
4.7. Memory Consumption

CHAPTER 5. CONCIUSIONS .oocvttiirereeieeseeereveisinesesssessssssesessssssssesssssssossssneses

5.1. Conclusions — Summary
5.2. Future Work

REFERENCES ...t s s s re s s s ssssssssssssssenens
SHORT CV ..ttt sssensse s ssssssss sasssersssssssssessenaes

vi

LIST OF TABLES

TADIE oo e e e e Pag

Table 2.1. Definitions of Several Symbols .. 22
65

Table 4.1. Varied Parameters

vii

LIST OF FIGURES

FIge ettt ettt et e r e e e e ae e beaebeessennesaaenee st eReeesens Pag
Fig. 2.1. An example transaction database D [Goet03] ... 7
Fig. 2.2. Frequent itemsets and their support in D (Gaps = 1) [G0et03] ..ecveeevcavennen 7
Fig. 2.3. Transaction database [HPYMOL]coveoiiiiviiiriceee e eeseresaes 8
Fig. 2.4. Fp-tree structure [HPYMOL] ..ccoocunminimiiitieeteieeeei et ea e eeacene e 10
Fig. 2.5. Transaction database tdb [PethO1]c..coovimieiiiieieeceie e eeseerenenaes 13
Fig. 2.6. Two example databases [SeMa04].........ccccocvviveriieiiecenireceeeeesereeee s 16
Fig. 2.7. Example database [SEMa04]ccccoivininiiriiieiiece s sae s s 18
Fig. 2.8. Supports ¢ (weakly (g, 0.5)-dense listed sets) [SeMa04]........ccoceervecenrencnns 19
Fig. 2.9. Association rules and their support and confidence in D [Goet03] 21
Fig. 2.10. A+ = [CHLKOT] ... ieeeeirreeennieneaeesesressessesasssesaesressaesesssensssssnesnees 23
Fig. 2.11. |6+ > O [CHLEKO7] ...ttt sesraesve e e e ssaseassensesessssnans 23
Fig. 3.1. Template for using fuzzy match [CGGMO3]ccoocmeeoereeereeeeeeeceeenes 42
Fig. 3.2. Classification of input tuple according to maximum similarity 43
Fig. 3.3. ETI relation example [CGGMO3]ccoriniiiiniiirnrrerreeenreeresereseeseeseensecens 50
Fig. 3.4. Query processing algorithm [CGGMO3].........ccoeoeirerireieeeeeeereeeeeeeenenes 52
Fig. 3.5. Qgram trie €Xamplecccceerrirrerireeeienenrecereeeetessseseeeesse s seasnnessssssssssen 55
Fig. 3.6. Searching ProCeaurec.ceevueeveerserneirinrrreresree st esteseceessaessasssessessssessas 56
Fig. 3.7.a Qgram trie before iNSETtiON.ccovirrieererreernesiasseeeereersesesesnssnsessessessaeeseses 57
Fig. 3.7.b Qgram trie after INSEItioncccevevrerrerereeeiecee et esseconnas 57
Fig. 3.8.a Pruning procedure results — steps 1-3ccocommirenienenienerenerceceicnnnnns 59
Fig. 3.8.b Pruning procedure results — Step 4.......cccvveeerrrerrereesrenessesrerereesnencseesssnrens 59
Fig. 3.9. Matching Proceaure.........cocccvmmiiiiiiiniseeircener e ssesese e i 61
Fig. 3.10. Example reference tableccvveevviceceeiiiecrisrerecnesinnesnesssesssessssessesenes 62
Fig. 4.1. Effect of noise on eXeCution tIME........ccceveivurerreriniecierineeesssesasesrnsssssssrenns 67
Fig. 4.2. Effect of repetition on eXecution thne...........ce.veeeereereeveerveseneresrersseesneaes 68
Fig. 4.3. Effect of available memory on execution timeeceerveevereeereescsrcnscnecs 69
Fig. 4.4. Effect of reference table size on execution timec....cccveeveeeveerersneeneenes 70
Fig. 4.5. Execution time (JR|=10k tuples, variant repetition - available memory).....71
Fig. 4.6. Execution time (JR|=10k tuples, variant repetition - available memory).....72
Fig. 4.7. Execution time (JRj=100k tuples, , variant repetition - available memory).73
Fig. 4.8. Precision (|[R|=10k tuples, repetition 10%, available memory 10%)........... 74
Fig. 4.9. Precision (|R|=10k tuples, noise 10%, available memory 10%).................. 75
Fig. 4.10. Effect of threshold values on precisionceccevceeevcrecnnnecinsnseneniinins 76
Fig. 4.11. Misclassifications of dirty input tuples as new records.........ccccceveevivrrennns 77
Fig. 4.12. Precision (|Rj=10k tuples, , variant repetition - available memory) 78
Fig. 4.13. Precision (Rj=10k tuples, , variant repetition - available memory)........... 79

Fig. 4.14. Precision (|R|=100k tuples, , variant repetition - available memory)........ 80

NG I

WAt T R s

)

viii

Fig. 4.15. Maximum memory (|R|=100k tuples, repetition 10%, available memory

JOY0) vttt et ets sttt e e bt e eae e n e n e s be b bn b enesa b tesranes 81
Fig. 4.16. Memory at runtime (|[Rj=100k tuples, noise 10%, repetition 10%, available
MEMOTY 10%0).ieriiiiitinininic ittt s st s ebe s s e sae e 82

ix

EKTENHX NTEPIAHYH XTA EAAHNIKA

lwdévimg Kpoppodag tov Evayyéhov xan g Iempyiog. MSc, Tufpa IMTinpopopwiig,
Hovemotimo Ioavvivev, Tovviog, 2008. Approximate Joins for Relational Data.
Empiénoviag: TNavayuwng Baciieuddnc.

Ye pio oysowokn Paon dedopévav cvyva mapatnpeitar n vrapEn peydiov mABovg
gyypaodv, ot omoieg avoapépovial oty idw ovtoétnra, aArd avamapiotovior pe
Swpopetikd Tpomo. To ovykekpyévo @ovopevo, pmopel vo opeileton o€
TumoYpapikd Adon, eite ot yprion mowihov POV Y TV KATAXMDPNOT KATOWG
aAPopBUNTUCS TWNAG. ZUVERDG, N EUPECT TOV OpowvV Eyypopdv Oswpeitat
emPePinuévn, Wwitepa 6tav epappdletor oe pia Paon dedopévav mov dwtnpel
HEYAAO OYKO OESOUEVQV.

2t ovykekpyévn epyacio mapovoudlovpe pio Swdwoaoio, 1 omola amoteAst
eméxtaon plog amd TG woplopyes TEYVIKEG TPOCEYYIOTIKNG EVPEONG SIMAOTLTWOV
eyypapdv. AoBeiong piag Baong dedopévov mov amoteeitar and éykvpa dedopéva,
HE TN XPTIOT TNG OLYKEKPWEVNG TEXVIKAG, KGBe eioepydpevn eyypogph eite
avTioToryileTat 68 KAmOWL VIApYoVca EYKLpT EYYPAQY, ElTE TN YapakTnpiletat wg véa
eyypopy. H mpotewodpevy teyvuay ypnowponotel évav amoteAeopoTIKG olyOpBpo
EDPEGNG LTOYNPLOV EYYPOPAV, Y TIG 0T0ieg VIOAOYILETAL TO TOGOGTO OPOOTHTAG
pe TV ewoepyOpevn eyypapn Pacer ovykekpyitvav cuvaptiosov opodtntog. H
cuvolMkn Owdwacie emrtoydvetar pe 1t xprion dopdv dedopfvav, ov omoieg
S TPOLVTOL 6T PUVIEN KO TEPIEYOLV TIG EYYPAPES OV XopakTnpilovial cuyve g
vroynQleg 6poteg eyypagéc. Télog, mapatifevtat Telpopatikd onoteléopata ard Ty
EPOPUOYT| TNG TPOTEWOUEVIG TEXVIKNG HOG KOl TAPOLCLALETOL Dl CUYKPLTIKY MEAET)
TV AMOTEAECHATMV UE DIAPYOVOES TEXVIKEL,

Xi

ABSTRACT

Krommydas, loannis, Evagelos, Georgia. MSc, Computer Science Department,
University of Ioannina, Greece. June, 2008. Approximate Joins for Relational Data.
Thesis Supervisor: Vassiliadis Panos.

Relational databases often contain duplicate data entries. This may occur due to a
variety of reasons, such as typographical errors, multiple conventions for recording
database fields or other noise sources. Duplicate detection is a crucial procedure,
especially for large databases.

In this thesis, we present a method that extends the state-of-the-art method for
duplicate detection. Given a database holding valid data information, we classify each
input tuple as a new tuple, or as an existing tuple. The proposed method uses an
effective algorithm for determining a set of candidate reference tuples. For each
candidate reference tuple, we use appropriate similarity metrics in order to decide
whether the input tuple matches a reference tuple. The whole procedure is accelerated
via trie data structures for caching the frequent input tuples. Finally, we present a
number of experiments evaluating the effectiveness of our method and state a
comparative study with the state-of-the-art method.

mx.
&
BN

a

i

e
e,

¥;
X

5

CHAPTER 1. INTRODUCTION

The efficiency of every information processing infrastructure is greatly affected by
the quality of the data residing in its databases. Poor data quality is the result of a
variety of reasons, including data entry errors (e.g., typing mistakes), poor integrity
constraints and multiple conventions for recording database fields (e.g., company
names, addresses). As a result, data cleaning has been at the center of research interest

in recent years [KoMS04].

Data cleaning is critical for many industries over a wide variety of applications,
including marketing communications, commercial householding, customer matching,
merging information systems, medical records etc. It is often studied in association
with data warehousing, data mining and database integration. Especially, data

warehousing requires and provides extensive support for data cleaning.

One of the most important tasks in data cleaning is to de-duplicate records. Duplicate
detection is the process of identifying different or multiple records that refer to one
unique real-world entity or object. Given a dirty database, the standard method to
detect exact duplicates is to sort the database and then check if the neighboring
records are identical. In order to detect inexact duplicates, the most reliable way is to
compare every record with every other record, which takes N(N — 1)/2 comparisons,
where N is the number of records in the database. However, this is infeasible when N
is large [Sul.S02].

To ensure high data quality, data warehouses must validate and clean incoming data

records from external sources. All tables that are maintained within such data

warehouses and which contain clean records are called reference tables. In many
situations, clean records must match acceptable records in reference tables. For
example, product name and description fields in a sales record from a distributor must

match the pre-recorded name and description fields in a product reference relation.

A significant challenge in such a scenario is to implement an efficient and accurate
fuzzy match operation that can effectively clean an incoming record if it fails to match
exactly with any record in the reference relation [CGGMO03]. More specifically, it is
crucial to implement a data cleaning method based on similarities in order to identify
similar reference records. The similarity between input and reference records can be
evaluated using a variety of distance functions. As a result, it is critical to choose the

distance function that best suits the domain and the application.

The problem is straightforward for numerical values, but still remains very hard for
string values and combinations of them in an attribute, such as names (first-, middle-,
last- name), addresses, etc. One of the most common sources of mismatches in
database entries is the typographical variations of string data. For example,
considering company names, it is common to see “Microsoft”, “Micorsoft”,
“Microsoft Inc.” and “Microsoft Corporation” being used in different records to

represent the same entity.

Duplicate detection typically relies on string comparison techniques to deal with
typographical variations. In such a scenario, a simple equality or even substring
comparison, for example, on names or addresses will not properly identify them as
being the same entity, leading to a variety of potential problems. Consequently,
approximate matching for detecting inexact duplicates presents a challenge between

accuracy, efficiency and storage overheads as well.

Multiple methods have been developed for this task and each method works well for
particular types of errors. Those methods define a distance metric (edit distance,
affine gap distance, qgram distance, jaro distance metric etc.) and an appropriate

matching threshold in order to match similar records.

Therefore, the problem we focus on is to clean a stream of incoming records, before
their insertion to a reference table. Our approach is associated with the
implementation of an effective method for on-line detecting similarity between input
and reference records. Specifically, we check each attribute of the input record

separately, using appropriate structures for accomplishing effective cleaning.

We take advantage of a structure called Word Index, which is a table holding
information about the attribute values stored in the reference table. This structure is
used for the retrieval of reference tuples that probably match input tuples according to
ggram similarity. In parallel, we maintain in main memory a trie structure called
QOgram Trie, which caches the retrieved attribute values. More specifically, this trie
holds all the candidate attribute values that are similar to the input value. According to
a matching procedure, matching scores between the input tuple and reference tuples
are stored in a score table. The set of reference tuples whose similarity with the input

word is above a similarity threshold is returned.

Additionally, we apply the LRU algorithm as a replacement policy in case the size of
trie exceeds a specific percentage of main memory. More particularly, updating trie
by inserting new attribute values to it, leads to the pruning of attribute values that
were not recently accessed during the matching procedure. Using this replacement
policy we assure that the size of trie is kept fixed and contains all the recent accessed

attribute values.

The main contributions of this thesis could be summarized as follows:
e Introduction of an effective approximate matching method
e Development of algorithms using appropriate structures for handling streams
of incoming records

e Implementation of experiments using variant parameters of the datasets

The remaining part of this thesis is organized in five chapters. The second chapter
contains the related work that is associated with the problem we deal. In the third

chapter, firstly, we describe in detail the duplicate detection problem. Then, we

g~

ot aabic

represent the state-of-the-art method that is employed to the specific problem. In the
third chapter, we state our approach including a detailed description of the used
structures, the matching algorithm and replacement policy we adopt when the used
structures need to be updated. In the fourth chapter, we present a number of
experiments in order to evaluate the efficiency of our approach and compare it with

the state-of-the-art method. Finally, we conclude our results and present topics for

future research in fifth chapter.

CHAPTER 2. RELATED WORK

2.1. Frequent Itemsets

2.2. Fault-tolerant Frequent Itemsets
2.3. Dense Frequent Itemsets

2.4. Association Rules

2.5. Maintenance of Association Rules

2.6. Experimental Methodology of Existing Methods

2.1, Frequent Itemsets

Frequent itemsets play an essential role in many data mining tasks that involve

techniques associated with the finding of interesting patterns from databases.

The set of that kind of patterns includes association rules, correlations, sequences,
episodes, classifiers and many others. The problems of (a) mining frequent itemsets or
- (b) association rules are considered as some of the most popular and challenging
tasks. A great deal of attention is given to both of those problems due to the fact that

they are encountered in real world problems such as market analysis.

Many algorithms based on different techniques are proposed for the solution of both
problems. Those algorithms are evaluated according to their performance. In the

following, we will employ the definitions of frequent itemsets, the notion of closed

and maximal frequent itemsets and the definition of frequent pattern trees (FP-trees).

Finally, we refer to some of the frequent itemset mining methods.

2.1.1. Frequent ltemsets Definition

According to [Goet03], given a set of items I, every subset X of Jis called an itemset
or a k-itemset if it contains k items. A transaction T over 1 contains a fransaction

identifier tid and an itemset I and is said to support an itemset X c L, if X c L. A

transaction database D over I is a set of transactions over 7.

The itemsets can be described by measures such as their cover, support or frequency.

The cover of an itemset X is a set that includes all the identifiers of transactions in D

that support X and the measure of support is used for the counting of the transactions

that belong in the cover of the itemset. Finally, the frequency of an itemset represents
its probability of occurrence in a transaction existing in . Given the measure of
frequency, one itemset is called frequent if its support is greater than a given absolute

minimal support threshold o,p;.

Taking into account the definitions described above, the Itemset Mining problem can

be clearly defined as follows:

“Given a set of items J a transaction database 27 over 7 and a minimal support

threshold o, find the collection of frequent itemsets.”

Considering the following transaction database, which is shown in Fig. 2.1, the total

number of frequent itemsets that can extracted is depicted in Fig 2.2.

T = {beer, chips, pizza, wine}

tid X

100 | {beer, chips, wine}
200 {beer, chips}
300 {pizza, wine}
400 | {chips, pizza}

Fig. 2.1. An example transaction database D [Goet03]

Ttemset Cover Support | Frequency
T {100,200, 300, 400} | 4 100%
{beer} {100,200} 2 50%
{chips} {100,200.400} 3 75%
{pizza} {300,400} 2 50%
{wine} {100,300} 2 50%
{beer, chips} {100,200} 2 50%
{beer, wine} {100} 1 25%
{chips, pizza} {400} 1 25%
{chips, wine} {100} 1 25%
{pizza, wine} {300} 1 25%
{beer, chips, wine} | {100} 1 25%

Fig. 2.2. Frequent Itemsets and their support in D (Gays = 1) [Goet03]

2.1.2. Closed and Maximal Frequent Itemsets

In practice, the set of frequent itemsets produced from a transaction database can be
very large. Consequently, it is necessary to find a way to replace the full set of all
frequent itemsets with a small representative subset of itemsets from which all other
frequent itemsets can be produced. Maximal and Closed frequent itemsets are used for

such a representation.

A maximal frequent itemset is defined as a frequent itemset for which none of its
immediate supersets is frequent, whereas an itemset X is called closed frequent
itemset if none of its immediate supersets has the same support count as X and its

support is greater or equal to the minimal support threshold.

According to the definitions stated above some of the frequent itemsets in Fig. 2.2 can
be characterised either as maximal or closed. More specifically, the set of maximal

firequent itemsets is {{chips, pizza}, {pizza, wine}, {beer, chips, wine}} and the set of

closed frequent itemsets is {{chips}, {pizza}, {wine}, {beer, chips}, {chips, pizza},

{pizza, wine}, {beer, chips, wine}}. It is obvious that all maximal frequent itemsets

are closed as well.

2.1.3. Frequent Pattern Tree (FP-tree)

The notion of frequent-pattern trees (FP-trees) is associated with the construction of a
compact data structure, which is in fact an extended prefix-tree structure used for
storing compressed, crucial information about frequent patterns. Many frequent

pattern mining methods are based upon such structures, implementing efficient

frequent pattern mining techniques.

Observe the transaction database of Fig. 2.3, assuming that the minimal support

threshold is set to be 3. The following observations can be made:

TID Ttems bought {Ordered) trequent items
100 fia,c,d, g.i.m, p f,c,am,p

200 a,b,c, fii,m.o frc,abym

300 b fh,jo f.b

400 b.c.k,s,p ¢.bp

500 a, f,c,e.l,p.m,n fic.am.p

Fig. 2.3. Transaction Database [HPYMO01]

1. Since only the frequent items play a role in the frequent-pattern mining
procedure, it is necessary to perform one scan of the transaction database in
order to identify the set of frequent items, in terms of the obtained frequency
count.

2. If the set of frequent items of each transaction can be stored in some compact
structure, it may be possible to avoid repeatedly scanning the original

transaction database.

3. If multiple transactions share a set of frequent items, it may be possible to
merge the shared sets with the number of occurrences registered as count. It is
easy to check whether two sets are identical if the frequent items in all of the

~ transactions are listed according to a fixed order.

4. If two transactions share a common prefix, according to some sorted order of
frequent items, the shared parts can be merged using one prefix structure as
long as the count is registered properly. If the frequent items are sorted in their
frequency descending order, there are better chances that more prefix strings

can be shared.
An FP-tree can be defined as follows [HPYMO1]:

1. An FP-tree consists of one root labeled as “null”, a set of item-prefix subtrees
as the children of the root, and a frequent-item-header table.

2. Each node in the item-prefix subtree consists of three fields: (a) item-name,
(b) count, and (c) node-link, where item-name registers which item this node
represents, count registers the number of transactions represented by the
portion of the path reaching this node, and node-link links to the next node in

the FP-tree carrying the same item-name, or null if there is none.

Each entry in the frequent-item-header table consists of two fields: (a) the item-name
and (b) the head of node-link, which is a pointer pointing to the first node in the FP-

tree carrying the item-name.

Based on the observations listed previously, the construction of the FP-tree that
corresponds with the example transaction database (Fig. 2.3) can be implemented as

follows:

First, a scan of the database derives a list of frequent items, < (£:4), (c:4), (a:3), (b:3),
(m:3), (p:3) >, where the number after “:” indicates the item support, in which items
are ordered in frequency descending order. This ordering is important since each path

of a tree will follow this order.

10

Second, the root of a tree is created and labeled with “null”. The FP-tree is

constructed as follows by scanning one more time the transaction database:

1.

The scan of the first transaction leads to the construction of the first branch
of the tree: < (f:1), (c:1), (a:1), (m:1), (p:1) >, in which the frequent items
are listed according to the their order in the list of frequent items.

For the second transaction, since its ordered frequent item list < f ¢, a, b,
m > shares a common prefix < f ¢, a > with the existing path <f ¢, a, m,
p >, the count of each node along the prefix is incremented by 1, and one
new node (b.1) is created and linked as a child of (a:2) and another new
node (m:1) is created and linked as the child of (b:1).

For the third transaction, since its frequent item list < £, b > shares only the
node < f> with the f -prefix subtree, f ’s count is incremented by 1, and a
new node (b:]) is created and linked as a child of (f:3).

The scan of the fourth transaction leads to the construction of the second
branch of the tree, < (c:1), (b:1), (p:1) >.

For the last transaction, since its frequent item list < f, ¢, a, m, p > is
identical to the first one, the path is shared with the count of each node

along the path incremented by 1.

To facilitate tree traversal, an item header table is built in which each item points to

its first occurrence in the tree via a node-link. Nodes with the same item-name are

linked in sequence via such node-links. After scanning all the transactions, the tree,

together with the associated node-links, is depicted in Fig. 2.4.

Header table

head of
item | node-links
rf | =T
e | meeee--
a ~—————l
e
m L -
P

Fig. 2.4. FP-tree Structure [HPYMO1]

1t

2.1.4. Frequent Itemset Mining Methods
Frequent itemset mining methods can be categorized in two individual categories,

Apriori-based methods and Frequent-pattern tree based methods. The methods that

have been developed in both categories are listed in the following sections.

2.1.4.1. Apriori-based methods

Apriori-based methods take advantage of the anti-monotone Apriori principle which

can be expressed as follows:

“if any pattern of length k is not frequent in the database, its super-pattern of length
(k+1) can never be frequent”. [HPYMO04]

The essential idea is to iteratively generate the set of candidate patterns of length
(k+1) from the set of frequent-patterns of length k (for k > 1) and check their

corresponding occurrence frequencies in the database.

Agrawal et al. in [AgSr94] proposed the Apriori algorithm, which exploits the
monotonicity property of the support of itemsets. Together with the proposal of the
Apriori algorithm, Agrawal et al. in [AgSr94] proposed two other algorithms,
AprioriTid and AprioriHybrid. The AprioriTid algorithm reduces the time needed for
the support counting procedure by iteratively replacing every transaction in the

database by the set of candidate itemsets that occur in that transaction.

Shortly after the proposal of the Apriori algorithms described before, Park et al.
proposed in [PaCY95] another optimization, called DHP (Direct Hashing and
Pruning) to reduce the number of candidate itemsets. During the kth iteration, when
the supports of all candidate k-itemsets are counted by scanning the database, DHP
already gathers information about candidate itemsets of size k + 1 in such a way that

all (k + 1)-subsets of each transaction after some pruning are hashed to a hash table.

12

The DIC algorithm, proposed by Brin et al. in [BMUT97], tries to reduce the number
of passes over the database by dividing the database into intervals of a specific size.
First, all candidate patterns of size 1 are generated. The supports of the candidate sets
are then counted over the first interval of the database. Based on these supports, a new
candidate pattern of size 2 is already generated if all of its subsets are already known
to be frequent, and its support is counted over the database together with the patterns
of size 1. In general, after every interval, candidate patterns are generated and

counted.

2.1.4.2. Frequent-pattern tree based methods

Frequent-pattern tree based methods use the compact data structure of frequent-
pattern trees (FP-tree), which was described previously. The FP-growth algorithm
proposed by Han et al. in [HPYMO04] is the most well known FP-tree based algorithm
that faces the frequent itemset mining problem. The FP-growth algorithm stores the
actual transactions from the database within an FP-tree, facilitating the finding

procedure of all frequent items’ support.

2.2, Fault-tolerant Frequent Itemsets

Real-world data tend to be dirty. As a result, the discovery of knowledge over large
real-world data requires the development of fault-tolerant data mining methods. The
goal of those methods is the extraction of approximate and more general fault-tolerant

patterns from database, instead of finding exact patterns.

On the other hand, frequent pattern mining often generates a large number of frequent
itemsets, which reduces not only the efficiency, but also the effectiveness of mining.
This happens due to the fact that users have to sift through a large number of mined
results to find the useful ones. Therefore, the effectiveness of frequent pattern mining

is improved by fault-tolerant frequent pattern mining.

13

An itemset can be characterized as an approximate frequent itemset if a percentage of
its items is frequent in the transaction database. As a result, all fault-tolerant frequent
itemsets can be produced by using this slight relaxation of the frequent itemsets’

notion.

Consider the transaction database shown in Fig 2.5, if the minimal support threshold
is set to 3, there exists no pattern with more than two items, as there are many short
patterns, with low support counts. However, longer approximate frequent patterns
with support count equal to 3 or more can be extracted from such a database. For

example, transactions 10, 30 and 50 contain four out of five items: a, b, ¢, e and f.

Transaction D

10 b6, f
20 d, e, g
30 ab,c.e
40 a,d, [
50 abe, [

Fig. 2.5. Transaction Database TDB [Peth01]

2.2.1. Fault-tolerant Frequent Itemsets Definition

Given a fault tolerance (6 > 0) and an itemset P such that |P| >J, a transaction 7' =
(tid, X) is said to FT-contain itemset P if and only if there exists P'c P such that
Pc X and |[P|2 QPI-— 5), which is equivalent to [P X |2 (]P|—5). The number of
transactions in a database FT-containing itemset P is called the FT-support of P,

denoted as ;JB(X).

The set of transactions FT-containing itemset X is called the FT-body and is denoted

item

as B(X). Given a frequent-item support threshold min_sup™" and an FT-support

threshold min_sup™, an itemset X is called a fault-tolerant frequent pattern, or an FT-

pattern, if and only if:

14

1. sup(X)2 min_sup®" and

item

2. for each item x € X, sup;, (x)2min_sup™”", where sup; (x) is the

number of transactions in E(X) containing item x.

The frequent-item support threshold is used to filter out infrequent items, whereas FT-
support threshold is used to capture frequent patterns in the sense of allowing at most

o0 mismatches. .

Apart from the two thresholds mentioned above, there also exists the length threshold
denoted as min_I (min_I > ¢), which is applied for having as an output only FT-

patterns consisting of at least min_[items.

An item x is called a global frequent item if and only if sup(X)> min_sup™™, which
means that it appears in more than min_sup™™ transactions. It holds that FT-patterns

contain only global frequent items and sup(X)2 sup(X), for any itemset X.

Considering the definitions listed above, the Fault-Tolerant Itemset Mining Problem
can be defined as follows:

“Given a transaction database, a fault tolerance, a frequent-item support threshold,
an FT-support threshold and a length threshold, the problem of fault-tolerant frequent
pattern mining is to find the complete set of FT-patterns passing the length
threshold.” [Peth01]

Returning to the transaction database TDB shown in Fig. 2.5 and setting the frequent-
item support threshold min_sup™™ = 2, the FT-support threshold min_sup™ =3 and

the fault-tolerance d = 1, which means that only one mismatch is allowed, it holds that
for itemset X = abcef, B(X) includes transactions 10, 30 and 50, each of them FT-

contains X. Also, each item in X appears in at least two transactions in B(X). As a

result, itemset abcef can be considered as an FT-frequent pattern.

15

A variant of the problem described above is the top-K Fault-Tolerant Itemset Mining
problem, which requires to find only the top-K FT-frequent itemsets according to

their fault-tolerant frequency.

2.2.2. Fault-tolerant Frequent ltemset Mining Methods

2.2.2.1. Apriori-based methods

Apriori-based fault-tolerant frequent itemset mining methods extend the Apriori
heuristic in order to face the fault-tolerant frequent itemset mining problem and are

based in the heuristic that follows up:

“if X (1X|>0) is not an FT-pattern, then none of its supersets is an FT-pattern, where 6

is the fault tolerance”

Pei et al. based on this extended heuristic, implemented in [PeTHO1] the FT-Apriori
algorithm (Fault-Tolerant Apriori algorithm), which tackles efficiently the problem

mentioned before.

2.2.2.2. Binary Vector-based methods

Those methods are based on design of binary vectors, called Appearing Vectors that
are used for indicating the distribution of candidate fault-tolerant frequent itemsets in

- the transaction database.

Koh et al. in [KoY005] proposed a vector-based algorithm, called VB-FT-Mine
(Vector-Based Fault-Tolerant frequent pattern Mining), used for speeding up the

process of mining fault-tolerant frequent patterns.

16

Yang et al., proposed in [YaFB0!] the GGA algorithlﬁ (Greedy Growing Algorithm),
which exploits the sparseness of the underlying data to find large itemsets that are
correlated over database records. They took advantage of the transaction coverage
notion, which allowed them to extend the algorithm and view it as a fast clustering

algorithm for discovering segments of similar transactions in binary sparse data.

2.3. Dense Frequent Itemsets

If an itemset is found to be frequent, all of its items must co-occur sufficiently often,
which is rare in real-world data. A generalization of frequent itemsets is given by
replacing the requirement of perfect co-occurrence by partial co-occurrence, requiring
that an itemset has at least a proportion 1—¢ of items present in at least a proportion f
of database rows, where f is the e-approximate frequency and & represents the

percentage of fault tolerance.

This generalization, which was described in Section 2.2 leads to two problems. The
first one has to do with the generation of many approximately frequent itemsets
without meaningful information, whereas the second one is associated with the fact
that the usual kind of itemset mining algorithms, like Apriori, are not easily
generalized to the new task [SeMa04].

Those problems can be -illustrated taking into consideration the two example
databases (a) and (b) of Fig. 2.6.

A BCDEVFGGH A B C

11 1 1 1 0 0 0 1 1 0 0
1 1 1t 1 0 g @ t 0 1 0
111 11 0 ¢ 0O 1 0 0 1
t 1 v 11 00 0 U 1 1 0
1111 1 0 ¢ @ 0 1 0 1
t 11 1 1 0 0 o 0 0o 1 1

{a) {b)
Fig. 2.6. Two Example Databases [SeMa04]

17

Fig. 2.6 (a) can be used for the description of the first problem. It is obvious that
itemset ABCDE is frequent. However, a multitude of approximately frequent sets
exist with &€ = 0.5, such as ABCFGH, ABCDFGH, ABCDEFGH etc. and beyond the

fact that ABCDE is frequent, those sets give us no new information.

Fig. 2.6 (b) is used for the illustration of the second problem. Itemset ABCD has 0.5-
approximate frequency 100%, but the approximate frequencies of its subsets are

lower. For example, the approximate frequency for 4 is 50%, for 4B is 83% and for

ABC is 67%.

Thus a set can be approximately frequent having none of its nontrivial subsets

frequent. This precludes pruning the candidate itemsets in the way that Apriori and

other algorithms do.

The definition of dense itemsets aids to the avoidance of both problems.

2.3.1. Dense Itemsets Definition

An itemset X is (o, J)-dense, given two parameters o and J, if for any subset ¥ c X,

there is a set 7y of ¢ database rows such that in the subdatabase defined by ¥ and ry at

least a fraction ¢ of items are present.

A binary database DB = <R, r> consists of a finite set R of attributes, also known as

items, and a finite multiset r = {17, 12, . . ., ty} of transactions, which are subsets of R.

The frequency of an itemset X < R in a database DB = <R, r> is the number of

transactions that include all the attributes of X, which can be typically defined as
freq®X) =|{ter|t2X}|

The weak density of an itemset X c R, which can noted as wdens(X, r), equals to:

wdens(X ,r) = %’i’—,}%

18

and represents the average fraction of items that are present in a set of transactions.
Given a number o between zero and the size of the relation, the weak density at
support ¢ of X can be defined as well and is equal to:

wdens(o, X, r) = max wdens(X,r’),

where the maximum is taken over all o-element submultisets »’ of r.

Taking into account the definitions given above, an itemset can be characterized as
weakly (o, 5)-dehse, if its weak density at support ¢ exceeds d, where ¢ and ¢ are

predefined parameters.

The density dens(s,X) of an itemset X at support level o is the minimum of the weak

densities of all non-empty subsets of X, which can be formally described as follows:

dens(c,X) = Jnin wdens(oc,Y)

Taking advantage of the definition stated above, an itemset X can be characterized as
(strongly) (o,)-dense, if it holds that dens(s,X) > 6.

Consider the example database of Fig. 2.7. The supports ¢ at which the listed sets can

be characterized as weakly (o, 0.5)-dense are illustrated in Fig. 2.8.

- DO T SO
oo~~~ |0
QG-—-«—.—*OQ'-*Q‘JOQ
= Y - - ko)
oo~ D Dao|Y

OO QO = e i | o

Fig. 2.7. Example Database [SeMa04]

19

set support

A 10

B

AB

BC

ABC
BCD
ABCD
ABCDE
BCDEF
ABCDEF

G A A WD W

Fig. 2.8. Supports ¢ (weakly (o, 0.5)-dense listed sets) [SeMa04]

2.3.2. Dense Itemsets Mining Methods

Existing algorithms find all dense itemsets from large collections of binary data and

are based on the familiar A-priori idea:

“for each h > 1, given dense sets of size h, form candidate sets of size h+1, and then

do a database pass to verify which candidates indeed satisfy the density condition”.

Seppénen et al. in [SeMa04] proposed the Dense-Sets algorithm, which performs a
levelwise search to find all dense itemsets and can be extended into the variant
problem of finding the k densest sets, with a given support, or the k best supported

sets with a given density.

2.4. Association Rules

Mining of association rules is an important data mining problem. Mining association
rules from a transaction database involves the finding of rules such as: “4 customer
who buys item X and item Y is also likely to buy item Z in the same transaction”,

where X, Y and Z are initially unknown.

20

2.4.1. Association Rule Mining Problem

The association rule mining problem can be decomposed into two subproblems:
1. Find out all frequent itemsets, which are the sets of items that are contained in
a sufficiently number of tramsactions, with respect to a minimum support
threshold
2. From the set of frequent itemsets found, find out all the association rules that

have a confidence value exceeding a minimum confidence threshold

From the two problems mentioned above, the second one is straightforward, whereas

the first one has been a subject of many major research efforts [ChLK97].

Let I = {i,, i, ..., i,,} be the set of items and D the transaction database. For each

transaction T of the transaction database it holds that T 1.

An association rule can be characterized as an implication of the form X = ¥, where

XclLYclandXNY=0.

An association rule X = Y holds in the database D with confidence c%, if no less than
¢% of the transactions in D that contain X, also contain Y. An association rule X = Y
has support 5% in D, if oy, y = |D| X 5%, where oy, yis the support count of the

itemset XuY.

If s% is the given support threshold, the association rule mining problem is reduced to

the problem of finding the set L = {X | X € I A 6, > |D| X 5%} or the set L;, where
symbol L, denotes the set of all frequent k-itemsets in L, where each k-itemset

contains exactly k items.

The corresponding set of association rules that are extracted from the example
transaction database Z7 in Section 2.1.1 (Fig. 2.1), according to solution of the

problem described above, is shown in Fig. 2.9.

21

Rule Support | Frequency | Conlidence
{beer} = {chips} 2 50% 100%.
{beer} = {wine} 1 25%, 50%
{chips} = {beer} 2 50% B6%
{pizza} = {chips} 1 25% 0%
{pizza} = {wine} 1 25% 50%
{wine} = {heer} 1 25% 0%
{wine} = {chips} 1 25% 50%,
{wine} = {pizza} 1 25% 50%
{bwer, chips} = {wine} 1 25% 50%
{beer, wine} = {chips} 1 25% 100%
{chips, wine} = {beer} 1 25% 100%
{beer} = {chips, wine} 1 25% 50%
{wine} = {beer. chips} 1 25%. 50%

Fig. 2.9. Association Rules and their Support and Confidence in D [Goet03]

2.5. Maintenance of Association Rules

Transaction databases are not static databases, because several updates are constantly
being applied to them. More specifically, new records (transactions) are added to
record purchase activities. Older records in the database are deleted from the database
and existing records may be edited or changed, due to corrections of manual

operational errors or other reasons.

Consequently, new association rules may appear in the database and at the same time,
some existing association rules would become invalid. The problem that arises
involves the maintenance of discovered association rules, according to the insertions,

deletions or modifications of the transactions in the transaction database.

- 2.5.1. Update Problem of Association Rules

The update activities take place in a transaction database D include insertions and

deletions. Also, modification activities can be treated as deletions followed by

insertions. A~ denotes the set of deleted transactions, while A1 denotes the set of

newly added transactions. The updated database, which is denoted as D’ equals to

22

D’ = (D — A°) U A*. D~ denotes the set of unchanged transactions and it is equal to

D-=D-A=D’'-A™.

The definitions of all the symbols described above are include in Table 2.5.1 that

follows up.
Table 2.1. Definitions of Several Symbols
database Support count of itemset Frequent k-itemsets
v

A" oy -

D - -

A oy -
D=A"uD ox Ly
D’=DUA’ G'x L'k

The new support count of an itemset X in the updated database D’ is defined as o,

- The set of frequent itemsets in D’ is denoted as L’, whereas L’, denotes the set of
frequent k-itemsets in L’. The support count of an itemset X in the database AT is

denoted as 8y and 8% is the corresponding support count in A™.

As a result of the previous mining procedure on the old database D, L and o, VXel

are known. Consequently, the update problem can be defined as follows:

“Find L’ and 0’ ¥ X € L’ efficiently, given the knowledge of D, D’, A-, D", A*, L
andoyV XelL”.

Fig. 2.10 illustrates the deletion of a transaction belonging to the depicted transaction
database.

23

Transactions: (I = {4,B,C,D,£})

A {[A B 7]
A B C
D¢ __HA D '
D B D D
¢ D
Frequent itemsets (Support threshold s = 25%)
inD=A"UD":
Itemsets(X) | A|B|C | D | AB
ox |3]3]2]3]2

Fig. 2.10. A+ = @ [ChLK97]

By observing this transaction database, it is found out that the original database D,
before the deletion of any transaction, contains 5 transactions. In this state of the
transaction database, if the support threshold is set to 25% the frequent itemsets that

are extracted to L are those with support count no less than 5 x 25% = 1.25.

The next state of transaction database D results from the deletion of transaction (1,

{A, B, E}), which belongs to A-. As a result from this deletion, database D consists of
4 transactions and the frequent itemsets belonging in L’ are those in D’ with support

count no less than 4 X 25% = 1.

Fig. 2.11 illustrates the insertion of a transaction into the transaction database.

Transactions: (I = {A,B,C,D,€})

A& {[A B £].
[B C ‘
A D ,
B D D
C D
at{ C D

Frequent itemsets (support threshold s = 25%)
in D' = D~ U At

Itemsets(X) | A | B|C | D | CD
7 12121314 2

D

D-

Fig. 2.11. |A+|> 0 [ChLK97]

24

The difference from the previous example is that apart from the deletion of
transaction (1, {A, B, E}) from database D, an insertion of transaction (6, {C, D})

takes also place into database D.

The original transaction database consists of 5 transactions. After inserting transaction
(6, {C, D}), which belongs to database At and deleting transaction (1, {A, B, E}),
which belongs to A-, the resulting updated transaction database consists of 5
transactions. Consequently, frequent itemsets in L’ are those itemsets in D’ with

support count no less than 5 x 25% = 1.25.

2.5.2. Methods for Maintaining Discovered Association Rules

2.5.2.1. Apriori-based methods

Apriori-based methods use the anti-monotone Apriori principle in order to generate
smaller number of candidates, meanwhile taking advantage of knowledge acquired
from a previous mining procedure. Cheung et al. in [CHNW96] proposed the FUP
algorithm, which handles only the case of transaction insertions in the database.
Cheung et al. in [ChLK97] proposed the FUP,, which handles insertions, as well as

deletions and modifications.

2.5.2.2. Frequent-pattern tree based methods

Frequent-pattern tree based methods are based on the structure of frequent-pattern
trees. Koh et al. in [KoSh04] proposed the AFPIM algorithm, which handles
insertions, deletions and modifications and adjusts or reconstructs the structure of the

FP-tree according to the changes that take place in the transaction database.

25

2.6. Field Matching Techniques

Database entries are usually mismatched due to typographical variations or errors

within the string data. Multiple techniques have been developed in order to extract the

similarity of strings, taking into consideration potential typographical variations.

Some of the field matching techniques, which are used for data de-duplication

purposes, will be presented in the following paragraphs.

2.6.1. Character-based similarity metrics

Character-based similarity metrics are designed to deal with typographical errors.
The main character-based similarity metrics are: (i) Edit distance, (ii) Affine gap
distance, (iii) Smith-Waterman distance, (iv) Jaro distance metric and (v) Q-gram

distance.

The edit distance between two strings o; and o, is the minimum number of edit
operations of single characters needed to transform the string o; into ©,. There are
three types of edit operations: (i) insert a character into the string, (ii) delete a
character from the string, and (iii) replace one character with a different character. In
its simplest form, the cost for each edit transformation is equal to 1. This distance is
also referred to as Levenshtein distance. Needleman and Wunsch [NeWu70] modified
the original edit distance model, and allowed for variable costs for different edit

distance operations.

A main string variation includes the truncation or the shortening of a specific string.
For example, the entity “John A. Smith” could be written as “Jonathan Abraham
Smith”. The affine gap distance can handle with this problem introducing two extra

operations: (i) open gap and (ii) extend gap.

Smith-Waterman distance is an extension of the edit and affine gap distances. This

metric considers that mismatches at the beginning and the end of strings have lower

26

costs than mismatches in the middle, allowing better substring matching. Therefore,
the strings “Prof. John A. Smith, University of lllinois” and “John A. Smith, Prof.”
can match within short distance using the Smith-Waterman distance, since the

prefixes and suffixes are ignored.

Jaro distance metric was mainly used for comparison of last and first names. The Jaro

metric for strings o; and o, is computed following the next steps:

1) Compute the sting lengths | o;| and | 02|
2) Find the “common characters” ¢ in the two strings; common are all the

characters a,/j] and a3/j] for which o;/j] = o,/j] and for which a,/j] = o2/j]
aud fi- | < winfor o}

3) Find the number of transpositions t; the number of transpositions is computed
as follows: compare the iy, common character in ¢; with the iy common

character in ¢,. Each non-matching character is a transposition.

The Jaro comparison value is:

.__+_——-—
|

e ¢ c—t/2
Jaro(o,,0,)= 5(lO' | —c—)
2

The g-gram distance is coinputed using the g-grams. A q-gram is a short character
substring of length g of the database strings. The intuition behind the use of g-grams
as a foundation for approximate string matching is that two strings ¢; and o, are
similar if they share a large number of g-grams in common. Given a string o, its g-

grams are obtained by “sliding” a window of length g over the characters of o.

Letter q-grams, including trigrams, bigrams, and/or unigrams, have been used in a
variety of ways in text recognition and spelling correction. One natural extension of g-
grams are the positional g-grams, which also record the position of the g-gram in the
string. Gravano et al. [Grav+01] showed how to use positional g-grams to locate

efficiently similar strings within a relational database.

27

2.6.2. Token-based similarity metrics

Character-based similarity metrics work well for typographical errors. However, it is
often the case that typographical conventions lead to rearrangement of words (e.g.,
“John Smith” vs. “Smith, John”). In such cases, character-level metrics fail to capture

the similarity of the entities. Token-based metrics try to compensate for this problem.

Monge and Elkan [MoEI196] proposed a basic algorithm for matching text fields based
on atomic strings. An atomic string is a sequence of alphanumeric characters
delimited by punctuation characters. Two atomic strings match if they are equal, or if
one is the prefix of the other. Based on this algorithm, the similarity of two fields is
the number of their matching atomic strings divided by their average number of

atomic strings.

Cohen [Cohe98] described a system named WHIRL that adopts from the information
retrieval the cosine similarity combined with the ¢ idf weighting scheme to compute
the similarity of two fields. Cohen separates each string o into words and each word w

. is assigned a weight

u,(w)=log(tf, +1)-loglid,),

D
where ff, is the number of times that w appears in the field and idf,, is I——| , where n,,
n

w

is the number of records in the database D that contain w. The #f.idf weight for a word
w in a field is high if w appears a large number of times in the field (large #f,) and w
is a sufficiently “rare” term in the database (large idf,). For example, given a set of
company names, infrequent terms such as “/BM” or “Sun” will have higher
idf,, values than frequent terms such as “Corp”. The cosine similarity of o; and o is

defined as

28

Z' g, (7)
o)=L T n n

The cosine similarity metric works well for a large variety of entries, and is
insensitive to the location of words, allowing natural word moves and swaps. For
example, the cosine similarity metric regards “John, Smith” as equivalent to “Smith,
John”. Also, introduction of frequent words affects only minimally the similarity of
the two strings due to the low idf weight of the frequent words. For example, “John

Smith” and “Mr. John Smith”’ would have similarity close to one.

Unfortunately, this similarity metric does not capture word spelling errors, especially
if they are pervasive and affect many of the words in the strings. For example, the
strings “Compter Science Department” and “Deprtment of Computer Scence” will
have zero similarity under this metric. Bilenko et al. [Bile03] suggest the SoftTF-IDF
metric to solve this problem. In the SoftTF-IDF metric, pairs of tokens that are
“similar” and not necessarily identical are also considered in the computation of the
cosine similarity. However, the pi'oduct of the weights for non-identical token pairs is

multiplied by the similarity of the token pair, which is less than one.

Gravano et al. [GIKS03] extended the WHIRL system to handle spelling errors by
using g-grams, instead of words, as tokens. In this setting, a spelling error minimally
affects the set of common g-grams of two strings, so the two strings “Gteway
Communications” and “Comunications Gateway” have high similarity under this
metric, despite the block move and the spelling errors in both words. This metric
handles the insertion and deletion of words nicely. The string “Gateway
Communications” matches with high similarity the string “Communications Gateway
International” since the g-grams of the word “International” appear often in the

relation and have low weight.

»

29

2.6.3. Phonetic similarity metrics

Character-level and token-based similarity metrics focus on the string-based
representation of the database records. However, strings may be phonetically similar
even if they are not similar in a character or token level. For example, the word
“Kageonne” is phonetically similar to “Cajur” despite the fact that the string
representations are very different. The phonetic similarity metrics are trying to

address such issues and match such strings.

Russell invented Soundex, which is the most common phonetic coding scheme.
Soundex is based on the assignment of identical code digits to phonetically similar

groups of consonants and is used mainly to match surnames.

The New York State Identification and Intelligence System (NYSIIS) was proposed by
Taft [Taft70]. The NYSIIS system differs from Soundex in that it retains information
about the position of vowels in the encoded word by converting most vowels to the
letter A. Furthermore, NYSIIS does not use numbers to replace letters; instead it
replaces consonants with other, phonetically similar letters, thus returning a purely

alpha code.

Philips suggested the Metaphone algorithm as a better alternative to Soundex. Philips
suggested using 16 consonant sounds that can describe a large number of sounds used
in many English and non-English words. Double Metaphone is a better version of
Metaphone, improving some encoding choices made in the initial Metaphone and
allowing multiple encodings for names that have various possible pronunciations. For
such cases, all possible encodings are tested when trying to retrieve similar names.
The introduction of multiple phonetic encodings greatly enhances the matching

performance, with rather small overhead.

30

2.6.4. Numeric similarity metrics

While multiple methods exist for detecting similarities of string-based data, the
methods for capturing similarities in numeric data are rather primitive. Typically, the
numbers are treated as strings (and compared using the metrics described above) or
simple range queries, which locate numbers with similar values. Koudas et al.
[KoMS04] suggest, as direction for future research, consideration of the distribution
and type of the numeric data, or extending the notion of cosine similarity for numeric

data to work well for duplicate detection purposes.

2.7. Duplicate Record Detection

One of the most important tasks in data cleaning is the de-duplication of records, i.e.,
the detection of multiple representation of a single entity. This procedure implies
matching between records, a procedure which is not straightforward in real world
problems. For example, duplicate records may be erroneous due to a combination of

factors such as transcription errors or incomplete information.

Elmagarmid et al. in [EIIV06] describe the methods that deal with the problem of data
deduplication. The presented methods can be broadly divided into two categories:

e Approaches that rely on training data to “learn” how to match the records.
This category includes (some) probabilistic approaches and supervised
machine learning techniques.

e Approaches that rely on domain knowledge or on generic distance metrics to
match records. This category includes approaches that use declarative
languages for matching, and approaches that devise distance metrics

appropriate for the duplicate detection task.

Elmagarmid et al. in [EIIV06] classified the data de-duplication methods in five main

categories, which are described in the following paragraphs.

31

2.7.1. Notation

The tables that need to be matches are denoted as 4 and B and it is assumed, without
loss of generality, that 4 and B have n comparable fields. In the duplicate detection
problem, each tuple pair <a, b>, (a € 4, b € B) is assigned to one of the two classes

Mand U.

The class M contadins the record pairs that represent the same entity (“match”’) and the

class U contains the record pairs that represent two different entities (“non-match”).

Each tuple pair <a, b> is represented as a random vector x = [x1..x,]7 with n
components that correspond to the » comparable fields of 4 and B. Each x; shows the
level of agreement. of the ith field for the records @ and b. Many approaches use

binary values for the x;’s and set x; = 1 if field i agrees and let x; = 0 if field 7

disagrees.

2.7.2. Probabilistic Matching Models

Newcombe et al. [NKAJ59] were the first to recognize duplicate detection as a
Bayesian inference problem. Then, Fellegi and Sunter [FeSu69] formalized the

intuition of Newcombe et al. introducing the notation described above.

The comparison vector x is the input to a decision rule that assigns x to U or to M. The
main assumption is that x is a random vector whose density function is different for
each of the two classes. Then, if the density function for each class is known, the
duplicate detection problem becomes a Bayesian inference problem. Various
techniques have been developed for addressing this “general” decision problem.
Some of those techniques are: (i) Bayes Decision Rule for Minimum Error, (ii) Bayes
Decision Rule for Minimum Cost, and (iii) Decision with a Reject Region. Each
method mentioned above takes advantage of a decision rule based on probabilities.

This decision rule is used in order to decide whether x belongs to U or M.

32

2.7.3. Supervised and Semi-Supervised Learning

The development of new classification techniques in the machine learning and
statistics communities prompted the development of new de-duplication techniques.
The supervised learning systems rely on the existence of training data in the form of

record pairs, pre-labeled as matching or not.

One set of supervised leaming techniques treat each record pair <a, b>
independently, similarly to the probabilistic techniques mentioned in the previous
paragraph. Cochinwala et al. [CKLS01] used the well-known CART algorithm, which
generates classification and regression trees, a linear discriminant algorithm, which
generates linear combination of the parameters for separating the data according to
their classes, and a “vector quantization” approach, which is a generalization of
nearest neighbor algorithms. The experiments which were conducted indicate that

CART has the smallest error percentage.

Bilenko et al. [Bil+03] use SVMIight to learn how to merge the matching results for
the individual fields of the records. Bilenko et al. showed that the SVM approach
usually outperforms simpler approaches, such as treating the whole record as one
large field. A typical post-processing step for these techniques is to construct a graph
for all the records in the database, linking together the matching records. Then, using
the transitivity assumption, all the records that belong to the same connected
component are considered identical. However, the transitivity assumption can

sometimes result in inconsistent decisions.

The supervised clustering techniques described above have records as nodes for the
graph. Singla and Domingos [SiDo04] observed that by using attribute values as
nodes, it is possible to propagate information across nodes and improve duplicate
record detection. For example, if the records <Microsoft, CA> and <MicrosofiCorp.,
California> are deemed equal, then C4 and California are also equal, an information

that can be useful for other record comparisons.

33

Pasula et al. [Pas+02] proposed a semisupervised probabilistic relational model that
can handle a generic set of transformations. While the model can handle a large
number of duplicate detection problems, the use of exact inference results in a
computationally intractable model. They proposed the use of a Markov Chain Monte
Carlo (MCMC) sampling algorithm to avoid the intractability issue. However, it is
unclear whether techniques that rely on graph-based probabilistic inference can scale

well for data sets with hundreds of thousands of records.

2.7.4. Active-Learning-Based Techniques

One of the problems with the supervised learning techniques is the requirement for a
large number of training examples. While it is easy to create a large number of
training pairs that are either clearly non-duplicates or clearly duplicates, it is very
difficult to generate ambiguous cases that would help create a highly accurate
classifier. Based on this observation, some duplicate detection systems used active
leaming techniques to automatically locate such ambiguous pairs. Unlike an
“ordinary” leamer that is trained using a static training set, an “active” learner
actively picks subsets of instances from unlabeled data, which, when labeled, will

provide the highest information gain to the learner.

Sarawagi and Bhamidipaty [SaBh02] designed ALIA4S, a leaming based duplicate
detection system, that significantly reduces the size of the training set. The main idea
behind AL/AS is that most duplicate and non-duplicate pairs are clearly distinct. For
such pairs, the system can automatically categorize them in U and M without the need
of manual labeling. ALIAS requires humans to label pairs only for cases where the

uncertainty is high.

ALIAS starts with small subsets of pairs of records designed for training, which have
been characterized as either matched or unique. This initial set of labeled data forms
the training data for a preliminary classifier. In the sequel, the initial classifier is used
for predicting the status of unlabeled pairs of records. The initial classifier will make

clear determinations on some unlabeled instances but lack determination on most.

34

The goal is to seek out from the unlabeled data pool those instances which, when
labeled, will improve the accuracy of the classifier at the fastest possible rate. Pairs
whose status is difficult to determine serve to strengthen the integrity of the learner.
Conversely, instances in which the learner can easily predict the status of the pairs do
not have much effect on the learner. Using this technique, ALIAS can quickly learn

the peculiarities of a data set and rapidly detect duplicates using only a small number

of training data.

Tejada et al. [TeKMO1], [TeKM02] used a similar strategy and employed decision
trees to teach rules for matching records with muitiple fields. Their method suggested
that by creating multiple classifiers, trained using slightly different data or parameters,

it is possible to detect ambiguous cases and then ask the user for feedback.

2.7.5. Distance-Based Techniques

Active learning techniques require some training data or some human effort to create
the matching models. In the absence of such training data or ability to get human

input, supervised and active learning techniques are not appropriate.

One way of avoiding the need for training data is to define a distance metric for
records. Using the distance metric and an appropriate matching threshold, it is

possible to match similar records, without the need for training data.

One approach is to treat a record as a long field, and use one of the distance metrics to
determine which records are similar. Monge and Elkan [MoEI196], [MoE197] proposed
a string matching algorithm for detecting highly similar database records. The basic
idea was to apply a general purpose field matching algorithm, especially one that is
able to account for gaps in the strings, to play the role of the duplicate detection

algorithm.

35

Cohen [Cohe00] suggested to use the #f.idf weighting scheme, together with the cosine
similarity metric to measure the similarity of records. Koudas et al. [KoMS04]
presented some practical solutions to problems encountered during the deployment of

such a string-based duplicate detection system at AT&T.

Distance-based approaches that conflate each record in one big field may ignore
important information that can be used for duplicate detection. A simple approach is
to measure the distance between individual fields, using the appropriate distance
metric for each field, and then compute the weighted distance between the records. In
this case, the problem is the computation of the weights, which is very similar to the

probabilistic setting described in previous paragraph.

An alternative approach, proposed by Guha et al. [GKMS04] is to create a distance
metric that is based on ranked list merging. The basic idea is that if only one field is
compared from the record, the matching algorithm can easily find the best matches
and rank them according to their similarity, putting the best matches first. By applying
the same principle for all the fields, each record is associated with » ranked lists of
. records, one for each field. Then, the goal is to create a rank of records that has the

minimum aggregate rank distance when compared to all the » lists.

Guha et al. map the problem into the minimum cost perfect matching problem, and
developed efficient solutions for identifying the top-k matching records. The first
solution was based on the “Hungarian Algorithm, a graph-theoretic algorithm that
solves the minimum cost perfect matching problem. Guha et al. also present the
Successive Shortest Paths algorithm that works well for smaller values of & and is
based on the idea that it is not required to examine all potential matches to identify the

top-k matches.

The distance-based techniques described so far, treat each record as a flat entity,
ignoring the fact that data is often stored in relational databases, in multiple tables.
Ananthakrishna et al. [AnCGO02] describe a similarity metric that uses not only the
textual similarity, but the “co-occurrence” similarity of two entries in a database. For

example, the entries in the state column “CA” and “California” have small textual

36

»” ‘

similarity; however, the city entries “San Francisco”, “Los Angeles”, “San Diego”
and so on, often have foreign keys that point both to “CA” and “California”.

Therefore, it is possible to infer that “CA” and California” are equivalent.

Ananthakrishna et al. showed that using “foreign key co-occurrence” information
substantially improves the quality of duplicate detection in databases that use multiple

tables to store the entries of a record.

One of the most important problems of the distance-based techniques is the definition
of an appropriate value for the matching threshold. An appropriate threshold value
could be computed by supervised techniques. However, the main advantage of

distance-based techniques lies in their ability to operate without training data.

2.7.6. Rule-Based Approaches

A special case of distance-based approaches is the use of rules to define whether two
records are the same or not. Rule-based approaches can be considered as distance-

based techniques, where the distance of two records is either 0 or 1.

Wang and Madnick [WaMa89] proposed a rule-based approach for the duplicate
detection problem. For cases in which there is no global key, Wang and Madnick
suggest the use of rules developed by experts to derive a set of attributes that

collectively serve as a “key” for each record. For example, an expert could define the

following rule:

IF age<22 THEN status = UNDERGRADUATE
ELSE status = GRADUATE

By using such rules, Wang and Madnick attempted to generate unique keys that can
cluster multiple records representing the same real-world entity. Lim et al. [LSPR93]

also used a rule-based approach, but with the extra restriction that the result of the

37

rules must always be correct. Therefore, the rules should not be heuristically-defined

but should reflect absolute truths and serve as functional dependencies.

Hernandez and Stolfo [HeSt98] further developed this idea and derived an equational
theory that dictates the logic of domain equivalence. This equational theory specifies
an inference about the similarity of the records. For example, if two persons have
similar name spellings, and these persons have the same address, we may infer that
they are the same person. Specifying such an inference in the equational theory
requires declarative rule language. For example, for an employee database, the

following rule could be developed:

FORALL (r;,r;) in EMPLOYEE
IF rj.name is similar to r.name AND
rj.address = r;.address
THEN r; matches ry

In such a rule similarity is measured by using a string comparison technique and

- matching implies that both records are meant to be duplicates.

AJAX [Galh01] is a prototype system that provides a declarative language for
specifying data cleaning programs, consisting of SQL statements enhanced with a set
of primitive operations to express various cleaning transformations. AJAX provides a
framework wherein the]ogic of a data cleaning program is modeled as a directed

graph of data transformations starting from some input source data.

Four types of data transformations are provided to the user of the system. The
mapping transformation standardizes data, the matching transformation finds pairs of
records that probably refer to the same real object, the clustering transformation
groups together matching pairs with a high similarity value, and finally, the merging
transformation collapses each individual cluster into a tuple of the resulting data

source.

38

Typically, rule-based systems operate with high accuracy. However, those systems
require huge manual efforts from human experts in order to exploit the critical

generated rules.

2.8. Experimental Methodology of Existing Methods

This paragraph describes the datasets and the experimental parameters that are used in
common methods that cope with problems such as the duplicate elimination and off-
line cleaning problem. More specifically, the following paragraphs include a
description of datasets’ nature for each method and the experimental parameters used

for the evaluation of the method’s performance.

2.8.1. Duplicates

Chaudhuri et al. in [CGGMO3] used a clean Customer[name, city, state, zip code]
relation consisting of about 1.7 million tuples from an internal operational data
" warehouse. They created input datasets by introducing errors in randomly selected
subsets of Customer tuples. All characteristics of real data such as variations in token

lengths and frequencies of tokens are preserved in the erroneous input tuples.

They considered two types of error injection methods. The type I method introduces
errors in tokens with equal probability, i.e., all tokens in a column are equally likely to
become erroneous, whereas Type II method introduces errors in tokens with a
probability that is directly proportional to their frequency, i.e., tokens with higher

frequency are more likely to become erroneous.

According to set of signatures they evaluated Normalized Elapsed Time and

Accuracy, whose description is stated below.

Normalized Elapsed Time refers to the elapsed time for processing the set of input

tuples using the fuzzy match algorithm divided by the elapsed time to process one

39

input tuple using the naive algorithm which compares an input tuple with each
reference tuple. If the normalized time for a fuzzy match algorithm is less than the
number of input tuples, then it outperforms the naive algorithm.

Accuracy describes the percentage of input tuples for which a fuzzy match algorithm
identifies the seed tuple, from which the erroneous input tuple was generated, as the

closest reference tuple is its accuracy.

Chaudhuri et al. in [ChGK06] performed all of their experiments by using a customer
relation from an operational data warehouse. Using variant edit similarity threshold
values they estimate the time needed for implementing similarity joins on a relation R

of 25.000 customer addresses with itself.

Yuan et al. in [Sul.S02] evaluate the performance of their method by using synthetic
databases containing records of 13 fields. The errors they introduced in duplicate

records range from small typographical changes to large changes of some fields.

In order to test the performance of their method, they use variant sliding window sizes
.for finding similarities between records belonging in the same window and variant
database duplicate ratios and database sizes as well. More specifically, according to
those variant parameters they evaluated the time required to run each method, the

number of duplicate pairs found and the number of comparisons.

2.8.2. Off-line cleaning

Bhattacharya et al. in [BhGe04] used as datasets, cliques of entities containing
information about authors. Those data were transformed by adding noise using a

probabilistic model.

They evaluate their algorithm by measuring the quality of the clusters generated using
different group and clique size . In order to estimate the cluster quality they use entity
dispersion and cluster diversity as measures of cluster quality. Entity dispersion

reflects the number of different clusters that references corresponding to the same

40

entity are spread over, which means that a perfect de-duplication has dispersion 1,
whereas cluster diversity quantifies the number of distinct entities that have been put

mn the same cluster.

Leung in [Leun04] used a transaction database of 100k records with an average
transaction length of 10 items and a domain of 1000 items. He estimated the run-time
of algorithms according to variant percentages of frequent itemsets satisfying succint

constrains processed before tightening or before relaxing the constraint.

Zhu et al. in [ZhWCO03] used synthetic data from IBM (IBM Synthetic Data) and real-
world datasets from UCI repository (Blake and Merz, 1998). They introduced class
noise in some data instances using a probabilistic noise. In order to estimate their
method’s performance they evaluate the classification accuracy of instances according

to different levels of noise.

Low et al. in [LoLLO01] used two real world datasets, including a company dataset,
which requires complex matching logic and data manipulation and a patient dataset,
-which is a much larger dataset containing many errors. According to different
numbers of duplicate identification rules, they evaluated the run-time needed, the

error percentage and the measure of recall.

41

~ CHAPTER 3. PROBLEM DESCRIPTION AND
PROPOSED METHOD

3.1.Problem Description
3.2.Baseline Method (Fuzzy Match Data Cleaning)
3.3.Improvements: Online Data Cleaning using Qgram tries

- 3.1. Problem Description

In this chapter, we will mainly deal with the approximate match of tuples based on
string-valued attributes. More specifically, the procedure of approximate matching
involves the retrieval of clean tuples, whose similarity with the incoming tuple is
above a threshold value. As shown in Fig. 3.1, if the similarity between an input
customer tuple and its closest reference tuple is higher than some threshold, then the
correct reference tuple is loaded. Otherwise, the input is routed for further cleaning
before considering it as referring to a new customer. A fuzzy match operation that is
resilient to input errors can effectively prevent the proliferation of fuzzy duplicates in

a relation, which represent multiple tuples describing the same real world entity.

The critical ingredient of a fuzzy match operation is the similarity function used for
comparing tuples. In typical application domains, the similarity function must

definitely handle string-valued attributes and possibly even numeric attributes.

42

Given the similarity function and an input tuple, the goal of the fuzzy match operation
is to return the reference tuple being closest to the input tuple. An extension is to
return the closest K reference tuples enabling users, if necessary, to choose one among
them as the target, rather than the closest. A further extension is to only output K or

fewer tuples whose similarity to the input tuple exceeds a user-specified minimum

similarity threshold.
JS— mﬂ
Input Tuple ‘(Fefemnce Table
P : P P S e
E \.WMWM :
a.ééz» tfv.,«”;a;-‘?"“"'”;?; P %';
, \\ - /z\\\\
Lookup™.__No i No Further
Exact Match yfcaedw)»———b- Fuzzy Match ~,..-—->\§\s\n\1:\larlty > 0}?)—» Cleaning
o ™
Yes
Yes
» [oad

Fig. 3.1 Template for Using Fuzzy Match [CGGMO03]

In our problem, the result of a fuzzy match operation applied on an input tuple could

' be one of the following classifications:

e exactly matched, i.e., a reference tuple exactly matched with the input tuple

» approximately matched, i.e., a reference tuple approximately matched with the
input tuple

® not resolved, i.e., a set of K reference tuples enabling users, if necessary, to
choose one among them

e new record, 1.e., no reference is matched with the input tuple

Every input tuple is classified according to its maximum similarity with reference
tuples. If this similarity is above a maximum threshold value, then the input is
classified either as exactly matched, either as approximately matched. If the
maximum similarity is below a minimum threshold, the input tuple is classified as a
new record. Otherwise, the input tuple is classified as not resolved. This procedure is

shown in Fig. 3.2.

43

similarity
maximum

threshold

minimum
threshold

ol
Fig. 3.2. Classification of Input Tuple According to Maximum Similarity

3.2. Baseline Method (Fuzzy Match Data Cleaning)

Chaudhuri et al. in [CGGMO03] adopt a probabilistic approach where the goal is to
return the closest K reference tuples with high probability. The author’s method
’ preprocesses the reference relation to build an index relation, called the error tolerant
index (ETI) relation, for retrieving at run time a small set of candidate reference
tuples, which are compared with the input tuple. Their retrieval algorithm retrieves
with high probability a superset of the K reference tuples closest to the input tuple.

The index relation ETI is implemented and maintained as a standard relation.

The authors propose a fuzzy match similarity function that explicitly considers IDF
token weights and input errors while comparing tuples, an error tolerant index and a
probabilistic algorithm for retrieving the K reference tuples closest to the input tuple,
according to the fuzzy match similarity function.

44

3.2.1. Fuzzy Similarity Function (fins)

Informally, the similarity between an input tuple and a reference tuple is the cost of

transforming the former into the latter. Low transformation costs of input tuples

denote high similarity.

A transformation operation is applied upon a set of tokens derived from the attributes
of a tuple. Supposing v is a reference tuple, the set of tokens included in attribute i is
denoted by tok[v(i)]. For example, if v(i) = “Boeing Company”, then the resulting set
of tokens coming from the tokenization function on v(i) equals to tok/v(i)] = {Boeing,

Company}.

Each of the following transformation operations: (a) token replacement, (b) token
insertion and (c) token deletion is associated with a cost that depends on the weight of

the token being transformed. The weight function for each token can be defined as:

R
w(t, i) = IDF(t,1) = log ﬁ'elq (lt 5

- where freq(t,i) denotes the frequency of a token ¢ in column i and equals to the

number of tuples v in R such that zok(v[i]) contains 7.

More specifically, considering the case where u is an input tuple and v is a reference
tuple, the cost of operations taking place in order to transform u into v is defined as

follows:

o Token replacement. The cost of replacing a token ¢/ in tok(ufi]) by token ¢2
from tok(v[i]) is ed(t,, t;) - w(t; ,i), where tok(u[i]) is the set of tokens held on
attribute u/i] and ed(t,, t;) is the edit distance between ¢; and ;. If #; and 1, are
from different columns, the cost is defined to be infinite.

e Token insertion: The cost of inserting a token ¢ into ufi] is cis * W(%, i), where
the token insertion factor c, is a constant between 0 and 1.

e Token deletion: The cost of deleting a token ¢ from u/i] is w(z, i).

45

Transforming u into v requires each column /] to be transformed into v/i] through a
sequence of transformation operations, whose cost is defined to be the sum of costs of
all operations in the sequence. The transformation cost tc(ufi], v{i]) is the cost of the
minimum cost transformation sequence for transforming »/i] into vfi]. The cost tc(u,
v) of transforming # into v is the sum over all columns i of the costs zc(u/i], v[i]) of
transforming «/i/ into v/i] and equals to:

te(u,v) = Ztc(u[il_v[i])

The fuzzy match similarity function fins(u, v) between an input tuple u and a reference
tuple v in terms of the transformation cost fc(%, v) can be defined as:
Sfms(u,v)= l—mjn(-ti(—lﬁﬂ)1 .O) ,
wlu)
where w(u) is the sum of weights of all tokens in the token set fok(u). Token set fok(u)

denotes the multiset union of sets fok(ay),...,tok(a,) of tokens from the tuple

ufay, ...,ay].

Suppose an example reference relation R with attributes (+,, ;) and |R| = 10 and tuples
~u = (“John”, “Ford”) and v = (“Jahn”, “Ford”). If two reference tuples contain
attribute values “John” and “Ford” in attributes r; and r, respectively, the

transformation cost and the fins function are computed as follows:

tc(u,v) = tc(“John”, “Jahn”) + te(“Ford”, “Ford”)
= ed(ujohn n' u‘]ahn,n) . W(“JOhn n’ r]) + ed(“FO?‘d”, “Ford”) . w(((Fordn’ rZ)

|R| |R|
ﬁeq(”Jo/m ",r,) ﬁeq(”For ",rz)

=1-log 0 - log = longQ =0. 699

tok(u) = tok(uy) U tok(uy) = { “John”, “Ford”}

w() = w(uy) + w(uy) = w(“John Y, r) +w(“Ford”, ry) = logl—:z0 + Iog—lzg = 1.398

ﬁns(u,v) =1 —min (tc(u,v)’ 10] =1-min (?—g—g—z, 10) =1-05=0.5

46

3.2.2. Fuzzy Match

Given an input tuple u, the goal of the fuzzy match algorithm is to identify the
approximate matches, i.e., the K reference tuples closest to u. Particularly, the K-

Fuzzy Match Problem can be defined as follows:

Given a reference relation R, a minimum similarity threshold ¢ (0 < ¢ < 1), the
similarity function fns, and an input tuple u, find the set FM{(u) of fuzzy matches of at
most K tuples from R such that:

1. fms(u, v) >c, for all v in FM(u)

2. fins(u, v) 2 fms(u, v’) for any v in FM{(u) and v’ in R—FM(u)

A naive algorithm scans the reference relation R comparing each tuple with . A more
efficient approach is to build an “index” on the reference relation for quickly
retrieving a superset of the target fuzzy matches. Standard index structures like B+-
" tree indexes cannot be employed in this context because they can only be used for
exact or prefix matches on attribute values. Therefore, during a pre-processing phase,
additional indexing information can be gathered for efficiently implementing the
fuzzy match operation. The additional information can be stored as a standard
database relation and be indexed using standard B+-trees to perform fast exact
lookups. Chaudhuri et al. in [CGGMO3] refer to this indexed relation as the error
tolerant index (ETI). The authors’ challenge was to identify and effectively use the
information in the indexed relation. The authors’ solution was based on the insight of
deriving from fins an easily indexable similarity function fins® with the following

characteristics:

1. fins™" upper bounds fins with high probability,
2. The error tolerant index (ETI) relation can be built for retrieving efficiently a

small candidate set of reference tuples whose similarity with the input tuple ,

apx

as per fins™", is greater than the minimum similarity threshold c.

47

Therefore, with a high probability the similarity as per fins between any tuple in the
candidate set and u is greater than c. From this candidate set, the K reference tuples

closest to can be returned as the fuzzy matches.

The authors used fins®" as an approximation of fins for which they could build an
indexed relation. fins™" is obtained (a) by ignoring differences in ordering among
tokens in the input and reference tuples, and (b) by allowing each input token to
match with the “closest” token from the reference tuple. Since disregarding these two
distinguishing characteristics while comparing tuples can only increase similarity

between tuples, fins™ is an upper bound of fins.

For example, the tuples [boeing company, seattle, wa, 98004] and [company boeing,
seattle, wa, 98004] which differ only in the ordering among tokens in the first field

are considered identical by fims™",

In fins®, the authors measured the closeness between two tokens through the
- similarity between sets of substrings of tokens, called ggram sets, instead of edit
distance between tokens used in fins. Further, this ggram set similarity is estimated
well by the commonality between small probabilistically chosen subsets of the two
qgram sets. This property can be exploited in order to build an indexed relation for
Jfims™*, because for each input tuple only the reference tuples whose tokens share a

number of chosen gqgrams with the input tuple must be identified.

Given a string s and a positive integer g, the ggram set denoted by QG,(s) is the set of
all size q substrings of 5. For example, the 3-gram set QG;(“boeing”) is {boe, oei,
ein, ing}.

% it is necessary to compute the token min-hash signature

In order to estimate fms
and the min-hash similarity between two tokens. Let U denote the universe of strings
over an alphabet X, and 4;:U—N, i = 1,...,H be H hash functions mapping elements of

U uniformly and randomly to the set of natural numbers N. Let S be a set of strings.

48

The min-hash signature mh(S) of § is the vector /mh,(S), ..., mhy(S)] where the i
coordinate mh;(S) is defined as mh,(S)=argmin#,(a).
ae$S

The intuition behind the hash functions 4; is to isolate qgrams in specific coordinates.
It is obvious that variable H indicates the number of qgrams being isolated. The
selection is random, but each hash function returns a qgram standing in a specific

coordinate of the token.

Token similarity can be defined in terms of the min-hash similarity between their
qgram sets. Let ¢ and H be posttive integers. Let I/X] denote an indicator variable
over boolean X, ie., I/X] = 1 if X is true, and O otherwise. The min-hash similarity

simun(t1,t2) between tokens ¢/ and 2 is:

_]1; i 1lmh(QG(t,)) = mh(0G(,))]

Simmh(tl’t2)=
From the above definition, it is obvious that the min-hash similarity computes the

average number of common qgrams returned from the same hash function.

-

Suppose tokens #; = “William” and ¢, = “Williams” and H = 3. A possible min-hash
signature might be mh(QG(t;)) = [Wil, Ili, iam] and mh(QG(t,)) = [Wil, lli, ams] for t;
and 1, respectively. Two out of three hash functions returned the same ggram for both

tokens. That means that tokens #; and #, have 2 qgrams in common and the min-hash

similarity simu(1), t;) is equal to %-2.

Taking into consideration the previous definition of min-hash similarity, the fins

apx

approximation fins*" can be defined as follows:

Let u, v be two tuples d; = (I-1/g) be an adjustment term.

s (u,v)=—— w(t)- Max (ssimm,, (QG(t),QG(r))+ a’q)

W(u) i tewokluli]) retok (v[i])

49

Suppose u is the input tuple and v is a reference tuple. From the above definition, it is
obvious that fms®” searches for every attribute token of input tuple # the most similar
corresponding attribute token of tuple v, in terms of min-hash similarity. Maximum
similarities are computed and multiplied with the weight of the matched input token.

% since their weight

This means that infrequent tokens play an important role in fins
is greater than a frequent token. fins®” is computed by dividing this weighted sum

with the overall weight of the input tuple u.

3.2.3. The Error Tolerant Index (ETI)

The primary purpose of ETI is to enable, for each input tuple #, the efficient retrieval
of a candidate set S of reference tuples whose similarity with u is greater than the

minimum similarity threshold c.

From the definition of fins™, fins™(u,v) is measured by comparing min-hash
signatures of tokens in fok(u) and tok(v). Therefore, for determining the candidate set,
it is essential to efficiently identify for each token ¢ in fok(u), a set of tids
corresponding to reference tuples sharing min-hash qgrams with that of ¢ In order to
identify such sets of tids, ETI holds each qgram s along with the list of all rids of

reference tuples with tokens whose min-hash signatures contain s.

Suppose R is the reference relation and H the size of the min-hash signature. ET/ as
shown in Fig. 3.3 is a relation with the following schema: [QGram, Coordinate,
Column, Frequency, Tid-list]. For each tuple e in ETT it holds that e/ Tid-list] contains
the list of tids of all reference tuples containing at least one token 7 in the field
e[Column] whose e[Coordinate]-th min-hash coordinate is e/QGram]. The number

of tids included in e/Tid-list] is stored in e/Frequency] attribute.

50

Q-gram Coordinate | Column Frequency Tid-Jist
oci 1 1 i {R1}
ing 2 1 1 [R1}
com i) 2 {R1L.R3}
pan 2 1 2 {RLR3}
bon 1 1 1 (R2}
orp 1 1 1 {R2]
ati 2 i 1 {R2]
sea) 2 3 [RLR2.R3)
ol 2 2 3 {R1.R2.R3)
wa i 3 3 {RLR2.R3)
980 1 4 3 (R1.LR2.R3)
004 2 4 1 (R1}
014 2 4 I (R2)
1728 2 4 1 {R3)

Fig. 3.3. ETI Relation Example [CGGM03]

3.2.4. Query Processing Algorithm

Chaudhuri et al. in [CGGMO03] proposed an algorithm for processing fuzzy match
queries. Such queries ask for K fuzzy matches of an input tuple ¥ whose similarities as
per fms with « are above a minimum similarity threshold c.

The authors’ goal was to reduce the number of lookups against the reference relation
by effectively using the ETI. Their proposed algorithm fetches tid-lists by looking up
ETI of all qgrams in min-hash signatures of all tokens in z. For efficient lookups, the
authors assume that the reference relation R is indexed on the 7id attribute, and the

ETI relation is indexed on the /QGram, Coordinate, Column] attribute combination.

More specifically, the algorithm for processing the fuzzy match query given an input
tuple u is as follows. For each token # in fok(u), its IDF weight w(?) is computed,
requiring the frequency of ¢ Those frequencies can be stored in the ETI and be
fetched by issuing a SQL query per token. Then the minhash signature mh(?) of each
token ¢ is determined and each qgram in mh(?) is assigned a weight equal to
w(t)/imh(t)|. Using the ETI, it is feasible to generate the candidate set S of reference
tuple tids whose similarity, as per fins® and hence fins, with the input tuple u is

greater than c. All tuples in S are fetched from the reference relation in order to verify

51

whether or not their similarities with u as per fins are truly above c. Among those

tuples which passed the verification test, the K tuples with the K highest similarity

scores are returned.

The candidate set S is computed as the union of sets Sy, one for each qgram ¢y in the
min-hash signatures of tokens in fok(u). For a qgram gy, which is the i" coordinate in
the min-hash signature mh(z) of a token ¢ in the f'_' column, Sy is the tid-list from the
tuple [qi i, j, freq(qw i, j), SiJ in ETL The lookup for /g i, j, freq(qw i, j), Si] is

efficient because of the index on the required attribute combination of ETL

Each tid in S is assigned a score that is proportional to the weight w(?) of the parent
token ¢. If a tuple with tid r is very close to the input tuple u, then r is a member of
several sets S; and hence gets a high overall score. Otherwise, r has a low overall
score. The candidate set is constituted by tids that have an overall score greater than
w(u)-c minus an adjustment term, which represents a correction to approximate the

edit distance between tokens with the similarity between their qgram sets.

-During the process of looking up tid-lists corresponding to qgrams, the scores of tids
belonging in these tid-lists are maintained in a hash table. The score of a tid equals the
sum of weights of all qgrams whose tid-lists it belongs to. The weight w(g,) assigned
to a qgram g in the min-hash signature mh(t;) of a token ¢; is w(ty)/{mh(t)|. If a tid in
S is already present in the hash table, then its score is incremented by w(gy).
Otherwise, the tid is added to the hash table with an initial score of w(qy). After all
qgrams in the signatures of input tokens are processed, a tid 7 is selected and added to

the candidate set S only if its score is above w(u)-c minus the adjustment term.

The query processing algorithm proposed by Chaudhuri et al. in [CGGMO3] is

summarized in Fig. 3.4.

52

FuzzyMatclinput tuple u, H, ETL R. ¢)
1. Initialize hash table TidScores; AdjustmentTerm = 0
2. Tokenize u and compute min-hash signatures Q of all tokens
3. Assign token weights: RemW1 = sum of all token weights
4. threshold = ¢:RemWit
5. Foreach g-gram sin Q s.t. § = mhy(t) of token tin column col
6. if (my(t) is the first g-gram of mh(t) to be Jooked up)
7. AdpustientTerm += w(t)-(1-1/g)
8. Ferch tid-list(s) by looking up (s, i, cob) against ETI
9. Updute TidScores
& Increment scores of existing tids by w(t)/imh(t)l
b, If RemWt = threshold, insert nev tids with score w(t¥/Imh(t)l.
10. RemW{ —=w(s)
1. Fetch tuples from R for TIDs with score = c-AdjustmentTerm
2. Compare, using f, each of these tuples with u
13. Return X (or less) most similar tples with similarity above w{(u)-c

Fig. 3.4. Query Processing Algorithm [CGGMO03}

3.3. Improvements: Online Data Cleaning using Qgram tries

As already mentioned, our goal is to deal with the problem of approximate matching
“between reference and input tuples. More specifically, we face the problem of
classifying each input tuple as an existing or a new tuple, before its input to the
reference table. This means that an input tuple might be an erroneous representation

of a reference tuple. This may occur due to typing errors or others types of noise.

Our goal is to successfully classify input tuples within a short period of time. In cases
of erroneous input tuples, it is a challenge to determine with a high probability
whether the tuple can be matched with an existing reference tuple or characterize the
tuple as a new record. It is also critical to avoid mismatches of input tuples that are
already stored in the reference table. Due to the fact that the whole procedure must not
exceed a time threshold, our main target is to choose the appropriate data structures

that will effectively clean a stream of input tuples.

Specifically, we provide the following extensions to the method proposed by
Chaudhuri et al. in [CGGMO3]:

53

e replacement of ETI index with a similar index that holds more information

about the reference table

e use of a data structure held in main memory for the retrieval of frequently

accessed candidate tuples

e proposal of an algorithm combining the above structures to effectively classify

input tuples

3.3.1. Word Index

The proposed method uses a structure called word index that is quite similar to ETL.
The word index holds information about the attribute values stored in the reference
table. Word index structure consists of five fields: (a) qgram, (b) coordinate, (c)
column, (d) tid-list and (e) frequency being described as follows:

e ggram field corresponds to a sequence of Q characters.

e coordinate field represents the occurrence position of the corresponding
ggram within a string value. For example, if this string value s begins with a
ggram g, then the coordinate value of g for s equals to 1.

e column field indicates the string-valued attribute that holds the specific value.

e tid-list field contains a list created from tuple ids that include ggram Q in the
position which is denoted by the coordinate field.

o frequency field represents the number of the tuple ids belonging to the tid-list.

The word index structure is used for the retrieval of tuple ids that probably match the
input tuple. Processing the qgrams within an input attribute value, the tids with
attributes that share common qgrams in a specific position within the word are

retrieved.

Before deciding whether the input tuple is clean or not, a candidate set of tuple ids is

retrieved from the word index. The candidate set includes the tuples that possibly

54

match the input tuple. This candidate set is generated by returning the tid-lists of tids
with attribute values that share common ggrams in same positions. The attribute

values correlated with the returned tids are cached in the ggram trie.

Supposing that the word index is indexed on {qgram, coordinate, column} set of

fields, the retrieval of the candidate tuple ids can take place efficiently.

3.3.2. Qgram Trie

As mentioned above, the purpose of a ggram trie is the caching of clean attribute
values that probably match the input string value. The proposed ggram trie is defined

as follows:

1. The trie consists of one root labeled as “null”, a set of word-prefix subtrees
as the children of the root, and a header table.
2. Each node in the word-prefix subtree consists of four fields:

a) qgram, which records the item that this node represents

b) count that records the number of the tuple ids represented by the
portion of the path reaching this node

¢) node-link that links to the next node in the trie carrying the same
qgram, or null if there is none

d) tid-list, which records the set of tids with attribute values that share this
node in the trie representation.

3. Each entry in the header table consists of two fields: (a) the ggram and (b)

the head of node-link, which is a pointer pointing to the first node in the

trie carrying the qgram, On the top of the header table are hold the last

inserted header items.

According to the ggram trie definition, words with same prefixes share a number of

nodes within a path of the trie. For example, if words “Ric”, “Rica” and “Ricus”,

55

with ids 1, 2 and 3 respectively are retrieved, the resulting ggram frie being built in

memory is shown in Fig. 3.5.

Ric

ica

icu

CUS.

Fig. 3.5. Qgram Trie Example

Having stored all the candidate words that share common qgrams in same positions
with the input value, the qgram trie described above is searched according to the
’ ggram sequence of the input value. Then the set tuple ids with attribute values whose
similarity with the input word is above a similarity threshold can be returned. The
matching procedure, which is discussed in detail in section 3.3.5., is implemented by

searching paths of the trie that hold qgrams of the input attribute value.

3.3.3. Qgram Trie Searching Algorithm

The proposed matching algorithm, which is described in section 3.3.5, takes
advantage of the qgram trie described in the previous section. Taking into
consideration that the qgram trie contains the ggram sequences of candidate clean
attribute values that probably match the input attribute value, it is efficient to extract
from it the most similar clean attribute in terms of ggram set similarity. This means
that attribute values containing the most common ggrams with the input value are

very similar to it and can be returned as fuzzy matches of the possibly dirty input

56

value. Given the qgram trie and a suitable searching algorithm, the qgram set

similarity can be determined efficiently.

Suppose that the input attribute value is “Ricuss” with ggram sequence {Ric, icu, cus,
uss}. The matching procedure for the specific word searches the paths of trie that hold
the specific ggram sequence. Starting from nodes with qgrams “Ric”, “icu”, “cus”
and “uss”, the matching procedure searches the occurrence of the qgram sequence

{Ric, icu, cus, uss} in paths of the trie.

During the qgram trie searching procedure, a score fable maintains the matching
scores between the input value and the clean words. After every successful matching
between nodes of trie and qgrams of subsequences, the score table is updated by
incrementing the scores of the tuple ids that belong to the tid-list of the matched node.
Ending this searching procedure, it is possible to retrieve a set of tuple ids with

attribute values very similar to the input value.

Using the qgram trie shown in Fig. 3.5, if the input attribute value is “Ricuss” the
-scores of words “Ric”, “Rica” and “Ricus” are 1, 1 and 3 respectively, denoting that
“Ricus” is the closest clean word to the input value. The searching procedure is

summarized in Fig. 3.6:

Input: input tuple u
Output: K closest tuples to u
1. For each attribute value @ of u
a. QGenerate ggram sequence s of input value a
¢ Find first ggram g of s in header table
i. Access all nodes holding g
ii. Search all possible paths of trie with nodes holding the qgram
subsequence s beginning with g
iii. Update score table in case of successful match

2. Sort score table

3. Return K tuple ids with most similar attribute values according to their score

Fig. 3.6. Searching Procedure

57

3.3.4. Main Memory Maintenance of Qgram Irie

As already mentioned, a qgram trie is used in order to cache attribute values of
frequently accessed reference tuples. This means that it must be updated after every

processing procedure of incoming tuples.

Due to the fact that the qgram trie must not exceed a maximum size, the two update
operations are (i) the insertion and the (ii) pruning operation. The insertion operation
adds a branch in the ggram trie and puts the correlated qgrams in the top of the header
table of the qgram trie. For example, if reference tuple (“John”, “Ford”) with tuple
id equal to 1 is cached in the qgram trie, then the qgram trie will be constructed as it is
shown in Fig. 3.7.a. If the reference tuple (“John”, “Palm”) with tuple id equal to 2
is about to be inserted to the qgram trie, after the insertion the qgram trie will be
updated as shown in Fig.3.7.b.

Ioh

thn K

For

ord:

Fig. 3.7.a Qgram Trie Before Insertion

NOLL

Joh

¢hn

Pal

alm |,

For

ord

Fig. 3.7.b Qgram Trie After Insertion

58

As it is shown in Fig.3.7.b, after the insertion operation, the qgrams included in the
attributes of the second reference tuple are put on the top of the header table. In other
words, the frequent qgrams are moved to the top of the header table, indicating their

recent access. This procedure takes place in order to facilitate the pruning procedure.

The pruning operation takes place when the qgram frie size reaches the maximum
size. As mentioned above, the elements of the header table are sorted according to the
last time they were accessed. The pruning of the gqgram trie is implemented by using
the least recently used (LRU) algorithm. More specifically, the less frequent qgrams,
that lie in the bottom of the header table, are the first to be extracted from the qgram
trie. Following the path beginning from the bottom header table items, the pruning
procedure crops a qgram trie branch with a leaf holding the specific qgram. If a
header table doesn’t point any trie node, then it is removed from the header table. The
whole procedure is completed when the ggram trie takes up a specific size of main

memory.

Suppose the pruning procedure must be applied on the gqgram trie shown in Fig. 3.7.b.
.If two trie nodes have to be cropped, the cropping algorithm makes the following

steps:

1. Access the most infrequent header table item (in our example “ord”)
2. Follow the path of nodes beginning from the node indicated by this header
table '
3. For every leaf trie node » in the path
o delete from the branch the tids held by node »
o delete leaf trie node
o delete all nodes holding no tid lists in the branch
4. If the trie didn’t reach a specific size, execute iteratively step 3 for the next
less frequent header table items (in our example “For”) and remove the

header table items that don’t link to any trie nodes.

The steps described above are shown in Fig. 3.8.a and Fig. 3.8.b.

59

Joh

ohn

Pal \

alm

For i

Joh

ohn 1

Pal j

alimi ™

Fig. 3.8.b Pruning Procedure Results — Step 4

3.3.5. Matching Procedure

Chaudhuri et al. in [CGGMO3] proposed a query processing algorithm in order to
handle fuzzy match queries. The proposed method instead of the error tolerant index
uses the word index described in section 3.3.1 and extends their algorithm using the

qgram trie structure in order to accelerate the fuzzy matching procedure.

The word index is proposed for more accurate matching, since it holds more
information than the error tolerant index (ETI). ETI holds for each attribute value only
a subset of qgrams, which is chosen randomly and indicates approximate positions of
qgrams within the attribute value, such as the prefix or the suffix of the attribute. This

means that ETI can be constructed faster and requires less hard disk space than the

NPT PP i s

60

word index. However, this random selection may lead to inaccurate results, since

input tuples with dirty attribute values have few qgrams in common with valid tuples.

The intuition behind the use of a qgram trie is its suitability for caching purposes,
since the trie is maintained in main memory. More specifically, the trie will hold at
any time the most frequent attribute values, avoiding redundant I/O activities that
might occur when an input value is being repeated and needs to be processed. This
way the whole procedure can be accelerated in the presence of same input attribute

values.

More specifically our method is separated in two main parts. In the first part, using
the qgram trie and the searching procedure described in the section 3.3.3., we examine
whether the input tuple matches a tuple included in the qgram trie. In this way, if the
input tuple matches a reference tuple stored in the ggram, we avoid any I/O activities

and classify it as an existing tuple.

If the procedure fails to match the input tuple in the first step, then it uses the word
-index in order to retrieve candidate tuples. Specifically, for each qgram of the input
attribute values, we retrieve from the word index all tuple ids sharing the specific
qgram in the same position. For each tuple id we maintain a score in a hash table
indicating the common qgrams of reference tuple with the input tuple. After this
procedure is completed, the set of candidate reference tuples is that with a score above

a minimum threshold.

For each candidate tuple, we check if there is an exact match with the input tuple. If a
candidate tuple is found to be exactly similar, then the input tuple is classified as
existing. Otherwise, we compute the similarity of the two tuples using the fms
similarity function. If no candidate reference tuples match exactly the input tuple, then
the reference tuple with the highest similarity value that exceeds a minimum
similarity threshold, corresponds to the approximate match of the input value, If the
highest similarity value is below a maximum similarity threshold, the input tuple is

classified as a new record. Otherwise, the tuple is classified as not resolved.

.................

61

If the input tuple is maiched exactly or approximately with a reference tuple, the
attributes of the reference tuple are stored in the qgram trie, in order to be retrieved in

future matches.

The proposed algorithm is summarized in Fig. 3.9.

Input: Stream tuple ¢
Output: Classification of # as new or existing tuple

1.V attribute value v of ¢
1.1. Check if v exists in qgram trie
1.1.1. ifvexists
e visclean
e retrieve tids contain v
1.1.2. else not determined
2. If all attributes values are clean :
2.1. find the retrieved tids containing all input attribute values
3. Else
3.1. initialize the hash table with score equal to 0 for all tids
3.2. retrieve from word eti all tids sharing common ggrams with ¢ in same
positions
3.3. \ ggram ¢ of v increment the corresponding score of tids containing ¢ in
same position with ¢
34. retrieve tids with count(qgrams) > qgram_threshold
3.5. check if there is exact match with the retrieved tuples
3.5.1. ifthere is exact match
o classify 7 as existing tuple
3.5.2. else find the retrieved tuple » with the highest fins value
o if fns(t, r) > approx_match_threshold
® classify ¢ as approximately existing tuple
o elseif fins(t, r) < new_threshold
» classify 7 as new tuple
o celse
= classify 7 as not resolved
3.6. iftis classified as existing tuple
e update qgram trie with the clean attribute values of the existing tuple

Fig. 3.9. Matching Procedure

62

We illustrate the above procedure using the following example:

Suppose the reference table is the table shown in Fig. 3.10 and the current ggram trie

is that of Fig.3.6.b holding the attribute values of tuple with ids 1 and 2.

tid name surname
1 John Ford
2 John Palm
3 Jack Smith

Fig. 3.10. Example Reference Table

Suppose that the first input tuple is the tuple (“John” , “Palm”). At first, the algorithm
will search the qgram trie to check if the input tuple matches exactly a reference tuple
cached in the trie. The searching procedure in the trie will return the tid list </, 2> for
the input attribute “Jokrn” and the tid list <2> respectively for the input attribute
“Palm”. Both tid lists have in common the tid /. That means that the input tuple is a

_valid tuple and the procedure classifies it as an existing tuple.

Suppose the second input tuple is (“John”, “Lord”). The searching procedure in the
trie will return only the tid list </, 2> for the attribute “John”. That means that the
input tuple is not cached in the qgram trie and the algorithm will continue the process
of the tuple using the word index. If the ggram_threshold is equal to 2, the procedure
will generate a candidate set including tuple ids / and 2, since the number of common
qgrams are equal to 3 and 2 respectively for reference tuples with ids / and 2.
Reference tuple with tid / will be the most similar retrieved candidate tuple having
the maximum fms value. If the fims value is above the approx_match_threshold value,
then input tuple will be classified as an apprdximately existing tuple. If the fins value
is below the new_threshold value the input tuple will be classified as a new record. If
the fins value is between the two thresholds, the input value will be classified as not

resolved.

63

CHAPTER 4. EXPERIMENTAL METHODOLOGY

4.1.Data generation
4.2.Alternative methods for cleaning using qgram tries

4.3.Experimental parameters and measures

4.1. Data generation

We have taken the data from U.S. Census Burean [USCB07], which embarked on a
names list project involving a tabulation of names from the 1990 Census. Data are
"divided in 3 files containing only the frequency of a given name, without any specific
individual information. Specifically, each file contains last names, male first names

and female first names.

We have generated a reference relation R(full_name) of 100K and created different
data sets of streaming data with sizes obtained as a s% of the original reference
relation. The stream of data signifies transactions that people whose names are
possibly stored in the reference relation R have done (e.g., we have a Customer
reference relation and a Sales stream of possibly erroneous data). The values that we
have used for s are: 0.1, 1 and 10.

For the streaming data, we have intentionally created problems to the data. Given a
certain percentage p% of noise level (i.e., errors in the names), we have created the
following anomalies in equal probabilities:

e character addition

e character deletion
e character update

® character transposition

The values we have used for the noise level p are 0.1, 0.5, 10 and 20. Moreover, the
streaming data also contain a percentage % of repeating tuples. We have generated

streams with repetition percentage % equal to 0%, 10% and 20%.

4.2. Alternative methods for cleaning using qgram tries

The state-of-the-art in the area, and thus our adversary in this work is the [CGGMO03]
paper. We have implemented the ETI method at Berkeley DB v.4.6.

Our method operates on top of the ETI index described in [CGGMO3], by using the
word index described in Chapter 3, in the following way:

e A trie of qgrams is built ar-runtime. In other words, to avoid the huge size of

the a-priori trie, as soon as we (i) load the reference relation R with data, we

(ii) populate the word index. Then, as tuples come, we incrementally add the

clean part of trie. The intuition is that the most popular names will eventually

be cached in main memory, without having to store all the trie.

The employed algorithm is simple: each incoming tuple is checked against the trie,
ETI index, reference relation. We will refer to this triad as the reference database.
Each tuple is classified as one of the following:
® Clean (originally clean or cleansed in an unambiguous way). A clean tuple in
the stream can be a detected existing tuple (i.e., a tuple exists in the reference
relation) or New (a respective tuple did not previously exist in the database)
o Not-resolved (because there are many candidates and manual attention is
needed).

To determine whether a full name (i) exists in the reference database exactly, (ii)

approximately matches an existing tuple, (iii) does not exist, or (iv) possibly exists but

65

there are many candidates for its value, we need a distance metric. The distance
metric of choice in our examples has been the fms similarity function already

explained in section 3.2.1.

A second alternative of the problem is to give a restricted memory budget M to our

algorithm keeping only the interesting parts of the trie.

4.3. Experimental parameters and measurcs

The measured measures (y-axis) are:
¢ time to complete (from which a throughput can be determined)
e precision of classification
e memory used

e cache hits

The varied parameters are:
. o the stream size
e the noise level
e available memory
e repetition of input tuples

e reference table size

Table 4.1. Varied parameters

Parameter Description Possible values
Stream Size (s% of |R) 0.1,1,10
Noise Level @% of |R)) 1,5,10,20
Available memory (g% of |R|) 10, 15,20
Repetition of input tuples (% of |s|) 0, 10, 20
Reference Table Size [R| 10K, 50K, 100K tuples

66

4.4. Experimental results

We executed a number of experiments in order to evaluate the measures described in
the previous paragraph. More specifically, we evaluated the execution time, the
precision of classification and the memory used according to variant parameters such

as the stream size, the noise level, the size of qgram trie and size of the reference

table.

In the following paragraphs we will comment the effect of the variant parameters on

execution time, precision and memory consumed.

4.5. Execution time

In this paragraph we represent the execution time of both methods. The following
graphical representations show the effect of the variant parameters described
previously on execution time. More specifically, we measured the execution time for
_reference tables with size 10000, 50000 and 100000 tuples. In our setting, there are
three basic scenarios. According to the first scenario, the input stream contains no
repeating tuples. In the second and third scenario the input stream contains 10% and
20% duplicate input tuples, respectively. For each reference table size, we examined
the effect of available memory on execution time. We measured the execution time

for available memory equal fo 10%, 15% and 20% of the reference table size.

4.5.1. The effect of noise on execution time

—

t!me (sec)

execution time [R] = 10K tuples, 100 input tuples
available memory: 10% x |R|, rep:10%

5 10 20
nolise level p%

time (sec)

execution time [R] = 10K tuples, 1000 input tuples
available memory: 10% x [R], rep:10%

noise level p%

Fig. 4.1..Effect of Noise on Execution time

67

From the graphs represented in Fig. 4.1, it is obvious that the proposed method is
sensitive to noise. Specifically, as the noise level increases, the execution time also

increases but with a slowly increasing tendency.

4.5.2. The effect of repetition on execution time

68

—
exacution time R} = 10K tuples, 100 input tuples cache hits |R] = 10K tuples, 100 input tuples
available memory. 10% x JR}, noise:10% avaiiable memory: 10% x |R|, noise:10%
2 T
8]
é o
= E
% 10% 20% 0% 10% 20%
repetition r% repetition r%
exscution time IR} = 10K tuples, 1000 input tuples cache hits [R| = 10K tuples, 1000 input tuples
available memory: 10% x |R|, noise: 10% avaliable memory: 10% x [R|, nolse:10%
t 2
0% 10% 20%
repetition r% repetition r%

Fig. 4.2. Effect of Repetition on Execution time

The repetition of incoming tuples decreases the execution time. As shown in Fig. 4.2,

repetition leads to more successful cache hits, thus, avoiding I/O activities.

4.5.3. The effect of available memory on execution time

; execution time |R} = 100K tuples, 100 input tuples
I repetition: 10% x |R], nolse:10%

cache hits |R] = 100K tuples, 100 input tuples
repetition: 10% x |R|, nolse:10%

10% 15% 20%
avallable memory q%

10% 15%
available memory q%

5
45 9
4 1 8
i — 35 7 48
8 3 T 6
i ‘E 25 % 5
E 2 E 4%
T s 3
1 2
0.5 1
] 0 3
10% 15% 20% 10% 16% 20%
avallable memory q% available memory q%
I execution time |R| = 100K tuples, 1000 input tuples eache hits |R| = 100K tuples, 1000 input tuples
repetition: 10% x |R|, nolse:10% repetition: 10% x [R|, nolse:10%
2
g
E

We have experimented with three different budgets of memory. From Fig. 4.3, we

conclude that execution time remains stable for available memory 10%, 15% and 20%

of reference table size.

Fig. 4.3. Effect of Available Memory on Execution Time

70

4.5.4. The effect of reference table size on execution time

execution time - stream size: 100 tuples
availahle memory:10 %, noise: 10%, rep:10%

time (sec)

10000 50000 100000
reference table size (# tuples)

execution time - stream size: 1000 tuples
available memory:10 %, noise: 10%, rep:10%

1)) g—— e T =

10000 50000 100000
reference table size (# tuples)

Fig. 4.4. Effect of Reference Table Size on Execution Time

As shown in Fig. 4.4, execution time is clearly affected by the reference table size.
More specifically, as the reference table size increases, the execution time increases
too. We note that for S0K and 100K reference tuples the execution time is slightly

different, whereas for 10K reference tuples, execution time is significantly less.

In all cases though, the increase in execution time is sublinear and this is probably due

to the effect of the trie.

4.5.5. Comparison with the state-of-the art method

71

For reference table size 10000 tuples, variant values for repetition of input tuples,

available memory, noise level and stream size, the execution time is shown in

Fig. 4.5 and Fig. 4.6.

time {stream size 100 tuples) rep: 0%
avallable memory 10% x |R}

@ o

&

BaQgram
BET!

time (sec)
w

noise (p%)

time (stream size 100 tuples) rep: 0%
avallable memory 20% x [R|

E S -

time (sec)
L] w

1 5 10 20
nolse (p%)

8 Qgram
BET

time (stream slze 1000 tuples) rep: 0%
available memory 10% x |R|

time (sec)

nolse (p%)

time (stream size 1000 tuples) rep: 0%
avalilable memory 20% x |R]

noise (p%)

time (stream size 100 tuples) rep: 10%
available memory 10% x |R|

time (stream size 1000 tuples) rep: 10%
available memory 10% x |R|

time (sec)

noise (p%)

Fig. 4.5. Execution Time (|[R|=10K tuples, variant repetition - available memory)

72

time (sec)

time (stream size 100 tuples) rep: 20%
available memory 10% x |R]

7
6
5
3 BET
2
1

nelse (p%

time (sec)
ca38838838

time (stream size 1000 tuples) rep: 20%
available memory 10% x [R|

a Qgram
ImET

time (stream size 100 tuples) rep: 10%
available memory 20% x [R}]

time (sec)

time (stream size 1000 tuples) rep: 10%
available memory 20% x |R]

noise (p%)

time (stream size 100 tuples} rep: 20%
available memory 20% x [R|

1] 10 20

nolse (p%)

time (sec)

time (stream size 1000 tuples) rep: 20%
available memory 20% x |R|

nolzse (p%)

Fig. 4.6. Execution Time (|R|=10K tuples, variant repetition - available memory)

For reference table size 100000 tuples, variant values for repetition of input tuples,

available memory, noise level and stream size, the execution time is shown in

Fig. 4.7.

73

time (sec)

time (stream size 100 tuples) rep: 10% B time (stream size 1000 tuples) rep: 10%

1000
900
800
700 4
600
500
400
300
200
100 5

time (sec)

1 5 10 20
naise (p%} noise {(p%)

time (sec)

time {stream size 100 tuples) rep: 20% time (stream size 1000 tuples) rep: 20%

—

@ Qgram
ET

time (sec)

noise {(p%) noise (p%)

Fig. 4.7. Execution Time (JRj=100K tuples, , variant repetition - available memory)

We observe that our method is sensitive to the input stream size (Fig. 4.5, Fig. 4.6 and
Fig. 4.7). More specifically, our method outperforms the state-of-the-art methods
when the input stream does not exceed a specific size. This occurs due to the time
needed for maintaining the ggram trie in main memory. For large streams and great
percentage of repetition, our method works as efficiently as the state-of-the-art
method. That means that many input tuples are already cached in main memory and

the whole procedure is accelerated avoiding redundant I/O activities.

4.6. Precision of classification

In this paragraph we present the precision of classification of both methods, according
to the three scenarios described in the previous paragraph. The following graphical

representations show the effect of the variant parameters on the precision of

74

classification. More specifically, for each scenario we measure the number of correct
matches (category existing), the number of correct classifications for new tuples

(category new) and the number of not resolved tuples.

4.6.1. Effect of noise on precision of classification

precision |R| = 10K tuples, 100 input tuples
available memory: 10% x {R|, rep:10%

=

time (sec)
3888833888

a existing
;B new
t |0 not resolved

noise level p%

precision |R| = 10K tuples, 1000 input tuples
available memory: 10% x |R], rep:10%

{ |0 not resolved

noiss ieval p%

Fig. 4.8. Precision ([R[=10K tuples, repetition 10%, available memory 10%)

Fig. 4.8 depicts the sensitivity of our method to noise. For 20% noise level, the
number of not resolved input tuples is increased, whereas the number of matches for
existing tuples is decreasing. For smallest amounts of noise, the precision of
classification remains stable. For appropriate values of similarity thresholds, there are

no misclassifications of input tuples. Specifically, a dirty input tuple is not identified

75

as a new record and a new tuple is not approximately matched with an existing
reference tuple. The effect of similarity thresholds on classification is described in

detail in section 4.6.3.

4.6.2. Effect of repetition on precision of classification

precision |R| = 10K tuples, 100 input tuples
. ' qgram trie size: 10% x |R}, noise:10%

100
.. 80 o
] 60 Bexisting
(]
by 40 B new
.E Onot resolved
20 ‘
0 & .
0% 10% 20%
repetition 1%

precision [R| = 10K tuples, 1000 input tuples
qgram trie size: 10% x |R|, noise:10%

time (sec)

0% 10% 20%
repetition r%

Fig. 4.9. Precision (JR[=10K tuples, noise 10%, available memory 10%)

We observe that repetition of incoming tuples does not affect the precision of
' classification (Fig. 4.9).

76

4.6.3. Effect of similarity thresholds on precision of classification

The precision of classification is greatly affected by the selection of threshold values.

Changing the threshold value thres_new for determining an input tuple as a new tuple,

we realize that the classification results change. In Fig. 4.10, we represent the

classification results for thres_new equal to 0.2 and 0.5. We also represent the true

classification for the specific input stream.

perfect match

o0
800
700
_q: Blexisting g Bexisting
3
z Bnew 400 B new
a0
200 £
100
0 4
0% 10% 20% 0% 10% 20%
repetition r% repetitionr%
precision |R} = 10K tuples, 100 input tuples precision [Rf = 10K tuples, 1000 input tuples
qgram trie size: 10% x |R}, noise:10%, thres_new = 0.2 qgram trie size: 10% x [R}, nolse:10%, thres_new = 0.2
2 Hexisting 2
3 Bnew ‘5—
- Dot resolved hd
repetition r%
precision [R} = 10K tuples, 100 input tuples precision |R| = 10K tupfes, 1000 input tuples
qgram trie size: 10% x |R], noise:10%, thras_new = 0.5 qgram trie size: 10% x |R], noise:10%, thres_new = 0.5
| H ’ﬂexls(i
5 _g_' Bnew
- * CInot resolved
0% 10% 20%
repetition 1%

Fig. 4.10. Effect of Threshold Values on Precision

77

We realize that setting threshold thres_new to 0.5, affects the proper classification of
input tuples. More specifically, dirty input tuples having maximum similarity value
under this threshold are misclassified, because they are identified as new records. To

visualize this erroneous classification, we depict the number of misclassified input

tuples in the Fig. 4.11.

precision |R| = 10K tuples, 1000 input tuples
qgram trie size: 10% x |R], noise:10%, thres_new =0.5

100 gz
80
60
40

tuples

20

0% 10% 20%

repetition r%

Fig. 4.11. Misclassifications of Dirty Input Tuples as New Records

4.6.4. Comparison with the state-of-the-art method

For reference table size 10000 tuples, variant values for repetition of input tuples,

available memory, noise level and stream size, the precision of classification is shown

in Fig. 4.12 and Fig 4.13.

78

—————

classification of input tuple (existing - new -not resoived)
stream size: 100 tuples, rep: 0%, available memory: |R[x10%

Qexisting

O existing_ET

Onew

OnewETI
®not ¥

Y

1 ' 5
naise (p%)

anot resolved ETI

10

classification of input tuple (existing - new -not resolved)
streamsize: 1000 tuples, rep: 0%, available memory: [RIx10%

:zg E existing
- 600 QO existing ETI
% 500 Qnew
2 400 Onew ET
* 300 @ not resolved

1 |0 not resolved ETI
10 not resohed ETI|

noise {p%)

classification of input tuple (existing - new -not resolved)
stream size: 100 tuples, rep: 0%, available memory: |R[x20%

classification of input tuple (existing - new -not resolved)
stream size: 1000 tuples, rep: 0%, available memory: [R|x20%

B existing
Dexisting_ET
3 [
° Onew 2
a a
2 onew ETH 2
* *
& not resohed
3 not resolved ETI
nolse (p%) J noise (p%)
classification of input tuple (existing - new -not resoived) classification of input tuple (existing - new -not resolved)
stream size: 100 tuples, rep: 10%, available memory: |R|x10% stream size: 1000 tuples, rep: 10%, available memory: |R|x10%
@ existing o existing
" Oexisting_ET DOexisting ET
2 Qnew .g Dnew
5 Cnew ETH E OnewET
® not resoived mnot resolved
O not resoived ET Cnot resolved ET

nolse {p%)

noise (p%)

Fig. 4.12. Precision (JR|=10K tuples, , variant repetition - available memory)

79

classification of input tuple (existing - new -not resolved)
stream size: 100 tuples, rep: 10%, available memory: 20%x {R}

-
Qexisting_ET!

ln new
Dnew ET
| not resolved

0 not resolved ETt

nolse {n%)

classification of input tuple (existing - new -not resolved)
Stream size: 1000 tuples, rep: 10%. available memory: 20%x|R}

a;xlsting

0 existing_ET
D new
DnewET

i not resohved

7 |Gnot resolved ETI

noise (p%)

tuples

classification of input tuple {existing - new -not resoived)
stream size: 100 tuples, rep: 20%, available memory: |R|x10%

© existing
Dexisting_ETl

D new

DnewETI

= not resolved

0 not resolved ETI

noise (p%)

classification of input tuple (existing - new -not resolved)
stream size: 1000 tuples rep: 20%, available memory: |R|x10%

900
800
700 @ existing
@ 600 0O existing_ET
%_ 500 O new
i-! 400 DnewETI
300 not resolved
200 0 not rasoived ET
100
[\

noise (p%)

tuples

classification of input tuple {existing - new -not resolved)
stream size: 100 tuples, rep: 20%, available memory: 20% x |R|

8 existing

Qg existing_ETI

G new

QnewET

& not resolved

2 not resohved ETI

noise (p%)

classification of input tuple {existing - new -not resolved)
stream size: 1000 tuples, rep: 20%, available memory: 20%x[R|

B existing

0O existing_ET]

@ new

Onew ETI

@ not resohed
Onot resotved ET1

nolse (p%)

Fig. 4.13. Precision ([R|=10K tuples, , variant repetition - available memory)

For reference table size 100000 tuples, variant values for repetition of input tuples,

available memory, noise level and stream size, the precision of classification is shown

in Fig. 4.14.

80

— —
f classification of input tuple (existing - new -hot resolved) classification of input tuple (existing - new -not resolved)
; stream size: 100 tuples rep: 10% stream size: 100 tuples, rep: 20%, qgram trie size: 20% x |R}
|
]
! 80 4 B existing i |@ existing
| 70 + D existing_ETI Dexisting_EN
LB B0+ - $ | new
| & s0L O new z | an
! ;’; 40 1 onew ET i Dnew ETl
30 £ m not resolved # not resolved
20 4 = |Dnot resolved ETI : 0 not resoived ETH
l 1 5 10 1 5 10
l noise (p%) noise (p%)
classification of input tuple (existing - new -not resolved) classification of input tuple (existing - new -not resolved)
stream size: 1000 tuples rep: 10% stream size: 1000 tuples, qgram trie size: 20% x |R|
900
800
existing 700 & existing
Dexisting_ET! ” 600 4 o existing_ET!
Onew 2 500 ¢ B new
Dnew ETt i 400
mnot resolved 300
% |onof resolved ETI 200 =
= 100 =
o H S2
1 5 10
noise (p%) noise (p%)

Fig. 4.14. Precision (JR|=100K tuples, , variant repetition - available memory)

We observe that our method outperforms the state-of-the-art method in the precision

of classification for any reference table and input stream size (Fig. 4.12, Fig. 4.13 and

Fig. 4.14). This occurs due to the fact that Word ETI holds more information about

the reference tuples leading to more precise classification.

4.7. Memory Consumption

In this paragraph we present the memory consumption of our method. More

specifically, we depict the main memory needed for the execution of specific

experiments.

For reference table 100000 tuples and available memory 10% the maximum memory

according to different noise levels is shown in Fig. 4.15.

memory (KB)

maximum memory (KB}
stream size: 100 tuples

noise (p%)

100
90
80
70
60
50
40
30
20
10

memory (KB)

maximum memory (KB)
stream size: 1000 tuples

noise (p%)

100

memory {KB)
8

maximum memory (KB)
stream size: 10000 tuples

noise (p%)

81

Fig. 4.15. Maximum Memory ([R|=100K tuples, repetition 10%, available memory

10%)

82

From the graphical representations it is obvious that the maximum memory
consumption remains stable and is independent to noise. This occurs due to the
pruning operation on qgram trie, which is applied for keeping its size fixed. For a

better visualization of the memory consumption, we depict the memory amounts

needed at runtime in Fig. 4.16.

memory over time (stream size: 1000 tuples - noise 10%)

100

memory (KB)
5 o ®
(o) (o] o

N
o

Fig. 4.16. Memory at Runtime (JRI=100K tuples, noise 10%, repetition 10%, available
memory 10%)

83

CHAPTER 5. CONCLUSIONS

5.1. Conclusions — Summary
5.2. Future Work

3.1. Conclusions — Summai-y

The problem we have dealt with was the approximate matching of reference data. Our
approach is associated with the implementation of an effective method for on-line
detecting similarity between input and reference records. More specifically, we have
_proposed on a cleaning procedure that classifies a stream of incoming tuples, before

their insertion to a reference table, as existing or not existing reference tuples.

Our approach is based on a structure called Word Index, which is a table holding
information about the attribute values stored in the reference table. This structure is
used for the retrieval of reference tuples that probably match input tuples according to

qgram similarity.

Moreover, we have proposed a trie structure called Qgram Trie that is maintained in
main memory and is used for the caching of the frequently retrieved attribute values.
This way, we avoid redundant I/O activities and accelerated the whole procedure.
Additionally, we have applied the LRU algorithm as a replacement policy in case the
size of trie exceeds a specific percentage of main memory. Using this replacement
policy we assured that the size of trie was kept fixed and contained all the recently

accessed attribute values.

84

Our experiments have indicated that:

¢ Our method outperforms the state-of-the-art method in precision for any noise
level

e The precision of classification can be significantly improved using the Word
ETI

e The execution time is improved when the streaming data contain frequent
input tuples

e Our method slows down in the case of large streams, for main memory
maintenance tasks

o The selection of appropriate similarity thresholds is crucial for the precision of

classification in terms of misclassified tuples.

5.2. Future Work

As already mentioned in previous chapters, the main target of our method was to
effectively classify a stream of input tuples before their insertion to a table holding
. valid tuples. We have implemented the qgram trie structure in order to cache frequent
input tuples and avoid redundant I/O activities. An interesting topic for future work is
the ggram trie space optimization. Specifically, it would be interesting to develop a
new procedure for building the trie in main memory, in order to avoid the repetition of
information and cache more valid tuples. The specific trie described in Section 3.3.2
encapsulates a set of frequeﬁt tid lists. However, since a trie node contains its own tid
list, it is obvious that nodes belonging to the same branch hold the same information
about reference tids. Therefore, a compression procedure can be implemented using

appropriate algorithms for optimization of the overall size of the trie.

85

REFERENCES

[Baya98] Roberto J. Bayardo Jr. Efficiently Mining Long Patterns from Databases. In
Proc. SIGMOD Conference 1998, pp. 85-93.

[BhGe04] Indrajit Bhattacharya, Lise Getoor. Iterative Record Linkage for Cleaning
and Integration. In Proc. 9th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD 2004), pp. 11-18, Paris, France, June 13,
2004.

[CGGMO3] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, Rajeev Motwani.
Robust and Efficient Fuzzy Match for Online Data Cleaning. In Proc. 2003 ACM
SIGMOD International Conference on Management of Data, pp. 313-324, San Diego,
California, USA, June 9-12, 2003.

[Chau+05] Surajit Chaudhuri, Kris Ganjam, Venky Ganti, Rahul Kapoor, Vivek
Narasayya, Theo Vassilakis. Data Cleaning in Microsoft SQL Server 2005. In Proc.
ACM SIGMOD International Conference on Management of Data, pp. 918-920,
" Baltimore, Maryland, USA, June 14-16, 2005.

[ChCCO02] Moses Charikar, Kevin Chen, Martin Farach-Colton. Finding Frequent
Items in Data Streams. In Proc. Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, pp. 693-703, Malaga, Spain, July 8-13, 2002.

[ChGKO06] Surajit Chaudhuri, Venkatesh Ganti, Raghav Kaushik: A Primitive
Operator for Similarity Joins in Data Cleaning. ICDE 2006: 5

[Dai+06] Bing Tian Dai, Nick Koudas, Beng Chin Ooi, Divesh Srivastava, Suresh
Venkatasubramanian. Column Heterogeneity as a Measure of Data Quality. CleanDB,
2006.

[DaMa05] Rajanish Dass, Ambuj Mahanti. Fast Frequent Pattern Mining in Real-
Time. In Proc. 11th Intemational Conference on Management of Data Advances in
Data Management, pp. 156-167, Goa, India, January 6-8, 2005.

[FaPS96] Usama Fayyad, Gregory Piatetsky - Shapiro, Padhraic Smyth. The KDD
Process for Extracting Useful Knowledge from Volumes of Data. Communications of
the ACM, 39(11), pp. 27-34, Nov. 1996.

[Goet03] B. Goethals, “Survey on Frequent Pattern Mining”, Manuscript, 2003.
http://www.cs.helsinki.fi/ u/goethals/publications/survey.ps

http://www.cs.helsinki.fi/

86

[JiGr06] Nan Jiang, Le Gruenwald. Research issues in data stream association rule
mining, SIGMOD Record, 35(1), pp. 14-19, Mar. 2006.

[KoKu06] Jia-Ling Koh, Yu-Ting Kung. An Efficient Approach for Mining Top-K
Fault-Tolerant Repeating Patterns. In Proc. 11th International Conference on
Database Systems for Advanced Applications (DASFAA), pp. 95-110, Singapore,
April 12-15, 2006.

[LaLNO3] Laks V. S. Lakshmanan, Carson Kai-Sang Leung, Raymond T. Ng.
Efficient dynamic mining of constrained frequent sets. ACM Transactions on

Database Systems (TODS), 28(4), pp. 337-389, Dec. 2003.

[LeLNO02] Carson Kai-Sang Leung, Laks V. S. Lakshmanan, Raymond T. Ng:
Exploiting succinct constraints using FP-trees. SIGKDD Explorations, 4(1), pp. 40-
49, Jun. 2002.

[Leun04] Carson Kai-Sang Leung. Dynamic FP-Tree Based Mining of Frequent
Patterns Satisfying Succinct Constraints. In Proc. 1st International Symposium on
Applications of Constraint Databases (CDB'04), pp.117-132, Paris, June 12-13, 2004.

[LoLLO1] Wai Lup Low, Mong-Li Lee, Tok Wang Ling. A knowledge-based
approach for duplicate elimination in data cleaning. Information Systems, 26(8), pp.
585-606, Dec. 2001.

[PeHa02] Jian Pei, Jiawei Han. Constrained frequent pattern mining: a pattern-growth
* view. SIGKDD Explorations, 4(1), pp. 31-39, Jun. 2002.

[SeMa04] Jouni K. Seppénen, Heikki Mannila. Dense itemsets. In Proc. 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
683-688, Seattle, Washington, USA, August 22-25, 2004.

[SuLS02] Sam Yuan Sung, Zhao Li, Sun Peng. A fast filtering scheme for large
database cleansing. In Proc. 2002 ACM CIKM International Conference on
Information and Knowledge Management, pp. 76-83, McLean, VA, USA, November
4-9, 2002.

[TsCh04] Pauray S. M. Tsai, Chien-Ming Chen. Mining interesting association rules
from customer databases and transaction databases. Information Systems, 29(8), pp.
685-696, Dec. 2004.

[USCBO07] Frequently Occurring First Names and Surnames From the 1990 Census.
U.S. Census Bureau. Available at http://www.census.gov/ genealogy/names/

[XHYCO05] Dong Xin, Jiawei Han, Xifeng Yan, Hong Cheng. Mining Compressed
Frequent-Pattern Sets. In Proc. 31st International Conference on Very Large Data
Bases, pp. 709-720, Trondheim, Norway, August 30 - September 2, 2005.

http://www.census.gov/

87

[YaFBO1] Cheng Yang, Usama M. Fayyad, Paul S. Bradley. Efficient discovery of
error-tolerant frequent itemsets in high dimensions. In Proc. 7th ACM SIGKDD

International Conference on Knowledge discovery and Data Mining, pp. 194-203, San
Francisco, CA, USA August 26-29, 2001.

[YWYHO02] Jiong Yang, Wei Wang, Philip S. Yu, Jiawei Han. Mining Long
Sequential Patterns in a Noisy Environment. In Proc. 2002 ACM SIGMOD
International Conference on Management of Data, pp. 406-417, Madison, Wisconsin,

June 3-6, 2002.

[ZhWC03] Xingquan Zhu, Xindong Wu, Qijun Chen, Bridging Local and Global
Data Cleansing: Identifying Class Noise in Large, Distributed Data Datasets. In Proc.
20th International Conference Machine Learning, pp. 920-927, Washington D.C.,

USA, 2003.

88

SHORT CV

Ioannis Krommydas was born in Ioannina in 1982 and finished high school in 2000.
He obtained his B.Sc. in Computer Science in 2004 from the Computer Science
Department of the University of Ioannina. Ioannis Krommydas has enrolled in the
Graduate Program of the Computer Science Department of the University of Ioannina

as an M.Sc. candidate in the academic year 2004 - 2005. His research interests are

Databases, Data Cleaning and Data Mining.

