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Abstract

The last fifty years a great interest from both academics and industries

is shown towards materials that are capable of undergoing phase transfor-

mations. Phase transitions are an important characteristic of crystalline

materials based on the fact that they can alter their crystal symmetry at

various ranges of temperature. Ferroelectric materials have become im-

portant materials in a wide variety of electronics due to their pronounced

dielectric and piezoelectric properties. The material macroscopic properties

are related to the microscopic domain structure of the materials. To un-

derstand and predict the relation between the macroscopic properties and

the domain structure, continuum models are employed in this work.

More specifically, this thesis is organized as follows:

In the first chapter, an introduction to the physics of ferroelectrics is pre-

sented. Explanations are given on the nature of ferroelectricity from the

crystallographic point of view, but since we are interested in the modeliza-

tion of these materials we present a brief introduction of the famous Landau

model, which serves as a conceptual bridge between microscopic models and

observed macroscopic phenomena. Moreover, we provide useful information

on the behavior of these materials at very low scales.

In the second chapter, we focus on the so called phase field models that use

polarization as the first order parameter of the evolutionary process inside

bulk ferroelectrics. The proposed phase field model is based on a theory

that accumulates gradients of the Maxwelian electric field and also intro-

duces spontaneous quadrupoles. The aim of this chapter is to reveal the

role of both spontaneous and linear quadrupole polarization in the domain

structure of ferroelectrics. It is proved that spontaneous quadrupoles are



responsible for the thickness of domain walls and linear quadrupoles have

a serious impact on low dimensional ferroelectrics, such as thin films.

The third chapter introduces the level set method and we use this method

to describe the kinetics of a phase boundary. Level set methods have been

introduced by Osher and Sethian and soon have become a very powerful

tool for tracking a moving interface within a body. The method is based on

an implicit representation of the interface by considering a smooth scalar

function, which changes sign across the interface. Thus the zero level set

of the implicit function coincides with the interface. The introduction of

a level set function results in regularization of the sharp interface model

in solids. In level set methods the interfaces transform into thin transition

layers where all discontinuous quantities take inhomogeneous but continu-

ous expressions. In this way, we can make a connection to configurational

mechanics proving that the forces moving the interfaces are inhomogeneity

forces. Computational results provide the microstructure of ferroelectrics

and they are in agreement with the results of the phase field model pre-

sented in the second chapter.

In the fourth chapter, we use the previous models to study special topics

in ferroelectrics. To be more precise we study the influence of point charge

and dipolar defects in the motion of domain walls so as to extract useful

information of damaged ferroelectrics. Moreover, we present a combined

level set–phase field model to study the behavior of bi-crystals, which can

be easily expanded to polycrystals.
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Chapter 1

Introduction

”You may say anything you like but we are

all made up of ferroelectrics.”

B.T. Matthias

1.1 What are ferroelectrics?

Investigation of phase transformations represents a currently active research area for

mechanics of materials. In models of macroscopic behavior, phase transformations are

modeled by weak solutions of the partial differential equations of the corresponding

continuum theories; i.e. those solutions in which quantities such as stress and strain

suffer discontinuities across certain surfaces. Materials on the two sides of such a sur-

face exhibit distinct physical properties and are identified as distinct phases. These

surfaces represent interfaces between different material phases, and motions of these

surfaces model phase transformations. Studies carried out within the framework of

the purely mechanical theory are appropriate for the modeling of load-induced phase

transformations taking place at a given temperature. Incorporation of thermodynamics

into the corresponding mechanical theory opened the way to the modeling of thermo-

mechanical phase transformations. A material exhibits different physical properties in

distinct phases, and the interfaces between the distinct phases are therefore surfaces of

abrupt change in material properties. The abrupt change in mechanical, electromag-

netic and optical properties results in an interface which reflects optical and acoustic
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waves. On the other hand, phase transformations in solids sometimes take place at

speeds comparable to wave speeds in the material, so that inertial effects become im-

portant.

Many materials are capable of undergoing phase transformations under the com-

bined influence of thermo-mechanical loading and applied electromagnetic fields, such

as ferroelectric crystals. From the crystallography point of view, any one crystal can be

classified in one of 32 point groups according to the symmetry elements which it pos-

sesses. Out of these 32 classes, 10 are characterized by the fact that they have a polar

axis, i.e. an axis which shows properties at one end different from those at the other.

Crystals in these classes are called polar. One feature of polar crystals is that they are

polarized even in the absence of applied electric fields, and this feature is referred to as

spontaneous polarization. A ferroelectric crystal undergoes a structural transformation

at a critical temperature which, in the absence of applied electric fields, is often referred

to as the Curie point. Above this temperature, it has a non-polar structure, called para-

electric, and below this temperature, it has a polar structure, called ferroelectric. This

structural transformation is the so-called paraelectric – ferroelectric phase transforma-

tion, and it can be characterized by the spontaneous polarization of the crystal. The

spontaneous polarization diminishes as temperature increases and disappears at the

transformation temperature. This is a typical feature for almost every ferroelectric

crystal (Rochelle salt is an exception). Application of mechanical stresses may change

the transformation temperature as well as other ferroelectric properties, such as the

spontaneous polarization and the hysteresis loop in the electric field-polarization re-

sponse. The polar axis of a ferroelectric crystal is often referred to as the ferroelectric

axis along which the crystal is polarized. Since a polar axis corresponds to two oppo-

site directions, a ferroelectric crystal exhibits two distinct ferroelectric phases whose

crystal lattices are identical but are oriented differently with respect to the lattice of

the paraelectric phase. The spontaneous polarization vectors in these two ferroelec-

tric phases are equal in magnitude but opposite in direction. Two ferroelectric phases

which share the same polar axis are sometimes referred to as the electric twins, and

a transformation between them is called polarization reversal. Differing from ferro-

magnetic materials a ferroelectric single crystal may be polarized spontaneously only

in certain directions with respect to its lattice. A macroscopic region in which the di-

rection of the spontaneous polarization differs from that in adjacent regions is referred
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to as a ferroelectric domain. An interface separating two domains is called a domain

wall. A single crystal may contain domain walls, even though it can not have grain

boundaries, by definition. Domains are related in a manner which is quite analogous to

the relationship of crystallographic twins which are commonly observed in some binary

metallic systems, such as those of martensites. Experimental observation indicates

that polarization reversal often takes place in the form of domain wall motions. Both

ferroelectric–paraelectric transformation and polarization reversal may be induced by

application of thermomechanical loading, electric field or their combined influence.

1.2 Crystallography of ferroelectricity: The per-

ovskite oxide family

In ferroelectric crystals, the spontaneous polarization is produced by the atomic ar-

rangement of ions in the crystal structure, depending on their positions, as in con-

ventional ferroelectrics, or on charge ordering of multiple valences, as in electronic

ferroelectrics. A nonzero spontaneous polarization can be present only in a crystal

with a polar space group, as mentioned before. However, for ferroelectricity it must

also be possible to switch between different variants with an applied electric field, which

implies that many polar crystals are not considered ferroelectric. One condition that

ensures the presence of discrete states of different polarization and enhances the pos-

sibility of switching between them with an accessible electric field is that the crystal

structure can be obtained as a symmetry-breaking distortion of a higher-symmetry

reference state. This involves a polar displacement of the atoms in the unit cell, which

may be coupled to non–polar atomic displacement patterns and to the corresponding

strain; the latter coupling can be quite strong in some ferroelectric oxides, producing

piezoelectric behavior and epitaxial strain phase diagrams. In most ferroelectrics, there

is a phase transition from the ferroelectric state, with multiple symmetry-related vari-

ants, to a non–polar paraelectric phase, with a single variant, with increasing temper-

ature. In most of these cases the high–symmetry reference structure is the same as the

crystallographic structure observed in the paraelectric phase. Measured ferroelectric

transition temperatures range from very low (−2000C) to very high (over 10000C); for

the latter systems there is the possibility that the material melts before the transition
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temperature is reached. The symmetry-breaking relation between the high-symmetry

paraelectric structure and the ferroelectric structure is consistent with a second-order

transition, and can be described with a Landau theory where polarization is the primary

order parameter. This analysis naturally leads to the prediction that the dielectric sus-

ceptibility diverges at the transition. Most of the information about crystal structure

Figure 1.1: The different structures of BaTiO3 at various temperatures

of ferroelectrics has been experimentally obtained from X–ray and neutron–diffraction

structural determinations. These yield the average crystallographic structure. Studies

of diffuse scattering and local probes, such as pair-density correlation function analysis

and extended X-ray absorption fine-structure spectroscopy reveal that local distortions

and fluctuations are also very important features of the crystal structure.

While ferroelectricity was discovered in hydrogen-bonded materials, Rochelle salt

and K-D-P, the discovery in 1949 of ferroelectricity in the much simpler, nonhydrogen-

containing, perovskite oxide BaTiO3 dramatically changed the physical understanding

of this phenomenon. Barium Titanate is the first of the very large and extensively

studied perovskite oxide family, which includes not only perovskite compounds, but

also ordered and disordered solid solutions. The relative simplicity of the perovskite

structure led to a deeper understanding of the origin of ferroelectricity and quantitative

phenomenological and first-principles modeling.

The perovskite oxide family own the composition ABO3, where A and B each rep-

resent a cation element or mixture of two or more such elements or vacancies. The

physical properties of the entire family are extremely diverse: depending on the com-

position and cationic ordering, they can be metallic or insulating and exhibit many
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different types of structural and magnetic order. The perovskite oxides that are ferro-

electrics in bulk crystalline form are a subfamily; other related compounds might have a

tendency to a ferroelectric instability that is, however, not manifest in the bulk crystal

due to the dominance of other, non–ferroelectric, competing types of order. The first

Figure 1.2: Cubic to tetragonal phase transformation of the unit cell

perovskite oxide compound identified as being ferroelectric was BaTiO3. The formal

valences are +2 for Ba and +4 for Ti, exactly balancing the negative total valence

of the oxygens. At high temperature, it has a paraelectric cubic perovskite structure.

At 1200C, it transforms from a cubic phase to a ferroelectric tetragonal phase. This

phase remains stable until 50C, where there is a second transformation to a ferroelec-

tric phase of orthorhombic symmetry . The last transition occurs at −900C. The

low-temperature ferroelectric phase is rhombohedral. Each transition is accompanied

by small atomic displacements, dominated by displacement of the Ti ion relative to the

oxygen octahedron network, and a macroscopic strain. In the successive ferroelectric

phases, the polar axis is aligned respectively along the < 100 >, < 110 > and < 111 >

directions corresponding to the direction of the atomic displacements with respect to

their position in the cubic reference structure, as shown in Figure 1.1. In Figure 1.2

the cubic to tetragonal phase transition is depicted, where one can notice the ionic

displacements.
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1.3 Macroscopic view

1.3.1 Landau Theory

Based on symmetry considerations, Landau theory (25) can provide a reliable descrip-

tion of a systems equilibrium behavior near a phase transition. Landau theory can

serve as a conceptual bridge between microscopic models and observed macroscopic

phenomena. In this section we give a brief presentation of the application of Landau

theory to bulk ferrolectrics with spatially uniform polarization.

For bulk ferroelectrics the thermodynamic state in equilibrium can be completely

specified by the values of specific variables .These include the temperature T, the

polarization P, the electric field E, the strain e, and the stress σ. Usually electric fields

and elastic stresses are applied externally, so we can regard the polarization and the

strain as internal or dependent variables. A fundamental postulate of thermodynamics

applied to a ferroelectric is that its free energy F can be generally expressed as a

function of ten variables (three components of polarization, six components of the stress

tensor, and finally one of temperature). The most important thermodynamic principle

that we will employ is that the values of the dependent variables in thermal equilibrium

are obtained at the free-energy minimum when the free energy is optimized. We make

the key approximation that in the vicinity of a phase transition we can expand the

free energy in powers of the dependent variables with coefficients that can be fitted to

experiment. In order to be more specific, we take a simple example where we expand the

free energy in terms of a single component of the polarization; for simplicity we ignore

the strain field, an assumption that might be appropriate for a uniaxial ferroelectric.

We shall choose the origin of energy for the free unpolarized, unstrained crystal to be

zero, and hence we write

F =
1

2
aP 2 +

1

4
bP 4 +

1

3
cP 6 − E P, (1.1)

where a,b and c are material parameters. The equilibrium configuration is determined

by finding the minima of the free energy

∂F

∂P
= 0 ⇒ E = aP + bP 3 + cP 5 (1.2)

where one can notice the non-linearity between the two fields.
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Thus we can determine the linear dielectric susceptibility above the transition by

differentiating this equation with respect to P and setting polarization to zero P = 0

to obtain

χ =
P

E
=

1

a
. (1.3)

In the Landau-Devonshire theory it is assumed that around the Curie point a =

a0(T − T0) and the other coefficients in the free-energy expansion are independent

of temperature. Substituting in Eq. (1.2) we find an expression for the dielectric

stiffness

k =
1

χ
= a0(T − T0) (1.4)

which captures the Curie-Weiss behavior observed in most ferroelectrics for T > T0. If

we include the linear temperature dependence of a, we have the general expression for

the free energy

F =
1

2
a0(T − T0)P

2 +
1

4
bP 4 +

1

3
cP 6 − E P, (1.5)

where a0 and c are both positive in all ferroelectrics. The sign of the parameter b is

proved to be essential in characterizing the type of transition in ferroelectrics.

1.3.2 Second-Order Transition

If b > 0 and c = 0 (not necessary), then a second-order transition occurs at T = T0, and

the free energy will evolve continuously as a function of decreasing temperature from

the plot with P = 0 in Figure 1.3a to the second, that has minima at finite polarizations

P = P0. The spontaneous polarization can be estimated by setting E = 0 in Eq. (1.2);

since all the coefficients are positive, we will only retain the two lowest-order terms.

The value of P0 is

P0 =

√
a0(T − T0)

b
(1.6)

where it is deduced that the spontaneous polarization increases with decreasing tem-

perature from the point T = T0. We note that if we determine the dielectric stiffness

below the transition (T < T0) then we find

k = 2a0(T0 − T ), (1.7)
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which is to be compared with Eq. (1.4), its value just above T0; these two expressions

suggest that k vanishes at T = T0 and that consequently the dielectric susceptibility

diverges (see Figure 1.3b).

(a) (b)

Figure 1.3: Second-order phase transition (a) free energy for various ranges of temper-
ature, (b) spontaneous polarization and dielectric susceptibility as functions of tempera-
ture.

1.3.3 First-Order Transition

Now, considering the case of b < 0, while c remains positive it is clear that even if

T > T0 (such that the quadratic coefficient is positive) the free energy may have a

subsidiary minimum at nonzero polarization. As the temperature reduces, this min-

imum will drop in energy below that of the unpolarized state, and so will be the

thermodynamically favored configuration. The temperature at which this happens is,

by definition, the Curie temperature Tc, which, however, now exceeds T0. At any tem-

perature between Tc and T0 the unpolarized phase exists as a local minimum of the free

energy. The most important feature of this phase transition is that the order parameter

jumps discontinuously to zero at Tc. This type of phase spontaneous polarization, the
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dielectric stiffness and the linear susceptibility are shown in Figure 1.4. We note that

(a) (b)

Figure 1.4: First-order phase transition (a) free energy for various ranges of tempera-
ture, (b) spontaneous polarization and dielectric susceptibility as functions of tempera-
ture.

at T = Tc the three minima are energetically degenerate. As a result, the systems

behavior at T = Tc will depend on whether it is approaching Tc from lower or higher

temperatures. More specifically, the system will be in one of the two finite polarization

(P 6= 0) minima if it is heated from an initial low temperature, whereas it will be in a

paraelectric state (P = 0) if the initial temperature is high. Indeed, the phenomenon of

thermal hysteresis, where the transition temperature depends on whether the sample is

heated or cooled, is prevalent in a number of first-order ferroelectrics including barium

titanate. We emphasize that it is only for T0 < Tc that the ferroelectric minima are

thermodynamically favorable. In a ferroelectric below T0 there are (at least) two min-

ima of the free energy, corresponding to spontaneous polarizations of different spatial

orientations. The barrier between these minima means that a small electric field will

not immediately switch the polarization.

As before, the spontaneous polarization can be estimated by setting E = 0 in Eq.

(1.2), thus for T ≥ Tc

P0 =
−b±

√
b2 − 4ac(T − T0)

2c
(1.8)
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and for T ≤ Tc its value becomes

P0 =
−b+

√
b2 − 4ac(T − T0)

2c
. (1.9)

1.3.4 Electrostriction

So far we restricted ourselves in rigid ferroelectrics, i.e. strain effects were assumed

negligible. In real ferroelectrics, phase transitions from the paraelectric to the ferro-

electric state are accompanied by the existence of a remanent strain. Consider a cubic

crystal (e.g., BaTiO3) that undergoes a ferroelectric phase transition to a state where

the polarization can point along one of the six orthogonal cubic directions. Now it is

clear that there is a special axis and so it would no longer be expected that the crystal

as a whole will remain cubic one expects a distortion into a tetragonal crystal, which

can be described by a tetragonal strain e0. In the framework of a phenomenological

theory spontaneous strain for a uniaxial ferroelectric will take the form

e0 = γP 2, (1.10)

where γ is the so called electrostrictive coefficient.

Thus we can easily extend the Landau theory to elastic ferroelectrics by writing the

free energy as

F =
1

2
C(e− e0)

2 +
1

2
aP 2 +

1

4
bP 4 +

1

3
cP 6 − E P − e σ, (1.11)

where C is the elastic coefficient. Using the above free energy, which now consists

of elastic and electric terms we can now determine the properties in equilibrium by

minimizing with respect to both P and e. For more details one is referred to (59; 72).

1.4 Domains in ferroelectric single crystals

It seems useful to describe the formation of domains in a single ferroelectric crystal

belonging to the perovskite oxide family, such as Barium Titanate. The spontaneous

polarization in a ferroelectric crystal is usually not uniformly aligned throughout the

material along the same direction. The six directions (including positive and negative

orientations) along the three of the cubic cell (see Figure 1.2) in BaTiO3 are equivalent,
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and spontaneous polarization may arise with equal probability along any of them when

the crystal is cooled through the ferroelectric phase-transition temperature. Directions

along which the polarization will develop depend on the electrical and mechanical

boundary conditions imposed on the sample. The regions of the crystal with uniformly

oriented spontaneous polarization are called ferroelectric domains. The region between

two domains is called a domain wall. The walls that separate domains with oppo-

sitely oriented polarization are called 180o walls and those that separate regions with

mutually perpendicular polarization are called 90o walls. In the domain-wall region,

the polarization changes from one domain to another continuously but steeply. The

ferroelectric domain walls are therefore much narrower than the domain walls in fer-

romagnetic materials. Experimental observations show that the width of the domain

walls in ferroelectric materials is of the order of 1 − 10 nm, that is, as little as 2–3

crystal unit cells. The width of the domains increases with increasing temperature, as

the phase transition is approached.

The ferroelectric domains form to minimize the electrostatic energy of the depolariz-

ing fields and the elastic energy associated with the mechanical constraints to which the

ferroelectric material is subjected as it is cooled through the paraelectric–ferroelectric

phase transition . Onset of spontaneous polarization at the transition temperature

leads to the formation of surface charges. This surface charge produces an electric

field, called the depolarizing field, which is oriented oppositely to the polarization.

The depolarizing field will form whenever there is a nonhomogeneous distribution of

the spontaneous polarization, for example, due to a change in the direction of the po-

larization at grain boundaries. The depolarizing field may be very strong rendering

the single-domain state of the ferroelectric energetically unfavorable. The electrostatic

energy associated with the depolarizing field may be minimized if: (1) the ferroelectric

splits into domains with oppositely oriented polarization, or (2) the depolarizing charge

is compensated by electrical conduction through the crystal or by charges from the

surrounding material. The depolarizing field often cannot be completely compensated,

and as grown ferroelectric crystals often exhibit reduced or even zero pyroelectric and

piezoelectric effects due to the presence of ferroelectric domains. Splitting of a ferro-

electric crystal into domains may also occur due to the influence of mechanical stresses.

The domain walls in BaTiO3 may separate regions in which polarization orientation

is antiparallel (180o domain walls) or perpendicular (90o domain walls) to each other.
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Figure 1.5: Domain structure in a single crystal of Barium Titanate

Both 90o and 180o walls may reduce the effects of depolarizing electric fields but only

formation of 90o walls may minimize the elastic energy. A combination of electrical and

elastic boundary conditions to which a crystal is subjected as it is cooled through the

ferroelectric phase-transition temperature usually leads to a complex domain structure

with many 90o and 180o domain walls, as shown schematically in Figure 1.5. Since

domain walls themselves carry energy, the resulting domain-wall configuration will be

such that the sum of the domain-wall energy, crystal surface energy, and elastic and

electric fields energy is minimal.

The domain walls that differ in orientation from the spontaneous polarization vec-

tor are called ferroelectric domain walls and those that differ in orientation from the

spontaneous strain tensor are called ferroelastic domain walls. In BaTiO3, the 180o

walls are purely ferroelectric because they differ only in orientation of the polarization

vector. The 90o domain walls are both ferroelectric and ferroelastic, as their differ in

orientation of both the polarization vector and the spontaneous strain tensor.

The types of domain walls that can occur in a ferroelectric crystal depend on the

symmetry of both non-ferroelectric and ferroelectric phases of the crystal. In the

rhombohedral phase of the BaTiO3, for example, the direction of the polarization

develops along the body diagonals (direction < 111 >) of the paraelectric cubic unit

cell. This gives eight possible directions of the spontaneous polarization with 180o, 71o

and 109o domain walls.

From a continuum point of view, domain walls can be considered as sharp interfaces.

Obviously, one can describe the motion of the domain walls by a standard implementa-

tion of the sharp interface theory in electro-elastic solids. The treatment of the domain

walls in ferroelectrics as sharp interfaces will be the subject of the third chapter.
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1.5 Low dimensional ferroelectrics

Advances in computer and technological science are closely related to the properties

of the materials at very low scales. Ferroelectric epitaxial islands and thin films re-

ceive considerable attention from academics and industries over the world, due to their

usage as non-volatile computer memories (FE-RAM), sensors and transducers. The be-

havior of low dimensional ferroelectrics substantially deviate from the bulk behavior.

For instance, in a PbTiO3 particle the domain structure vanishes when its diameter is

less than 20nm and ferroelectricity may disappear when the diameter is below 4nm.

Thus, it is important to explore and produce theoretical models that give a satis-

factory explanation on the size effect of ferroelectric properties. Therefore, different

theoretical approaches, including phenomenological Landau theories, and atomic-level

first-principles calculations have been used in order to study thin films, nanorods and

nanodisks.

From a continuum point of view, the behavior of nanoscale ferroelectrics may be

accomplished by utilizing the powerful Landau–Ginzburg theory supplied with the ap-

propriate information. In ferroelectrics, size effects turn out to be a more loosely defined

problem than in ferromagnets (59). In reality this is not the case: ferroelectricity is

instead limited by the relevant electrical and mechanical boundary conditions, and in

fact more frequently by the practical issues involved in producing high-quality samples

on the extreme nanoscale. Within the Ginzburg-Landau type phenomenological theory,

Kretschmer and Binder (44) introduced a framework for considering size effects through

two lengths, the correlation length and the extrapolation length. This framework was

then expanded and applied to a number of situations by Tilley and Zeks (67). The idea

of an intrinsic size effect is largely driven by the concept of a correlation volume, this

being related to the required number of aligned dipoles for ferroelectricity to occur.

In fact, the strong longrange interactions along the polar axis and the weaker interac-

tions perpendicular to this axis lead to an anisotropic correlation volume. Reducing

the sample size below the critical length parallel to the polar axis modifies the balance

between the short–range forces, which favor a centro-symmetric para-electric phase,

and the long-range interactions. Thus, an instability of the ferroelectric phase might

be expected for films below a certain thickness. Extremely pertinent to this discussion,

however, is the question of what the size of this correlation length should be. In fact
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this depends greatly on how close to the phase transition the system is, as it is given

by ξ =
√

(κ/|α|), where α = α0(T − T0) and κ is a material constant. While it is only

a few lattice parameters far from the transition temperature, it should diverge close to

the phase transition. Kretschmer and Binder (44) used a phenomenological approach

to describe polarization variations at the film surface. To do so, a surface term was

added to the Ginzburg-Landau-Devonshire expansion of the total free energy, leading

to the introduction of the so-called extrapolation length δ, such that dP/dz = P0/δ

(for a uniaxial material). A positive extrapolation length δ indicates a decrease of

the polarization near the surface, while a negative extrapolation length indicates an

increase. By introducing this term, a polarization gradient is introduced into the film.

This concept has then been used in many works to calculate polarization profiles. The

weakness of the phenomenological approach resides in the fact that an extrapolation

length has to be introduced. Theoretical works based on Ginzburg-Landau-Devonshire

theory predicted that ferroelectricity is suppressed in small particles and thin films at

relatively large sizes compared to what has been recently observed experimentally.

In this work, we study the behavior of thin films within the context of a new phase

field model accumulating electric field gradient effects (see Subsection 2.5.5). Perhaps

this attempt may shed light to special aspects of thin films and provide new insights

as well as detailed simulations.



Chapter 2

Continuum phase field approaches

”The miracle of the appropriateness of the language

of mathematics for the formulation of the laws

of physics is a wonderful gift which we neither

understand nor deserve.”

E.P. Wigner

There are two basic formulations concerning the electrical constitutive behavior of

dielectric materials. Normally, it is the electric polarization density that used as an

independent constitutive variable in the stored energy function (68). Alternatively, the

electric field itself – or equivalently, the electric potential gradient – can be used for the

same purpose (66). Thus one may distinguish two main approaches in the development

of elastic dielectric theories: the polarization and the electric field based models. The

mathematical description of the linear elastic dielectric materials, e.g. piezoelectrics,

consists of two partial differential equations: the mechanical equilibrium and the Gauss

equation. Consequently, one has to determine two unknown fields: the displacement

and the polarization vector (or the electric potential). In that case, polarization and

electric field vectors are thermodynamically conjugate to each other thus, it is a matter

of taste which should be considered as dependent or as an independent constitutive

variable.

A well–established theory for the equilibrium and the evolution of the microstruc-

ture is the key–factor for the understanding of the macroscopic behavior of ferro-
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electrics. It is apparent that a new constitutive variable accounting for the microstruc-

ture is needed. Hence, the complete mathematical description of elastic ferroelectrics

needs an additional equation. Toupin (68) has already introduced such an additional

equation, the so–called intramolecular balance equation, for the description of general

non–linear elastic dielectrics (see also 31; 32; 50). In classical Landau theory on rigid

ferroelectrics (25) presented in the previous section, the order parameter, i.e., the polar-

ization vector, has been used as (the sole) constitutive variable. The standard theories

on elastic ferroelectrics use also the polarization vector as basic constitutive variable

(18; 19; 22; 63; 65; 74; 81? , etc.). Nevertheless, all of them use also the electric field

as constitutive variable. Thus, polarization and electric field have their own position

in the energy functional and, certainly, in the final partial differential equations.

It is well–documented that higher gradient theories, in general, account for non–

local and size effect phenomena (53; 64). Thus, it seems they are appropriate to model

aspects related to the microstructure of a material. For instance, the polarization

gradient tensor has been proposed as an additional constitutive variable in a general

elastic dielectric theory to account for surface effects (54). In elastic ferroelectric the-

ories based on polarization vector, the addition of the polarization gradient in the list

of the constitutive variables plays an important role in connection with the geometry

of the domain walls (17; 19; 65).

As concerns the electric field based models, the insertion of the electric field gra-

dient into the list of the constitutive variables has been proposed for rigid dielectrics

by Kafadar (35). In elastic dielectrics, the electric field gradient (or equivalently, the

second gradient of the electric potential) has already been used in the formulation of

non–linear theories (20; 28; 31; 32; 39; 40; 76) as well as in many interesting appli-

cations (75; 77). However, to our best knowledge, there are no applications of the

electric field gradient theories in ferroelectrics. The insertion of the electric field gradi-

ent results in a new constitutive equation and gives an alternative form to the overall

mathematical description of ferroelectrics. For instance, while the energetically conju-

gate of the electric field is the (dipole) polarization vector, the energetically conjugate

of the electric field gradient is the quadrupole polarization tensor. In that case, a model

with quadrupole polarization is arisen, instead of the polarization gradient tensor of

the standard theories.
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In this work, in addition to the electric field, the electric field gradient is added

as a constitutive variable in the stored energy function. Thus besides the dipole po-

larization vector (the conjugate variable of electric field), the quadrupole polarization

tensor (conjugate to the electric field gradient) is introduced. However, these quantities

represent the reversible electrical behavior of the material. The irreversible behavior

is inserted into the picture through the phase separation energy, a function of the to-

tal spontaneous polarization. The spontaneous polarization is also a new constitutive

variable consisting of two distinct parts: the spontaneous dipole polarization and the

spontaneous quadrupole polarization. Summing up, the objective of this work is an

alternative theory for elastic ferroelectrics by the use of the electric field gradient and

the total spontaneous polarization as independent constitutive variables in addition to

those ones of electric field and strain tensor.

2.1 The polarization gradient theory of ferroelectrics

The polarization gradient theory has proved to be successful in modeling the micro-

scopic and macroscopic behavior of elastic ferroelectrics. Several researchers over the

years have proposed different continuum models that are under the umbrella of the

polarization gradient theory. These models use the total polarization vector as the

first order parameter and the mechanical strain as the second order parameter of the

evolutionary process. We think it is appropriate to outline these phase field models so

as to give a complete picture of the current modeling techniques in ferroelectrics.

2.1.1 Model I

The temporal evolution of the domain structure is governed by the TDGL (Time

Dependent Ginzburg Landau) equations as follows (18; 63; 70)

∂Pi(r, t)

∂t
= −L δF

δPi(r, t)
, i = 1, 2, 3 (2.1)

where t and L denote time and the kinetic coefficient, respectively, and r represents

the spatial vector. The quantity F represents the total free energy of the system given

by

F =

∫
Ω

(fL + fG + fdip + felec + felas)dΩ (2.2)
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where fL, fG, fdip, felec, felas are the bulk-free energy, the gradient energy, the long–

range interaction of dipole-dipole, the electric energy because of the external electric

field, and the elastic strain energy, respectively.

The bulk-free energy density is responsible for the different orientations of the

polarization within the material and takes the form

fL(Pi) = α1(P
2
1 + P 2

2 + P 2
3 ) + α11(P

4
1 + P 4

2 + P 4
3 )

+ α12(P
2
1P

2
2 + P 2

2P
2
3 + P 2

1P
2
3 ) + α111(P

6
1 + P 6

2 + P 6
3 )

+ α112[P
4
1 (P 2

2 + P 2
3 ) + P 4

2 (P 2
1 + P 2

3 ) + P 4
3 (P 2

1 + P 2
2 )]

+ α123(P
2
1P

2
2P

2
3 ), (2.3)

where a11, a12, a111, a112, a123 are the material coefficients. It is noted that α1 = (T −
T0)/2ε0C0 where T and T0 are the temperature and Curie temperature, respectively,

and ε0 and C0 are the dielectric constant and Curie constant, respectively.

The contribution of domain wall energy is given by the gradient of the polariza-

tion field. For a cubic system, the domain wall energy density in the lowest order is

considered as follows

fG(Pi,j) = G11(P
2
1,1 + P 2

2,2 + P 2
3,3) +G12(P1,1P2,2 + P3,3P2,2 + P1,1P3,3)

+ G44[(P1,2 + P2,1)
2 + (P2,3 + P3,2)

2 + (P1,3 + P3,1)
2]

+ G
′

44[(P1,2 − P2,1)
2 + (P2,3 − P3,2)

2 + (P1,3 − P3,1)
2], (2.4)

where Gij are the gradient coefficients.

The long-range interaction of dipole-dipole is very important in the formation of

the ”head-to-tail” structure. Its expression is given by

fdip =
1

8πε

∫
d3rid

3rj

(
P (ri) · P (rj)

|ri − rj|3
− 3(P (ri) · (ri − rj))(P (rj) · (ri − rj))

|ri − rj|5

)
=

1

2πε

∫
d3ξ

(2π)3
|P(ξ) · n|, (2.5)

where

P(ξ) =

∫
d3r

(2π)3
P(r)e−iξ·r (2.6)

is the Fourier transformation of the polarization field and ni = ξi/ξ, (i = 1, 2, 3) is the

unit vector in the reciprocal Fourier space.
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The electrical energy density is given by the relation

felec = −Eext
i Pi (2.7)

where Eext
i represents the external electric field. Finally, the elastic strain eij and

elastic strain energy felas are involved in the course of polarization switching as follows

felas =
1

2
cijkleijekl (2.8)

where cijkl is the elastic stiffness tensor; the elastic strain eij = εij − ε◦ij in which εij

is the total strain and the spontaneous strain εij can be taken as eigenstrains and

associated with the spontaneous polarizations as follows

ε◦ij = γijklPkPl (2.9)

where γijkl are the electrostrictive coefficients.

2.1.2 Model II

Consider an elastic ferroelectric body occupying a domain Ω with boundary ∂Ω. The

total energy functional I of the body may be written as

I[ui, φ, Pi] =

∫
Ω

[fG(Pi,j) +W (eij, Pi)] dΩ +
ε0

2

∫
IR3

φ2
,idΩ, (2.10)

where fG is the domain wall energy as it is given by Eq. (2.4) and W = fL + felas is

the Landau-Devonshire energy density due to elastic strain and polarization. The last

term is the electrostatic energy associated with electric field Ei = −φ,i caused (in all

of space) by the polarization.

The governing equations of polarization evolution are obtained as the gradient

flow associated with the total potential energy. According to Zhang and Bhattacharya

(81) these equations are

µṖi =

(
∂fG
∂Pi,j

)
,j

− ∂W

∂Pi
− φ,i (2.11)

Pi,i − ε0φ,ii = 0, (2.12)

σji,j = 0, (2.13)
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where µ−1 is the mobility of the process. Equation (2.11) governs the evolution of the

polarization within the body, with boundary conditions concerning either a prescribed

value for the polarization (P = P̄) or for the polarization flux (∇Pn = π∗).Equations

(2.12) and (2.13) are the Gauss law and mechanical equilibrium, respectively.

The treatment of electrostatics here is different from that in the Model I. Here,

the electrostatic field is computed explicitly instead of being included implicitly using

dipole-dipole interactions in the energy. Consequently, one is not restricted to periodic

domains and fast Fourier transforms. Instead it is possible to apply realistic boundary

conditions and perform easier computations.

2.2 An electric field gradient theory for ferroelectrics

Theories concerning elastic dielectrics with quadrupole polarization have been proposed

in the last decades. These theories make use of the fundamental principles of continuum

electrodynamics. A well known macroscopic continuum model is that of Tiersten’s (66),

which provides a satisfactory interpretation of the the electric properties of an elastic

dielectric. Kalpakidis and Massalas (39) presented an extension of Tiersten’s model

accounting for quadrupole effects. According to this theory, one can define the dipole

and quadrupole polarization as

pi(xk, t) = ρeξi, (2.14)

qij(xk, t) =
1

2
ρeξiξj =

1

2
piξj, (2.15)

where ξi is the displacement vector of the electronic continuum with respect to the

lattice and ρe the electronic charge density (see (66) for the details).

Equation (2.15) is an indication of a possible link between the quadrupole and

dipole polarization. Taking this as motivation, one can assume that

qij = fij(pkpl). (2.16)

It is clearly stated that this is a heuristic relation that facilitates the set up of the

proposed theory. Trimarco (69) proposed an analogous relation between the quadrupole

polarization and the dipole polarization gradient.
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In the case where the quadrupole polarization is accounted for, the total polarization

πi has the form (28; 32; 69)

πi = pi − qij,j. (2.17)

2.2.1 The energy functional

Consider an elastic ferroelectric body occupying a domain Ω with boundary ∂Ω. The

total energy functional I of the body can be written as

I[ui, φ, π
s
i ] =

∫
Ω

[
W (eij, φ,i, φ,ij) + Ψ(πsi )− 1

2
ε0φ,iφ,i + πsiφ,i

]
dv

−
∫
∂Ω

(tiui + σ̄φ+ π̄iφ,i) ds, (2.18)

where eij is the infinitesimal strain, ui the displacement field, φ the electric potential,

πsi the total spontaneous polarization and ε0 the vacuum permittivity. Also, W is the

energy of deformation and electric field and Ψ denotes the spontaneous polarization

energy or the phase separation energy. The last integral contains the external loading

terms with ti, σ̄ and π̄i denoting the traction, the surface charge density and the surface

dipole polarization density.

The first integral in Eq. (2.18) is the energy stored within the body and the space

occupied by the body. One may assume that this energy density consists of three parts:

the energy of the matter, the field energy and the interaction field–matter energy (40).

Here, the matter energy consists of the first two terms in Eq. (2.18), i.e.:

Σ(eij, φ,i, φ,ij, π
s
i ) = W (eij, φ,i, φ,ij) + Ψ(πsi ).

The field energy is represented by the third term which is the standard electrostatic

field energy. The fourth term of the first integral, i.e., πsiφ,i concerns the interaction

energy between matter and field.

2.2.2 The extremum principle

The arguments of functional in Eq. (2.18) are the displacement field, the electric poten-

tial and the spontaneous polarization vector. It is assumed that among all admissible

functions, the real ones (the solution) provide an extremum to the the energy function.
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Consequently, if (u, φ,πs) represents a solution of a physical problem, the variation of

I with respect to its arguments should vanish, that means

δI(u, φ,πs; δu, δφ, δπs) = 0, (2.19)

for any arbitrary variation δu, δφ, and δπs. Thus the variation of the energy with each

one of the fields ui, φ and πsi should vanish.

2.2.2.1 Variation of displacement

We start examining the variation of I with respect to the displacement ui:

δI(ui, φ, π
s
i ; δui) = 0,

or, equivalently ∫
Ω

∂W

∂eij
δeijdv −

∫
∂Ω

tiδuids

=

∫
Ω

∂W

∂eij
δui,jdv −

∫
∂Ω

tiδuids

=

∫
∂Ω

(
∂W

∂eij
nj − ti

)
δuids−

∫
Ω

(
∂W

∂eij

)
,j

δuidv = 0, (2.20)

2.2.2.2 Variation of electric potential

The variation of the total potential energy functional with respect to the electrostatic

field should vanish

δI(ui, φ, π
s
i ; δφ) = 0,

or ∫
Ω

[(
∂W

∂φ,i

)
δ(φ,i) +

(
∂W

∂φ,ij

)
δ(φ,ij)− ε0φ,iδ(φ,i) + πsi δ(φ,i)

]
dv

−
∫
∂Ω

[σ̄δφ+ π̄iδ(φ,i)] ds = 0.
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After some integrations by parts, one obtains∫
Ω

[
−
(
∂W

∂φ,i

)
,i

+

(
∂W

∂φ,ij

)
,ij

+ ε0φ,ii − πsi,i

]
δφdv

+

∫
∂Ω

[(
∂W

∂φ,i
−
(
∂W

∂φ,ij

)
,j

− ε0φ,i + πsi

)
ni − σ̄

]
δφds

−
∫
∂Ω

Πiδ(φ,i)ds = 0. (2.21)

where

Πi =
∂W

∂φ,ij
nj + π̄i. (2.22)

The last integral in Eq. (2.21) needs further elaboration. Using the analysis pre-

sented in (40), one can prove∫
∂Ω

Πiδ(φ,i)ds = −
∫
γ

[[Παbα]] δφdl −
∫
∂Ω

Πα
;αδφds+

∫
∂Ω

Πnni(δφ),ids, (2.23)

where γ is a possible singular curve on ∂Ω (i.e. an edge of a parallelepid) and bα is the

bi-normal vector of γ, Πα and Πn the surface and normal component, respectively.

Finally, inserting Eq. (2.23) into Eq. (2.21), one obtains

∫
Ω

[
−
(
∂W

∂φ,i

)
,i

+

(
∂W

∂φ,ij

)
,ij

+ ε0φ,ii − πsi,i

]
δφdv

+

∫
∂Ω

[(
∂W

∂φ,i
−
(
∂W

∂φ,ij

)
,j

− ε0φ,i + πsi

)
ni − σ̄ + Πα

;α

]
δφds

+

∫
∂Ω

Πnni(δφ),ids+

∫
γ

[[Παbα]] δφdl = 0. (2.24)

2.2.2.3 Variation of spontaneous polarization

The variation of I with respect to πsi provides

δI(ui, φ, π
s
i ; δπ

s
i ) =

∫
Ω

(
∂Σ

∂πsi
δπsi + φ,iδπ

s
i

)
dv. (2.25)
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2.2.3 Field equations, boundary conditions and constitutive

relations

Focusing on the volume integrals of the variational Eqs. (2.20), (2.24) and (2.25) and

taking into account that the variations δui, δφ and δπsi are arbitrary, one can extract

the following field equations: (
∂W

∂eij

)
,j

= 0, (2.26)

(
∂W

∂φ,i

)
,i

−
(
∂W

∂φ,ij

)
,ij

− ε0φ,ii + πsi,i = 0, (2.27)

− ∂Σ

∂πsi
− φ,i = 0, (2.28)

for all x in Ω.

On the other hand, since there are no data for the displacement field on the bound-

ary ∂Ω, the variation of the displacement is arbitrary on ∂Ω, thus the surface integral

of Eq. (2.20) vanishes only if
∂W

∂eij
nj = ti. (2.29)

Besides, there is no boundary data for the electric potential φ, thus the variation δφ

will be arbitrary on ∂Ω as well. However, one should be cautious because there are

two surface integrals in Eq. (2.24). However, it is useful to recall that δφ is initially

defined on Ω ⊂ IR3. Hence, being constrained on ∂Ω (i.e., a two dimensional set of

zero measure in IR3) one can easily conclude that the variation δφ is independent of

its gradient δφ,i on the boundary surface ∂Ω. Hence, the following boundary (jump)

conditions are obtained from the surface and line integrals of Eq. (2.24)[
∂W

∂φ,i
−
(
∂W

∂φ,ij

)
,j

− ε0φ,i + πsi

]
ni = σ̄ − Πα

;α, on ∂Ω, (2.30)

Πn = Π · n = 0, on ∂Ω,
[[Παbα]] = 0, on γ.

(2.31)
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The next step is to introduce the Cauchy stress tensor, the electric dipole polariza-

tion and the electric reversible quadrupole polarization density through the following

relations

σij =
∂W

∂eij
, pri =

∂W

∂φ,i
, qrij =

∂W

∂φ,ij
(2.32)

Inserting the above constitutive relations into Eqs. (2.26)–(2.27), one obtains

σij,j = 0 (2.33)

and

Di,i = 0, (2.34)

for all x ∈ Ω, where Di and Pi stand for the electric displacement and the total

polarization field defined as

Di = ε0Ei + πi (2.35)

and

πi = πsi + pri − qrij,j (2.36)

respectively. According to Eq. (2.17) the total spontaneous polarization vector can be

written

πsi = psi − qsij,j, (2.37)

where psi and qsij denote spontaneous dipole and quadrupole densities , respectively.

Inserting Eq. (2.37) into Eq. (2.36) one obtains

πi =

irreversible
part︷ ︸︸ ︷

psi − qsij,j +

reversible
part︷ ︸︸ ︷

pri − qrij,j . (2.38)

Notice that the total polarization vector is separated in two parts.

After the above considerations, the boundary conditions (2.29), (2.30) and (2.31)

take the form

σijnj = ti, on ∂Ω (2.39)

Dini = σ̄ − Πα
;α, on ∂Ω (2.40)

and

qrijninj = −π̄n, on ∂Ω, [[Παbα]] = 0, on γ, (2.41)
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where

π̄n = π̄ini

represents the normal component of the applied surface dipole polarization density.

Remark 2.1: It is worth noting that both Eqs.(2.40) and (2.41)1 concern

boundary conditions on ∂Ω. The second one contains solely the quadrupole

tensor qrij. Notice that the unknown tensor field qrij on the boundary is

constrained by the externally applied field π̄i, as the polarization field is

constrained by an applied surface charge in the standard theory. The applied

field π̄i contributes manifoldly in the boundary conditions as it is present, in

addition in the last term of Eq. (2.40) and (2.41)2 as well. It is noted that

the surface dipole polarization density π̄i might be a distribution of dipolar

defects on the boundary. Kalpakides et al. (36) used the additional boundary

conditions to study the influence of dipole defects in the microstructure of

ferroelectrics. The present analysis seems to be close to that one developed

in (75; 77). The two analyses are in accordance under the assumption that

the applied polarization π̄i is constrained to be normal to the surface ∂Ω.

On the other hand, assuming that the quadrupole polarization (irreversible

and reversible part) vanishes one obtains a theory very close to the standard

Landau model for elastic ferroelectrics.

Finally, the proposed variational principle for elastic ferroelectrics provides the field

equations (2.28), (2.33) and (2.34) accompanied by the boundary conditions (2.39)–

(2.41). The unknown functions are the displacement field, the electric potential and

the direction of the spontaneous polarization vector; its magnitude is considered as a

material parameter that is given. In the case of Dirichlet boundary conditions where

the displacement and the electric potential are given on a part of the boundary, say

∂ΩD, then Eqs. (2.39), (2.40) hold only for the complementary of the boundary, ∂ΩN ,

where

∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. (2.42)

Due to the presence of the (undetermined) functions W and Ψ, the above equations and

boundary conditions are quite general. To use the above results in a specific boundary

value problem a special choice of the constitutive functions W and Ψ is necessary.
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2.3 Constitutive assumptions

In this section a specific form for the constitutive functions W and Ψ is proposed in

order a particular boundary value problem to be formulated.

2.3.1 The stored energy function

We start with the stored energy of deformation and electric field. This part of energy

is responsible for the linear (reversible) behavior of the material, thus one can assume

a quadratic form for W . Consequently, the stored energy of deformation and electric

field can be written

W (eij, φ,i, φ,ij) =
1

2
cijkl

(
eij − e◦ij

)
(ekl − e◦kl) + dijkφ,i

(
ejk − e◦jk

)
− 1

2
ε0εijφ,iφ,j −

1

2
ε0aijklφ,ijφ,kl − ε0βijkφ,iφ,jk, (2.43)

i, j = 1, 2,

where cijkl is the elastic coefficient tensor, εij is the dielectric susceptibility tensor and

dijk is the piezoelectric coefficient tensor that depends on the spontaneous polarization

orientation. The coefficient tensors βijk and aijkl are new material parameters that

related with the insertion of the second gradient of the electric potential into the set of

the independent constitutive variables. The tensor e◦ij denotes the spontaneous strain.

The existence of spontaneous strain is exclusively due to the presence of spontaneous

polarization thus, it is reasonable to assume that there exists a function relating these

two quantities, i.e.,

e◦ij = e◦ij(p
s
k). (2.44)

Inserting Eq. (2.43) into constitutive relations (2.32), one further determines the latter

as

σij = cijkl(ekl − e◦kl) + dkijφ,k, (2.45)

pri = dijk(ejk − e◦jk)− ε0εijφ,j − ε0βijkφ,jk, (2.46)

qrij = −ε0βkijφ,k − ε0αijklφ,kl. (2.47)

Due to the symmetry of the quadrupole tensor qij, one easily concludes that the ma-

terial tensor αijkl is symmetric with respect to its first two indices. Obviously, the last

two indices can be interchanged, as well.
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Using Eqs. (2.45)–(2.47), one may compute the total polarization and the electric

displacement with the aid of Eqs. (2.35) and (2.38) as follows

πi = psi − qsij,j + dijk(ejk − e◦jk)− ε0εijφ,j + ε0 (βkij − βijk)φ,jk + ε0αijklφ,jkl,

Di = psi − qsij,j − ε0εijφ,j + dijk(ejk − e◦jk) + ε0 (βkij − βijk)φ,jk

+ε0αijklφ,jkl, (2.48)

where εij = εij + δij.

2.3.2 The phase separation energy

In the Landau theory one considers an energy in the form of a high order polynomial in

terms of the (dipole) polarization vector. Here, we assume a phase separation energy

depended on the total spontaneous polarization so as to introduce the quadrupole

polarization tensor as well. Thus we adopt an energy function of the form

Ψ(πsi ) = αijπ
s
iπ

s
j + ᾱijklπ

s
iπ

s
jπ

s
kπ

s
l , (2.49)

where higher order terms can be used if necessary. Consequently its derivative with

respect to πsi is written
∂Ψ

∂πsi
= αijπ

s
j + ᾱijklπ

s
jπ

s
kπ

s
l ,

or, with the aid of Eq. (2.37)

∂Ψ

∂πsi
= αijp

s
j − αijq

s
jk,k + ᾱijkl(p

s
j − qsjm,m)(psk − qskn,n)(p

s
l − qslr,r).

Simplifying our analysis we keep only the linear terms in quadrupole tensor, thus one

can write
∂Ψ

∂πsi
' −αijqsjk,k + αijp

s
j + ᾱijklp

s
jp
s
kp
s
l = −αijqsjk,k +

∂Ψ

∂psi
,

Also taking account Eq. (2.28), the intramolecular balance can be finally written with

respect to the spontaneous polarization vector as

αijq
s
jk,k −

∂Σ

∂psi
− φ,i = 0. (2.50)
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Summing up, with the use of Eqs. (2.48) and (2.50) the field equations take the

form: 
αijq

s
jk,k − ∂Σ

∂psi
− φ,i = 0,

psi,i − qsij,ji − ε0εijφ,ij + dikl (ekl − e◦kl),i + ε0aijklφ,ijkl = 0,

cijkl (ekl − e◦kl),j + dkijφ,kj = 0.

(2.51)

It is worth noting that the material constant βijk does not appear into the above field

equations due to the symmetry of φ,ij. Hereafter, the interaction between φ,i and φ,ij

is ignored, thus the βijk tensor is taken to be zero.

2.3.3 Material symmetry considerations

To proceed further to build a simple model and study the influence of quadrupoles

in ferroelectrics, we make several simplifications. First, we consider that the body is

isotropic as concerns its elastic properties. Thus, the elastic constants are only two

and the tensor cijkl is reduced to
c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

 , (2.52)

where c66 = (c11 − c12)/2. Furthermore, the material tensor αijkl and the dielectric

tensor εij are considered to be isotropic, i.e.
α11 α12 α12 0 0 0
α12 α11 α12 0 0 0
α12 α12 α11 0 0 0
0 0 0 α66 0 0
0 0 0 0 α66 0
0 0 0 0 0 α66

 (2.53)

and

εij = εδij ⇒ εij = εδij = (ε+ 1)δij, i, j = 1, 2, 3. (2.54)

where α66 = (α11 − α12)/2.
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As far as the piezoelectric tensor concerns, it should be transversally isotropic about

the spontaneous polarization axis. More precisely one can choose the piezoelectric

tensor as (42; 60)

dkij (psi ) =
||psi ||
p0

{
d||eiejek + d⊥ (δij − eiej) ek

+d=
1
2
[(δki − ekei) ej + (δkj − ekej) ei]

}
,

(2.55)

where the constants d||, d⊥, d= correspond to the classical parameters d33, d31, and

d15, respectively, in the case of a fully poled state oriented in the x3-direction. In the

specific example we examine here we are not interested in piezoelectric effects, thus the

piezoelectric tensor is taken to be zero.

2.3.4 The 2-D case

To reduce even more the number of material constants, we confine ourselves in 2-D

problems so conditions for plane strain and plane electric field are adopted. For the

problem under study, that means ui = ui(x1, x2), i = 1, 2 and φ = φ(x1, x2). In that

case, Eqs. (2.52) and (2.53) take the simple form: c11 c12 0
c12 c11 0
0 0 c66

 and

 α11 α12 0
α12 α11 0
0 0 α66

 , (2.56)

where α66 = (α11 − α12)/2.

Taking into account the above considerations and inserting the reduced material

tensors into Eqs. (2.45–2.48), the following relations for polarization, quadrupole po-

larization and total polarization are obtained:

pr1 = −ε0εφ,1
pr2 = −ε0εφ,2
qr11 = −ε0 (α11φ,11 + α12φ,22)
qr22 = −ε0 (α12φ,11 + α11φ,22)
qr12 = −2ε0α66φ,12

π1 = ps1 − qs11,1 − qs12,2 − ε0 (εφ,1 − α11φ,111 − α12φ,221 − 2α66φ,122)
π2 = ps2 − qs21,1 − qs22,2 − ε0 (εφ,2 − 2α66φ,121 − α12φ,112 − α11φ,222) .

(2.57)

Also, the components of the electric displacement field and the stress tensor become

D1 = ps1 − qs11,1 − qs12,2 − ε0 (εφ,1 − α11φ,111 − α12φ,221 − 2α66φ,122)
D2 = ps2 − qs21,1 − qs22,2 − ε0 (εφ,2 − 2α66φ,121 − α12φ,112 − α11φ,222) .

(2.58)
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and
σ11 = c11(e11 − e◦11) + c12(e22 − e◦22),
σ12 = 2c12(e12 − e◦12),
σ22 = c11(e22 − e◦22) + c12(e11 − e◦11),
σ33 = c11(e11 − e◦11) + c11(e22 − e◦22).

(2.59)

Certainly, the component σ33 of the stress tensor can be written in terms of σ11 and

σ22.

We turn now to the phase separation energy Ψ, the role of which is crucial for the

interpretation of the material’s microstructure. The spontaneous polarization can take

only specific orientations depended on the material symmetry. For instance, Barium

titanate possesses six such different orientations (16) corresponding to the different

crystallographic variants of the material in room temperature. For the two–dimensional

case examined here, it is assumed that Ψ is a fourth order polynomial of spontaneous

polarization pi. Such a choice secures adequate smoothing for Ψ and multiple minima

corresponding to the four crystallographic directions of the crystal for the 2–d case.

Hence, one can write

Ψ(pi) =
a1

2

(
p2

1 + p2
2

)
+
a2

4

(
p4

1 + p4
2

)
+
a3

2
p2

1p
2
2, (2.60)

where the coefficients a1, a2 and a3 are material parameters and also we drop the no-

tation of spontaneous polarization replacing psi with pi, because there is no danger of

confusion since the reversible parts of polarization and quadrupole are given as deriva-

tives of the electric potential. In Figure 2.1 the spontaneous polarization energy versus

the components of the spontaneous polarization is illustrated for the normalized values

of the material parameters used in the numerical simulations of Section 2.5. One can

easily see that the spontaneous polarization energy attains four minima corresponding

to the crystallographic axes of the material. According to the above selection for the

polarization energy, the spontaneous polarization will tend to take the values (±p0, 0)

and (0,±p0) which are energetically more favorable.

Last, we have to make an assumption on the form of Eq. (2.44). Motivated by the

work of Chen (18), we assume that the spontaneous strain is a quadratic function of

spontaneous polarization, thus for the plane strain conditions Eq. (2.44) is of the form

e◦11 = γ11p
2
1 + γ12p

2
2,

e◦22 = γ11p
2
2 + γ12p

2
1,

e◦12 = γ44p1p2,
(2.61)
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Figure 2.1: Phase separation energy

where γij are the electrostrictive constants.

As concerns spontaneous quadrupole polarization tensor we assume a specific form

of Eq. (2.16):

qsij = µ

(
p1p2

1
2
(p1

2 + p2
2)

1
2
(p1

2 + p2
2) p1p2

)
.

In the 2-D model, the internal motion Eq. (2.50) results in the simple form

µ̄ (p1 (p1,2 + p2,1) + p2 (p1,1 + p2,2))− ∂Σ
∂p1

− φ,1 = 0,

µ̄ (p2 (p1,2 + p2,1) + p1 (p1,1 + p2,2))− ∂Σ
∂p2

− φ,2 = 0,
(2.62)

where µ̄ is a new parameter related to spontaneous quadrupoles.

Using all the above considerations and appropriate choices for the boundary con-

ditions (2.39)–(2.41), one can formulate a specific boundary value problem in terms of

displacement field ui, electric potential φ and spontaneous polarization pi.
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(a) 180◦ domain wall (b) 90◦ domain wall

Figure 2.2: Two types of domain walls in ferroelectrics with tetragonal crystal symmetry
and the two coordinate systems

2.4 Analytical solutions

In the previous section, we have presented a two dimensional model accounting for

quadrupole effects, which can be easily implemented in computer simulations. The key

idea of the proposed theory is that in ferroelectrics one has to assume a spontaneous

part for the quadrupole also. The reversible part of the quadrupole seems to play a

minor role in the formation of domain walls. On the other hand, the spontaneous

part of the quadrupole is essential for the microstructure of ferroelectrics, since it is

proved to be responsible for the formation of domain walls with proper surface energy

and thickness. In this section, analytical solutions for 1-D problem are provided to

demonstrate this particular role of spontaneous quadrupoles.

Confining ourselves in rigid ferroelectrics, the system of Eqs. (2.51) becomes

µ p1(p1,2 + p2,1)− ∂Ψ
∂p1

− ∂φ
∂x

= 0 (2.63)

µ p2(p1,2 + p2,1)− ∂Ψ
∂p2

− ∂φ
∂y

= 0 (2.64)

p1,1 + p2,2 − ε0ε(
∂2φ
∂x2 + ∂2φ

∂y2
) = 0 (2.65)

Notice that in the above equations we have discarded the second terms in Eqs. (2.62)

and the terms qsij,ji in Gauss equation so as to simplify the set of equations obtaining
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exact analytical solutions (5). Also, the reversible part of quadrupole polarization is

neglected.

2.4.1 The 180◦ Domain Wall

Consider an infinite strip −∞ < x <∞, −h/2 < y < h/2 with a domain wall located

at x = 0 as one can see in Figure 2.2a. In this simple problem the following boundary

conditions are taken

p2(0) = 0,
lim

x→±∞
p2 (x) = ∓p0,

lim
x→±∞

dφ (x)
dx

= 0,

lim
x→±∞

p1 (x) = 0,

(2.66)

where p0 is the value of spontaneous polarization of the material under discussion.

Figure 2.3: Normalized polarization profile for 180◦ domain wall.

The geometry of the body allows to assume that the partial derivative of all quantities



2.4 Analytical solutions 35

with respect to y vanish, thus the system of Eqs.(2.63)-(2.65) is transformed in an 1-D

problem

µ p1p2,1 − a1p1 − a2p
3
1 − a3p1p

2
2 −

dφ

dx
= 0 (2.67)

µ p2p2,1 − a1p2 − a2p
3
2 − a3p2p

2
1 = 0 (2.68)

p1,1 − ε0ε
d2φ

dx2
= 0. (2.69)

One can easily notice that the solution φ = 0 and p1 = 0 satisfies Eqs. (2.67) and

(2.69) simultaneously. What remains is Eq. (2.68) which takes the form

µ p2
dp2

dx
− a1p2 − a2p

3
2 = 0. (2.70)

Since p2 6= 0 the above equation becomes

µ
dp2

dx
− a1 − a2p

2
2 = 0,

the general solution of which is

p2 (x) = −
√
−a1

a2

tanh

(√
−a1a2

µ
(x− C)

)
, (2.71)

where C is a constant. From the boundary conditions one takes that p0 =
√
−a1/a2

and C = 0, thus leading to the solution

p2 (x) = −p0 tanh

(√
−a1a2

µ
x

)
. (2.72)

It is obvious from the polarization profile of an 180◦ domain wall that the quadrupole

theory predicts domain walls with proper thickness as it is shown in Figure 2.3, where

we have used the normalized values for the material parameters. It is remarked that the

polarization gradient theories provide also such a profile for the 180◦ domain wall (17;

73). However, unlike the polarization gradient theories, here a first order differential

equation has been used to obtain the same result. Also, of great interest is the domain

wall energy which can be computed by the relation

E180◦ =

∫ +∞

−∞
(Σ− Σ0)dx,

where Σ0 is the energy density of the homogeneous system (p1, p2) = (0, p0). For

µ = 1 m5N/C3 the domain wall thickness is 2nm with surface energy 0.0058 J/m2 and

for µ = 2.5 m5N/C3 the domain wall thickness is approximately 4nm with surface

energy 0.0146 J/m2.
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2.4.2 The 90◦ Domain Wall

Similarly to the previous solution for 180◦ domain walls, it is possible to find analytical

solutions for 90◦ domain walls. The 90◦ domain wall separates domains whose polar-

ization axis are perpendicular. The current coordinate system i.e. (x, y) fits to the

crystallographic symmetry of the material. This type of domain wall is oriented at 45◦

angle with respect to the crystallographic axes, so it is convenient to work in a new

coordinate system (r, s), rotated at 45◦ from the (x, y) system, as shown in Figure 2.2b.

The polarization vector in the new coordinate system is given by the relations

p1 =

√
2

2 (pr + ps)

p2 = −
√

2
2 (pr − ps) .

(2.73)

In the new coordinate system we consider an infinite strip −∞ < r <∞, −h/2 < s <

h/2, with h relatively small. The domain wall is located at r = 0 and the boundary

conditions are

ps(0) = 0,

lim
r→±∞

pr (r) =
p0√
2
,

lim
r→±∞

ps (r) = ∓ p0√
2
,

lim
r→±∞

dφ (r)
dr

= 0.

(2.74)

Inserting Eqs. (2.73) to the phase separation energy Ψ (i.e. Eq. (2.60)), the latter is

transformed to

Ψ′ =
a1

2

(
p2
r + p2

s

)
+ (

a2

8
+
a3

4
)
(
p4
r + p4

s

)
+ (

3a2

4
− a3

2
)p2
rp

2
s. (2.75)

Taking all partial derivatives with respect to s to be zero, the system of equations in

the new coordinate system takes the form

µ prps,r − ∂Ψ
′

∂pr
− dφ
dr

= 0,

µ psps,r − ∂Ψ
′

∂ps
= 0,

pr,r − ε0ε
d2φ
dr2 = 0.

(2.76)
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(a) Normalized polarization component ps

(b) Normalized polarization component pr

(c) Electric potential

Figure 2.4: Normalized polarization and electric potential profiles for 90◦ domain wall
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Substituting Eq.(2.75) into Eq.(2.76) it is easy to arrive at the following set of equations

µ prps,r − a1pr − (
a2

2
+ a3)p

3
r − (

3

2
a2 − a3)prp

2
s −

dφ

dr
= 0 (2.77)

µ psps,r − a1ps − (
a2

2
+ a3)p

3
s − (

3

2
a2 − a3)psp

2
r = 0 (2.78)

pr,r − ε0ε
d2φ

dr2 = 0. (2.79)

Specifically, if one sets
3

2
a2 − a3 ⇒ a3 =

3

2
a2, (2.80)

then Eq. (2.78) becomes

µ psps,r − a1ps − (
a2

2
+ a3)p

3
s = 0,

which, as before, can be solved analytically giving the general solution

ps (r) = −
√

−a1

a2/2 + a3

tanh

(√
−a1(a2/2 + a3)

µ
(r − C)

)
(2.81)

and after using Eq. (2.80) one obtains

ps (r) = − 1√
2

√
−a1

a2

tanh

(√
−2a1a2

µ
(r − C)

)
. (2.82)

Taking into account the boundary conditions, one may confirm that the quantity√
−a1/a2 equals to p0 and C = 0. Thus Eq. (2.82) may further be simplified to

ps (r) = − p0√
2

tanh

(√
−2a1a2

µ
r

)
. (2.83)

As concerns the other two under determination functions pr and φ, one can start from

Eq. (2.79) by writing it as
d

dr
(pr − ε0ε

dφ

dr
) = 0,

and after integrating

pr − ε0ε
dφ

dr
= C,

where C is a constant. It is easy to confirm from Eqs. (2.74) that C = p0/
√

2, leading

to the form

pr − ε0ε
dφ

dr
=

p0√
2
. (2.84)
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Returning to Eq. (2.77), one can obtain a more convenient form

µ prps,r − 2a2p
3
r − a1(pr −

1

−a1

dφ

dr
) = 0. (2.85)

Comparing Eqs. (2.84) and (2.85), it is reasonable to choose a1 = −1/ε0ε, thus con-

cluding in

−µ
√
−a1a2 p0 Sech2

(√
−2a1a2 r

)
pr − 2a2p

3
r − a1

p0√
2

= 0. (2.86)

which is an algebraic equation because ps has been already determined by Eq. (2.83).

Substituting the latter in Eq. (2.86) one obtains

−
√
−a1a2 p0 Sech2

(√
−2a1a2 r

)
pr − 2a2p

3
r − a1

p0√
2

= 0. (2.87)

The above equation is a third degree polynomial and can be solved analytically. Dis-

carding the two complex roots, pr is given by

pr (r) = −µ

√
−a1a2 p0 Sech2

(√
−a1a2

µ
r
)

31/3
(
−9

√
2 a1a2

2p0 +
√

6B(r)
)1/3 +

(
−9

√
2 a1a

2
2p0 +

√
6B(r)

)1/3
32/3 2a2

, (2.88)

where

B(r) =

√
27 a2

1a
4
2p

2
0 + 4 a3

2 (−a1a2)
1/3 p3

0µ
3 Sech6

(√
−a1a2

µ
r

)
. (2.89)

After that, Eq. (2.84) can be solved by a simple numerical integration determining

the electric potential. In Figure 2.4, the plots for the two polarization components

and the electric potential are given. It is clear that across 90◦ domain wall there is an

electric potential drop. Xiao (73) arrived at the same conclusion using the standard

polarization gradient theory, remarking that this is the main difference between the

two types of domain walls. As far as concerns the domain wall energy density, for µ =

1 m5N/C3 the surface energy is 0.0018 J/m2 and for µ = 2.5 m5N/C3 is approximately

0.046 J/m2. It is noted that this model predicts that the 90◦ domain walls are thinner

than 180◦ domain walls.
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2.5 Computations

Phase field theory provides a very powerful tool for studying the microstructural be-

havior of ferroelectric materials. The spontaneous dipole polarization is considered as

the first order parameter of the dynamic process from a non-equilibrium state to the

equilibrium, thus adopting a gradient flow argument one can write

mṗi = − δI

δpi
, (2.90)

where m denotes the mobility of the process, I is the energy free functional of the

system. The thermodynamic driving force δI/δpi has been already determined. The

two dimensional evolution equations for the first order parameter are (? )

mṗ1 = µ̄ (p1 (p1,2 + p2,1) + p2 (p1,1 + p2,2))− ∂Σ
∂p1

− φ,1,

mṗ2 = µ̄ (p2 (p1,2 + p2,1) + p1 (p1,1 + p2,2))− ∂Σ
∂p2

− φ,2.
(2.91)

2.5.1 Material Parameters and normalization

In the applications of the next section barium titanate (BaTiO3) was chosen to perform

numerical simulations. The elastic parameters and the dielectric constant of the barium

titanate are taken from (15)

c11 = 168 GPa, c12 = 78 GPa, c44 = 45 GPa, ε = 413.

The dielectric constant has been chosen relatively smaller according to a common

practice (81). The material parameters for the polarization energy are taken to be

a1 = −59.2 · 107 C−2m2N, a2 = 87.528 · 108 C−4m6N,

a3 = 26.259 · 109 C−4m6N.

The electrostrictive constants given by (59) are adopted:

γ11 = 0.11, γ12 = −0.045, γ44 = 0.059 (C−2m4).

The value of the mobility constant m−1 will be established indirectly, later on. What

remains is to set values for the tensor αijkl, the material parameter, related with the
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new term – the electric field gradient – added in this paper. For the particular case

under study, given that the relation α12 = α11/2 holds, we must solely choose the value

for one parameter, i.e., for α11 = α0.

To facilitate the presentation of the numerical results, we give a dimensionless

version of the equations of the problem under study. Following (73), the energy density

Σ is divided by a characteristic constant c0 which has dimensions of mechanical load:

Σ̄ = Σ/c0 = [W (eij, φ,i, φ,ij) + Ψ(pi)]/c0 = W̄ + Ψ̄. (2.92)

This results in a dimensionless stress tensor

σ̄ij =
∂W̄

∂eij
= σij/c0, (2.93)

where the fact that the strain tensor is a dimensionless quantity has been taken into

account.

The spontaneous dipole polarization magnitude of BaTiO3, in room temperature,

takes the value p0 = 0.26C/m2 (16). Thus a dimensionless spontaneous polarization

vector can be introduced as

p̄i = pi/p0, (2.94)

for which ‖p̄‖ = 1. Furthermore, the rest unknown functions can be normalized as

follows

ūi = ui/l0, φ̄ = φ/φ0, (2.95)

while the independent variables are normalized as

x̄i = xi/l0, t̄ = t/t0. (2.96)

The parameters, l0, t0 and φ0 have dimensions of length, time and electric potential,

respectively and the following relations hold

l0 =
µp3

0

c0
, t0 =

mp2
0

c0
, φ0 =

c0l0
p0

= µp2
0. (2.97)

With the aid of eqs. (2.92) and (2.94), one can write for the phase separation energy

Ψ̄(p̄i) =
ā1

2

(
p̄2

1 + p̄2
2

)
+
ā2

4

(
p̄4

1 + p̄4
2

)
+
ā3

2
p̄2

1p̄
2
2, (2.98)
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where

ā1 = a1p
2
0/c0, ā2 = a2p

4
0/c0, ā3 = a3p

4
0/c0. (2.99)

Similarly, the rest of the material parameters are transformed according to the relations:

c̄11 = c11/c0, c̄12 = c12/c0, m̄ = mp2
0/(t0c0),

ε̄0 = ε0c0/p
2
0, γ̄ij = γijp

2
0, µ̄ = µp3

0/c0l0,
ᾱ0 = α0/l

2
0.

(2.100)

It is worth-noting that the parameters l0 and α0 appear always together in a non–

dimensional fraction of the form
√
α0/l0, this dictates to choose an appropriate value

for this fraction. The parameter α0 has dimension of (length)2, hence one may further

suppose that the constant α0 as well as the characteristic length l0 are related with the

microstructure of the material, that is the size of the domains and the domain walls,

respectively (see also 75). In a similar manner, c0 = 1GPa is selected as the value for

the characteristic stiffness so as the normalized elastic moduli to be a dimensionless

quantity of range 10-100.

The transformation equation for m̄, i.e. Eq. (2.100)3, in conjunction with Eq.

(2.97)2 suggests that this parameter must be selected to be unity(m̄ = 1). Further-

more notice that Eq. (2.97)2 informs us that the characteristic time t0 is inversely

proportional to the mobility of the process. Thus one reasonably may assume that t0

is related with the relaxation time of the process. In a similar spirit, the transforma-

tion equation for µ in conjunction with Eq. (2.97)1 suggests that this parameter is

also chosen to be unity, thus in this model the characteristic length l0 is proportional

to the parameter µ due to spontaneous quadrupoles. Choosing µ = 10 m5N/C3 the

characteristic length becomes l0 = 1.75 nm. From experimental data and first principle

calculation, it is generally admitted that the domain wall thickness is usually about

1 − 10 nm, although domain wall thickness as large as 150 nm has been reported in

LiNbO3. Since the interest of this work focuses on electric field gradient effects on

domain walls we have chosen wider domain walls. Certainly, this can be easily fixed

by changing the value of the parameter µ.
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Finally, after the above considerations, the dimensionless material parameters be-

come:

c̄11 = 168, c̄12 = 78.2, c̄44 = 45,
ā1 = −0.04, ā2 = 0.04, ā3 = 0.12,
γ̄11 = 0.0074, γ̄12 = −0.003, γ̄44 = 0.0038,

µ̄ = 1, m̄ = 1, ε̄0 = 0.133.

(2.101)

Summing up, using the normalization described above, one concludes in the same set

of partial differential equations, constitutive relations and boundary conditions derived

in the previous sections with the sole difference that the material parameters should

be replaced by those ones given in Eq. (2.101). For simplicity reason, hereafter we

will denote the dimensionless quantities inserted above, without the bars over them as

there is no danger of confusion.

2.5.2 The computational scheme

For the numerical results presented below, the set of governing equations accompanied

with the proper boundary conditions are solved on a rectangular of normalized dimen-

sions w × h. To solve the problem, a finite element scheme for the space variables

jointly with the finite difference method for the time are used. The number of de-

grees of freedom per node should be five, since we are solving for (ui, pi, φ), i = 1, 2.

However, the fourth order Gauss equation is decomposed into a set of second order

equations using Eq. (2.57)3. This is a natural decomposition that allows to make

use of the additional boundary conditions obtained in the previous section (see Eqs.

(2.41)1). This manipulation results in additional degrees of freedom per node (i.e.

(ui, pi, q
r
ij, φ), i, j = 1, 2). To solve these equations Lagrange linear shape functions

have been used. Time integration is accomplished using Backward Euler method with

a normalized time step ∆t = 0.01, which leads to converged solution. Finally, in order

for the reaction - advection system to avoid breaking, a small amount of diffusion was

added so as to provide a mechanism for maintenance of a slow wave speed (46). The

system of equations solved is the following
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(a) (b)

(c) (d)

Figure 2.5: Domain formation in bulk ferroelectric: (a) computational geometry, (b)
random initial data, (c) intermediate state, (d) final state
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mṗ1 = ν∇2p1 + qs11,1 + qs12,2 − ∂Σ
∂p1

− φ,1, (2.102)

mṗ2 = ν∇2p2 + qs21,1 + qs22,2 − ∂Σ
∂p2

− φ,2 (2.103)

qr11 + ε0 (α11φ,11 + α12φ,22) = 0 (2.104)

qr22 + ε0 (α12φ,11 + α11φ,22) = 0 (2.105)

qr12 + 2ε0α66φ,12 = 0 (2.106)

pi,i − qsij,ji − ε0εφ,ii − qrij,ji = 0, (2.107)

where ν denotes the artificial diffusion parameter. This parameter is chosen ν = 0.01,

which is significantly smaller than the normalized parameter µ of the advective terms.

In all simulations quadrilateral meshes were used selecting 1750 elements consisting

of 1846 mesh points. The finite element implementation of the above equations was

accomplished in the same spirit as in (60).

2.5.3 Microstructure in a single crystal

The first simulation concerns the domain formation under appropriate boundary con-

ditions in a single crystal. The dimensions of a ferroelectric single crystal are in the

micrometer length scale, thus it is reasonable to choose a rectangle with height h = 200

and length w = 400, as shown in Figure 2.5a. We assume that all boundaries are surface

charge free (D ·n = 0) and traction free (σ ·n = 0). The geometry of the computational

sample suggests qr11 = 0 for the left and right boundaries and qr22 = 0 for the top and

bottom boundaries as far as concerns the additional boundary conditions for electric

quadrupoles.

In Figure 2.5b we start by posing a priori a random distribution of spontaneous

polarization as initial data and we let the system evolve up to reach an equilibrium

state. In Figure 2.5c the evolution still progresses and in Figure 2.5d attains the final

configuration, where there exist four domains separated by four 90◦ domain walls and

one 180◦ domain wall at the center. It is worth-mentioning that the final domain

pattern strongly depends on the initial data. For another choice of initial spontaneous

polarization distribution one can obtain different number of domains as well as different

type of domain walls. This vortex domain structure is in agreement with the standard

polarization gradient models (60), since this behavior is due to the boundary conditions

and spontaneous polarization energy.
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(a) qr
11 (b) qr

22

(c) qr
12

Figure 2.6: Reversible quadrupole polarization profile for 180◦ domain wall
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(a) qr
11 (b) qr

22

(c) qr
12

Figure 2.7: Reversible quadrupole polarization profile for 90◦ domain wall
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2.5.4 Domain walls

In Section 2.4, we have investigated the structure of domain walls under various sim-

plifications of the governing equations and we were able to derive simple analytical

solutions that describe the main aspects of 90◦ and 180◦ domain walls. It was shown

that the domain wall thickness is due to the spontaneous part of the quadrupole polar-

ization. At this point we are able to investigate the reversible part of the quadrupole

polarization near domain walls, which was previously neglected. Imposing appropriate

initial conditions we end up with a 180◦ or a 90◦ domain wall. In Figures 2.6,2.7 the

profiles of the components of the reversible quadrupole tensor are shown for both types

of domain walls. In these simulations we used various values of the parameter α0 at

a range 1-500 arriving at the conclusion that the influence of the reversible part of

quadrupoles is minor to the formation of domain walls. One can notice that linear

quadrupoles attain larger values on 90◦ domain walls than 180◦ domain walls and this

can be explained due to the fact that across 90◦ domain walls there exists an electric

potential drop as proved analytically in Section 2.4.

2.5.5 Electric field gradient effects in thin films

A ferroelectric thin film can be regarded to have a large value of the length w compared

to the thickness h. In the context of phenomenological continuum models, appropriate

boundary conditions need to be applied along the surfaces of the film. The standard

polarization gradient models use the boundary condition (33; 71) dP/dn = −P/δ for

the polarization flux on the surface, where δ denotes the extrapolation length. The in-

troduction of the extrapolation length δ is the key concept to study nano-ferroelectrics

in the framework of a phase field model. A positive δ means that spontaneous polariza-

tion is reduced as we approach the surface, while a negative δ implies that polarization

is enhanced. A zero extrapolation length δ = 0 indicates that spontaneous polarization

vanishes on the boundary.

In the following simulations concerning thin films we use reduced dimensions of the

computational sample of Figure 2.5a. The normalized length is taken to be w = 60,

while the normalized thickness h is chosen at a range lower than 20. The boundary

conditions are chosen accordingly. For the top and bottom boundaries we choose zero

spontaneous polarization, i.e. p1 = p2 = 0 generating the most significant size effect in
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(a)

(b)

(c)

Figure 2.8: Domain formation in a thin film with normalized thickness h = 16: (a)
initial data, (b) equilibrium state for α0 = 1, (c) equilibrium state for α0 = 500
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(a)

(b)

(c)

Figure 2.9: Domain formation in a thin film with normalized thickness h = 12: (a)
initial data, (b) equilibrium state for α0 = 1, (c) equilibrium state for α0 = 500
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Figure 2.10: Hysteresis loop for various values of the electric field gradient coefficient
α0 at a normalized film thickness h = 12.

thin films corresponding to zero extrapolation length. This type of boundary condition

is called the zero boundary condition (71) Also, for the top and bottom boundaries we

choose Dirichlet boundary conditions for the electrostatic potential φ. Also, the three

boundaries are taken traction free, while at the bottom boundary we set the constraint

u2 = 0 so as to account the influence of the substrate. It is noted that the influence

of the substrate on the thin film is kept as simple as possible, since it is not the main

aspect of this work. For electric quadrupoles the boundary conditions are the same as

in the simulations of bulk single crystal described above. Finally, periodic boundary

conditions along x1 axis were applied for electric potential and mechanical strain in

order to impose artificial periodicity in the crystal.

At first we study the domain formation starting from random initial data. In

Figure 2.8 the normalized film thickness is chosen h = 16 and two equilibrium states are

illustrated for two different values of the electric field gradient parameter α0. For α0 =

1, Figure 2.8 b shows the formation of a polydomain structure containing three domains
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Figure 2.11: Remanent polarization as a function of the electric field gradient parameter
α0. The curves are drawn for clarity.

separated by two 90◦ domain walls. The existence of the specific structure is due to

the reduction of the elastic energy in the thin film (71). Running the simulation for

higher values of the parameter α0 it is observed that domains of horizontal polarization

are reduced and as one can see in Figure 2.8 c a vertical monodomain structure is

predominant. For h = 12 and α0 = 1 the polydomain structure is still observed as

shown in Figure 2.9 b, while in Figure 2.9 c using α0 = 500 two vertical domains

separated by a 180◦ domain wall are observed. It is deduced that the electric field

gradients can influence the microscopic behavior of the thin film, in contrast to bulk

crystals. From a point of view this is acceptable, because higher electric field gradients

indicate stronger electrical interactions between microscopic dipoles. Thus the elastic

energy is unable to compensate the increased electrical energy in the film and structures

of one or more vertical domains become predominant. Lowering the film thickness we

notice the formation of a mono-domain status, which remains unchanged even for large

values of the parameter α0 until polarization finally vanishes.



2.5 Computations 53

Figure 2.12: Size effect: the remanent polarization versus the normalized film thickness.
Two different values of the electric field gradient parameter have been chosen.

The above simulations prove that electric field gradient effects are an important

factor in the microstructure of thin films. Thus it is expected that electric field gradi-

ents consequently have an impact on the macroscopic behavior of the film as well. In

Figure 2.10 we plot the hysteresis loop, which is the plot of the average electric displace-

ment along x2 direction for three different values of the parameter α0 at a normalized

thickness h = 12. To obtain the hysteresis loop an external electric field was applied

along the x2 axis, which is accomplished by imposing the condition φ = φ0 sin(2πt/T )

for the electrostatic potential at the upper boundary with φ0 = 0.1 and T = 15000.

It is obvious that when electric field gradient effects become significant a larger hys-

teresis loop is obtained. In a sense, this indicates that ferroelectricity is enhanced,

since comparing the loops the remanent polarization and the coercive field needed to

switch the total polarization seem to increase. The remanent polarization is defined

as the average polarization along the applied field direction when the applied field is

reduced to zero from its high magnitude. In Figure 2.11 we plot the dependence of

the remanent polarization as a function of the electric field gradient parameter α0 for

two different film thicknesses. It is observed that increased values of the parameter α0
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suggest higher remanent polarization and coercive field in the film.

Finally, to illustrate the size effect in thin films within the present phase field

model, we plot the remanent polarization as a function of the film thickness shown in

Figure 2.12. It is observed that the remanent polarization decreases with decreasing

film thickness being in absolute accordance with thermodynamic calculations and other

phase field models. It is interesting to notice that different values of the parameter α0

result in different curves.



Chapter 3

The Level Set Approach to Phase

Transitions in solids

”I was aware that there was supposed to be a difference

between Faraday’s way of conceiving phenomena

and that of mathematicians, so that neither he nor

they were satisfied with each other’s language.”

J.C. Maxwell

In contrast to the phase field theory presented in the previous section for ferroelectrics,

the sharp interface theory treats phase boundaries as discontinuity surfaces of zero

thickness (1; 2; 3; 7; 9; 10; 11; 12; 41). Certainly in these models the interfacial energy

can be included in an explicit manner. Far away from the interface the basic equations

of Continuum Mechanics are satisfied. However, across the interface certain quantities

suffer discontinuity jumps that must obey specific conditions. These conditions can be

taken by standard arguments and correspond to the famous Rankine-Hugoniot jump

conditions. The problem of a moving interface in the context of sharp interface models

remains ill-posed, thus additional constitutive information is needed. It seems that ba-

sic Continuum Mechanics gives us the potential to compute only the driving force on

the interface and not its velocity. Abeyaratne and Knowles (3) proved that this draw-

back can be fixed by selecting a kinetic relation, namely a relation that determines the

velocity of the phase boundary as a function of the exerted force. The selection of an
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appropriate kinetic relation depends on experimental observations and in fact it is not

easy to guess the correct one. It is generally admitted that the need for a kinetic rela-

tion is due to the fact that the motion of a phase boundary is a non-equilibrium process.

Maugin and Berezovski (10; 11) introduced the so called contact quantities to study

the motion of an interface in thermoelastic solids within the context of non-equilibrium

thermodynamics (12). The authors were able to determine a kinetic relation, which

provides the proper limit behavior of the kinetic curve. However, experimental results

on the kinetics of a phase boundary are absent indicating that this research field is

open.

In this chapter we use the level set method to describe the kinetics of a phase

boundary. Level set methods have been introduced by Osher and Sethian (57; 58) and

soon have become a very powerful tool for tracking a moving interface within a body.

The method is based on an implicit representation of the interface by considering a

smooth scalar function, which changes sign across the interface. Thus the zero level

set of the implicit function coincides with the interface. The motion of the interface

is accomplished by using an evolution equation for the level set function, which is of

Hamilton-Jacobi type. It is remarked that the introduction of such an internal variable

results in a regularization of the sharp interface model in solids. In level set methods the

interfaces transform into thin transition layers where all discontinuous quantities take

inhomogeneous but continuous expressions. However, as in sharp interface models it is

essential to provide a kinetic relation as well. Here, at first we present a regularized ver-

sion of the sharp interface theory in thermo-elastic solids within the framework of level

set method. The effort focalizes in the derivation of the kinetic relation using simple

minded phenomenology in the same spirit as Maugin and Berezovski (9; 11). Moreover,

we derive useful relations which can be considered as the regularized versions of the

Rankine-Hugoniot jump conditions. It is proved that the level set method is closely

related to material mechanics, since it is proved that the force on the phase bound-

ary is an inhomogeneity force obeying the canonical momentum or pseudo-momentum

equation (30; 49).

Based on the theoretical analysis of this chapter, we focus on the kinetics of domain

walls and on the domain formation in ferroelectric materials. The material force method

is proved to be very useful in order to compute the driving forces on the domain walls.

Thus it is proved that domain structures in ferroelectrics are due to inhomogeneity
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forces entering the material momentum equation. The computations are based on

a finite element scheme combined with an implicit time integration method. The

final non-linear algebraic system is solved by the use of an iterative Newton-Raphson

method.

3.1 Phase Transitions in a continuum

3.1.1 Sharp interface theory

Let us consider a continuous body occupying space ΩR in the reference configuration

containing a singular surface St separating the body in two distinct regions Ω+
R and Ω−

R.

Under the Lagrangian formulation of a continuous medium the governing equations at

any regular material point X with no external supply of energy and external entropy

are the following (49; 52):

(i) The balance of mass

dρ0

dt
= 0, in Ω±

R, (3.1)

where ρ0(X) is the referential matter density and d/dt denotes derivative with respect

to time at fixed X.

(ii) The balance of physical momentum

dp

dt
− divRT = 0, in Ω±

R, (3.2)

where p = ρ0(X)v(X, t) is the physical momentum, v(X, t) the physical velocity and

T the first Piola-Kirrchoff stress tensor. The symbol divR denotes the divergence

differential operator.

(iii) The balance of energy

dH

dt
− divR(T · v −Q) = 0, in Ω±

R, (3.3)

where H = K + E, with K = ρ0v
2/2 corresponding to the kinetic energy density,

E(F, θ;X) is the internal energy density, Q is the material heat flux, F the deformation

gradient tensor and θ the absolute temperature.

(iv) The balance of angular momentum
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Neglecting polar effects, like rotary inertia and couple stress, the balance of angular

momentum is reduced to the symmetry condition for the Piola-Kirrchoff stress, i.e.

TFT = FTT. (3.4)

The above set of Eqs. (3.1)–(3.4) describe the behavior of any inhomogeneous ma-

terial with appropriate boundary conditions. Certainly any combination of mechanical

and thermic process in the body should be compatible with the second law of thermo-

dynamics
dS

dt
+ divR(Q/θ) = σS ≥ 0, in Ω±

R, (3.5)

where S is the entropy density. The term Q/θ represents the entropy flux, where an

extra entropy flux K can be added if necessary (see (52) for non-vanishing K).

The deformation gradient F and the velocity vector v satisfy the compatibility condi-

tion
dF

dt
= gradRv, in Ω±

R, (3.6)

where gradR stands for the gradient differential operator.

The existence of the sharp interface within the body suggests that certain quantities

present discontinuities. Assuming homothermal and coherent front the corresponding

jump conditions are the Rankine-Hugoniot jump conditions given as

Vn [[ρ0]] = 0, (3.7)

Vn [[p]] + n · [[T]] = 0, (3.8)

Vn [[H]] + n · [[T · v −Q]] = 0, (3.9)

Vn [[S]]− n · [[Q/θ]] = 0, (3.10)

where [[•]] = •+−•− is the jump of any field across the interface, V is the phase bound-

ary velocity and Vn = V · n its normal component. Furthermore, the compatibility

condition presents a jump condition given by the following relation

Vn [[F]] + [[v]]⊗ n = 0, on St. (3.11)

The above mentioned analysis sets the thermo-mechanical framework of any in-

homogeneous continuum body in the physical space. Expressing the problem to the

material space, i.e., by a canonical projection onto the material manifold, gives rise to
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the notion of configurational or material forces. In the material manifold one is able

to handle inhomogeneities or any kind of defects coming from changes of the reference

configuration. Introducing the Helmholtz free energy function (W = E − Sθ) in com-

bination with Eq. (3.3), the canonical (material) form of the energy equation in each

phase is the following
d(θ S)

dt
+ divRQ = 0, in Ω±

R, (3.12)

Furthermore the constitutive relations for stress and entropy are the following

T =
∂W

∂F
, S = −∂W

∂θ
. (3.13)

The balance of physical momentum, i.e. Eq. (3.2) transforms to the canonical

or pseudo-momentum equation in material space. This procedure is accomplished by

a pull-back transformation of the physical momentum balance law to the material

manifold (49). The pseudo-momentum balance law in Lagrangian description is the

following
dP

dt
− divRΣ = f int + f inh, in Ω±

R, (3.14)

where P = −FT · p is the pseudo-momentum, Σ = −LIR − T · F is the dynamical

Eshelby stress tensor, L is the Lagrangian energy density function. The force terms

on the right-hand side of Eq. (3.14) are material forces, where with f int we denote the

material internal forces and with f inh the material inhomogeneity forces defined by the

relations

f int = T : (divRF)T − gradRW |impl, (3.15)

f inh =
∂L

∂X

∣∣∣∣
expl

=
1

2
v2gradR(ρ0)−

∂W

∂X

∣∣∣∣
expl

(3.16)

where the subscript notations expl and impl imply, respectively, the gradient keeping

the fields fixed and taking the material gradient only through the fields present in the

function. The first term of Eq. (3.16) represents forces due to mass density inhomo-

geneities usually called inertial inhomogeneities. The balance of pseudo-momentum

is non-conservative, thus across the phase boundary St the jump condition for the

pseudo-momentum is

Vn [[P]] + n · [[Σ]] + f = 0, (3.17)
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where f is an unknown vector standing for the source term of the jump relation. Then

the second law of thermodynamics dictates

f ·V = fS Vn = θSσS ≥ 0, (3.18)

where fS is the driving force on the interface. Equation (3.18) indicates that the

quantities fS and Vn should have the same sign at all times implying that the interface

will always move to the direction of the driving force. It can be proved that the driving

force on St has the following expression

fS = − [[W ]] + n· < T > · [[F ]] · n, (3.19)

where < • >= (•+ +•−)/2 denotes the mean value of any quantity across the interface.

Thus it is made obvious that in a continuous thermoelastic body we are able to deter-

mine the force on the singularity, but the problem remains ill-posed since the velocity

is still undetermined. To fix this drawback we have to select a kinetic relation of the

form (3)

Vn = g(fS,n), (3.20)

where g is the kinetic response function depending on the material. The explicit de-

pendence of the velocity on the normal vector n of the interface accounts for anisotropic

effects inside the material. According to Eq. (3.18) the kinetic response should obey

the following inequality

fS g(fS,n) ≥ 0 (3.21)

thus being consistent to the second thermodynamic law.

3.1.2 The level-set formulation

As it was mentioned previously, the key idea behind the level set method is to represent

curves or surfaces as the zero level set of a continuous implicit function ψ, the so

called level set function, as shown in Figure 3.1b. Then solving an appropriate partial

differential equation of Hamilton–Jacobi type, the level set function is updated tracking

the evolution of the interface. An impressive advantage of level set method is that one

can handle easily topological changes of the interface, for instance it allows for the

formation of cusps. For a given domain Ω with boundary ∂Ω we introduce a new field,
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(a)

(b)

Figure 3.1: (a)The domain Ω separated in two regions by interface S and (b) the
implicit representation via level set function

the level set function ψ(x, t) with the following properties
ψ (x, t) > 0, in Ω+,
ψ (x, t) < 0, in Ω−,
ψ (x, t) = 0, on S,

(3.22)

so that the zero level set of this function represents the interface S (see Figure 3.1b).

The unit normal nS to the interface and its curvature are given by the relations

nS =
∇ψ
|∇ψ|

, κ = ∇ ·
(
∇ψ
|∇ψ|

)
, (3.23)

respectively.

The evolution of the level set function is determined by solving the partial differ-
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ential equation (57) {
∂ψ
∂t

+ V |∇ψ| = 0, in Ω

ψ (x, 0) = ψ0 (x) ,
(3.24)

where ψ0 (x) is the initial value of the level set function usually chosen as a signed

distance function from the interface.

A signed distance function has the property |∇ψ| = 1, or every function obeying

this property is a signed distance function (57; 58). Solving Eq. (3.24) numerically

is not a straightforward task since the function ψ will not remain a signed distance

function after several time steps leading to instabilities. To avoid such drawbacks it is

necessary to keep level set function as a signed distance from the interface. To do that,

a re-initialization procedure has to be applied. In traditional level set methods the

re-initialization scheme concludes in the solution of the following initial value problem

(57), {
∂ψ
∂t

= sign (ψ0) (1− |∇ψ|) , in Ω

ψ (x, 0) = ψ0 (x) .
(3.25)

However, in practice it is not easy to handle re-initialization, since one must find

out the right time step and how often to apply it. Furthermore, it is computationally

expensive. In this work, a variational level set formulation (37; 38; 45) is adopted which

completely eliminates the need for re-initialization and can be easily implemented in a

finite element scheme.

3.1.3 Building a phase transition problem by using the level

set method

We assume two different thermo-elastic problems defined in the same region (6). These

problems correspond to two different phases of a material capable of undergoing phase

transformation at a specific temperature. This means that one has to deal with two

given problems with different material behavior as in martensite–austenite case. Treat-

ing separately these problems it is apparent that the two solutions will differ, providing

different values for every field. Now, using a level set function we can interpolate be-

tween the computed fields of the two problems in ΩR, building a two phase problem

(see Figure 3.2). The interpolated fields shall obey the equations of thermoelasticity in

region ΩR, as shown in Table 3.1. It becomes evident that making such an assumption,



3.1 Phase Transitions in a continuum 63

Figure 3.2: Blending two different problems defined in the same region ΩR by a level
set function

on the interface certain conditions should be valid that can drive the singularity and

consequently determine the exact position of the interface in the domain.

Let us assume the arbitrary quantities A1, A2 (scalar, vectorial or higher-order

tensorial denoting deformation gradient, velocity, stress e.t.c.) which are continuous in

region ΩR and correspond to similar fields, but computed on the distinct problems 1

and 2, respectively. For the needs of the level set one can write A as an interpolation

between the computed fields

A = A1 + h(A2 − A1), (3.26)

where h is the Heaviside function defined as

h = H (ψ) =

{
1, ψ ≥ 0,
0, ψ < 0,

. (3.27)

The next step is to introduce a continuous version of Eq. (3.27), i.e.,

Aε = A1 + hε(A
2 − A1), (3.28)
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Figure 3.3: Plots of the smoothed Heaviside and Dirac delta functions for ε = 0.1. The
transition width is 2ε.

where

hε = Hε (ψ) =


1, ψ > ε,
0, ψ < −ε,
1

2

(
1 +

ψ

ε
+

1

π
sin

(
πψ

ε

))
, |ψ| ≤ ε.

. (3.29)

It is apparent that hε is a regularized version of the Heaviside function. Notice that

the field A is transformed into a continuous, but inhomogeneous, function in a narrow

layer Sε = {X ∈ ΩR, |ψ(X, t)| ≤ ε} around the interface. The parameter ε controls the

thickness of the interface called regularization parameter. Furthermore, the regularized

Dirac delta function is the derivative of the Heaviside step function

δε(ψ) = h
′

ε(ψ). (3.30)

In Figure 3.3 we plot the regularized versions of Dirac delta and Heaviside functions

for thickness ε = 0.1, where it is easily deduced that the interface has thickness 2ε.

For further development, we make the following computation for the time derivative

of any inhomogeneous field Aε applying the chain rule

dAε
dt

=
∂A(1)

∂t
+ hε(

∂A(2)

∂t
− ∂A(1)

∂t
) +

∂Aε
∂ψ

ψ̇ (3.31)

and after using Eqs. (3.24)1 and (3.30) the above derivative takes the form

dAε
dt

=
∂A(1)

∂t
+ hε(

∂A(2)

∂t
− ∂A(1)

∂t
)− ∂Aε

∂ψ
V |∇ψ|

=
∂A(1)

∂t
+ hε(

∂A(2)

∂t
− ∂A(1)

∂t
)− ∂Aε

∂hε
δε(ψ)V |∇ψ|. (3.32)
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Table 3.1: The governing equations for the two distinct problems and the two phase
problem

Phase 1 Phase 2 Two phase problem

dρ
(1)
0

dt
= 0

dρ
(2)
0

dt
= 0 dρε

dt
= 0

dp(1)

dt
− divRT(1) = 0 dp(2)

dt
− divRT(2) = 0 dpε

dt
− divRTε = 0

dH(1)

dt
− divR(T · v −Q)(1) = 0 dH(2)

dt
− divR(T · v −Q)(2) = 0 dHε

dt
− divR(T · v −Q)ε = 0

dS(1)

dt
+ divR(Q/θ)(1) = σ

(1)
S

dS(2)

dt
+ divR(Q/θ)(2) = σ

(2)
S

dSε

dt
+ divR(Q/θ)ε = σεS

dF(1)

dt
= gradRv(1) dF(2)

dt
= gradRv(2) dFε

dt
= gradRvε

In a similar manner we can write for the spatial derivative of the quantity Aε which

depends on ψ explicitly

dAε
dX

=
∂A(1)

∂X
+ hε(

∂A(2)

∂X
− ∂A(1)

∂X
) +

∂Aε
∂ψ

∂ψ

∂X

=
∂A(1)

∂X
+ hε(

∂A(2)

∂X
− ∂A(1)

∂X
) +

∂Aε
∂hε

δε(ψ)∇ψ. (3.33)

With Eqs. (3.32) and (3.33) at hand we can determine the field equations of the mixed

two phase problem as they given in the third column of Table 3.1. Consequently, the

mass density is written

dρε
dt

=
∂ρ

(1)
0

∂t
+ hε(

∂ρ
(2)
0

∂t
− ∂ρ

(1)
0

∂t
)− ∂ρε

∂hε
δε(ψ)V |∇ψ| = 0, in ΩR. (3.34)

According to Table 3.1 the first and second terms vanish, thus the equation is true

outside the thin transition layer since δε(ψ) = 0, but within the layer Eq. (3.34) reads

V
∂ρε
∂hε

= 0, in Sε, (3.35)

where one can notice the similarity of the above relation to the jump condition (3.7).

In a similar spirit the balance of the interpolated momentum provides the following

condition in the thin layer Sε

−∂pε
∂hε

δε(ψ)V |∇ψ| − ∂Tε

∂hε
δε(ψ)∇ψ = 0, (3.36)
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or (
V
∂pε
∂hε

+
∂Tε

∂hε

∇ψ
|∇ψ|

)
δε(ψ) = 0. (3.37)

and using Eq. (3.23)1 we end up with the following relation within the transition layer

V
∂pε
∂hε

+
∂Tε

∂hε
· ns = 0, in Sε. (3.38)

Following the same procedure we can write the other two balance laws

V
∂Hε

∂hε
+
∂(T · v −Q)ε

∂hε
· ns = 0, in Sε (3.39)

and

V
∂(θS)ε
∂hε

− ∂Qε

∂hε
· ns = 0, in Sε. (3.40)

Finally, the compatibility equation within the transition layer must obey the following

condition

−V ∂Fε

∂hε
=
∂vε
∂hε

⊗ ns, in Sε (3.41)

Concluding our analysis we can claim that Eqs. (3.35), (3.38), (3.39) and (3.40)

are the regularized versions of the Rankine-Hugoniot jump conditions of the standard

sharp interface theory. In other words the standard jump conditions are recovered

after taking the limit ε → 0, since the relation ”lim
ε→0

∂A/∂hε = [[A]]” holds. These

conditions should be fulfilled within the transition layer in order to ensure a coherent

and homothermal phase boundary.

3.1.4 Material-Inhomogeneity forces

The introduction of the level set function induces explicit material inhomogeneities

as was mentioned in the previous section. We assume a priori constant mass density,

constant temperature and the following energy functional dependency (6)

Wε(F
1,F2, ψ) = W 1(F1) + hε(W

2(F2)−W 1(F1)), (3.42)

where W 1 and W 2 correspond to the energy of each phase and the constitutive relations

are given by Eq. (3.13). Note that selecting the specific type of energy yields a simpler

form for the pseudo-momentum equation which now takes the form (52)

dP

dt
− divRΣ = f inh, in ΩR, (3.43)
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with the difference that the equation contains regularized versions of the pseudo-

momentum vector and the Eshelby stress tensor within the level set framework. The

force term in the right hand side of Eq. (3.43) corresponds to the material inhomo-

geneity force given as

f inh = − ∂Wε

∂X

∣∣∣∣
expl

= −∂Wε

∂ψ

∂ψ

∂X
. (3.44)

or in the form

f inh = −∂Wε

∂hε
δε(ψ)∇ψ = −fεδε(ψ)∇ψ, (3.45)

where we have set

fε =
∂Wε

∂hε
. (3.46)

Notice in Eq. (3.45) the crucial role of the Dirac delta function that confines material

force to act only inside the thin transition layer where inhomogeneities are present. It is

remarked that Eq. (3.46) is similar to the expression of the driving force for isothermal

medium, as shown by Hou et al. (34) using a thermodynamical argument. Combining

Eq. (3.23)1 and Eq. (3.45) one can write

Fn = −
∫

ΩR

fεδε(ψ)|∇ψ|dv =

∫
ΩR

f inh · nsdv, (3.47)

where Fn is the resultant driving force on the layer Sε.

It becomes evident that as in the sharp interface theory, the level set formulation

provides us with the potential to determine only the driving force within the transition

layer. Thus it seems reasonable to select an appropriate kinetic relation given by

V = g(fε,ns), (3.48)

where V is computed globally inside the whole region of the body and the values within

the layer Sε correspond to the velocity of the interface. However, in the next section

we present a simple one dimensional problem where the kinetic relation is derived and

not taken by assumption.

3.1.5 A simple example: Phase transition in a bar

In this section we consider the simple case of a phase boundary propagation inside a

one dimensional alloy bar separated in two phases within the level set framework, as
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Figure 3.4: One-dimensional bar with two phases and the implicit representation of the
phase boundary by the level set curve.

shown in Figure 3.4. We assume that the bar has constant temperature θ0 and constant

mass density ρ0. It is assumed that we have two distinct problems to solve in the entire

region: a martensite and an austenite. Using the level set method we give an implicit

representation of the interface. In this problem the level set function ψ(x, t) has the

following property 
ψ (x, t) > 0, Martensite,
ψ (x, t) < 0, Austenite,
ψ (x, t) = 0, St.

(3.49)

Within the level set framework the strain and velocity fields transform into inhomo-

geneous, but continuous functions through the whole bar. Thus based on the previous

analysis we can write

eε = eA + hε(e
M − eA), (3.50)

υε = υA + hε(υ
M − υA) (3.51)

where eA, eM denote the strain in each phase and the same applies for the energy of

the bar written in the following form

Wε(e
A, eM , ψ) = WA(eA) + hε(W

M(eM)−WA(eA)), (3.52)

where the superscripts A and M stand for austenite and martensite, respectively. Note

that the energy density of each phase is globally defined in the whole body. The stress

tensor within the bar is then determined by the relation

σε =
∂WA

∂eA
+ hε(

∂WM

∂eM
− ∂WA

∂eA
) = σA + hε(σ

M − σA), (3.53)
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The field equations for the proposed simple problem are the physical momentum bal-

ance laws, the kinematic compatibility equations and the level set equation which

governs the evolution of the interface

ρ0
∂υA,M

∂t
=
∂σA,M

∂x
, (3.54)

∂eA,M

∂t
=
∂υA,M

∂x
, (3.55)

∂ψ

∂t
= −V

∣∣∣∣∂ψ∂x
∣∣∣∣ . (3.56)

Moreover we can provide the regularized versions of the jump conditions which are very

important for our further analysis. According to Eqs. (3.38) and (3.41) the following

conditions within the transition layer Sε should be valid

− ρ0V
∂υε
∂hε

=
∂σε
∂hε

, (3.57)

−V ∂eε
∂hε

=
∂υε
∂hε

. (3.58)

Combining Eqs. (3.57) and (3.58) we end up with the following equation

ρ0V
2 ∂eε
∂hε

=
∂σε
∂hε

or ρ0V
2(eM − eA) = σM − σA, in Sε. (3.59)

It is remarked that Eq. (3.59) is the regularized version of the equation used in the

standard sharp interface models (1; 9; 10; 11). This equation is convenient to determine

the velocity of the front.

To derive the kinetic relation we need to determine the driving force acting in the

transition layer. For this kind of problem the driving force is given by Eq. (3.46),

which here takes the form

fε = WM(eM)−WA(eA). (3.60)

We continue our analysis by selecting the characteristics of each phase. Specifically

for the energy of each phase we adopt the expressions (1; 7; 8)

WA =
E

2
eA

2
, WM =

E

2
(eM − esp)

2 + τ0 esp (3.61)
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Figure 3.5: Plot of the proposed kinetic relation.

where the modulus E and the Maxwell stress τ0 are positive constants and esp denotes

the spontaneous strain in the absence of stresses in the martensite phase. The stress

in each phase are given by

σA = EeA, σM = E(eM − esp), (3.62)

which can be used to extract the following useful relation

eM − eA =
σM − σA

E
+ esp. (3.63)

According to Eq. (3.60) the driving force for the two phase problem takes the form

fε =
E

2
(eM − esp)

2 + τ0 esp −
E

2
eA

2
. (3.64)

A combination of Eqs. (3.59) and (3.63) yields the following relation

ρ0V
2 = E

σM − σA

σM − σA + Eesp
. (3.65)
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In order to find the desirable relation between the velocity of the front and the driving

force we start by writing Eq. (3.64) with respect to stresses. Thus using Eq. (3.62) we

can express the driving force as

fε =
1

2E
(σM

2 − σA
2
) + τ0esp

=
σM − σA

E
· σ

M + σA

2
+ τ0esp, (3.66)

where the term (σM+σA)/2 represents the mean value of the stress in the thin transition

layer Sε. We identify the mean value of the stress at the phase boundary with the

transformation stress (10) σtr leading to the relation

σM − σA =
E

σtr
(fε − τ0esp), (3.67)

which is in agreement with thermodynamical considerations (9). Substituting Eq.

(3.67) into Eq. (3.65) we can finally determine the velocity of the front(
V

c

)2

=
fε − τ0esp

fε − τ0esp + σtresp
, (3.68)

where c =
√
E/ρ0 corresponds to the shock wave velocity. If the material on both

sides of the discontinuity belong to the same phase then the discontinuity is a shock

wave (1). The above equation indicates fε ≥ τ0esp meaning that there exists a critical

value for the force. Also, it is easily deduced that V < c, which is expected, because

phase boundaries propagate at subsonic speeds. It is noted that a similar equation

was derived in (9; 11). The critical value of the force is obviously fcrt = τ0esp and it

is in accordance with experimental observations of the existence of a threshold in the

initiation of the martensitic phase transformation (2).

For the specific problem the material constants have been chosen as E = 1 GPa,

τ0 = 30 MPa, esp = 0.1 and σtr = 400 MPa. In Figure 3.5 we plot the kinetic relation

resulting from the consideration of an implicit representation of the interface by the

level set function. We point out that the kinetic curve exhibits the proper limit behavior

for all values of the driving force as in other works. Indeed, if in Eq. (3.68) we set

fε = fcrt, then V = 0 and if we assume fε � fcrt then V → c.
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3.2 Phase Transitions in ferroelectrics

3.2.1 Sharp interface formulation

Consider an elastic ferroelectric body occupying the region Ω ⊂ IR2. Ω is separated by

a domain wall S in two subregions Ω− and Ω+ corresponding to domains of different

oriented polarization. The unit normal nS to the domain wall is directed from the

domain Ω− to Ω+ as shown in Figure 3.1a. Notice that no care is taken on the nature

of the domain wall, so as both 90◦ and 180◦ domain wall cases to be examined.

It is assumed that the constitutive response of the body is fixed in each domain.

Moreover, limiting to quasi-static processes, the momentum and Gauss equations are

divσ = 0, in Ω±,
divD = 0, in Ω±,

(3.69)

where σ is the Cauchy stress tensor and D is the electric displacement vector. In the

above description inertial forces and electric charges within the body are ignored. The

boundary conditions for the mechanical and electrical problem are

u = ū, on ∂Ωu

σ · n = t, on ∂Ωt,
(3.70)

and
φ = φ̄, on ∂Ωφ

D · n = q, on ∂ΩD,
(3.71)

where u and φ are the mechanical displacement and the electric potential, ū and φ̄

denote their prescribed values on the boundary and last, t and q are the traction

and the surface charge density. Also, the different parts of the boundary satisfy the

following relations

∂Ωt ∪ ∂Ωu = ∂Ω and ∂Ωt ∩ ∂Ωu = ∅,
∂Ωφ ∪ ∂ΩD = ∂Ω and ∂Ωφ ∩ ∂ΩD = ∅.

The stress tensor and the electric displacement vector satisfy the following jump con-

ditions
[[σ]] · nS = 0, on S,
[[D]] · nS = 0, on S,

(3.72)

where [[•]] = •+−•− denotes the jump of any field. The superscripts + and − indicate

limits of the corresponding quantities as domain wall S is approached from Ω+ or Ω−,

respectively.
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Furthermore, on the domain wall the displacement u and electric potential φ are

assumed continuous and piecewise differentiable

[[u]] = 0, on S,
[[φ]] = 0, on S.

(3.73)

The first relation in Eq.(3.73) implies that interpenetration, sliding and separation of

the domains are prohibited. The electric field and strain are given by the equations

E = −∇φ,
e =

1

2

(
∇u + (∇u)T

)
.

(3.74)

Within each domain, the body exhibits the behavior of a linear piezoelectric material,

thus the energy in each domain takes the general form

W (e,E) =
1

2
(e− e◦) : [C(e− e◦)] −(e− e◦) : [dTE]−

1
2
E · (kE)−P◦ · E, (3.75)

where P◦ is the spontaneous polarization of the domain, C the elastic stiffness matrix,

d the piezoelectric tensor, k the dielectric tensor and e◦ the spontaneous strain. Ob-

viously one may distinguish the energy in each domain according to the spontaneous

polarization orientation (55; 61). Thus, one can set

W =

{
W1, in Ω+

W2, in Ω− , (3.76)

where

Wi(e,E) =
1

2
(e− e◦i ) : [C(e− e◦i )]− (e− e◦i ) : [dT

i E]−
1

2
E · (kE)−P◦

i · E, i = 1, 2. (3.77)

In the above relations, the spontaneous strain and the piezoelectric tensor depend on

spontaneous polarization vector, i.e., e◦i = e◦i (P
◦
i ) and di = di(P

◦
i ).

Using Eq. (3.77), the constitutive relations for stress and electric displacement are

given by

σi = ∂Wi
∂e

= C (e− e◦i )− dT
i E,

Di = −∂Wi
∂E

= di (e− e◦i ) + kE + P◦
i .

(3.78)
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As mentioned above, the domain wall movement is accompanied by energy dissipation,

which is nothing but the excess of the external work rate over the rate of change of

stored energy

∆ =

∫
∂Ω

σn · υds−
∫

Ω

D · ĖdΩ− d

dt

∫
Ω

WdΩ, (3.79)

where υ is the particle velocity. The first term accounts for the power due to external

mechanical forces, the second for the power due to external electric field and the third

is the rate of change of stored energy. In sharp interface theories it is proved (3) that

∆ =

∫
S

f V ds ≥ 0. (3.80)

Following (55), (51), the driving force is proved to be

f = −nS · ([[Σ]]nS) , (3.81)

where Σ is the Eshelby stress tensor (49), (51) for electro-elasticity given by

Σ = W I− (∇u)σ + E⊗D. (3.82)

In the above relation ⊗ denotes the classic tensorial product. Equation (3.80) expresses

the second law of thermodynamics implying that the interface will always move to the

direction of the driving force.

However, the problem is not yet well defined, thus additional constitutive informa-

tion is needed. We have already discussed the fact that the solution uniqueness of such

problems needs a kinetic relation between the driving force on the domain wall and its

normal velocity,

V = V (f,nS) , on S. (3.83)

It becomes evident that for a given domain pattern inside a ferroelectric material, one

has to solve the mechanical equilibrium and the Gauss equation as a coupled boundary

value problem. The driving force exerted on domain walls is computed by Eq. (3.81),

and the velocity from Eq. (3.83). The velocity then updates the domain pattern for the

next time step. This approach is referred to as ”local approach” (48), but its numerical

implementation is not an easy task. For instance, in a finite element scheme the mesh

needs refinement at each time step so as to keep tracking the interface.
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3.2.2 Continuous Energy and Material Forces in the Level Set

Framework

3.2.2.1 Continuous Energy

For the needs of the level set method, one can write Eq. (3.76) as an interpolation

between the two branches

W (e,E) = W1(e,E) + h(W2(e,E)−W1(e,E)), (3.84)

where h is the Heaviside function. The next step is to introduce a continuous version

of Eq. (3.84), i.e.,

Wε(e,E, hε) = W1(e,E) + hε(W2(e,E)−W1(e,E)), (3.85)

where hε is a regularized version of the Heaviside function given by Eq. (3.29). Notice

that the non-continuous energy in Eq. (3.76) is transformed into a continuous, but

inhomogeneous, function in a narrow layer Sε = {x ∈ Ω, |ψ(x, t)| ≤ ε} around the

interface. The parameter ε controls the thickness of the interface.

Remark 3.1: It is noted that the treatment of a moving singularity in

a ferroelectric crystal is much simpler than that presented in the previous

section. Here, we do not assume two different problems solved in the same

region and apparently there is no need to talk about conditions within the

thin transition layer (strain field and electric potential are taken to be con-

tinuous).

3.2.2.2 A variational principle

To study domain wall kinetics in elastic ferroelectrics, it is necessary to derive the

appropriate field equations and boundary conditions corresponding to the above energy.

To this end a variational principle will be used. Consider the energy functional

I[u, φ, ψ] =
p

2

∫
Ω

(|∇ψ| − 1)2dΩ +

∫
Ω

WεdΩ

−
∫
∂Ωt

t · uds−
∫
∂ΩD

qφds, (3.86)
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where p is a new parameter penalizing the deviation from the signed distance function.

The first integral in Eq. (3.86) is an energy term used as a metric (45) to characterize

how close to a signed distance function is the level set function ψ. For arbitrary

variations of the independent variables u, φ, ψ, the energy functional should vanish

leading to an extremum for the energy of the system

δI[u, φ, ψ; δu, δφ, δψ] = 0. (3.87)

Taking variations for the displacement field u and the electric potential φ, one derives

the mechanical equilibrium equation and Gauss law, respectively

divσε = 0, divDε = 0, in Ω. (3.88)

In addition the following boundary conditions can be obtained

σε · n = t on ∂Ωt,
Dε · n = q, on ∂ΩD,

(3.89)

where σε and Dε are the regularized versions of Cauchy stress tensor and electric

displacement vector given by the constitutive relations

σε =
∂Wε

∂e
, Dε = −∂Wε

∂E
. (3.90)

Combining Eqs. (3.85), (3.90), one can further determine the Cauchy stress tensor and

electric displacement vector:

Dε = −∂W1

∂E
+ hε(−

∂W2

∂E
+
∂W1

∂E
) = D1 + hε(D

2 −D1),

σε =
∂W1

∂e
+ hε(

∂W2

∂e
− ∂W1

∂e
) = σ1 + hε(σ

2 − σ1). (3.91)

Notice that the jump conditions in Eq. (3.72) no longer hold and the transition from

one region to the other is smooth. In other words, Eq. (3.91) is the continuous version

of Eq. (3.78).

To complete the analysis, arbitrary variations of the energy functional I with respect
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to ψ are considered

δI

δψ
= p

∫
Ω

(|∇ψ| − 1) δ (|∇ψ|) dΩ +

∫
Ω

∂Wε

∂ψ
δψdΩ

= p

∫
Ω

(|∇ψ| − 1)

[
∇ψ · ∇ (δψ)

|∇ψ|

]
dΩ

+

∫
Ω

∂Wε

∂hε
h

′

εδψdΩ

= p(

∫
Ω

∇ψ · ∇ (δψ) dΩ−
∫
Ω

∇ψ
|∇ψ|

· ∇ (δψ) dΩ)

+

∫
Ω

∂Wε

∂hε
δε(ψ)δψdΩ,

where δε = h′ε. After applying the divergence theorem in both integrals and using Eq.

(3.23)2, one obtains

δI

δψ
= p(

∫
∂Ω

(∇ψ · n) δψdS −
∫
Ω

[∇ · (∇ψ)] δψdΩ)

− p(

∫
∂Ω

(∇ψ · n)

|∇ψ|
δψdS −

∫
Ω

[
∇ ·
(
∇ψ
|∇ψ|

)]
δψdΩ)

+

∫
Ω

∂Wε

∂hε
δε(ψ)δψdΩ

= p

∫
∂Ω

(
1− 1

|∇ψ|

)
(∇ψ · n) δψdS −

∫
Ω

p (∆ψ − κ) δψdΩ

+

∫
Ω

∂Wε

∂hε
δε(ψ)δψdΩ

= −
∫
Ω

[p(∆ψ − κ)− ∂Wε

∂hε
δε(ψ)]δψdΩ

+ p

∫
∂Ω

(
1− 1

|∇ψ|

)
(∇ψ · n) δψdS.

Adopting a gradient flow argument, thus attributing an evolution character to the

extremum problem, one may take∫
Ω

∂ψ

∂t
dΩ = −M δI

δψ
, (3.92)
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where M is the mobility of the process. Furthermore, based on the work of Zhao et

al. (85), the function δε(ψ) is replaced by |∇ψ|. According to these authors, this is a

time re-scaling that does not affect the steady state solution, since only the speed of

gradient flow is affected and not its direction. The above considerations result in the

evolution equation of the level set function

∂ψ

∂t
= µ(∆ψ − κ)−M

∂Wε

∂hε
|∇ψ|, in Ω, (3.93)

where µ = pM and the boundary condition

∇ψ · n = 0, on ∂Ω. (3.94)

Comparing Eqs. (3.93) and (3.24), one deduces that the above variational principle

defines indirectly the kinetic relation. Indeed, defining

fε = −∂Wε

∂hε
, in Sε (3.95)

as the driving force moving the zero level set of ψ, the following kinetic relation emerges

V = V (fε,nS) = M fε, (3.96)

where M = M(nS) is the mobility of the domain wall which in general depends on the

normal unit vector nS and accounts for anisotropic effects. It is remarked that Hou et al.

(34) derived the same expression for the driving force by the use of thermodynamical

argument. Finally, our analysis concludes in the following equation and boundary

condition
∂ψ
∂t

= µ(∆ψ − κ) + V |∇ψ|, in Ω

∇ψ · n = 0, on ∂Ω.
(3.97)

The first term of the evolution equation keeps the level set function as a signed distance

function, while the second term moves the level set function with velocity determined

by the kinetic relation. It is obvious that no need for re-initialization is necessary

anymore. Variational level set methods can be found in other interesting problems

(26; 27).

Remark 3.2: It is remarked that no surface energy was included in the

sharp interface theory adopted in this work. If such energy was taken into



3.2 Phase Transitions in ferroelectrics 79

account, then the resulting driving force would include an extra term related

explicitly to the curvature of the interface (30), (48). For instance, if a

surface energy of the form
∫
S
γds is assumed for the sharp interface model

where γ is the energy per unit surface on the interface, then the driving

force in Eq. (3.81) will be given as (30), (48)

f = γκ− nS · ([[Σ]]nS) , on S. (3.98)

In the level set method, accounting for the surface energy γ will modify our

result for the level set equation, i.e. Eq. (3.93). The latter will take the

form
∂ψ

∂t
= µ(∆ψ − κ)−M(

∂Wε

∂hε
− γκ)|∇ψ|, in Ω, (3.99)

as one could extract from the work of Zhang et al. (83) and Esedoglu and

Smereka (29). This finally results in a smooth driving force of the form

fε = γκ− ∂Wε

∂hε
, in Sε. (3.100)

Please notice that in Eq. (3.99) the interface curvature emerges in two

distinct terms coming from two distinct sources: the re-initialization pro-

cedure and the surface energy. It is worth noting that the curvature of the

interface, as it appears in the present work, i.e. Eq. (3.93), is exclusively

due to the re-initialization procedure and has nothing to do with the surface

energy. Nevertheless, in a level set approach one could consider a surface

energy term as Hou et al. (34) did, accounting for that part of the bulk

energy contained in the layer Sε. In that case one must be warned that

this term vanishes at the sharp interface limit as thoroughly explained in

Ref. (34).

3.2.2.3 Material forces

The sharp interface theory presented previously shows that on domain walls the driving

force is given by Eq. (3.81), where the Eshelby stress tensor is involved. In the level

set framework the driving force is determined by Eq. (3.95), thus it is reasonable to
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wonder on the role that material forces might play in that case. Equation (3.85) is

written in the following form (37; 38)

W̄ (e,E,x) = Wε(e,E, hε(ψ(x))), (3.101)

so as to underline the explicit dependence of the energy function on x. Then, the

equilibrium equation for configurational forces holds (7; 8; 30; 49)

divΣ + finh = 0, in Ω, (3.102)

where finh represents the inhomogeneity forces and Σ the Eshelby tensor given by

Σ = W̄ I− (∇u)σε + E⊗Dε. (3.103)

A simple calculation gives

finh = −∂W̄
∂x

= −∂Wε

∂hε
h

′

ε

∂ψ

∂x
= −∂Wε

∂hε
δε(ψ)∇ψ. (3.104)

Combining Eq. (3.23)1 and Eq. (3.104) one can write

Fn =

∫
Ω

fεδε(ψ)|∇ψ|dΩ =

∫
Ω

finh · nSdΩ, (3.105)

where Fn is the resultant driving force on the layer Sε. Also, using the equilibrium of

the material forces in Eq. (3.102) the resultant driving force can be written

Fn = −
∫

Ω

divΣ · nSdΩ. (3.106)

The above Eqs. (3.105) and (3.106) show that the concept of material force can be

naturally inserted in the framework of the level set method. Moreover, Eq. (3.106)

shows that the Eshelby stress tensor can be used for the computation of the driving

force.

3.2.3 Two level set functions

So far we have studied the dynamics of a single domain wall in a ferroelectric by the

use of one level set function thus being limited only to two distinct phases. However,

there are domain patterns with more than two phases. Motivated by this fact, two
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Figure 3.6: The domain Ω separated in four regions by the interfaces S1 and S2

distinct level set functions ψ1 and ψ2 are introduced in this section. In this way, it is

possible to form four different phases of the material corresponding to the four possible

orientations of the polarization in 2-D ferroelectrics with tetragonal crystal symmetry.

According to Figure 3.6, one can write for the implicit representation of the interfaces

S1 and S2 via level set functions ψ1 and ψ2

S1 = {x ∈ Ω|ψ1(x, t) = 0}, S2 = {x ∈ Ω|ψ2(x, t) = 0}. (3.107)

The domains arisen from ψ1 and ψ2 are given as

Ω++ = {x ∈ Ω | ψ1(x, t) > 0 and ψ2(x, t) > 0},
Ω−− = {x ∈ Ω | ψ1(x, t) < 0 and ψ2(x, t) < 0},
Ω+− = {x ∈ Ω | ψ1(x, t) > 0 and ψ2(x, t) < 0},
Ω−+ = {x ∈ Ω | ψ1(x, t) < 0 and ψ2(x, t) > 0}.

(3.108)

The above regions correspond to the polarization phases P++ = (p0 0)T, P−− =

(−p0 0)T, P−+ = (0 − p0)
T and P+− = (0 p0)

T, where p0 is the spontaneous

polarization magnitude. Unlike the work of Zhao et al. (85), in this paper overlapping

is not prohibited and in fact intersecting area corresponds to an additional phase of the

material. To study the multiphase problem, it is necessary to formulate an appropriate

expression for the energy of the material containing the above four phases (37). As

before a regularized version of the energy is adopted

Wε(e,E, h
1
ε, h

2
ε) = (W2 −W1)h

1
ε + (W3 −W1)h

2
ε

+(W4 +W1 −W2 −W3)h
1
εh

2
ε +W1, (3.109)
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where W1, W2, W3, W4 are the energy expressions for each region and h1
ε = Hε(ψ1)

and h2
ε = Hε(ψ2).

The next step is to determine the driving forces moving the two level sets. As it

has been proved, they are inhomogeneity forces and it makes sense to use a procedure

similar to that presented previously,

− ∂W̄

∂x
= −∂Wε

∂h1
ε

δε(ψ1)∇ψ1 −
∂Wε

∂h2
ε

δε(ψ2)∇ψ2

= f1
inh + f2

inh. (3.110)

One can notice the crucial role of the delta function δε which confines the material

forces to act within the thin layer S1
ε and S2

ε where the inhomogeneities are present.

According to Eq. (3.110) the driving forces on the interface layers are

f 1
ε = −∂Wε

∂h1
ε

, f2
ε = −∂Wε

∂h2
ε

(3.111)

that must be used in the kinetic relations to determine the velocities of the zero level

sets. In a general theoretical framework the kinetic relations are assumed to be of the

form

Vi = Vi(f
1
ε , f

2
ε ,nS1 ,nS2), i = 1, 2, (3.112)

to account for the interaction between the surface layers S1
ε and S2

ε .

In concluding, the field equations and boundary conditions for the problem under

study take the final form

∇ · σε = 0, ∇ ·Dε = 0, in Ω
∂ψi
∂t

= µi (∆ψi − κi) + Vi |∇ψi| , in Ω, i = 1, 2

σε · n = 0, Dε · n = 0, ∇ψi · n = 0, on ∂Ω.

(3.113)

Certainly, in order the above system to be solvable, one must consider the constitutive

relations given by Eq. (3.90) and a specific selection for the kinetic relations provided

by Eq. (3.112).

3.3 Computational results

3.3.1 Finite element implementation and parameter selection

In this subsection, the finite element implementation of the level set equation coupled

with the Gauss law and the mechanical equilibrium equation is presented. To apply
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the finite element method one has to derive the weak forms of the governing equations.

Following the standard procedure from the strong forms one can obtain∫
Ω
σε∇(δu)dΩ−

∫
∂Ωt

t · δuds = 0, (3.114)∫
Ω
Dε∇(δφ)dΩ−

∫
∂ΩD

q δφ ds = 0, (3.115)∫
Ω

[(∂ψ
∂t
− V |∇ψ|)δψ + µ(1− |∇ψ|−1)∇ψ · ∇(δψ)]dΩ = 0, (3.116)

where with δu, δφ, δψ we denote the test functions. Consider a discretization of the

domain Ω consisting of nel finite elements

Ω =

nel⋃
e=1

Ωe, (3.117)

where Ωe, e = 1, . . . , nel, denote the finite elements of the mesh. In element level, the

finite element solution of the unknown fields is taken to be of the form

u = Nu(x)ũ(t), φ = Nφ(x)φ̃(t), ψ = Nψ(x)ψ̃(t), (3.118)

where Nu,Nφ, Nψ are the appropriate matrices of the shape functions for the displace-

ments, the electric potential and the level set function, respectively. The vectors ũ, φ̃

and ψ̃ consist of the unknown nodal parameters of the fields u, φ and ψ, respectively.

The same shape functions are used to interpolate the test functions as well as the space

and time derivatives

δu = Nuδũ, δφ = Nφδφ̃, δψ = Nψδψ̃,

∇u = Buũ, ∇φ = Bφφ̃, ∇ψ = Bψψ̃, ψ̇ = Nψ
˙̃ψ,

(3.119)

where Bu, Bφ and Bψ denote the spatial derivatives of the shape function matrices

Nu, Nφ and Nψ, respectively.

Substitution of Eqs. (3.118) and (3.119) into Eqs. (3.114), (3.115) yields the

following discretized equations∫
Ωe

BT
u σ̃εdΩ−

∫
∂Ωe

t

Nutds = 0∫
Ωe

BT
φ D̃εdΩ−

∫
∂Ωe

D

qNφ ds = 0,
(3.120)

where σ̃ε and D̃ε are the discretized stress and electric displacement, respectively.



84 The Level Set Approach to Phase Transitions in solids

The discetized level set equation can be written in a more specific form. After

substitution of Eqs. (3.118), (3.119) into Eq. (3.116) the following equation can be

obtained

C̃ ˙̃ψ + K̃ψ̃ + f = 0, (3.121)

where

C̃ =

∫
Ωe

NT
ψNψdΩ, f = −

∫
Ωe

NT
ψ Ṽ

√
ψ̃

T
BT
ψBψψ̃dΩ

K̃ = µ

∫
Ωe

(1− (ψ̃
T
BT
ψBψψ̃)−1/2)BT

ψBψdΩ.

Employing the standard assembly procedure one can conclude to the overall system

of equations. In this work, the finite element solution of the coupled field problem is

accomplished by the use of FEMLAB. Time discetization is accomplished by the use

of an implicit time integration scheme and at each time step the nonlinear algebraic

system is linearized through Newton-Raphson method. The FEMLAB uses the direct

UMFPACK solver, which is a set of routines to solve the final linear system of equations,

by performing LU factorization. Here, triangular meshes were used with Lagrange

quadratic shape functions. The interested reader is referred to a standard text book

on finite element method (86) and to the FEMLAB handbook for more details.

To solve numerically the system of equations, the ferroelectric soft lead zirconate

titanate has been selected. In the 2-D setting, plane strain and plane polarization

conditions were considered. Also, the material is assumed to be transversally isotropic

with axis of anisotropy coinciding with the corresponding polarization axis, so when

the material is poled in the positive x2 direction the material parameters are chosen

(61)

C =

 12.6 5.3 0
5.3 11.7 0
0 0 3.53

 1010 Pa,

d =

(
0 0 17

−6.5 23.3 0

)
C
m2 , e◦ =

 −0.0039
0.0076

0

 ,

P0 =

(
0

0.2

)
C
m2 , k =

(
1.51 0
0 1.3

)
10−8 C

Vm
.

To describe the other three phases, changes have to be made to the above material

parameters so as to conform to the spontaneous polarization. If the material is poled
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in the negative x2 direction (180◦ domain wall) only the piezoelectric tensor will change

inverting the sign of all entries. For a 90◦-rotation of the x2 axis (90◦ domain wall) all

materials tensors have to change accordingly.

3.3.2 Domain growth under electromechanical loading

The evolution of a domain within a single ferroelectric crystal is examined. It is con-

sidered as a two phase problem, thus according to our analysis one must use only one

level set function to represent the interface. In what follows, two distinct cases of a

single domain evolution within a large parent domain are examined. The first case

concerns the development of a domain with polarization opposite to the surrounding

domain while the second a domain with polarization vertical to the parent domain

polarization. Notice that the interest of this work is focused on the domain evolution

and no care is taken on the nucleation mechanism. As it is mentioned in subsection

3.2.2.2, the kinetic relation for the two–phase problem is given by Eq. (3.96). In the

case of 180◦ and 90◦ domain nucleus, it is assumed a specific relation of the form

V = M1 fε +M2 fε |n2
S − n1

S|, (3.122)

where M1,M2 are the mobilities of the isotropic and anisotropic terms, respectively.

Also, n1
S and n2

S are the components of the normal unit vector nS given by Eq. (3.23)1.

Consider a mono-domain sample of rectangular shape with dimensions 200nm ×
100nm. An elliptic inclusion with opposite spontaneous polarization is set as initial

value for the level set function. The right and left boundaries are chosen to be surface

charge free (Dε · n = 0), while the bottom and top boundaries are set φ = 0 and

φ = −0.05 V, respectively. Also, all boundaries are assumed to be traction free. The

mobility parameters are chosen M1 = 2 · 10−4 m3/s N and M2 = 0, while the rest

parameters are selected as ε = 0.01 and µ = 10−6. In Figure 3.7, it is shown that the

domain grows vertically until it reaches the boundary. Then under the motion of 180◦

domain walls it expands to cover the whole region of the sample.

In the 90◦ domain nucleus an elliptic inclusion is taken with horizontal polarization

as initial value for the level set function. All boundaries are chosen with zero electric

potential φ = 0, while the left and right boundaries are traction free. At the bottom

and top boundaries compressive mechanical loading is applied. The parameters for
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(a) (b)

(c) (d)

(e)

Figure 3.7: 180◦ domain nucleus
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(a) (b)

(c) (d)

Figure 3.8: 90◦ domain nucleus
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the kinetic relation are chosen as M1 = 2 · 10−4 m3/s N and M2 = 20 · 10−4 m3/s N

and the parameters ε = 0.01, µ = 10−6, as before. This type of kinetic relation forces

the domain to grow faster at 45◦ angle from the applied stress axis, so as to be in

agreement with the behavior experimentally observed. In Figure 3.8 the 90◦ domain

nucleus process is illustrated. It is worth noticing that under compressive stress, the

interior domain grows until it reaches the boundary, then under the motion of 90◦

domain walls it expands inside the crystal.

3.3.3 Material forces on 180◦ domain wall

This subsection is devoted to the computation of material forces within the body. The

kinetics of 180◦ domain wall is considered to present a specific example of material forces

computation. It is assumed that the computational sample is separated in two phases

of opposite spontaneous polarization as it is illustrated in Figure 3.9a. Practically, this

can be achieved by appropriate selection of the initial value for the level set function.

Moreover, an external electric field is applied in the upward direction so as the left

domain to expand to cover the whole region of the sample. The same parameters are

selected as in the previous example of 180◦ domain nucleus. There is only a slight

difference concerning the domain wall thickness, which here is selected to be ε =

0.2. In Figure 3.9a, the norm of material forces within the sample is depicted. The

computation of material forces is accomplished through the Eshelby stress tensor, as

described in subsection 3.2.2.3. It is evident that non–vanishing material forces only

exist within the transition layer, where one reasonably should expect to be present. In

Figure 3.9b the norm of material forces at the middle point x2 = 50 nm is computed

for different times to demonstrate that the interface is moving to the right end driven

by the external electric field.

3.3.4 Typical microstructures of ferroelectrics

In this subsection, attention is paid on the computational reproduction of the mi-

crostructure for a sample with four phases. The computation is based on the theoretical

analysis developed in detail in Section 3.2.3. First, one has to assume an appropriate

form for the kinetic relations. For the sake of simplicity the mechanical part of the
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(a) (b)

Figure 3.9: Material forces on a moving 180◦ domain wall (a) Norm distribution profile,
(b) Cross-section at x2 = 50nm at different time steps

problem is currently neglected, i.e., the analysis is restricted to rigid body ferroelectrics.

An appropriate assumption, in the sense it reproduces successfully the microstructure,

is given by the following forms

V1 = M
f 1
ε + f 2

ε

2
, V2 = M

f 1
ε − f 2

ε

2
. (3.123)

The material parameters were selected as in the previous simulations, apart from

the the mobility parameter, which is now taken M = 2.5 · 10−4 m3/s N. Also the

regularization parameter is taken ε = 0.01. The initial structure is chosen by two

intersecting ellipses as shown in Figure 3.10. The boundary conditions are surface

charge free (Dε ·n = 0). As one can see in Figure 3.11, the initial structure evolves up

to its steady state configuration. This vortex-like domain structure is due to the choice

of the boundary conditions which forces the normal component of the polarization

vector to vanish on the boundary and it is in agreement with the results of the phase

field model presented in the previous chapter. In Figure 3.12, the three dimensional

plots of the two level set functions in equilibrium state are presented. It is obvious

that their intersections with the sample provide the zero level sets of these functions.

Also, for this simulation, the resultant material forces on the interfaces versus time are
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(a) (b)

Figure 3.10: Three dimensional plots of the two level set functions in the initial state
and their zero levels (a) ψ1, (b) ψ2.

illustrated in Figure 3.13a. Notice that the material forces tend to zero, i.e., they are

finite and drive the movement of the interfaces up to the equilibrium configuration of

the microstructure, where they finally vanish. The behavior of the total energy with

time is presented in Figure 3.13b. As it is expected, the energy of the system attains

a minimum indicating equilibrium state.
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(a) (b)

(c) (d)

(e)

Figure 3.11: Domain formation
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(a) (b)

Figure 3.12: Three dimensional plots of the two level set functions in the final state
and their zero levels (a) ψ1, (b) ψ2.

(a) (b)

Figure 3.13: (a) Resultant driving forces on the two zero level sets and (b) the total
system energy as functions of time.



Chapter 4

Special topics in ferroelectrics

4.1 Damage in ferroelectrics

Defects play a crucial role in explaining important aspects of ferroelectric behavior

since they interact with domain walls at sub - micron scales. Yang et al. (78) provide

experimental observations on the pinning and bowing of domain walls near defects in

ferroelectric crystals. Scott and Dawber (62) study the role of oxygen vacancies on

the pinning of domain walls. Brennan (13; 14) presented a theoretical description of

the effect of charged defects in stabilizing domain configurations and in blocking their

motion. Numerical simulations have been performed by Su and Landis (65), provide

values for the critical applied electric field and shear stress which required for the

domain wall to break through an array of charged defects. The role of dislocations

in ferroelectric thin film behavior has been studied experimentally by Dai et al. (23).

Kontsos and Landis (43) provide a theoretical and numerical framework to investigate

the interactions between domain walls and arrays of dislocations in ferroelectric single

crystals.

The appearance of defects within a ferroelectric crystal results in degradation of

material properties and fatigue of the material. Fatigue in ferroelectrics is triggered

by two important defect mechanisms: (1) domain wall pinning due to charged point

defects and (2) aging due to doping or radiation damage. Fatigue is very common in all

ferroelectrics and it is an issue that has attracted much attention over the last decade.

Until now, there is not any satisfying explanation for this time dependent alteration
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of material properties, since the basic theory of ferroelectricity does not predict it.

According to Zhang and Ren (84), fatigue can be safely assumed to be caused by a

certain relaxation process. In the same work, the authors discuss whether the two types

of defects come from a boundary effect or a volume effect. It is noted that the effect

of electrodes or surface defects is also known to cause fatigue in ferroelectrics (56).

Domain wall pinning mechanism admits that point defects, possibly coming from

charges injected by electrodes or oxygen vacancies, migrate to the domain walls. The

strong electromechanical interaction between these defects and the domain walls causes

the pinning of the latter, making switching of the total macroscopic polarization dif-

ficult or even impossible. Experimental observations have shown distorted hysteresis

loops and asymmetric butterfly loops. Several continuum models simulate success-

fully the microscopic and macroscopic behavior under the presence of point defects

e.g. (65; 80) and accept domain wall pinning as a significant damage mechanism. In

this work, a similar analysis is performed and emphasis is paid on the distortion of

domain walls by point charges and the appropriate electric field (coercive field) needed

to overcome the defect.

Aging in ferroelectrics is attributed to the stabilization of domains within the mate-

rial due to polar lattice defects making polarization switching hard. In general, dipole

defects show the tendency to align with the surrounding spontaneous polarization fol-

lowing the crystal symmetry. For more details on the doping mechanism one is referred

to the work of Damjanovic (24). There are several continuum models that accumulate

dipole defects, i.e. (4; 47; 79). Here, a simple example accounting for dipole defects is

proposed based on electric field gradient effects within the framework of the new phase

field model presented in Section 2. It is assumed that a distribution of dipole defects

on an interior surface of a single crystal interacts strongly with a domain wall resulting

in the pinning of the domain wall. In this work we do not consider alignment of dipole

defects.

4.1.1 Point charges

Consider a two dimensional ferroelectric sample where an array of two charges at a

certain distance h has been placed. Furthermore, It is assumed that the sample is

separated in two phases by a 180◦ domain wall by imposing an appropriate initial



4.1 Damage in ferroelectrics 95

(a) Zero electric field

(b) Non zero electric field

(c) Coersive field

Figure 4.1: 1800 Domain wall interaction with two negative point charges q = −10 at
distance h = 120
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(a) Zero electric field

(b) Non zero electric field

(c) Coersive field

Figure 4.2: 1800 Domain wall interaction with two point charges with q− = −10, q+ =
+10 at distance h = 40
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(a) Two negative point charges

(b) Two charges with opposite signs

Figure 4.3: Plots of the coercive field as function of the absolute value of charge at
distance h = 40.
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condition for spontaneous dipole polarization. All boundaries are taken traction free

and electric potential free. The additional boundary conditions for quadrupoles imply

qr22 = 0 for the top and bottom boundaries and qr11 = 0 for the left and right boundaries.

We are interested in the interaction of the domain wall with the array of charges. The

influence of n point charges in the system of equations is taken into account by choosing

the density of volume charges in the form

Q∗ =
n∑
i=1

Qiδ(x− xi), (4.1)

where Qi is the value of a point charge at position xi and δ(x) denotes the Dirac delta

function.

The first example concerns the interaction of the domain wall with two negative

charges, as shown in Figure 4.1. The configurations illustrate equilibrium states at

very large times. In Figure 4.3a, a 180◦ domain wall has been posed in the middle of

the sample where exactly the defects are also present and no external electric field is

applied. After many time steps it becomes evident that the strong interactions between

the domain wall and the charges creates kinks in the domain wall. According to (65)

who have used the standard polarization gradient theory, these kinks are important

features of the interaction between the 180◦ domain wall and isolated charges. In

Figure 4.1b, an upward electric field is applied so as to move the domain wall increasing

the domain area with upward spontaneous polarization. It is remarked that the electric

field is not able to move the domain wall over the array of charges, thus the domain

wall is pinned by the defects. Increasing slowly the electric field it is observed that the

domain wall stays pinned, until one reaches a critical field, called coercive field, where

the domain wall starts moving surpassing the defected area, as shown in Figure 4.1c.

We turn now to a second example concerning the interaction between a domain

wall and an array of two charges, a positive and a negative one in a finite distance h as

shown in Figure 4.2. It should be emphasized that the behavior of such an array is far

from the impact of a dipolar defect on the domain wall. In Figure 4.2a, the equilibrium

state of the domain wall interacting with the two opposite charges is illustrated. Once

again the strong interaction creates kinks in the domain wall slightly different with the

ones of the array of negative charges. As before, the domain wall stays pinned while
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raising the applied electric field, as shown in Figure 4.2b. In Figure 4.2c the coercive

field moving the domain wall over the defect has been reached.

In Figure 4.3 the coercive field as a function of the absolute value of the electric

charge is plotted for the two cases under discussion. As expected the coercive field

increases with raising values of charge. It is worth mentioning that the function is

non-linear and this can be explained from the finite thickness of the domain wall (65)

as such behavior cannot be captured by sharp interface models.

Figure 4.4: An array of dipole defects on S.

4.1.2 Dipole defects

Consider a surface S within the ferroelectric body with a fixed distribution of dipoles,

pd
i as shown in Figure 4.4. According to Eq. (2.41), the reversible part of quadrupoles

result in a contribution to the surface dipole density on S as well. Thus one may write

the total surface dipole polarization Πi on S as follows

Πi = qrijnj + pd
i . (4.2)

As any surface vector field, Π may be resolved into a normal (to S) and a tangent

component, Πn = (Πn) · n and Πt = Π − Πn, respectively. The quadrupole theory

developed in this paper obligates the normal component of the total dipole density on

S to vanish (see Eq. (2.31)1), i.e., one has to impose the restriction

Πn = 0 ⇒ qrijninj = −pd
i ni = −pd

n, on S. (4.3)
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(a) (b)

(c) (d)

Figure 4.5: Interaction of a domain wall with a homogeneous distribution of dipole
defects, (a) initial configuration, (b,c) intermediate states, (d) pinned domain wall

For the specific geometry of the 2-D example discussed here the boundary condition

(4.3) takes the simple form (36)

qr11 = −pd
n on S.

We start with a domain wall moving to the right direction under the influence of an

external electric field. The left and right boundaries are taken charge free (D · n =

0). The bottom is set at zero electric potential while the top edge is set at a non -

zero electric potential. Also, all boundaries are taken traction free. As concerns the

quadrupole polarization, the condition qr11 = 0 holds for the left and right edge, while

for the top and bottom the condition qr22 = 0 is imposed.

In Figure 4.5 the interaction of a single domain wall with a distribution of dipole

defects is illustrated. In Figure 4.5a the domain wall driven by the external electric
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field is approaching the defected area. Notice in Figure 4.5b that the inhomogeneous

electric field results in the enhancement of the spontaneous polarization in the x1

direction within the domain wall. In Figure 4.5c the spontaneous polarization inside

the domain wall rotates following the direction of dipole defects. Finally in Figure 4.5d

the domain wall stops moving, thus it is pinned. To overcome the defected surface, a

higher electric field must be applied.

4.2 Phase field modeling of ferroelectric polycrys-

tals with an implicit representation of grain

boundaries by using the level set method

Until now, we have restricted our analysis to ferroelectric single crystals. Ferroelectric

ceramics are a collection of grains separated by firm boundaries, called grain bound-

aries. Each grain has different orientation with respect to one another. The grain

boundary and grain boundary phases, grain orientation has been found to play a sig-

nificant role in polarization switching. The preferential orientation of grains has been

shown to affect the properties in ferroelectric ceramics. Zhang and Bhattacharya (82)

presented a phase field model for domain switching in single and bi-crystals. It has

been shown that the domain switching behavior was dependent on the misorientation

of the two half crystals in the bi-crystal. Choudhury et al. (21) conducted phase field

simulations for studying the effect of the grain orientation, grain boundary and a low

ferroelectric transition temperature at the grain boundary on the domain structure,

stress distribution and switching behavior in ferroelectric materials.

In this thesis we follow the work of Zhang and Bhattacharya (see subsection 2.1.2)

by presenting the same phase field model in bi-crystals but the grain boundary is

assumed to be the zero level set of an implicit function ψ. This treatment ensures

continuity of the displacements, the traction and the electric potential across the grain

boundary as in Section 3. It becomes obvious that domains and domain walls are

controlled by the phase field model, while grain boundaries are controlled by the level

set method. Thus for bi-crystals we propose a combined phase field–level set model,

which can be easily extended to poly-crystals.
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4.2.1 Phase field–Level set model for bi-crystals

As it has been mentioned in (21), there are two levels of structure for describing

the microstructure in ferroelectric ceramics, i.e. the grain structure and the domain

structure of each individual grain. Therefore, it is possible to introduce two coordinate

systems, the laboratory frame and the material frame (82), and denote by O the

transformation (rotation) that takes the laboratory frame to the material frame. O

is constant in each grain but changes from one grain to another and has the property

that

OTO = OOT = I, (4.4)

where I is the identity matrix. Naturally we can write the following relations

Figure 4.6: A bi-crystal and the two coordinate systems.

pM = Op,

eM = OeOT, (4.5)

where p and e denote the polarization vector and strain tensor in the laboratory frame

and pM and eM in the material frame. Specifically in two dimensions and assuming

that the rotation matrix O describes rotation by an angle θ about the x3 axis, Eq.
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(4.5) takes the form

pM1 = p1cosθ + p2sinθ, (4.6)

pM2 = p2cosθ − p1sinθ, (4.7)

eM11 = e11cos2θ + e22sin
2θ + e12sin2θ, (4.8)

eM22 = e22cos2θ + e11sin
2θ − e12sin2θ, (4.9)

eM12 = e12cos2θ +
1

2
(e22 − e11)sin2θ. (4.10)

Now we turn to the energy densities fG and W (see Eq. (2.10)) which correspond

to the domain wall and the Landau-Devonshire energy densities, respectively. These

functions are directly affected by the rotation matrix O. In the two dimensional setting

and assuming plane polarization and plane strain conditions, these functions are chosen

fMG =
α0

2

((
∂pM1
∂xM1

)2

+

(
∂pM1
∂xM2

)2

+

(
∂pM2
∂xM1

)2

+

(
∂pM2
∂xM2

)2
)
, (4.11)

WM =
α1

2

(
(pM1 )2 + (pM2 )2

)
+
α2

4

(
(pM1 )4 + (pM2 )4

)
+
α3

2
(pM1 )2(pM2 )2

+
α4

6

(
(pM1 )6 + (pM2 )6

)
+
α5

4
(pM1 )4(pM2 )4 − b1

2

(
eM11(p

M
1 )2 + eM22(p

M
2 )2
)

− b2
2

(
eM11(p

M
2 )2 + eM22(p

M
1 )2
)
− 2b3e

M
12p

M
1 p

M
2 +

c1
2

(
(eM11)

2 + (eM22)
2
)

+ c2e
M
11e

M
22 + c3(e

M
12)

2. (4.12)

A substitution of Eqs. (4.6)–(4.10) in the above energy functions provides their ex-

pressions in the laboratory coordinate system. For instance, the domain wall energy

density can be easily proved to be

fMG =
α0

2

((
∂p1

∂x1

)2

+

(
∂p1

∂x2

)2

+

(
∂p2

∂x1

)2

+

(
∂p2

∂x2

)2
)

= fG, (4.13)

which means that the function fG remains the same for all grains of various orientations.

However, the expression for the Landau-Devonshire energy density WM is complicated

and for more details one is referred to (82). In this way we are able to work and perform

computer simulations in the laboratory coordinate system.

With the above considerations we assume a ferroelectric bi-crystal consisting of two

grains, as shown in Figure 4.6. The energy density of the system is written with the
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help of the level set function ψ as

Wε(e,p, ψ) = W2(p, e) + hε(ψ)(W1(p, e)−W2(p, e)), (4.14)

where WM
1 is the energy of grain 1 (θ 6= 0) and WM

2 is the energy of grain 2 (θ = 0)

both written in the laboratory coordinate system. Then, the total energy functional I

of the system may be written as

I[ui, φ, pi] =

∫
Ω

[fG(pi,j) +Wε(eij, pi, ψ)] dΩ +
ε0

2

∫
IR3

φ2
,idΩ. (4.15)

Following the same procedure as in (82), we can conclude to the system of governing

equations

µṗi =

(
∂fG
∂pi,j

)
,j

− ∂W2

∂pi
− hε(ψ)(

∂W1

∂pi
− ∂W2

∂pi
)− φ,i (4.16)

pi,i − ε0φ,ii = 0, (4.17)(
∂W2

∂eij
+ hε(ψ)(

∂W1

∂eij
− ∂W2

∂eij
)

)
,j

= 0, (4.18)

accompanied by appropriate boundary conditions (see subsection 2.1.2).

Remark 4.1: It is noted that arbitrary variations with respect to ψ were not

considered, since the motion of the grain boundary is prohibited. Certainly,

one can apply this model to grain boundary evolution of poly-crystalline

ferroelectrics by extracting the level set equation as well. However, grain

boundary evolution is complicated and for more details one is referred to

the work of Zhang et al. (83).

Following the theoretical analysis of Section 3, we can apply the material force method

to compute the forces acting on the grain boundary due to the grain mismatch. Ac-

cording to Eq. (3.44) we take

fmat = −∂W̄
∂x

= −∂Wε

∂hε
h

′

ε

∂ψ

∂x
= −∂Wε

∂hε
δε(ψ)∇ψ, (4.19)

or the resultant force

Fn = −
∫

Ω

divΣ · nSdΩ =

∫
Ω

fmat · nSdΩ, (4.20)

where Σ denotes the Eshelby stress tensor for electro-elasticity.
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4.2.2 Switching under electrical loading

To solve the system of Eqs. (4.16)–(4.18) we consider the same parameter normalization

as in (82). The normalized material properties are chosen:

c1 = 185, c2 = 111, c3 = 74, b1 = 1.4282, b2 = −0.185, b3 = 0.8066,
α1 = −0.007, α2 = 0.009, α3 = 0.018, α4 = 0.0261, α5 = 5

for barium titanate. The mobility µ−1 is chosen unity and the gradient parameter

α0 = 1.

A rectangular sample with normalized dimensions 1000× 400 is considered and in

order to separate it into two grains we chose the level set function as ψ(x1, x2) = 500−x1

(see Figure 4.6) and the regularizing parameter ε = 1. All simulations were performed

by the use of the finite element method combined with an implicit time integration

scheme with normalized time step ∆t = 1. As for the boundary conditions we do

not enforce periodic boundary conditions for electric potential, polarization and strain

along x1 direction. Specifically, for the bottom, right and left boundary we impose

φ = 0, while the top boundary is taken φ = φ0 sin(2πt/T ), with φ0 = −12 and

T = 30000. Also, the system was taken mechanically clamped and for the polarization

we have set ∇Pn = 0.

In Figure 4.7 we plot the hysteresis loop, which is the plot of the average electric

displacement along x2 direction as a function of the applied electric field. As one

can notice, this is a typical hysteresis loop similar to the loop in a single crystal. In

Figure 4.8 a series of domain structures are shown at time instants where the electric

field is close to zero. A direct conclusion is that near the grain boundary we have

noticed the nucleation of 90◦ domain propagating towards the grain interior. This is in

agreement with other phase field models (21; 82) and experiments. It is apparent that

the model produces the behavior of ferroelectric bi-crystals and can be easily modified

to describe more complicated aspects. For instance we can construct a ferroelectric

containing four grains oriented differently to each other by writing the energy as in

Eq. (3.109). Also, we can easily assume defects or any kind of failure on the grain

boundaries.
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Figure 4.7: Hysteresis loop for a ferroelectric bi-crystal with grain 1 oriented at angle
θ = 22.5◦ and grain 2 at an angle θ = 0◦.
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(a)

(b)

(c)

(d)

Figure 4.8: Domain switching under cyclic electric field. Snapshots were taken at (a)
t=15511, (b) t=15660, (c) t=15948, (d) t=16060





Chapter 5

Conclusions

The phase-field models are more than capable of reproducing the microstructure as

well as the macroscopic behavior of ferroelectric materials. The most important fea-

ture of phase field models is the introduction of a first order parameter, which governs

the evolutionary process leading the system from a non-equilibrium state (energetically

unfavorable) to an equilibrium one (energetically favorable). The transition from one

phase to the other is continuous attributing a certain thickness and surface energy to

the phase boundary. The first order parameter obeys an internal equation of motion of

Landau-Ginzburg type coupled with the fundamental equilibrium equations of contin-

uum mechanics. The information about the formation of the domain structure resides

in the time evolution of the spontaneous polarization within the material. In Chapter

2, we outlined the standard phase-field models that are under the umbrella of Mindlin’s

polarization gradient theory, only to introduce the reader to the current state-of-the-

art modeling of ferroelectrics. Moreover, we proposed a new phase-field model based

on a newly developed electric field gradient theory. Our contribution can be seen as a

model accumulating electric quadrupole moments and our effort focalizes in exploring

the role of quadrupole moments in the overall behavior of ferroelectrics. The additional

boundary conditions of the model seem useful enough to introduce dipolar defects in a

natural way. Dipole defects represent an important damage mechanism in these mate-

rials resulting in an overall degradation of their ferroelectric properties, i.e. fatigue of

the material. Our computational simulations prove that dipole defects have their way

of blocking the motion of domain walls making polarization switching hard or even
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impossible. Furthermore, based on the fact that gradient theories are closely related

to size effect phenomena we conduct simulations on low dimensional ferroelectrics, i.e.

thin films. Our results indicate that electric field gradients have a major impact on the

domain structure as well as on the hysteretic behavior of thin films.

The sharp interface theory treats phase boundaries as discontinuity surfaces of zero

thickness. Across the interface certain quantities suffer discontinuity jumps that must

obey specific conditions. These conditions can be taken by standard arguments and

correspond to the famous Rankine-Hugoniot jump conditions. The problem of a mov-

ing interface in the context of sharp interface models remains ill-posed, thus additional

constitutive information is needed. It has been proved that this drawback can be fixed

by selecting a kinetic relation, namely a relation that determines the velocity of the

phase boundary as a function of the exerted force. The selection of an appropriate ki-

netic relation depends on experimental observations and in fact it is not easy to guess

the correct one. Our contribution was the use the level-set method to describe the ki-

netics of the phase boundary, i.e. the domain wall. The method is based on an implicit

representation of the interface by considering a smooth scalar function, which changes

sign across the interface. Thus the zero level set of the implicit function coincides with

the interface. The motion of the interface is accomplished by using an evolution equa-

tion for the level set function, which is of Hamilton-Jacobi type. It is remarked that

the introduction of such an internal variable results in a regularization of the sharp

interface model in ferroelectrics. However, as in sharp interface models it is essential to

provide a kinetic relation as well. We focused on the kinetics of domain walls and on

the domain formation in ferroelectric materials. The material force method was proved

to be very useful in order to compute the driving forces on the domain walls. Thus it

was deduced that domain structures in ferroelectrics are due to inhomogeneity forces

entering the material momentum equation. Our computational simulations concern

the kinetics of domain walls under combined electromechanical loading and also the

formation of typical microstructures of two dimensional ferroelectrics with tetragonal

crystal symmetry. Apart from ferroelectrics, we used the level-set method to build a

two-phase thermoelastic problem in a general theoretical framework. We proposed a

simple one dimensional problem where we have been able to extract a kinetic relation

rather that to take it by assumption. Our results indicate that the level-set method is
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equivalently powerful to the phase-field models enhancing the state of the art modeling

of crystalline materials undergoing phase transformations.
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