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Abstract

This thesis undertook an extensive analysis on a national scale to dis-
cern trends and correlations in fuel prices across diverse community
types in Greece. This investigation proved crucial for a comprehensive
understanding of the Greek market dynamics and the nuanced influ-
ences on fuel price fluctuations from neighboring communities, munici-
palities, islands, and other geographical entities. The analysis spanned
nearly a decade, covering the period from 2014 to 2023, necessitat-
ing the amalgamation of diverse datasets encompassing fuel-related
information, census data, and geospatial details of various community
types. Subsequent to the assembly of these datasets, a series of meticu-
lous data preprocessing steps were executed to align the data for both
general analysis and time-series clustering. A central aspect of the
study involved the application of K-means clustering to different levels
of communities, shedding light on the similarity of fuel types among
them. The calculation of clusters was facilitated through the imple-
mentation of dynamic time warping (DTW) to construct the DTW
matrix, a crucial component for time-series clustering. The ensuing
presentation of clustering results offered valuable insights into the cor-
relations and resemblances among fuel prices across distinct commu-
nities, prefectures, island communities, islands and island complexes.
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Abstract in Greek

Στην παρούσα διατριβή διεξήχθη μια εκτενής ανάλυση σε εθνική κλί-

μακα για τον εντοπισμό των τάσεων και των συσχετίσεων στις τιμές των

καυσίμων σε διάφορους τύπους κοινοτήτων στην Ελλάδα. Αυτή η έρε-
υνα αποδείχθηκε ζωτικής σημασίας για την κατανόηση των δυναμικών της

ελληνικής αγοράς και των πολύπλοκων επιδράσεών της στις διακυμάνσεις

των τιμών των καυσίμων από γειτονικές κοινότητες, νομούς, νησιά και
άλλες γεωγραφικές οντότητες. Η ανάλυση κάλυψε σχεδόν δέκα χρόνια,
από το 2014 έως το 2023, απαιτώντας τον συνδυασμό διάφορων συνόλων
δεδομένων που περιλαμβάνουν πληροφορίες σχετικές με τα καύσιμα, δε-
δομένα από απογραφές καθώς και γεωχωρικές λεπτομέρειες για διάφορους

τύπους κοινοτήτων. Μετά τη συγκέντρωση αυτών των συνόλων δεδομένων,
εκτελέστηκε μια σειρά από βήματα προεπεξεργασίας των δεδομένων για

την ευθυγράμμιση τους τόσο για γενική ανάλυση όσο και για τη συστα-

δοποίηση με βάση τις χρονοσειρές. Κεντρικό στοιχείο της μελέτης ήταν η
εφαρμογή της συσταδοποίηση K-means σε διάφορα επίπεδα κοινοτήτων,
αναδεικνύοντας την ομοιότητα των τύπων καυσίμων μεταξύ τους. Η υπ-
ολογιστική διαδικασία των ομάδων υποστηρίχθηκε από την εφαρμογή του

dynamic time wraping (DTW) για τον υπολογισμό του πίνακα DTW,
κρίσιμο στοιχείο για τη συστηματική ομαδοποίηση χρονοσειρών. Τα απο−
τελέσματα της συσταδοποίησης παρουσιάστηκαν τελικά, αποκαλύπτοντας
ενδιαφέρουσες πτυχές σχετικά με τις συσχετίσεις και τις ομοιότητες των

τιμών των καυσίμων μεταξύ διαφορετικών κοινοτήτων, νομών, νησιωτικών
κοινοτήτων, νησιών καθώς και συμπλεγμάτων νησιών.
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Chapter 1

Introduction

1.1 Overview

The escalating complexity of fuel markets demands a comprehensive
understanding of the dynamics influencing price fluctuations, partic-
ularly in diverse geographical and community contexts. This thesis
addresses this imperative by conducting an extensive national-scale
analysis focused on the Greek fuel market. Over nearly a decade,
spanning from 2014 to 2023, our investigation delves into the intri-
cate relationships between fuel prices and diverse community types,
including communities, islands, and other geographical entities. This
research aims to unravel the nuanced influences on fuel prices, empha-
sizing the role of neighboring communities in shaping market trends.

The significance of this study lies in its commitment to providing a
holistic perspective on Greek market dynamics. By amalgamating di-
verse datasets encompassing fuel-related information, census data, and
geospatial details of various community types, we aim to uncover trends
that transcend temporal and spatial boundaries. Through meticulous
data preprocessing steps, we align these datasets for both general anal-
ysis and time-series clustering. The utilization of advanced techniques
such as K-means clustering and dynamic time warping (DTW) adds
depth to our investigation, allowing for a nuanced exploration of fuel
price correlations among different community types.
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1.2 Thesis Organization

The thesis follows a structured organization, beginning with Chapter
1’s introduction, which expounds on the primary focus, delineates the
problem definition, and highlights the study’s contributions.

Chapter 2 engages in a comprehensive literature review on method-
ologies related to time series analysis, statistical testing as well as time
series clustering.

Chapter 3 provides an overview of available data concerning gas
stations and geospatial information for all Greek communities.

Moving forward, Chapter 4 intricately describes the methodology,
encompassing data preprocessing and the application of time series
clustering. This chapter elucidates the steps taken to prepare the data
for analysis. Simultaneously, it introduces and justifies the applica-
tion of time series clustering techniques employed in the subsequent
analysis.

Following this, Chapter 5 meticulously presents the outcomes of
clustering experiments alongside various insightful statistics.

Chapter 6 serves as the conclusion, summarizing findings and offer-
ing a conclusive perspective on the overall study.

Lastly, the Appendix contains additional Figures for the reader’s
better understanding of the clustering results, the statistical testing as
well as the Python scripts utilized in all experiments, ensuring complete
transparency in presenting the study’s outcomes.
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1.3 Problem Definition

The fuel market, with its intricate web of influences and fluctuations,
demands a thorough investigation to comprehend the dynamics shap-
ing price trends. This thesis addresses this imperative with a focused
exploration of the Greek fuel market, spanning the period from 2014
to 2023. The primary challenge at hand is to decipher the multifaceted
relationships between fuel prices and diverse community types across
Greece, including communities, islands, and various geographical enti-
ties. The pressing need for such an analysis arises from the inherent
complexities that these different entities introduce into the market dy-
namics.

The crux of the matter lies in understanding how neighboring com-
munities, island communities, islands, and other geographical entities
contribute to the nuanced influences on fuel price fluctuations. This
intricacy necessitates an extensive national-scale analysis, considering
the diverse nature of these communities and their potential impact on
market trends. The overarching goal is to offer a comprehensive view
of the Greek fuel market dynamics, unraveling the hidden patterns
that may be obscured by temporal and spatial variations.
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1.4 Contribution

This thesis makes several key contributions to the understanding of
fuel markets, specifically within the Greek context. Firstly, it provides
a comprehensive analysis of fuel price trends over a significant period,
offering valuable insights into the factors influencing market dynamics.
The inclusion of diverse datasets, spanning fuel-related information,
census data, and geospatial details, enables a multifaceted examination
of the interplay between fuel prices and community characteristics.

The application of K-means clustering to different levels of com-
munities enhances our understanding of the similarities in fuel types
among them. This clustering analysis, supported by dynamic time
warping (DTW), introduces a novel approach to investigating time-
series data, enabling a more accurate representation of temporal re-
lationships. The resulting clusters not only shed light on the diver-
sity among community types but also reveal hidden patterns in fuel
price fluctuations, thereby contributing to the broader understanding
of market dynamics.

Furthermore, this study contributes to the methodological land-
scape by showcasing the effectiveness of dynamic time warping in con-
structing the DTW matrix for time-series clustering. The integration
of this technique demonstrates its utility in revealing meaningful cor-
relations and resemblances among fuel prices across distinct commu-
nities, island communities, and island complexes.

Overall, this research serves as a valuable resource for policymakers,
industry stakeholders, and researchers seeking a deeper comprehension
of fuel market dynamics in Greece.
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Chapter 2

Literature Review

2.1 Times Series Clustering

This section focuses on the utilization of clustering algorithms for time
series data analysis. Clustering serves as a fundamental data mining
and machine learning technique, facilitating the grouping of similar
data points into coherent clusters to enable exploratory analysis and
pattern recognition. With the increasing significance of temporal data
analysis, the application of clustering methodologies tailored to time
series has garnered considerable attention. Notably, k-means and hier-
archical clustering are two widely adopted approaches for partitioning
time-dependent sequences into meaningful groups, thereby unveiling
underlying patterns and valuable insights. Throughout this section,
we shall extensively investigate the intricacies of k-means, hierarchical
clustering, and other pertinent techniques, elucidating their potentials
and limitations in diverse time series datasets. A comprehensive un-
derstanding of their distinctive characteristics and challenges will en-
able the effective extraction of crucial knowledge from time series data
across a wide range of domains, including finance, healthcare, and en-
vironmental monitoring, contributing to the advancement of scientific
knowledge in this field.

Clustering, as a data mining technique, involves organizing similar
data into related or homogeneous groups without prior knowledge of
the groups’ definitions [1]. This process entails forming clusters by
grouping objects that exhibit maximum similarity within the group
while minimizing similarity with objects in other groups. Clustering
is valuable for exploratory data analysis, objectively revealing struc-
tures in unlabelled datasets by organizing them into similar groups.
Furthermore, it serves as a pre-processing step for other data mining
tasks and plays a crucial role in complex systems.

With the increasing capabilities of data storage and processors, real-
world applications have the ability to retain data for extended peri-
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ods. As a result, many applications store data in the form of time-
series data, encompassing sales data, stock prices, exchange rates in
finance, weather data, biomedical measurements (e.g., blood pressure
and electrocardiogram readings), biometrics data (facial recognition
image data), particle tracking in physics, and more. Various domains,
including Bioinformatics, Biology, Genetics, Multimedia [2, 3, 4], and
Finance, have witnessed the utilization of time-series data. Conse-
quently, an abundance of time-series data has opened new opportuni-
ties for researchers in data mining communities over the last decade.

As a consequence, numerous research projects have emerged in di-
verse areas to analyze time-series data for various purposes. These
purposes include subsequence matching, anomaly detection, motif dis-
covery [5], indexing, clustering, classification [6], visualization [7], seg-
mentation [8], pattern identification, trend analysis, summarization [9],
and forecasting. Additionally, ongoing research projects are dedicated
to enhancing existing techniques [10, 11].

Time-series clustering is a distinct form of clustering that deals with
temporal sequences. A sequence containing a series of nominal sym-
bols from a specific alphabet is commonly referred to as a temporal
sequence, while a sequence comprising continuous, real-valued elements
is termed a time-series [12]. Time-series are considered dynamic data
since their feature values change over time, with each point of the se-
ries representing one or more chronologically arranged observations.
Due to their temporal nature, time-series data are inherently high-
dimensional and often large in size [6, 13, 14]. These data are preva-
lent across various domains, including science, engineering, business,
finance, economics, healthcare, and government, making them of signif-
icant interest [15]. Despite each time-series comprising numerous data
points, it can also be regarded as a single object [16]. Clustering such
intricate objects holds particular advantages as it reveals compelling
patterns in time-series datasets, including both frequent and rare pat-
terns. This poses various research challenges, such as devising methods
to identify dynamic changes in time-series, anomaly and intrusion de-
tection, process control, and character recognition [17, 18, 19].

After reviewing the literature, it becomes evident that the majority
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Figure 2.1: The time-series clustering approaches.

of clustering works related to time-series can be categorized into three
main groups: whole time-series clustering, subsequence clustering and
time point clustering. Whole time-series clustering involves cluster-
ing a set of individual time-series based on their similarity. In this
context, clustering refers to applying conventional (usually) clustering
algorithms to discrete objects, where the objects are time-series, as
seen in Figure 2.1. The goal is to group similar time-series together,
allowing for the identification of patterns and relationships within the
dataset.

2.1.1 K-means

K-means clustering is a vector quantization method, originally used in
signal processing, aimed at partitioning n observations into k clus-
ters. Each observation is assigned to the cluster with the nearest
mean, serving as a prototype of that cluster. Consequently, the data
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space is divided into Voronoi cells through this partitioning. K-means
clustering minimizes within-cluster variances (squared Euclidean dis-
tances) to achieve its objective, while regular Euclidean distances pose
a more challengingWeber problem. In this context, the mean optimizes
squared errors, while only the geometric median minimizes Euclidean
distances. Alternatively, k-medians and k-medoids offer improved Eu-
clidean solutions.

Solving the k-means clustering problem is computationally difficult,
falling under NP-hard complexity. However, efficient heuristic algo-
rithms rapidly converge to a local optimum. These algorithms often
employ an iterative refinement approach, similar to the expectation-
maximization algorithm used in Gaussian mixture modeling for mix-
tures of Gaussian distributions. Both k-means and Gaussian mixture
modeling utilize cluster centers to model the data, though k-means
clustering tends to produce clusters with comparable spatial extent,
while the Gaussian mixture model allows clusters to have different
shapes.

It is essential to distinguish the unsupervised k-means algorithm
from the k-nearest neighbor classifier, a popular supervised machine
learning technique for classification. They share similar names, leading
to confusion. However, applying the 1-nearest neighbor classifier to the
cluster centers obtained by k-means enables the classification of new
data into existing clusters. This approach is known as the nearest
centroid classifier or the Rocchio algorithm.

2.1.2 Hierarchical Clustering

Hierarchical clustering is a widely used method for grouping objects,
wherein clusters are formed in a manner that ensures objects within
a cluster exhibit similarity while being different from objects in other
clusters. These clusters are visually represented in a hierarchical tree
known as a dendrogram.

One of the key benefits of hierarchical clustering is that it does not
require pre-specification of the number of clusters. Instead, by cutting
the dendrogram at an appropriate level, the desired number of clusters
can be obtained. This flexibility allows for an adaptive approach to
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clustering, enabling a deeper understanding of the underlying data
structure.

Additionally, hierarchical clustering facilitates data summarization
and organization through dendrograms, providing an intuitive means
to examine and interpret the resulting clusters. This hierarchical rep-
resentation allows for a comprehensive view of the data, revealing re-
lationships and hierarchical structures present in the dataset.

The real-life applications of hierarchical clustering are diverse and
widespread across various domains. In bioinformatics, hierarchical
clustering is employed to group animals based on their biological fea-
tures, aiding in the reconstruction of phylogeny trees. In the business
realm, this method is used to segment customers or create hierarchies of
employees based on their salary levels, leading to targeted marketing
strategies and improved organizational structures. Image processing
benefits from hierarchical clustering in grouping handwritten charac-
ters in text recognition, utilizing the similarity of character shapes for
accurate classification. Moreover, in information retrieval, hierarchi-
cal clustering helps categorize search results based on the relevance to
user queries, enhancing the efficiency and effectiveness of information
retrieval systems.

Hierarchical clustering encompasses two main types: agglomerative
and divisive. The agglomerative approach starts with each object as
an individual cluster and progressively merges clusters until a single
cluster remains, ultimately forming a cluster that contains all elements.
On the other hand, the divisive method begins with all objects in a
single cluster and then proceeds to divide or split clusters step by
step until each object forms a separate cluster. The division process is
governed by principles that maximize the distance between neighboring
objects in the cluster.

Between agglomerative and divisive clustering, the agglomerative
method is generally preferred due to its efficiency and its ability to
produce more balanced clusters. The agglomerative approach natu-
rally complements the hierarchical structure and facilitates easier in-
terpretation of the resulting clusters.

In conclusion, hierarchical clustering is a powerful technique that
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finds application in a wide range of fields, aiding in the discovery of
meaningful patterns and structures in datasets. Its flexibility, adapt-
ability, and comprehensibility make it a valuable tool for exploratory
data analysis and pattern recognition in various domains.
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2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) has emerged as a prominent technique
across diverse fields, such as signal processing, time series analysis, and
pattern recognition. One of the foundational publications in the field is
the work of Sakoe and Chiba [20], who introduced the concept of DTW
for spoken word recognition. This seminal paper laid the groundwork
for using DTW to align and compare time-varying sequences efficiently.

A comprehensive overview of speech recognition techniques, includ-
ing DTW, can be found in the book by Rabiner and Juang [21]. This
source provides valuable insights into the application of DTW in the
context of speech processing.

Efficiency concerns regarding DTW are addressed by Keogh and
Ratanamahatana [22], who proposed an indexing method for faster
and more scalable time series matching. This contribution is crucial
for enhancing the computational aspects of DTW, making it more
applicable to large datasets.

Salvador and Chan [23] focused on optimizing the time and space
complexity of DTW, making it suitable for real-time applications.
Their work significantly reduces the computational cost while main-
taining accuracy, further enhancing the practical utility of DTW.

A thought-provoking perspective on DTW is presented by Ratanama-
hatana and Keogh [24] in their paper titled ”Everything you know
about dynamic time warping is wrong.” This work highlights com-
mon misconceptions and provides insights into the correct usage and
interpretation of the algorithm, contributing to a more nuanced un-
derstanding of DTW.

Vlachos, Kollios, and Gunopulos [25] extend the application of DTW
beyond one-dimensional sequences by introducing an approach to dis-
covering similar trajectories in multidimensional space. This demon-
strates the versatility of DTW in various domains beyond traditional
signal processing.

Müller’s book [26] on ”Information Retrieval for Music and Motion”
delves into the application of DTW in music similarity analysis, pro-
viding an extensive exploration of content-based retrieval techniques
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for music and motion data.
Berndt and Clifford [27] discuss the application of DTW in finding

patterns within time series data, showcasing its utility in identifying
meaningful structures in temporal sequences.

The application of DTW extends to bioinformatics, as seen in the
work of Aach and Church [28], who apply DTW to align gene expres-
sion time series. This exemplifies the adaptability of DTW in handling
diverse data types.

Chen, Özsu, and Oria [29] propose an approach for similarity search
in moving object trajectories using DTW. This work demonstrates the
relevance of DTW in handling dynamic and evolving data, further
expanding its applicability.

In summary, the literature on DTW is rich and varied, encompass-
ing foundational works in speech recognition, optimization techniques,
multidimensional trajectory analysis, music similarity, and applica-
tions in bioinformatics and dynamic data sets.
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2.3 Unit Root Testing

Unit root testing, particularly using the Augmented Dickey-Fuller (ADF)
test, is a fundamental aspect of time series analysis with significant
implications for modeling and forecasting in various fields such as eco-
nomics, finance, and environmental science. The ADF test, introduced
by Dickey and Fuller [30], has become a cornerstone method for assess-
ing the stationarity properties of time series data.

Dickey and Fuller’s pioneering work laid the theoretical groundwork
for the ADF test, presenting the concept of unit roots in autoregressive
time series models and deriving the distributional properties of the
estimators under the null hypothesis of a unit root. This seminal paper
established the framework for unit root testing and its relevance in
analyzing non-stationary data.

Building upon the foundational work of Dickey and Fuller, sub-
sequent studies have extended and refined the ADF test, addressing
various practical challenges and theoretical considerations. Said and
Dickey [31] proposed modifications to the ADF test to accommodate
autoregressive-moving average (ARMA) models of unknown order, en-
hancing its applicability to real-world datasets with complex dynamics.

Kwiatkowski et al. [32] introduced the KPSS test as an alternative
to the ADF test for testing stationarity, providing complementary in-
sights into the behavior of time series data. This comparative analysis
between the ADF and KPSS tests has contributed to a deeper under-
standing of unit root testing methodologies and their relative strengths
in different contexts.

Further advancements in unit root testing have focused on improv-
ing the efficiency and robustness of the ADF test. Elliott, Rothenberg,
and Stock [33] proposed modifications to address serial correlation and
heteroscedasticity in the data, introducing the GLS-detrended ADF
test as a more efficient alternative.

In addition to methodological developments, researchers have also
explored the empirical applications of unit root testing across diverse
fields. Studies have examined the stationarity properties of economic
indicators, financial time series, and environmental variables, shedding
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light on the long-term behavior and trends in these datasets.
In conclusion, unit root testing with the Augmented Dickey-Fuller

test continues to be a fundamental tool in time series analysis, facili-
tating the identification of stationary and non-stationary processes in
empirical data. Ongoing research efforts aim to refine existing method-
ologies, expand the empirical applications, and deepen our theoretical
understanding of unit root testing in diverse contexts.
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2.4 Cointegration Testing

Cointegration, introduced by Clive Granger in 1987, has become a fun-
damental concept in time series analysis, particularly in the context of
testing for long-run relationships among economic variables. Cointe-
gration arises when two or more non-stationary time series share a
common stochastic trend, implying a stable long-term relationship de-
spite short-term fluctuations.

One of the seminal contributions to the field is by J.G. MacKin-
non, whose work has significantly advanced our understanding of coin-
tegration tests. In the paper [34], MacKinnon presented approximate
asymptotic distribution functions for unit-root and cointegration tests.
The paper offers valuable insights into the statistical properties of these
tests, providing researchers with tools to assess the reliability of their
findings.

MacKinnon’s continued contributions are evident in his 2010 paper
[35]. In this work, MacKinnon focused on providing critical values for
cointegration tests, crucial for determining the significance of the test
statistics. The availability of accurate critical values is essential for
researchers and practitioners alike, as it ensures the robustness and
validity of cointegration tests in empirical studies.

These two papers by MacKinnon collectively form a cornerstone in
the cointegration literature, offering researchers a solid foundation for
conducting cointegration tests and interpreting their results. The rig-
orous statistical methodologies presented in these papers have become
standard references in the field, guiding researchers in assessing the
presence of long-term relationships among economic variables.

In conclusion, the works of J.G. MacKinnon have significantly en-
riched the field of cointegration testing, providing researchers with es-
sential tools and critical values for robust empirical analyses. The
methodologies and insights presented in these papers continue to in-
fluence and shape the way economists and statisticians approach coin-
tegration testing in various applications.
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Chapter 3

Data

3.1 Overview

This study involved the utilization of two distinct data types. The first
category comprised geospatial data, encompassing information per-
taining to local, municipal, and pseudo-municipal communities within
Greece. The second category encompassed time-series data capturing
the prices of various fuels retailed by gas stations nationwide.

This chapter aims to elucidate the inherent characteristics of the
employed data, elucidate the methodologies employed in merging and
aligning datasets, and address several challenges encountered in work-
ing with the data, along with the corresponding solutions devised to
overcome them.
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3.2 Communities

3.2.1 Community Codes

As previously mentioned, our research on a national scale necessitated
the utilization of available community information. To initiate our in-
vestigation, we acquired publicly accessible census data from the Hel-
lenic Statistical Authority for the years 2001, 2011, and 2021.

Upon commencing the data analysis, a primary challenge arose in
the initial stages, requiring the matching of unique codes for each com-
munity across the three datasets. Despite minor fluctuations in data
across census years, certain communities amalgamated, resulting in
modifications to their distinct codes. To address this issue, we con-
ducted a manual matching process for each community across the three
datasets, utilizing both the original community name and the associ-
ated municipality name.

This methodology enabled us to establish a historical profile for
each municipality throughout the three census years, encompassing in-
formation such as population size, community name, community code
and municipality name. An illustrative example of the matched data
is presented in Table 3.1.

Table 3.1: Matching of Data Between 2001, 2011 and 2021 of a Random
Community.

Year Community Name Community Code Municipality Name Population
2001 Δ.Δ. Αγγελοκάστρου 01020100 ΔΗΜΟΣ ΑΓΓΕΛΟΚΑΣΤΡΟΥ —
2011 Τοπική Κοινότητα Αγγελοκάστρου 38030201 Δήμος Αγρινίου 1297
2021 Δημοτική Κοινότητα Αγγελοκάστρου 38020201 ΔΗΜΟΣ ΑΓΡΙΝΙΟΥ 1099

Furthermore, in an effort to enhance the reader’s understanding of
the datasets, we present various statistics concerning the data from
each census year in Table 3.2.

Table 3.2: Census Data Depicting Years: 2001, 2011 and 2021.

Year Num. of Communities Num. of Municipalities Total Population
2001 6130 1003 —
2011 6155 325 11.166.922
2021 6132 332 10.482.487
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3.2.2 Community Neighbors

A pivotal aspect of this study involved the implementation of time-
series clustering. To execute this task, it was imperative to establish
a grouping of communities, enabling the algorithm to compute the
clusters. By ”group of communities”, we refer to all the physically
adjacent neighbors of each community. To achieve this, we utilized
a shapefile containing information about all available communities in
Greece, once again sourced from the Hellenic Statistical Authority.

Figure 3.1: 2021 map of Greece’s 6132 communities.

In this particular shapefile, the representation of each community’s
shape is depicted as a polygon on a map, reflecting the latest recorded
year of 2021. Consequently, it was necessary to align all information
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pertaining to each community with the unique code from the processed
dataset mentioned in subsection 3.2.1. In Figure 3.1, we can see all
6132 communities of Greece with their borders plotted on a map.

In order to find all neighbors per community we developed an algo-
rithm that identifies neighboring features within the geospatial dataset.

It begins by calculating the bounding box of a given spatial geome-
try and utilizes a spatial index to identify potential neighbors with in-
tersecting bounding boxes. Subsequently, a subset of potential matches
is retrieved from the original dataset, and this set is further refined by
selecting features that spatially intersect with the input geometry. The
algorithm identifies precise matches among the potential communities
based on spatial intersections and extracts all relevant neighbors. The
final output is presented as a list of identifiers associated with the
neighboring community codes, demonstrating a systematic approach
for spatial proximity analysis.

To showcase the capabilities of the proposed methodology, we project
a random community in Figure 3.2 with its adjacent neighbors, as out-
putted by the algorithm.
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Figure 3.2: Neighbors of ”Τοπική Κοινότητα Γαζώρου” community.
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3.2.3 Island Communities

This study included an investigation into the potential correlations in
fuel prices among various islands and island complexes. To achieve this,
it was imperative to compile comprehensive geospatial data pertaining
to extant island communities. Additionally, the identification of all
individual islands and island complexes in Greece was a prerequisite
for conducting the analysis.

Individual Islands

To ascertain the communities within a singular island, a meticulous
process was undertaken involving the manual cross-referencing of each
individual community code. This cross-referencing utilized two distinct
shapefiles supplied by the Hellenic Statistical Authority. Consequently,
a total of 1470 island communities and 65 islands were successfully
identified. Part of the outcome of this identification process is visually
represented in Figure 3.3.

Figure 3.3: Communities of ”Νάξος” island.
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Complex of Islands

Upon successfully determining all island communities, the subsequent
task involved the manual categorization of each island into its corre-
sponding island complex. Greece comprises six distinct island com-
plexes, namely: ”ΚΥΚΛΑΔΕΣ,” ”ΣΠΟΡΑΔΕΣ,” ”ΔΩΔΕΚΑΝΗΣΑ,”
”ΕΠΤΑΝΗΣΑ,” ”ΑΡΓΟΣΑΡΩΝΙΚΟΣ,” and ”ΑΝΑΤΟΛΙΚΟ ΑΙΓΑΙΟ.”

Through the integration of information from the aforementioned
shapefiles, all six island complexes were successfully identified along
with their respective constituent islands. The outcome of this complex
identification process is visually presented in Figures 3.4 and 3.5.

Figure 3.4: Island complex of Greece, named ”Κυκλάδες”.
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Figure 3.5: Island complexes of Greece.
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3.2.4 Prefectures

This study encompassed an examination of potential correlations in
fuel prices among various prefectures. To accomplish this, it was cru-
cial to gather extensive geospatial data related to existing prefecture
communities. Moreover, the identification of all individual prefectures
in Greece was a prerequisite for conducting the analysis.

To identify the communities within a specific prefecture, a rigorous
process was initiated, involving the careful cross-referencing of each
individual community code. This cross-referencing utilized two dis-
tinct shapefiles provided by the Hellenic Statistical Authority. As a
result, a total of 1842 communities and 39 prefectures were success-
fully identified. A visual representation of part of the outcome of this
identification process is presented in Figure 3.6.
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Figure 3.6: Communities of ”Νομός Αττικής” prefecture.
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3.3 Gas Stations

An integral facet of this study involved the analysis of fuel prices across
diverse communities. To facilitate this investigation, we acquired a
dataset encompassing information on various fuel types and their mea-
surements spanning from 2014 to late 2023. The focus of the study
centered on three specific fuel types: Unleaded 95, Unleaded 98/100,
and Diesel. The dataset comprised details from 8051 gas stations, with
each station being assigned a unique community code. Notably, these
community codes were derived from the 2001 census data, necessitat-
ing a meticulous matching process conducted in the preceding Section
3.2 to align the gas station community codes from 2001 to 2011 with
those of 2021.

Following the successful matching of each gas station to its corre-
sponding 2021 community code, three distinct datasets were obtained,
each specific to the fuel type under consideration in this study. The
results of this process are comprehensively presented in Table 3.3.

Furthermore, to enhance comprehension of the matching procedure,
Figures 3.7, A.1, and A.2 depict the geographical distribution of all
communities containing gas stations that retail the fuel types ”Un-
leaded 95,” ”Unleaded 98/100,” and ”Diesel,” respectively, across the
Greek map.

Lastly, the dataset presented its own set of challenges, primarily
stemming from the absence of consistent fuel measurements. Factors
such as gas station closures, divergent measurement frequencies among
stations, and the pronounced impact of the pandemic (COVID-19) on
both prices and measurement frequency contributed to this irregularity.
In response to these challenges, the subsequent chapter outlines the
devised solutions implemented to address those issues.

Table 3.3: Statistics About Different Fuel Types

Fuel Type Num. of Gas Stations Num. of Communities
Unleaded 95 7755 1842

Unleaded 98/100 4934 1090
Diesel 7751 1841
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Figure 3.7: Map of Greece, including 1842 ”Unleaded 95” communities.
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Chapter 4

Methodology

4.1 Overview

The objective of this study was to conduct time series clustering to
examine the impact of fuel prices within communities and their neigh-
boring counterparts. To achieve this, the initial task involved generat-
ing fuel time series for each available community, categorized by fuel
type.

Given the disparate frequencies in the data, the first procedural
step entailed creating time series with a daily frequency while imputing
missing values. Subsequently, the consolidation of information across
multiple time series for each community occurred, considering the pres-
ence of multiple gas stations per community and various fuel types.

Upon establishing a singular time series per community, comprising
the average daily fuel prices aggregated from all available gas stations,
the clustering algorithm was applied to each community and its adja-
cent neighbors. The time series data underwent normalization through
the ”Time Series Scaler Mean Variance” Scaler filter to expedite and
fortify the clustering process.

The K-means algorithm, employing the DTW filter for time series
clustering, was utilized. The outcomes of the clustering process were
stored and visually represented on a dynamic map, illustrating com-
munities within their respective clusters, the average prices of each
community per fuel type, and the average prices within each clus-
ter. Subsequent sections elaborate on the detailed steps of the applied
methodology.
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4.2 Data Preprocessing

This section delineates the essential data preprocessing steps under-
taken for each community, ensuring the generation of complete time
series with a daily frequency of measurements, a prerequisite for sub-
sequent clustering procedures.

The initial phase of data imputation involved calculating the aver-
age daily price of the relevant fuel type from all available gas stations
within each community. Following this, the second step entailed im-
puting missing dates and fuel prices with the last observed value. Gas
stations abstaining from reporting any fuel prices for a consecutive
period of 30 days were classified as ”closed” for that month, thereby
exempted from both the average pricing calculation and the imputa-
tion process.

The steps of the procedure are visually presented, for a random
community, in Figures 4.1-4.4.

Figure 4.1: One Week of ”Unleaded 95” fuel prices, including missing Values (0), for
”Τοπική Κοινότητα Γαζώρου’ community.
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Figure 4.2: One week of ”Unleaded 95” fuel prices with time imputation, for ”Τοπική
Κοινότητα Γαζώρου’ community.

Figure 4.3: One week of ”Unleaded 95” fuel prices, for ”Τοπική Κοινότητα Γαζώρου’
community.

Figure 4.4: Final ”Unleaded 95” time series for ”Τοπική Κοινότητα Γαζώρου’ com-
munity.
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4.3 Clustering

In this study, the objective was to cluster time series data represent-
ing fuel prices for ”Unleaded 95”, ”Unleaded 98/100”, and ”Diesel”
across communities and their neighbors from 2014-2023. The method-
ology involved data collection from various gas stations within each
community, computation of the average fuel price per day for each
community, identification of adjacent neighbors for each community,
and calculation of time series data for fuel prices in these neighboring
areas.

The clustering approach employs Dynamic Time Warping (DTW)
as a similarity measure for time series data, as shown in Figure 4.5.
The process involves the calculation of a distance matrix between all
pairs of time series using DTW, as showin in Figure 4.6 , followed
by the application of K-means clustering, to group time series into
clusters based on their DTW distances. The iterative updating of
cluster centers minimizes the total within-cluster distance, assigning
each time series to the cluster with the nearest center, as shown in
Figure 4.7. The clusters are then visualized and analyzed to interpret
fuel price trends.

Figure 4.5: Dynamic time warping on times-series data.
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Figure 4.6: Dynamic time warping matrix with occlusion.

Figure 4.7: K-Means clustering.
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Coding demonstration of the K-means clustering utilizing the dy-
namic time warping, with Python code:

results = []

for dd_code in unique_dd_codes_per_fuelTypeID:

temp_dd = geospatial_df[geospatial_df ["

KALCODE "] == dd_code]

neighbors = temp_dd [" neighbors "]. values

time_series_list = []

dd_names = []

if neighbors.shape [0] != 0:

for dd in neighbors [0]:

dd_names.append(dd)

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" KOD_21 "] == dd]

temp_df_gas_prices = temp_df ["

fuelPrice "]. values

time_series_list.append(

temp_df_gas_prices)

max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant ’,

constant_values=np.nan) for ts in

time_series_list]

X = to_time_series_dataset(

time_series_padded)

X = TimeSeriesScalerMeanVariance ().

fit_transform(X)

model = TimeSeriesKMeans(n_clusters =3,
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metric ="dtw", max_iter =5)

y = model.fit_predict(X)

results[dd_code] = y
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4.4 Unit Root Testing Analysis

The Augmented Dickey-Fuller (ADF) test is a statistical tool used to
ascertain the presence of a unit root in a time series dataset, which
indicates non-stationarity. Non-stationarity refers to a situation where
the statistical properties such as mean, variance, and autocorrelation
structure of a time series change over time. The ADF test works by
formulating hypotheses about the stationarity of the time series.

To evaluate these hypotheses, the ADF test employs a regression
model, typically a first-difference model. In this model, the first differ-
ence of the time series (∆yt) is regressed on lagged values of the time
series itself (yt−1) and possibly a linear trend term (βt). The model
can be represented as:

∆yt = α + βt + γyt + δ1∆yt−1 + δ2∆yt−2 + ...+ δp∆yt−p + ϵt, (4.1)

where ∆yt is the first difference of the time series at time t, α is a
constant term, βt is a linear trend term (if included), γ is the coefficient
of the lagged dependent variable, δ1, δ2, ..., δp are coefficients of the
lagged differences of the dependent variable and ϵt is the error term.

The null hypothesis (H0) posits that the time series has a unit root,
implying non-stationarity. Mathematically, it can be represented as:

H0 : γ = 0 (4.2)

The alternative hypothesis (H1) suggests that the time series is sta-
tionary, meaning it lacks a unit root. Mathematically, it can be repre-
sented as:

H1 : γ < 0 (4.3)

Once the model is estimated using ordinary least squares (OLS)
regression, the ADF test statistic is computed. This test statistic com-
pares the estimated coefficient of the lagged dependent variable (γ) to
its standard error. The test statistic is then compared to critical values
from a distribution table, which are determined based on the sample
size and chosen significance level (e.g., 1%, 5%, 10%) [32].
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If the test statistic is less than the critical value, the null hypothesis
of a unit root is rejected, indicating that the time series is station-
ary. Conversely, if the test statistic exceeds the critical value, the null
hypothesis cannot be rejected, suggesting non-stationarity.

In conclusion, the ADF test provides valuable insights into the sta-
tionarity properties of time series data, helping researchers and practi-
tioners determine whether a time series is stationary or non-stationary,
and informing subsequent analysis and modeling decisions.

Coding demonstration of the ADF unit root testing, with Python
code:

from arch.unitroot import ADF

adf_results = []

for ts, name in zip(time_series, list_of_names):

ts_cleaned = ts[~np.isnan(ts)]

if len(ts_cleaned) > 0:

adf = ADF(ts_cleaned, trend="ct", lags=30)

adf_results.append((name, adf))

else:

print(f"No valid data for ADF test in {name}")

for name, adf in adf_results:

print(adf.summary().as_text())
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4.5 Cointegration Testing Analysis

Cointegration testing is a statistical method used to assess whether
multiple time series possess a long-term relationship, despite individ-
ual series being non-stationary. The concept of cointegration was intro-
duced by Clive Granger, emphasizing the presence of a stable, shared
stochastic trend among variables. The most common cointegration
test is the Engle-Granger two-step procedure [36], which involves two
main steps: regression and residual analysis.

In the first step, the time series are regressed against each other to
identify potential cointegration relationships. Specifically, if there are
two time series, say Yt and Xt, the regression equation takes the form:

Yt = β0 + β1Xt + ϵt (4.4)

If the residuals (ϵt) from this regression are stationary, it suggests
the existence of a cointegrating relationship between Yt and Xt.

The second step involves testing the stationarity of the residuals.
The Augmented Dickey-Fuller (ADF) test or the Phillips-Perron test
is often employed for this purpose. If the residuals are found to be
stationary, it implies the presence of cointegration, indicating a long-
term relationship between the time series.

The null hypothesis (H0) in cointegration testing states that there
is no cointegrating relationship between the time series, implying that
the coefficient of the lagged variable in the regression equation is equal
to zero. Mathematically, it can be represented as:

H0 : β1 = 0 (4.5)

In contrast, the alternative hypothesis (H1) asserts the presence of
cointegration, indicating a non-zero coefficient of the lagged variable.
Mathematically, it can be represented as:

H1 : β1 ̸= 0 (4.6)

These hypotheses reflect the underlying assumptions being tested
in cointegration analysis. The null hypothesis assumes no long-term
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relationship between the time series, while the alternative hypothe-
sis suggests the presence of a stable, shared stochastic trend among
variables.

The statistical significance of cointegration is typically assessed us-
ing the p-value and t-statistic derived from the cointegration test. The
t-statistic measures the strength of the cointegrating relationship, in-
dicating the number of standard deviations the estimate is from zero.
The higher the t-statistic, the more likely it is that the relationship is
genuine.

The p-value, on the other hand, represents the probability of ob-
taining the observed results (or more extreme) under the assumption
that there is no cointegration. A small p-value (usually below a chosen
significance level, e.g., 0.05) leads to the rejection of the null hypothesis
of no cointegration, suggesting a strong likelihood that cointegration
exists.

In summary, the cointegration test assesses whether time series pos-
sess a stable, long-term relationship by analyzing the stationarity of
residuals after regressing the series against each other. The t-statistic
and p-value derived from this test provide quantitative measures of
the strength and significance of the cointegrating relationship, aiding
researchers in making informed decisions about the presence of cointe-
gration in their data.

Coding demonstration of the cointegration testing, with Python
code:

import statsmodels.tsa.stattools as ts

def run_cointegration_test(time_series_padded):

num_series = len(time_series_padded)

t_statistics = np.zeros((num_series, num_series))

p_values = np.zeros((num_series, num_series))

for i in range(num_series):

for j in range(i+1, num_series):

ts1 = time_series_padded[i]

ts2 = time_series_padded[j]
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mask = ~np.isnan(ts1) & ~np.isnan(ts2)

ts1 = ts1[mask]

ts2 = ts2[mask]

result = ts.coint(ts1, ts2)

t_statistics[i, j] = result[0]

p_values[i, j] = result[1]

return t_statistics, p_values

t_statistics, p_values = run_cointegration_test(time_series)

49



Chapter 5

Results

In this chapter, we present the outcomes of the clustering procedure,
organized into two distinct sections for enhanced comprehension. The
initial section details the results for all communities in Greece accord-
ing to fuel type.

The subsequent section focuses on individual island communities
as well as the islands within each island complex, considering all fuel
types. Additionally, the section encompasses all island complexes for
the three available fuel types: ”Unleaded 95,” ”Unleaded 98/100,” and
”Diesel.”

Lastly, the chapter provides statistical summaries and graphical rep-
resentations of the clustering process.

5.1 Visualization

To enhance the comprehension of the results, and given the exception-
ally high number of communities, we present a single case of clustering
for each clustering category. The plots illustrate the outcome of the
clustering procedure, with distinct clusters distinguished by different
colors. The color scheme is derived from the average fuel price per
cluster, with lighter to darker shades of red indicating lower to higher
average prices. Moreover, certain communities are highlighted with a
yellow border, signifying their specific cluster or the capital of a pre-
fecture.

5.2 Individual Communities

Following the completion of the clustering procedure, the outcomes for
individual communities are outlined in this section. Specifically, for
the ”Unleaded 95” fuel type, data from 1842 communities were avail-
able, revealing a significant finding: 1280 communities, constituting
69.48%, did not demonstrate strong resemblance in their time series
with neighboring communities.
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Table 5.1: Statistics of Clustering Procedure for all Communities of Greece.

Fuel Type 0 Neighbors 1 Neighbor 2 Neighbors 3 Neighbors ≥ 4 Neighbors
Unleaded 95 1280 (69.48%) 238 (12.92%) 173 (9.39%) 86 (4.66%) 65 (3.52%)

Unleaded 98/100 904 (82.93%) 94 (8.62%) 45 (4.12%) 20 (1.83%) 27 (2.47%)
Diesel 1305 (70.88%) 229 (12.43%) 161 (8.74%) 69 (3.74%) 77 (4.18%)

Similarly, for the ”Unleaded 98/100” fuel type, 1090 communities
were considered. The key observation once again highlighted a sub-
stantial proportion, with 904 communities (82.93%) exhibiting no sig-
nificant resemblance in their time series with neighboring communities.

Concluding the individual community analysis, the ”Diesel” fuel
type had information available from 1841 communities. Of these, 1305
communities, or 70.88%, displayed no significant resemblance with
their neighbors in terms of time series. These findings underscore the
diversity and variations in fuel price trends across different community
types.

The detailed analysis, as illustrated in Table 5.1, further breaks
down the distribution of communities exhibiting resemblance with zero,
one, two, three, and at least four neighbors.

Due to the considerable number of 1842 communities, we have
strategically chosen to present the clustering results for a randomly
selected community. The outcomes of the clustering procedure for this
community are depicted in Figures 5.1, B.1, and B.2.

These figures provide a representative snapshot of the clustering
process and its impact on fuel types ”Unleaded 95,” ”Unleaded 98/100,”
and ”Diesel” for the community within the broader analysis.
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Figure 5.1: Clustering of ”Τοπική Κοινότητα Γαζώρου’ community, for fuel type
”Unleaded 95”. Average fuel price per community, annotated.
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5.3 Island Communities

This section delves into the clustering outcomes of the second level of
analysis undertaken in this study, focusing on the island level. It offers
insights into the clustering procedure for individual island communi-
ties, individual islands within each island complex, and, finally, clus-
tering across all island complexes. The comprehensive exploration of
these clustering results enhances our understanding of fuel price trends
and correlations at the island level, contributing valuable insights to
the broader analysis.

5.3.1 Individual Island Communities Clustering

In this subsection we project the results of the clustering regarding all
island communities. After the completion of the clustering procedure,
this subsection details the outcomes for individual island communities.
Specifically, for the ”Unleaded 95” fuel type, data from 442 communi-
ties revealed a notable finding: 363 communities, comprising 82.12%,
did not exhibit a strong resemblance in their time series with neigh-
boring communities.

Similarly, for the ”Unleaded 98/100” fuel type, where 294 island
communities were considered, a significant proportion was observed,
with 278 communities (94.55%) displaying no substantial resemblance
in their time series with neighboring communities.

Concluding the individual community analysis for the ”Diesel” fuel
type, information from 442 island communities was available. Of these,
371 communities, or 89.93%, exhibited no significant resemblance with
their neighbors in terms of time series. These findings highlight the
diverse fuel price trends across different community types.

Table 5.2: Statistics of Clustering Procedure for all Island Communities of Greece.

Fuel Type 0 Neighbors 1 Neighbor 2 Neighbors 3 Neighbors ≥ 4 Neighbors
Unleaded 95 363 (82.12%) 48 (10.85%) 20 (4.52%) 10 (2.26%) 1 (0.22%)

Unleaded 98/100 278 (94.55%) 10 (3.40%) 3 (1.02%) 2 (0.68%) 1 (0.34%)
Diesel 371 (83.93%) 42 (9.50%) 16 (3.61%) 10 (2.26%) 3 (0.67%)

Furthermore, the detailed analysis, as depicted in Table 5.2, pro-
vides a breakdown of the distribution of island communities exhibiting
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resemblance with zero, one, two, three, and at least four neighbors.
Given the considerable number of 442 communities, we strategically

present the clustering results for a randomly selected island commu-
nity. The outcomes of the clustering procedure for this community are
illustrated in Figures 5.2, B.3, and B.4.

These figures offer a representative glimpse into the clustering pro-
cess and its implications for fuel types ”Unleaded 95,” ”Unleaded
98/100,” and ”Diesel” within the context of island communities.

Figure 5.2: Clustering of ”Δημοτική Κοινότητα Νάξου” community, belonging to
island of ”Νάξος”, for fuel type ”Unleaded 95”. Average fuel prices per community,
annotated.
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5.3.2 Island Clustering

In this subsection, we analyze the clustering results for individual
islands within each island complex. As elucidated in section 3.2.3,
all six major island complexes in Greece were successfully identified,
namely: ”ΚΥΚΛΑΔΕΣ”, ”ΣΠΟΡΑΔΕΣ” , ”ΔΩΔΕΚΑΝΗΣΑ”, ”ΕΠ-
ΤΑΝΗΣΑ”, ”ΑΡΓΟΣΑΡΩΝΙΚΟΣ”, and ”ΑΝΑΤΟΛΙΚΟ ΑΙΓΑΙΟ”. Fur-
thermore, a total of 50 islands were identified across all island com-
plexes. The clustering procedure was conducted six times, with the
algorithm set to identify four clusters within each island complex, en-
compassing the islands associated with each respective complex for the
three fuel types: ”Unleaded 95,” ”Unleaded 98/100,” and ”Diesel.”

The results are presented in a similar format as the previous section
in Tables 5.3, 5.4, and 5.5 for the respective fuels. The clusters are
sorted from lowest average fuel price to highest.

These tables offer a detailed breakdown of the clustering outcomes
for individual islands within their respective island complexes, shed-
ding light on the patterns and similarities in fuel price trends across
these geographical entities.

Table 5.3: Statistics of Clustering Procedure for Island Communities Having
”Unleaded 95” Fuel Information.

Complex Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total Islands
”ΣΠΟΡΑΔΕΣ” 1 1 1 1 4

”ΑΝΑΤΟΛΙΚΟ ΑΙΓΑΙΟ” 4 1 3 1 9
”ΔΩΔΕΚΑΝΗΣΑ” 1 10 2 2 15
”ΚΥΚΛΑΔΕΣ” 4 3 4 3 14

”ΑΡΓΟΣΑΡΩΝΙΚΟΣ” 1 1 0 0 2
”ΕΠΤΑΝΗΣΑ” 1 3 1 1 6

Considering the number of six island complexes, we strategically
showcase the clustering results for a randomly chosen island complex.
The outcomes of the clustering procedure for this specific complex are
depicted in Figures 5.3, B.5, and B.6.

These figures offer an illustrative overview of the clustering process
and its implications for fuel types ”Unleaded 95,” ”Unleaded 98/100,”
and ”Diesel” within the context of island complexes. These visual
representations provide valuable insights into the clustering patterns
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Table 5.4: Statistics of Clustering Procedure for Island Communities Having
”Unleaded 98/100” Fuel Information.

Complex Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total Islands
”ΣΠΟΡΑΔΕΣ” 1 1 1 1 4

”ΑΝΑΤΟΛΙΚΟ ΑΙΓΑΙΟ” 1 1 4 2 8
”ΔΩΔΕΚΑΝΗΣΑ” 9 1 4 1 15
”ΚΥΚΛΑΔΕΣ” 1 6 5 1 14

”ΑΡΓΟΣΑΡΩΝΙΚΟΣ” 1 0 0 0 1
”ΕΠΤΑΝΗΣΑ” 1 3 1 1 6

Table 5.5: Statistics of Clustering Procedure for Island Communities Having
”Diesel” Fuel Information.

Complex Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total Islands
ΣΠΟΡΑΔΕΣ 1 1 1 1 4

ΑΝΑΤΟΛΙΚΟ ΑΙΓΑΙΟ 1 6 1 1 9
ΔΩΔΕΚΑΝΗΣΑ 1 10 1 3 15
ΚΥΚΛΑΔΕΣ 2 4 6 1 14

ΑΡΓΟΣΑΡΩΝΙΚΟΣ 1 1 0 0 2
ΕΠΤΑΝΗΣΑ 2 1 2 1 6

and variations in fuel prices specific to the selected island complex.
For a more comprehensive understanding of the clustering proce-

dure, the projection of the time series is presented in Figures 5.4 and
5.5, where the time series belonging to the same cluster are plotted on
the same grid. These figures offer a visual representation of the clus-
tering outcomes, facilitating the observation of patterns and trends
within each cluster.
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Figure 5.3: Clustering of ”Κυκλάδες” island complex, for fuel type ”Unleaded 95”.
Average fuel prices per island, annotated.
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Figure 5.4: Time series comparison between ”΄Ιος”, ”Κύθνος” and ”Σέριφος” islands,
belonging to the same cluster ”Cluster 2”, for fuel type ”Unleaded 95”.

Figure 5.5: Time series comparison between ”Νάξος”, ”Πάρος”,”Αμοργός” and ”Σαν-
τορίνη” islands, belonging to the same cluster ”Cluster 3”, for fuel type ”Unleaded
95”.
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5.3.3 Complex of Islands Clustering

The final level of analysis in this thesis involved clustering the island
complexes. To identify clusters among the six aforementioned island
complexes, the algorithm was fine-tuned to identify up to four clusters.
The clustering procedure was executed three times, once for each of
the three different fuel types.

The outcomes of the clustering process are depicted in Figures 5.6,
B.7, and B.8. These figures provide a visual representation of the clus-
tering results, offering insights into the grouping patterns and varia-
tions in fuel prices across the different island complexes.

Figure 5.6: Clustering of all island complexes for fuel type ”Unleaded 95”. Average
fuel price per complex, Annotated.
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5.4 Prefectures

The final and pivotal segment of the thesis centered on clustering com-
munities at a prefecture level. We set the number of possible clusters
to five and calculated the clusters for 40 prefectures. Given the high
number of prefectures, we strategically showcase the clustering of the
capital of Greece to highlight the pronounced correlation effect. The
clustering results are depicted in Figures 5.7, B.9, and B.10.

Analyzing the results for the ”Unleaded 95” fuel type, it is evident
that a majority of communities exhibit extreme similarities, with clus-
ter 3 encompassing 57 communities. Notably, cluster 5, characterized
by the highest average fuel price, includes 15 communities situated
in close proximity. These communities are positioned in areas with
substantial daily traffic flow, contributing to the higher fuel prices ob-
served.

Furthermore, for the remaining fuel types, ”Unleaded 98/100” and
”Diesel,” the similarities are even more pronounced, with nearly the
entire prefecture belonging to a single cluster. In the case of ”Unleaded
98/100,” all but four out of 75 communities are assigned to cluster 5,
and notably, to the cluster with the highest average fuel price. Simi-
larly, for the ”Diesel” fuel type, 72 out of 77 communities are assigned
to cluster 3, underscoring the substantial correlation and similarities
among these communities.

One might speculate that these similarities arise from the urban
nature of the area. However, upon examining an instance of a provin-
cial prefecture, we observed that the similarities persist among closely
situated communities. This example is illustrated in Figures 5.8 and
B.11, where we depict the clustering procedure of a low-residency area
situated far from the capital of Greece. For fuel type ”Unleaded 95”
25 out of 37 communities are assigned to cluster 2 and for fuel type
”Diesel” again 25 out of 37 communities are assigned to cluster 2.
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Figure 5.7: Clustering of ”Νομός Αττικής’ prefecture, for fuel type ”Unleaded 95”.
Average fuel prices per community, annotated.
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Figure 5.8: Clustering of ”Νομός Ιωαννίνων’ prefecture, for fuel type ”Unleaded 95”.
Average fuel prices per community, annotated.
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5.4.1 Unit Root Test

In order to gain a deeper insight into the time series data, we per-
formed the ADF unit root testing on fuel prices among communities
located in Athens, the capital of Greece. This test was conducted for
all communities and for the three types of studied fuel: ”Unleaded 95,”
”Unleaded 98/100,” and ”Diesel.” The results of the unit root testing,
including the t-statistic and p-value, are depicted in Figures 5.9, 5.10,
C.1 and C.2.

Based on the outcomes of the test, we cannot reject the null hy-
pothesis for all the communities tested, indicating that the majority of
the time series data have a unit root, implying they are non-stationary.
This discovery was crucial to uncover before conducting the subsequent
cointegration test, ensuring its meaningful interpretation.
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Figure 5.9: t-statistic derived from the unit root test, for fuel type ”Unleaded 95”.
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Figure 5.10: p-value derived from the unit root test, for fuel type ”Unleaded 95”.
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5.4.2 Cointegration Test

To further validate the assumptions regarding the significant similar-
ities in fuel prices among the communities belonging to the capital
of Greece, we conducted a cointegration test for each fuel type. The
results, including the p-value and t-statistical values, are presented
in heatmap representations for each fuel type. The heatmaps can be
observed in Figures 5.11, 5.12, D.2 and D.1.

Figure 5.11: t-statistic derived from the cointegration test, for fuel type ”Unleaded
95”.

Based on the reported metrics, we can confidently reject the null
hypothesis, indicating that the time series among the communities
of Athens exhibit a significant resemblance and correlation. This not
only confirms our initial hypothesis but also validates the results of the
clustering analysis, underscoring the effectiveness of the methodology
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Figure 5.12: p-value derived from the cointegration test, for fuel type ”Unleaded 95”.

in categorizing communities based on their fuel prices.
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Chapter 6

Conclusions

The analysis of fuel prices using advanced clustering techniques re-
vealed compelling findings regarding the interconnectedness of various
community types in the Greek market. The influence of neighboring
communities on each other was clearly demonstrated, particularly in
the context of fuel prices for the three studied fuels. Additionally, the
study highlighted a pronounced correlation between islands within an
island complex, emphasizing the intricate dynamics that govern fuel
pricing in these geographically linked entities. The application of the
K-means algorithm further elucidated the influence between complexes
of islands, providing a comprehensive understanding of the broader
geographical factors influencing fuel prices in Greece. These results
underscore the presence of fluctuations and correlations in the Greek
fuel market, emphasizing the importance of considering both regional
and community-level dynamics when assessing pricing trends. The
utilization of sophisticated analytical tools has not only contributed
to unraveling these complexities but has also paved the way for more
informed discussions and strategic decision-making in the realm of fuel
pricing and market dynamics.
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Appendix A

Different Maps of Greece

Figure A.1: Map of Greece Including 1090 ”Unleaded 98/100” Communities.
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Figure A.2: Map of Greece Including 1841 ”Diesel” Communities.
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Appendix B

Additional Clustering Figures

B.1 Clustering of Individual Communities

Figure B.1: Clustering ”Τοπική Κοινότητα Γαζώρου’ community, for fuel type ”Un-
leaded 98/100”. Average fuel prices per community, annotated.
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Figure B.2: Clustering ”Τοπική Κοινότητα Γαζώρου’ community, for fuel type
”Diesel”. Average fuel prices per community, annotated.
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B.2 Clustering of Island Communities

Figure B.3: Clustering of ”Δημοτική Κοινότητα Νάξου” island community, that be-
longs to island of ”Νάξος”, for fuel type ”Unleaded 98/100”. Average fuel prices per
community, annotated.
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Figure B.4: Clustering of ”Δημοτική Κοινότητα Νάξου” island community, that be-
longs to island of ”Νάξος”, for fuel type ”Diesel”. Average fuel prices per community,
annotated.
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B.3 Clustering of Islands per Island Complex

Figure B.5: Clustering of ”Κυκλάδες” island complex, for fuel type ”Unleaded
98/100”. Average fuel prices per island, annotated.
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Figure B.6: Clustering of ”Κυκλάδες” island complex, for fuel type ”diesel”. Average
fuel prices per island, annotated.
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B.4 Clustering of Complex of Islands

Figure B.7: Clustering of all island complexes, for fuel type ”Unleaded 98/100”.
Average fuel prices per island complex, annotated.
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Figure B.8: Clustering of all island complexes, for fuel type ”Diesel”. Average fuel
prices per island complex, annotated.
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B.5 Clustering of Communities per Prefecture

Figure B.9: Clustering of ”Νομός Αττικής’ prefecture, for fuel type ”Unleaded
98/100”. Average fuel prices per community, annotated
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Figure B.10: Clustering of ”Νομός Αττικής’ prefecture, for fuel type ”Diesel”. Aver-
age fuel prices per community, annotated
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Figure B.11: Clustering of ”Νομός Ιωαννίνων’ prefecture, for fuel type ”Diesel”.
Average fuel prices per community, annotated
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Appendix C

Additional Unit Root Test Results

C.1 Diesel

Figure C.1: t-statistic derived from the unit root test, for fuel type ”Diesel”.
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Figure C.2: p-value derived from the unit root test, for fuel type ”Diesel”.
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Appendix D

Additional Cointegration Test Re-
sults

D.1 Diesel

Figure D.1: t-statistic from cointegration test, for fuel type ”Diesel”
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Figure D.2: P-value from cointegration test, for fuel type ”Diesel”
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Appendix E

Python Scripts

E.1 Script Used for Matching Community Codes

with Gas Stations

import os

import csv

import pandas as pd

import numpy as np

dd_01_codes = pd.read_excel (" mit_2001.xls",

sheet_name=’Mun -DD. (LAU 2)’, dtype=str)

dd_01_codes[’ddNormalName ’] = dd_01_codes[’

ddNormalName ’]. str.replace(r’(D\.D\.) ’, r’\1

’, regex=True)

dd_01_codes = dd_01_codes.loc[:,[" ddCode","

ddNormalName "," municipalityName "]]

gas_stations = pd.read_excel ("/

gasStations_fuelGR.xlsx", dtype=str)

gas_stations = gas_stations.loc[:,[" gasStationID

"," ddNormalName "," municipalityName "]]

gas_stations_x_ddCode01 = gas_stations.merge(

dd_01_codes , on=[’municipalityName ’, ’

ddNormalName ’], how=’left ’)

gas_stations_x_ddCode01.rename(columns={’

ddNormalName ’: ’ddName_01 ’,’municipalityName

’:’ municipalityName_01 ’, ’ddCode ’: ’KOD_01 ’ },

inplace=True)

kod01_x_kod11 = pd.read_excel (" KOD_01_11.xlsx",

dtype=str)

91



kod01_x_kod11 = kod01_x_kod11.loc[:,[" KOD01","

KOD11 "]]

kod01_x_kod11.rename(columns={’KOD01 ’: ’KOD_01

’,’KOD11 ’:’KOD_11 ’}, inplace=True)

gas_stations_x_ddCode01_x_ddCode11 =

gas_stations_x_ddCode01.merge(kod01_x_kod11 ,

on=[’KOD_01 ’], how=’left ’)

dd_11_codes = pd.read_excel (" mit_2011.xlsx",

dtype=str)

eight_digit_pattern = r’^\d{8}$’ # Regex

pattern for 8-digit numbers

filtered_df = dd_11_codes.copy()

filtered_df = filtered_df[filtered_df[’KOD11 ’].

str.match(eight_digit_pattern , na=False)]

filtered_df[’municipalityCode_11 ’] = filtered_df

[’KOD11 ’]. str [:4]

temp_dd11_df = dd_11_codes.copy()

temp_dd11_df = temp_dd11_df.loc[:,[" KOD11","

LEKTM11 "]]

temp_dd11_df.rename(columns={’KOD11 ’: ’

municipalityCode_11 ’}, inplace=True)

filtered_df = filtered_df.merge(temp_dd11_df , on

=[’ municipalityCode_11 ’], how=’left ’)

filtered_df.rename(columns={’LEKTM11_x ’: ’

ddName_11 ’,’LEKTM11_y ’:’ municipalityName_11 ’,

’totPop ’:’dd_population_11 ’}, inplace=True)

filtered_df[’municipalityCode +01’] = filtered_df

[’KOD11 ’] + ’01’

filtered_df.drop(columns=[’rowID ’,’LEV11 ’,’mPop

’,’fPop ’,’OtaSerNo ’,’lat ’,’lon ’], inplace=True
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)

temp_dd11_df = dd_11_codes.copy()

temp_dd11_df = temp_dd11_df.loc[:,[" KOD11","lat

",’lon ’]]

temp_dd11_df.rename(columns={’KOD11 ’:’

municipalityCode +01’}, inplace=True)

filtered_df = filtered_df.merge(temp_dd11_df , on

=[’ municipalityCode +01’], how=’left ’)

filtered_df.rename(columns={’KOD11 ’:’KOD_11 ’},

inplace=True)

filtered_df.drop(columns=[’ municipalityCode

+01’], inplace=True)

temp_dd11_df = dd_11_codes.copy()

temp_dd11_df = temp_dd11_df.loc[:,[" LEKTM11",’

totPop ’]]

temp_dd11_df.rename(columns={’LEKTM11 ’:’

municipalityName_11 ’}, inplace=True)

filtered_df = filtered_df.merge(temp_dd11_df , on

=[’ municipalityName_11 ’], how=’left ’)

filtered_df.rename(columns={’totPop ’:’

municipality_population_11 ’,’lat ’:’lat_11 ’,’

lon ’:’lon_11 ’}, inplace=True)

dd_11_codes = filtered_df.copy()

gas_stations_x_ddCode01_x_ddCode11 =

gas_stations_x_ddCode01_x_ddCode11.merge(

dd_11_codes , on=[’KOD_11 ’], how=’left ’)

dd_21_codes = pd.read_excel (" mit_2021.xlsx",

dtype=str)
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dd_21_codes.rename(columns={’G.K. 2021’:’KOD_21

’, ’PERIGRAFH ’: ’ddName_21 ’, ’MONIMOS

PLHTHISMOS ’:’population_21 ’}, inplace=True)

dd_21_codes.drop(columns=[’A/A’], inplace=True)

eight_digit_pattern = r’^\d{8}$’ # Regex

pattern for 8-digit numbers

filtered_df = dd_21_codes.copy()

filtered_df = filtered_df[filtered_df[’KOD_21 ’].

str.match(eight_digit_pattern , na=False)]

filtered_df.rename(columns={’population_21 ’:’

dd_population_21 ’}, inplace=True)

filtered_df[’municipalityCode ’] = filtered_df[’

KOD_21 ’].str [:4]

temp_dd21_df = dd_21_codes.copy()

temp_dd21_df = temp_dd21_df.loc[:,[" KOD_21","

ddName_21 "]]

temp_dd21_df.rename(columns={’KOD_21 ’: ’

municipalityCode ’, ’ddName_21 ’:’

municipalityName_21 ’}, inplace=True)

filtered_df = filtered_df.merge(temp_dd21_df , on

=[’municipalityCode ’], how=’left ’)

temp_dd21_df = pd.read_excel (" mit_2021.xlsx",

dtype=str)

temp_dd21_df.rename(columns={’G.K. 2021’:’KOD_21

’, ’PERIGRAFH ’: ’ddName_21 ’, ’MONIMOS

PLHTHISMOS ’:’population_21 ’}, inplace=True)

temp_dd21_df.rename(columns={’KOD_21 ’: ’

municipalityCode ’,’population_21 ’:’

municipality_population_21 ’}, inplace=True)

temp_dd21_df = temp_dd21_df.loc[:,["

municipalityCode "," municipality_population_21
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"]]

filtered_df = filtered_df.merge(temp_dd21_df , on

=[’municipalityCode ’], how=’left ’)

dd_21_codes = filtered_df.copy()

dd_21_codes.rename(columns={’municipalityCode ’:

’municipalityCode_21 ’}, inplace=True)

dd_21_codes

kod11_x_kod21 = pd.read_excel ("koinotites

-2011 -2021. xlsx", dtype=str)

kod11_x_kod21 = kod11_x_kod21.loc[:,[" KOD11_7","

KOD21_7 "]]

kod11_x_kod21.rename(columns={’KOD11_7 ’: ’KOD_11

’, ’KOD21_7 ’:’KOD_21 ’}, inplace=True)

gas_stations_x_ddCode01_x_ddCode11_x_ddCode21 =

gas_stations_x_ddCode01_x_ddCode11.merge(

kod11_x_kod21 , on=[’KOD_11 ’], how=’left ’)

gas_stations_x_ddCode01_x_ddCode11_x_ddCode21

final_df =

gas_stations_x_ddCode01_x_ddCode11_x_ddCode21.

merge(dd_21_codes , on=[’KOD_21 ’], how=’left ’)

csv_file_path = ’gas_stations_x_codes.xlsx ’

final_df.to_excel(csv_file_path , index=False ,

encoding=’utf -8’)
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E.2 Script Used for Times Series Clustering Per

Community

import matplotlib.pyplot as plt

import geopandas as gpd

import pandas as pd

import numpy as np

from tslearn.preprocessing import

TimeSeriesScalerMeanVariance

from tslearn.utils import to_time_series_dataset

from tslearn.clustering import TimeSeriesKMeans

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df.dropna(subset=[’KOD_01 ’], inplace=True)

gas_stations = df.loc[:,[" gasStationID ","KOD_21

"]]

fuels = pd.read_csv ("../ data/times_prathriwn.csv

")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])

gas_price_ddcode[’dateDefined ’] =

gas_price_ddcode[’dateDefined ’].dt.date

def clustering_per_gas_type(gas_prices ,gdf ,
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fuelTypeID):

df_x_fuelType = gas_prices[gas_prices ["

fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType.drop(columns=[’jointFuelTypeID

’,’isPremium ’,’fuelTypeID ’,’index ’],

inplace=True)

df_x_fuelType[’dateDefined ’] = pd.

to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime

format

df_x_fuelType.sort_values ([’gasStationID ’, ’

dateDefined ’], inplace=True) # Sort the

DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’KOD_21 ’, ’dateDefined ’])[’

fuelPrice ’]. mean().reset_index ()

unique_dd_codes_per_fuelTypeID =
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fuelPrices_per_dd [" KOD_21 "]. unique ()

geospatial_df = gdf[gdf[" KALCODE "]. isin(

unique_dd_codes_per_fuelTypeID)]

geospatial_df = geospatial_df.set_geometry(’

geometry ’)

gdf_sindex = geospatial_df.sindex

def find_neighbors(row , gdf_sindex):

possible_matches_index = list(gdf_sindex

.intersection(row[’geometry ’]. bounds))

possible_matches = geospatial_df.iloc[

possible_matches_index]

precise_matches = possible_matches[

possible_matches.intersects(row[’

geometry ’])]

return precise_matches[’KALCODE ’]. tolist

()

geospatial_df[’neighbors ’] = geospatial_df.

apply(lambda row: find_neighbors(row ,

gdf_sindex), axis =1)

geospatial_df = geospatial_df.set_geometry(’

geometry ’)

gdf_sindex = geospatial_df.sindex

def find_neighbors(row , gdf_sindex):

possible_matches_index = list(gdf_sindex

.intersection(row[’geometry ’]. bounds))

possible_matches = geospatial_df.iloc[

possible_matches_index]

precise_matches = possible_matches[

possible_matches.intersects(row[’

geometry ’])]

return precise_matches[’KALCODE ’]. tolist

()

geospatial_df[’neighbors ’] = geospatial_df.
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apply(lambda row: find_neighbors(row ,

gdf_sindex), axis =1)

print(" Starting Clustering Process :")

results = {}

for dd_code in

unique_dd_codes_per_fuelTypeID:

try:

temp_dd = geospatial_df[

geospatial_df [" KALCODE "] ==

dd_code]

neighbors = temp_dd [" neighbors "].

values

time_series_list = []

dd_names = []

if neighbors.shape [0] != 0: #

municipalities without neighbors

are excluded from the procedure

print ("******************")

print(" Target :", dd_code)

for dd in neighbors [0]:

dd_names.append(dd)

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" KOD_21

"] == dd]

temp_df_gas_prices = temp_df

[" fuelPrice "]. values

time_series_list.append(
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temp_df_gas_prices)

max_length = max(len(ts) for ts

in time_series_list)

time_series_padded = [np.pad(ts,

(0, max_length - len(ts)), ’

constant ’, constant_values=np.

nan) for ts in

time_series_list]

X = to_time_series_dataset(

time_series_padded)

X = TimeSeriesScalerMeanVariance

().fit_transform(X)

model = TimeSeriesKMeans(

n_clusters =3, metric ="dtw",

max_iter =5)

y = model.fit_predict(X)

results[dd_code] = y

except ValueError as e:

print(f"Error for {dd_code }: {e}")

continue # Continue with the next

iteration

return(geospatial_df ,results)

shapefile_path = ’TOP_DHM_KOIN.shp ’

gdf = gpd.read_file(shapefile_path)

geospatial_df , results = clustering_per_gas_type

(gas_price_ddcode ,gdf ,2) ## 1 --> Unleaded 95

## 2 --> Unleaded 98/100 ### Diesel --> 4
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df = pd.DataFrame.from_dict(results , orient=’

index ’)

df[’Result ’] = df.apply(lambda row: list(map(int

, filter(lambda x: not np.isnan(x), np.hstack(

row)))), axis =1)

df = df.drop(df.columns [:-1], axis =1)

df.to_csv (" results_unleaded_95.csv")
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E.3 Script Used for Times Series Clustering Per

Island Complex

import matplotlib.pyplot as plt

import geopandas as gpd

import pandas as pd

import numpy as np

from tslearn.preprocessing import

TimeSeriesScalerMeanVariance

from tslearn.utils import to_time_series_dataset

from tslearn.clustering import TimeSeriesKMeans

from sklearn.preprocessing import LabelEncoder

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df = df.loc[:,[" gasStationID ","KOD_01","KOD_11

","KOD_21 "]]

df.dropna(subset=[’KOD_01 ’], inplace=True)

gas_stations = df.loc[:,[" gasStationID ","KOD_21

"]]

fuels = pd.read_csv (" times_prathrion.csv")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])

gas_price_ddcode[’dateDefined ’] =
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gas_price_ddcode[’dateDefined ’].dt.date

islands_df = pd.read_excel ("../ data/islands.xlsx

",dtype=str)

islands_df = islands_df.loc[:,[" KALCODE","

ISLAND_NAME "," ISLAND_COMPLEX "]]

islands_df = islands_df.rename(columns = {"

KALCODE" : "KOD_21 "})

islands_df [" KOD_21 "] = islands_df [" KOD_21 "].

astype(float)

complex_to_number = {

"EUBOIA ":0,

"KRHTH ":1,

"SPORADES ":2,

"ANATOLIKO AIGAIO ":3,

"DWDEKANHSA ":4,

"KYKLADES ":5,

"ARGOSARONIKOS ":6,

"EPTANHSA ":7

}

final_df = pd.merge(gas_price_ddcode ,islands_df ,

on=" KOD_21",how="left")

final_df = final_df.dropna ()

final_df[’ISLAND_COMPLEX ’] = final_df[’

ISLAND_COMPLEX ’]. map(complex_to_number)

label_encoder = LabelEncoder ()

final_df[’ISLAND_NAME ’] = label_encoder.

fit_transform(final_df[’ISLAND_NAME ’])

def clustering_per_gas_type(gas_prices ,gdf ,

fuelTypeID ,islands_df):

df_x_fuelType = gas_prices[gas_prices ["
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fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType.drop(columns=[’jointFuelTypeID

’,’isPremium ’,’fuelTypeID ’,’index ’],

inplace=True)

df_x_fuelType[’dateDefined ’] = pd.

to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime

format

df_x_fuelType.sort_values ([’gasStationID ’, ’

dateDefined ’], inplace=True) # Sort the

DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’ISLAND_COMPLEX ’,’dateDefined ’, "

ISLAND_NAME "])[’fuelPrice ’]. mean().

reset_index ()
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unique_island_complex = fuelPrices_per_dd ["

ISLAND_COMPLEX "]. unique ()

results= {} # K-means results

average_prices_per_island = {} # Islands

with their respective average prices

names_per_complex = {} # Complexes with all

available islands

for complex in unique_island_complex:

try:

print(complex)

if complex == 0 or complex == 1:

continue

time_series_list = []

temp_names = []

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" ISLAND_COMPLEX

"] == complex]

temp_unique_islands = temp_df ["

ISLAND_NAME "]. unique ()

for island in temp_unique_islands:

temp_island_df =

fuelPrices_per_dd[

fuelPrices_per_dd [" ISLAND_NAME

"] == island]

temp_df_gas_prices =

temp_island_df [" fuelPrice "].

values

print(island ,temp_df_gas_prices.
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mean())

time_series_list.append(

temp_df_gas_prices)

average_prices_per_island[island

] = temp_df_gas_prices.mean()

temp_names.append(island)

names_per_complex[complex] =

temp_names

max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant

’, constant_values=np.nan) for ts

in time_series_list]

X = to_time_series_dataset(

time_series_padded)

X = TimeSeriesScalerMeanVariance ().

fit_transform(X)

model = TimeSeriesKMeans(n_clusters

=4, metric ="dtw", max_iter =5)

y = model.fit_predict(X)

results[complex] = y

except ValueError as e:

print(f"Error for : {e}")

continue

106



return(results ,average_prices_per_island ,

names_per_complex)

shapefile_path = ’TOP_DHM_KOIN.shp ’

gdf = gpd.read_file(shapefile_path)

results , average_prices_per_island ,

names_per_complex = clustering_per_gas_type(

final_df ,gdf ,1, islands_df) ## 1 --> Unleaded

95 ## 2 --> Unleaded 98/100 ### Diesel --> 4

df = pd.DataFrame(list(results.items ()), columns

=[’ISLAND_COMPLEX ’, ’RESULT ’])

df[’ISLAND_COMPLEX ’] = df[’ISLAND_COMPLEX ’]. map

({v: k for k, v in complex_to_number.items ()})

df_names = pd.DataFrame(list(names_per_complex.

items()), columns=[’ISLAND_COMPLEX ’, ’Names ’])

df_names[’ISLAND_COMPLEX ’] = df_names[’

ISLAND_COMPLEX ’]. map({v: k for k, v in

complex_to_number.items()})

df_results_and_names = pd.merge(df,df_names ,on="

ISLAND_COMPLEX",how="left")

average_prices_per_island

df_prices = pd.DataFrame(list(

average_prices_per_island.items ()), columns=[’

ISLAND_NAME ’, ’AVERAGE_PRICE ’])

temp_final_df = final_df

temp_final_df[’ISLAND_NAME_2 ’] = label_encoder.

inverse_transform(temp_final_df[’ISLAND_NAME

’])

temp_final_df = temp_final_df.loc[:,["
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ISLAND_NAME "," ISLAND_NAME_2 "," ISLAND_COMPLEX

"]]

df_prices_final = pd.merge(df_prices ,

temp_final_df ,on=" ISLAND_NAME",how=’left ’)

df_prices_final[’ISLAND_COMPLEX ’] =

df_prices_final[’ISLAND_COMPLEX ’]. map({v: k

for k, v in complex_to_number.items()})

df_prices_final = df_prices_final.

drop_duplicates ()

df_prices_final = df_prices_final.reset_index ()

final_dictionary_names = {}

final_dictionary_prices = {}

complexes = df_prices_final [" ISLAND_COMPLEX "].

unique ()

for complex in complexes:

temp_names = df_prices_final[df_prices_final

[" ISLAND_COMPLEX "] == complex ]["

ISLAND_NAME_2 "]. values

temp_average_values = df_prices_final[

df_prices_final [" ISLAND_COMPLEX "] ==

complex ][" AVERAGE_PRICE "]. values

final_dictionary_names[complex] = temp_names

final_dictionary_prices[complex] =

temp_average_values

df_1 = pd.DataFrame(list(final_dictionary_names.

items()), columns=[’ISLAND_COMPLEX ’, ’NAMES ’])

df_2 = pd.DataFrame(list(final_dictionary_prices

.items ()), columns=[’ISLAND_COMPLEX ’, ’PRICES
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’])

df_final_1 = pd.merge(df_1 ,df_2 ,on="

ISLAND_COMPLEX",how=’left ’)

df_final = pd.merge(df_results_and_names ,

df_final_1 ,on=" ISLAND_COMPLEX",how=’left ’)

df_final = df_final.drop(columns= [" Names "])

df_final.to_excel (" complex_island_clustering.

xlsx")
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E.4 Script Used for Times Series Clustering of All

Island Complexes

import matplotlib.pyplot as plt

import geopandas as gpd

import pandas as pd

import numpy as np

from tslearn.preprocessing import

TimeSeriesScalerMeanVariance

from tslearn.utils import to_time_series_dataset

from tslearn.clustering import TimeSeriesKMeans

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df.dropna(subset=[’KOD_01 ’], inplace=True)

df = df.loc[:,[" gasStationID ","KOD_01","KOD_11

","KOD_21 "]]

fuels = pd.read_csv (" times_prathriwn.csv")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])

gas_price_ddcode[’dateDefined ’] =

gas_price_ddcode[’dateDefined ’].dt.date

islands_df = pd.read_excel ("../ data/islands.xlsx

",dtype=str)
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islands_df = islands_df.loc[:,[" KALCODE","

ISLAND_COMPLEX "]]

islands_df = islands_df.rename(columns = {"

KALCODE" : "KOD_21 "})

islands_df [" KOD_21 "] = islands_df [" KOD_21 "].

astype(float)

complex_to_number = {

"EUBOIA ":0,

"KRHTH ":1,

"SPORADES ":2,

"ANATOLIKO AIGAIO ":3,

"DWDEKANHSA ":4,

"KYKLADES ":5,

"ARGOSARONIKOS ":6,

"EPTANHSA ":7

}

final_df = pd.merge(gas_price_ddcode ,islands_df ,

on=" KOD_21",how="left")

final_df = final_df.dropna ()

final_df[’ISLAND_COMPLEX ’] = final_df[’

ISLAND_COMPLEX ’]. map(complex_to_number)

def clustering_per_gas_type(gas_prices ,gdf ,

fuelTypeID):

df_x_fuelType = gas_prices[gas_prices ["

fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType.drop(columns=[’jointFuelTypeID

’,’isPremium ’,’fuelTypeID ’,’index ’],

inplace=True)

df_x_fuelType[’dateDefined ’] = pd.
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to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime

format

df_x_fuelType.sort_values ([’gasStationID ’, ’

dateDefined ’], inplace=True) # Sort the

DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’ISLAND_COMPLEX ’, ’dateDefined ’])

[’fuelPrice ’]. mean().reset_index ()

unique_dd_codes_per_fuelTypeID =

fuelPrices_per_dd [" ISLAND_COMPLEX "]. unique

()

print(unique_dd_codes_per_fuelTypeID)

results =[]

try:

time_series_list = []
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for complex in

unique_dd_codes_per_fuelTypeID:

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" ISLAND_COMPLEX

"] == complex]

temp_df_gas_prices = temp_df ["

fuelPrice "]. values

print(complex ,temp_df_gas_prices.

mean())

time_series_list.append(

temp_df_gas_prices)

max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant ’,

constant_values=np.nan) for ts in

time_series_list]

X = to_time_series_dataset(

time_series_padded)

X = TimeSeriesScalerMeanVariance ().

fit_transform(X)

model = TimeSeriesKMeans(n_clusters =4,

metric ="dtw", max_iter =5)

y = model.fit_predict(X)

results.append(y)

except ValueError as e:

print(f"Error for : {e}")
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return(results)

shapefile_path = ’TOP_DHM_KOIN.shp ’

gdf = gpd.read_file(shapefile_path)

results = clustering_per_gas_type(final_df ,gdf

,1) ## 1 --> Unleaded 95 ## 2 --> Unleaded

98/100 ### Diesel --> 4
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E.5 Script Used for Times Series Clustering Per

Prefecture

import matplotlib.pyplot as plt

import geopandas as gpd

import pandas as pd

import numpy as np

from tslearn.preprocessing import

TimeSeriesScalerMeanVariance

from tslearn.utils import to_time_series_dataset

from tslearn.clustering import TimeSeriesKMeans

from sklearn.preprocessing import LabelEncoder

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df = df.loc[:,[" gasStationID ","KOD_01","KOD_11

","KOD_21 "]]

df.dropna(subset=[’KOD_01 ’], inplace=True)

gas_stations = df.loc[:,[" gasStationID ","KOD_21

"]]

fuels = pd.read_csv ("../ data/PRATHRIWN.csv")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])
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gas_price_ddcode[’dateDefined ’] =

gas_price_ddcode[’dateDefined ’].dt.date

prefecture_df = pd.read_excel ("../ data/mit_2021.

xlsx",dtype=str)

prefecture_df = prefecture_df[prefecture_df[’G.K

. 2021 ’]. str.match(r’^\d{8}$’)]
prefecture_df = prefecture_df.rename(columns={’G

.K. 2021’ : ’KOD_21 ’})

prefecture_df [" KOD_21 "] = prefecture_df [" KOD_21

"]. astype(float)

final_df = pd.merge(gas_price_ddcode ,

prefecture_df ,on=" KOD_21",how="left")

final_df = final_df.dropna ()

global label_encoder

label_encoder = LabelEncoder ()

final_df[’NOMOS_enc ’] = label_encoder.

fit_transform(final_df[’NOMOS ’])

copy_final_df = final_df

final_df = final_df.loc[:,[" gasStationID ","

fuelTypeID "," dateDefined ","fuelPrice ","KOD_21

"," NOMOS_enc "]]

final_df = final_df.rename(columns ={" NOMOS_enc ":

"NOMOS "})

def clustering_per_gas_type(gas_prices ,

fuelTypeID):

df_x_fuelType = gas_prices[gas_prices ["

fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType[’dateDefined ’] = pd.

to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime
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format

df_x_fuelType.sort_values ([’gasStationID ’, ’

dateDefined ’], inplace=True) # Sort the

DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’NOMOS ’,’KOD_21 ’, "dateDefined "])

[’fuelPrice ’]. mean().reset_index ()

unique_island_complex = fuelPrices_per_dd ["

NOMOS "]. unique ()

results= {} # K-means results

average_prices_per_island = {} # Islands

with their respective average prices

names_per_complex = {} # Complexes with all

available islands

for complex in unique_island_complex:
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try:

print(complex)

time_series_list = []

temp_names = []

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" NOMOS"] ==

complex]

temp_unique_islands = temp_df ["

KOD_21 "]. unique ()

for island in temp_unique_islands:

temp_island_df =

fuelPrices_per_dd[

fuelPrices_per_dd [" KOD_21 "] ==

island]

temp_df_gas_prices =

temp_island_df [" fuelPrice "].

values

#print(island ,temp_df_gas_prices

.mean())

time_series_list.append(

temp_df_gas_prices)

average_prices_per_island[island

] = temp_df_gas_prices.mean()

temp_names.append(island)

names_per_complex[complex] =

temp_names
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max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant

’, constant_values=np.nan) for ts

in time_series_list]

X = to_time_series_dataset(

time_series_padded)

X = TimeSeriesScalerMeanVariance ().

fit_transform(X)

model = TimeSeriesKMeans(n_clusters

=5, metric ="dtw", max_iter =5)

y = model.fit_predict(X)

results[complex] = y

except ValueError as e:

print(f"Error for : {e}")

continue

return(results ,average_prices_per_island ,

names_per_complex)

results , average_prices_per_island ,

names_per_complex = clustering_per_gas_type(

final_df ,1) ## 1 --> Unleaded 95 ## 2 -->

Unleaded 98/100 ### Diesel --> 4

copy_final_df = copy_final_df.loc[:,[" NOMOS","

NOMOS_enc "]]

copy_final_df = copy_final_df.rename(columns ={"
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NOMOS ":" NOMOS_dec", "NOMOS_enc ":" NOMOS "})

copy_final_df = copy_final_df.drop_duplicates ()

df = pd.DataFrame(list(results.items ()), columns

=[’NOMOS ’, ’RESULT ’])

df_filtered = df[~df[’NOMOS ’]. isin

([17.50 ,20.75 ,26.50])]

df_filtered[’NOMOS ’] = pd.to_numeric(df_filtered

[’NOMOS ’]).astype(’Int64 ’)

df_1 = pd.merge(df_filtered ,copy_final_df ,on="

NOMOS",how="left")

df_names = pd.DataFrame(list(names_per_complex.

items()), columns=[’NOMOS ’, ’Names ’])

df_names = df_names [~ df_names[’NOMOS ’]. isin

([17.50 ,20.75 ,26.50])]

df_names[’NOMOS ’] = pd.to_numeric(df_names[’

NOMOS ’]).astype(’Int64 ’)

df = pd.merge(df_names ,copy_final_df ,on=" NOMOS",

how="left")

df = df.drop(columns =[" NOMOS "])

df_2 = pd.merge(df_1 ,df,on=" NOMOS_dec",how="left

")

df_2 = df_2.drop(columns =[" NOMOS "])

df_2 = df_2.rename(columns ={" NOMOS_dec ":" NOMOS

"})

df_2.to_excel ("../ data/fuels/Diesel/

prefecture_clustering.xlsx")

average_prices_per_island

df_prices = pd.DataFrame(list(

average_prices_per_island.items ()), columns=[’

NOMOS ’, ’AVERAGE_PRICE ’])
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df_prices.to_excel ("../ data/fuels/Diesel/

average_diesel_prices.xlsx")
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E.6 Script Used for Unit Root Testing

import matplotlib.pyplot as plt

import geopandas as gpd

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df = df.loc[:,[" gasStationID ","KOD_01","KOD_11

","KOD_21 "]]

df.dropna(subset=[’KOD_01 ’], inplace=True)

gas_stations = df.loc[:,[" gasStationID ","KOD_21

"]]

fuels = pd.read_csv ("../ data/TIMES_PRATHRIWVN.

csv")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])

gas_price_ddcode[’dateDefined ’] =

gas_price_ddcode[’dateDefined ’].dt.date

prefecture_df = pd.read_excel ("../ data/mit_2021.

xlsx",dtype=str)
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prefecture_df = prefecture_df[prefecture_df[’G.H

. 2021 ’]. str.match(r’^\d{8}$’)]
prefecture_df = prefecture_df.rename(columns={’G

.K. 2021’ : ’KOD_21 ’})

prefecture_df = prefecture_df.drop(columns =["

PRWTEUOUSA "])

prefecture_df [" KOD_21 "] = prefecture_df [" KOD_21

"]. astype(float)

final_df = pd.merge(gas_price_ddcode ,

prefecture_df ,on=" KOD_21",how="left")

final_df = final_df.dropna ()

global label_encoder

label_encoder = LabelEncoder ()

final_df[’NOMOS_enc ’] = label_encoder.

fit_transform(final_df[’NOMOS ’])

copy_final_df = final_df

final_df = final_df.loc[:,[" gasStationID ","

fuelTypeID "," dateDefined ","fuelPrice ","KOD_21

"," NOMOS_enc "]]

final_df = final_df.rename(columns ={" NOMOS_enc ":

"NOMOS "})

def clustering_per_gas_type(gas_prices ,

fuelTypeID):

df_x_fuelType = gas_prices[gas_prices ["

fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType[’dateDefined ’] = pd.

to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime

format

df_x_fuelType.sort_values ([’gasStationID ’, ’

dateDefined ’], inplace=True) # Sort the

123



DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’NOMOS ’,’KOD_21 ’, "dateDefined "])

[’fuelPrice ’]. mean().reset_index ()

time_series_list = []

list_of_names = []

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" NOMOS"] == 5]

temp_unique_communities = temp_df [" KOD_21 "].

unique ()

for community in temp_unique_communities:

print(community)

list_of_names.append(community)

temp_island_df = fuelPrices_per_dd[

fuelPrices_per_dd [" KOD_21 "] ==
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community]

temp_df_gas_prices = temp_island_df ["

fuelPrice "]. values

time_series_list.append(

temp_df_gas_prices)

max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant ’,

constant_values=np.nan) for ts in

time_series_list]

return(time_series_padded ,list_of_names)

time_series , list_of_names =

clustering_per_gas_type(final_df ,1) ## 1 -->

Unleaded 95 ## 2 --> Unleaded 98/100 ###

Diesel --> 4

from arch.unitroot import ADF # Assuming you ’re

using arch library for ADF test

adf_results = []

for ts, name in zip(time_series , list_of_names):

ts_cleaned = ts[~np.isnan(ts)]

if len(ts_cleaned) > 0: # Ensure there are

values for the ADF test

adf = ADF(ts_cleaned , trend ="ct", lags

=30)

adf_results.append ((name , adf))

else:

print(f"No valid data for ADF test in {

name }")
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for name , adf in adf_results:

print(f"ADF test results for {name }:")

print(adf.summary ().as_text ())

adf_df = pd.DataFrame(adf_results , columns =["

Community", "ADF Test "])

adf_df ["p-value"] = adf_df ["ADF Test "]. apply(

lambda x: x.pvalue)

adf_df ["t-statistic "] = adf_df ["ADF Test "]. apply

(lambda x: x.stat)

adf_df = adf_df.sort_values(by=" Community",

ascending=False)

# Plot the p-values and t-statistics

plt.figure(figsize =(12, 15))

plt.barh(adf_df [" Community"], adf_df ["t-

statistic"], color=" skyblue ")

plt.xlabel ("t-statistic ")

plt.ylabel (" Community ")

plt.title ("ADF Test Results: t-statistic ")

plt.grid(axis="x")

plt.axvline(x=-3.13, color=’g’, linestyle=’--’,

label=’Critical Value (10%) ’)

plt.axvline(x=-3.41, color=’y’, linestyle=’--’,

label=’Critical Value (5%) ’)

plt.axvline(x=-3.96, color=’r’, linestyle=’--’,

label=’Critical Value (1%) ’)

plt.tight_layout ()

plt.legend ()

plt.show()

adf_df ["p-value"] = adf_df ["p-value "]. astype(

float)
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plt.figure(figsize =(10, 15))

plt.barh(adf_df [" Community"], adf_df ["p-value"],

color=" lightgreen ")

plt.xlabel ("p-value ")

plt.ylabel (" Community ")

plt.title ("ADF Test Results: p-values ")

plt.grid(axis="x")

plt.show()
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E.7 Script Used for Cointegration Testing

import matplotlib.pyplot as plt

import geopandas as gpd

import seaborn as sns

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

df = pd.read_csv (’../ data/gas_stations_x_codes.

csv ’)

df = df.loc[:,[" gasStationID ","KOD_01","KOD_11

","KOD_21 "]]

df.dropna(subset=[’KOD_01 ’], inplace=True)

gas_stations = df.loc[:,[" gasStationID ","KOD_21

"]]

fuels = pd.read_csv ("../ data/TIMES_PRATHRIWVN.

csv")

gas_price_ddcode = fuels.merge(gas_stations , on

=[’gasStationID ’], how=’left ’)

gas_price_ddcode = gas_price_ddcode.dropna ()

gas_price_ddcode[’dateDefined ’] = pd.to_datetime

(gas_price_ddcode[’dateDefined ’], errors=’

coerce ’)

gas_price_ddcode = gas_price_ddcode.dropna(

subset=[’dateDefined ’])

gas_price_ddcode[’dateDefined ’] =

gas_price_ddcode[’dateDefined ’].dt.date

prefecture_df = pd.read_excel ("../ data/mit_2021.
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xlsx",dtype=str)

prefecture_df = prefecture_df[prefecture_df[’G.H

. 2021 ’]. str.match(r’^\d{8}$’)]
prefecture_df = prefecture_df.rename(columns={’G

.K. 2021’ : ’KOD_21 ’})

prefecture_df = prefecture_df.drop(columns =["

PRWTEUOUSA "])

prefecture_df [" KOD_21 "] = prefecture_df [" KOD_21

"]. astype(float)

final_df = pd.merge(gas_price_ddcode ,

prefecture_df ,on=" KOD_21",how="left")

final_df = final_df.dropna ()

global label_encoder

label_encoder = LabelEncoder ()

final_df[’NOMOS_enc ’] = label_encoder.

fit_transform(final_df[’NOMOS ’])

copy_final_df = final_df

final_df = final_df.loc[:,[" gasStationID ","

fuelTypeID "," dateDefined ","fuelPrice ","KOD_21

"," NOMOS_enc "]]

final_df = final_df.rename(columns ={" NOMOS_enc ":

"NOMOS "})

def clustering_per_gas_type(gas_prices ,

fuelTypeID):

df_x_fuelType = gas_prices[gas_prices ["

fuelTypeID "] == fuelTypeID]

df_x_fuelType = df_x_fuelType.reset_index ()

df_x_fuelType[’dateDefined ’] = pd.

to_datetime(df_x_fuelType[’dateDefined ’])

# Ensure ’dateDefined ’ is in datetime

format

df_x_fuelType.sort_values ([’gasStationID ’, ’
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dateDefined ’], inplace=True) # Sort the

DataFrame

df_x_fuelType = df_x_fuelType.groupby([’

gasStationID ’, ’dateDefined ’]).mean().

reset_index ()

def fill_missing_dates(group):

return group.set_index(’dateDefined ’).

resample(’D’).ffill().reset_index ()

df_x_fuelType_imputed = df_x_fuelType.

groupby(’gasStationID ’).apply(

fill_missing_dates)

df_x_fuelType_imputed.reset_index(drop=True ,

inplace=True)

df_x_fuelType_imputed[’KOD_21 ’] =

df_x_fuelType_imputed[’KOD_21 ’]. astype(int

).astype(str).str.zfill (8)

fuelPrices_per_dd = df_x_fuelType_imputed.

groupby([’NOMOS ’,’KOD_21 ’, "dateDefined "])

[’fuelPrice ’]. mean().reset_index ()

time_series_list = []

list_of_names = []

temp_df = fuelPrices_per_dd[

fuelPrices_per_dd [" NOMOS"] == 5]

temp_unique_communities = temp_df [" KOD_21 "].

unique ()

for community in temp_unique_communities:

print(community)

list_of_names.append(community)

temp_island_df = fuelPrices_per_dd[
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fuelPrices_per_dd [" KOD_21 "] ==

community]

temp_df_gas_prices = temp_island_df ["

fuelPrice "]. values

time_series_list.append(

temp_df_gas_prices)

max_length = max(len(ts) for ts in

time_series_list)

time_series_padded = [np.pad(ts, (0,

max_length - len(ts)), ’constant ’,

constant_values=np.nan) for ts in

time_series_list]

return(time_series_padded ,list_of_names)

time_series , list_of_names =

clustering_per_gas_type(final_df ,1) ## 1 -->

Unleaded 95 ## 2 --> Unleaded 98/100 ###

Diesel --> 4

import statsmodels.tsa.stattools as ts

def run_cointegration_test(time_series_padded):

num_series = len(time_series_padded)

t_statistics = np.zeros (( num_series ,

num_series))

p_values = np.zeros ((num_series , num_series)

)

for i in range(num_series):

#k = 0

for j in range(i+1, num_series):

ts1 = time_series_padded[i]
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ts2 = time_series_padded[j]

# Handle NaN values

mask = ~np.isnan(ts1) & ~np.isnan(

ts2)

ts1 = ts1[mask]

ts2 = ts2[mask]

result = ts.coint(ts1 , ts2)

t_statistics[i, j] = result [0]

p_values[i, j] = result [1]

print(f"Cointegration test result

for series {i} and {j}: {result }")

#k+=1

return t_statistics , p_values

t_statistics , p_values = run_cointegration_test(

time_series)

def plot_heatmap(matrix , labels , title):

fig = plt.figure(figsize =(40 ,30))

df = pd.DataFrame(matrix , columns=labels ,

index=labels)

sns.heatmap(df, annot=True , cmap=" coolwarm",

fmt =".2f", xticklabels=True , yticklabels=

True)

plt.title(title)

plt.show()

plot_heatmap(t_statistics , list_of_names , "T-

Statistic Heatmap ")

plot_heatmap(p_values , list_of_names , "P-Value
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Heatmap ")
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