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Abstract

Many experts in finance and econometrics believe that when the market goes

down, the connection between financial assets gets stronger. They think that the

correlation almost reaches one during a market crash, which can mess up the ad-

vantages of diversification. The purpose of this Thesis is to explore the relationship

between markets, assets and commodities by employing a local dependence mea-

sure, which provides a precise mathematical description and interpretation of these

interactions. We utilize a relatively recent local dependence measure introduced by

Dag Tjøstheim in 2013[1] – the local correlation function. This function involves

approximating a bivariate density locally through a family of bivariate Gaussian

densities using local likelihood. The local correlation is determined at each point by

considering the correlation coefficient of the approximating Gaussian distribution.

This measure is referred to as Local Gaussian Correlation.

Keywords: Local Dependence Measure, Local Correlation Function, Bivariate

Gaussian Densities, Local Gaussian Correlation



Chapter 1

Introduction

Over the last few decades, global financial markets have become increasingly in-

terconnected. A notable focus lies in the spread of crises across these markets,

wherein substantial declines in asset values in one country prompt swift declines in

other countries. If these falls cannot be accounted for by interdependence or shared

macroeconomic factors, it is termed contagion. This phenomenon holds significance

for risk management and the performance of international portfolios. A height-

ened interdependence in financial markets during a crisis suggests that the expected

diversification effect may be less pronounced.

The core concept of the Local Gaussian Correlation approach involves estimating a

bivariate return distribution through a set of Gaussian bivariate distributions. For

each point within the return distribution, a specific Gaussian distribution provides

a well-fitting approximation. The correlation of the approximating Gaussian distri-

bution is then considered as the local correlation within that specific neighborhood.

This leads to a nonlinear dependence measure that is inherently localized.

In addition the conventional global correlation analysis assumes a Gaussian distri-

bution for financial returns, a local assumption in our approach. Moreover, the

local Gaussian correlation avoids the bias problem associated with the conditional

correlation which is created when we condition the correlation by focusing on a

subset of the sample space and makes difficult the interpretation. Another benefit
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2 Chapter 1. Introduction

of employing local Gaussian correlation lies in its ability to identify more intricate,

nonlinear changes in the dependence structure that may be obscured by global cor-

relation measures. Consequently, it provides a more comprehensive understanding

of the interdependence between markets, particularly in the tails of the distribution

and other segments, as opposed to the potential masking effect of global correla-

tion. This contrasts with typical tests for contagion. It’s worth noting that while

the copula method can uncover nonlinear dependence and tail-dependence, it often

involves parameters with indirect interpretations as measures of dependence. In

contrast, our procedure has a more intuitive foundation and maintains a correlation

interpretation based on local Gaussian approximation.

The objective of this thesis is to investigate the connection among markets, assets

and commodities using a local dependence measure. This measure aims to offer

a precise mathematical description and interpretation of the interactions between

these assets.



Chapter 2

Literature Review

Dag Tjøstheim and Karl Ove Hufthammer (2013) [1] introduced a novel local

dependence measure, providing a precise mathematical characterization and inter-

pretation of phenomena like the correlation between financial assets. Their proposed

methodology centers around a new local correlation function, which relies on the lo-

cal likelihood approximation of a bivariate density through a family of bivariate

Gaussian densities. The correlation coefficient of the approximating Gaussian dis-

tribution at each point serves as the local correlation.This approach establishes the

existence, uniqueness, and limit results of the local correlation function. Addition-

ally, they presented various properties associated with the local Gaussian correlation

and its estimation. The methodology is illustrated through examples drawn from

both simulated and real data.The significance of this research lies in its potential

to extend the capability of locally modeling a general density, a task traditionally

achieved globally for the Gaussian density. The utilization of local dependence

measures contributes to a nuanced understanding of the intricacies within data,

particularly in the context of bivariate density estimation.

Georgios Bampinas and Theodore Panagiotidis (2017)[2] conducted an empirical

analysis to assess the influence of financial shocks on the interconnections between

oil prices and stock markets during four major crises. Employing the local Gaussian

correlation method, their study uncovered a noteworthy observation: a regionaliza-
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4 Chapter 2. Literature Review

tion of the two markets prevailed for a substantial duration throughout the 1990s

and the early 2000s.The central emphasis of their research was on elucidating the

nuanced, nonlinear dependence dynamics between stock and oil markets, specifically

within the distinct contexts of the Mexican "Tequila" crisis, the Asian "flu" crisis,

the dot-com bubble, and the 2007–2009 financial crisis.

Quynh Nga Nguyen, Sofiane Aboura, Julien Chevallier, Zhang Lyuyuan, and

Bangzhu Zhu (2020)[3] conducted a comprehensive examination of the escalating

correlations within commodity and U.S. financial markets, as well as among various

commodity markets, spanning the years 1992 to 2017. Employing a non-linear frame-

work, their investigation aimed to assess the enduring nature of the financialization

phenomenon, taking into account significant events that shaped the landscape of the

2000s.Utilizing a measure of asymmetric dependence, specifically the local Gaussian

correlation, the researchers sought to quantify the relationships under consideration.

The findings of their study empirically support the existence of the financialization

phenomenon, with a particular emphasis on heightened correlations between stock

markets and commodity markets, notably following the break date in August 2008.

Håkon Otneim (2021)[4] provided an in-depth exposition on the lg package, delin-

eating its fundamental principles and practical utility. Tailored for the R program-

ming language, the lg package stands as an instrumental resource, incorporating

recent methodological advancements in the realm of local Gaussian correlation appli-

cations. This encompasses the accurate estimation of the local Gaussian correlation

itself, multivariate density estimation, conditional density estimation, a diverse ar-

ray of tests for independence and conditional independence, and a graphical module

specifically crafted for the creation of dependence maps. In essence, the lg pack-

age offers a comprehensive toolkit within the R environment, facilitating a broad

spectrum of analyses pertaining to local Gaussian correlation.

Geir Drage Berentsen, Tore Selland Kleppe and Dag Tjøstheim (2014)[5] intro-

duced in their paper the R package "localgauss," a robust tool designed to estimate

and visually represent a significant measure of localized dependence known as local
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Gaussian correlation. The package encompasses a comprehensive set of function-

alities, including a dedicated function for precise estimation, a specialized function

for conducting local independence tests, and additional functions tailored for visu-

alization purposes. These features are thoughtfully demonstrated through a series

of illustrative examples, showcasing the versatility and effectiveness of the package

in various scenarios.

Dag Tjøstheim and Karl Ove Hufthammer (2014) [6] researched the phenomenon

of financial contagion, specifically investigating whether the interconnections across

different financial markets intensify following a shock to a particular country. To

explore the contagion effect, they employed the novel metric of local dependence,

as introduced by Tjøstheim and Hufthammer (2013). The core concept of this

innovative approach revolves around approximating any arbitrary bivariate return

distribution through a family of Gaussian bivariate distributions. At each point

within the return distribution, a Gaussian distribution is utilized to provide an ac-

curate approximation for that specific point. The local correlation within a given

neighborhood is determined by the correlation of the approximating Gaussian distri-

bution. Through a meticulous analysis of the local Gaussian correlation before the

shock and after the shock, they employed a bootstrap testing procedure to assess

whether contagion has occurred. To illustrate the efficacy of our methodology, they

re-evaluate notable events such as the Mexican crisis of 1994, the Asian crisis of

1997-1998, and the financial crisis of 2007-2009. Their findings, derived from this

new analytical approach, reveal compelling evidence of contagion and offer insights

into the nonlinear dependence structure characterizing these crises.



Chapter 3

Model

This article utilizes the novel approach of the local Gaussian correlation depen-

dence technique, as introduced in the work by Tjøstheim and Hufthammer in 2013.

[1] The core concept behind this novel approach is to model any arbitrary bivariate

return distribution by using a set of Gaussian bivariate distributions. Specifically,

at every location within the return distribution, a Gaussian distribution is employed

to approximate that particular point. This approach focuses on local density ap-

proximation rather than directly modeling the correlation. The correlation of the

approximating Gaussian distribution is determined by the local correlation within

that particular neighborhood.

The general bivariate density f for the variables (Xt , Yt), as it is proposed by

Quynh Nga Nguyen, et al.[3], can be approximated locally in the neighborhood of

each point z = (x, y) by a Gaussian bivariate density defined by:

ϕ(u, v, µ1, µ2, σ1, σ2, ρ) =
1

2πσ1σ2

√
1−ρ2

exp{− 1
2(1−ρ2)

(u−µ1

σ1
)2+(v−µ2

σ2
)2−2ρ(u−µ1

σ1
)(v−µ2

σ2
)}

where v = (v1, v2)
T is the running variable in the Gaussian distribution, µi(z),

i = 1, 2, are the local means, σi(z), i = 1, 2, are the local standard deviations, and

ρ(z) is the local correlation at the point z = (x, y).
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3.1. Methods 7

The population values of the local parameters θb(z) = θ(z) = (µ1(z), µ2(z), σ1(z), σ2(z), ρ(z))

are obtained by minimizing the local penalty function

q =
∫
Kb
(v − z)[ϕ(v, θ(z))− log ϕ(v, θ(z))f(v) dv.

where Kb(v− z) = (b1b2)
−1K−1

b1
(v1− z1)K

−1
b2

(v2− z2) is a product kernel with band-

width b = (b1, b2). The local Gaussian correlation ρb(z) = ρ(z) is defined as the last

element of the vector θ(z) that minimizes q.

3.1 Methods

3.1.1 Function localgauss

In the R package localgauss, the localgauss() function employs a modified New-

ton’s method with line-search to maximize the local likelihood function for various

values of x. The result is an S3 object classified as localgauss. Given that the local

likelihood function is not universally concave, eigenvalue modification is incorpo-

rated to ensure the positive definiteness of the scaling matrix (Nocedal and Wright

1999 [7]). Both the optimizer and objective function are implemented in Fortran

90 (Metcalf and Reid 1999 [8]), and the source code for the gradient and Hessian

of the local likelihood function is generated using the automatic differentiation tool

TAPENADE (Hascoêt and Pascual 2004 [9]).

The user can manually specify the number M of points x = (x1, x2) for estimating

the local Gaussian correlation using the argument xy.mat, which is an M times 2

matrix. Alternatively, the selection of these points can be conducted through the

methodology introduced by Jones and Koch (2003) [10]. This approach involves

placing a regular N × N grid across the area of interest, which is then screened by

selecting grid points x1, ..., xM satisfying f̂(xj) ≥ C, for some constant C, and a

density estimator f̂ . The screening process is efficiently implemented using the R
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package MASS (Venables and Ripley 2002 [11]). In localgauss(), the values of N

and C are set by the arguments gsize and hthresh, respectively. If xy.mat is not

explicitly specified, it will be internally selected through the described method. As

the local likelihood function necessitates optimization for each estimation point, the

computational time scales proportionally with the size of xy.mat.

3.1.2 Graphics

Facilitating a thorough understanding and polished presentation of the outcomes

derived from the function localgauss() as elucidated earlier necessitates the strategic

integration of graphics. In this context, the ensuing plotting routines draw inspira-

tion and leverage the capabilities of the R package ggplot2 2 (Wickham 2009 [12]).

This robust graphical tool enhances the visual representation of data, providing an

enriched and insightful dimension to the interpretation and communication of the

analytical results.

In order to plot the local gaussian diagonal we used a function we found on GitHub

from the user LarsIndus. This function estimates local Gaussian correlation along

the main diagonal of a two-dimensional plane and plots the estimated values in a

line plot. Default values are appropriate for standard normal marginal distributions.

We modified the function to fit in our data in order to get the wanted results.

Parameter dat represents bivariate input data, accepting either a matrix or a data

frame. The parameter diaglow is a numeric value serving as the lower bound for

points to be estimated or plotted, while diaghigh is its numeric counterpart as the

upper bound. Essentially, the plots are generated within the range from (diaglow,

diaglow) to (diaghigh, diaghigh). The parameter stepsize, a numeric value, dic-

tates the distance between points for which the local Gaussian correlation is both

estimated and plotted. Two additional parameters, b1 and b2, both numeric, play

pivotal roles as the first and second bandwidth parameters utilized by the function

localgauss. The resulting output is encapsulated in a ggplot object, showcasing the

estimates of the local Gaussian correlation along the diagonal.



Chapter 4

Empirical Results

The data that are used in this research are coming from the stock indicators S&P

500 (GSPC) and FTSE 100 (FTSE) , the commodities Crude Oil (CL=F) and Gold

(GC=F) and CBOE Interest Rate 10 Year (TNX). The prices of the data come for

the period January 05, 2004 until November 03, 2023 (4886 daily observations). The

data have been sourced from the Yahoo Finance database.

4.1 Tables and graphics

Table 1 showcases the descriptive statistics for all the financial instruments that are

used.

Table 1: Descriptive statistics

Statistics S&P 500 Bond FTSE 100 Gold Crude Oil

Mean 0.000278 0.000008 0.000102 0.000317 0.000302

Min. -0.127652 -0.347009 -0.115117 -0.098206 -0.282206

Max. 0.109572 0.404797 0.093842 0.086432 0.319634

St. Deviation 0.012235 0.026641 0.011247 0.011301 0.026670

Skewness -0.5198888 0.2203605 -0.3900202 -0.328591 0.0983746

Kurtosis 12.8614273 29.8753511 10.1645787 5.3031471 18.0810437

Observing the data, it becomes evident that the Standard Deviation is relatively
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10 Chapter 4. Empirical Results

Figure 1: S&P 500 Returns.

Figure 2: FTSE 100 Returns.

consistent for the two indexes and Gold. However, a slightly elevated Standard

Deviation is noticeable for the remaining two instruments, CBOE Interest Rate 10

Year and Crude Oil. This happens due to a higher level of volatility in the years

under examination for these particular instruments. It is observed that the skewness

values lie within the range of -0.5 to 0.5, signifying a relatively symmetrical distri-

bution of the data. Moreover, the kurtosis values indicate a leptokurtic distribution

for all indicators.

Figures 1 - 5 present the returns of the assets that were calculated through Python

programming language using the log returns function.
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Figure 3: Crude Oil Returns.

Figure 4: CBOE Interest Rate 10 Year Returns.

Figure 5: N.Y. Gold Returns.
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4.2 Local Gaussian Correlation results and graphics

Table 2 displays the arithmetic results for the correlation between two assets.

Table 2: Correlation between assets by two.

Assets Correlation

S&P 500 - Bond 0.3262932

S&P 500 - FTSE 100 0.576782

S&P 500 - Gold 0.02763491

S&P 500 - Crude Oil 0.2724024

Bond - FTSE 100 0.3309087

Bond - Gold -0.1617491

Bond - Crude Oil 0.2050119

FTSE 100 - Gold 0.05883764

FTSE 100 - Crude Oil 0.3145499

Gold - Crude Oil 0.1998839

The package lg for the R programming language provided us the following results.

The figures that follow depict a dependence scatter map. We can see the Local

Gaussian correlation between the assets from the data set, based on 4886 consecutive

trading days. In our code the following parameters were used and remained fixed for

all the results. These parameters are b1 = 1.5, b2 = 1.5, gsize = 50 and hthresh =

0.0025.
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(a) S&P 500 - CBOE Interest Rate
10 Year. (b) S&P 500 - FTSE 100.

(c) S&P 500 - Gold. (d) S&P 500 - Crude Oil.

Figure 6: S&P 500 - Assets Local Gaussian correlation.
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(a) CBOE Interest Rate 10 Year -
FTSE 100.

(b) CBOE Interest Rate 10 Year -
Gold.

(c) CBOE Interest Rate 10 Year -
Crude Oil.

Figure 7: CBOE Interest Rate 10 Year - Assets Local Gaussian correlation.
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(a) FTSE 100 - Gold.

(b) FTSE 100 - Crude Oil.

Figure 8: FTSE 100 - Assets Local Gaussian correlation.



16 Chapter 4. Empirical Results

Figure 9: Gold - Crude Oil Local Gaussian correlation.
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4.3 Local Gaussian correlation estimates along the

diagonal

Employing the capabilities of the R programming language, we leverage a ded-

icated function to estimate local Gaussian correlation, focusing explicitly on the

primary diagonal within a two-dimensional plane. The resulting values are thought-

fully visualized through a line plot, with default parameters seamlessly aligning with

standard normal marginal distributions. This deliberate choice of plotting along the

diagonal frame is strategic, offering an enriched and comprehensive examination of

correlation distribution among all possible pairs.

In essence, the local Gaussian diagonal method, implemented in this context, serves

as a valuable extension of traditional Gaussian dependence analysis. This partic-

ular adaptation facilitates the exploration of non-linear environments, allowing us

to discern trends in a more nuanced and comprehensive manner. By adopting this

approach, we unveil a deeper understanding of the underlying patterns, providing a

more detailed and insightful perspective on the intricacies of the correlation land-

scape.
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(a) S&P 500 - CBOE Interest Rate
10 Year. (b) S&P 500 - FTSE 100.

(c) S&P 500 - Gold. (d) S&P 500 - Crude Oil.

Figure 10: S&P 500 - Assets Local Gaussian correlation diagonal.
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(a) CBOE Interest Rate 10 Year -
FTSE 100.

(b) CBOE Interest Rate 10 Year -
Gold.

(c) CBOE Interest Rate 10 Year -
Crude Oil.

Figure 11: CBOE Interest Rate 10 Year - Assets Local Gaussian correlation diagonal.
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(a) FTSE 100 - Gold.

(b) FTSE 100 - Crude Oil.

Figure 12: FTSE 100 - Assets Local Gaussian correlation diagonal.
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Figure 13: Gold - Crude Oil Local Gaussian correlation diagonal.
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Figures 10 - 13 present the computed local Gaussian correlations among the stan-

dardized returns derived from the U.S. stock market, the London Stock Exchange

index, and various commodities. In each case, the grid size remains constant, rang-

ing from -4 to 4. By segmenting the cases, one can discern and analyze the diagrams

in a more granular and detailed manner.

Figure 10 provides a visual representation of the calculated correlation between

the U.S. stock market and each asset included in our study. A pattern emerges,

yielding consistent outcomes across all scenarios. The correlation coefficients uni-

formly assume positive values, forming a curve characterized by consistent direction

and slope in each diagram, except for the S&P 500 and CBOE Interest Rate 10 Year.

In these specific cases, a subtle deviation in the curve becomes apparent towards the

conclusion of the diagrams. This deviation signifies a gradual convergence towards

a stable correlation value. The same trend is evident in the scatter plot discussed in

the preceding section. A close examination of the scatter plot reveals a noticeable

convergence of data points toward the center, distinguishing it from other plotted

data. A comparative analysis with the S&P 500 and Gold scenario highlights a more

dispersed scatter plot, encompassing a broader range of values.

Figure 11 illustrates the estimated correlation utilizing the CBOE Interest Rate 10

Year as the primary paired asset. In this instance, three distinct diagrams come to

attention. The initial diagram reveals an almost linear descent in correlation values,

a phenomenon anticipated due to the absence of dispersion in the corresponding

scatter plot. Rho values are situated aproximately to the center and tend to converge

toward a specific value. Transitioning to diagram (b), initial negative values are

apparent, exhibiting a descending trend. However, towards the culmination of the

curve, there is an observable reversal in direction. It is noteworthy that correlation

values change gradually, displaying minimal disparities between them. Conversely,

the third diagram illustrates a heightened pace in the progression of values, forming

a curve that converges toward a stable numerical outcome.
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In Figure 12, the correlation between the FTSE 100 and the commodities market

is depicted. Notably, the diagrams exhibit a similar descending trend with positive

yet distinct values. A noteworthy observation is the minimal correlation observed

between the London Stock Exchange market and the Gold market as a commodity.

This pattern is also observed in the case of the S&P 500, where a negligible cor-

relation is evident, largely attributed to the extensive temporal scope of the study.

Even when analyze the diagrams derived from the closing prices of these assets over

the specified period, a consistent behavioral resemblance becomes apparent, indi-

cating nearly identical regression patterns. However, it is crucial to acknowledge

the impact of two significant crises during the studied years: the 2008-2010 Global

Financial Crisis (GFC) and the 2020-2022 Covid-19 recession, known as the Great

Lockdown, wherein obvious divergences among these assets are clearly observed.

Figure 13 constitutes the final case under consideration, illustrating the correlation

between the two commodities: Gold and Crude Oil. Noteworthy is the observation

that these two assets not only exhibit a positive correlation but also display an

ascending behavior. The depicted correlation values maintain a gradual and stable

ascending progression, suggesting a consistent and unchanging correlation between

Gold and Crude Oil.



Chapter 5

Conclusions

Within the context of this thesis, a comprehensive exploration unfolded, unrav-

eling the relationships that bind markets, assets, and commodities. This intricate

analysis harnessed the power of a local dependence measure, strategically employed

as a lens to scrutinize the interplay among these dynamic elements. The overarching

aim of this measurement was not merely numerical precision but to intricately por-

tray and comprehend the multifaceted connections embedded within the financial

landscape.

Moreover, the revelations derived from this investigation found expression through

dual modalities. The pivotal contribution of this thesis manifests in the meticulous

representation of data, seamlessly transposed into a continuous diagonal graph. This

visualization not only captures the essence of the relationships but also establishes

a continuous spectrum for comparative analysis, thereby augmenting the depth and

clarity of the findings.
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Appendix A

Appendix

plot_localgauss_diagonal <- function(dat, diag_low = -4, diag_high = 4,

step_size = 0.1,

b1 = 1, b2 = 1) {

# convert to matrix if necessary

if(!is.matrix(dat)) {

dat <- as.matrix(dat)

}

# values for which to calculate LGC

diag_matrix <- matrix(c(seq(diag_low, diag_high, step_size),

seq(diag_low, diag_high, step_size)),

ncol = 2)

# estimate the LGC

lg.out <- localgauss::localgauss(x = dat[, 1], y = dat[, 2], xy.mat =

diag_matrix,

b1 = b1, b2 = b2)

# plotting

27
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data.frame(diag = seq(diag_low, diag_high, step_size), rho =

lg.out$par.est[, "rho"]) %>%

ggplot(aes(x = diag, y = rho)) +

geom_line(size=1.5) +

ylab("Local Gaussian Correlation")+

xlab(’Grid size’) +

ggtitle(’’)

}

#example with Gold

import pandas as pd

import yfinance as yf

import numpy as np

#get the data

ticker = ’’

gold = yf.download(ticker, start = ’2004-01-05’, end = ’2023-11-05’)

#form the data into a data frame

gold.to_excel(’gold.xlsx’)

pd.read_excel(’gold.xlsx’, index_col=’Date’, parse_dates=[’Date’])

data = pd.read_excel(".xlsx")

data = data[["Date", "Adj Close"]]

#clean the df

data.dropna()

#get return values

data[’log_returns’] = np.log(data[’Adj Close’] / data[’Adj

Close’].shift(1))
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data

#form the returns graph

data.set_index("Date", inplace=True)

data[’log_returns’].plot(figsize=(8,5), title=’’)
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