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[TEPIAHYH

Y1oyog g OlateBhc elvan Vo EpEUVACOUUE TNV oxxopdlar xon TNV TORAUUORPOCYLOTN T
JeLBoONOULOPELY xauTLAGY o1V oyeddy Kihler coafpa SO, uetofd twv ehoyiotixdv
empaveLoy o€ ogalpec. Ot un ohixd yewmdouotoxée Peudoorbpuoppec xouriiec otny SO eite
£y 0uY 0UCLHBN CLVBIECTOOT) OF PLa A Yewdouotonh opatpa S° C S, eite éyouv ouoiddn
ouvdidotaon otny S8, Tty tedevtada meplntwon, n Peudoohduoprn xaumiin etvor eite
undevixrc oteédng, eite un wwotpomxt|. Ol undevixic oTeédng xounbieg elvar lootpomxéc.
H perétn tou avertépw mpoBiiuatog avdyeton o Tn UEAETN EEYWELOTA XoEULAS amd TIC TEELG
HAACELS PEUBOOAOUOLPOV HUUTIVAGDY.

Ot Jeudoorbpoppec xoumhec oL €xouv ouoLHdN cuVddoTaon ot opalpa S° C S
amodetvieTaL OTL efval Topauop@maolues. Mo ehayloTixny empdvela o€ ogaipa eivon TOTX
LOOUETEIXH PE piot PEUBOONOULOP(N XaUTOAT oTn opaipa S5 av xu wévo av ixavorolel-
tou 1 Ricci-like ouvdrun Alog(l — K) = 6K, 6nou K eivar n xopumuldtnta Gauss tng
eEMAYOUEVNG PETEWNC xou A elvon o teheothic Laplace tng emayouevng petewrc. Extoc
a6 LIGOTEDES ENAYIO TIXES ETLPAVELEG OE Opalpeg, euléa adpoloUaTa ETLPAVELDY HEADY TNG
LOVOTOpUUETEIXAC OLXOYEVELIC PEUBOOAGUOPPWY XoUTUAGY 5Ty S° ixavorotoly tn Ricci-
like cuvirxm. Kou to 800 autd €ldn emipovewndy elvor  exceptional emgdveieg. Autég ol
ETLQPAVELES Elval EAAYLOTIXEC ETLPAVELES TV OTOlwY O o Srapopixd Hopf etvon ohduoppa,
1 10000V oL ENRELPEL XoUTUAGTNTOG, EXTOS [0wE TNG TEAEUTALAS, £Y0LY CTAERT EXXEV-
teotnta. Kdtw amd didgpopeg unotéoel, amodetxviouue OTL EAUYICTIXES ETULPAVEIEC OE
ogaipec mou xavorooVy TN Ricci-like cuvixn elvon 6vtwe exceptional. Enouéveg, n
TAEWVOUNOT QUTAOY TWV ETLPAVELDY avdyeTal o TNy Taglvounon Twy exceptional emipoveldy
oL omolec eivor Tomxd tooueTpxéc pe ol YEUBOOAGUOPYN XouTOAN oty S5 Mdhota,
amodevioupe petald dAAwy 0Tl TéToleg exceptional empdveleg oe mepITTrC OLdo ToloNG
ogaipeg etvou eite Ll0OTESEC elte eLdéa adpoloyota ETPAVELDY UEADY TN LOVOTURUUETELXNAS
owoyévelog pag peudoolduoppne xaumiine oty S°.

Amnodexviouye 6Tl ol cuurnayeic 10oTEomXES PELBOOAOUOPPES HOUTOAES TNC OYEDOV
Kihler ogoipoc SO efvor dountec petofl tmv ehaytoTixdy entpaveldy oe ogaipec. Ot
un oupnayeic wwotpomxéc Peudoolbuoppec xapmiec Tne oyedév Kihler ogaipac SO eivor
docopunteg peTol Twv exceptional emipoveldy o opalpeg.

Iot o un wootpomxy} Peudoohouopgn xoumiAn g UE OUCLWOT CLYBLACTAGT, GTT OYEGGY
Kihler ogaipa SO, Suvdueda vo teplypdhoupe 10 Yhpo TV TUpUUopROoE®mY GAGY TWV UN



YEWUETEXE LOOTIUWY EAAYLOTIXWY ETULPAVELDY [ oL oToleg efval TOTXA IGOUETEIXES UE TNV
XOUTOAY g, o €YoLy (oeg xdieTeg XAUTUAGTNTES EwG BEVTEENS TAENG UE TNV XOUTUAN g.
Emniéov, amodeixvioupe éva Yedpnuo Tomou Schur yio eAoyio Tinég EMQAVEIES O GRILPES.

ii



ABSTRACT

The aim of the thesis is to investigate the rigidity and the deformability of pseudo-
holomorphic curves in the nearly Kéhler sphere S®, among minimal surfaces in spheres.
The nontotally geodesic pseudoholomorphic curves in S® are either substantial in a
totally geodesic S° C S® or substantial in S° (see [2]). In the latter case, the pseudo-
holomorphic curve is either null torsion (studied by Bryant [3]) or non-isotropic. It
turns out that null torsion curves are isotropic. In order to study the above problem
we have to deal separately with these three classes of pseudoholomorphic curves.

Substantial pseudoholomorphic curves in a totally geodesic S° C S® turn out to
be quite deformable. Being locally isometric to a pseudoholomorphic curve in S? is
equivalent to the Ricci-like condition Alog(l — K) = 6K, where K is the Gaussian
curvature of the induced metric and A is the Laplacian operator of the surface with
respect to the induced metric. Besides flat minimal surfaces in spheres, direct sums
of surfaces in the associated family of pseudoholomorphic curves in S® do satisfy this
Ricci-like condition. Surfaces in both classes are exceptional surfaces. These are mini-
mal surfaces whose all Hopf differentials are holomorphic, or equivalently the curvature
ellipses have constant eccentricity up to the last but one. Under appropriate global
assumptions, we prove that minimal surfaces in spheres that satisfy this Ricci-like con-
dition are indeed exceptional. Thus, the classification of these surfaces is reduced to
the classification of exceptional surfaces that are locally isometric to a pseudoholomor-
phic curve in S®. In fact, we prove, among other results, that such exceptional surfaces
in odd dimensional spheres are flat or direct sums of surfaces in the associated family
of a pseudoholomorphic curve in S°.

We prove that compact substantial isotropic pseudoholomorphic curves in the nearly
Kéhler sphere S8 are rigid among minimal surfaces in spheres. Noncompact isotropic
pseudoholomorphic curves in the nearly Kihler sphere S8 are rigid among exceptional
surfaces in spheres.

For a substantial non-isotropic pseudoholomorphic curve ¢ in the nearly Kéahler
sphere S we aim to describe the moduli space of all noncongruent minimal surfaces f
in S" that are locally isometric to the curve g, having the same normal curvatures up
to order 2 with the curve g. Moreover, we prove a Schur type theorem (see [8, p. 36])
for minimal surfaces in spheres.
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CHAPTER

INTRODUCTION

Rigidity and deformability problems of a given isometric immersion are fundamental
problems of the theory of isometric immersions. Of particular interest is the classifica-
tion of all noncongruent minimal surfaces in a space form, that are isometric to a given
one. This problem was raised by Lawson in [28] and partial answers were provided by
several authors. For instance, see [6, 22, 27, 28, 32, 33, 36, 37, 40, 42].

A classical result due to Ricci-Curbastro [35] asserts that the Gaussian curvature
K < 0 of any minimal surface in R? satisfies the so-called Ricci condition

Alog(—K) = 4K,

away from totally geodesic points, where A is the Laplacian operator of the surface
with respect to the induced metric ds?. This condition is equivalent to the flatness of
the metric d§> = (—K)'/2ds?. Conversely (see [26]), a metric on a simply connected
2-dimensional Riemannian manifold with negative Gaussian curvature is realized on a
minimal surface in R3, if the Ricci condition is satisfied. Hence, the Ricci condition
is a necessary and sufficient condition for a 2-dimensional Riemannian manifold to be
locally isometric to a minimal surface in R3.

Lawson [27] studied the above problem for minimal surfaces in a Euclidean space
that are isometric to minimal surfaces in R3. Using the Ricci condition and the holo-
morphicity of the Gauss map, he classified all minimal surfaces in R™ that are isometric
to a minimal surface in R3. Calabi [6] obtained a complete description of the moduli
space of all noncongruent minimal surfaces in R™ which are isometric to a given holo-
morphic curve in the complex space C".

The aforementioned problem has drown even more attention for minimal surfaces
in spheres. That is mainly due to the difficulty that arises from the fact that the
Gauss map is merely harmonic, in contrast to minimal surfaces in the Euclidean space
where the Gauss map is holomorphic. The classification problem of minimal surfaces
in spheres that are isometric to minimal surfaces in the sphere S? was raised by Lawson
in [27], where he stated a conjecture that is still open. This conjecture has been only
confirmed for certain classes of minimal surfaces in spheres (see [33, 36, 37, 40, 42]).
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It is worth noticing that a surface is locally isometric to a minimal surface in S? if its
Gaussian curvature K satisfies the spherical Ricci condition

Alog(l — K) = 4K,

away from totally geodesic points, where A is the Laplacian operator of the surface
with respect to its induced metric.

In this thesis, we turn our interest to a distinguished class of minimal surfaces
in spheres, the so-called pseudoholomorphic curves in the nearly Kihler sphere S°.
This class of surfaces was introduced by Bryant [3] and has been widely studied (cf.
[2, 19, 18]). The pseudoholomorphic curves in S are nonconstant smooth maps from
a Riemann surface into the nearly Kihler sphere S®, whose differential is complex
linear with respect to the almost complex structure of S that is induced from the
multiplication of the Cayley numbers.

In analogy with Calabi’s aforementioned work [6], in the present thesis we focus on
the following problem:

Classify noncongruent minimal surfaces in spheres that are isometric
to a given pseudoholomorphic curve in the nearly Kdhler sphere S°.

One of the aims in this thesis is to investigate the moduli space of all noncongruent
substantial minimal surfaces f: M — S™ that are isometric to a given pseudoholomor-
phic curve g: M — S°. By substantial, we mean that f(M) is not contained in any
totally geodesic submanifold of S™. It is known [3, 18] that any pseudoholomorphic
curve g: M — S8 is 1-isotropic (for the notion of s-isotropic surface see Chapter 2).
The nontotally geodesic pseudoholomorphic curves in S° are either substantial in a
totally geodesic S C S8 or substantial in S® (see [2]). In the latter case, the curve
is either null torsion (studied by Bryant [3]) or non-isotropic. It turns out that null
torsion curves are isotropic. In order to study the above problem we have to deal
separately with these three classes of pseudoholomorphic curves.

The results of the present thesis are contained in [38, 39]. The present thesis is
organised as follows:

In Chapter 2, we collect definitions and several facts about minimal surfaces in
spheres.

In Chapter 3, we recall the nearly Kihler structure of the sphere S® and we sum-
marize well known properties of pseudoholomorphic curves in S°.

In Chapter 4, we deal with the case of pseudoholomorphic curves in a totally geodesic
S® ¢ S%. A characterization of Riemannian metrics that arise as induced metrics on
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pseudoholomorphic curves in S® was given in [19, 18]. In fact, the Gaussian curvature
K < 1 of a pseudoholomorphic curve in S satisfies the condition

Alog(l — K) = 6K, (%)

away from totally geodesic points, where A is the Laplacian operator of the induced
metric ds?. This condition is equivalent to the flatness of the metric ds? = (1—K)'/3ds?.
Conversely, any two-dimensional Riemannian manifold (M, ds?), with Gaussian cur-
vature K < 1, that satisfies the Ricci-like condition (x) can be locally isometrically
immersed as a pseudoholomorphic curve in S°. Thus the classification of minimal sur-
faces in spheres that are locally isometric to a pseudoholomorphic curve in S® C S is
equivalent to the classification of those surfaces whose induced metrics satisfy condition
().

Flat minimal surfaces in odd dimensional spheres (see [24, 4]) are obviously isometric
to any flat pseudoholomorphic curve in S°. In the present thesis, we provide a method
to produce nonflat minimal surfaces in odd dimensional spheres that are isometric to
pseudoholomorphic curves in S°. More precisely, let gg,0 < § < 7, be the associated

family of a simply connected pseudoholomorphic curve g: M — S°. We consider the
surface §: M — S5~ defined by

g=aige, B D amgp,,, (1.1)
where aq, ... ,a, are any real numbers with Z;n:l ajz =1,0<0 < <O, <,

and @ denotes the orthogonal sum with respect to an orthogonal decomposition of the
Euclidean space R, It is easy to see that § is minimal and isometric to g.

Using strongly the fact that the curve ¢ is pseudoholomorphic with respect to the
almost complex structure of the nearly Kahler sphere S, we prove that minimal sur-
faces given by (1.1) belong to the class of exceptional surfaces that was studied in
[42, 43]. These are minimal surfaces whose all Hopf differentials are holomorphic, or
equivalently all curvature ellipses of any order have constant eccentricity up to the
last but one (see Section 2.3 for details). In fact, we prove that besides flat minimal
surfaces in odd dimensional spheres, the only simply connected exceptional surfaces
that are isometric to a pseudoholomorphic curve in S° are of the type (1.1).

Passing to our main problem, at first we wish to describe the moduli space of non-
congruent minimal surfaces in spheres that are isometric to a given nonflat pseudoholo-
morphic curve in a totally geodesic S® C S°. It turns out that this is a hard problem.
However, under appropriate global assumptions, we prove (see Theorem 4.4.1) that
minimal surfaces in spheres that are locally isometric to a pseudoholomorphic curve in
a totally geodesic S° C S, are exceptional. Therefore, it is quite natural to investigate
this moduli space in the class of exceptional substantial surfaces in S™”. We denote by
M (g) the moduli space of all noncongruent exceptional surfaces f: M — S" that
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are isometric to a given pseudoholomorphic curve g: M — S8. Given such a pseudo-
holomorphic curve g, we are able to show (see Theorem 4.0.1) that the moduli space
M (g) for odd n is empty unless n = 5 mod 6, in which case the moduli space M (g)
splits as

Mé(g) = S x T,

where m = (n+1)/6,

sl — {(al,...,am) esml c R™: ﬁaj %o}

j=1

and I'g is a subset of
Fm:{(91,--->9m)eRm;o§91<---<0m<7r}.

Moreover, if I'g is a proper subset of I'* then it is locally a disjoint finite union of d-
dimensional real analytic subvarieties where d = 0,...,m — 1. We prove (see Theorem
4.2.1) that I'g = I'" in the case where the surface M is simply connected.

If M is compact and not homeomorphic to the torus, then it is shown that the set
I’y that shows up in the moduli space is a proper subset of I (see Theorem 4.4.3).
As a result, we are able to prove the following theorem, which provides an answer to
the aforementioned problem for minimal surfaces in spheres with low codimension.

Theorem. Let g: M — S° be a compact pseudoholomorphic curve. If M is not home-
omorphic to the torus, then the moduli space of all noncongruent substantial minimal
surfaces in S™, 4 < n <7, that are isometric to g is empty, unless n =5 in which case
the moduli space is a finite set.

The necessity of the assumption that the surface is not homeomorphic to the torus
is justified by the class of flat tori in S° (see Remark 4.4.2).

Moreover, we prove (see Theorem 4.4.2) that, under certain assumptions, there are
no minimal surfaces in even dimensional spheres that satisfy the condition (x).

It is worth noticing that a necessary and sufficient condition for a two dimensional
Riemannian manifold to be locally isometric to a minimal Lagrangian (or totally real)
surface in the complex projective plane CP? (see [15, Theorem 3.8]) is that its induced
metric satisfies condition (x). Thus studying the minimal surfaces in spheres that are
locally isometric to pseudoholomorpic surfaces in a totally geodesic S® in the nearly
Kéhler S° is equivalent to the study of those minimal surfaces in spheres that are
locally isometric to minimal Lagrangian surfaces in CP2. Our results apply to minimal
surfaces in spheres that are locally isometric to minimal Lagrangian surfaces in CP?.
The study of Lagrangian submanifolds of a Kéhler manifold was initiated in the early
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1970’s. A Lagrangian submanifold M of a Kéihler manifold M is a submanifold such
that the almost complex structure of the ambient manifold M carries each tangent
space of M into the corresponding normal space of M. We notice that the interesting
class of Lagrangian surfaces in CP? has been widely investigated by many authors.
In particular, methods of constructing minimal Lagrangian surfaces were provided in
[7, 29, 30, 31].

In Chapter 5, we deal with isotropic pseudoholomorphic curves in the nearly Kéahler
sphere S8. It turns out that these surfaces are rigid, if they are compact. In fact, for
compact minimal surfaces our result is stated as follows.

Theorem. Let f: M — S™ be a compact substantial minimal surface. If f is isometric
to an isotropic pseudoholomorphic curve g: M — S5, then n = 6 and f is congruent
to g.

The same result holds if instead of the compactness of the surface we assume that
the surface is exceptional.

Finally, in Chapter 6 we deal with the third class of pseudoholomorphic curves, the
non-isotropic ones in S6. For a given pseudoholomorphic curve g: M — S that is non-
isotropic, our aim is to describe the moduli space /\/lff (g) of all noncongruent minimal
surfaces f: M — S™ that are locally isometric to the curve g, having the same normal
curvatures up to order 2 with the curve g (for the definition of the normal curvatures
we refer the reader to Chapter 2). We are able to give the following description of
the moduli space of a pseudoholomorphic curve in any of the three classes mentioned
before.

Theorem. Let g: M — S8 be a pseudoholomorphic curve. The moduli space of all
noncongruent minimal surfaces f: M — S5 that are isometric to g and have the same
normal curvatures with g, is either a circle or a finite set.

For non-isotropic pseudoholomorphic curves substantial in S, under an assumption
on the Euler-Poincaré number of the second normal bundle (see Chapters 2 and 3 for
details), we prove the following result that provides a partial answer to our problem.

Theorem. Let g: M — S® be a compact substantial pseudoholomorphic curve that
is mon-isotropic. If the Euler-Poincaré number of the second normal bundle of g is
nonzero, then there are at most finitely many minimal surfaces in S8 isometric to g
having the same normal curvatures with g.

The necessity of the assumption on the codimension and the global assumptions in
the above theorem is justified by the fact that direct sums of the associated family of
a simply connected non-isotropic pseudoholomorphic curve g: M — S° yield minimal
surfaces isometric to g (see Remark 6.2.1).
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In addition, we prove the following theorem that may be viewed as analogous to the
classical result of Schur (see [8, p. 36]) in the realm of minimal surfaces in spheres.

Theorem. Let g: M — S® be a compact, non-isotropic and substantial pseudoholo-
morphic curve and g: M — S™ be a substantial minimal surface that is isometric to
g. If § is not 2-isotropic and the second normal curvatures Ky, Kj of the surfaces g
and § respectively satisfy the inequality IA(QL < KQJ-, then n = 6. Moreover, the moduli
space of all such noncongruent minimal surfaces §: M — S® that are isometric to g,
is either a circle or a finite set.



CHAPTER

PRELIMINARIES

In this chapter, we collect several facts and definitions about minimal surfaces in
spheres. For more details we refer to [11] and [13].

2.1 Higher fundamental forms and higher normal sub-
bundles

Let f: M — S™ be an isometric immersion of a 2-dimensional Riemannian manifold.
The kt"-normal space of f at p € M for k > 1 is defined as

N/ (p) = span {a£+1(X1, e X)X X € TpM} ,
where the symmetric tensor
ol :TM x --- x TM — N;M, s> 3,

given inductively by
s L Lot +
al(Xy,...,Xs) = (VXS-~-VX304 (XQ,X]_)) ,

is called the st"-fundamental form and of : TM xTM — N M stands for the standard
second fundamental form of f with values in the normal bundle. Here, V- denotes the
induced connection in the normal bundle N¢M of f and (- )t stands for the projection
onto the orthogonal complement of le ®---BN f_2 in NyM. It is well known that if

S

f is minimal, then dimN,f(p) < 2forall k>1and any p e M (cf. [11]).

A surface f: M — S™ is called regular if for each k the subspaces N ,f have constant
dimension and thus form normal subbundles. Notice that regularity is always verified
along connected components of an open dense subset of M.
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Assume that an isometric immersion f: M — S™ is minimal and substantial. By
the latter, we mean that f(M) is not contained in any totally geodesic submanifold of
S™. In this case, the normal bundle of f splits along an open dense subset of M as

NyM=N{&N{& &N/, m=[n-1)/2].

All higher normal bundles have rank two except possible the last one that has rank one
if n is odd; see [9] or [11]. Moreover, if M is oriented, then an orientation is induced
on each plane subbundle N, Sf given by the ordered basis

ol (X, X), ol (JX, ..., X),
where 0 # X € T'M, and J is the complex structure of M determined by the orientation
and the metric.

At any point p € M and for each Nﬂc, 1 < r < m, the r*'-order curvature ellipse
&l (p) c N (p) is defined by

&l (p) = {ozf:rl(Z“D, o Z%): Z¥ =cospZ +sinpJZ and ¢ € [0,277)},

where Z € T, M is any vector of unit length.

A substantial regular surface f: M — S" is called s-isotropic if it is minimal and at
any point p € M the curvature ellipses & (p) contained in all two-dimensional N{’s
are circles for any 1 < r < s. It is called isotropic if it is s-isotropic for any s.

The 7-th normal curvature K- of f is defined by
L2 f
K. = —Area(&)).
T
If Kk > pr > 0 denote the length of the semi-axes of the curvature ellipse S,f , then

K = 2k, (2.1)

Clearly, the curvature ellipse &l (p) at a point p € M is a circle if and only if k,.(p) =
fir (p)-

The eccentricity €, of the curvature ellipse & s given by

(k2 - p2)'"?
Er = T,
Ry

/

where (n% — u%)l ? is the distance from the center to a focus, and can be thought of

as a measure of how far & deviates from being a circle.

10



Chapter 2 2.1. Higher fundamental forms and higher normal subbundles

The a-invariants (see [43]) are the functions
B 1/2
af = wopr = (27Nl P £ K)

These functions determine the geometry of the r-th curvature ellipse.

Denote by ¢ the index of the last plane bundle, in the orthogonal decomposition
of the normal bundle. Let {ej,ea} be a local tangent orthonormal frame and {e,}
be a local orthonormal frame of the normal bundle such that {eg, 11, €242} span Nﬂc
forany 1 < r < T]? and eg;,+1 spans the line bundle N7{1+1 if n = 2m + 1. For any
a=2r+1or a=2r+4 2, we set

¢ = (ol (e1,. . e1) eq), S = (ol (e1,. .. e1,e0),ea),

where (-, ) is the standard metric of S”. Introducing the complex valued functions
H, = h{ +ih§ forany a =2r+1 or a=2r+2,
it is not hard to verify that the r-th normal curvature is given by

Kﬁ_ =1 <H2r+lﬁ2r+2 - ﬁ2r+1H2r+2) . (22)

The length of the (r + 1)-th fundamental form oaf 41 Is given by

a1 |I* = 27 (|Horaa” + | Hor o), (2:3)

or equivalently (cf. [1])
ol = 27 (57 + 7). (2.4)

In particular, it follows from the Gauss equation that

lad|? = 2(1 - K). (2.5)

Each plane subbundle N,f inherits a Riemannian connection from that of the normal

bundle. Its intrinsic curvature K is given by the following proposition (cf. [1]).

Proposition 2.1.1. The intrinsic curvature K} of each plane subbundle Nﬂc of a
minimal surface f: M — S™ is given by

f2 il I12 fo2
_ et las]] _ K Jer]? llagll
Kik = Kl — ﬂ and K: = (KTJ,—il)2 27.72 — ZT'KYJ.— f07’ 2 S T S T;.

11
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2.2 The associated family

Let f: M — S™ be a minimal isometric immersion. If M is simply connected, there
exists a one-parameter associated family of minimal isometric immersions fy: M — S™,
where § € St = [0,7) = R/7Z. To see this, for each § € S! consider the orthogonal
parallel tensor field

Jop = cosOI +sinfJ,

where I is the identity endomorphism of the tangent bundle and J is the complex
structure of M induced by the metric and the orientation. Then, the symmetric section
ol (Jg-, ) of the bundle Hom(T'M x TM, Ny M) satisfies the Gauss, Codazzi and Ricci
equations, with respect to the same normal connection; see [12] for details. Therefore,
there exists a minimal isometric immersion fy: M — S™ whose second fundamental
form is given by

ol (X,Y) = Tpa! (JpX,Y), (2.6)

where Ty: NyM — Ny, M is a parallel vector bundle isometry that identifies the normal
subspaces st with stg, s> 1.

2.3 Hopf differentials and Exceptional surfaces

Let f: M — S™ be a minimal surface. The complexified tangent bundle TM ®
C is decomposed into the eigenspaces T'M and T” M of the complex structure J,
corresponding to the eigenvalues ¢ and —i. The (r + 1)-th fundamental form af 1
which takes values in the normal subbundle qu , can be complex linearly extended to
TM ® C with values in the complexified vector bundle N,f ® C and then decomposed
into its (p, g)-components, p + ¢ = r + 1, which are tensor products of p differential 1-
forms vanishing on 7" M and q differential 1-forms vanishing on 7M. The minimality
of f is equivalent to the vanishing of the (1, 1)-part of the second fundamental form.
Hence, the (p, ¢)-components of af 41 vanish unless p = r+1 or p = 0, and consequently
for a local complex coordinate z = x + iy on M, we have the following decomposition

ol = a8,
where
+1,0 0,741 +1,0 1,0 .0
a7(“:-1 ):avjﬂc—kl(a’"'?&)v af‘—i—? ):av(j—ni-l ) and 825(%_287@;)

The Hopf differentials are the differential forms (see [41])

_ (r+1,0) _(r+1,0)\ ;_2r+2
(I)T - <ar+1 7ar+1 >dZ

12
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of type (2r+2,0),r =1,...,[(n—1)/2], where (-, -) denotes the extension of the usual
Riemannian metric of S to a complex bilinear form. These forms are defined on the
open subset where the minimal surface is regular and are independent of the choice of
coordinates, while ®; is globally well defined.

Let {e1, ea} be alocal orthonormal frame in the tangent bundle. It will be convenient
to use complex vectors, and we put
E=e¢1 —ies and ¢ = wi + iwo,
where {w,ws} is the dual frame. We choose a local complex coordinate z = x + iy
such that ¢ = Fdz.

From the definition of Hopf differentials, we easily obtain
1 /=2 -2
e, = 1 (H2r+1 + H2r+2> ¢,

Moreover, using (2.2) and (2.3), we find that

2 F2r+2
+1,0 +1,0
<047(«11 )vaf(zﬂ )>’ = 92rta (HO‘1{+1H4 - 4T(K7=L)2) . (2.7)

Thus, the zeros of ®, are precisely the points where the r-th curvature ellipse STf is a
circle. From (2.1) and (2.4) we obtain the following:

Lemma 2.3.1. Let f: M — S™ be a minimal surface. Then the following assertions
are equivalent:

(i) The surface f is s-isotropic.
(ii) The Hopf differentials satisfy ®, =0 for any 1 <r < s.

(i11) The length of the (r + 1)-th fundamental form affﬂ and the r-th normal cur-
vature K- satisfy

laf 1l = 27K

for any 1 < r < s. In particular, the surface f is I-isotropic if and only if the first
normal curvature Ki- satisfies
Ki=1-K.

The Codazzi equation implies that ®; is always holomorphic (cf. [9, 10]). Besides @1,
the rest Hopf differentials are not always holomorphic. The following characterization
of the holomorphicity of Hopf differentials was given in [42], in terms of the eccentricity
of curvature ellipses of higher order.

13
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Theorem 2.3.1. Let f: M — S™ be a minimal surface. Its Hopf differentials ®o, ...,
D, 1 are holomorphic if and only if the higher curvature ellipses have constant eccen-
tricity up to order r.

A minimal surface in S"™ is called r-exceptional if all Hopf differentials up to order
r + 1 are holomorphic, or equivalently if all higher curvature ellipses up to order r
have constant eccentricity. A minimal surface in S™ is called exceptional if it is r-
exceptional for r = [(n — 1)/2 — 1]. This class of minimal surfaces may be viewed as
the next simplest to superconformal ones. In fact, superconformal minimal surfaces
are indeed exceptional, characterized by the fact that all Hopf differentials vanish up
to the last but one, which is equivalent to the fact that all higher curvature ellipses are
circles up to the last but one. As a matter of fact, there is an abundance of exceptional
surfaces.

We recall some results for exceptional surfaces proved in [42], that will be used in
the proofs of our main results. A regular point is a point p € M where the normal
spaces have the maximum possible dimension.

Proposition 2.3.1. Let f: M — S™ be an (r — 1)-exceptional surface. At regular
points the following hold:

(i) For any 1 < s <r —1, we have
Alog [lasial* = 2((s + DK — K7),
where A is the Laplacian operator with respect to the induced metric ds.
(ii) If @, # 0, then
Alog (yya,.+1u2 + 27"K,+) = 2((r+ 1)K — K7)

and
Alog (HaMHQ - 27"K,,l) =2((r + 1)K + K7).

(i3) If &, =0, then

Alog [lary1]® = 2((r + 1)K — K}).

(iv) The intrinsic curvature of the s-th normal bundle N{ is K;=0¢f1<s<r-—1
and @4 # 0.

A remarkable property of exceptional surfaces is that singularities of the higher

normal bundles are of holomorphic type and can be smoothly extended to vector
bundles. This fact was proved in [42, Proposition 4].

14
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Proposition 2.3.2. Let f: M — S™ be an r-exceptional surface. Then the set Ly,
where f fails to be regular, consists of isolated points and all NI s and the Hopf dif-
ferentials ®4’s extend smoothly to Ly for any 1 < s <.

2.4 Absolute value type functions

For the proof of our results, we use the notion of absolute value type functions
introduced in [15, 16]. A smooth complex valued function p defined on a Riemann
surface is called of holomorphic type if locally p = pop1, where pg is holomorphic and
p1 is smooth without zeros. A function u: M — [0,400) defined on a Riemann surface
M is called of absolute value type if there is a function p of holomorphic type on M
such that u = |p|.

The zero set of such a function on a connected compact oriented surface M is either
isolated or the whole of M, and outside its zeros the function is smooth. If u is a
nonzero absolute value type function, i.e., locally u = |tp|u1, with ¢y holomorphic, the
order k > 1 of any point p € M with u(p) = 0 is the order of ¢ty at p. Let N(u) be the
sum of the orders for all zeros of u. Then Alogu is bounded on M ~ {u = 0} and its
integral is computed in the following lemma that was proved in [15, 16].

Lemma 2.4.1. Let (M, ds?) be a compact oriented two-dimensional Riemannian man-
ifold with area element dA.

(i) If u is an absolute value type function on M, then

/ AlogudA = =27 N (u).
M

(i) If @ is a holomorphic symmetric (r,0)-form on M, then either ® =0 or N(®) =
—rx(M), where x(M) is the Euler-Poincaré characteristic of M.

The following lemma, that was proved in [33], provides a sufficient condition for a
function to be of absolute value type.

Lemma 2.4.2. Let D be a plane domain containing the origin with coordinate z and u
be a real analytic nonnegative function on D such that w(0) = 0. If u is not identically
zero and logu is harmonic away from the points where uw = 0, then u is of absolute
value type and the order of the zero of u at the origin is even.

We will also need the following result [43], concerning the Euler-Poincaré number
of the plane normal subbundles of exceptional surfaces.

15
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Lemma 2.4.3. Let f: M — S™ be a compact exceptional surface. The Euler-Poincaré
number X(NTfM) of the r-th plane normal bundle and the Euler-Poincaré characteristic
X(M) of M satisfy the following:

(i) If ®, # 0 for some 1 <r < m, where m = [(n —1)/2], then

X(NIM)=0 and (r+1)x(M)=—N(a))=—N(a;).

r

(ii) If &, = 0 for some 1 <r <m, then

(r+ 1)x(M) — x(N/ M) = —=N(a}}).

(15 )If ., # 0, then
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CHAPTER

PSEUDOHOLOMORPHIC CURVES IN
THE NEARLY KAHLER SPHERE SO

In this chapter, we recall the nearly Kéhler structure of the sphere S® and we sum-
marize some well known facts about pseudoholomorphic curves in the nearly Kahler
sphere S6.

3.1 The nearly Kihler sphere S°

A finite dimensional algebra A over R with euclidean inner product is called normed
if ||ab|| = ||al|/||b|| for any a,b € A. We have an orthogonal decomposition A = R-1@ A’
where A’ is called the space of imaginary elements of A. Every nonzero a € A has an
inverse a~! = @/||a||? where @ = ag — @’ for a = ag +a’ with ay € R and a’ € A’. There
are only four normed algebras: R,C,H,O (real and complex numbers, quaternions
and octonions), and the octonions @ = R® contain all the others. Octonions are not
associative, but still computations are easy if one observes the following three rules
which follow almost immediately from the equation ||ab|| = ||al|||b]|:

(1) Any unit vector a € Q' generates a subalgebra isomorphic to C where a plays
the role of i.

(2) Any two orthonormal a,b € Q' generate a subalgebra isomorphic to H where
a, b, ab play the roles of 7, j, k; they are associative and anticommutative, ab = —ba.

(3) Any three orthonormal a,b,c € Q' with ¢ L ab (normed Cayley triples) generate
the algebra Q; they are antiassociative, a(bc) = —(ab)c.

Let 1,4, 7, k,1,il, jl, kl be the standard basis of @ = H+Hl. Then (i, j,[) is a normed
Cayley triple, and so is its image (i, oj, al) under any automorphism « of Q; note that
a is orthogonal. Vice versa, given any normed Cayley triple (a, b, ¢), there is precisely
one automorphism « of O with a = «ai,b = «j,¢ = al. Thus the space of normed
Cayley triples is a manifold of dimension 6 + 5 + 3 = 14 on which the exceptional
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Chapter 3 3.1. The nearly Kihler sphere S6

group Go = Aut(Q) C SO7 acts simply transitively. In particular, G2 acts transitively
on S°.

For a € O’ and b € O we have (using rule (2))
a(ab) = a®b = —(a, a)b,

and this remains true for a € Q,,b € O where (,) is the complexified inner product.
In particular a(ab) = 0 when (a,a) = 0. Other useful formulas which extend for all
a,b,c e Q. are

(ab,acy = (a,a)(b,c)

and the antisymmetry of (ab, ¢) in all three variables.

The sphere S8 plays a similar role for the octonions @ as the sphere S? for the
quaternions H: they are unit spheres in A’, the imaginary part of the division algebra
A = O, H, respectively. Each p € S satisfies (L,)> = —I where L, : x + pz denotes
the left multiplication with p. Hence L, is a complex structure preserving the plane
Span{l, p} and its orthogonal complement, the tangent space 1,,S. Thus J, := L,|T},S
is a complex structure on 7,S and defines an almost complex structure J on S. It is
convenient to use the cross product a x b which is the imaginary (A’—) part of the
product ab for any a,b € A’:

ab if a L b,

axb=(ab) =
0 if a,b are linearly dependent.

Then each J, extends to a linear map on A’,
Jp(v) =p x v, (3.1)

and the derivative of the matrix-valued linear map J : A’ — End(A’) : p — J, is
(0yJ)w = v x w. Denoting by V = 07 the Levi-Civit4 derivative on S®, we have

(Vo J)w = (v x w)

pL =V X W — (v X w,p)p,

where p € S% is the position vector and v, w € T,S = p*. In particular (9,J)v = vxv =
0 and therefore
(VydJ)v = 0.

A Riemannian manifold with an almost complex structure J with this property is
called nearly Kdhler.

An orthogonal linear map g on Q" which preserves the almost complex structure .J
satisfies gJp(v) = Jgp(gv) for any p,v € O with v L p. By (3.1) this is equivalent
to g(pv) = (gp)(gv) which holds if and only if g € G2 = Aut(0Q) C SO7. Thus G2 is
precisely the group of isometries g on S® which are pseudoholomorphic.
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3.2 Pseudoholomorphic curves and their properties

A pseudoholomorphic curve is a nonconstant smooth map g: M — S® from a Rie-
mann surface M into the nearly Kéhler sphere S, whose differential is complex linear.
This concept was introduced by Bryant [3].

It is known [3, 18] that any pseudoholomorphic curve g: M — S is 1-isotropic. The
nontotally geodesic pseudoholomorphic curves in S® are either substantial in a totally
geodesic S° C S°® or substantial in S° (see [2]). In the latter case, the curve is either
null torsion (studied by Bryant [3]) or non-isotropic. It turns out that null torsion
curves are isotropic.

The following theorem (see [18]) provides a characterization of Riemannian metrics
that arise as induced metrics on pseudoholomorphic curves in a totally geodesic S° of
the nearly Kahler sphere S6.

Theorem 3.2.1. Let (M,ds?) be a simply connected Riemann surface, with Gaussian
curvature K < 1 and Laplacian operator A. Suppose that the function 1 — K is of
absolute value type. Then there exists an isometric pseudoholomorphic curve g: M —
S® if and only if

Alog(l — K) =6K. (%)

In fact, up to translations with elements of Ga, that is the set Aut(Q) C SO(7), there
is precisely one associated family of such maps.

The above result shows that a minimal surface in a sphere is locally isometric to a
pseudoholomorphic curve in S? if its Gaussian curvature satisfies the condition (x) at
points where K < 1, or equivalently if the metric d§? = (1 — K)'/3ds? is flat.

Let g: M — S° be a pseudoholomorphic curve and let & € T'(NV M) be a smooth
unit vector field that spans the extended line bundle Ni over the isolated set of points
where f fails to be regular (see Proposition 2.3.2). The surface g*: M — S° defined
by ¢g* = £ is called the polar surface of g. It has been proved in Corollary 3 in [43] that
the surfaces g and g* are congruent.

The following lemma is crucial for our proofs.

Lemma 3.2.1. Let f: (M,ds?) — S™ be a nontotally geodesic minimal surface. If
(M, ds?) satisfies the Ricci-like condition (%), at points with Gauss curvature K < 1,
then the function 1 — K is of absolute value type with isolated zeros of even order.
Moreover, if M is compact and p;,j = 1,...,m, are the isolated zeros of 1 — K with
corresponding order ord, (1 — K) = 2k;, then we have

D ki = =3x(M), (3.2)

Jj=1
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where x (M) is the Euler-Poincaré characteristic of M. In particular, M cannot be
homeomorphic to the sphere S?.

Proof. Let My be the set of points where K = 1. The open subset M ~ My is dense on
M, since minimal surfaces in spheres are real analytic. Around each point pg € Mpy,
we choose a local complex coordinate z such that pg corresponds to z = 0 and the
induced metric is written as ds?> = F|dz|?. The Gaussian curvature K is given by

9
K = —FﬁalogF.

Moreover, condition (x) is equivalent to
4001og(1 — K) = 6K F.

Thus we have B
d0log ((1— K)F?) = 0.

According to Lemma 2.4.2, the function 1 — K is of absolute value type with isolated
zeros pj,j = 1,...,m, and corresponding order ord,, (1 — K') = 2k;. Then, (3.2) follows
from Lemma 2.4.1(i) and condition (). O

We recall the following theorem (see [18]), which provides a characterization of
Riemannian metrics that arise as induced metrics on isotropic substantial pseudoholo-
morphic curves in the nearly Kéhler sphere S°.

Theorem 3.2.2. Let (M, ds?) be a simply connected Riemann surface, with Gaussian
curvature K < 1 and Laplacian operator A. Suppose that the function 1 — K is of
absolute value type. Then there exists an isotropic pseudoholomorphic curve g: M —
S8, unique up to translations with elements of Gg, with induced metric ds? if and only
if

Alog(l - K)=6K — 1. (%)

The following theorem [43] provides a characterization of Riemannian metrics that
arise as induced metrics on non-isotropic substantial pseudoholomorphic curves in the
nearly Kihler sphere S°.

Theorem 3.2.3. Let (M, ds?) be a simply connected Riemann surface, with Gaussian
curvature K < 1 and Laplacian operator A. Suppose that the function 1 — K is of
absolute value type. Then there exists a non-isotropic substantial pseudoholomorphic
curve g: M — S8, unique up to translations with elements of Ga, with induced metric
ds? if and only if

Alog (1 - K)*(1—6K + Alog (1 — K))) = 12K.
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Moreover the following holds:

6K —1 < Alog(l — K) < 6K. (3.3)
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CHAPTER

[SOMETRIC DEFORMATIONS OF
PSEUDOHOLOMORPHIC CURVES IN A
TOTALLY GEODESIC S° OF S9

In this chapter, we study the nontrivial isometric deformations of pseudoholomorphic
curves in a totally geodesic S® of the nearly Kihler sphere S®. Given a pseudoholomor-
phic curve g: M — S°, one wishes to describe the moduli space of all noncongruent
substantial minimal surfaces f: M — S™ that are locally isometric to the curve g. It
turns out that this is a hard problem. However, under appropriate global assump-
tions, we prove (see Theorem 4.4.1) that minimal surfaces in spheres that are locally
isometric to a pseudoholomorphic curve in a totally geodesic S° C S°, are exceptional.
Therefore, it is quite natural to investigate this moduli space in the class of exceptional
substantial surfaces in S”. We denote by M¢(g) the moduli space of all noncongruent
substantial exceptional surfaces f: M — S™ that are isometric to the curve g.

One of the main results of this chapter is Theorem 4.2.1, which gives a partial answer
to our problem of the chapter. Theorem 4.2.1 below implies that if M is nonflat simply
connected and n is odd, then n = 5 mod 6,

M (g) =SP=H < T,
where m = (n +1)/6,
gl — {a: (a1, am) €S CR™: [[ oy ;Ao}
j=1
and
I ={0=(61,...,0m) €[0,m) X - x[0,m): 0< 0 <+ <Op <7}

For not necessarily simply connected surfaces we prove the following theorem which
provides properties of the moduli space M, (g) of exceptional surfaces that are locally

23



4.1. A class of minimal surfaces that are locally isometric to pseudoholomorphic
Chapter 4 curves in a totally geodesic S? of S°

isometric to a pseudoholomorphic curve in a totally geodesic S® in the nearly Kéhler
sphere SS.

Theorem 4.0.1. If g is a nonflat pseudoholomorphic curve in S°, and n is odd, then
the moduli space M (g) splits as ST1x T, where Ty is a subset of T™. If Ty is a proper
subset of I'™, then it is locally a disjoint finite union of d-dimensional real analytic
subvarieties where d = 0,...,m — 1. Moreover, the subset I'g has the property that for
each point @ € Ty, every straight line through @ that is parallel to every coordinate azis
of R™ either intersects I'g at finitely many points, or at a line segment.

Under appropriate global assumptions, we prove some global results related to the
problem mentioned before. Among them, the following theorem provides an answer to
this problem for minimal surfaces in spheres with low codimension.

Theorem 4.0.2. Let g: M — S® be a compact pseudoholomorphic curve. If M is
not homeomorphic to the torus, then the moduli space of all noncongruent substantial
minimal surfaces in S, 4 < n < 7, that are isometric to g is empty, unless n =5 in
which case the moduli space is a finite set.

4.1 A class of minimal surfaces that are locally isometric

to pseudoholomorphic curves in a totally geodesic S°
of S

The aim of this section is to study a class of minimal surfaces that are exceptional,
nonflat and locally isometric to a pseudoholomorphic curve in a totally geodesic S® in
the nearly Kihler sphere S°.

This class of surfaces is constructed as follows. Let g: M — S° be a simply connected
pseudoholomorphic curve with Gaussian curvature K < 1, with respect to the induced
metric (-,-) = ds?, and let gy, 0 € S!, be its associated family.

Take

m
a=(a1,...,am) €S ' CR™ with [Ja; #0
j=1

and
0= (01,...,00) €S x--- xS, where 0<6; <--- <8, <m.

We consider the map § = ga9: M — S6m=1 < R6™ defined by
9= gap = a190, D - D amgo,,, (4.1)
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where @ denotes the orthogonal sum with respect to an orthogonal decomposition of
RS Its differential is given by

dg = a1dge, @ - - - D amdge,,-

It is obvious that ¢ is an isometric immersion. We can easily see that the second
fundamental form of the surface § is given by

m
aa(X,Y) =) aja”(XY), X,Y € TM,
j=1
which implies that ¢ is minimal.

The following proposition provides several properties for the above class of minimal
surfaces. More important is that these surfaces turn out to be exceptional. The proof
of the latter strongly uses the fact that the surface g is pseudoholomorphic with respect
to the almost complex structure of the nearly Kihler sphere S°. In fact we are able
to compute all Hopf differentials of § using Lemma 5 in [43], where it is shown how
the pseudoholomorphicity provides information on the third fundamental form of the
surface g, besides being 1-isotropic.

Proposition 4.1.1. For any simply connected pseudoholomorphic curve g: M — S5,
the minimal surface §g: M — S~ given by (4.1) is substantial and isometric to g.
Moreover, it is an exceptional surface and the following hold:

(i) The length of its (s + 1)-th fundamental form is given by
be(1 — K)5/3 if s =0 mod 3,
[dsr1]? = bs(1 — K)E+2/3 if s =1mod 3, (4.2)
bs(1— K)tD/3  if s =2 mod 3,
for any 1 < s < 3m — 1, where b are positive numbers.
(ii) Its s-th normal curvature is given by
és (1 — K)%/3 if s=0mod 3,
Kf=1{¢(1—K)st/B3  if =1mod 3, (4.3)
& (1= K)tD/3 if s =2 mod 3,
for any 1 < s < 3m — 1, where ¢5 are positive numbers.
(iii) Its s-th Hopf differential is given by
. { d,®ETD/3 if =2 mod 3,

s =
0 otherwise,
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for any 1 < s < 3m — 1, where ds € C and ® is the second Hopf differential of g.

Proof. We consider a local orthonormal frame {ej,e2} in the tangent bundle away
from totally geodesic points of g. Moreover, we choose a local orthonormal frame field
{&1,&2,&3} in the normal bundle of ¢g such that

a(er,er)

B  alenen)
= Jatene)]” 2

~ lafer,e)ll”

&1

From Lemma 5 in [43] it follows that h3 = x, h3 = 0, h{ = 0 and hj = k, where & is
the radius of the first circular curvature ellipse. Hence Hs = x and Hy = k. Moreover,
we have that h3 = 0 and h3 = k. Therefore, it follows that

(Ve &) =1, (VL& &) =0,

(Ve,1,83) =0, (V6. 83) =1,
or equivalently
(V&s,61 —i&a) =0, (Vs, &1 +ila) = =2, (4.4)
where £ = e — ies.

In order to show that the minimal surface § is substantial, it is sufficient to prove
that

> aj(ge;,wy) =0 (4.5)
j=1

for (wi,...,wy) € R =R6 & ... @ RS implies that w; = 0 for any j = 1,...,m.

Assume to the contrary that w; # 0 for all j = 1,..., m. Differentiating (4.5) we
obtain

> a;(dgs,, wj) =0, (4.6)
j=1
and
Zaj (a”i,w;) = 0.
j=1

Using (2.6), we have that

Z a; <ng01g(Jng, E), wj> =0,

Jj=1
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where Ty, : NgM — Ngng is a parallel vector bundle isometry. Since JoE = ¢ *F,
it follows that

m

Z aje_iaj <T9j ({1 + ifg), wj> =0. (4.7)

j=1

Differentiating with respect to E, and using the Weingarten formula, we obtain
m m
> aje <V%T0j (&1 +i&2), wj> =D _ae™ <d99.7- © Az (¢1+ig) (E), wj> :
j=1 j=1

where AT‘)J‘" is the shape operator of gy, with respect to its normal direction Tpy,n. It
follows from (2.6) that '

gy (61+ien) = €7 A vigy-
This and (4.6) yield

> aje <T9]- (V% (& + i§2)> ,wj> =0.
j=1
Using (4.4) and (4.7), the above is written as
Zajefiej <T9j§3,wj> =0,
j=1

or equivalently
m
—if.;
> aje (s wj) =0,
=1

where g;j = Tp,&s3 is the polar surface of gy;. This is equivalent to

m m
Zaj cos Hj(gzj,wj> =0 and Zaj Sin9j<g;j7wj> =0.
=1 =1

Eliminating (g; ,wm), we can easily see that

m—1
a; <g’5j,w§m)> =0, (4.8)
j=1
where w§m) = sin(6, — 0j)w; # 0. Using the fact that the polar surface of gp, is

congruent to gg, (cf. [14, Lemma 11], or [43, Corollary 3]) and arguing as for (4.8),

we have that
m—2

a; <99j ) w](‘mil)> = 0’
7j=1
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where wj(-m_l) = sin(0,—1 — Qj)wj(»m). By an induction argumnet, we obtain

ai{ge,,w) =0 or ai(gy,,w)=0

for a vector w € R \ {0}, which is a contradiction. Hence § is substantial.

Claim. We now claim that the higher fundamental forms of § are given by

KB Clgp, if s=0mod 6,

g(s—D/3 > csdge, (E) if s=1mod 6,

(sHD/3S 5Ty (& +i&p)  if s =2 mod 6

_ _ K _1C:1lg 1 <) 1 s mo ,
as(E,..., ) = I (4.9)

KS/3 Z;n:l 3Ty, &3 if s =3 mod 6,

o(5—1)/3 Yoy ciTy; (61 —i&) if s=4mod 6,

(s+1)/3 Z;”Zl ijdgej (E) if s =5 mod 6,

where the complex vectors Cs = (cf,...,c5,) € C"™ {0}, 2 < s < 3m satisfy the

rm
following orthogonality conditions, with respect to the standard Hermitian product

(+,-) on C™:

(Ct,Cy) =0 if t=1mod 6 and t' =5 mod 6, or t =2 mod 6 and ¢ = 4 mod 6,
o (4.10)
(Ct,Cy) =0=(Cy,Cy) ift #t and t,t' =0mod 6, or t,t' =3 mod 6, (4.11)

(Ct,Cy) =0=(Cy,Cy) if t#t and t,t' =1mod 6, or t,t' =2mod 6, (4.12)
ort,t =4 mod6, ort,t' =5mod6

and
(Ct,a) =01if t=0,1,5 mod 6. (4.13)

In particular, these complex vectors are defined inductively by

S S —~ \—
C,— 3 (ﬁ?Cs,CHTQt)Ct - 3 (ﬁjcs’cuj;)ct if s = 0 mod 6,
t=1mod6 ' * t=5mod 6 '
2Ty Cy if s =1 mod 6,
2C; if s =2 mod 6,
Coi1 = . B . (4.14)
—C,+ 2 LG, 4+ v CCa, if s =3mod6,
t=2 mod 6 ICel t=4 mod 6 ICel
—2TyCy if s =4 mod 6,
—2C; if s =5 mod 6,
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where C; = a and T,: C™ — C™ denotes the unitary transformation given by
Tou = (u1e” Y, .. ume ™), u=(ug,...,upy) €C™

for any o = (01,...,0m) € R™. It is worth noticing that (4.9) implies that C4 # 0 for
every 2 < s < 3m, since the surface § is substantial.

To prove the claim, we proceed by induction on s. Using that

dg(E) = a;dgy,(E),
j=1

the Gauss formula for g and gp;, 7 =1,...,m, yields

m
2(E,E) = RZC §1 + z§
7j=1
where cjz = 2aje*i9j. Hence, Cy = 2Ty C; = 2Tpa and this proves (4.9) for s = 2.

Let us assume that (4.9)-(4.14) hold for any ¢ < s. We shall prove that it is also
true for ¢t = s 4+ 1. From the definition of the higher fundamental forms, we have that

bos1(B,.. B) = (Vgau(E.....E))

= KM (% (Hia(E . ,E)>>N£ , (4.15)

where V is the induced connection of g*(TS®"~1), V is the induced connection of the
induced bundle (i o g)*(TR™), i: So™~1 — R is the standard inclusion, Ay is the

exponent of the function x in (4.9) and ()ng stands for the projection onto the s-th
normal bundle of §. Taking (4.4) into account, we obtain

NY

~ 1 —
Vi </{/\S Avs(F, ) Z cjdge,(E) if s =0 mod 6, (4.16)
= 1. - = S
VE<R)\Sa8(E,.. ,E)> =3 Zc]< (VEE, E)dgs, (E) (4.17)
7j=1

+4/<;e*i91ng (&1 + ifg)) if s =1 mod 6,

Ve <1€v8( > ZC ( [(VEEL &) Ty, (& +i&2) + 2T, 53) if s =2 mod 6,
=1
] (4.18)
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= I . = —= N o e
Vi EQS(E’ L E) | =— Z:lchgj (& —i&) if s =3 mod 6, (4.19)
v I = Il . s —i6;
% <,{)\3055(E7 . ,E)) = Z cj< — 2ke efdggj (E) (4.20)
j=1
+i(VEEr, €)Ty, (61 — i@)) if s = 4 mod 6
and
. 1 .
VE<HA3045(E, ) Zc ((VEE, E)dgy,(E) — 4gp,) if s =5 mod 6,

(4.21)
where V is the Levi-Civitd connection on M.

Using (4.15) and (4.16)-(4.21), after some tedious computations, we derive that (4.9)
holds for t = s + 1. Taking into account (4.9) for ¢ = s 4 1, the orthogonality of the
higher normal bundles and (4.10)-(4.13) for ¢t < s, we obtain that (4.10)-(4.13) are also
true for ¢ = s + 1, and this completes the proof of the claim.

From (2.4) and since the length of the semi-axes ks and ps of the s-th curvature
ellipse satisfy
951~ T =\ 12
’ﬂg + Mg =2 % Has—i-l(Ea s 7E)H )
we have

(E,....,B)|.

s ] =
Clearly (4.2) follows from (4.9) with

92(3=45)/3 || Cy 1 ||? if s=0mod 3,
b, = { 2(1-4s)/3 |Cop1|? if s=1mod 3,
—(1+4s)/3 HCs+1HQ if s=2mod 3.

Furthermore, the s-th normal curvature is given by

. 1/2
Ki=9% (Hasﬂ B)|* - (asii (B .,E),asH(E,...,E))\Q) .
This, combined with (4.9) yields (4.3), where
2B=79)/3||Cy 1) if s=0mod 3,
ée =4 20578 |C )2 if s=1mod 3,

_ 1/2
204765 (|~ |(Conr, Coen) P) i 5 =2mod 3
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Using (4.9) and the fact that the s-th Hopf differential of g is written as
Oy =47 (G (B, ..., E), dsi1 (B, ..., E)) > 12,

we obtain

by = 4~ CHDRZT N (@242 if s =2 mod 3

m
j=1
and i’s = 0 otherwise.

The fact that the second Hopt differential ¢ of g is given by ® = 272k2¢5 com-
pletes the proof of part (iii), where dy = 2=4(+1/3(C, 1, Cy41). Obviously, all Hopf
differentials are holomorphic and consequently g is exceptional according to Theorem
2.3.1. O

In the subsequent lemma, we determine the associated family of any surface § = ga ¢
given by (4.1).

Lemma 4.1.1. The associated family g, of any minimal surface g = ga g 1s given by
Gy = Ga,p, Where o = (61 +,...,0mn + ¢).

Proof. Let f: M — S®"~1 be the minimal surface given by f = gay,. From (4.14)
we can easily see that the complex vectors C£ , Cs € C™ ~ {0} associated to f and
J = 9a g, respectively, satisfy

Cf = e ¥C, for any 2 <s < 3m.

Moreover, Proposition 4.1.1(iii) implies that the s-th Hopf differential of f is given
by

of { décfb(sﬂ)/:3 if s =2 mod 3,

0 otherwise,
where df = 2_4(S+1)/3(6£+1, C£+1)- Equivalently, we have

o) =
0 otherwise.

{ 2*4(“’*1)/362"5"(65“, C5+1)¢(5+1)/3 if s =2mod 3,
Thus the Hopf differentials of f and ¢ satisfy
q)f; = eZi‘P@s forany 1 <s<3m-—1.

According to Theorem 5.2 in [41], the associated family of the surface § is ga, and
this completes the proof. ]
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4.2 Isometric deformations of simply connected pseudo-
holomorphic curves in a totally geodesic S° of S°

In this section, we study exceptional surfaces that satisfy the Ricci-like condition
(%) or equivalently are locally isometric to a pseudoholomorphic curve in S°. To prove
our main results, we need the following proposition.

Proposition 4.2.1. Let f: M — S™ be a nonflat r-exceptional surface which satisfies
the Ricci-like condition (x). Then the following hold:

Forany 1 < s <r+1, we have:

be(1 — K)%/3 if s=0mod 3,
asir]? = { bs(1 = K)+D/3 if s =1mod 3, (4.22)
bs(1 — K)sHD/3 4f s =2 mod 3,

where {bs},{ps} are sequences of positive numbers such that by = 2,bs11 = p2bs, ps < 1
and ps =1 if s =0,1 mod 3.

Moreover, for any 1 < s < r, the following hold:
&, =0 if s=0,1mod 3, (4.23)

K if s =0 mod 3,

K; =< —-K if s=1mod 3, (4.24)
0 if s =2 mod 3,
and
cs(1— K)%/3 if s =0mod 3,
Ki =1 ¢c,(1—K)6t2/3  4f s =1mod 3, (4.25)

cs(1— K)HD/3 if s = 2mod 3,

where cs = 27°pgbs.

Proof. Weset ps = 25K/ ||asy1]|? . Since f is r-exceptional, the function py is constant
for any 1 < s < r. We proceed by induction on r.

Assume that f is 1-exceptional. The Gauss equation implies ||cs|* = 2(1—K). Then
from Proposition 2.3.1(i) for s = 1 and the Ricci-like condition (x), we find K7 = —K.
Moreover, we have Ki- = p1(1 — K). We claim that p; = 1. Assume to the contrary
that p; # 1. Then ®; # 0 and Proposition 2.3.1(ii) combined with condition (x) yield
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K{ = K, which is a contradiction. Hence p; = 1 and Proposition 2.1.1 yields (4.22)
for s = 2 with by = 2. This settles the case r = 1.

Suppose now that (4.23)-(4.25) hold if f is r-exceptional. We shall prove that
(4.23)-(4.25) also hold assuming that f is (r + 1)-exceptional. By Theorem 2.3.1, the
Hopf differential @, is holomorphic, hence either it is identically zero or its zeros are
isolated.

At first we assume that » = 0 mod 3. From the inductive assumption, we have
HO‘H—2H2 =br1(1 - K)(r+3)/3~

We claim that p,41 = 1. Arguing indirectly, we assume that ®,41 # 0. Then Proposi-
tion 2.3.1(iv) yields K, ; = 0. Taking into account condition (*), Proposition 2.3.1(ii)
implies that M is flat and this is a contradiction. Thus ®,,; is identically zero,
or equivalently p,4y; = 1. From Proposition 2.3.1(iii) and condition (x), we obtain

K} 1 = —K. Furthermore, we have that

Kby = 27 g1 [lerial?,

or equivalently
Krl+1 =crpa(l- K)(Hg)/ga

with ¢,41 = 2_(T+1)br+1. Then using Proposition 2.1.1, we obtain
levral® = brya(1 = K)THI/3,
with b0 = bpy1.
Assume now that r = 1 mod 3. From the inductive assumption, we have that
lorall? = bra (1 — )23,

If ®.,1 # 0, then Proposition 2.3.1(iv) yields K, = 0. If ®,;; is identically zero,
or equivalently p,41 = 1, then Proposition 2.3.1(iii) and condition (%) imply that
K}, = 0. Furthermore, we have that

Ky = 27 (o],

or equivalently
KAy = e (1= KT/,

r

with ¢,o1 = 27+ p,1b,41. From Proposition 2.1.1, we obtain
l[trss]|? = brya(l — K)T+2/3,

with by1o = p2. bri1.
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Finally, we suppose that » = 2 mod 3. From the inductive assumption, we have that
||04r+2||2 =br1(1— K)(T+1)/3.

We claim that p,11 = 1. Assume to the contrary that p,41 # 1 or equivalently &, #
0. Then Proposition 2.3.1(iv) yields K ; = 0. Taking into account the Ricci-like
condition (x), Proposition 2.3.1(ii) implies that M is flat, which is a contradiction.
Hence @, is identically zero, or equivalently p,+1 = 1. From Proposition 2.3.1(iii)
and condition (x), we obtain K ; = K. Furthermore, we have

Kﬁrl = 2_(r+1)pr+1 ||04r+2”2a

or equivalently
Ky = (1= K)UHD/3,

r

with ¢,41 = 2_(7’+1)p7«+1br+1. Using Proposition 2.1.1, it follows that
”0‘7"-1-3”2 = bria(1 — K)(r+4)/3

with b,12 = b,41 and this completes the proof. O

We are now ready to prove the main result of this section. The following theorem
provides an answer to the problem stated in the introduction of this chapter, in the
case of simply connected exceptional surfaces.

Theorem 4.2.1. Let f: M — S™ be a nonflat simply connected exceptional surface
with substantial odd codimension. If f satisfies the Ricci-like condition (x) away from
the isolated points with Gaussian curvature K = 1, then n = 6m — 1 and there exists
a=(ay,...,an) €S CR™ with 117 ya; #0 and @ = (61,...,0p) €St x--- xS,
where 0 < 01 < -+ < O, < 7 such that f = gag.

Proof. We claim that n = 5 mod 6. Arguing indirectly, we suppose at first that
n = 6l + 1. Since f is (3] — 1)-exceptional, (4.22) yields [lagi1]* = bs(1 — K.
Moreover, viewing f as a minimal surface in S92, we obviously have K :ﬁ = K3 =0.
Then from Proposition 2.3.1(ii), we obtain

Alog [|agip||* = 2(31 + K.

Thus K = 0, which is a contradiction.

Suppose that n = 6] + 3. Since f is 3l-exceptional, (4.22) yields that

agirall® = baipr (1 — K)F
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Moreover, viewing f as a minimal surface in S%+4, we obviously have K ?j 1= K3
0. Then from Proposition 2.3.1(ii), it follows that

Alog [|asiial* = 2(31 + 2) K

I+1 —

Thus K = 0, which is a contradiction.

Hence n = 5 mod 6 and we may set n = 6m — 1. According to (4.23), we have that
®,.=0if r=0,1 mod 3. Let

ro=min{r:2<r <3m-—1 with ®, #0}.

Obviously 79 = 2 mod 3. Let 2z be a local complex coordinate such that the induced
metric is given by ds? = F|dz|?. From the definition of Hopf differentials we know that

&, = f,dz?"+2, where f, = <045$11’0) @7(]::_11 0)>

For any r = 2 mod 3 and 7 > rg such that ®, # 0, we may write ®, = |f,.|e?°rdz>" 2.
Using (4.22), (4.25) and (2.7), we obtain

P, = 2f(r+2)brFT+1€iaT(1 _ K)(r+1)/3 (1 . p%)l/? dZQTJrQ.
We pick a branch h of f3/ "0t and define the form ® = cohdz®, where cg is given
by

3/(ro+1)
> if rp <3m —1,

2

co = <bTO(1_p%0)l/2
3/(ro+1)

(%) B if o = 3m — 1.

It is obvious that ® is well defined and holomorphic. It follows that
¢, = %br (1-p2)"? ot (7= o) pr+1)/3.

From the holomorphicity of ®, and ®, we deduce that o, —

over, we easily see that
F 6
leoh|? = <2> (1-K)2.

Using Theorem 11.1 in [18], we infer that there exists a pseudoholomorphic curve
g: M — S° whose second Hopf differential is ®.

+
ror10ro is constant. More-

We consider a surface § = g, which according to Proposition 4.1.1 is exceptional
for any a € S ! and 0. Setting p, = 25K/ ||dsy1]|?, it follows from Proposition 4.1.1

that 1/2
— 2
(1_W> if s=2mod 3,
s+1

~

Ps =

1 otherwise.
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We now claim that we can choose a € S~ 1 and 0 such that
bT:lST, ¢ = ¢ and p,. = p, for every 1 <r < 6m — 3,

where BT, ¢r, by, ¢ and p, are the sequences in Proposition 4.1.1 and Proposition 4.2.1,
respectively. Obviously, Proposition 4.2.1 gives that

bT:I;T:2 for r=1,2, ¢;=¢ =1 and p1 =p1 = 1.
We choose a and 6 such that the unitary transformation Th¢ satisfies

[(Typa,a)[* =1 — p3.

According to (4.14), the above is equivalent to py = pa. Then using Proposition
4.2.1, we obtain that

byy1 = 3T+1, ¢ =¢ and p. = pr for 1 <r <4.
Similarly, we may choose a and € such that

|(T29C4, Co) 2
ICa]* Ps

or equivalently ps = ps, according to (4.14). Repeating this argument, and choosing a
and @ such that p, = p, for any » = 2 mod 3, the claim follows inductively.

Thus, Proposition 4.2.1 implies that the a-invariants of the minimal surface f coin-
cide with those of § = g, ¢ for appropriate a and 6.

It follows from Theorem 5.2 in [41] that f is a member of the associate family of g,
which in view of Lemma 4.1.1 completes the proof. O

For the proof of Theorem 4.2.2 below, we recall the following well known fact [15].

Lemma 4.2.1. Let M be a two-dimensional Riemannian manifold and let f: M — R
be a smooth function such that Af = P(f) and |V f||> = Q(f) for smooth functions
P,Q: R — R, where Vf denotes the gradient of f. Then the Gaussian curvature K
satisfies

2KQ+ (2P -Q")(P-Q)+ Q2P - Q") =0,
on {p € M:Vf(p)#0}.

For minimal surfaces in substantial even codimension, we prove the following result.
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Theorem 4.2.2. (i) Substantial exceptional surfaces in S cannot satisfy the Ricci-
like condition (x).

(ii) Substantial [”51] -exceptional surfaces in an even dimensional sphere S™ cannot

satisfy the Ricci-like condition (x).

Proof. (i) Assume to the contrary that f: M — S% is a substantial exceptional surface
that satisfies condition (x). Since f is (3m — 2)-exceptional, Proposition 4.2.1 yields
lasmll® = b3m_1(1 — K)™ and K3, = —K. Moreover, combining Proposition 2.1.1
with Proposition 4.2.1, we find that

By Theorem 2.3.1, ®3,,—1 is holomorphic. Hence either it is identically zero or its
zeros are isolated. If ®s3,,_1 is identically zero, then f is (3m — 1)-exceptional, and
(4.24) yields K3, ; = 0. Then the above equation implies K3, ; = 0. This means
that f lies in a totally geodesic S =1 of SO (cf. [34, p. 96]), which is a contradiction.
Suppose now that ®3,,_1 # 0. By virtue of Proposition 2.3.1(ii), we derive that

Atog (flagm® + 2" K, ) = 2(8mK — Kjpo),

Alog (Jlagmll? = 2", ) = 2(3mEK + K, ).

Using condition (%) and setting p = 25" K3 /|lasm||*, the above equations are
equivalent to

Alog (1+p) = —2K3,_; and Alog (1l —p) =2K3,, ;. (4.26)

Since p = 23m_1K§-m_1/ ||a3m||2, we obtain K3,,_; = p.

Then equations (4.26) are written equivalently
Ap=—=2p(1+p%) and [Vp|?* =20°(1 - p?).

If the function p is constant, then p = 0 and consequently K3 _; = 0, which contradicts
the fact that f is substantial. If p is not constant, then Lemma 4.2.1 yields K = —8,
which contradicts the Ricci-like condition ().

(ii) Assume that f: M — S™ is a substantial [(n — 1)/2]-exceptional surface which
satisfies condition (x), where n is even. It suffices to consider the case n = 6m + 2 and
n = 6m + 4, since the case n = 6m was settled in (i).
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At first let us suppose that n = 6m+ 2. Since f is 3m-exceptional, (4.23) and (4.24)
yield ®3,, =0 and K3, = K. By virtue of Proposition 2.1.1, we obtain

2
s Ky, llcvsml|
m _ 2
23m Q(Kg_m—l)

Then, using (4.22) and (4.25), we have that K3, = 1, which is a contradiction.
We suppose now that n = 6m +4. Since f is (3m + 1)-exceptional, (4.23) and (4.24)
yield ®3,,41 =0 and K3, ., = —K. From Proposition 2.1.1 it follows that

2
. K llasmll
3 11—
" o (1)

Using (4.22) and (4.25), we find that K3, = 1 — K, which is a contradiction, and
this completes the proof. O

4.3 Isometric deformations of nonsimply connected pseu-
doholomorphic curves in a totally geodesic S° of S°

Now we focus on the study of the moduli space of noncongruent isometric defor-
mations of a nonsimply connected pseudoholomorphic curve g: M — S5. We consider
the covering map II: M — M, M being the universal cover of M with the metric
and orientation that make II an orientation preserving local isometry. Corresponding
objects on M are denoted with tilde. Then the map §: M — S° with § = g o I is
a pseudoholomorphic curve. Obviously, since g is simply connected, we know from
Theorem 4.2.1 that

ME(5) = St < T

For any (a,0) € SI*~ I T™ where T is the closure of I'™, we consider the minimal
surface gag: M — Sﬁm L' R%" defined by

Gap = @199, D+ D amge,,

where @ denotes the orthogonal sum with respect to an orthogonal decomposition of
RS, Each surface go;: M — S5, j =1,...,m, is a member of the associated family of

g.

Clearly, given an exceptional surface f: M — S" in the moduli space of the curve g,
the minimal surface f: M — S™ with f = f oIl belongs to the moduli space MS(g) of
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the curve g. Therefore, the moduli space M¢(g) can be described as the subset of all
(a,0) in M5, (g) such that g, ¢ factors as F'oIl for some exceptional surface F': M — S™.
We follow this notation throughout this chapter.

The group D of deck transformations of the covering map II: M — M consists of
all diffeomorphisms o: M — M such that I1 oo = 1II.

We need the following lemmas.

Lemma 4.3.1. For each 0 € D the surfaces ga 9 and gag © o are congruent for every
(a,0) € "1 x T, that is there exists Pg(c) € O(n + 1) such that

Gag 00 = Pg(0) © Gap-

Proof. 1t follows from Proposition 9 in [14] that the surfaces gy and ggoo are congruent
for all 6 € [0, 7). Therefore, there exists Wy(o) € O(7) such that

ggoo =Wy(o)o gy (4.27)

for every 6 € [0, 7).
We define the isometry ®g(c) € O(n + 1) given by

Dg(0) = Vg, (0) ®--- @ ¥y, (0),
with respect to an orthogonal decomposition R =R6 & - .. & RS. That
Jap ©0 = Pg(0) © Jayp
holds, follows directly from (4.27). O
Remark 4.3.1. The isometry ®g(o) is real analytic with respect to @ (cf. [17]).

Lemma 4.3.2. If (a,0) belongs to MS,(g), then (a,0) belongs to MS,(g) if and only if
$y(D) = {Id} . (4.28)
Proof. Let (a,0) € M¢(g). There exists an exceptional surface F': M — S™ such that
Fom=gag.
Composing with an arbitrary ¢ € D and using Lemma 4.3.1, we obtain
a9 = Po(0) © Jagp-

The fact that g, ¢ has substantial codimension yields (4.28).
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Conversely, assume that (4.28) holds. We will prove that g, ¢ factors as F oIl where
F: M — S" is an exceptional surface. At first we claim that g, ¢ remains constant on
each fiber of the covering map II. Indeed, let p1, p2 belong to the fiber II~!(p) for some
p € M. Then there exists a deck transformation o such that o(p;1) = p2. Using Lemma
4.3.1 and (4.28), we obtain

ga,G(ﬁQ) = §a,0 o O-(ﬁl)
= Pg(0) © Jap(P1)
= ga,G(ﬁl)'

Then g, ¢ factors as F'oll, where F': M — S" is a minimal surface. It remains to prove
that F' € M (g). Since II is an orientation preserving local isometry, it is obvious that
F' is an exceptional surface. ]

Proof of Theorem 4.0.1. Lemma 4.3.2 implies that S™~1 x {f} is contained in M¢(g)
for each (a,0) € M (g). Therefore, the moduli space splits as

M (g) =Sy x T,

where T'g is a subset of I'™. Additionally, Lemma 4.3.2 implies that 8 € Ty if and only if
®y(D) = {Id}. Fix 0 € D. Then ®y(c) = Id and Ty is a real analytic set (see Remark
4.3.1). If Ty is a proper subset of I, according to Lojasiewicz’s structure theorem
[25, Theorem 6.3.3]) the set I'g locally decomposes as

Lo=YVWuvtu...uym1t,

where each V%, 0 < d < m—1, is either empty or a disjoint finite union of d-dimensional
real analytic subvarieties.

Let 8 = (01,...,0;,...,0) € T'o. Suppose that the straight line through € that is
parallel to the I-th coordinate axis of R™ is not a finite set. Thus, this line contains a
sequence 6% = (01,... ,Hl(i), ...,0p),1 € N. By passing if necessary to a subsequence,
we may assume that this sequence converges to 8 = (61,...,607°,...,60,,), where
O7° = lim Hl(l). Clearly 6,1 < 0;° < ;1. At first we suppose that 6;_; < 67° < 041,
that is 8 € I'g. Fix 0 € D. Lemma 4.3.2 implies that ®,¢)(0) = Id and consequently
®g (o) = Id. We define the function

h(8) = (‘13(91,...,91_1,9,el+1,...9m)(U))ij, 0 € [01-1,0141),

where ((I)g(d))ij denotes the (i, j)-element of the matrix of ®g(c) with respect to the

standard basis of R"*1. From the mean value theorem we have that there exists fy)
between Hl(z) and 607 such that (dh/dﬁ)(ﬁgl)) = 0 and hence (dh/df)(6;°) = 0. Applying
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again the mean value theorem, we obtain that there exists féi) between §§i) and 67°

such that (d?h/ d92)(§§)) = 0. Inductively, we have that the k-th derivative satisfies
(dkh/do%)(62°) = 0 for any k. The analyticity of h (see Remark 4.3.1) yields that
h = 6;5 on [0;_1,0;41), where ¢;; is the Krénecker delta. Hence, the proof follows from
Lemma 4.3.2.

Now without loss of generality, assume that 6;_1 = 6° < 0;41. Clearly 8 ¢ I'g. We
fix o € D and extend ®p in the obvious way. Then @, (o) = Id and consequently
$g~ (o) = Id and the claim follows as before. O

4.4 Global results

In this section, we prove results for compact minimal surfaces that satisfy the con-
dition (*) and are not homeomorphic to the torus. We recall from Lemma 3.2.1 that
such surfaces cannot be homeomorphic to the sphere S%.

Theorem 4.4.1. Let f: M — S™ be a compact substantial minimal surface with genus
g > 2 which satisfies the Ricci-like condition (x) away from isolated points where the
Gaussian curvature satisfies K = 1. If the eccentricity €, of the higher curvature ellipses
of order r =0 mod 3 for any 1 <r < s satisfies condition

Er
—— —dA<
f—

for some constant v > 4/3, then f is s-exceptional.

Proof. According to Lemma 3.2.1, the function 1 — K is of absolute value type with
nonempty zero set My = {p1,...,pm} and corresponding order ord, (1 — K) = 2k;.
For each point p;,j = 1,...,m, we choose a local complex coordinate z such that p;
corresponds to z = 0 and the induced metric is written as ds? = F|dz|>. Around Dj,
we have that

1— K = |z/*5ug, (4.29)
where ug is a smooth positive function.

We shall prove that f is s-exceptional by induction. At first we show that f is
l-exceptional. In fact, we can prove that f is 1-isotropic. We know that the first
Hopf differential ®; = fidz? is holomorphic. Hence either ®; is identically zero, or its
zeros are isolated. Supose to the contrary that ®; is not identically zero. The Gauss
equation (2.5) yields that each p; is a totally geodesic point. From the definition of
the first Hopf differential we have that ®; vanishes at each p;. Thus we may write
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fi = 24@)yy around pj, where [i(p;) is the order of ®; at p;, and ¢, is a nonzero
holomorphic function. Bearing in mind (2.7), we obtain

1 _ ,
1 laa[* = (K7)% = (2F ) [Pz @) (4.30)
around p;. We now consider the function u1: M \ My — R defined by

(Al — (51)2)
(T

up =

In view of (4.29) and (4.30) we find that the function u; around pj, is written as

wr = (2571 20y 9]0~k (4.31)

Using (2.5) we obtain u; < (1 — K)2. Thus, from (4.29) and (4.31) we deduce
that 1;(p;) > 2k; and we can extend u; to a smooth function on M. It follows from
Proposition 2.3.1(ii) for r = 1, that

Alog (Ha2||2 + 2K1i) = 2(2K — K7)
and
Alog (flazl® - 2K7) = 2(2K + K7),
Summing up, we obtain
Alog ((lal* ~ 4(KT)?) = 8K.
Combining the last equation with condition (x), we have
Alog (Jlas '~ 4(K1)?) = Alog(1 — K)*,

which implies that log w1 is harmonic away from the isolated zeros of u1. By continuity,
the function uy is subharmonic everywhere on M. Using the maximum principle, we
deduce that u; is a positive constant. This contradicts the fact that K =1 on M.

Suppose now that f is (r — 1)-exceptional for r > 2. We note that M cannot be flat
due to our assumption on the genus. We shall prove that f is also r -exceptional. From
Proposition 4 in [42], we know that ®, = f.dz?"*2 is globally defined and holomorphic.
Hence either @, = 0 or its zeros are isolated. In the former case, f is r-exceptional.

Supose to the contrary that ®, is not identically zero. Obviously, ®, vanishes at
pj. Hence we may write f, = zlr(pj)wr around p;, where [,.(p;) is the order of ®, at p;,
and v, is a nonzero holomorphic function. Bearing in mind (2.7), we obtain

o' = 47 () = 42 F 204D g 2222 (4.32)
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around p;. We now consider the smooth function u,: M ~ My — R (see Proposition
2.3.2) given by

3
(a4l = 47 (55)?)
(1 — K)20+D)
In view of (4.29) and (4.32), we find that

Up =

Uy = 43(r+2)F76(r+1)u62(7‘+1)|wr‘6|Z’6lr(10j)*4kj(r+1)’ (4'33)

We claim that » = 2 mod 3. Arguing indirectly, we at first assume that » = 0 mod 3.
Since £2/(2 — 2) < &, our assumption implies

2
£
r A
/M @ gy

or equivalently, bearing in mind (2.1) and (2.4),

[ (llarsall* = 47 (55)?)
wo (= K) flapal?

1/2
dA < 0.

Taking into account (4.22), the above becomes

1/2
(st = a7 (rH)?)
/ - dA < oo.
M (1-K)'"s

We consider the subset

Us(pj) ={p€ M :[2(p)| <d},j=1,....,m.

Using (4.29) and (4.32), the above inequality implies that

/ 2|l Pi) =2k 435 A < ¢
Uso (P)~Us (p;)

for any § < g, where ¢ is a positive constant and &y is small enough. We set z = pe®®.
Since dA = Fpdp A df, we deduce that

do
/ )25 g < o
0

This implies that

.,
lr(ps) > 2ki(y + 5) — 2.
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Summing up, we obtain

m

.
N(@r)+2m > 2(y + 3) ;kj

Using Lemma 2.4.1(ii) and (3.2) in Lemma 3.2.1, it follows that
X(M)(3vy—1)+m > 0.

On the other hand, (3.2) implies that m < —3y (M), which contradicts the above and
the hypothesis that x(M) < 0.

Now assume that 7 = 1 mod 3. Bearing in mind (4.22), we deduce that u, <
b3(1— K)?2. Using (4.29) and (4.33), we obtain 3l,(p;) > 2k;(r +2). Then from Lemma
3.2.1, we conclude that

N(®r) = =2(r 4 2)x(M).
Due to Lemma 2.4.1(ii), the above contradicts our hypothesis on the genus.

Therefore, we conclude that » = 2 mod 3. By virtue of (4.22), we obtain u, < bS.
Then (4.33) implies 31, (p;) > 2k;(r 4+ 1), and we can extend u, to a smooth function
on M. It follows from Proposition 2.3.1(ii) and the Ricci-like condition () that logu,
is harmonic away from the zeros which are isolated, and consequently by continuity
u, is subharmonic everywhere on M. By the maximum principle, we deduce that the
function u, is a positive constant. This shows that the r-th curvature ellipse has
constant eccentricity, i.e., the surface f is r-exceptional. This completes the proof. [

For compact minimal submanifolds in spheres with low codimension, we prove the
following result.

Corollary 4.4.1. Let f: M — S™ be a substantial minimal surface with 4 <n < 7. If
M is compact and not homeomorphic to the torus, then it cannot be locally isometric
to a pseudoholomorphic curve in S°, unless n = 5.

Proof. From Lemma 3.2.1, we have that the genus of M satisfies g > 2. We assume
that n # 5. For n = 4 and n = 6, the result follows immediately from Theorem 4.4.1
and Theorem 4.2.2(ii). In the case where n = 7, Theorem 4.4.1 implies that the surface
is exceptional and the result follows from Theorem 4.2.1. O

Remark 4.4.1. The assumption in Theorem 4.4.1 on the eccentricity of curvature
ellipses of order r = 0 mod 3 could be replaced by the condition

e < (1-K)P

for positive constants ¢ and 3 > 1/3. Both conditions claim that the curvature ellipses
of order r = 0 mod 3 tend to be circles close to totally geodesic points. We don’t know
whether Theorem 4.4.1 holds without this assumption in any codimension.

44
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The following global result is complementary to Theorem 4.2.2.

Theorem 4.4.2. Let f: M — S m > 1, be a substantial exceptional surface. If M
is compact with genus g > 2, then it cannot be locally isometric to a pseudoholomorphic
curve in S°.

Proof. We assume to the contrary that the surface satisfies the Ricci-like condition (x).
Since f is 3m-exceptional, from Proposition 2.3.2 we know that the Hopf differential
B30 r1 = fame1dz5™1* is globally defined and holomorphic. Hence either ®3,,41 = 0
or its zeros are isolated.

Theorem 4.2.2(ii) implies that the Hopf differential ®3,,; cannot vanish identically.

According to Lemma 3.2.1, the function 1 — K is of absolute value type with
nonempty zero set My = {p1,...,pm} and corresponding order ord, (1 — K) = 2k;.
For each point p;,j = 1,...,m, we choose a local complex coordinate z such that p;
corresponds to z = 0 and the induced metric is written as ds*> = F|dz|2. Around pj,
we have that

1— K = |z/*iug, (4.34)

where ug is a smooth positive function.

Obviously, ®3,,41 vanishes at p;. Hence we may write f3,,41 = 2Py around Dj,
where [(p;) is the order of ®3,,41 at p;, and @ is a nonzero holomorphic function.
Bearing in mind (2.7), we obtain

a2l — 477+ (K, 41)? = 2000 HD 204D |y 2 2100 (4.35)

around p;. We consider the smooth function w: M ~\ My — R (see Proposition 2.3.2)
given by
3
(lasmal* = 4371 (5, 10)?)
(1 — K)2(6m+2)
In view of (4.34) and (4.35), we find that

u =

U — 218(m+1)F—6(3m+2)ua2(3m+2) ’w’6|zlﬁl(pj)—4kj(3m+2)' (4.36)

Using (4.22), it follows that u < b5, (1 — K)?. Then (4.34) and (4.36) imply that
l(pj) > 2k;j(m +1). By Lemma 3.2.1, we deduce that
N(®3m+1) = —6(m + 1)x(M).

It follows from Lemma 2.4.1(ii) that the above contradicts our hypothesis on the genus
and the theorem is proved. ]
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Chapter 4 4.4. Global results

The following result provides properties of the structure of the moduli space of a
compact pseudoholomorphic curve in S°.

Theorem 4.4.3. If g is a compact pseudoholomorphic curve in S° that is not homeo-
morphic to the torus, then the moduli space MS(g), with n odd, is given by MS(g) =
Sm=1 x Ty, where Tg is a proper subset of I'™ that is locally a disjoint finite union
of d-dimensional real analytic subvarieties where d = 0,...,m — 1. Moreover, every
straight line through each point 8 € T'y that is parallel to every coordinate axis of R™
intersects I'g at finitely many points.

Proof. Suppose to the contrary that the intersection of I'g with the straight line through
6 that is parallel to the first coordinate axis is an infinite set. For a fixed a € 771,
we choose 01,...,0y € 'y that belong to this straight line. Hence (a,8;) € M (g)
for all 0; = (6;1,...,0jm), 7 =1,..., N. Consequently there exist exceptional surfaces
Fj: M — S™ such that Fjom = gag,.

We claim that the set of all coordinate functions of all surfaces F}’s associated to
vectors v = (v1,0,...,0) in R%™ are linearly independent. It is sufficient to prove that
if

(Fj,v) =0, (4.37)

M-

1

J
then v = 0. From (4.37) we obtain
N
Z(Fj om,v) =0,
j=1

or equivalently
N
a Z<§6j17?)1> =0.
j=1

In analogy with the argument in the proof of Theorem 2 in [14], we finally conclude
that v; = 0 and the claim is proved.

The contradiction follows easily since the coordinate functions of the surfaces F}’s
are eigenfunctions of the Laplacian operator with corresponding eigenvalue 2 and the
vector space of the eigenfunctions has finite dimension. Hence I'g # I'™ and the proof
follows from Theorem 4.0.1. O

Remark 4.4.2. The assumption in Theorem 4.4.3 that the pseudoholomorphic curve
g s not homeomorphic to the torus is essential and can not be dropped. According
to results due to Kenmotsu [23, 24] the moduli space of all minimal surfaces in odd
dimensional spheres that are isometric to a flat pseudoholomorphic torus in S° is not
a finite set.
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Proof of Theorem 4.0.2. 1t follows from Theorem 4.4.1 and Corollary 4.4.1 that any
minimal surface f: M — S™ that is isometric to g is exceptional and n = 5. The proof
follows from Theorem 4.4.3. O

Open problem. It remains an open problem to describe the moduli space of all mini-
mal surfaces in spheres that are locally isometric to a pseudoholomorphic curve in S°,
without the assumption of being exceptional.
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CHAPTER

RIGIDITY OF ISOTROPIC
PSEUDOHOLOMORPHIC CURVES IN
THE NEARLY KAHLER SPHERE SO

In this chapter, we investigate the moduli space of all noncongruent substantial
minimal surfaces f: M — S™ that are isometric to a given isotropic pseudoholomorphic
curve g in S8 It turns out that these surfaces are rigid among minimal surfaces in
spheres.

5.1 A global result

We prove the following theorem.

Theorem 5.1.1. Let f: M — S™ be a compact substantial minimal surface. If f is
isometric to an isotropic pseudoholomorphic curve g: M — S8, then n = 6 and f is
congruent to g.

Proof. According to Theorem 2 in [43], the function 1 — K is of absolute value type.
If the zero set of the function 1 — K is empty, then from condition (xx) it follows that
f is homeomorphic to the sphere. From [5] we have that f is isotropic and from [41] it
follows that n = 6 and f is congruent to g. Now suppose that the zero set of the function
1 — K is the set My = {p1,...,pm} with corresponding order ord, (1 — K) = 2k;.
For each point p;,j = 1,...,m, we choose a local complex coordinate z such that
p; corresponds to z = 0 and the induced metric is written as ds?> = F|dz|?. On a
neighbourhood of p;, we have that

1 — K = |z*iug, (5.1)

where ug is a smooth positive function.
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Chapter 5 5.1. A global result

We claim that f is l-isotropic. The first Hopf differential ®; = fidz* is globally
defined and holomorphic. Hence either ®; is identically zero, or its zeros are isolated.
Suppose to the contrary that ®; is not identically zero. The Gauss equation (2.5)
yields that each p; is a totally geodesic point. It follows from the definition of the
first Hopf differential that ®; vanishes at each p;. Hence we may write f; = PRERT
around p;, where [y is the order of ®; at p;, and 91 is a nonzero holomorphic function.
Bearing in mind (2.7), we obtain

1 _ ,
1 laa|* = (K1)? = 2F ) i P[22 (5.2)
around p;. We now consider the function u1: M \ My — R defined by

(Al — (51)2)
i-K7

Ul =

From (5.1) and (5.2) it follows that the function u; around pj, is written as
ur = (2F ) Pug ][5 (5.3)

Using (2.5) we obtain u; < (1 — K)2. Thus, from (5.1) and (5.3) we deduce that
l1j > 2k; and we can extend u; to a smooth function on M. From Proposition 2.3.1(ii)
for r = 1, it follows that

Alog (Jlas|* + 2K ) = 2(2K — K7)

and
Alog ([lazl® — 2K7) = 2(2K + K7)

Summing up, we obtain
Alog ([laz* — 4(K{)?) = 8K
Combining the last equation with condition (xx), we have
Alog (Hagu‘* - 4(K1i)2)3 = Alog(1 — K)* + 4,

or equivalently Alogu; = 4 away from the isolated zeros of u;. Thus, by continuity
Auy > 4uy; > 0, and from the maximum principle we have that this holds only if
uy = 0, or equivalently only if [|as||* = 4(K{)2. Lemma 2.3.1 implies that ®; = 0 and
this contradicts our assumption that ®; is not identically zero. Hence, ®; is identically
zero and from Lemma 2.3.1 yields that f is 1-isotropic. Proposition 2.3.1(i) for s =1
implies that

Alog(l - K) =2(2K — K7),
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which using condition (k) yields
Ki=--K. (5.4)

Since f is 1-isotropic, we know from Lemma 2.3.1 that Kf = 1— K. Proposition 2.1.1
in Section 2.1 and (5.4) yield that

las)? =1 - K. (5.5)

We now claim that f is also 2-isotropic. From Proposition 2.3.2 we know that
®y = fod2® is globally defined. Theorem 2.3.1 implies that it is also holomorphic.
Hence either ®5 is identically zero or its zeros are isolated. In the former case, from
Lemma 2.3.1 we have that f is 2-isotropic. Assume now to the contrary that ®q is
not identically zero. Obviously, we have that a3 vanishes at each p; and consequently
from the definition of the second Hopf differential, also ®; vanishes at each p;. Hence
we may write fo = z/2i1)y around pj, where lo; is the order of ®5 at p;, and 9 is a
nonzero holomorphic function. Bearing in mind (2.7), we obtain

lova|* = 16(K3)? = 25 F 0 |ahy 2|22 (5.6)
around p;. We now consider the function ug: M ~\ My — R defined by

las||* — 16(k5 )
1-K?

In view of (5.1) and (5.6), it follows that the function uy around pj; is written as
up = 28FOug?[upy|?| 2?2~ (5.7)
Using (5.5) we derive that up < 1. From (5.1) and (5.7) we deduce that lo; > 2k; and
we can extend us to a smooth function on M. Proposition 2.3.1(ii) for » = 2 implies

that
Alog (Jlas||? + 4K3 ) = 2(3K — K3)

and
Alog ([lag|l? — 4K ) = 2(3K + K3),

Summing up, we obtain
Alog ([lag||" - 16(K5)?) = 12K.

Combining the last equation with condition (#x), we have that Alogus = 2 away from
the isolated zeros of us. Thus, by continuity Aus > 2us > 0, and from the maximum
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principle we have that this holds only for uy = 0, or equivalently only if [as|/* =
16( K5 )% Lemma 2.3.1 implies that ®; = 0 and this contradicts our assumption that
®, is not identically zero. Hence, @5 is identically zero and Lemma 2.3.1 implies that
f is 2-isotropic. Now Proposition 2.3.1(i) for s = 2 yields

Alog ||as||® = 2(3K — K3),
and combining this with condition (xx) we obtain K3 = 1/2.

Since f is 2-isotropic, from Lemma 2.3.1 and (5.5) we have K5 = (1 — K)/4. Using
that K3 = 1/2, Proposition 2.1.1 for » = 2 implies that ay = 0. Therefore n = 6 and
the surface f is congruent to g (cf. [41, Theorem A]). O

5.2 A local result

The rigidity result in Theorem 5.1.1 still holds if instead of the compactness of the
surface we assume that the surface is exceptional. In fact, we now prove the following
local result for exceptional surfaces.

Theorem 5.2.1. Let f: M — S™ be a substantial exceptional surface that is isometric
to an isotropic pseudoholomorphic curve g: M — S8. Then n = 6 and f is congruent
to g.

Proof. We set py := 25K}/ ||oss1 |, for any 1 < s < r, where r = [(n — 1)/2 — 1].
Using (2.1) and (2.4) it follows that ps = 2ksus/(k2 + p2). Since f is exceptional, by
the definition we have that the s-th ellipse has constant eccentricity or equivalently
the ratio of the semiaxes kg, s is constant. Then it is clear that the function ps is
constant.

Using equation (2.5), Proposition 2.3.1(i) for s = 1 and condition (*x), we find

1
Ki=3-K. (5.8)

Moreover, from the definition of p; we have that Ki- = p1(1 — K). We claim that f is
1-isotropic, which is equivalent to p; = 1 due to Lemma 2.3.1. Assume to the contrary

that p; # 1. Then from Lemma 2.3.1 we have that ®; # 0. Consequently Proposition
2.3.1(ii) for r = 1 yields

Alog ([lazl® - 2K7) = 2(2K + K7).
Using (2.5) and Lemma 2.3.1(iii) we obtain

Alog(l — K) = 4K + 2K7.
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From (5.8) it follows that
Alog(l — K)=2K + 1.

Combining this with condition (*x) we have that K = 1/2, which is a contradiction.
Hence p; = 1 and consequently f is 1-isotropic. From Proposition 2.1.1, equation (5.8)
and Lemma 2.3.1 it follows that

las|* =1 - K. (5.9)

From Proposition 2.3.2 we know that ®3 = fodz® is globally defined. Theorem 2.3.1
implies that it is also holomorphic. Hence either @ is identically zero or its zeros are
isolated. Moreover, we have that K5~ = 272p ||as||? . Similarly, we claim that py = 1.
Assume to the contrary that ps # 1. Then from Lemma 2.3.1, the Hopf differential
&y # 0. Proposition 2.3.1(ii) for r = 2 yields that

Alog (flas|? + 4K ) = 2(3K — K3)

and
Alog (Hagn2 - 4K;) — 2(3K + K3),

which due to (5.9) implies that
Alog(l — K) =6K.

This contradicts (%), hence po = 1 and consequently @ is identically zero. From
Proposition 2.3.1(iii) for » = 2 and condition (%), we obtain K3 = 1/2. Proposition
2.1.1 for r = 2 yields aq = 0, which completes our proof. O

Open problem. [t should be interesting to know whether Theorem 5.1.1 still holds
under the weaker assumption of completeness instead of compactness.
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CHAPTER

ISOMETRIC DEFORMATIONS OF
NON-ISOTROPIC
PSEUDOHOLOMORPHIC CURVES IN
THE NEARLY KAHLER SPHERE SY

In this chapter, we mostly deal with noncongruent isometric deformations of pseu-
doholomorphic substantial curves in S® that are always 1-isotropic (see Chapter 3) but
in general not 2-isotropic. For a given non-isotropic substantial pseudoholomorphic
curve g: M — S%, our aim is to describe the moduli space M% (g) of all noncongruent
minimal surfaces f: M — S™ that are locally isometric to the curve g, having the same
normal curvatures up to order 2 with the curve g.

At first, we prove the following theorem.

Theorem 6.0.1. Let g: M — S® be a pseudoholomorphic curve. The moduli space of
all noncongruent minimal surfaces f: M — S8 that are isometric to g and have the
same normal curvatures with g, is either a circle or a finite set.

Note that this is a result concerning pseudoholomorphic curves of all types. From
Corollary 5.4(ii) in [41], we know that two locally isometric 1-isotropic surfaces in S°
with the same normal curvatures, belong locally to the same associated family. This,
in particular, implies that if g is simply connected then ME& (g) = S.

For compact non-isotropic pseudoholomorphic curves, we prove the following theo-
rem under a topological assumption.

Theorem 6.0.2. Let g: M — S® be a compact substantial pseudoholomorphic curve
that is non-isotropic. If the Euler-Poincaré number of the second normal bundle of g
is nonzero, then there are at most finitely many minimal surfaces in S isometric to g
having the same normal curvatures with g.
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To conclude, we prove the following theorem that may be viewed as analogous to
the classical result of Schur (see [8, p. 36]) in the realm of minimal surfaces in spheres.

Theorem 6.0.3. Let g: M — S® be a compact, non-isotropic and substantial pseudo-
holomorphic curve and §: M — S™ be a substantial minimal surface that is isometric
to g. If § is not 2-isotropic and the second normal curvatures KzL, f(QL of the surfaces
g and § respectively satisfy the inequality IA(QL < KQL, then n = 6. Moreover, the moduli
space of all such noncongruent minimal surfaces §: M — SO that are isometric to g,
is either a circle or a finite set.

6.1 A local result

Hereafter we deal with substantial pseudoholomorphic curves not necessarily simply
connected. We consider the covering map IT1: M — M, M being the universal cover
of M equipped with the metric and orientation that make II an orientation preserving
local isometry. Corresponding objects on M are denoted with tilde. Then the map
G: M — S8 with § = goIl is up to congruence a pseudoholomorphic curve. Hence, the
moduli space M (g) of the curve g can be described as the set of all § € ME () = S*
such that gy factors as Jg = gg o II for a minimal surface go: M — S° and Gy is a
member in the associated family of g. We follow this notation throughout this chapter.

Lemma 6.1.1. (i) For each o € D, the surfaces gg and ggo o are congruent for every
6 € [0, 7], that is there exists a unique Wg(o) € O(7) such that

gooo = V(o) o gp. (6.1)

(i3) If O belongs to ME(G), then 6 belongs to ME (g) if and only if

V(D) = {1d}, (6.2)
where Wy € O(7).

Proof. (i) From Proposition 9 in [14] we have that for any o in the group D, the surfaces
Go: M — S5 and ggoo: M — S8 are congruent for any 0 € ME (g). Therefore, there
exists Wy(a) € O(7) such that (6.1) holds for every § € ME(g).

(ii) Take & € ME(g). Then, there exists a minimal surface gg: M — S® such that
go o ™ = gp. Composing with an arbitrary o € D and using (6.1), we obtain

Go = Yg(o) o gy

Since gy has substantial codimension (6.2) yields.
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6.2. Isometric deformations of compact non-isotropic pseudoholomorphic curves in
Chapter 6 the nearly Kahler sphere S® with substantial codimension

Conversely, assume that (6.2) holds. We will prove that gy factors as gg = gg o I,
where gg: M — S° is a minimal surface. At first we claim that §y remains constant on
each fiber of the covering map II. Indeed, let py, 2 belong to II7(p) for some p € M.
Then there exists a deck transformation o such that o(p1) = pa. Using (6.1), we obtain

go(P2) = gooo(p1)
= Vy(o) o go(p1)
= go(P1)-
Then gy factors as gg = gy o I, where F': M — S™ is a minimal surface. It remains

to prove that gy € Mé( (g). Since II is an orientation preserving local isometry, it is
obvious that F' is a minimal surface. O

Proof of Theorem 6.0.1. If g is substantial in a totally geodesic S°, then from Theorem
1 in [14], we know that the moduli space of g is either a circle or a finite set.

If g is isotropic and substantial in S%, then Theorem 5.2.1 implies that the moduli
space of g consists of a single point.

Suppose now that g is substantial in S® and non-isotropic. Assume that the moduli
space ./\/léf(g) is not finite. Thus, there exists a sequence 6 i € N, that belongs
to Mé{ (g9). By passing if necessary to a subsequence, we assume that this sequence
converges to 0 € [0, 7]. From Lemma 6.1.1(ii), we derive that V,u (D) = {Id} for
every i € N and Wy (D) = {Id} . Fix a 0 € D. We define the function

h(g) = (\IJQ(U))ij ,0 € [O,ﬂ'],

where (Ug(0)),; denotes the (i, j)-element of the matrix of Wg(c) with respect to the

standard basis of R7. By the mean value theorem, there exists §§Z) between () and
0> such that (dh/d@)(fy)) = 0 and hence (dh/df)(0>°) = 0. Applying repeatedly
the mean value theorem, we obtain inductively that the k-th derrivative of h satisfies
(d*h/d6¥)(6>°) = 0 for any k. The analyticity of h (cf. Remark 4.3.1) implies that
h = 0;j, where §;; is the Kronecker delta. Hence, the proof follows from Lemma
6.1.1(ii). 0

6.2 Isometric deformations of compact non-isotropic pseu-
doholomorphic curves in the nearly Kihler sphere S°
with substantial codimension

We now turn our attention to the study of isometric deformations of compact non-
isotropic pseudoholomorphic curves in S6. We will need the following lemmas:
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Lemma 6.2.1. Let g: M — S°® be a substantial non-isotropic pseudoholomorphic
curve. For each gy,0 € Mg(g), there exists a parallel and orthogonal bundle iso-
morphism Ty: NgM — Ny, M such that the second fundamental forms of g and gg are
related by

(X, Y)=Tyod(JyX,Y), X, Y e TM.

Proof. Since g and gg have the same normal curvatures, it follows from Corollary
5.4(ii) in [41] that for any simply connected subset U of M there exists a parallel and
orthogonal bundle isomorphism T(,U : NgU — Ng,U such that the second fundamental
forms of the surfaces gy and gy|y are related by

2l (X, V) =T 009V (JpX,Y), X,Y € TM.
Let U,V be simply connected subsets of M with U NV # &. Then on U NV we have
TY 0 a9l (JX,Y) =Ty o a9V (JpX,Y),
for every X,Y € TM. Equivalently we obtain
(TY —T)) o alvv(X,Y) =0

and obviously (T} —T)) (nglU”V) = 0.

Differentiating we obtain (T} — T}) (Ng'mv) = 0, which yields that T = T, on
U N V. Thus, THU is globally well defined. O

The following lemma concerns the connection forms of an appropriately chosen or-
thonormal frame of substantial non-isotropic pseudoholomorphic curves.

Lemma 6.2.2. Let g: M — S5 be a substantial non-isotropic pseudoholomorphic curve
and let My be the zero set of the second Hopf differential ®o. Around each point of
M ~ M;, there ezist a local complex coordinate (U, z), U C M ~ M; and orthonormal
frames {e1,e2} in TU, {es,eq} in NYU and {es, e} in NJU which agree with the given
ortentations such that:

(i) The vector fields es5 and eg give respectively the directions of the major and the
minor azxes of the second curvature ellipse, and

(ii) We have that Hs = ko, Hg = iug and ko and pe are smooth real functions.
Moreover, the connection and the normal connection forms, with respect to this frame,
are given respectively, by

1 K
wig = —— * dlog(k3 — p3), wsa = 2wz + *dlog K1, wse = 227#22 * dlog &, (6.3)
6 ko = H2 k2

where x stands for the Hodge operator.

o8



6.2. Isometric deformations of compact non-isotropic pseudoholomorphic curves in
Chapter 6 the nearly Kahler sphere S® with substantial codimension

Proof. (i) Take an arbitrary orthonormal frame {E7, Fs} in TU. Arguing pointwise in
U we have that

a gX’XvX - and i gX7X7X = )
03[%)72};)Ha3( 0, X, Xp)|| = k2 an 03{1)1751”)||a3( 9, X9, Xo)|| = po

where Xy = cos0F; + sin6FEs.
Assume that the function f(0) = ||a3(Xy, Xg, Xp)||?* attains its maximum at 6 €
[0, 27). Since f/(0y) = 0, we find that
(g (Xag, Xags Xoy), % (Xog, Xog, Xa,)) = 0,
or equivalently

2(0[%(E1,E1,El),ag(El,El,EQ» = (||Cvg(E1,E1,E1)”2 — ”Oég(El,El,EQ)H2) tan60.

Since the second curvature ellipse is not a circle, we choose a smooth function ¢ such
that
2(aj(Ey, Ev, Ey), of(Ey, By, E))

tano = s
|ag(Er, By, Ev)||? — ||of(Ey, By, Es)||?

or
|af (B, Er, EY)|]? = [|[af (B, By, Eo)||?

2(a(E1, Er, Er), o4 (En, Er, Es))

coto =

We now consider the orthonormal frame {e;,e2} in TU with
e1 = cosoFq +sinoFEy and eg = —sinoEq + coso Es.

We may also consider the orthonormal frame {es, e4} in NYU given by

1 1
es = —ad(e1,e1) and eg = —a(e, e2)
K1 K1

and the orthonormal frame {es, e} in NJU such that

1 1
es = —aj(e1,e1,e1) and eg = —aj(e1, €1, e2).
K92 H2

Let {&5,¢é6} be an orthonormal frame in NJU chosen as in Lemma 5 in [43]. Then
the complex valued functions Hj, Hg associated to the frame {€é5, ég} satisfy

ﬁﬁ = i(lﬁl - I;[5) (64)

We easily find that
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Hs = cos pHp + sin ¢ Hg (6.5)

and 3
Hg = —sin pHs + cos ¢ Hg, (6.6)

where ¢ is the angle between e5 and és. Since Hs = ko and Hg = iu9, equations (6.4),
(6.5) and (6.6) yield ¢ = 0 and consequently the orthonormal frames {es,es} and
{€5, €} coincide.

(ii) It follows directly from Lemma 6 in [42] that the connection forms w34 and wse
are given by (6.3).

From as(eq, e1,e1) = kees, we obtain
K2
W35(61) = —w45(62) = ; and W36(61) = w46(62) =0.
1
Similarly, as(e1, €1, e2) = useg implies that
- =2 and - —0
wie(e1) = wae(e2) = —an wys(e1) = wss(e2) = 0.
1
Therefore,
k2 ) _ M2 d _ M2
W3s = — W1, Wis = ——W2, W36 = — W2 and Wy = ——W1.
K1 K1 K1 K1
Using the above, the Ricci equations

(R*(e1,e2)es,e5) = 0 and (R*(e1, e2)eq, e6) =0,
where R is the curvature tensor of the normal bundle, are written equivalently as
K
3(.;)12(61) = %W56(61) + e9 ( log ﬁ) — xdlog 161(61)

and
K
3wia(er) = M—zwg,ﬁ(el) + eg(log 'Z—f) — xdlog k1(eq)

respectively. From these and from the fact that the normal connection form wsg is
given by (6.3), one can easily obtain

arafer) = — * dlog( — ) 1), (6.7
Arguing similarly by using now the Ricci equations
(Rt (e1,ez)es, e6) =0 and (R*(e1,ea)es,e5) =0,
we find that

1
wiz(e2) = 6 * dlog(/f% - M%)(GQ)a

which combined with (6.7) yields the connection form wis of (6.3). O

60



6.2. Isometric deformations of compact non-isotropic pseudoholomorphic curves in
Chapter 6 the nearly Kahler sphere S® with substantial codimension

Let g: M — S5 be a substantial pseudoholomorphic curve. Assume hereafter that
g is non-isotropic. For each point p € M ~ M;, we consider an orthonormal frame
{e1,e2,e3,€4,€5,e5} on a neighborhood U C M ~ M; of p as in Lemma 6.2.2. We note
that the connection form wsg cannot vanish on any open subset of M ~ M;j. Suppose
to the contrary that wsg = 0. Then (6.3) implies that s = Ako for some A € RT and
from Theorem 5(iii) in [43] we obtain

. K1 and . )\/ﬂ
T+l S

R2
From (6.3) it follows that the connection form is given by
1
w12 = —= x dlog k1,
3
which implies

6K = Alogr? = Alog(l — K).

According to Theorem 3.2.1, this would imply a reduction of codimension, which is a
contradiction.

For any 6 € Mé((g), let {e1,eq, Tyes, Tyeq, Tpes, Tpeg} be an orthonormal frame
along gy, where Ty is the bundle isomorphism of Lemma 6.2.1. The complex valued
functions Hs, Hy, Hs, Hg of g, associated to the orthonormal frame {ey, ea, €3, e4, €5, €6 }
and the corresponding functions Hg ,H. 2, H 59, Hg of gy, associated to the orthonormal
frame {ey, e2, Tpes, Tyeq, Tyes, Tyes} satisty

HY = e Hy, H) = e "Hy, H! = ¢ " H; and HY = e " H. (6.8)

Using (6.8) and the Weingarten formula for gy, we obtain

VieTyes = wsq(E)They + %T965 — inggeg — mewdg@(E), (6.9)
VieTyes = —wsq(E)Thes + Z:ngeg) + ':—jTgeg + i/ilewdgg(E), (6.10)
VETpes = wse(E)Tyes — % (Tpes + iTpes) (6.11)

¥ 5Thes = —wso(E)Tyes + Z:f (Tyes + iTpes) . (6.12)

where E = e; — iey and V stands for the usual connection in the induced bundle
(i1 o £)*(TRT), with 41: S — R7 being the inclusion map.
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Lemma 6.2.3. Suppose that for 0; € ME(g),j =1,...,m, there exist vectors v; € R7,
such that

Z(g,gj,vj> =0 on U.
j=1
Then the following hold:
Zewﬂ' (ko (Ty,e5,v5) — ipa(Ty e, v5)) = 0, (6.13)

Jj=1

away from the zeros of wsg, and

m m
E( Z eiej <T9j €6, Uj)) = —W56 (E) Z eiej <T9j €5, Uj). (6.14)
j=1 j=1
Proof. Our assumption implies that
m
Z(dggj,vj> =0.

J=1

Differentiating and using the Gauss formula we obtain

m
> e?i(Ty es — iTy e, v5) = 0. (6.15)
j=1

Differentiating (6.15) with respect to E and using (6.8), (6.9) and (6.10), it follows
that

m
> e (Hs(T,es,05) + He(Ty;e6,05)) = 0.
j=1

Using that Hs = ko and Hg = ipo (see Lemma 6.2.2(ii)), the above yields (6.13).
From (6.12), we compute that
m m . om
E( ; e’ (Ty, e, ’Uj>) = —ws6(E) ; e (Ty,e5,v;) — Z:—f ; e (Ty, e3 — iTpes, vj),
which in view of (6.15) yields (6.14). O
Proof of Theorem 6.0.2. According to Theorem 6.0.1, the space ME (g) of the isomet-

ric deformations that are isometric to g is either S' or a finite set. Suppose to the
contrary that ME(g) = S'. We claim that the coordinate functions of the minimal
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surfaces gg, 0 € S', are linearly independent. Since these functions are eigenfunctions
of the Laplace operator of M with corresponding eigenvalue 2, this contradicts the fact
that the eigenspaces of the Laplace operator are finite dimensional. To prove that the
coordinate functions are linearly independent, it is enough to prove that if

> {go,,v5) = (6.16)
7j=1

for0<6y <---<0p <m, thenv;=0forall 1 <j<m.

Assume to the contrary that v; # 0 for all 1 < j < m. Let My = {p1,...,pi} be the
zero set of ®5. Around each point p € M ~ My, we choose local complex coordinate
(U, z) and an orthonormal frame {ej, e2,e3,€4,€5,66} on U C M ~ M; as in Lemma
6.2.2. We consider the complex valued function

LS 2
RES (Z 619]- <T9].€6, 1)j>) ,
j=1
where Ty, : NgM — NngM is the bundle isomorphism of Lemma 6.2.1. Obviously ¥
is well defined on M ~\ M;. Equations (6.3) imply that

E(Hg) = i,ugwg)ﬁ(E) — 3i/€2w12(E),

and
E(/JQ) == iI{QW56(E) - 3’i,lL2Ld12(E).

These yield ,
— 72 — .
ws6(E) = —5——5 (k2 E(n2) — p2B(r2)) .
Ko — 1
Then (6.13) and (6.14) imply that E(¢ (1 — p3/k3)) = 0, and hence the function
U =1 (1 — u%/m%) : M ~ M; — C is holomorphic. Since W is bounded, its isolated
singularities are removable and consequently there exists a constant ¢ such that

V(K3 — p) = ck3 on M ~ M. (6.17)

We claim that ¢ = 0. Indeed, if k2(p;) = p2(pr) > 0 for some 1 <1 < k, then taking
the limit in (6.17) along a sequence of points in M ~ M; that converges to p;, we deduce
that ¢ = 0.

Suppose now that ka(p;) = po(p) = 0forall 1 <1 < k. Let (V, 2z) be a local complex
coordinate around p; with z(p ) 0. From the proof of Proposition 4 in [42] for s = 2

we obtain
dﬁ5 — 3iﬁ5w12 - ﬁ6w56 = 0 mod ¢,
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and
dﬁ(} — 3iﬁ6w12 + F5w56 = 0 mod ¢.

Writing ¢ = F'dz, we deduce that

OHs _ oo o =
825 = 3iH5w12(0) + Hewse(0)
and —
0H — S 3
oy = 3iHgw12(0) — Hawss(9).

Due to Chern [9, p. 32], we may write
Hs=2"H and Hg=2"™H;,
where m is a positive integer and Hy, Hg are nonzero smooth complex functions. Since
as3(E,E,E) = 4(Hses + Hgeg),

we obtain
a:())?,,o) = zmla;(g’o) on V, (6.18)
where a;(?,,o) is a tensor field of type (3,0) with a§(3’0)|pl # 0. We now define the

N§-valued tensor field af := 04;(3’0) + a;(g,o)' It is clear that o3 maps the unit circle

on each tangent plane into an ellipse, whose length of the semi-axes are denoted by
k5 > py > 0. We furthermore consider the differential form of type (6,0)

o3 = <a§(3’0),a§(3’0)>dz6,
which in view of (6.18), is related to the Hopf differential of g by ®9 = 2™ ®3. We

split @9 and @3, with respect to an arbitrary orthonormal frame {&;,...&s}, where
{&1,&} and {&, &} are arbitrary orthonormal frames of TV and N§V respectively as

1 —2 —2 1 _
@2 == 1(H5 +H6)¢6 - Zk;]{b (ZJG,
* L w2 | o2 6 1 *+1.x— 16
(1)2:Z(H5 +H6 )¢ :ZkQ k2 ®°,
where ky = Hs +iHg, ki* = Hy +iHg,

H: = (az(er, er1,e1),es5) +i{az(er, er,e2), es)

and
Hi = (a5(e1,e1,e1),e6) +ilas(er, e, e2), e6).
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From (6.18), we obtain H, = zmlﬁz for a = 5,6, or equivalently, in = zmlk;‘i.

Observe that a3 = |ki|. Hence
o = 203, 1z = [, (6.19)

Now (6.17) yields
V(K32 — p32) = cri? on V ~ {p}. (6.20)

If k3(p1) > p5(py) for all 1 <1 <k, then (6.19) implies that
N(af)=> m=N(ay).

Hence, Lemma 2.4.3 yields X(NQf ) = 0, which contradicts our assumption. Thus,
k5(p1) = ps(py) for some 1 < | < k. Taking the limit in (6.20), along a sequence of
points in V \ {p;} which converges to p;, we obtain ck3?(p;) = 0. Since ajl,, # 0, we
derive that ¢ = 0.

In view of (6.17), we conclude that ¢» = 0 on M ~ M;. This implies that
m .
Z et (Th,e6,v5) =0,
j=1
which due to (6.13) gives that
m .
Z e (Th,es5,v5) = 0.
j=1
Differentiating this with respect to E, and using (6.11) and the above, we obtain
m .
Z ' <T9j63 + ing ey, 1)j> =0
j=1
which combined with (6.15) yields
Z i (Ty,es,v5) =0 = Zewﬂ' (T, e4,v;). (6.21)
i=1 j=1

Differentiating (6.21) with respect to E we find that

m

> e*i(dgy, (E), v;) = 0.

J=1

65



6.2. Isometric deformations of compact non-isotropic pseudoholomorphic curves in
Chapter 6 the nearly Kahler sphere S® with substantial codimension

Differentiating once more with respect to £/ and using the minimality of each gy, we

obtain
m
Z 6219] (96,,v5) = 0.
Jj=1

Combining this with (6.16), we obtain

m
§ QGJ ) w]
J=2

where w; = \jv; # 0,5 = 2,...,m and \; = cos20,, — cos20; or \; = sin26,, —
sin 26;. By induction, we finally conclude that (gp,,, w) = 0, for some nonzero vector
w. Therefore, gy, lies in a totally geodesic S, which is a contradiction and the theorem
is proved. O

Remark 6.2.1. The global assumptions and the assumption on the codimension in
Theorem 6.0.2 are essential and can not be dropped. In fact, locally we can produce
minimal surfaces in spheres that are isometric to a non-isotropic pseudoholomorphic
curve g in S®. More precisely, let g9,0 < 0 < m, be the associated family of a simply
connected non-isotropic pseudoholomorphic curve g: M — S°. We consider the surface
G: M — S defined by

G = aige, ® - ® amgo,,

where ay,... ,a, are any real numbers with Z ) j =1,0<01 < <O, <m,
and @ denotes the orthogonal sum with respect to an orthogonal decomposition of the
Euclidean space R™. Arquing as in Section 4.1, it is easy to see that the surface G is
minimal and isometric to g.

Proposition 6.2.1. Let g: M — S® be a compact non-isotropic and substantial pseu-
doholomorphic curve. If g: M — S™ is a minimal surface that is isometric to g, then
g s 1-isotropic.

Proof. According to Theorem 2 in [43], the function 1 — K is of absolute value type.
If the zero set of the function 1 — K is empty, then from condition (3.3) it follows
that M is homeomorphic to the sphere. From [5] we have that ¢ is full isotropic and
from [41] it follows that n = 6 and § is congruent to g. Now suppose that the zero
set of the function 1 — K is the nonempty set My = {p1,...,pm} with corresponding
order ordy, (1 — K) = 2k;. For each point p;,j = 1,...,m, we choose a local complex
coordinate z such that p; corresponds to z = 0 and the induced metric is written as
ds? = F|dz|?. Around p;, we have that

1 — K = |z*iug, (6.22)
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where ug is a smooth positive function.

We know that the first Hopf differential = fldz4 of ¢ is globally defined and
holomorphic. We claim that dy is identically zero. We assume to the contrary that it is
not identically zero. Hence its zeros are isolated. Each p; is totally geodesic, according
to (2.5), and obviously, &, vanishes at each pj. Thus we may write f1 = 2139y around
pj, where [y is the order of dy at pj, and v is a nonzero holomorphic function. Bearing
in mind (2.7), we obtain

1 . s L _ )
1 léol|* — (K1) = 22 F 4y 222 (6.23)

s L
around p;, where & and K~ are respectedly the second fundmental form and the first
normal curvature of §. We now consider the function uy: M ~ My — R defined by
~ 4 5 L
_ dlael)! - ()2
(1-K)?

In view of (6.22) and (6.23) we have that
up = 24F_4u62]w1]2|z|2(l”_2kﬂ').
Using (2.5) we find that u; < 1, thus from the above and (6.22) we deduce that

l1j > 2k;j. Hence we can extend u; to a smooth function on M. Applying Proposition
2.3.1(i) for s =1 for g and Proposition 2.3.1(ii) for 7 = 1 for § we have that

Alog ||las|® = 2(2K — K7),

Alog (H@HQ + Qf(f) — 2(2K — K7)

and R R
Alog ([laz - 27 ) = 2(2K + K7),

Combining these equation we obtain
Alogu, = 4K7, (6.24)

away from the isolated zeros of w;, where K7 is the intrinsic curvature of the first
normal bundle NY. Moreover, Proposition 2.3.1(iii) for » = 1, in combination with
(3.3) provides

1
K—§<—KT<K,

or more specific

K{+ K > 0.
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Hence, (6.24) yields that Alogu; + 4K > 0 and consequently using Lemma 2.4.1 and
the Gauss-Bonnet theorem we have that

N(u1) < 4x(M) <0,

where x(M) is the Euler-Poincaré characteristic of M. This implies that N(u;) = 0,
which contradicts our assumption that ®; = 0. O

6.3 A Schur type theorem

In view of Proposition 6.2.1, the surface g in Theorem 6.0.3 is 1-isotropic and conse-
quently the Hopf differential ®5 of § is not identically zero. The following lemma will
be used in the proof of Theorem 6.0.3.

Lemma 6.3.1. Under the assumptions of Theorem 6.0.3, the following assertions hold:

(i) The a-invariants of g and § satisfy the inequality

Jr,\f
Qg Gy < Ay ay .

(i) The eccentricities £9,€9 of the second curvature ellipses of g and § respectively
satisfy the inequality €9 < €.

(iii) There exists a constant ¢ > 1 such that the lengths ko, p2 and ko, fia of the
semi-axes of the second curvature ellipses of the surfaces g and § respectively satisfy

w3 — pi3 = (i3 — i3). (6.25)

(iv) At a point p € M, we have that aj (p) = 0 if and only if a5 (p) = 0.
(v) If a3 (p) > 0 at a point p € M, then a5 (p) = 0 if and only if a; (p) = 0.

Proof. (i) It follows from Proposition 6.2.1, Propositions 2.1.1 and 2.3.1 and the Gauss
equation that ||&s|| = ||as]||. This means that

3+ 13 = K3+ 3. (6.26)
Combining the above with our assumption &ojie < Koo, we have that
ko + fig < Ko + po and kg — pg < Ao — fio.

The proof of part (i) follows easily.
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(i) Since K5 < Ki, equation (6.26) implies that

Rofl2 Ko 2
RS+ 03 T K5+ 13

We set g := fia/ ko and tg := po/ka. Obviously, 0 < ta,ta < 1 and

t__ t22.
1413 7 1+1;5

This immediately implies that 9 < és.

(iii) From Proposition 2.3.1(ii) we have that

Alog(kg + p2) = 3K — K5, Alog(ke — p2) = 3K + K3, (6.27)

and
Alog(ig + o) = 3K — K3, Alog(ks — jio) = 3K + K3, (6.28)

where K3 denotes the second intrinsic curvature of §. Equations (6.27) and (6.28)
imply that

Alog (||a3H4 - 42(K2L)2) = 12K and Alog (Hag”‘* - 42(k;)2) = 12K.

Inequality f(zL < K2L yields

fol? < Ifol?, (6.29)
where @y = fod2® and &5 = fodz5. For each point pj € My = {p1,....,pm},J =
1,...,m, where My is the union of the zero sets of ®5 and ®5, we choose a local

complex coordinate z such that p; corresponds to z = 0 and the induced metric is
written as ds? = F|dz|?.

Suppose that <i>2(pj) =0 for some j = 1,...,m. Then Lemma 6.3.1(ii) implies that
®5(pj) = 0. Thus we may write fo = 2m®i)y and fo = 2™®)§ around pj, where m(p;)
and m(p;) are the orders of ®; and Py respectively at p; and v and @ are nonzero
holomorphic functions. From (6.29) we have that m < m, and therefore the function
uy = | fo|2/|f2|>: M ~ My — R can be extended to a smooth function on M.

Suppose now that (iDQ(pj) # 0 for some j = 1,...,m. We have that the function
Uy = |z]2m(pi)u, with u a positive smooth function, can be extended to a smooth
function on M.

In both cases, we have that the function us is subharmonic and the maximum prin-
ciple yields (6.25). Obviously (6.25) gives that the zeros of the second Hopf differential
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®y of the curve g coincide with the zeros of the second Hopf differential ®5 of the
surface g.

(iv) If a3 (p) = 0 at a point p € M, we obtain ka(p) = p2(p) = 0. It follows from
(6.26) that #a(p) = fia(p) = 0, which is a3 (p) = 0.

(v) Part (v) follows immediately from (i) and (6.25) which is equivalently written
as aj a; = caja; . O
Proof of Theorem 6.0.3. Equations (6.27) and (6.28) yield

— it
Qs a % S
22 oy - K3), (630
272

Alog

on M ~\ My, where My = {p1,...,pm} is the union of the zero sets of ®5 and ®,. For
each point p; € Mo = {p1,...,pm},j =1,...,m, we choose a local complex coordinate
z such that p; corresponds to z = 0 and the induced metric is written as ds* = F|dz|?.

We now claim that the function u = (a5 a3 )/(ag a5 ): M ~ My — R can be extended

to a smooth function on M. To this aim, we distinguish the following cases:

Case I: Suppose that aj (p;) = 0 for some j =1,...,m. Then Lemma 6.3.1(iv) im-
plies that a3 (pj) = 0. Hence a, (p;) = a; (p;) = 0. The a-invariants are absolute value

type functions, thus we may write ay = [2|*™uy, ay = [2|*"u_, a3 = |2|*"+ i and
a, = |z|*"4_ around pj, where my,m_,m and r_ are the orders of a;, ay , d;

and a, respectively at p; and uq,u—, 4 and 4_ are nonvanishing smooth functions.
From Lemma 6.3.1(i) it follows that

m_(p;) + 114 (p;j) > m4(p;) + 1m—(p;).

Therefore the function u = (ay a5 )/(afa; ) can be extended to a smooth function
around p;.

Case II: Suppose that a3 (pj) > 0 for some j = 1,...,m. Lemma 6.3.1(v) implies
that either a;, (pj)as (pj) > 0 or a; (pj) = a5 (p;) = 0. In the former case, by Lemma
6.3.1(i) we have that aj (p;) > 0. Thus u is well defined at p;.

Now assume that a, (p;) = a5 (pj) = 0. Clearly (6.26) implies that a3 (p;) > 0. Since
the a-invariants are absolute value type functions, we may write a; = |z|*"~u_ and
ay = \z]Qm—ﬁ_ around pj, where m_ and m_ are the orders of a, , and a, respectively
at p; and u_ and 4_ are nonvanishing smooth functions. Lemma 6.3.1(i) yields

m—(pj) = m—(p;),

therefore the function u = (a5 a3 )/(ag Gy ): M~ My — R can be extended to a smooth
function around p;.
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It follows from Proposition 2.1.1 and (6.30) that

A2
2||aal
4K4

2
Alogu =" (Ky — K3) + (6.31)

away from the isolated zeros of u. Hence Alogu > 0 on M ~ Mjy. By continuity, the
function u is subharmonic on M and from the maximum principle we have that u is
constant. Then from (6.31) it follows that Ky = K3, and a4 = 0. Hence f(M) is
contained in a totally geodesic sphere S® in S”.

The fact that the set of all noncongruent minimal surfaces g, as in the statement of
the theorem, that are isometric to g is either a circle or a finite set, follows directly
from Theorem 6.0.1. 0

Corollary 6.3.1. Let g: M — S® be a compact non-isotropic and substantial pseudo-
holomorphic curve with second normal curvature Ks-. Any substantial minimal surface
g in S™,n > 6, whose second normal curvature IA(QL satisfies the inequality IA(ZL < K4,
cannot be isometric to g.

Proof. Assume that § is isometric to g. Proposition 6.2.1 implies that § is 1-isotropic.
Suppose that n > 6. Then Theorem 6.0.3 implies that § is 2-isotropic. Hence &9 = fio.
The inequality IA(QL < K5, in combination with (6.26) implies that k2 = 2, which is a
contradiction. O

Open problem. No example of a surface as in Theorem 6.0.1 is known where the
moduli space is a finite set. If there exist such examples, then it would make sense
to estimate the number of the noncongruent classes in terms of the topology or the
geometry of the surface.
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