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Abstract

In this thesis, I study a particular extension to the Standard Model of Particle Physics,
namely the Beyond Standard Model Scenario of an additional U(1)′ symmetry to the
SM symmetry group, which through Spontaneous Symmetry Breaking gives rise to a
massive Z ′ gauge boson. The phenomenology that is analyzed and studied is around
the muon’s anomalous magnetic moment and the origins of the Yukawa couplings.
The models presented here, and which attempt to explain these phenomena, require
a clear understanding of one-loop radiative contributions, the seesaw mechanism, and
effective field theory, which are presented analytically and in great detail. Both mod-
els introduce a vector-like lepton. In the first model, the existence of a vector-like
lepton explains the small muon mass by a seesaw mechanism, based on lepton-specific
two Higgs doublet models with a local U(1)′ symmetry. The physical muon mass is
generated due to the mixing between the vector-like lepton and the muon after the
leptophilic Higgs doublet and the dark Higgs acquire VEVs. The non-decoupling
effects of the vector-like lepton give rise to leading contributions to the muon g − 2,
thanks to the light Z ′ and the light dark Higgs boson. In the second model, the ideas
of inducing flavourful Z ′ couplings via mixing with a vector-like fourth family, which
carries gauged U(1)′ charges, and furthermore generate fermion mass hierarchies and
mixing patterns without introducing any family symmetry, are fused to provide a con-
nection between RK(∗) and the origin of Yukawa couplings in the quark sector. In the
last chapter, I suggest a different approach to the Origins of the Yukawa couplings,
by introducing a modified form of the symmetry breaking mechanism, namely mod-
ifying the covariant derivative to include spinor fields. This mechanism generates in
a natural way the Yukawa coupling terms to the theory, with the cost of introducing
a scalar source and a tree-level Higgs-fermion scattering term. Despite this accom-
plishment, this mechanism needs to be modified in order to respect the observable
measurements and the phenomenology of the SM.
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1 Introduction and the Standard Model

Introduction

The Standard Model of particle physics describes a wide range of precise exper-
imental measurements, and that alone is a remarkable achievement. It is a model
constructed from a number of beautiful and profound theoretical ideas put together
in a somewhat ad hoc fashion in order to reproduce the experimental data. It consists
of 25 parameters: 14 associated with the Higgs field (Yukawa couplings, VEV, Higgs
mass), 8 associated with the flavour sector (parametrized PMNS and CKM mixing
angles) and 3 associated with the gauge interactions (gauge coupling strengths). In
principle, there is one further parameter in the Standard Model; the Lagrangian of
QCD can contain a phase that would lead to CP violation in the strong interaction.
Experimentally, this strong CP phase is known to be extremely small, and is usually
taken to be zero. However, this theoretical framework alone can not answer all the
unanswered questions about the phenomena that describe Nature [16]. For instance,
it does not explain dark matter and dark energy even though our observations show
that they make up the most of the energy content in the universe. It does not ex-
plain the matter-antimatter asymmetry and also the masses of the neutrinos. Most
importantly, it fails to include the description of gravity, which at very high energy
scales plays an important role in the structure of the universe. These are the reasons
that we suspect that there has to be Physics Beyond the Standard Model that can
answer these open questions. In this thesis, we present a rather simple extension to
the SM, the addition of a simple U(1) to the SM symmetry group, and study some
phenomenological applications regarding the muon g−2 and the origin of the Yukawa
couplings.
This thesis is structured as follows. We review briefly the contents of the SM in
Chapter 1. In Chapter 2 we present the Z ′ models, discussing about their couplings,
the new mass spectrum of the theory and their kinetic mixing with the SM Z boson.
In Chapter 3, we analyze some of the SM contributions to the muon g − 2, that
are important in the description of the model of the next chapter. In Chapter 4 we
present and analyze a model that attempts to explain a part of the discrepancy in the
anomalous magnetic moment of the muon between the experiment and the theory,
utilizing the seesaw mechanism from heavy vector-like leptons, in a Z ′ theoretical
framework. In Chapter 5 we present a model that explains the origin of Yukawa cou-
plings by utilizing effective field theory in a Z ′ theoretical framework, and is applied
to the problem of RK(∗). In Chapter 6 a new mechanism that generates the Yukawa
couplings is suggested. In Chapter 7 we present the conclusions.
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The Standard Model

The first steps towards the SM was Sheldon Glashow’s discovery in 1961 of a way
to combine the electromagnetic and weak interactions. In 1967 Steven Weinberg and
Abdus Salam incorporated the Higgs Mechanism into Glashow’s electroweak interac-
tion, giving it its modern form. As a Quantum Field Theory, it treats fundamental
particles as excitations of fields that permeate spacetime. The whole dynamics and
propagation of these fields are encoded in the Lagrangian densities (Lagrangians for
short), which one can obtain the equations of motion and construct mathematical
expressions for observables.

The Standard Model of Elementary particles consists of the following ingredients
[10]:

1. A symmetry.
Its proposers guessed that the smallest possible symmetry could correspond to
a simple group but it must contain 3 group factors, it is of the form

GSM = SU(3)C ⊗ SU(2)I ⊗ U(1)Y , (1.1)

each of them being a special unitary group in dimensions 3, 2 and 1 respectively.
The first refers to the colour group (C), the second the weak isospin (I), and the
last behaves just like a number whose value is indicated by Y , called hypercharge.
After writing down the symmetry of the theory, we also need the particle content
that is described under these symmetries.

2. The gauge bosons.
These are spin-1 particles, they must transform like the adjoined representation
of the group, and their structure and interactions are fixed by the symmetry.
The number of gauge bosons is the same as the number of generators of the
group, in this case (32 − 1) + (22 − 1) + 1 = 12. They are indicated as follows:

Gi
µ, for SU(3)C , (i = 1, . . . , 8),

W j
µ, for SU(2)I , (j = 1, 2, 3),

Bµ, for U(1)Y .

3. Fermions (Matter particles)
The fermions are put in chiral multiplets of some representation of the above
symmetry. The chiral components of a fermion field f are given as follows:

fL =
1

2
(1− γ5)f, fR =

1

2
(1 + γ5)f, such that γ5fL = −fL, γ5fR = fR,

(1.2)
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where the left-handed doublets in SU(2)I have weak isospin value I = 1/2,
whereas the right-handed singlets in SU(2)I have I = 0. The quantum number
Y called hypercharge is defined so that

Q = I3 +
Y

2
, Q = the electric charge in units of e. (1.3)

The fermions are split in two categories: the leptons and the quarks, which
appear both in three flavors.
For the leptons, we have the following generations:(

νe
e−

)
L

, e−R,

(
νµ
µ−

)
L

, µ−R,

(
ντ
τ−

)
L

, τ−R , (1.4)

where lL ⇔ (I, Y ) = (1/2,−1), lR ⇔ (I, Y ) = (0,−2), with l the lepton family.
For the quarks :(

ua

da

)
L

, uaR, daR,

(
ca

sa

)
L

, caR, saR,

(
ta

ba

)
L

, taR, baR, (1.5)

with a = r, g, b colour indices. The quarks correspond to the following charges:

qaL ⇔ (I, Y ) = (1/2, 1/3),

(ua, ca, ta)R ⇔ (I, Y ) = (0, 4/3),

(da, sa, ba)R ⇔ (I, Y ) = (0,−2/3).

(1.6)

The weak interaction acts vertically between members of the isodoublet, while
the strong interaction acts horizontally between quarks of the same flavor with
different color indices. Under the group SU(3)c, the quarks are color triplets,
indicated as (r, g, b)⇔ (red, green, blue).

4. A scalar boson(Higgs)
A complex scalar particle (spin zero) with zero colour and also represented as
an isodoublet (

φ0

φ−

)
, (I, Y ) = (1/2,−1), (Higgs doublet) (1.7)

which was found at LHC, CERN in 2012. It was very crucial for the success of
the SM to cause the spontaneous symmetry breaking.
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1.1 Quantum Electrodynamics

In order to construct the Lagrangian of QED, we first need to formulate the Dirac
Lagrangian for a free fermion

L = ψ(x)
(
i/∂ −m

)
ψ(x) (1.8)

in the natural units framework (~ = c = 1), where ψ(x) a fermion field and m
the mass of the corresponding particle. QED needs to be invariant under U(1) gauge
transformations. These transformations correspond to a multiplication of the fermion
field with a complex number of absolute value 1. If we consider global U(1) gauge
transformations,

ψ(x)→ ψ′(x) = Sψ(x) = eiaψ(x)

ψ(x)→ ψ
′
(x) = S†ψ(x) = e−iaψ(x)

(1.9)

the Lagrangian of Eq(1.8) is invariant under this transformation. However, by im-
posing a local gauge transformation of the form

ψ(x)→ ψ′(x) = S(x)ψ(x) = eia(x)ψ(x)

ψ(x)→ ψ
′
(x) = S†(x)ψ(x) = e−ia(x)ψ(x)

(1.10)

we notice that the derivative of the fermion field does not transform the same way:

∂µψ
′(x) = ∂µ

(
S(x)ψ(x)

)
= S(x)∂µψ(x) + ∂µ

(
S(x)

)
ψ(x) 6= S(x)∂µψ(x), (1.11)

and similarly for ∂µψ
′
(x). In order to make our theory gauge invariant under local

gauge transformations, we generalize the notion of the derivative ∂µ → Dµ:

Dµ ≡ ∂µ − igAµ(x) (1.12)

where Dµ is the covariant derivative. The gauge field plays the role of the photon field,
and g = −e the QED coupling. We demand the covariant derivative to transform like
ψ itself, D′µψ

′ = eigθ(x)Dµψ. Then we have,

D′µψ
′ =
(
∂µ − igA′µ

)
S(x)ψ(x)

= S(x)
(
∂µ − igA′µ

)
ψ(x) + ∂µS(x)ψ(x)

= S(x)
(
∂µ − igA′µ

)
ψ(x) + ig∂µθ(x)S(x)ψ(x)

= S(x)
[
(∂µ − igAµ) + ig(Aµ − A′µ) + ig∂µθ(x)

]
ψ(x)

D′µψ
′ = S(x)Dµψ(x) + ig

[
Aµ − A′µ + ∂µθ(x)

]
S(x)ψ(x),

(1.13)

and for the second term to be vanished, the gauge field needs to transform as

A′µ = Aµ + ∂µθ(x). (1.14)
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Now, we may write the gauge invariant QED Lagrangian,

LQED = ψ(x)
(
i /D −m

)
ψ(x)− 1

4
FµνF

µν

= ψ(x)
(
i/∂ −m

)
ψ(x)− eAµ(x)ψ(x)γµψ(x)− 1

4
FµνF

µν

= LDirac + Lint + Lγ,kinetic,

(1.15)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor. Summarizing, the
Lagrangian in Eq(1.15) contains the kinematic and interacting terms of a massive
fermion, while also the a spin-1 gauge boson, the photon. This Lagrangian is invari-
ant under the local U(1) = U(1)em gauge transformations, and describes electromag-
netism at the quantum level, while also at the classical level as well, since the Lγ,kinetic
term leads to the Maxwell equations.

1.2 Quantum Chromodynamics

The strong interaction is governed by the SU(3)c group of the SM, with a set of
traceless generators, the Gell-Mann matrices λα. Associated with this symmetry,
we have a set of 8 gauge bosons Ga

µ, with µ the Lorentz index and a = 1, 2, . . . , 8,
the gluons. The gluons remain massless even after the spontaneous symmetry break-
ing. Thus, this symmetry remains unbroken. The merging theory is called Quantum
Chromodynamics, and is described by the Lagrangian:

LQCD = −1

4
F i
µνF

i,µν +
∑
r

qrα /Dαβqβr, (1.16)

where r is the quark flavour index, α and β are color indices, and Dµ is the covariant
derivative

Dµ = ∂µ − igsGi
µ

λi

2
, (1.17)

and
F i
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

k
ν (1.18)

where gs is the strong gauge coupling constant, and fijk are the structure constants
of SU(3) given by:

[λi, λj] = 2if ijkλk. (1.19)

Quarks and gluons are the only particles in the SM that carry color charge. Com-
binations of quarks and virtual gluons can create composite structures, the hadrons.
Mesons are hadrons consisting of a quark-antiquark pair, while baryons consist of
three quarks. All composite structures that have been observed in nature do not
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carry free colour charge, since it is confined in the hadrons. This phenomenon is
called confinement : colour-charged particles can not be isolated at low energies, they
can only exist in the form of colorless combinations.

1.3 Weak interactions and the Electroweak theory

The charged-current weak interaction differs in almost all respects from the ψ(p′)γµψ(p)
form of QED and QCD. It is mediated by massive charged W± bosons and conse-
quently couples together fermions differing by one unit of electric charge. Further-
more, the parity violating nature of the interaction can be directly related to the
form of the interaction vertex. From experiment, it is known that the weak charged
current due to the exchange of W± bosons is a vector minus axial vector (V − A)
interaction of the form γµ − γµγ5, with a vertex factor of

− igw

2
√

2
γµ(1− γ5) (1.20)

where gw is the weak coupling constant, and the corresponding four-vector current is
given by

Jµw =
gw

2
√

2
ψ(p′)γµ(1− γ5)ψ(p). (1.21)

The charged-current weak interaction is associated with invariance under SU(2)L
local phase transformations,

ψ(x)→ ψ′(x) = eigw~a(x)·~Tψ(x) (1.22)

where ~T = 1
2
~σ are the three generators of the SU(2) group that written in terms of

the Pauli spin matrices, and ~a are three functions which specify the local phase at
each point in spacetime. Because the generators of the SU(2) gauge transformation
are the 2 × 2 Pauli spin-matrices, the wavefunction must be written in terms of
two components, a weak isospin doublet. The weak isospin doublets contain flavours
differing by one unit of electric charge, for instance

ψe(x) =

(
νe(x)
e−(x)

)
, (1.23)

with the third component of weak isospin being I3(νe) = +1
2
, I3(e−) = −1

2
. Since

the observed form of the weak charged-current interaction couples only to left-handed
chiral particle states and right-handed chiral antiparticle states, we place LH particle
and RH antiparticle states into weak isospin doublets, while the RH particle and
LH antiparticle chiral states are placed in weak isospin singlets, with I3 = 0, and are
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therefore unaffected by the SU(2)L local gauge transformation. After the spontaneous
symmetry breaking of SU(2)L, the fields related to the ”charged” the generators will
generate the physical W± bosons

W±
µ =

1√
2

(
W (1)
µ ∓ iW (2)

µ

)
. (1.24)

As we shall see in the next subsection, the third ”neutral” generator of SU(2)L
combined with the generator of the hypercharge abelian group U(1)Y , will provide
the theory with the physical Z and photon fields, in terms of the weak mixing angle,
θw. In comparison with the vertex factor of the W boson, the Z’s boson vertex factor
does not couple in a universal V − A way to fermions as the W boson:

−igZ
2

γµ(cfV − c
f
Aγ

5). (1.25)

The vector and axial couplings to fermions are expressed by the coefficients cfV and
cfA respectively, which depend on the particular fermion involved.

1.4 The Higgs Mechanism

The success of the Standard Model in describing the experimental data, including the
high-precision electroweak measurements, places the local gauge principle on a solid
experimental basis. However, the required local gauge invariance of the Standard
Model is broken by the terms in the Lagrangian corresponding to particle masses.
For example, if the photon were massive, the Lagrangian of QED would contain an
additional term 1

2
m2
γA

µAµ,

LQED → ψ(i/∂ −m)ψ + eψγµψAµ −
1

4
F µνFµν +

1

2
m2
γAµA

µ. (1.26)

The photon field under the U(1) symmetry transforms as

Aµ → A′µ = Aµ + ∂µθ (1.27)

and the new mass term becomes

1

2
m2
γAµA

µ =
1

2
m2
γ

(
Aµ + ∂µθ

)(
Aµ + ∂µθ

)
6= 1

2
m2
γAµA

µ (1.28)

from which it is clear that the photon mass term is not gauge invariant. Hence
the required U(1) local gauge symmetry can only be satisfied if the gauge boson of
an interaction is massless. This restriction is not limited to the U(1) local gauge
symmetry of QED, it also applies to the SU(2)L and SU(3)c gauge symmetries of

7



the weak interaction and QCD. Whilst the local gauge principle provides an elegant
route to describing the nature of the observed interactions, it works only for massless
gauge bosons. This is not a problem for QED and QCD where the gauge bosons are
massless, but it is in apparent contradiction with the observation of the large masses
of W and Z bosons.

The problem with particle masses is not restricted to the gauge bosons. For a
fermion field ψ, the mass term in QED Lagrangian can be written in terms of the
chiral particle states as

−mψψ = −mψ
[

1

2
(1− γ5) +

1

2
(1− γ5)

]
ψ

= −m
[
ψRψL + ψLψR

]
.

(1.29)

In the SU(2)L gauge transformation of the weak interaction, left-handed particles
transform as weak isospin doublets and right-handed particles as singlets, and there-
fore the mass term of Eq(1.29) breaks the required gauge invariance. The Higgs
mechanism provides the solution for the theory to obtain the masses of the fermions
and the bosons. In the Salam–Weinberg model, the Higgs mechanism is embedded in
the SU(2)L ×U(1)Y local gauge symmetry of the electroweak sector of the Standard
Model. Three Goldstone bosons will be required to provide the longitudinal degrees of
freedom of the W+, W− and Z bosons. In addition, after symmetry breaking, there
will be (at least) one massive scalar particle corresponding to the field excitations in
the direction picked out by the choice of the physical vacuum. The simplest Higgs
model, which has the necessary four degrees of freedom, consists of two complex scalar
fields.

The minimal Higgs model consists of two complex scalar fields, placed in a weak
isospin doublet [16]

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.30)

where one of the scalar fields must be neutral, written as φ0, and the other must be
charged such that φ+ and (φ+)∗ = φ− give the longitudinal degrees of freedom of the
W+ and W−. The Lagrangian for this doublet of scalar fields is

L = (Dµφ)†(Dµφ)− V (φ) (1.31)

with the Higgs potential

V (φ) = −µ2φ†φ+ λ(φ†φ)2. (1.32)
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The covariant derivative Dµ in SU(2)L × U(1)Y is written as

Dµ = ∂µ + igwT ·Wµ + ig′
Y

2
Bµ (1.33)

where T = 1
2
τ are the three generators of the SU(2)L symmetry group, and Y the

generator of the U(1)Y hypercharge’s symmetry group. The potential V (φ) has a
manifold of minima, satisfying

φ†φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) =

µ2

2λ
=
υ2

2
. (1.34)

After symmetry breaking, the photon is required to remain massless, and the mini-
mum of the potential must correspond to a non-zero vacuum expectation value of the
neutral scalar field,

〈φ〉0 =
1√
2

(
0
υ

)
, (1.35)

while in the unitary gauge, the Higgs doublet is written,

φ(x) =
1√
2

(
0

υ +H(x)

)
. (1.36)

Inserting the above doublet into the kinetic term we obtain the mass terms of the
Wµ and Bµ, and also the interactions between them and the Higgs boson. The mass
terms are the following:

1

8
υ2g2

w

(
W (1)
µ W (1)µ +W (2)

µ W (2)µ

)
+

1

8
υ2

(
gwW

(3)
µ − g′Bµ

)(
gwW

(3)µ− g′Bµ

)
, (1.37)

and in order to go to the physical mass eigenstates, we use the following linear com-
binations of the fields

Aµ = cos θwBµ + sin θwW
(3)
µ ,

Zµ = − sin θwBµ + cos θwW
(3)
µ ,

W±
µ =

1√
2

(
W (1)
µ ∓W (2)

µ

) (1.38)

where θw is the weak mixing angle, and

cos θw =
gw√

g2
w + g′2

. (1.39)

Then, in the physical mass eigenbasis, the mass of the W boson is

mw =
1

2
gwυ (1.40)
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and for the Z and the photon:

υ2

8

(
W

(3)
µ Bµ

)( g2
w −gwg′

−gwg′ g′2

)(
W (3)µ

Bµ

)
=
υ2

8

(
Aµ Zµ

)(0 0
0 g2

w + g′2

)(
Aµ

Zµ

)
,

(1.41)
we obtain

mγ = 0, mz =
1

2
υ
√
g2
w + g′2. (1.42)

The Higgs Mechanism has given mass to the gauge fields W± and Z, which absorbed
the degrees of freedom from the corresponding Goldstone bosons, whereas the photon
has remained massless. The remaining degree of freedom has given mass to a scalar
field H, the Higgs field, with mass

mH =
√

2λυ (1.43)

and from the relation
GF√

2
=

g2
w

8m2
w

=
1

2υ2
(1.44)

where GF is the Fermi constant of the weak interaction, we obtain the vacuum ex-
pectation value

υ ≈ 246GeV. (1.45)

For the fermion masses, one needs to add them by hand in the Lagrangian. As it
was mentioned in Eq(1.29), the theory needs gauge invariant terms for the fermion
masses. For the leptons, this can be done by adding to the Lagrangian terms of the
following form:

Ll = −yl

[(
νl l

)
L

(
φ+

φ0

)
lR + lR

(
φ+∗ φ0∗

)(νl
l

)
L

]
(1.46)

where yl is a constant known as the Yukawa coupling of the lepton to the Higgs field.
After the spontaneous symmetry breaking, the lepton mass terms become

Ll = −ylυ√
2

(
lRlL + lLlR

)
− yl√

2
H
(
lRlL + lLlR

)
. (1.47)

The Yukawa coupling yl is not predicted by the Higgs mechanism, but can be chosen
to be consistent with the observed lepton mass,

yl =
√

2
ml

υ
(1.48)

meaning that

Ll = −mlll −
ml

υ
lHl. (1.49)
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The quarks however need a different kind of treatment. The reason behind this is that
the combination of fields LφR + Rφ†L can only generate the masses for the fermion
in the lower component of an SU(2)L doublet. In particular, we need a mechanism
that generates masses for the up-type quarks. This can be achieved by introducing
the following conjugate doublet φc:

φc = −iσ2φ
∗ =

(
−φ0∗

φ−

)
=

1√
2

(
−φ3 + iφ4

φ1 − iφ2

)
. (1.50)

In order to have gauge invariant mass terms for the up-type quarks, we construct the
following terms

Lu = yu

(
u d

)
L

(
−φ0∗

φ−

)
uR + h.c. (1.51)

which after the symmetry breaking becomes

Lu = −yuυ√
2

(
uLuR + uRuL

)
− yu√

2
H
(
uLuR + uRuL

)
. (1.52)

The down-type quarks obtain their masses in the same way as the leptons. As it
was previously mentioned, the Yukawa coupling terms are put manually to the SM
theory. A mechanism should generate them naturally, coming from a more funda-
mental theory. In the last chapters we present models that can, up to a point, achieve
that goal.
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2 Z ′ models

One of the simplest and well-motivated extensions of the Standard Model is the
addition of an extra U(1) gauge factor to its SU(3)c × SU(2)L × U(1)Y structure
([11], [12]). Such extensions were motivated by grand unified theories of rank higher
than that of the SM (SO(10), E6 or larger), or by geometric compactifications of
heterotic string models which possessed a low-energy spectrum sharing many features
with E6 GUT’s. Furthermore, in both string theories and in supersymmetric versions
of grand unification with extra U(1)′s below the string or GUT scale, both the U(1)′

and the SU(2)L×U(1)Y breaking scales are generally tied to the soft supersymmetry
breaking scale. Therefore, if supersymmetry is observed at the LHC there is a strong
motivation that a string or GUT induced Z ′ would also have a mass at an observable
scale.

The experimental discovery of a new Z ′ would be exciting, but the implications
would be much greater than just the existence of a new vector boson. Breaking the
U(1)′ symmetry would require an extended Higgs sector, with significant consequences
for collider physics and cosmology (direct searches, the µ problem, dark matter, elec-
troweak baryogenesis). Anomaly cancellation usually requires the existence of new
exotic particles that are vectorlike with respect to the standard model but chiral under
U(1)′, with several possibilities for their decay characteristics. The expanded Higgs
and exotic sectors can modify or maintain the approximate gauge coupling unifica-
tion of the minimal supersymmetric standard model (MSSM). In some constructions
(especially string derived) the U(1)′ charges are family nonuniversal, which can lead
to flavor changing neutral current (FCNC) effects, e.g., in rare B decays. Finally,
the decays of a heavy Z ′ may be a useful production mechanism for exotics and
superpartners. The constraints from the U(1)′ symmetry can significantly alter the
theoretical possibilities for neutrino mass. U(1)′ interactions can couple to a hidden
sector, possibly playing a role in supersymmetry breaking or mediation. In this chap-
ter, we briefly mention how the Z ′ couplings may rise in a theory after the symmetry
breaking of a U(1)′ symmetry group, and the shift on the mass of the SM Z boson
that results from the kinetic mixing of the field tensors.

2.1 The Z ′ couplings

In the SM the neutral current interactions of the fermions are described by the La-
grangian

−LSMNC = gJµ3W3µ + g′JµYBµ = eJµemAµ + g1J
µ
1 Z

0
1µ (2.1)

where g and g′ are the SU(2)L and U(1)Y gauge couplings, W3µ is the (weak eigen-
state) gauge boson associated with the third (diagonal) component of SU(2)L, and
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Bµ is the U(1)Y gauge boson. In the first form the currents are

Jµ3 =
∑
i

f iγ
µ
[
t3iLPL + t3iRPR

]
fi

JµY =
∑
i

f iγ
µ
[
yiLPL + yiRPR

]
fi

(2.2)

where fi is the field of the ith fermion and PL,R = (1 ∓ γ5)/2 are the left and right
chiral projections. The currents in the new basis are

Jµem =
∑
i

qif iγ
µfi

Jµ1 =
∑
i

f iγ
µ
[
ε1iLPL + ε1iRPR

]
fi

(2.3)

with the chiral couplings

ε1iL = t3iL − sin2 θwqi, ε1iR = t3iR − sin2 θwqi. (2.4)

In the extension SU(2)L × U(1)Y × U(1)n, n ≥ 1, LNC becomes [11]:

−LNC = eJµemAµ +
n+1∑
α=1

gαJ
µ
αZ

0
αµ (2.5)

where g1, Z0
1µ, and Jµ1 are respectively the gauge coupling, boson, and current of the

Standard Model Z. Similarly, gα and Z0
αµ, α = 2, . . . , n + 1, are the gauge couplings

and bosons for the additional U(1)′s [11]. The additional currents are

Jµα =
∑
i

f iγ
µ
[
εαiLPL + εαiRPR

]
fi

=
1

2

∑
i

f iγ
µ
[
gαiV − gαiAγ5

]
fi.

(2.6)

The chiral couplings εαiL,R, which may be unequal for a chiral gauge symmetry, are
respectively the U(1)α charges of the left and right handed components of fermion fi,
and gαiV,A = εαiL ± εαiR are the corresponding vector and axial couplings. If we simply
relate the U(1)α charges with the chiral couplings, εαL(f) = Qα

f , εαR(f) = Qα
fc the

diagonal (neutral current) part of the gauge covariant derivative of an individual field
φi is

Dµφi =

(
∂µ + ieqiAµ + i

n+1∑
α

gαQiαZ
0
αµ

)
φi (2.7)

where qi and Qα
i are respectively the electric and U(1)α charges of φi.
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2.2 Masses of the Bosons

Assuming that the neutral scalar fields φi acquire VEVs (and leaving the photon
massless), the Z0

αµ fields acquire masses, and are described by the following term in
the Lagrangian:

LZmass =
1

2
M2

αβZ
0
αµZ

0µ
β , (2.8)

where
M2

αβ = 2gαgβ
∑
i

QαiQβi|〈φi〉|2. (2.9)

If we ignore the mixings between the Z0’s, then the matrix element M2
11 = M2

Z0 is
the tree level Z boson’s mass of the SM. In order to obtain the massive eigenstates,
we diagonalize M2

αβ [11], to get to the new basis of fields

Zαµ =
n+1∑
β

OαβZ
0
αµ (2.10)

where O is an orthogonal mixing matrix. Now, studying the case n = 1, we have the
following mixing matrix

M2
Z−Z′ =

(
2g2

1

∑
i t

2
3i|〈φi〉|2 2g1g2

∑
i t3iQi|〈φi〉|2

2g1g2

∑
i t3iQi|〈φi〉|2 2g2

2

∑
iQ

2
i |〈φi〉|2

)

≡

(
M2

Z0 ∆2

∆2 M2
Z′

)
.

(2.11)

Depending on the model we are studying, we can determine the mass parameters
(matrix elements) in the above equation. Considering the scenario that our models
contains an SU(2) singlet scalar field s, and two doublets φu, φd, we get

M2
Z0 =

1

4
g2

1

(
|vu|2 + |vd|2

)
,

∆2 =
1

2
g1g2

(
Qu|vu|2 −Qd|vd|2

)
,

M2
Z′ = g2

2

(
Q2
u|vu|2 +Q2

d|vd|2 +Q2
s|vs|2

)
.

(2.12)

For a general M2
Z−Z′ , the eigenvalues are [11]:

M2
1,2 =

1

2

[
M2

Z0 +M2
Z′ ∓

√
(M2

Z0 −M2
Z′)

2 + 4∆4

]
, (2.13)
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where we use the rotation matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
(2.14)

with

θ =
1

2
arctan

(
2∆2

M2
Z0 −M2

Z′

)
, (2.15)

and θ is related to the masses by

tan2 θ =
M2

Z0 −M2
1

M2
2 −M2

Z′
. (2.16)

2.3 Kinetic mixing

The phenomenon of kinetic mixing can significantly shift the predicted couplings
of the Z ′ to SM states away from their canonical values, as well as changing the
relationship between other SM observables. Furthermore, kinetic mixing is in general
generated by renormalization group running down from the high (i.e., GUT) scale to
the weak scale ([11],[12]). In U(1)α×U(1)β, the most general kinetic energy term for
two gauge bosons Z0

αµ and Z0
βµ is

Lkin = −cα
4
F 0µν
α F 0

αµν −
cβ
4
F 0µν
β F 0

βµν −
cαβ
2
F 0µν
α F 0

βµν (2.17)

where F 0
αµν = ∂µZ

0
αν − ∂νZ0

βµ. A particular choice would be cα = cβ = 1, by rescaling
the fields, and cαβ = sinχ. In order to discuss the physical implications of the
new gauge boson, it is necessary to work in the physical eigenbasis for the Z − Z ′

system. Going to the physical eigenbasis requires both diagonalizing the field strength
terms and the mass terms. This can be seen as a two-step process in which we first
diagonalize the field strengths via a GL(2, R) transformation [12]:(

Z0
1µ

Z0
2µ

)
=

(
1 − tanχ
0 1/ cosχ

)(
Ẑ0

1µ

Ẑ0
2µ

)
= V

(
Ẑ0

1µ

Ẑ0
2µ

)
(2.18)

where V is non-unitary. In the new Z ′ basis, the mass matrix becomes V TM2
Z−Z′V ,

which can be diagonalized by an orthogonal matrix U . The interaction term then
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becomes (
g1J

µ
1 g2J

µ
2

)(Z0
1µ

Z0
2µ

)
≡ J T

(
Z0

1µ

Z0
2µ

)

= J TV

(
Ẑ0

1µ

Ẑ0
2µ

)

= J TV UT

(
Z1µ

Z2µ

)
,

(2.19)

where Z1,2 are the mass eigenstates. Then, depending on the approximations of the
model, one may find the new eigenvalues of the diagonalized M2

Z−Z′ matrix.
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3 The Anomalous Magnetic Moment

One of the greatest successes of the Dirac equation was its prediction that the mag-
netic dipole moment ~µ, of a spin |~s| = 1/2 particle such as the electron (or muon) is
given by

~µl = gl
e

2ml

~s, l = e, µ, · · · (3.1)

with gyromagnetic ratio gl = 2, a value already implied by early atomic spectroscopy.
Later, it was realized that a relativistic quantum field theory such as quantum elec-
trodynamics (QED) can give rise via quantum fluctuations to a shift in gl. These
quantum corrections induce a deviation from the Dirac moment that is traditionally
expressed as the magnetic moment anomaly,

al ≡
gl − 2

2
. (3.2)

In a now classic QED calculation, Julian Schwinger showed that the one-loop
(
O(e2)

)
quantum correction to the electron’s magnetic moment contributes [1]

al =
α

2π
≈ 0.001162 (3.3)

where the numerical value reflects the value of the fine structure constant, α = 1/137.
This contribution is due to quantum fluctuations via virtual lepton photon interac-
tions and in QED is universal for all leptons. The predicted value of al can be con-
fronted by experiment, which is easier to measure in the case of electron and muon,
rather than the tau lepton, due to its very short lifetime ττ = (290.3± 0.5)× 10−15s.
Over the last decades, experiments have shown that the muon anomalous magnetic
moment deviates from the predicted SM value. This observation was achieved by the
even more precise experiments that were conducted, and also by the state-of-the-art
evaluations of the contributions from quantum electrodynamics (QED) to tenth or-
der, hadronic vacuum polarization, hadronic light-by-light, and electroweak processes.
The theoretical prediction for aµ(SM) is generally divided into three contributions,

aµ(SM) = aQEDµ + aEWµ + ahadronicµ . (3.4)

The first results from FNAL [4] show the difference aµ(Exp) − aµ(SM) = (251 ±
59) × 10−11, which has a significance of 4.2σ, and also confirm the BNL experiment
result. This result will further motivate the development of SM extensions, including
those having new couplings to leptons. In this chapter, we present the one-loop con-
tributions with a virtual photon, SM Higgs boson, and SM Z boson to the anomalous
magnetic moment of a fermion.
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3.1 Construction of the Form Factors

Our first task, before calculating the radiative corrections to the anomalous magnetic
moment of a lepton, is to present the derivation of the form factors in the vertex func-
tion. In the non-relativistic limit, the Dirac equation with electromagnetic radiation
takes the form [14]:

i
∂

∂t
ψ =

[
~ααα ·
(
~P− e

c
~A

)
+ eφ+mc2β

]
ψ (3.5)

where the Dirac matrices β = (γ0)−1, and αi = βγi in the Pauli-Dirac representation
are

β =

(
I 0
0 −I

)
, αi =

(
0 σi

σi 0

)
, (3.6)

with the two component wavefunction

ψ =

(
ϕ
χ

)
e−imc

2t. (3.7)

Substituting the two component wavefunction of Eq(3.7) into Eq(3.5), and through
some simple manipulations in the calculations in the non-relativistic limit, we arrive
at

i
∂

∂t
ψ =

[
1

2m

(
~P− e~A

)2

− e

m

~σσσ

2
· ~B + eφ

]
ψ, (3.8)

where ~σσσ/2 is the spin ~S of the particle. Therefore, the Hamiltonian in the non-
relativistic approximation is

H =
1

2m

(
~P− e~A

)2

− e

m
~S · ~B + eφ. (3.9)

Comparing this result with the magnetic moment ~M of a particle

~M =
e

m
~S = g

e

2m
~S (3.10)

the Lande g factor is equal to g = 2. Moving on at the tree level of QED, the
electromagnetic interaction of a charged particle takes the form

HI = −eAµ(x)ψ(x)γµψ(x) (3.11)
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where Aµ(x) is the four-vector potential of the electromagnetic field, e is the magni-
tude of the electric charge of the charged lepton and γµ is the Dirac algebra repre-
sentation matrix given by

γµ =

(
0 σµ

σµ 0

)
, (3.12)

with σµ being the Pauli matrices. Eventually, at the tree level g = 2 just like in the
non-relativistic limit. Going beyond the tree level the value of g acquires additional
contributions from loop effects. It is important now to study the most general vertex
function Γµ in the following amplitude:

iM = −ieÃµ(p′ − p)u(p′)Γµu(p), (3.13)

where Ãµ(q) is the Fourier transform of Aµ(x), and Γµ is the effective vertex function,
involving all Lorentz scalars. The general form of Γµ includes γµ, qµ = p′µ − pµ,
and P µ = p′µ + pµ, some contractions with the anti-symmetric tensor element εµναβ

with the momentums, and constants such as m, e and pure numbers. Through some
manipulations, utilizing the following relations

εµναβ = iγ[µγνγαγβ]γ5,

/pu(p) = mu(p),

u(p′)/p
′ = u(p′)m,

{γµ, γν} = 2gµν ,

(3.14)

the effective vertex function takes the form

Γµ = γµF1 +
P µ

2m
F2 + i

qµ

2m
F3 + γµγ5F4 +

qµ

2m
γ5F5 + i

P µ

2m
γ5F6 (3.15)

where the factor 1/2m ensures the corresponding F ’s to be dimensionless, and the
factor i ensures the corresponding F ’s to be real so that εµ(q)u(p′)Γµu(p) is hermitian,
where εµ is the polarization vector of the electromagnetic field. Utilizing the following
relations:

qµP
µ = 0,

qµu(p′)γµu(p) = 0,

qµu(p′)γµγ5u(p) = 2mu(p′)γ5u(p),

(3.16)

since u(p′)Γµu(p) is a conserved current, then qµu(p′)Γµu(p) = 0, and we have

qµu(p′)Γµu(p) = u(p′)

(
i
qµq

µ

2m
F3 + 2mγ5F4 +

qµq
µ

2m
γ5F5

)
u(p) (3.17)
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which leads to F3 = 0 and F5 = −F44m2/q2. Then Γµ takes the form

Γµ = γµF1 +
P µ

2m
F2 +

(
γµ − 2mqµ

q2

)
F4 + i

P µ

2m
γ5F6, (3.18)

and by further using the Gordon identities (Appendix C), which allow us to swap the
P µ term for one involving σµνqν ,

u(p′)
P µ

2m
u(p) = u(p′)

(
γµ − iσ

µνqν
2m

)
u(p),

u(p′)
P µ

2m
γ5u(p) = u(p′)

(
− iσ

µνqν
2m

γ5

)
u(p),

(3.19)

we have

Γµ = γµFE(q2) +

(
γµ − 2mqµ

q2

)
γ5FA(q2) + i

σµνqν
2m

FM(q2) +
σµνqν
2m

γ5FD(q2) (3.20)

where the renamed F coefficients are called form factors [14],[15]. To lowest order,
FE = 1 and FM = 0. In principle, the form factors can be computed to any order
in perturbation theory. Since FE and FM contain complete information about the
influence of an electromagnetic field on the lepton, they should contain the lepton’s
gross electric and magnetic couplings [15]. To identify the electric charge of a lepton,
we set Aclµ (x) = (φ(~x),0), and study the case of Coulomb scattering of a nonrelativistic
fermion from a region of nonzero electrostatic potential. The amplitude becomes

iM = −ieu(p′)Γ0(p′, p)u(p)φ̃(~q). (3.21)

Taking the limit ~q → 0 in the spinor matrix element, only the FE contributes (con-
sidering only vector contributions). In the nonrelativistic limit,

u(p′)γ0u(p) = u†(p′)u(p) ≈ 2mξ′†ξ (3.22)

the amplitude for electron scattering from an electrostatic field becomes

iM = −ieFE(0)φ̃(~q) · 2mξ′†ξ, (3.23)

and we identify the Born approximation for scattering from a potential

V (~x) = eFE(0)φ(~x), (3.24)

where eFE(0) is the physical electric charge of the electron. Since FE(0) = 1 (the
renormalization condition of the electric charge), radiative corrections to FE(q2)
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should vanish at q2 = 0. Since we are concerned primarily with the magnetic moment,
we focus on the FM term. Setting Aclµ (x) = (0, ~Acl(~x)), the scattering amplitude takes
the form

iM = +ieu(p′)

(
γiFE +

iσiνqν
2m

FM

)
u(p)Ãicl(~q). (3.25)

Repeating the same analysis for a lepton scattering from a static vector potential, we
arrive at the following results (Appendix E):

u(p′)γiu(p) = 2mξ′†
(
−i
2m

εijkqjσk
)
ξ,

u(p′)

(
i

2m
σiνqν

)
u(p) = 2mξ′†

(
−i
2m

εijkqjσk
)
ξ.

(3.26)

The complete form of the lepton-photon vertex function is

u(p′)

(
γiFE +

iσiνqν
2m

FM

)
u(p)

q→0
≈ 2mξ′†

[
−i
2m

εijkqjσk
(
FE(0) + FM(0)

)]
ξ. (3.27)

Using the magnetic field described in momentum space

~B(~x) = ~∇∇∇× ~A(~x) ⇒ B̃k(~q) = iεijkqjÃ
cl
i (~q), (3.28)

and inserting Eq(3.27) into the amplitude, we find

iM = −i(2m) · eξ′†
[
−1

2m
σk
(
FE(0) + FM(0)

)]
ξB̃k(~q). (3.29)

Immediately we identify the Born approximation to the scattering of the lepton from
a potential well (magnetic moment interaction),

V (~x) = −〈~µµµ〉 · ~B(~x), (3.30)

where

〈~µµµ〉 =
e

m

[
FE(0) + FM(0)

]
ξ′†
~σσσ

2
ξ. (3.31)

Comparing it with the standard form

~µµµ = g

(
e

2m

)
~S, (3.32)

where ~S the fermion spin, the coefficient g, called Lande g-factor, is

g = 2
[
FE(0) + FM(0)

]
= 2 + 2FM(0). (3.33)
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In the leading order of perturbation theory, FM(0) = 0. It is the standard prediction
of the Dirac equation. However, in higher orders FM(q2) takes nonzero value, differing
from the Dirac value. In the following subsections, we present the one-loop corrections
to the anomalous magnetic moment of a lepton, with a virtual photon, Z and Higgs
boson. These specific contributions were calculated in order to show the mathematical
techniques needed for this task. Understanding the underlying concepts of these
calculations is important, since in a Beyond Standard Model scenario, like the one
presented in Chapter 4, one can manipulate the fermionic couplings and calculate the
new contributions using similar techniques (at one-loop).

3.2 The One-loop QED contribution

For this kind of computation, we utilize the algebra of the gamma matrices{
γµ, γν

}
= 2gµν ,

γµγµ = 4
(3.34)

where gµν is the Minkowski metric. The calculations are based on the textbooks of
Schwartz [7] and Peskin, Schroeder [15], and as I explain later, I consider here the
simple case of q → 0,

γ

f f

q

p′ + k

p′
k

p+ k

p

where the virtual photon has momentum k. The vertex function is written as,

Γµ = −ie2

∫
d4k

(2π)4

Nµ

D
, (3.35)

where the numerator is

Nµ = γν(/p
′ + /k +m)γµ(/p+ /k +m)γν , (3.36)

and the denominator

D =

[
(p′ + k)2 −m2

][
(p+ k)2 −m2

]
k2, (3.37)
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with m being the mass of the virtual lepton in the loop, which in QED is the same
as the on-shell leptons of the problem. The first step of the calculation is to con-
tract dummy Lorentz indices and reduce the number of γ matrices using the on-shell
condition

/pu(p) = mu(p),

u(p′)/p
′ = mu(p′).

(3.38)

So, we need to change Nµ into a form that contains γµ and (p′µ + pµ) terms.

Nµ = γν(/p
′ + /k +m)γµ(/p+ /k +m)γν

= γν
[
(−γµγa + 2gµa)(p′a + ka) +mγµ

]
(/p+ /k +m)γν

= γν
[
− γµ(/p+ /k) + 2(p′µ + kµ) +mγµ

]
(/p+ /k +m)γν

= γνγµ
[
− /p′ − /k +m

][
(−γνγa + 2gνa)(p

a + ka) +mγν
]

+ 2(p′µ + kµ)γν
[
(−γνγa + 2gνa)(p

a + ka) +mγν
]

= (−γµγν + 2gµν)
[
− /p′ − /k +m

][
− γν(/p+ /k) + 2(pν + kν) +mγν

]
+ 2(p′µ + kµ)γν

[
− γν(/p+ /k) + 2(pν + kν) +mγν

]
= γµγν

[
/p
′ + /k −m

][
− γν(/p+ /k) + 2(pν + kν) +mγν

]
+ 2
[
m− /p′ − /k

][
− γµ(/p+ /k) + 2(pµ + kµ) +mγµ

]
+ 2(p′µ + kµ)

[
− 2(/p+ /k) + 4m

]
Now, acting from both sides with the spinors like this: u(p′)Nµu(p), we get,

Nµ = γµγν
[
/p
′ + /k −m

][
− γν(m+ /k) + 2(pν + kν) +mγν

]
− 2/k

[
− γµ(m+ /k) + 2(pµ + kµ) +mγµ

]
+ 2(p′µ + kµ)

[
− 2/k + 2m

]
= γµγν

[
− (−γνγa + 2gνa)(p

′a + ka) +mγν
]
/k + 2γµ

[
/p+ /k

][
/p
′ + /k −m

]
+ 2ka(−γµγa + 2gµa)/k − 4(pµ + kµ)/k + 4(p′µ + kµ)(m− /k)

= γµγν
[
γν(/p

′ + /k)− 2(p′ν + kν) +mγν
]
/k + 2γµ

[
/p+ /k

][
/p
′ + /k −m

]
− 2γµk2 + 4kµ/k − 4(pµ + kµ)/k + 4(p′µ + kµ)(m− /k)[

× u(p)
]

= γµ
[
4(/p
′ + /k)− 2(/p

′ + /k) + 4m
]
/k + 2γµ

[
/p+ /k

][
/p
′ + /k −m

]
− 2γµk2 − 4pµ/k + 4(p′µ + kµ)(m− /k)

= γµ
{

2(/p
′ + /k)/k + 4m/k + 2

[
/p+ /k

][
/p
′ + /k −m

]
− 2k2

}
+ pµ

{
− 4/k

}
+ p′µ

{
4(m− /k)

}
+ kµ

{
4(m− /k)

}
,

(3.39)
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where we used /k/k = kakβγ
aγβ = 1

4
k2gaβγ

aγβ = k2. The first and the third term of
γµ can be reformed in the following way:

γµ
[
2(/p
′ + /k)/k

]
= 2(−γaγµ + 2gµa)p′a/k + 2γµk2

− 2/p
′γµ/k + 4p′µ/k + 2γµk2[

u(p′)×
]

= −2mγµ/k + 4p′µ/k + 2γµk2

= γµ
{

2(k2 −m/k)

}
+ p′µ

{
4/k
}
,

(3.40)

and

γµ
{

2
[
/p+ /k

][
/p
′+/k −m

]}
=

= γµ
{

2(/p/p
′ + /p/k −m/p+ /k/p

′ + k2 −m/k)

}
[
× u(p)

]
= γµ

{
2
[
pap′β(−γβγa + 2gaβ) + pakβ(−γβγa + 2gaβ)−m2

+ kap′β(−γβγa + 2gaβ) + k2 −m/k
]}

= γµ
{

2
[
− /p′/p+ 2p · p′ − /k/p+ 2p · k −m2 − /p′/k + 2p · k + k2 −m/k

]}
[
× u(p)

]
= γµ

{
2
[
−m/p′ −m/k + 2(p · p′ + p · k + p′ · k)−m2 − /p′/k + k2 −m/k

]}
= 2(−γaγµ + 2gaµ)

[
−mp′a − p′a/k

]
+ 2γµ

[
− 2m/k + 2(p · p′ + p · k + p′ · k)−m2 + k2

]
= 2
[
m/p
′γµ + /p

′γµ/k − 2p′µ(m+ /k)
]

+ 2γµ
[
− 2m/k + 2(p · p′ + p · k + p′ · k)−m2 + k2

][
u(p′)×

]
= 2
[
m2γµ +mγµ/k − 2p′µ(m+ /k)

]
+ 2γµ

[
− 2m/k + 2(p · p′ + p · k + p′ · k)−m2 + k2

]
= γµ

{
4(p · p′ + p · k + p′ · k)− 2m/k + 2k2

}
+ p′µ

{
− 4(m+ /k)

}
.

(3.41)
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Now, we substitute Eq(3.40) and Eq(3.41) into Eq(3.39) to get

Nµ = γµ
{

2(k2 −m/k) + 4m/k + 4(p · p′ + p · k + p′ · k)− 2m/k + 2k2 − 2k2

}
+ pµ

{
− 4/k

}
+ p′µ

{
4(m− /k) + 4(−m− /k) + 4/k

}
+ kµ

{
4(m− /k)

}
Nµ = γµ

{
2k2 + 4(p · p′ + p · k + p′ · k)

}
+ pµ

{
− 4/k

}
+ p′µ

{
− 4/k

}
+ kµ

{
4(m− /k)

}
.

(3.42)

At this stage, we are able to transform the denominator D using the Feynman-
Schwinger parametrization (Appendix D):

1

a1a2a3

= 2

∫ 1

0

dx

∫ 1−x

0

dy
1[

xa1 + ya2 + (1− x− y)a3

]3 , (3.43)

and D takes the form

1

D
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1[

x
(
(p′ + k)2 −m2

)
+ y
(
(p+ k)2 −m2

)
+ (1− x− y)k2

]3
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

d3
,

(3.44)
where

d = x(p′2 + k2 + 2p′ · k)− xm2 + y(p2 + k2 + 2p · k)− ym2 + (1− x− y)k2

= k2 + 2k · (xp′ + yp).
(3.45)

It is now time to change variables, lµ = kµ + (xp′µ + ypµ). Considering the case of
q = p′ − p→ 0 we substitute the new variables on d, and we get

d = l2 + (xp′µ + ypµ)2 − 2l · (xp′ + yp) + 2
[
l − (xp′ + yp)

]
· (xp′ + yp)

= l2 −m2(x2 + y2) + 2xyp′ · p
= l2 −m2(x+ y)2.

(3.46)

The vertex function becomes

Γµ = −2ie2

∫ 1

0

dx

∫ 1−x

0

∫
d4l

(2π)4

Nµ

l2 −m2(x+ y)2
(3.47)

27



and then we change variables in Nµ as well
[
lµ = kµ + (xp′µ + ypµ)

]
:

Nµ = γµ
{

2(l − xp′ − yp)2 + 4
[
p · p′ + p · (l − xp′ − yp) + p′ · (l − xp′ − yp)

]}
+ pµ

{
− 4(/l − x/p′ − y/p)

}
+ p′µ

{
− 4(/l − x/p′ − y/p)

}
+ (lµ − xp′µ − ypµ)

{
4
[
m− /l + x/p

′ + y/p
]}

[
u(p′) · · ·u(p)

]
= γµ

{
2
[
l2 +m2(x+ y)2 − 2l · (xp′ + yp)

]
+ 4
[
m2 + l · (p′ + p)− 2m2(x+ y)

]}
+ pµ

{
− 4
[
/l −m(x+ y)

]}
+ p′µ

{
− 4
[
/l −m(x+ y)

]}
+ (lµ − xp′µ − ypµ)

{
4
[
m
(
1 + (x+ y)

)
− /l
]}

= γµ
{

2l2 +m2
[
2(x+ y)2 − 8(x+ y) + 4

]
+ 4l ·

[
(1− x)p′ + (1− y)p

]}
+ pµ

{
− 4
[
/l −m(x+ y)

]
− 4y

[
m
(
1 + (x+ y)

)
− /l
]}

+ p′µ
{
− 4
[
/l −m(x+ y)

]
− 4x

[
m
(
1 + (x+ y)

)
− /l
]}

+ lµ
{

4
[
m
(
1 + (x+ y)

)
− /l
]}
.

(3.48)
Terms linear in l disappear in the integration as now the denominator D is an even
function of l.

Nµ = γµ
{

2l2 +m2
[
2(x+ y)2 − 8(x+ y) + 4

]}
+ pµ

{
4m
[
x− y(x+ y)

]}
+ p′µ

{
4m
[
y − x(x+ y)

]}
+ lµ

{
− 4/l

}
.

(3.49)

Since we are interested in the magnetic contribution only, the form factor that is
spin-associated is the one analogous to (p′µ + pµ). For now, we can ignore the other
terms of Nµ, and we shall deal with

Nµ
eff = pµ

{
4m
[
x− y(x+ y)

]}
+ p′µ

{
4m
[
y − x(x+ y)

]}
. (3.50)
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By symmetrizing Nµ
eff , we get,

Nµ
eff = 4m(pµ + p′µ)

1

2

[
x− xy − y2 + y − x2 − xy

]
= 2m(pµ + p′µ)

[
(x+ y)− (x+ y)2

]
= 2m(pµ + p′µ)

[
(x+ y)

(
1− (x+ y)

)]
.

(3.51)

As we can see, the momentum integral that we have to calculate has the following
form ∫

d4l

(2π)4

1

(l2 −∆)n
, ∆ = m2(x+ y)2. (3.52)

By applying a Wick rotation, l0 → −il0, we change to Euclidean coordinates lE =
(−il0, li), and the integral becomes∫

d4l

(2π)4

1

(l2 −∆)n
=
i(−1)n

(2π)4

∫
d4lE

1

(l2E + ∆)n

=
i(−1)n

(2π)4

∫
dΩ3

∫ ∞
0

dlE
l3E

(l2E + ∆)n

=
i(−1)n2π2

(2π)4

∫ ∞
0

dlE
l3E

(l2E + ∆)n

=
i(−1)n2π2

(2π)4

∫ ∞
0

lEdlE
l2E

(l2E + ∆)n
.

(3.53)

Making a simple change of variables: α = l2E + ∆ ⇒ dα = 2lEdlE, the integral is
equal to ∫

d4l

(2π)4

1

(l2 −∆)n
=
i(−1)n

(4π)2

∫ ∞
∆

dα
α−∆

αn

=
i(−1)n

(4π)2

∫ ∞
∆

dα
(
α1−n −∆α−n

)
=
i(−1)n

(4π)2

[
α2−n

2− n
− ∆α1−n

1− n

]∞
∆

=
i(−1)n

(4π)2

[
− 1

2− n
+

1

1− n

]
1

∆n−2∫
d4l

(2π)4

1

(l2 −∆)n
=
i(−1)n

(4π)2

1

(2− n)(1− n)

1

∆n−2
.

(3.54)

For n = 3, ∫
d4l

(2π)4

1

(l2 −∆)3
=
−i

2(4π)2

1

∆
. (3.55)
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The effective vertex function then becomes

Γµeff = −2ie2

∫ 1

0

dx

∫ 1−x

0

dy
(−i)

2(4π)2

2m(pµ + p′µ)(x+ y)
[
1− (x+ y)

]
m2(x+ y)2

= − e2

8π2m
(pµ + p′µ)

∫ 1

0

dx

∫ 1−x

0

dy
1− (x+ y)

x+ y

(3.56)

with the integrals∫ 1

0

dx

∫ 1−x

0

dy
1− (x+ y)

x+ y
=

∫ 1

0

dx

∫ 1

x

dz
1− z
z

=

∫ 1

0

dx
[
lnz − z

]1
x

=

∫ 1

0

dx
[
− lnx− (1− x)

]
= −

∫ 1

0

dxlnx− 1

2

= −x
[
lnx− 1

]1
0
− 1

2∫ 1

0

dx

∫ 1−x

0

dy
1− (x+ y)

x+ y
=

1

2
.

(3.57)

So, Γµeff becomes

Γµeff = − e2

16π2m
(pµ + p′µ) = − α

4πm
(pµ + p′µ) (3.58)

where α = e2/4π is the fine structure constant. Utilizing the Gordon identity in the
momentum space

u(p′)γµu(p) = u(p′)

[
pµ + p′µ

2m
+ i

Σµνqν
2m

]
u(p) (3.59)

we recognize that the factor of pµ + p′µ multiplied by −2m is equal to the correction
of the g factor,

a =
α

2π
⇒ g = 2 +

α

π
. (3.60)

This concludes the calculation of the 1-loop QED contribution to the anomalous mag-
netic moment of a lepton. However, if we proceed to calculate the integral containing
the γµ term, we face the following form of an integral:∫

d4l

(2π)4

l2

(l2 −∆)n
=
i(−1)n−1

(2π)4

∫
d4lE

l2E
(l2E + ∆)n

. (3.61)
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Switching to spherical coordinates, the integral takes the following form∫
d4l

(2π)4

l2

(l2 −∆)n
=
i(−1)n−1

(2π)4

∫
dΩ3

∫ ∞
0

dlE
l5E

(l2E + ∆)n

=
i(−1)n−1

(2π)4
(2π2)

∫ ∞
0

(lEdlE)
l4E

(l2E + ∆)n
,

(3.62)

and by changing variables α = l2E + ∆⇒ dα = 2lEdlE we get

i(−1)n−1

(4π)2

∫ ∞
∆

dα
(α−∆)2

an
=
i(−1)n−1

(4π)2

∫ ∞
∆

dα
α2 − 2α∆ + ∆2

an

=
i(−1)n−1

(4π)2

∫ ∞
∆

dα

(
α2−n − 2α1−n∆ + ∆2α−n

)
=
i(−1)n−1

(4π)2

[
α3−n

3− n
− 2∆α2−n

2− n
+

∆2α1−n

1− n

]∞
∆

=
i(−1)n−1

(4π)2

[
− 1

3− n
+

2

2− n
− 1

1− n

]
1

∆n−3

=
i(−1)n−1

(4π)2

2

(n− 1)(n− 2)(n− 3)

1

∆n−3
.

(3.63)

It is obvious enough that for the value n = 3, the integral in Eq(3.63) is divergent
in any event. In order to make this integral finite, we need to replace in the photon
propagator [15]

1

k2 + iε
→ 1

k2 + iε
− 1

k2 − Λ2 + iε
(3.64)

where Λ is a very large mass. Considering the second term as the propagator of a
fictitious heavy photon, the numerator algebra of the integral in Eq(3.35) remains
unchanged and the numerator is altered by

∆→ ∆Λ = (x+ y)2m2 + (1− x− y)Λ2 (3.65)

Eventually, the integral in Eq(3.62), for n = 3, is replaced with a convergent integral∫
d4l

(2π)4

(
l2

(l2 −∆)3
− l2

(l2 −∆Λ)3

)
=

i

(4π)2

∫ ∞
0

dl2E

(
l4E

(l2E −∆)3
− l4E

(l2E −∆Λ)3

)
=

i

(4π)2
log

(
∆Λ

∆

)
.

(3.66)
Then, the convergent terms are modified by terms of order Λ−2. This prescription
for rendering Feynman integrals finite (by introducing fictitious heavy particles) is
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known as Pauli-Villars regularization. Since this contribution corrects FE(q2 = 0)
(which should be fixed at the value 1), we make the following substitution

δFE(q2)→ δFE(q2)− δFE(0) (3.67)

which absorbs the divergence in a renormalization constant.

3.3 The One-loop Higgs boson contribution

Similar methods are used to calculate the 1-loop correction with a virtual scalar bo-
son. In this case, the Standard Model’s Higgs boson.

γ

f f

q

q + k

p′
p− k

k

p

The 1-loop vertex correction to the anomalous magnetic moment of a fermion by
the exchange of a virtual Higgs boson is

u(p′)δΓµu(p) =

(
iλ√

2

)2 ∫
d4k

(2π)4
u(p′)

i

(k − p)2 −m2
h

i

/k + /q −m
γµ

i

/k −m
u(p)

=
iλ2

2

∫
d4k

(2π)4
u(p′)

(/k + /q +m)γµ(/k +m)[
(k − p)2 −m2

h

][
(k + q)2 −m2

][
k2 −m2

]u(p).

(3.68)
Now, the denominator needs to be modified via the Feynman parametrization

1

A1A2 . . . An
=

∫ 1

0

dx1

∫ 1−x

0

dx2· · ·
∫ 1−x1−···−xn−2

0

(n− 1)![
A1 + x1(A2 − A1) + · · ·+ xn−1(An − A1)

]n
(3.69)

which, in the case of n = 3, we have

1

A1A2A3

=

∫ 1

0

dx1

∫ 1−x1

0

dx2
2[

A1 + x1(A2 − A1) + x2(A3 − A1)
]3 . (3.70)
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In this specific occasion, the denominator is written as

D =
[
k2 −m2

]︸ ︷︷ ︸
A1

+x
[
(k − p)2 −m2

h − k2 +m2
]︸ ︷︷ ︸

x1(A2−A1)

+ y
[
(k + q)2 −m2 − k2 +m2

]︸ ︷︷ ︸
x2(A3−A1)

= k2 + (x− 1)m2 + xp2 + yq2 + 2k · (−xp+ yq)− xm2
h.

(3.71)

We may now shift the momentum k, so that l = k−xp+yq is the new variable under
the integration. The denominator needs to depend on l2:

l2 = k2 + (−xp+ yq)2 + 2k · (−xp+ yq)

= k2 + x2p2 + y2q2 − 2xyq · p+ 2k · (−xp+ yq)
(3.72)

and

l2 −D = (1− x)m2 + xm2
h + y(y − 1)q2 + x(x− 1)p2 − 2xyq · p, (3.73)

where we name the above difference as ∆

∆ = (1− x)m2 + xm2
h + y(y − 1)q2 + x(x− 1)p2 − 2xyq · p, (3.74)

so that we can express the denominator as

D = l2 −∆. (3.75)

Following the same calculational methods as in the previous section, we utilize the
following gamma matrices identities:

γνγµγν = −2γµ,

γνγµγσγν = 4gµσ,

γνγργµγσγν = −2γσγµγρ,

{γµ, γν} = 2gµν ,

(3.76)
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and apply them in the modification of the numerator Nµ

Nµ = (/k + /q +m)γµ(/k +m)

=
[
/l + x/p+ (1− y)/q +m

]
γµ
[
/l + x/p− y/q +m

]
= /lγµ/l + /lγµ(x/p− y/q +m)︸ ︷︷ ︸

vanishes

+x/pγ
µ( /l︸︷︷︸

vanishes

+x/p− y/q +m)

+ (1− y)/qγ
µ( /l︸︷︷︸

vanishes

+x/p− y/q +m) +mγµ( /l︸︷︷︸
vanishes

+x/p− y/q +m)

[. . . u(p)] = − l
2

2
γµ + x(−γµγa + 2gµa)pa

[
(1 + x)m− y/q

]
+ (1− y)/qγ

µ
[
(1 + x)m− y/q

]
+mγµ

[
(1 + x)m− y/q

]
= − l

2

2
γµ + x(−γµ/p+ 2pµ)

[
(1 + x)m− y/q

]
+ (1− y)(1 + x)m/qγ

µ − y(1− y)/qγ
µ
/q +m2(1 + x)γµ −myγµ/q

(3.77)
where the terms proportional to l vanish due to∫

d4l

(2π)4

lµ

D3
= 0.

From this point on, we utilize the following relations of gamma matrices when the
spinors act on them from both sides:

γµ/q = γµqβγ
β = qβ(−γβγµ + 2gµβ) = −/qγµ + 2qµ,

u(p′)/qγ
µu(p) = u(p′)(/p

′ − /p)γµu(p) = u(p′)(mγµ − /pγµ)u(p)

= u(p′)(mγµ + γµ/p− 2pµ)u(p)

= u(p′)(2mγµ − 2pµ)u(p),

u(p′)/qu(p) = u(p′)(/p
′ − /p)u(p) = u(p′)(m−m)u(p) = 0.

(3.78)
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Therefore,

Nµ = − l
2

2
γµ −mx(1 + x)γµ/p+ xyγµ/p/q + 2mx(1 + x)pµ − 2xypµ/q

+m(1− y)(1 + x)/qγ
µ − y(1− y)/q (−γaγµ + 2gµa)qa︸ ︷︷ ︸

−/qγµ+2qµ

+m2(1 + x)γµ −my(−/qγµ + 2qµ)

u(p′)Nµu(p) = − l
2

2
γµ −m2x(1 + x)γµ + xyγµ(−γaγβ + 2gaβ)qapβ

+ 2mx(1 + x)pµ +m(1− y)(1 + x)(2mγµ − 2pµ)

+ y(1− y)q2γµ − 2y(1− y)qµ/q +m2(1 + x)γµ

+my/qγ
µ − 2myqµ

u(p′)Nµu(p) = − l
2

2
γµ −m2x(1 + x)γµ − xyγµ/q/p+ 2xyγµq · p+ 2mx(1 + x)pµ

+ 2m2(1− y)(1 + x)γµ − 2m(1− y)(1 + x)pµ + y(1− y)q2γµ

+m2(1 + x)γµ + ym(2mγµ − 2pµ)− 2myqµ

u(p′)Nµu(p) =

[
− l2

2
−m2x(1 + x) + 2xyq · p+ 2m2(1− y)(1 + x) + y(1− y)q2

+m2(1 + x) + 2m2y

]
γµ −mxy(−/qγµ + 2qµ)

+ 2m

[
x(1 + x)− (1− y)(1 + x)− y

]
pµ − 2myqµ.

(3.79)
The q · p product can be simplified to

p′ − p = q ⇒p′ = p+ q

p′2 = p2 + q2 + 2q · p
m2 = m2 + q2 + 2q · p⇒
⇒q2 = −2q · p,
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and substituting to the previous equation, we get

u(p′)Nµu(p) =

[
− l2

2
−m2x(1 + x)− xyq2 + 2m2(1− y)(1 + x) + y(1− y)q2

+m2(1 + x) + 2m2y

]
γµ +mxy(2mγµ − 2pµ)− 2mxyqµ

+ 2m

[
x(1 + x)− (1− y)(1 + x)− y

]
pµ − 2myqµ

=

[
− l2

2
+m2

(
− x(1 + x) + 2(1− y)(1 + x) + (1 + x) + 2y + 2xy

)
+ q2

(
y(1− y)− xy

)]
γµ + 2m

[
− xy + x(1 + x)− (1− y)(1 + x)− y

]
pµ

− 2m

[
y(1 + x)

]
qµ

=

[
− l2

2
+m2(3− x)(1 + x) + q2(y − y2 − xy)

]
γµ

+ 2m

[
x2 − 1

]
pµ − 2m

[
y(1 + x)

]
qµ.

(3.80)
All these modifications in the numerator were made in order to write it in the follow-
ing, most useful form

Nµ = Aγµ +B(p′ + p)µ + C(p′ − p)µ. (3.81)

So, we write the pµ and qµ terms in Eq(3.80) as

2m
{

(x2−1)pµ−y(1+x)(p′−p)µ
}

= 2m

{[
x2−1+y(1+x)

]
pµ−y(1+x)p′µ

}
. (3.82)

Generalizing the above factors of p, and p′,[
R1(x, y) +R2(x, y)

]
p′µ +

[
R1(x, y)−R2(x, y)

]
pµ, (3.83)

we solve the system of equations

R1(x, y) +R2(x, y) = −y(1 + x),

R1(x, y)−R2(x, y) = x2 − 1 + y(1 + x),
(3.84)

to find the R1, R2 functions

R1(x, y) =
1

2
(x2 − 1), R2(x, y) = −1

2
(x2 − 1)− y(1 + x). (3.85)

36



Finally, the numerator takes the following form

Nµ =

[
− l2

2
+m2(3− x)(1 + x) + q2(y − y2 − xy)

]
γµ

+m(x2 − 1)(p′ + p)µ + 2R2(x, y)qµ︸ ︷︷ ︸
can be thrown away

,
(3.86)

where the term proportional to qµ can be thrown away by Ward identity. At this
point, we utilize the Gordon Identity,

u(p′)
(p′ + p)µ

2m
u(p) = u(p′)

[
γµ − iσ

µνqν
2m

]
u(p)

to finally get the numerator of the integral in the proper form

Nµ =

[
− l2

2
+m2(x+ 1)2 + q2(y − y2 − xy)

]
γµ + 2m2(1− x2)i

σµνqν
2m

. (3.87)

We deal with the magnetic form factor only,

δFM(q) = 2iλ2m2

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4l

(2π)4

1− x2

(l2 −∆)3
. (3.88)

In the previous section, we proved the following integral∫
d4l

(2π)4

1

(l2 −∆)3
=
i(−1)3

(4π)2

1

(2− 3)(1− 3)

1

∆3−2
=
−i

2(4π)2

1

∆
,

which can be substituted into Eq(3.88), to give

δFM(q = 0) = 2iλ2m2

∫ 1

0

dx

∫ 1−x

0

dy
(−i)(1− x2)

2(4π)2

1

∆(q = 0)

=
λ2

(4π)2
m2

∫ 1

0

dx

∫ 1−x

0

dy
1− x2

(1− x)m2 + xm2
h − x(1− x)m2

=
λ2

(4π)2
m2

∫ 1

0

dx
(1− x2)(1− x)

m2(1− x)2 + xm2
h

=
λ2

(4π)2
m2

∫ 1

0

dx
(1− x)2(1 + x)

m2(1− x)2 + xm2
h

δFM(q = 0) =
λ2

(4π)2

∫ 1

0

dx
(1− x)2(1 + x)

(1− x)2 + x(mh/m)2

(3.89)
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At this stage, we take into consideration that mh � m, and we end up with the
following result:

δF h
M(q2 = 0) '

√
2GFm

2

8π2

m2

m2
h

ln

(
m2
h

m2

)
. (3.90)

This is the one-loop contribution to the anomalous magnetic moment of a lepton when
a virtual Higgs Boson is exchanged. The value for the muon lepton is approximately

δF h
M(q2 = 0) ≈ 21.64× 10−15. (3.91)

3.4 The One-loop Z boson contribution

In this case, the virtual boson that is exchanged is the SM’s Z boson that couples to
the neutral weak current.

γ

f f

q

−k

p′
p′ + k

−q − k

p

The Γ vertex function in this interaction is written as follows,

δZΓµ(q) =
( ig

4cw

)2
∫

d4k

(2π)4

−igρσ
(p′ + k)2 −m2

Z

γρ(4s2
W − 1− γ5)

i

−/k −m

× γµ i

−/q − /k −m
γσ(4s2

W − 1− γ5)

=
−ig2

16c2
W

∫
d4k

(2π)4

γσ(4s2
W − 1− γ5)(/k −m)γµ(/q + /k −m)γσ(4s2

W − 1− γ5)

[(p′ + k)2 −m2
Z ][k2 −m2][(q + k)2 −m2]

,

(3.92)
where cW = cos θW , sW = sin θw, and θW is the Weinberg angle. Proceeding with the
Feynman parametrization trick,

1

A1A2A3

=

∫ 1

0

dx1

∫ 1−x1

0

dx2
2

[A1 + x1(A2 − A1) + x2(A3 − A1)]3
, (3.93)
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the denominator becomes:

D = [k2 −m2]︸ ︷︷ ︸
A1

+x[(q + k)2 −m2 − k2 +m2]︸ ︷︷ ︸
x(A2−A1)

+ y[(p′ + k)2 −m2
Z − k2 +m2]︸ ︷︷ ︸

y(A3−A1)

=k2 −m2 + x[q2 + k2 + 2k · q − k2] + y[p′2 + k2 + 2k · p′ −m2
Z − k2 +m2]

=k2 + (y − 1)m2 + yp′2 + xq2 + 2k · (yp′ + xq)− ym2
Z .

(3.94)
The next step, just like in the previous contributions, is to change variables, by
shifting the internal momentum to a new one. In fact, we shift to a momentum ideal
enough to remove the k product with the momenta p′ and q. With that said, the new
momentum is l = k+ xq+ yp′. Now, we need to reform the denominator into a more
manageable for the integral form. We need the square of l,

l2 =k2 + (xq + yp′)2 + 2k · (xq + yp′)

=k2 + x2q2 + y2p′2 + 2xyq · p′ + 2k · (xq + yp′)
(3.95)

and then

l2 −D =k2 + x2q2 + y2p′2 + 2xyq · p′ + 2k · (xq + yp′)

− [k2 + (y − 1)m2 + yp′2 + xq2 + 2k · (yp′ + xq)− ym2
Z ]

=(1− y)m2 + ym2
Z + x(x− 1)q2 + y(y − 1)p′2 + 2xyq · p′

=∆,

(3.96)

which gives us a simplified form of the denominator

D = l2 −∆. (3.97)

The numerator,

Nµ =γσ(4s2
W − 1− γ5)(/k −m)γµ(/q + /k −m)γσ(4s2

W − 1− γ5)

=γσ(4s2
W − 1− γ5)(/k −m)γµ(/q + /k −m)γσ(4s2

W − 1− γ5)

− γσγ5(/k −m)γµ(/q + /k −m)γσ(4s2
W − 1− γ5).

(3.98)

Omitting the terms proportional to γ5, the numerator becomes

Nµ = γσ
[
(/k +m)γµ(/k + /q +m) + (4s2

W − 1− γ5)2(/k −m)γµ(/k + /q −m)
]
γσ. (3.99)

We proceed by reshaping the numerator, while acting from the left and right with
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the spinors u(p′) and u(p) respectively.

Nµ =(−/kγσ + 2kσ + γσm)γµ(/k + /q +m)γσ

+ (4s2
W − 1)2(−/kγσ + 2kσ − γσm)γµ(/k + /q −m)γσ

=(−/k +m)(−γµγσ + 2gµσ)(/k + /q +m)γσ + 2γµ(/k + /q +m)/k

+ (4s2
W − 1)2(−/k −m)(−γµγσ + 2gµσ)(/k + /q −m)γσ + 2γµ(/k + /q −m)/k

=(/k −m)γµ
[
− (/k + /q)γσ + 2(k + q)σ +mγσ

]
γσ − 2(/k −m)(/k + /q +m)γµ

+ 2γµ(/k + /q +m)/k + 2γµ(/k + /q −m)/k

+ (4s2
W − 1)2(/k +m)γµ

[
− (/k + /q)γσ + 2(k + q)σ −mγσ

]
γσ

− 2(4s2
W − 1)2(/k +m)(/k + /q −m)γµ

=(/k −m)γµ
[
− 4(/k + /q) + 2(/k + /q) + 4m

]
− 2(/k −m)(/k + /q +m)γµ

+ 4γµ(k2 + /q/k) + (4s2
W − 1)2(/k +m)γµ

[
− 4(/k + /q) + 2(/k + /q)− 4m

]
− 2(4s2

W − 1)2(/k +m)(/k + /q −m)γµ.
(3.100)

At this stage, we shall substitute the new variable l, and in the meantime, we ignore
the terms linear in l, since the integral vanishes on these terms.

Nµ =(/l − x/q − y/p′ −m)γµ
[
− 2
(
/l + (1− x)/q − y/p′

)
+ 4m

]
− 2(/l − x/q − y/p′ −m)

[
/l + (1− x)/q − y/p′ +m

]
γµ

+ 4γµ
[
(l − xq − yp′)2 + /q(/l − x/q − y/p′)

]
+ (4s2

W − 1)2(/l − x/q − y/p′ +m)γµ
[
− 2
(
/l + (1− x)/q − y/p′

)
− 4m

]
− 2(4s2

W − 1)2(/l − x/q − y/p′ +m)
[
/l + (1− x)/q − y/p′ −m

]
γµ

=− 2/lγµ/l − (x/q + y/p
′ +m)γµ

[
− 2
(
(1− x)/q − y/p′

)
+ 4m

]
− 2l2γµ + 2(x/q + y/p

′ +m)
[
(1− x)/q − y/p′ +m

]
γµ

+ 4γµ
[
l2 + (xq + yp′)2 − 2l · (xq + yp′)︸ ︷︷ ︸

vanishes

−xq2 − y/q/p′
]

− 2(4s2
W − 1)2/lγµ/l + (4s2

W − 1)2(x/q + y/p
′ −m)γµ

[
2
(
(1− x)/q − y/p′

)
+ 4m

]
− 2(4s2

W − 1)2l2γµ + 2(4s2
W − 1)2(x/q + y/p

′ −m)
[
(1− x)/q − y/p′ −m

]
γµ
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u(p′)Nµ =l2γµ + 2
[
x/q + (1 + y)m

]
γµ
[
(1− x)/q − y/p′

]
− 4m

[
x/q + (1 + y)m

]
γµ

− 2l2γµ + 2
[
x/q + (1 + y)m

][
(1− x)/q − y/p′ +m

]
γµ

+ 4γµ
[
l2 + x2q2 + y2p′2 + 2xyq · p′ − xq2 − y/q/p′

]
+ (4s2

W − 1)2l2γµ + (4s2
W − 1)2

[
x/q − (1− y)m

]
γµ
[
2
(
(1− x)/q − y/p′

)
+ 4m

]
− 2(4s2

W − 1)2l2γµ + 2(4s2
W − 1)2

[
x/q − (1− y)m

][
(1− x)/q − y/p′ −m

]
γµ

u(p′)Nµu(p) =
[
3l2 − (4s2

W − 1)2l2
]
γµ + 2

[
x/q + (1 + y)m

]
γµ
[
(1− x)/q − y/p′

]
− 4mx(2mγµ − 2pµ)− 4m2(1 + y)γµ + 2

[
x/q + (1 + y)m

][
(1− x)/q − y/p′ +m

]
γµ

+ 4γµ
[
x(x− 1)q2 + y2p′2 − xyq2 − y/q/p′

]
+ (4s2

W − 1)2
[
x/q − (1− y)m

]
γµ
[
2
(
(1− x)/q − y/p′

)
+ 4m

]
+ 2(4s2

W − 1)2
[
x/q − (1− y)m

][
(1− x)/q − y/p′ −m

]
γµ

(3.101)
Now, we start to collect the terms proportional to γµ,

Nµ =
{
l2[3− (4s2

W − 1)2]− 4m2(2x+ 1 + y) + 4[q2
(
x(x− 1)− xy

)
+ y2p′2]

}
γµ

+ 2[x/q + (1 + y)m]γµ[(1− x)/q − y/p′] + 8mxpµ

+ 2[x/q + (1 + y)m][(1− x)/q − y/p′ +m]γµ − 4yγµ/q/p
′

+ 2(4s2
W − 1)2[x/q − (1− y)m]γµ[(1− x)/q − y/p′ + 2m]

+ 2(4s2
W − 1)2[x/q − (1− y)m][(1− x)/q − y/p′ −m]γµ,

(3.102)
which we may ignore, since we focus only in the (p + p′)µ terms that will appear in
our calculations.

Nµ =
{
. . .
}
γµ + 2x(1− x)/qγ

µ
/q + 2(1 + y)m(1− x)γµ/q − 2xy/qγ

µ
/p
′

− 2y(1 + y)mγµ/p
′ + 8mxpµ + 2x(1− x)q2γµ − 2xy/q/p

′γµ + 2xm/qγ
µ

+ 2(1 + y)(1− x)m/qγ
µ − 2(1 + y)ym/p

′γµ + 2(1 + y)m2γµ − 4yγµ/q/p
′

+ 2(4s2
W − 1)2

{
x(1− x)/qγ

µ
/q − xy/qγµ/p′ + 2mx/qγ

µ − (1− y)(1− x)mγµ/q

+ (1− y)ymγµ/p
′ − 2(1− y)m2γµ + x(1− x)q2γµ − xy/q/p′γµ − xm/qγµ

− (1− y)(1− x)m/qγ
µ + (1− y)ym/p

′γµ + (1− y)m2γµ
}
.

(3.103)
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Now, we take the time to remind the reader the following relations,

γµ/q =− /qγµ + 2qµ,

u(p′)/qγ
µu(p) =u(p′)

[
2mγµ − 2pµ

]
u(p),

u(p′)/qu(p) =0,

(3.104)

and apply them in our calculations:

Nµ =
{
. . .
}
γµ + 2x(1− x)(−q2γµ + 2/qq

µ︸︷︷︸
u(p′)/qu(p)=0

) + 2(1 + y)(1− x)m(−2mγµ + 2pµ + 2qµ)

− 2xy/q(−/p′γµ + 2p′µ)− 2y(1 + y)m(−/p′γµ + 2p′µ) + 8mxpµ + 2x(1− x)q2γµ

− 2xy(−/p′/q + 2p′ · q︸ ︷︷ ︸
−q2

)γµ + 2xm(2mγµ − 2pµ) + 2(1 + y)(1− x)m(2mγµ − 2pµ)

− 2(1 + y)ym2γµ + 2(1 + y)m2γµ − 4yγµ(−/p′/q + 2q · p′︸ ︷︷ ︸
−q2

)

+ 2(4s2
W − 1)2

{
x(1− x)(−q2γµ + 2/qq

µ︸︷︷︸
vanishes

)− xy/q(−/p′γµ + 2p′µ) + 2mx(2mγµ − 2pµ)

− (1− y)(1− x)m(−2mγµ + 2pµ + 2qµ) + (1− y)ym(−/p′γµ + 2p′µ)− 2(1− y)m2γµ

+ x(1− x)q2γµ − xy(−/p′/q + 2p′ · q︸ ︷︷ ︸
−q2

)γµ − xm(2mγµ − 2pµ)

− (1− y)(1− x)m(2mγµ − 2pµ) + (1− y)ym2γµ + (1− y)m2γµ
}
.

(3.105)
By collecting once more the terms proportional to γµ, and acting with the spinors,
we get,

Nµ =
{
. . .
}
γµ + 4(1 + y)(1− x)m(p+ q)µ + 2xy(−/p′/q + 2p′ · q)γµ − 4xy/qp

µ︸ ︷︷ ︸
u(p′)/qu(p)=0

− 4y(1 + y)mp′µ + 8mxpµ + 4xym/qγ
µ − 4xmpµ − 4(1 + y)(1− x)mpµ

+ 4y(−/p′γµ + 2p′µ)/q + (4s2
W − 1)2

{
2xy(−/p′/q + 2q · p′)γµ − 4xy/qp

′µ︸ ︷︷ ︸
vanishes

+8mxpµ

− 4(1− y)(1− x)m(p+ q)µ + 4(1− y)ymp′µ + 2xym/qγ
µ + 4xmpµ

+ 4(1− y)(1− x)mpµ
}
.

(3.106)
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Focusing now only on the p′µ and pµ terms:

Nµ =pµ
{

4mx− 4(4s2
W − 1)2mx

}
+ p′µ

{
− 4y(1 + y)m+ 4(4s2

W − 1)2(1− y)ym
}

+ qµ
{

4(1 + y)(1− x)m− 4(4s2
W − 1)2(1− y)(1− x)m

}
+ 4xympµ − 8xympµ − 8ympµ − 8ymqµ + 4(4s2

W − 1)2xympµ − 4(4s2
W − 1)2xympµ

=pµ
{

4x
[
1− y − (4s2

W − 1)2
]
m− 8ym

}
+ p′µ

{
− 4y

[
1 + y − (4s2

W − 1)2(1− y)
]
m

}
+ qµ

{
4(1− x)

[
1 + y − (4s2

W − 1)2(1− y)
]
m− 8ym

}
,

(3.107)
and by substituting q = p′ − p, we get:

Nµ =p′µ
{

4(1− x− y)
[
1 + y − (4s2

W − 1)2(1− y)
]
m− 8ym

}
+ pµ

{
4(4s2

W − 1)2
[
(1− x)(1− y)− x

]
m− 4(1 + y)m

} (3.108)

By generalizing the above factors of p and p′,

4m
[
R1(x, y) +R2(x, y)

]
p′µ + 4m

[
R1(x, y)−R2(x, y)

]
pµ =

= 4mp′µ
{

(1− x− y)
[
1 + y − (4s2

W − 1)2(1− y)
]
− 2y

}
+ 4mpµ

{
(4s2

W − 1)2
[
(1− x)(1− y)− x

]
− (1 + y)

}
,

(3.109)

we solve the following system of equations:

R1(x, y) +R2(x, y) = (1− x− y)
[
1 + y − (4s2

W − 1)2(1− y)
]
− 2y,

R1(x, y)−R2(x, y) = −(1 + y) + (4s2
W − 1)2

[
(1− x)(1− y)− x

]
,

(3.110)

in order to reform the numerator in the following way

Nµ = R1(x, y)(p+ p′)µ +R2(x, y)qµ. (3.111)

The R1(x, y) parameter is found to be

R1(x, y) =
1

2

{
(1−x−y)

[
1+y−(4s2

W−1)2(1−y)
]
−1−3y+(4s2

W−1)2

[
(1−x)(1−y)−x

]}
(3.112)
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and the R2(x, y)qµ term vanishes due to the Ward identity. Substituting R1(x, y) in
the numerator and utilizing the Gordon identity to complete the form of the magnetic
form factor, the integral gives the following result:

δFZ
M(q2 = 0) =

√
2GFm

2

16π2

(−1 + 4 sin2 θw)2 − 5

3
. (3.113)

The value for the muon lepton is approximately

δFZ
M(q2 = 0) ' −193.90(1)× 10−11. (3.114)
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4 See-saw lepton masses and muon g−2 from heavy

vector-like leptons

In this chapter we review the model suggested in [3], where a vector-like lepton can be
used to explain the small muon mass by a see-saw mechanism, based on lepton-specific
two Higgs doublet models with a local U(1)′ symmetry. The radiative contributions
that we calculated in the previous chapter can be used and applied here, by switching
the gauge couplings to the ones introduced in this model.
A singlet SU(2)L vector-like lepton, E, is introduced, with charge −2 under the U(1)′

gauge symmetry. From now on we use the notation particle
(
U(1)′charge

)
, where as

mentioned above E(−2). There is also a dark Higgs field φ(−2) and a leptophilic Higgs
doublet H ′(+2). It is assumed that the SM Higgs doublet H and the SM fermions are
neutral under the U(1)′. In order to be consistent with suppressed Flavor Changing
Neutral Currents (FCNCs) and obtain lepton masses from the VEV of the leptophilic
Higgs doublet, a Z2 parity is also imposed on the SM, and new fields as in Type-X
(or lepton-specific) two Higgs doublet models (2HDM). The assignments for U(1)′

charges and Z2 parities are given in the table below.

U(1)′ charges , Z2 parities
qL uR dR lL lR H H ′ EL ER φ

U(1)′ 0 0 0 0 0 0 +2 -2 -2 -2
Z2 + - - + + - + + + +

Table 1: U(1)′ charges and Z2 parities of the particles.

The Lagrangian for the SM Yukawa couplings including Z ′, dark Higgs φ and the
vector-like lepton is

L = −1

4
F ′µνF

′µν − 1

2
sin ξF ′µνB

µν + |Dµφ|2 + |DµH
′|2 − V

(
φ,H,H ′

)
+ LV LSM (4.1)

with

LV LSM = −ydqLdRH − yuqLuRH̃ −MEEE − λEφELlR − yElLERH ′ + h.c. (4.2)

Here, H̃ = iσ2H∗, F ′µν = ∂µZ
′
ν − ∂νZ ′µ, Bµν is the field strength tensor for the SM

hypercharge and the covariant derivatives

Dµφ =
(
∂µ + 2igZ′Z

′
µ

)
φ,

DµH
′ =

(
∂µ − 2igZ′Z

′
µ −

1

2
igYBµ −

1

2
igτ iW i

µ

)
H ′.

(4.3)
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The scalar potential V
(
φ,H,H ′

)
for the singlet scalar φ, the leptophilic Higgs H ′,

and the SM Higgs H, is given by

V
(
φ,H,H ′

)
=µ2

1H
†H + µ2

2H
′†H ′ +

(
µ3φH

†H ′ + h.c.
)

+ λ1

(
H†H

)2
+ λ2

(
H ′†H ′

)2
+ λ3

(
H†H

)(
H ′†H ′

)
+ µ2

φφ
∗φ+ λφ

(
φ∗φ
)2

+ λHφH
†Hφ∗φ+ λH′φH

′†H ′φ∗φ.

(4.4)

It is noted here that the quartic couplings for the Higgs doublets in 2HDMs are
constrained, due to the fact that the second Higgs doublet H ′(+2) is charged under
the U(1)′ symmetry, and the mixing mass term between the two Higgs doublets is
generated after the U(1)′ symmetry is broken. In this model, the physical lepton
masses and the lepton Yukawa couplings to the SM Higgs can be generated correctly
due to the mixing with the vector-like lepton, via the see-saw mechanism for leptons.
In general, one can introduce one vector-like lepton per generation for lepton masses
without inducing the mixings between leptons.
Now, working out the symmetry breaking of the U(1)′ and the Electroweak symmetry,
we find for 〈H〉 = 1√

2
υ1, 〈H ′〉 = 1√

2
υ2, 〈φ〉 = υφ, the masses of the gauge bosons:

m2
Z′ = g2

z′

(
8υ2

φ + 4υ2
2

)
, (Appendix A→ 4υ2

φ)

mZ =
1

2

√
g2 + g2

Y υ,

mW =
1

2
gυ,

(4.5)

with υ =
√
υ2

1 + υ2
2. I note here that my calculations (see Appendix A) show that

m2
Z′ = g2

z′

(
4υ2

φ + 4υ2
2

)
. An important thing to mention is that the VEV of the SM

Higgs doublet H leads to quark masses and mixings, while the VEV of the extra Higgs
doublet H ′ leads to the mixing between the SM leptons and the vector-like lepton.
Due to the gauge kinetic mixing and the nonzero U(1)′ charge of the leptophilic Higgs,
there is a mass mixing between Z and Z ′ gauge bosons, which must be suppressed to
satisfy the electroweak precision data and the collider bounds.

A see-saw mechanism is used for generating small masses for charged leptons
through the vector-like lepton. It is also used to identify the gauge and Yukawa
interactions for the vector-like lepton. The muon is the lepton that mixes with the
vector-like lepton in this model, and the mass terms for the lepton sector are the
following:

LL,mass = −MEEE − (mRELlR +mLlLER + h.c.) (4.6)

where mR = λEυφ and mL = 1√
2
yEυ2 are the mixing masses. After diagonalizing the

mass matrix for leptons, the mass eigenvalues for leptons are,

m2
l1,l2

=
1

2

(
M2

E +m2
L +m2

R ∓
√

(M2
E +m2

L −m2
R)2 + 4m2

RM
2
E

)
. (4.7)
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The rotation matrices that were used for the right-handed and the left-handed leptons
are given by, (

lL
EL

)
=

(
cos θL sin θL
− sin θL cos θL

)(
l1L
l2L

)
,(

lR
ER

)
=

(
cos θR sin θR
− sin θR cos θR

)(
l1R
l2R

)
,

(4.8)

with the mixing angles given by

sin(2θR) =
2MEmR

m2
l2
−m2

l1

,

sin(2θL) =
m2
L

ml1ml2

sin 2θR.

(4.9)

The authors by approximating mR,mL �ME, they identify

m2
l1
≈ m2

Rm
2
L

M2
E

, (4.10)

whereas the mass squared for the vector-like lepton becomes

m2
l2
≈M2

E +m2
L +m2

R. (4.11)

Therefore, a see-saw mechanism is at work for generating small masses for charged
leptons due to heavy vector-like leptons, and for this purpose we need both the
electroweak symmetry breaking with the leptophillic Higgs doublet for mL 6= 0 and
the U(1)′ symmetry breaking for mR 6= 0 at the same time. In terms of the Yukawa
couplings, ml1 can be written as follows,

ml1 ≈
λEyEυφυ2√

2ME

. (4.12)

Choosing ml1 = mµ for the muon mass and setting the following perturbativity
conditions on the Yukawa couplings, λE < 1, yE < 1, the upper limit on the vector-
like mass is

ME '
λEyEυφυ2√

2mµ

< 6700GeV

(
υφυ2

103GeV2

)
. (4.13)

Notice that the vector-like lepton can be decoupled from the weak scale, while gen-
erating the muon mass and satisfying the perturbativity conditions. Moreover, for
mR,mL �ME, the lepton mixing angles become

sin(2θR) ≈ 2ml1

mL

,

sin(2θL) ≈ 2mL

ml2

,
(4.14)
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and in general we can parametrize the small mixing mass parameters by mL ≈
(θL/θR)1/2√ml1ml2 and mR ≈ (θR/θL)1/2√ml1ml2 . The authors proceed with the
construction of the gauge and Yukawa interactions of the model. I present here the
effective interactions of lepton to Z ′ and weak bosons that the authors of [3] have
constructed,

LL,eff =− 2gZ′Z
′
µ

[
c2
REγ

µPRE + s2
Rlγ

µPRl − sRcR(EγµPRl + lγµPRE)

+ c2
LEγ

µPLE + s2
Llγ

µPLl − sLcL(EγµPLl + lγµPLE)
]

+
g

2cW
Zµ(υl + αl)

[
(c2
L − 1)lγµPLl + sLcL(EγµPLl + lγµPLE) + s2

LEγ
µPLE

]
+

g

2cW
Zµ(υl − αl)

[
EγµPRE + c2

LEγ
µPLE + s2

Llγ
µPLl − sLcL(EγµPLl + lγµPLE)

]
+

g√
2
W−
µ

[
cLlγ

µPLν + sLEγ
µPLν

]
+ h.c.+ LL,ξ,

(4.15)
with sL/R = sin θL/R, cL/R = cos θL/R, υl = 1

2
(−1 + 4s2

W ) and αl = −1
2
. LL,ξ contains

the extra couplings due to gauge kinetic mixing, given by

LL,ξ =Z ′µ

[
eξcζcW lγ

µl +
e

2cW sW
(sζ − tξcζsW )

(
lγµ(υl − αlγ5)l + νγµPLν

)]
+

e

2cW sW
(cζ − tξsζsW )Zµ

[
lγµ(υl − αlγ5)l + νγµPLν

]
,

(4.16)

where cζ = cos ζ, sζ = sin ζ, tξ = tan ξ, and the mixing angle ζ between Z and Z ′

gauge bosons is given by

tan(2ζ) =
2m2

12(m2
Z2
−m2

Z)

(m2
Z2
−m2

Z)2 −m4
12

, (4.17)

with mZ being the Z-boson mass in the SM, mZ2 being the mass eigenvalue for the
Z ′-like gauge boson, and m2

12 being the mixing mass,

m2
12 =

m2
ZsW
cξ

(
sξ −

4gZ′υ
2
2

gY υ2

)
. (4.18)

Eqs(4.15)-(4.18) are based on the papers [5], [6]. The paper continues with the Yukawa
interactions of the model. Expanding the scalar fields around their VEVs we get,

H =

(
φ+

1
1√
2
(υ1 + ρ1 + iη1)

)
, H ′ =

(
φ+

2
1√
2
(υ2 + ρ2 + iη2)

)
(4.19)

and

φ = υφ +
1√
2

(ϕ+ ia). (4.20)
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The two would-be neutral Goldstone bosons, G, G′, and the CP-odd scalar A can be
identified as

G = cos βη1 + sin βη2,

G′ =
1√

2υ2
φ + υ2

2

(√
2υφa− υ sin βη2

)
,

A =NA

(
sin βη1 − cos βη2 −

υ√
2υφ

sin β cos βa

) (4.21)

with

NA =
1√

1 + υ2 sin2 β cos2 β/(2υ2
φ)
. (4.22)

Here, υ1 = υ cos β, υ2 = υ sin β. Ignoring the mixing between the dark Higgs ϕ and
ρ1,2, we also obtain the mass eigenstates for CP-odd scalars, h and H, as

h = cosαρ1 + sinαρ2,

H =− sinαρ1 + cosαρ2

(4.23)

where α is the mixing angle between CP-even scalars. The would-be charged Gold-
stone boson G+ and the charged Higgs H+ are

G+ = cos βφ+
1 + sin βφ+

2 ,

H+ = sin βφ+
1 − cos βφ+

2 .
(4.24)

Then, the authors proceed with the construction of the Yukawa interactions, where the
Yukawa couplings depend on the values of the mixing angles α and β, and the model
is complete in order to perform one-loop calculations on the anomalous magnetic
moment. In this model, the vector-like lepton, Z ′ gauge boson as well as extra scalars
contribute to the muon g − 2 at one loop, as follows

∆αµ = ∆αZ
′,E

µ + ∆αZ,Eµ + ∆αZ
′,µ

µ + ∆αh,Eµ + ∆αh,µµ + ∆αH
−

µ . (4.25)

Assuming the approximations ml1 ≈ mµ and ml2 ≈ME, we get the following contri-
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butions:

∆αZ
′,E

µ ≈


g2
Z′MEmµ

16π2m2
Z′

(c2
V − c2

A), ME � mZ′ ,
g2
Z′MEmµ

4π2m2
Z′

(c2
V − c2

A), mµ �ME � mZ′ ,

∆αZ
′,µ

µ ≈ g2
Z′

12π2m2
Z′

(υ′2µ − 5α′2µ ), mZ′ � mµ,

∆αh,Eµ ≈
m2
µ

48π2M2
E

[
|υEi |2 + |αEi |2 +

3ME

mµ

(|υEi |2 − |αEi |2)
]
, ME � mhi ,

∆αh,Eµ ≈
m2
µ

24π2m2
hi

[
|υEi |2 + |αEi |2 +

3ME

mµ

(|υEi |2 − |αEi |2)

(
ln
m2
hi

M2
E

− 3

2

)]
, ME � mhi ,

∆αH
−

µ ≈ −
m2
µ

24π2m2
H−
|υH−|2.

(4.26)
Choosing specific values for the parameters, we plot the contributions:

Figure 1: The one-loop contribution from Z ′ and vector-like lepton, the one-loop
contribution from the dark Higgs ϕ and the vector-like lepton, and the combined
one-loop results, are shown in blue dotted, blue dashed, red solid line, respectively.
The yellow (green) bands indicate the deviations of the muon g−2 from the SM value
within 1σ(2σ). θR = 0.23 = 100θL were taken on left and θR = θL = 0.023 on right.
For both plots, ME = 200GeV , gZ′ = 0.02, mZ′ = mϕ and υϕ =

mZ′

2
√

2gZ′
were chosen.

In Figure 1, the Z ′ contributes positively to ∆aµ because the vectorial coupling
is larger than the axial coupling in this model. On the other hand, the dark Higgs
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Figure 2: (Left) ∆aµ as a function ofME in red line, in comparison to 1σ(2σ) bands for
the deviation of the muon g−2 in yellow(green) for fixed values mZ′ = mφ = 200GeV
and gZ′ = 0.5, and the vector-like mixing angles to θR = θL =

√
mµ/ME. (Right)

The new contribution to the muon g− 2 in the parameter space for mZ′ = mφ versus
gZ′ within 1σ(2σ), shown between black(blue) lines, taking ME = 1000GeV and
θR = θL =

√
mµ/ME.

contributes negatively to ∆aµ, because the pseudo-scalar coupling is larger than the
scalar coupling. For mZ′ = mφ and gZ′ = 0.02, namely, λφ ' 2g2

Z′ = 0.0008 for
υ2 � υφ, and υφ = mZ′/(2

√
2gZ′) = 18mZ′ , the Z ′ and dark Higgs masses around

5 − 8GeV are favored to explain the experimental value of the muon g − 2. For
either θR � θL or θR = θL, the one-loop corrections with Z ′ and vector-like lepton
contribute dominantly to the muon g − 2. In Figure 2, for both plots, Z ′ loops with
vector-like lepton give rise to a dominant contribution to the muon g− 2 and become
independent of vector-like lepton masses for ME � mZ′ = mφ.

The one-loop diagrams with Z ′ and the vector-like lepton contribute to the branch-
ing ratios of µ→ eγ, τ → µγ and τ → eγ as well, considering simultaneous mixings of
the vector-like lepton with muon and other leptons. Furthermore, indirect constraints
on the vector-like lepton come from electroweak precision data and Higgs data. The
2σ deviation of the experimental value of the ρ parameter from the theoretical value
of SM strongly constrains the gauge couplings of the vector-like lepton and the Z ′

interactions. The modifications on the ρ parameter that come from the vector-like
lepton and the Z ′ gauge boson, depend on the ME and mZ′ masses respectively,
while also from the values of the mixing angles. For a heavy vector-like lepton with
ME & mZ , in order to satisfy the current bound on ∆ρ, it is suffcient to choose either
| sin ξ| . 10−2 and sin β . 0.1

√
gY /gZ′ for mZ′ � mZ unless there is a cancellation.
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The bounds are less severe for mZ′ � mZ , due to the overall suppression by m2
Z/m

2
Z′ .

Regarding the particle production at the colliders, the vector-like lepton can be
produced by the Drell-Yann processes with off-shell γ∗ and Z∗ in the s-channels at
LEP and LHC. Since the vector-like lepton is an SU(2)L singlet in this model, the
Drell-Yann production cross section with Z∗ is suppressed by sin4 θw. The decay
channels for each particle depend on the values of their masses. For instance, for
ME > mZ ,MZ′ the VL lepton can decay by E → Wν,Zl, Z ′l, ϕl while Z ′ decays
dominantly into a pair of muon and anti-muon, and since ϕ has comparable mass as
the Z ′ mass, it decays into a pair of muon and anti-muon as well. IfME < mZ′ < 2ME,
the Z ′ gauge boson can decay by Z ′ → El,El, becoming dominant decay channels.
In this case, for E → Zl, there can be at least two leptons in the final state from the
Z ′ decay. For mZ′ > 2ME, the Z ′ gauge boson can decay dominantly by Z ′ → EE,
leading to at least four leptons in the final state.
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5 RK(∗) and the origin of Yukawa couplings

The beyond Standard Model scenarios that include extra Z ′ bosons after the sponta-
neous symmetry breaking of U(1)′ symmetries, can also be studied and developed in
ways that explain the origin of the Yukawa couplings. In this chapter, I review one of
the many models that exist in the literature. The author of the paper [9] considers the
case of an additional vector-like fourth family and also induce flavourful Z ′ couplings.
The couplings of the SM generations mix with the fourth vector-like family, and this
leads to the production of the Yukawa couplings.

5.1 Introduction

The violation of µ− e universality in semi-leptonic B decays has motivated the theo-
retical physics community to consider non-universal Z ′ models. Regarding the mea-
surement of RK(∗) , a number of phenomenological analyses of these data, favour a
new physics operator of the form bLγ

µsLµLγµµL, or of the form, bLγ
µsLµγµµ, each

with a coefficient Λ−2 where Λ ∼ 31.5TeV, or some linear combination of these two
operators. For example, in a flavourful Z ′ model, the new physics operator will arise
from tree-level Z ′ exchange, where the Z ′ must dominantly couple to µµ over ee, and
must also have the quark flavour changing coupling bLsL which must dominate over
bRsR.
The author investigates the possible connection between the experimental signal for
new physics in RK(∗) and the origin of fermion Yukawa couplings. The Standard
Model is considered an effective theory at the electroweak scale, resulting from some
theory at some higher scale(s) which may be as low as the TeV scale. All fermion
Yukawa couplings must result from higher dimension operators so that the effective
Yukawa couplings of the SM can be expressed in terms of the left-handed fermion elec-
troweak doublets ψi = Li, Qi, where i = 1, 2, 3, and the CP-conjugated right-handed
electroweak singlets ψcj = ucj, d

c
j, e

c
j, ν

c
j

LY ukeff =

(
〈φi〉
Λψ
i,n

)n( 〈φj〉
Λψc

j,m

)m
Hψiψ

c
j + h.c. (5.1)

Eq(5.1) involves new SM singlet fields φi which develop VEVs, leading to effective
Yukawa couplings suppressed by powers of 〈φi〉/Λ. This scenario also involves a
massive Z ′ under which the three SM families ψi have zero charge, and which only
couple to it via the same singlet fields φi which have non-zero charge under the
associated U(1)′ gauge group,

LZ′eff =

(
〈φi〉
Λ′ψi,n

)n( 〈φj〉
Λ′ψ

c

j,m

)m
g′Z ′µψ

†
iγ

µψj +
(
ψ → ψc

)
, (5.2)
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where g′ is the U(1)′ gauge coupling. The various Λ and Λ′ may be simply related.
The key feature of this scenario is that the same numerator factors of 〈φi〉 control
both the Yukawa couplings in Eq(5.1) and the Z ′ couplings in Eq(5.2). Another key
feature of the above scenario is that the Z ′ is also generated by the VEVs of 〈φi〉, so
that MZ′ ≈ g′〈φi〉.
In the scenario of Eqs(5.1, 5.2), in the limit that 〈φi〉 = 0, there are no Yukawa
couplings and also no couplings of SM fermions to the Z ′ since it is assumed they
are not charged under the associated U(1)′ gauge group. When 〈φi〉/Λ are switched
on then Yukawa couplings and small non-universal and flavour dependent couplings
of SM fermions to the Z ′ are generated simultaneously, as well as the Z ′ mass itself.
The above framework provides a link between flavour changing observables and the
origin of Yukawa couplings.

5.2 The Model

The model involves three chiral families ψi(0), ψci (0), plus a forth vector-like family
consisting of ψ4(1), ψc4(1) plus the conjugate representations ψ4(−1), ψc4(−1), where
the U(1)′ charges are shown in parentheses. The gauged U(1)′ is broken by the singlet
scalars φ(1), with VEVs around the TeV scale, yielding a massive Z ′ at this scale.
Since the Higgs doublets H(-1) are charged under the U(1)′, this forbids all Yukawa
couplings, except those which couple the first three families to the fourth family.

U(1)′ charges

ψi ψci ψ4 ψc4 ψ4 ψc4 Hu,d φ
U(1)′ 0 0 1 1 -1 -1 -1 1

Table 2: U(1)′ charges of the particle spectrum.

The model here involves a gauged U(1)′ resulting in effective Yukawa and flavourful
Z ′ couplings as in Eqs (5.1) and (5.2) which are related. A welcome consequence of this
is that, it is not required an additional Z2 symmetry to forbid renormalisable Yukawa
couplings. Two Higgs doublets are required Hu, Hd, both with negative U(1)′ charge.
The allowed renormalisable Yukawa couplings and explicit masses allowed by U(1)′

are,

Lren = yψi4Hψiψ
c
4 + yψ4iHψ4ψ

c
i + xψi φψiψ4 + xψ

c

i φψ
c
iψ

c
4 +Mψ

4 ψ4ψ4 +Mψc

4 ψc4ψ
c
4 (5.3)

plus h.c., where x, y are dimensionless coupling constants ideally of order unity, while
M are explicit mass terms of order a few TeV.
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5.3 Mass insertion approximation

Although the usual Yukawa couplings yψijHψiψ
c
j are forbidden for i, j = 1, 2, 3 (since

H are charged under U(1)′) effective 3×3 Yukawa couplings may be generated by the
two mass insertion diagrams (up to an irrelevant sign),

LY ukeff =
xψ

c

j 〈φ〉
Mψc

4

yψi4Hψiψ
c
j +

xψi 〈φ〉
Mψ

4

yψ4jHψiψ
c
j + h.c. (5.4)

The model also involves a massive Z ′ under which the three SM families ψi, ψ
c
i have

zero U(1)′ charge. Although the usual Z ′ couplings g′Z ′µψ
†
iγ

µψj are forbidden for
i, j = 1, 2, 3, the fourth vector-like family has non-zero U(1)′ charge, and effective Z ′

couplings may be generated by the two mass insertion diagrams,

LZ′eff =
xψi 〈φ〉
Mψ

4

xψj 〈φ〉
Mψ

4

g′Z ′µψ
†
iγ

µψj +
xψ

c

i 〈φ〉
Mψc

4

xψ
c

j 〈φ〉
Mψc

4

g′Z ′µψ
c†
i γ

µψcj . (5.5)

In this effective theory, Yukawa and Z ′ couplings are both controlled by the same
physics, in this case the VEVs 〈φ〉 and the fourth family vector-like masses Mψ

4 and
Mψc

4 . The mass of the Z ′ is given by MZ′ = g′〈φ〉, which is the same scale at which
the Yukawa couplings are generated. While the Yukawa couplings are generated
at first order, the Z ′ couplings are generated at second order in the mass insertion
approximation.
There is a such a Yukawa matrix as in Eq (5.4) for each of the four charged sectors
ψ = u, d, e, ν. In the case of neutrinos, this refers to the Dirac Yukawa matrix,
and there will be a further Majorana mass matrix for the singlet neutrinos Mνc

ij ν
c
i ν

c
j .

Since nothing prevents the Majorana masses Mνc

ij being arbitrarily large, well above
the U(1)′ breaking scale, this will lead to a conventional seesaw mechanism for small
neutrino masses. On the other hand it is assumed that the vector-like masses Mψ

4

and Mψc

4 to be close to the U(1)′ breaking scale of order the TeV scale.

5.4 The 5× 5 Matrix and the RK(∗) anomaly

Since the large top quark Yukawa coupling yt is not present at renormalisable level,
it must also arise from mixing with the fourth vector-like family. In the case yt ∼
yu33 ∼ 1, the mass insertion approximation breaks down, and that motivates us to go
beyond this approximation. The masses and couplings in Eq(5.3) are arranged into
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5× 5 matrices, one for each sector ψ = u, d, e, ν,

Mψ =


0 0 0 yψ14H xψ1 φ

0 0 0 yψ24H xψ2 φ

0 0 0 yψ34H xψ3 φ

yψ41H yψ42H yψ34H 0 Mψ
4

xψ
c

1 φ xψ
c

2 φ xψ
c

3 φ Mψc

4 0

 (5.6)

in the
(
ψ1, ψ2, ψ3, ψ4, ψc4

)
basis (rows) and

(
ψc1, ψ

c
2, ψ

c
3, ψ

c
4, ψ4

)
(columns). There are

three distinct mass scales in these matrices: the Higgs VEVs 〈H〉, the φ VEVs 〈φ〉
and the vector-like fourth family masses Mψ

4 , Mψc

4 . If all these mass scales are of
the same order then the correct procedure is to diagonalise the full 5 × 5 matrices
in each of the charge sectors (apart from neutrinos which must be treated differently
due to the Majorana masses and the seesaw mechanism). Then unitary violation will
play a role. In the approximation 〈H〉 � 〈φ〉 (physically MZ � MZ′), it will not be
necessary to diagonalise the full matrix in one step.
The author then proceeds with the transformation of the 5×5 matrix into a convenient
basis for quarks, while considering some restrictions on the x and y parameters. After
some manipulations, the effective 3× 3 Yukawa matrices for the quarks are obtained
from the 5×5 matrices, and then considers a basis where one can decouple the heavy
fourth family. We present here some of the steps that were followed and studied.
Choosing these particular values for the quark couplings xQ1,2 = 0, yu41,42 = 0 and
yd41,42 = 0 and then rotating the first and second families to set xu

c

1 = 0, xd
c

1 = 0,
and yu14 = 0, the effective 3× 3 Yukawa matrices for the quarks yuijHuQiu

c
j, y

d
ijHdQid

c
j

obtained from the 5× 5 matrices are given by

yuij =

0 0 0
0 yu24x

uc

2 yu24x
uc

3

0 yu34x
uc

2 yu34x
uc

3

 〈φ〉
Muc

4

+

0 0 0
0 0 0

0 0 xQ3 y
u
43

 〈φ〉
MQ

4

,

ydij =

0 yd14x
dc

2 yd14x
dc

3

0 yd24x
dc

2 yd24x
dc

3

0 yd34x
dc

2 yd34x
dc

3

 〈φ〉
Mdc

4

+

0 0 0
0 0 0

0 0 xQ3 y
d
43

 〈φ〉
MQ

4

.

(5.7)

In order to go beyond the mass insertion approximation 〈φ〉 �Mψ
4 we return to the

full 5 × 5 mass matrices, by assuming 〈H〉 � 〈φ〉 to switch off the Higgs VEVs all
together in the first instance, and obtain an effective SM after integrating out the
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heavy fourth family. Starting from a basis in the following form:

Mψ =


0
0

ỹ′ψαβH 0

M̃ψ
4

0 0 0 M̃ψc

4 0

 , (5.8)

the ỹ′ψαβ are the 4 × 4 upper block Yukawa matrices in this basis. The zeros in the
fifth row and column achieved by rotating the first four families by the following 4×4
unitary transformations

VQ = V Q
34V

Q
24V

Q
14 , Vuc = V uc

34 V
uc

24 V
uc

14 , Vdc = V dc

34 V
dc

24 V
dc

14 (5.9)

which are parametrized by a single angle θi4 that describes the mixing between the ith
chiral family and the 4th vector-like family. The SM Yukawa matrices correspond to
the remaining 3×3 upper blocks of the 4×4 Yukawa matrices. The Yukawa matrices
of the SM, ỹ′ψij correspond to the remaining 3 × 3 upper blocks of the 4 × 4 Yukawa

matrices, ỹ′ψαβ. The three undecoupled families in this basis contain admixtures of the
original fourth vector-like family due to the mixing. The 4× 4 Yukawa couplings are

ỹ′uαβ = VQỹ
u
αβV

†
uc , ỹ′dαβ = VQỹ

d
αβV

†
dc (5.10)

and ỹuαβ, ỹdαβ are identified with the 4× 4 upper blocks of the transformed matrix in
Eq(5.6), with the specific values that were chosen for the couplings in this basis. The
effective SM Yukawa couplings for the quarks then correspond to the 3 × 3 upper
blocks of ỹ′uαβ and ỹ′uαβ:

yuijHuQiu
c
j, ydijHdQid

c
j, with yuij ≡ ỹ′uij , ydij ≡ ỹ′dij , (i, j = 1, 2, 3). (5.11)

The effective SM Yukawa couplings have non-zero elements due to the mixing, even
though originally they were all zero. This is the origin of flavour in the low energy
effective SM theory. The analysis now may proceed depending on the phenomenology
that one is interested in, followed by the respective approximation on the values of
the mixing angles and the masses. We remark here that after the mixing with the
fourth family, the three light families have induced non-universal and flavor violating
couplings to the Z ′, which depend on the mixing angles of the 4× 4 unitary matrices
in Eq(5.9).

For closing remarks, the anomalies in RK(∗) can be explained by the b and s
quark couplings to Z ′. The CKM matrix for the quarks may be constructed in the
usual way, by diagonalising the Yukawa matrices, to yield the 3 × 3 CKM matrix
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VCKM = VuLV
†
dL

. Assuming that MQ
4 � Mdc

4 � Muc

4 implies that the CKM mixing

originates predominantly from the down sector, thus VCKM ≈ V †dL . This means that

the off-diagonal quark coupling is generated with gbs ≈ g′(sQ34)2Vts. Combining this
result with the effective 4-fermion operator with left-handed muon, b-quark and s-
quark that was mentioned in the introduction of this chapter, the Z ′ coupling to bs
leads to an additional tree-level contribution to Bs − Bs mixing due to the effective
operator arising from Z ′ exchange at tree level:

∆Leff ⊃ −
g2
bs

2M2
Z′

(
sLγ

µbL
)2

+ h.c. (5.12)

If we take the milder Bs −Bs mixing bound then this constrains

|gbs|
MZ′

.
1

150TeV
(5.13)

and since gbs is known in this model (gbs ∼ −1/50 for sQ34 ∼ 1/
√

2, g′ ∼ 1 and
Vts ∼ −0.04), this leads to a lower bound on the Z ′ mass in this model

MZ′ & 3TeV. (5.14)

Since the Higgs doublets are charged under U(1)′, they will induce Z − Z ′ mixing
which will affect the SM prediction of MW/MZ , leading to corrections to the well
determined parameter ρ.
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6 A different approach to the origins of the Yukawa

couplings

In this chapter, I present a thought of mine, that was born during the time period I
was studying about the Yukawa couplings. As we can see from the theory of the SM,
that was developed and has been confirmed over and over for the last fifty years, there
is no mechanism that can produce terms which fermions can interact with the Higgs
scalar boson, and one can simply add these terms into the Lagrangian. Physicists
are familiar with the gauge symmetries, they study and apply them on a daily basis
on their models. For instance, if we are dealing with a local U(1) symmetry, the
covariant derivative acting on a singlet scalar field φ, has the form:

Dµφ =
(
∂µ − igAµ

)
φ (6.1)

where Aµ is the massless gauge field that the theory needs in order to be gauge
invariant under the U(1) symmetry, and g the coupling constant. This seems to be
a really effective and important way to introduce vector-fields in one theory, since
after the spontaneous symmetry breaking of the symmetry, the vector field now has
not only kinetic terms, but even interaction terms with the scalar boson (including
potential mass term, however, in a symmetry like SU(2)L×U(1)Y the photon acquires
no mass after SSB). That bears the question: ”How do fermions enter the theory?
Is there a way to produce/introduce fermions in the Lagrangian not by hand, but
with a similar kind of mechanism?” Maybe the Yukawa couplings are generated from
a different kind of symmetry breaking. Let’s consider a scenario which the covariant
derivative is given by,

Dµ = ∂µ − i
(
g · ρ(x)

)
εµ (6.2)

where (g · ρ)εµ needs to transform as a vector field and εµ is an arbitrary four-vector.
Notice that the second term in the above equation is similar to the second term in
Eq(6.1). The only difference is that instead of introducing a pure vector-field in the
covariant derivative, we introduce (g · ρ)εµ which plays the role of one. Now, we
have to check the dimension of each quantity through dimensional analysis. Since
[Dµ] = M , this means that:

[Dµ] = M ⇒ [g · ρεµ]
!

= M. (6.3)

Since εµ is a four-vector, its dimension is [εµ] = M−1. At this point, we may assume
that ρ2 has dimension M , so if we denote ρ2 ≡ ρ̃, then the ρ̃ field is a scalar field.
This means that ρ has dimensions of a spinor, [ρ] = M

1
2 , and in order for the Eq(6.3)

to hold true, the constant g must have dimension of a spinor as well, [g] = M
3
2 :

[εµ] = M−1, [ρ] = M
1
2 , [g] = M

3
2 . (6.4)
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Since g and ρ are spinors, we introduce them to the covariant derivative as a spinor
product of Weyl spinor components [13]:

g · ρ ≡ gaρa = gaεabρ
b = −ρbεabga = ρbεbag

a = ρ · g, (6.5)

where εab is the antisymmetric symbol which lowers/raises the spinor indices:

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0. (6.6)

The complex conjugate of Eq(6.5) on the other hand is

(g · ρ)∗ = ρ† · g† = g† · ρ†. (6.7)

In case this product does not make sense, since [g] = M3/2 and [ρ] = M1/2, we can
easily introduce another parameter in order to acquire a dimension M1/2, meaning
that [g] = M3/2 = M2/2+1/2. After introducing all these quantities, we return back to
our Lagrangian. In order to determine the interactions of this theory under the U(1)
symmetry, one needs to calculate |Dµφ|2. The scalar field φ undergoes an SSB, and
after acquiring a VEV, it takes the following form

φ =
1√
2

(υ + ϕ) (6.8)

and the interactions as mentioned are produced from

|Dµφ|2ρ =
1

2

[
∂µ + i(g · ρ)∗εµ

]
(υ + ϕ)

[
∂µ − i(g · ρ)εµ

]
(υ + ϕ). (6.9)

Notice that the mixed terms in this case will not cancel each other because g and
ρ contain Grassmann numbers as components, and also there won’t be any term
proportional to ρ2 = ρ · ρ = ρ̃. So we need to make new assumptions about the
elements of g and ρ. We may use Grassmann numbers for the elements such that
ρi = (ρi)∗ and gi = (gi)∗. These particular Grassmann numbers are called super-real.
Now, starting from the spinor product

g · ρ = gaρa = gaεabρ
b = g2ρ1 − g1ρ2 (6.10)

and since (g · ρ)∗ = g · ρ, the square of the spinor product becomes:

(g · ρ)2 = (g1ρ2 − g2ρ1)(g1ρ2 − g2ρ1)

= g1ρ2g1ρ2 − g1ρ2g2ρ1 − g2ρ1g1ρ2 + g2ρ1g2ρ1

= − g1g1︸︷︷︸
=0

ρ2ρ2︸︷︷︸
=0

+g1g2ρ2ρ1 + g2g1ρ1ρ2 − g2g2︸︷︷︸
=0

ρ1ρ1︸︷︷︸
=0

= g1g2(ρ2ρ1 − ρ1ρ2)

= g1g2(ρ · ρ).

(6.11)
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This result can be rewritten in the following form

(g · ρ)2 = g̃2ρ̃(x) (6.12)

where g̃2 = g1g2, [g̃] = M
3
2 and [ρ̃] = M . Let’s substitute this result into |Dµφ|2ρ and

calculate it correctly.

|Dµφ|2ρ =
1

2
(∂µϕ)2 +

1

2
(g · ρ)2ε2(υ + ϕ)2

=
1

2
(∂µϕ)2 +

1

2
(g̃2ε2)ρ̃(x)(υ + ϕ)2

=
1

2
(∂µϕ)2 +

1

2
(g̃2ε2)ρ̃

(
υ2 + 2υϕ+ ϕ2

)
.

(6.13)

Since ρ̃ has dimension of a scalar field, we may assume that, at a higher energy than
the SSB of the U(1), the U(1)ρ which ρ̃ is charged under, undergoes an SSB as well.
In the unitary gauge, ρ̃ becomes:

ρ̃ =
1√
2

(υ̃ + λψψ), (6.14)

where ψ is a Dirac (SM) fermion, υ̃ is the VEV of ρ̃, and λ is a constant of dimension
[λ] = M−2. Finally, we have:

|(Dµφ)ρ|2 =
1

2
(∂µϕ)2 +

1

2
√

2
(g̃2ε2)(υ̃ + λψψ)(υ2 + 2υϕ+ ϕ2)

=
1

2
(∂µϕ)2 +

1

2
g′2
[
υ̃υ2︸︷︷︸

constant

+2υ̃υϕ+ υ̃ϕ2 + λυ2ψψ + 2λυψψϕ+ λψψϕ2
]

=
1

2
(∂µϕ)2 + g′2υ̃υϕ+

1

2
m̃2ϕ2 −mψψψ − yψψψϕ+

1

2
g′2λψψϕ2,

(6.15)
where we have omitted the constant term from the Lagrangian. This theory seems
to work, with the right dimensions of the quantities. As we can see, this mechanism
provides us with a term that reminds us of the Yukawa coupling term in the SM:

−yψψψϕ, yψ = −g′2λυ (Yukawa coupling). (6.16)

We also have the mass term of the fermion ψ:

−mψψψ, mψ = −1

2
g′2λυ (mass of ψ). (6.17)

Notice the minus sign that we need in order for these terms to be consistent with the
SM Lagrangian. This means that λ needs to have negative values only, meaning that
λ < 0. A source term appears as well, g′2υ̃υϕ, while also the term

1

2
g′2λψψϕ2 (6.18)

61



which could be interpreted as a new interaction, not included in the SM, a Higgs-
fermion scattering term! Notice also that the Higgs gains an extra mass contribution
due to ρ̃’s VEV:

1

2
m̃2ϕ2, m̃ = g′2υ̃ (extra mass contribution for ϕ). (6.19)

The full Lagrangian would include the terms that provides the interactions of the
scalar ϕ with the gauge boson of U(1) as well:

L = |Dµφ|2 + |Dµφ|2ρ − V (φ)− 1

4
FµνF

µν (6.20)

where Dµφ = (∂µ − igAAµ)φ, (Dµφ)ρ = (∂µ − ig · ρεµ)φ, and V (φ) the scalar poten-
tial. Thus far we have achieved on generating the Yukawa couplings in the Abelian
symmetry breaking, by imposing the existence of another exotic gauge field g · ρεµ.
The product ρ · ρ provides us the scalar ρ̃ field, which its VEV breaks the U(1)ρ at a
higher energy scale than the symmetry breaking of U(1) by the VEV of φ. This new
complex kind of SSB provides the theory with a fermion and its Yukawa interactions
with ϕ as well. Since we have established this theoretical background, we are left
with the kinetic and potential terms of the ρ̃ field. By definition, ρ̃ = ρ · ρ, and the
square of this term is

(ρ · ρ)2 = (ρ2ρ1 − ρ1ρ2)2 = (2ρ2ρ1)2 = 0, (6.21)

due to the property of the Grassmann numbers, their square is equal to zero. This
automatically forbids the ρ̃ field to have kinetic terms! Furthermore, the Higgs po-
tential contains quadratic and quartic terms, while on the other hand V (ρ̃) must have
at most terms proportional to |ρ̃|. A probable exotic potential would be of the form
of a continuous piecewise function:

V (ρ̃) =

{
V0 , ρ̃ = 0

b|ρ̃− υ̃| , |ρ̃| > 0
(6.22)

which is U(1)ρ symmetric. At some energy scale, a mechanism must deviate the field,
boosting it for a rapid moment to acquire a VEV, and thus break the U(1)ρ symmetry.
Leaving this discussion for a later time, we try to apply what we have learned so far
to the SM Lagrangian. The Higgs field is an SU(2)L doublet

φ(x) =
1√
2

(
0

υ +H(x)

)
. (6.23)
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So we have to construct the covariant derivative, but now the exotic SSB mechanism
needs to generate 9 fermions, 3 leptons and 6 quarks (we ignore the mass of neutrinos
for the time being). The most general form for the exotic covariant derivative would
be:

(Dµφ)l,qρ =

[
∂µ − i

∑
κ

(gl,qκ · ρl,qκ )εl,qκµ

]
φ (6.24)

where l, q denote the covariant derivatives for leptons and quarks respectively, and
κ = 1, 2, . . . is a summation index. However, we face a problem here. The square
of this term will include a huge amount of terms and parameters by increasing the
maximum value of κ. Let’s consider a simpler choice where leptons and quarks are
generated by the same covariant derivative

(Dµφ)ρ =
[
∂µ − i

∑
κ

(g · ρκ)εµ
]
φ (6.25)

and the ρ fields have the same coupling constant g, with only one εµ four-vector. If
we consider three ρ fields, then the square of the covariant derivative includes a term
proportional to ∑

κ,λ

(g · ρκ)(g · ρλ) =
∑
κ,λ

(g1ρ2
κ − g2ρ1

κ)(g
1ρ2
λ − g2ρ1

λ)

=
∑
κ,λ

(−g1ρ2
κg

2ρ1
λ − g2ρ1

κg
1ρ2
λ)

=
∑
κ,λ

g1g2(ρ2
κρ

1
λ − ρ1

κρ
2
λ)

(6.26)

and generates nine ρ̃ scalar fields, which after obtaining a VEV, they give rise to nine
fermion masses and their corresponding Yukawa interactions with the Higgs field H.
However, each unique combination of ρ2

κρ
1
λ − ρ1

κρ
2
λ corresponds to a unique fermion.

We remind the reader that the mass of the fermion is proportional to the λ parameter
Eq(6.17). This means that for the same g coupling constant for all ρ fields, the λ
parameters from

ρ̃α =
1√
2

(υ̃α + λαψαψα) (6.27)

where α = 1, 2, . . . , 9, are the ones that give each fermion a different mass value!
This mechanism might explain the reason why, i.e. the electron is approximately 200
lighter than the muon. It is because their ρ̃ fields have different λ parameters, that
results from the mixing of the ρ Grassmann fields. We may connect the VEV of each
field ρ̃ with the cosmological epoch that each fermion appeared from, or maybe the
λ parameters also determine in some way the order that fermions decouple from the
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relativistic gas at the early times of the universe. But this result comes from the
simplest choice that only the ρ field has a κ index. Depending on the values of κ and
which quantity has index, we may construct much more complex combinations, for
instance some εµκ’s might be orthogonal to each other or considering different covariant
derivatives for the leptons and the quarks, we might get different descriptions for the
same physics, or even add new fermionic fields to the theory!
This mechanism, despite producing the desirable terms of the fermion masses and
Yukawa couplings, it has also its own flaws. This mechanism alone does not determine
which fermion obtains a leptonic or baryonic number, unless the sum of the U(1)ρ
quantum numbers add to a value that determines somehow the species of the fermion.
Additionally, this mechanism needs a modification to include, for instance, the up-
type quarks, since the Higgs doublet obtains each VEV in the lower component. Most
importantly, it does not include SUSY, which is the most important candidate for
Beyond Standard Model scenarios and New Physics!
This mechanism is currently at an early stage of its development, and surely some
significant modifications are needed in order to respect the observable measurements
and the phenomenology of the SM.
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7 Conclusions

In this thesis, we have studied the Z ′ models in order to explain phenomenologically
the discrepancy in the muon anomalous magnetic moment between the theory and
the experiment, and also apply this theoretical framework to discover the origin of
the Yukawa couplings.

Regarding the first model, by calculating some of the one-loop contributions to
the anomalous magnetic moment, we try to utilize our knowledge in a BSM scenario.
By extending the particle spectrum with an extra vector-like lepton, it is presented
the role of a seesaw mechanism in lepton-specific 2HDMs with a local U(1)′ symmetry
that generates the muon mass. The non-decoupling effects of the vector-like lepton
can be used to explain the muon g − 2 anomaly at one-loop due to the light gauge
boson Z ′ and the light dark Higgs boson ϕ. The electroweak precision and Higgs
data constrain the vector-like lepton relatively weakly, but the collider bounds on the
vector-like lepton can be significant due to multi-lepton signatures. In order to probe
the parameter space with the light Z ′ and dark Higgs for explaining the muon g − 2
anomaly, it is important to look for the light resonances with muon channels together
with the vector-like lepton at LHC and future collider experiments.

In the second model, we studied an explicit renormalizable model with a vector-
like family as an ultraviolet completion of the theory. Only the vector-like family is
charged under the additional U(1)′ group. After the spontaneous symmetry breaking
at the TeV scale, the mixing between the fourth family and the three chiral families
then provides the effective Yukawa couplings, as well as the non-universal effective
couplings involving the three light families.

Finally, in the last chapter I suggest a mechanism that generates the Yukawa
couplings in the theory of the SM. An exotic gauge boson for each fermion production
needs to be included, and by utilizing the Grassmann algebra, the desired terms to
the Lagrangian are introduced, with the inclusion of a scalar field source term and an
effective Higgs-fermion scattering term. Being at an early stage of its development,
this mechanism needs to be modified in order to respect the observable measurements
and the phenomenology of the SM.

65



66



A Masses of the Gauge Bosons

The scalar potential contains the following terms of φ, H and H ′:

V
(
φ,H,H ′

)
=µ2

1H
†H + µ2

2H
′†H ′ +

(
µ3φH

†H ′ + h.c.
)

+ λ1

(
H†H

)2
+ λ2

(
H ′†H ′

)2
+ λ3

(
H†H

)(
H ′†H ′

)
+ µ2

φφ
∗φ+ λφ

(
φ∗φ
)2

+ λHφH
†Hφ∗φ+ λH′φH

′†H ′φ∗φ.

(A.1)

and the VEVs of each field are 〈H〉 = 1√
2
υ1, 〈H ′〉 = 1√

2
υ2, 〈φ〉 = υφ. In order to

obtain the masses of the gauge bosons, we need to calculate the square of the kinetic
terms, which contain the covariant derivative Dµ for each scalar field. Starting with
Dµφ we get,

|Dµφ|2 =

[(
∂µ + 2igZ′Z

′
µ

)
φ

]2

=

[(
∂µ + 2igZ′Z

′
µ

) 1√
2

(
υφ + ϕ

)]2

=

[
1√
2

(
∂µϕ

)
+

1√
2

2igZ′Z
′
µ

(
υφ + ϕ

)]2

=
1

2

(
∂µϕ

)2
+ 2g2

Z′

(
Z ′µ
)2(

υφ + ϕ
)2

=
1

2

(
∂µϕ

)2
+ 2g2

Z′υ
2
φ

(
Z ′µ
)2

+ 4g2
Z′υφ

(
Z ′µ
)2
ϕ+ 2g2

Z′

(
Z ′µ
)2
ϕ2,

(A.2)

and we acquire the mass term 2g2
Z′υ

2
φ

(
Z ′µ
)2

. Following the same procedure on |DµH
′|2

as well, we have,

|DµH
′|2 =

[(
∂µ − 2igZ′Z

′
µ −

1

2
igYBµ −

1

2
igτ iW i

µ

)
H ′
]2

, (A.3)

where in the unitary gauge

H ′ =
1√
2

(
0

υ2 + h′

)
. (A.4)
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Expanding (A.3):

|DµH
′|2 =

[(
∂µ − 2igZ′Z

′
µ −

1

2
igYBµ −

1

2
igτ iW i

µ

) 1√
2

(
0

υ2 + h′

)]2

=
1

2

[(
0, ∂µh

′)+ 2igZ′
(
0, Z ′µ(υ2 + h′)

)
+

1

2
igY
(
0, Bµ(υ2 + h′)

)
+

1

2
ig

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)(
0, υ2 + h′

)]
×

[(
0

∂µh′

)
− 2igZ′

(
0

Z ′µ(υ2 + h′)

)
− 1

2
igY

(
0

Bµ(υ2 + h′)

)

− 1

2
ig

(
W 3µ W 1µ − iW 2µ

W 1µ + iW 2µ −W 3µ

)(
0

υ2 + h′

)]
=

1

2

(
∂µh

′)2
+ 2g2

Z′

(
Z ′µ
)2(

υ2 + h′
)2

+
1

8
gY
(
Bµ

)2(
υ2 + h′

)2

+
1

8
g2

(
(W 1

µ + iW 2
µ)(υ2 + h′),−W 3

µ(υ2 + h′)

)(
(W 1µ + iW 2µ)(υ2 + h′)
−W 3µ(υ2 + h′)

)
+ interactions

=
1

2

(
∂µh

′)2
+ 2g2

Z′

(
Z ′µ
)2(

υ2 + h′
)2

+
1

8
gY
(
Bµ

)2(
υ2 + h′

)2

+
1

8
g2

[
(W 1

µ)2 + (W 2
µ)2 + (W 3

µ)2

]
(υ2 + h′)2

+ 2gZ′gYZ
′
µB

µ(υ2 + h′)2 + 2gZ′gZ
′
µW

3µ(υ2 + h′)2 + 2gY gBµW
3µ(υ2 + h′)2

+ interactions.
(A.5)

The Bµ and W i
µ terms can be transformed to the SM Z,W± and photon. However,

we notice that the last three terms in (A.5) are mixing terms, which the first two are
between the Z ′ and the B,W 3 respectively.
In conclusion, starting from the |Dµφ|2 and |DµH

′|2 we obtain the masses for each

boson of the theory, m2
Z′ = g2

z′

(
4υ2

φ + 4υ2
2

)
, mZ = 1

2

√
g2 + g2

Y υ, mW = 1
2
gυ. The

Z ′µ mixes with Bµ and W 3
µ , and it is either analogous to the VEV of H ′, υ2, or

to the h′ itself (interaction). The physical photon, W±, Z, are obtained from the
spontaneous symmetry breaking of the SM H, with an extra contribution from the
VEV of H ′, υ2, meaning that the VEV υ factor of the masses mentioned above is
actually υ =

√
υ2

1 + υ2
2.
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B See-saw mechanism and calculations

Here is an attempt to extract the results in the see-saw mechanism of [3], precisely
the Eq (4.7). From Eq(4.6) we can write down the mass matrix as,

M =

(
0 mL

mR ME

)
, (B.1)

and Eq(4.6) becomes

LL,mass = −
(
lL, EL

)
M

(
lR
ER

)
. (B.2)

Starting with the M2

M2 =

(
m2
R mRME

mRME m2
L +M2

E

)
(B.3)

and then, by calculating the following

det
(
M2 − λI

)
= 0⇒

(m2
R − λ)(m2

L +M2
E − λ)−m2

RM
2
E = 0⇒

λ2 − λ(m2
R +m2

L +M2
E) +m2

Rm
2
L = 0

(B.4)

we reach to the following eigenvalues:

λ1,2 =
1

2

(
m2
R +m2

L +M2
E ±

√
(m2

R +m2
L +M2

E)2 − 4m2
Rm

2
L

)
(B.5)

Then, we manipulate the terms under the square root

(m2
R +m2

L +M2
E)2 − 4m2

Rm
2
L =

= m4
R + (m2

L +M2
E)2 + 2m2

Rm
2
L + 2m2

RM
2
E − 4m2

Rm
2
L

= m4
R +m4

L +M4
E + 2m2

LM
2
E + 2m2

Rm
2
L + 2m2

RM
2
E − 4m2

Rm
2
L

= m4
R +m4

L +M4
E + 2m2

LM
2
E − 2m2

Rm
2
L + 2m2

RM
2
E

= M4
E + (m2

L −m2
R)2 + 2m2

LM
2
E + 2m2

RM
2
E + (2m2

RM
2
E − 2m2

RM
2
E)

= (M2
E +m2

L −m2
R)2 + 4m2

RM
2
E

(B.6)

and by substituting Eq(B.6) into Eq(B.5) we get

λ1,2 =
1

2

(
m2
R +m2

L +M2
E ∓

√
(M2

E +m2
L −m2

R)2 + 4m2
RM

2
E

)
(B.7)

where I changed the signs in order to match the eigenvalues of Eq(4.7).
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C Proof of Gordon Identity

The Σ tensor is expressed as,

Σµν =
i

2

[
γµ, γν

]
. (C.1)

Then, acting on iΣµνqν
2m

from left and right side with u(p′), u(p) respectively, we get,

u
iΣµνqν

2m
u(p) =

i

2m

i

2
u(p′)

[
γµγν − γνγµ

]
(p′ν − pν)u(p)

=
i

2m

i

2
u(p′)

[
(γµγν − γνγµ)p′ν − (γµγν − γνγµ)pν

]
u(p)

=
i

2m

i

2
u(p′)

[
(γµγν + γνγµ − 2γνγµ)p′ν − (2γµγν − γµγν − γνγµ)pν

]
u(p)

=
i

2m

i

2
u(p′)

[
(2gµν − 2γνγµ)p′ν − (2γµγν − 2gµν)pν

]
u(p)

=
i

2m

i

2
u(p′)

[
2(p′µ − /p′γµ)− 2(γµ/p− pµ)

]
u(p).

(C.2)

We now use the Dirac equation,

−1

2m
u(p′)

[
(p′µ −mγµ)− (γµm− pµ)

]
u(p) =

=
−1

2m
u(p′)

[
(p′µ + pµ)− 2mγµ

]
u(p)

= u(p′)

[
γµ − p′µ + pµ

2m

]
u(p).

(C.3)

Inserting this into the Gordon identity:

u(p′)

[
p′µ + pµ

2m
+
iΣµνqν

2m

]
= u(p′)γµu(p) (C.4)

D Proof of Feynman-Schwinger parametrization

In the case of two denominators:∫ 1

0

dx[
xa1 + (1− x)a2

]2 =
1

a1 − a2

∫ 1

0

dx(a1 − a2)[
x(a1 − a2) + a2

]2
=

1

a1 − a2

∫ a1

a2

dρ

ρ2
=

1

a1 − a2

[ 1

a2

− 1

a1

]
=

1

a1a2

.

(D.1)
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In the case of three denominators:∫ 1

0

dx

∫ 1−x

0

dy
1[

xa1 + ya2 + (1− x− y)a3

]3 =

=
1

a2 − a3

∫ 1

0

dx

∫ 1−x

0

dy(a2 − a3)[
x(a1 − a3) + y(a2 − a3) + a3

]3
=

1

a2 − a3

∫ 1

0

dx

∫ xa1+(1−x)a2

xa1+(1−x)a3

dρ

ρ3

= − 1

2(a2 − a3)

∫ 1

0

dx

[
1[

xa1 + (1− x)a2

]2 − [xa1 + (1− x)a3

]2]
= − 1

2(a2 − a3)

[
1

a1a2

− 1

a1a3

]
=

1

2a1a2a3

.

(D.2)

More generally,

1

a1 · · · an
= (n−1)!

∫ 1

0

dx1

∫ 1−x1

0

dx2 · · ·
∫ 1−x1−···−xn−2

0

dxn−1
1[

a1 + · · ·+ xn−1(an − a1)

]n
(D.3)

E Lande g factor and Form Factors

Considering that the 4-vector potential is related to a static magnetic field, we have,

Aclµ (x) =

(
0, ~A(~x)

)
. (E.1)

Therefore, the Feynman amplitude becomes:

iM = −ieu(p′)Γiu(p)Ãcli (q)

= −ieu(p′)

[
γiFE(q2) + i

σiνqν
2m

FM(q2)

]
u(p)Ãcli (q).

Considering the explicit form of the spinors:

u(p) =
/p+m√

2m(E +m)
u(0) =


√

E+m
2m

ξ(0)
~σ·~p√

2m(E+m)
ξ(0)

 (E.2)
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where ξ(0) =

(
1
0

)
for spin 1

2
and ξ(0) =

(
0
1

)
for spin −1

2
, and also

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
. (E.3)

The first term in the amplitude can be written as:

u(p′)γiu(p) = u†(p′)γ0γiu(p) = u†(p′)

(
0 σi

σi 0

)
u(p)

=

(
ξ′†(0)

√
E′+m

2m
, ξ′†(0) ~σ·~p′√

2m(E′+m)

)(
0 σi

σi 0

)
√

E+m
2m

ξ(0)
~σ·~p√

2m(E+m)
ξ(0)


=

(
ξ′†(0) ~σ·~p′√

2m(E′+m
σi, ξ′†(0)

√
E′+m

2m
σi
)

√
E+m
2m

ξ(0)
~σ·~p√

2m(E+m)
ξ(0)


=

1

2m

[√
E +m

E ′ +m
ξ′†(0)~σ · ~p′σiξ(0) +

√
E ′ +m

E +m
ξ′†(0)σi~σ · ~pξ(0)

]
In the non-relativistic limit, E ≈ m ≈ E ′, this term is equal to:

u(p′)γiu(p) =
1

2m

(
ξ′†(0)~σ · ~p′σiξ(0) + ξ′†(0)σi~σ · ~pξ(0)

)
=

1

2m
ξ′†(0)

[
σjσip′j + σiσjpj

]
ξ(0),

and using the identity σiσj = δij + iεijkσk, we get,

u(p′)γiu(p) =
1

2m
ξ′†(0)

[(
δij + iεijkσk

)
p′j +

(
δij + iεijkσk

)
pj

]
ξ(0)

=
1

2m
ξ′†(0)

[
p′i − iεijkσkP ′j + pi + iεijkσkpj

]
ξ(0)

=
1

2m
ξ′†(0)

[(
p′ + p

)i − iεijkσk(p′ − p)j]ξ(0).

The term that interests us is the one linear in q (nonrelativistic limit):

u(p′)γiu(p) = − i

2m
ξ′†(0)εijkqjσkξ(0). (E.4)
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Taking now the non-relativistic limit of the second term in the amplitude, and as-
suming the photon energy to be negligibly small, we have:

i

2m
u(p′)σiνqνu(p) ≈ i

2m
u(p′)σijqju(p),

where σij = i
2

[
γi, γj

]
= εijk

(
σk 0
0 σk

)
, and we get:

i

2m
u(p′)σiνqνu(p) ≈ i

2m
u†(p′)

(
I 0
0 −I

)(
σk 0
0 σk

)
u(p)εijkqj

≈ i

2m
u†(p′)

(
σk 0
0 −σk

)
εijkqju(p)

≈ i

2m

(
ξ′†(0)

√
E′+m

2m
, ξ′†(0) ~σ·~p′√

2m(E′+m)

)(
σk 0
o −σk

)
εijkqj


√

E+m
2m

ξ(0)
~σ·~p√

2m(E+m)
ξ(0)


≈ i

2m

(√
E′+m

2m
ξ′†(0)εijkqjσk, −ξ′†(0) ~σ·~p′√

2m(E′+m)
εijkqjσk

)
√

E+m
2m

ξ(0)
~σ·~p√

2m(E+m)
ξ(0)


≈ i

2m

[√
E ′ +m

√
E +m

2m
ξ′†(0)εijkqjσkξ(0)

− ξ′†(0)
(~σ · ~p′)(~σ · ~p)

2m
√

(E ′ +m)(E +m)
εijkqjσkξ(0)

]
≈ i

2m
ξ′†(0)

[√
E ′ +m

√
E +m

2m
εijkqjσk −

|~p′||~p|
2m
√

(E ′ +m)(E +m)
εijkqjσk

]
ξ(0).

Ignoring terms not linear in q, we end up with:

i

2m
u(p′)σiνqνu(p) ≈ − i

2m
ξ′†(0)σkξ(0)εijkqj, (E.5)

and the amplitude becomes:

iM = −ieu(p′)

[
γiF1(q2) + i

σiνqν
2m

F2(q2)

]
u(p)Ãcli (~q)

≈ −ieξ′†(0)

[
− i

2m
σk
(
F1(0) + F2(0)

)]
ξ(0)

(
iεijkqjÃ

cl
i (~q)

)
.

(E.6)
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We can now plug in magnetic field described in momentum space,

~B(~x) = ~∇∇∇× ~A(~x)⇒ B̃k(~q) = iεijkqjÃ
cl
i (~q). (E.7)

The amplitude becomes:

iM≈ ieξ′†(0)

[
− i

2m
σk

(
F1(0) + F2(0)

)]
ξ(0)B̃k(~q)

≈ e

2m
2

[
F1(0) + F2(0)

]
ξ′†(0)

σk
2
ξ(0)B̃k(~q).

Identifying

ξ′†(0)
σk
2
ξ(0) = 〈S〉k, (E.8)

we get

iM≈ e

2m
2

[
F1(0) + F2(0)

]
〈S〉kB̃k(~q). (E.9)

Comparing it with the result of the classical limit, the Hamiltonian density is written
as:

H = −〈~µµµ〉 · ~B = − e

2m
g〈~S〉 · ~B. (E.10)

Then, in first order we make the following comparison:

iMcl
NR = 〈~µµµ〉 · ~B(~q) =

e

2m
g〈~S〉 · ~B(~q), (E.11)

iMNR =
e

2m
2

[
F1(0) + F2(0)

]
〈~S〉 · ~B(~q) (E.12)

and the quantum corrected magnetic moment is

〈~µµµ〉 =
e

2m
g〈~S〉 =

e

2m
2

[
F1(0) + F2(0)

]
〈~S〉, (E.13)

meaning that the Lande g factor in first order correction becomes

g = 2

[
F1(0) + F2(0)

]
. (E.14)
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