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Abstract

My Ph.D. dissertation deals with cosmological observational constraints on modified gravity theories. The
General Relativity (GR) proposed by Einstein in 1915 is the fundamental theory of gravity interpretation
and has succeeded in a wide range of tests. The discovery of the accelerating expansion of the universe,
however, has given a strong impetus to the formulation of new modified theories of gravity. Modified
theories of gravity such as Scalar Tensor (ST), f(R) theories etc. try to give answers where the GR
fails. The established cosmological model based on the GR is obviously not considered complete. The
studied modified theories can give a theoretical framework which will include the GR and can lead to the
understanding of the structures of the universe. These theories are necessary to incorporate gravitational
phenomena at all scales and at all times. The theories should be consistent with all experimental data
and able to explain early time and late time acceleration. They must also describe all the cosmological
eras and the transition from one epoch to another.

In Chapter 1, we present elements of GR and Cosmology and their basic concepts. At the end of the
chapter we present an introduction to the standard Lambda Cold Dark Matter (ACDM) model. The
ACDM model is a simple and generic model that has been shown to be consistent with a wide range
of cosmological observations including geometric and dynamical probes. Despite its successes, ACDM is
confronted with challenges at both the theoretical and the observational level. These challenges of the
standard ACDM model have been emerging during the past few years as the accuracy of cosmological
observations improves. A well known observational difficulty corresponds to the tension between the
cosmic microwave background (CMB) measured value of the Hubble constant Hy in the context of the
ACDM model and the local measurements from supernovae and lensing time delay indicators, with local
measurements suggesting a higher value. Another observational puzzle for ACDM involves persisting
indications from observational probes measuring the growth of matter perturbations that the observed
growth is weaker than the growth predicted by the standard Planck/ACDM parameter values. Modified
gravity (MG) models constitute a prime theoretical candidate to explain these tensions.

Thus in Chapter 2 and 3 we discuss in a unified manner many existing signals in cosmological and
astrophysical data that appear to be in some tension (20 or larger) with the standard ACDM model as
defined by the Planck18 parameter values. In addition to the major well studied 50 challenge of ACDM
(the Hubble Hj tension) and other well known tensions (the growth tension and the lensing amplitude A,
anomaly), we discuss a wide range of other less discussed less-standard signals which appear at a lower
statistical significance level than the Hy tension which may also constitute hints towards new physics. For
example such signals include cosmic dipoles (fine structure constant «, velocity and quasar dipoles), CMB
asymmetries, BAO Ly« tension, age of the universe issues, the Lithium problem, small scale curiosities
like the core-cusp and missing satellite problems, quasars Hubble diagram, oscillating short range gravity
signals etc. We collectively present the current status of these signals and their level of significance, with
emphasis to the Hubble tension and refer to recent resources where more details can be found for each
signal. We also discuss possible theoretical approaches and modified models that can potentially explain
the non-standard nature of some of these signals.

In Chapter 4, we determine the optimum and the blind redshift ranges of basic cosmological observ-
ables with respect to three cosmological parameters: the matter density parameter €2,,, the equation of
state parameter w (assumed constant), and a modified gravity parameter g, which parametrizes a pos-
sible evolution of the effective Newton’s constant Geg. In an optimum range of redshifts, the observable

xii



can constrain the parameter in the most effective manner while in the blind redshift ranges the observ-
able values may be degenerate with respect to the cosmological parameter values and thus inefficient in
constraining the given parameter.

In Chapter 5, we study modified model for gravity through dimensional reduction. Using the Navarro-
Frenk-White (NFW) dark matter density profile we reconstruct an effective field theory model for gravity
at large distances from a central object by demanding that the vacuum solution has the same gravitational
properties as the NF'W density profile has in the context of GR. The dimensionally reduced reconstructed
action for gravity leads to a vacuum metric that includes a modified Rindler acceleration term in addi-
tion to the Schwarzschild and cosmological constant terms. The new term is free from infrared curvature
singularities and leads to a much better fit of observed galaxy velocity rotation curves than the corre-
sponding simple Rindler term of the Grumiller metric, at the expense of one additional parameter. When
the new parameter is set to zero the new metric term reduces to a Rindler constant acceleration term.
We use galactic velocity rotation data to find the best fit values of the parameters of the reconstructed
geometric potential and discuss possible cosmological implications.

In Chapter 6, we obtain observational constraints on the Generalization of the Uncertainty Principle
(GUP) parameter with maximum length quantum mechanics. We derive the generalized form of the
primordial power spectrum of cosmological perturbations generated during inflation due to the quantum
fluctuations of scalar and tensor degrees of freedom in the context of a generalization of quantum me-
chanics involving a maximum measurable length scale. The existence of such a scale is motivated by
the existence of the particle horizon in cosmology and would lead to a GUP to a form which implies the
existence of a maximum position and a minimum momentum uncertainty. The GUP implies a gener-
alization of the commutation relation between conjugate operators including fields and their conjugate
momenta. We showed that the Generalized Field Commutation (GFC) relation between a scalar field
and its conjugate momentum which is implied by the GUP leads to a modified primordial spectrum of
scalar perturbation.

In Chapter 7 we obtain constraints on modified gravity parameters from the E¢ statistic and real-space
clustering and redshift space distortion (RSD) data. The Eg statistic is a powerful probe for detecting
deviations from GR by combining weak lensing (WL), RSD measurements thus probing both the lensing
and the growth effective Newton constants (G, and Geg). We present phenomenologically motivated
parametrizations for the effective Newton’s constant parameter ug and the light deflection parameter
Y. and describe how we use them in order to probe possible deviations from GR on cosmological scales.
We use compilations of fog and Eg data along with the theoretical expressions for fog and Eg which
involve ug and ¥ to derive constraints on these parameters and to identify the tension level between
the Planck/ACDM parameter values favoured by Planck 2018 and the corresponding parameter values
favored by the two datasets.

Scalar fields are used to describe a wide range of degrees of freedom in various physical systems
in cosmology, gravitational theories, modified gravity scalar degrees of freedom like f(R) theories or ST
theories etc. A stabilizing effect of multiple horizons on tachyonic instabilities may have various interesting
implications. Therefore in Chapter 8, we study the tachyonic instabilities in the dynamic evolution of a
free massive scalar field ® with potential equation of the form V(¢) = m2¢?. We focus on the existence of
instabilities and their growth rate in the following non flat (curved) gravitational backgrounds: Reissner-
Nordstrom-deSitter (RN-dS) and Shwarzschild-deSitter (SdS). We use spherical tortoise coordinates 7,
in the context of an instability ansatz, to transform the Klein Gordon (KG) equation (J® + m?® = 0 to
a Schrodinger-like Regge-Wheeler equation for the radial function w;(r.) with potential that depends on
the angular scale [, the dimesionless parameters £ = 9M?A and ¢ = Q/M as well as the scalar field mass
m?. The existence of unstable modes that are finite at the two horizons, is equivalent with the existence
of bound states of this Regge-Wheeler equation. We solve the Regge-Wheeler equation numerically and
identify the range m?(q, &) for which bound states (unstable modes) exist. In the parameter range that
remains unstable (m? < m?.(q,€)) we find the growth rate Q of the instabilities. In the end of Chapter,
we discuss the scalar tachyonic instabilities in the limiting cases of pure deSitter and pure Schwarzschild
backgrounds.

In Chapter 9 we focus on the Horndeski modified gravity which provides a general framework to



construct models of dark energy inside GR. In the context of the o parametrization as a; = ;9 a°
(where i = M, B, a is the scale factor and «;0 (a0, @po), s are arbitrary parameters) and the Horndeski
modified gravity models obeying stability, velocity of gravitational waves ¢y equals ¢ and quasistatic
approximation (QSA) on subhorizon scales, we derive the allowed parameter regions for various values
of the exponent s. We also obtain the allowed forms of the growth and lensing reduced (dimensionless)
gravitational couplings pue = Ggrowth/G and g = Glensing/G comparing our results with previous
studies. We use compilations of fog and Eg data along with the theoretical expressions for fog and
E¢ statistics data in order to derive constraints on ug and Y and to obtain the allowed range of the
functions aps(a) and ap(a). Finally, we consider the growth index v(z) and identify the («ar0, @po, s)
parameter region that corresponds to specific signs of 79 — Y3¢PM | and v, — yPCPM,

In Chapter 10 we study models involving a transition in Cepheid Snla Calibrator parameters. We use
Cepheid Snla calibrator data to investigate the effects of variation of the Cepheid calibration empirical
parameters Ry (Cepheid Wesenheit color-luminosity parameter) and M}Y (Cepheid Wesenheit H-band
absolute magnitude). We do not enforce a universal value of these empirical Cepheid calibration param-
eters, instead we allow for variation of either of these parameters for each individual galaxy. We consider
various cases (models) allowing for different types of empirical parameter variation and use criteria which
penalize models with large numbers of parameters for model selection and model comparison. Models
involving a transition in Ry, are slightly favored over models where there is a transition in M}y . We
investigate the impact of the allowed types of parameter variation on the Snla absolute magnitude Mpg
and on the corresponding derived value of Hubble constant Hy. The models involving a transition lead
to values of Hy that are consistent with the CMB inferred values thus eliminating the Hubble tension.

In Chapter 11 we study a model which offers an interesting novel approach for the modification of
GR in distinct spatial sectors. We generalize the symmetron screening mechanism by allowing for an
explicit symmetry breaking of the symmetron ¢* potential by the inclusion of a cubic term 4. Due to
the explicit symmetry breaking induced by the cubic term we call this field the ’asymmetron’. For large
matter density p > p, = p?M?+ %enM 2 the effective potential has a single minimum at ¢ = 0 leading to
restoration of GR as in the usual symmetron screening mechanism. For low matter density however, there
is a false vacuum and a single true vacuum due to the explicit symmetry breaking. This is expected to
lead to an unstable network of domain walls with slightly different value of the gravitational constant G on
each side of the wall. This network would be in constant interaction with matter overdensities and would
lead to interesting observational signatures which could be detected as gravitational and expansion rate
transitions in redshift space. Such a gravitational transition has been recently proposed for the resolution
of the Hubble tension.

In Chapter 12, we summarize and discuss the results of the present Thesis. In the Appendices we
present a list of acronyms, useful proofs and types, tables with data and codes used in the individual
analyses. Finally, an extensive Bibliography is presented.



Extetauevn Iepliindn

H 8udaxtopxr} wou Sotplfr) aoyoleiton ue x0oUoAOYIXO0E THRATNENOLIXOUE TEPLOPIOUOUE GE TPOTOTOLN-
pévee Vewplee Popltnroc. H Tevix Oewpio e Uyetxdmtag ([OX) mou npotdidnxe to 1915 and tov
Einstein amotehel ) Yepehundn Jewpla spunvelag tng Papdtntag xan €xel emtuyla oe éva euph Qacuo doxi-
pootwy. Elvon cuvenfc pe ) cuvtpintind mhetodnplo twv melpodtny xoL TV Topdtnehoewy and i sub-mm
hlpaxeg €n¢ Tic xooporoyixée xhipoxec. H avaxdiudn tneg emttoyuvouevng SLo TOAAC TOL GUUTAVTOG TTOU
Baolotnxe oe mopatnerioeic v unepxavopavey tinou Ia to 1998 €dwoe wotdoo éva loyupd xivnteo yia
BLTOTWOT) VEWY TROTOTONUEVKY Yewptmy Bapbtntoac. H e€fynon mou divetan ota mhalow g 'O yia autrv
TNV ETULTAYUVOUEVT DLUCTONY Tou cUUTOVTOC elvor 1) UTIOpE T TNS OXOTEWAS EVERYELIS 0 To606To ~ T0% Tng
oLVOAMXAC VAoeVEpYELag Tou olumavtog. H ewoaywyy tng xoouohoynhc otadepdc xan 1 eppnveio g ©¢
eVERYELX TOL XEVOU elvol TpOBANUATIXT, Ulol TOU LTOAOYLoMOL SelyVOoUVY OTL UTHPYEL Lol TERAC TIOL ATOXALOT) TV
HETPWY TV TuXVOTHTWY evépyelag Toug. OL Tpononoinuéves Yempleg e Papdtnag Onwe yiol Tapdderyyo
ol Padpotavuotinéc Vewpleg, ov f(R) Vewplec x.o. mpoomadodv vo ddcouv anavtfioels exel mov 1 I'OX
aduvatel. To xodepwuévo xoouoroynd woviého to omolo otneiletar otn 'O elvon pavepd otL dev unopet
va Yewpeltor ohoxAnpwpévo. Xt nopovoa diduxtopxn diatel] yivetow UEAETN TEOTOTOMNUEVELY YEWELHY OL
omoleg Unopolv va dcdaouy éva Vewpntixd mhaicio to onolo Yo cuunepthdBer ) 'O o unopel var 0dnyroet
oTN XUTAVONOT) TV Bou®y Tou obutavtog. Ol dewpleg autée elvar anapaltnto va evowyatdvouy to Baputixd
pouvopeva oe OheC TIC xAlpaxeg xaL oe Ghoug Toug yedvoug. O Yewpleg Yo mpénel va elvon clppwves ye dha
o TELpaATIXG BEBopéVa xou var umopoly va e€nyfoouy v early time xou tnv late time emtdyuvon. Enioneg
TEEMEL VO TEPLYPAPOLY OAEC TIC XOOUONOYIXES EMOYEC xou TNV PETEPaoT and TNy ula emoy” oTnv AT,

Y10 xepdharo 1 tne moapodoag dboxtopixc dlatelBrc yiveTton uia oUvtourn avaoxémnon tne I'OX.
[opovoidlovtar ot Baowxée évvoleg xan tor pordnuatind epyohela g YewUeTplde TV XOUTOAWY YOEWV.
Mehetdton 1) SOUT| TOU YWEOYEOVOU Xk TS AUTH CUVBEETOL UE TNV XaTovouY) DANG XL EVERYELIC XAl YEAPETOL
N TOVUOTIXY Hop@1] TwV Tedlaxwvy e€lodoewy tne I'OX. EmnAiéov oto (B0 xepdhoo yivetan pla napoucioon
TOV XATAAVTIXOY EVVOUDY TN¢ Koopohoyiag dnwe 1 Siactorr) Tou Hubble, n xoopohoyuxr epudey| petatdmion
%ol 1) XOoUONOYIXT UETEIXY TOL Ywpoypdvou Friedmann-Lemaitre-Roberson-Walker (FLRW). H yerétn tov
povTé WY Tou olunavtog yivetan ye T e€lowoelg Friedmann ol omofeg e€dyovtan and tnv uetpwery FLRW.
Yty ouvéyeta napouctdlovTal oL X0oUoAoYIXEC TapdueTeol Tou oyetilovtal pe tnv otodepd tou Hubble,
NV NAxiol ToU COUTOVTOC X0 TIC CUYXEVTPWOELS TV BLAPOPMY CUCTATIXWY TOV. XTo TEAOE TOU Xe@aialou
yiveTon o elooywy oTo TUTKd xoopoloyxd poviého Lambda Cold Dark Matter (ACDM).

To povtého ACDM eivar éva amhd xon yevind goviého mou €yel amodetydel 6Tl elvon cuvenée ue éva
€UPL PACUA XOGUOROYIXWY TORATNEHOENY, CUUTERLAAUBAVOUEVELV YEWUETEIXMY XOL DUVIULXY UVLY VEUTEY.
Iopd tic emtuylec tou, To ACDM épyeton avtiyétwno ye npoxirioelc t16co oe Yewpntind oo xat oe eninedo
napathenonc. H eyxvpdtnta tou xooporoyinol poviéhov ACDM to onolo otnpiletan otn opdotnta e 'OX
O GTNV XOOHOAOYLXY 0p)Y) TNG OUOLOYEVELNG Xl TNE looTpoTias oe éva eninedo Xounay epeuvdtol. H épeuva
yenowdonolel o a0y ypOVA XOOUOAOYIXS BEBOUEVO XAl TOUS XOCHOAOYIXOVE THPAUTNENCLAXOUS TEQLOPIOHOUS
TIOL AUTE ELGAYOUY OTIC TUPUUETEOUS TWY TEOTOTONUEVWY Vewpliv Poapttntag. To dedouéva oyetilovton
He éva evpl PAGU XOCUONOYLXWY TOPAUTNENOLIXDY VLY VEUTMOV, CUUTEPLAUBAVOUEVLY TWVY TELQUUAT®Y TNG
Koopuic AxtvoBoriac TroBddpou (CMB), T6V QWTOUETPLXOY Kol PUCUATOTKOTUXDY EGELVAY YANAELDY,
TNC TPOOTAYELNS UETENONG OXOVCTIXADY TUAAVTOCERY Bopuoviny, Tou actevols Pavouévou Twv BopuTiny
QOXYV, XA XL TOV TOPUUOPPWCEWY GTO YOO TN EPUURAC UETATOTIONC.

O Tpéyouoeg €peuveg TOU XxAVOUV YEHON To OUYYEOVA XOOUOAOYIXA Bedouéva odnYoly ot uio oo
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OmapEn ACUVETELDY, OCUUBATOTATOV Xt AmOXAOE®Y PETOEY TV TIHOV TUPUUETEWY TOU TEOCdLoploTNXoY
YETOUWOTOLOVTAG BlopopeTixole mapatnenctlaxols aviyveutetéc. H evtovotepn acuuPototnta eupavileton
oy T e otadepde Hubble Hy mou euvoelton and v teheutaio €éxdoon twv CMB 8edouévwyv and
Planck xou ot mou euvoeiton and ta dedoyéva tou Slaotnuixol tnieoxoniou Hubble. Mua &k Avydtepo
évrtovr andxhion epgoviletar oTC TWES TV ToEoETEWY £, Xou 0g oL TPoXVTTOLY and To dedouéva and
Planck CMB xot avtdv and tic dwotapoyée nuxvétnrac (RSD xow WL).

Ta xepdhonar 2 xon 3 ebvon agiepwpéva oe plor extevr) TapousiooT Ue eVOTONUEVO TEOTO TOAAWY UT-
AEYOVIOV ONUATWY GE XOGUONOYIXE XL Ao TPoQUOLXd dedouéva mou @alveton va efvar o xdmota acuyPort-
otnta (20 1) peyohUtepn) pe 1o tumixd xooporoywd poviého ACDM 6nwe opileton amd tne Tiwés v
napopétewy and Planckl8. Extéc and tn peydhn xohde peretnuévn npdxinon 5o tou ACDM tne xpione
e otaepdc tou Hubble xat twv yvootdv avepohdy avantuéne xow TAdtous goxol, culntdue €vo eupl
pdoua GAAWY AYOTERO TUTLXGY ONUAT®Y Ttou eugavilovion o younhotepo eninedo oTatioUxAC onpasciog
ané oauthv e otadepds tou Hubble xat nou urnogolv enlong va anotehoy unodelelc mpog Wia VEo QUOLXY).
T opdderypa, tétota ofpota nepthapBdvouy xoouxd ditola (énwe tne otadepdc henthc verc, To dinola
Tay Ot xou xBalop), acvupetpiec CMB (6nwe 1 éMhewn wy0oc o€ PeYIReS Ywvioaxés XAUAXES, 1) ACUU-
BotdTnTo xpeV EVavTL LEYAAWY XAUdXWY, 1) avepahio Puypod onuelov, ol evdel€elc yio éva xhelotd alunay,
N avouaiio oe xhigoxeg unep-opllovta, 1 eLIUYPAUUCT TETEATOAWV-OXTATOAWY, 1 avwudkio loyvphc emi-
dpaong ISW, n acuuuetplo xoouxic nuogaipixic 1oy bog, 1 avwuahio @uxol, 1) TeotiunoT Yo cucYETIoR00G
nepLtTic tooTuiag, 1 wootuio topafBicone e teptotpopric e CMB ypopuric néhwone x.At.), npoifuarta
TV BAUPUOVIXDV OXOLCTIXOV TOAVTWOEWY, TeoBAAuaTa Wxehc xAlyoxag, Yépata nhxlac tou Xoynavrog,
npoBAnua Tou Awiou, avewpahies wxpehc xhipoxas, Hubble dudypoupo ond xBdlops, tohavteudyevo oryarto
Bapltnrag pxerc euPéielog, avaualn yoauniy Papguovixd deppoxpocio x.At. O otoéy0¢ auTdV Twv 500
xepohalwvy elvar 1 Topouslacy) GUAAOYLXE TNG TEEYOUCUS XATACTACTS QUTWY TWY ONUITWY Xal To eninedo
acuuPototnTog Toug, Ue éugacn otny xplon tng otodepds tou Hubble xou 1 avagopd oe mpdogpateg nnyég
6mou umopoLy va Beedoly neplocdtepes Aentouépeie yia xdde ofua. Enione yiveton wa extev oulntnon
xon Topouastooy miavey YenpnTdy TpooeyYloewy Tou Unopel duvnTixd vo eEnyHoouy Tn un Tumxy @hon
OPLOUEVLV o oUTE ToL GNUATOL XoUu VO BWO0LY AICELS GTA UTIEYOVTA TEOBAAUATO TOU XOGUOAOYIXO UOV-
w€hov ACDM. "Eva eupl pdoua povtéhwy €xel yenoonomidel yio Ty avtetdnion g acvuBatdtnrag Hy
elodyovtag mpooietoug Baduole ehevdepiog oto poviého ACDM émnou emtpénetar vor toux(Aouv npboieteg
TapdueTEOL, OTWE 1 TeEUTTousia oty onola éva Baduwtd nedlo mollel to pdho TNC oxoTeERC EVERYELNS 1)
tpononomnuévn Boapbtnta oty onola 1 I'evinr) Xyetixdtnta tpononoteitar e xoouoloyixy| xhigaxa.

‘Onwe tovicaye ota xe@dhoua 2 xat 3, 1 eYyxUpdTNTAL TOL X0Guohoyxol povtéhou ACDM Peioxeton eni tou
TOEOGVTOS LTO EVIOTIXY] EPELVAL YPNOULOTIOLWVTAS €V EURY QPACHUN XOGUOROYIXEY OVLYVEUTMY. AUuTH 1) épeuva
amoxdiue v napovaia acuuBatotitey yéoa oo wovtého ACDM , Snhadr) doUVETELDY UETUED TWV THIOY
TWV TUPAUETEWY TTOU TEOGOLOPC TXAY YENOLUOTOLOVTIS SlapopeTinols aviyveutéc topatienong. Ilpoxdntel
enopévwg to axdlovdo gpwtnuo: Eivar autéc ou acupfatdtntec war mpddiun EVOELEn TG avayxng yio o
tponononuévn Yewpla Baupltntag Tépa omd 1o TUTIXG UOVTENOD 1| ElVOL ATOTENEGUA CUG THOTIXOV / CTATIC TNV
dlouudvoewy ota dedopéva; H avdhuon nou mopouctdletar 6T0 ETOUEVO Xe@dAoLo 4 GTOYEVEL VO AV TLHETW-
nloel ouTd 10 EpOTNUA. LTo xePdhono awtd yivetar uehétn e meplopto g toylog (evanoinalug) evédg eu-
PE0C PACUATOC TUPATNENOWMY TOGOTAHTWY AV GE XOCUOAOYIXES TOPUUETEOUS WG GLVAETNON NG epLlprc
petatémiong otny onola éywve 1 uétenon. To Baocwxd spwtiyota pe ta onola aoyorndixaue oc autd To xe-
pdhono eivan: o) ot etvon 1) e€aptdpevn omd Ty xoouohoyxr epudpen petatdmor eEdoTnom e Teploplo Txg
BUVOUNG UG CUYXEXPLUEVNE TAPATNENOLUNG TOCOHTNTAS OE OYEOT UE WLot BEDOUEVT XOOUONOY XY TUPAUETEO;
B) Trdpyet wio féRTioTn xh{pana epudphic HeETATOTONS GTOL 1) TEPLOPLO T Lo G KIS TOEATNEROWNG TOCOT-
Tag elvon péylotn oe oyéon ue uio dedopévn xoouohoyixh mapdueteo; v) YTrdpyouv TupAd onuela epuiphic
METATOTILONG OTOU LdL TOROTNENOLULY) TOCOTNTA €lvol EXPUMOUEVY) OE OYECT UE CUYXEXPUIEVEC XOCUONOYIXES
TOPOUETEOUG;

YUYAEVTPOOUUE CUYYPOVES CUANOYES PETPHOEWY TWV XOCUONOYIXDV THPATNENOEWY XAl TEOGI0plCuUE
™V evanodnola AUTOY TOV TUPATNEHCEWY ¢ CUVAETNOT NS EPUUPHC UETATOTLONG VLo TEELC XOCUONOYIXES
TUEOUETEOUG: TN TUPGUETEO TUXVOTNTAS, T1) TUPUUETEO XUTAC THTXNG €El0WONE TNG OXOTEWVAG EVERYELNG XoU
plo mopdueteo mou mepLypdpel Ty e€EMEN g oTtadepds tou Nevtwvo. o xdle mopatneoduevn nocdHTnTa
ELOdYoUE Uiot VEO OTOTIOTIXY WS PETENOY NG TMEPLOPICTXNE LoYVOC TN OE OYEOT HUE WO XOGUOIOYIXT



TapduETEO oE cuvdpTnon NS gpulprc petatoniong. Almoteooye T Vapn TUPAOY onuelwy spulprg
METUTOTLONG X0 BEATIOTOY ONUEiY Yo TIC TUPATNENOWES TOCOTNTEG OE GYEDT UE TIC TUPUUETPOVS. e EVal
BéhtioTo elpog gpuipdv yetatonicewy, N mopatneion ntocdtnto unopel vo meploploel TNV TUPAUETEO UE
TOV O AMOTEAECUATIXG TEOTO, EVK 0TI TUPAEC TEPLOYES EpUUPTC UETATOTLONG, Ol TORATNENOWES TOCHTNTES
umopel Vo elvor EXPUACUEVES OE OYEDT] UE TIC TWES TWV XOCUONOYIXOV TOROUETEWY 0L ETOUEVLS OVATTOTE-
AeoPATIXES OTOV TEPLOPLOUO TNG BEBOUEVNS ToRoUETEOU.

Y10 xe@dhouo 5 axorovinoe 1 ueAéty evdg TpoTOTOMUEVOL wovTEélou TNg Popdtntag uéow Tne Uelwong
olaotdoewy. Eqopudoops plor evahAoxTixr TeoCEYYION UE UL YEWUETEIXT TEQLY T TNG duvaxhc TS VANG
oe yohadlaxée xhlpoxnes ywplc oxotews OAn. To Bacixd epethuate e to onola acyondixaye eivon: o) Eivon
duvartéy va yevixeudel 1 Yepehddne Siodidototn yewuetpwr Spdon (xon 1o duvauixd tou Poduwtod nediov
TOU TPOXUTTEL At TNV COUTTUEN TV DO TACEWY) ETOL OOTE 1) AVTIOTOLY T CQOUEIXE CUUHETELXT| LETEIXY TOL
XEVOU VoL AVOTOREYEL TIC TUPATNEOVUEVES XOUTOAES TEPLGTROPNE ToYOTNTAG TWVY YOAXELDY EE(COU XUAd e TN
xadiepwuévn xatavopr e muxvétnTag OAng; B) Edv vau, moto ebva 1 wop@r| Tou ancttoVUEVOL Suvauixol
yenuetpixol Baduntod nediov xou nde oyetiletu ye to anhé duvapixéd Rindler; y) Mnopel va avorapoydel
oL Tuyakor oQoLEIXE GUUHETEXT LETELXY) TOL XEVOU altd €Val WO TA ETAEYHEVO YEWUETEWO SuvaLxd Borduwtol
nediov;

Xpnowonowdvtag 10 mpogih  muxvétnrog  oxotewrc  UAne  Navarro-Frenk-White  (NFW)
avaxortaoxevdoope  Eva povtého Vewplag Bapdtntog amoteheopatixol nedlou oe UEYIAEC AmOGTACELS
and éva xEVTPXO AVTIXEIUEVO, amauTdVTOC 1 AUoT Tou XevoU va €yel Ti¢ (Bleg Poputinéc WLOTNTEC YE TO
npogih muxvétntoc NFW oto mhaloo e I'OX. H Swotatind petwuévr avouodounuévn dedorn yio T
Bapltnta odnyel oe pio et xevol mou meplhopfdvel évav tpomomoinuévo bpo emtdyuvong Rindler
emnTAéoV TV TUTIXWDY 6pwv  Schwarzschild xouw xoouoloywrc otodepds. O véog dpog elvon amahhorypévog
omd TS avwPahlES xoumuhoThTag TS LEpulpng axtvoBoliag xau odnyel o TOAD xaA0TERN TEOGUPUOYY
TV TAPATNENUEVWY XAUTUADY TeploTpopic tayltntag yoho&ia and tov aviiotolyo anid 6po Rindler tng
petpwric Grumiller, oe Bdpog poc emmiéov moapopétpou. ‘Otav 1 véa nopdueteog €xel oplotel 6To undév, o
VEog peTpOS bpog uedvetan oe uia Rindler otadepd emtdyuvong. Xenowonowoaue dedouéva neplo Tpopic
yoho&laxhe todTnTac yior Vo Bpole Tic xohOTEPES TWWES TPOCUPUOYNG TV TUPUUETEWY TOU JOUNUEVOU
YeEWUETEXOV duvaixol xou oulntioope mdavés xoopoloyixés emmtdoeic. I'evixd n oaxohoudoluevn
peleon twy BloTdoeny 0To TANCIO TNG CPUEASC CUUPETEOG TPOoPEpEL ULa evilagpépouaa dmodn yio Thy
tponononon e 'OX xou pnopel vo 0dnyroel oe €va eupl GAcUN BOX(UWY TV TEOTOTONUEVOY LOVTENWY
e Bopdnog.

Kevtpuwéd {nroduevo tne Yepehinddoug épeuvog eivat 1) evomolnom wv 800 UeYdAwY QUOIXGY YewpLdY TG
KBovtixhc Bewplac (KO) xou tne T'evindic Lyetxdtnroac (I'E) oto mhaioto e KPavtinfic Bapbtntoac (KB).
Mua xplown xhigoxa oto mhaiolo authg Tng evoroinomg etvan 1 xhipaxo Planck n omolo éxel anoderydel 6Tt
elvon 1 eNdytotn weterioun xiiwaxa edv loybouy téco 1 KO dco xou 1 I'S. H Unopén evdg tétolou ehdylotou
peTpriowou urxoug Umopel vo odnyfoetl oe tpomonoinon tng Apyhc tne APeBadtntag Tou Heisenberg ot
xoholpevne we Tevixevpévn Apyf tne APefadtnrac (TAA). Avtiotouyo, undpyel éva UEYIOTO UETPHOWO
uhAxoc mou oyetileton pe Tov x0oUoroYLXS 0pilovTa TV cwUaTdiwy, To 0molo TapEyel oYL UTLdTNTOS [lot
whipoa p€yioTou PeTeriolou uixoug 6to Xounay. Auth 1 Onapén evog TéTolou PEYIoTou UETEROULOU WHXOUG
odnyel o tponomoinuévy éxdoon e I'TA. 3to xepdhono 6 cpeuvidnxay ol emBpdoelg TNS TEOTOTOINUEVNG
TAA o710 npwtopy X6 QACUN LoYYOE TV XOCUOAOYIXWY BLATORY MY TOU YEVVAUNXOY Xatd T1) Bidpxela Tou
TAndwpiopod Aoy xBovtndv Swxdpavoewy. Ta Boowd epotiuata Ye to onola acyohndixaue eivon: o)
ITowr ebvon 1 mopoubde@wsoT Tou PACUATOC LY 00C TWV BLATURUYWY TOU ToEAYETAUL XATd Tov TANYweLoud
Aoy TG mopopoppraong e dhyefeac Heisenberg nou avtiotolyel oty Unopdn evég uéyiotou UeTproLIOUL
uhxoug; [) Iowor mepiopiopol uropotv va emfBindolv oty Jeuehiddn napduetpo mou oyetileton ye v
uéyiotn affefondnta Béong and To ToEATNEOUUEVO PACUA LoYOC TWV TEMTALYIXMY SLOXUUAVOEWY;

‘Etol oto mhaioto piog yevixevong tne xBaviixng unyavixic mou mepthaufBdvel war xAlgono H€YLoTou
HETENOWOU Prxous eEQYOUE TN YEVIXEUUEVY] HORYT TOU GPYEYOVOU QAGUATOS oY 00S TWV XOGHONOYLXMY
BLATOEALY WY TTOU dMuiovEYolVTAL XAt T Sidpxeia Tou TANIwEIoUoD AOYw TwV XBavTixwy BaXUHAVeEWY
TV Poduntodv xou tovuotxoy Bodudy ehevdepioc. H Omapén woag tétolag xhipoxag vroxweltan 6mwg
npoavapepUnxe amd Ty Orapgn Tou opllovia TwV cwuaTdlwy oTNY xoopokoyia xou 0dNYel oe pla Yevixeuon
e opxnc e ofefatdtnTag o Wl pop@y) Tou cLvemdyetar TNV Omopdn Wwac uéylotng éong xan WG



ehdyiotng afeBarotnroc oppric. H FAA cuvendyeton wio yevixevon tng oyéone yetddeone petodd culeuy-
HEVOLY TEAEGTOV GUUTERLAOUBOVOUEVLY TwV TES(WY Xon TeV GLlUY®Y opu®Y Toug. Eibixdtepa dellaue 6L 1
Tevixevpévn oyéon Metdideone Ilediou (IMII) petald evoe Poduwtod nediov o tne ouluyolc opuic Tov
nou urovoettoan and ) AA obrnyel oe éva tpomonomuévo apyéyovo gdoua Boduntdy datapaydy. Me 1
Bofleia mapaTNENCLAXOY TEQLOPIOUMY TOU QACUATIXOD DElXTY 0dNYNIfixaue OE TEPLOPLOUOUE TOV THPUUETEWLY
TOU POVTENOU ToU pag Borinoe vo extiuiooue To UYioTo PETEOWO prxous. Auto Beédnxe vo etvan pla
TéEn ueyédoug yeyahltepo and To onuepvé xoouohoyixd opllovta.

IMopd v ouvénewr tou Planck/ACDM povtéhou pe ta 8edouéva xoouxod vroBddpou oTic peydhes
%x0opohOYINES AaxeS €yel TpdoaTa xaTaoTel eppavrc 1) UNapdn Ylag Alac aoLUBATHTNTOSC AVAUESH OTO
povtéro Planck/ACDM pe pepixée nopatnphoelc oe evildpeses xoopoloyixéc xhipoxee (epudtpée yetatoni-
oec z < 0.6). 'Eva tpononoimnpévo povtého Bopltntog anotelel évay xplo Yewpntixd vnorgio yio vo e&-
nyhoel auth Ty acuufoatétnro. O cuVBUAOUEE TWV XOCUOAOYIXWY VLY VELUTWY elval €val loyLES pYalelo Yio
TNV Aoy VORLoT) ToU XATIAANAOU wovTélou. 26T600 oL eBRAoELS TwV UOVTEAWY Teomonoinuévng BopdtnTog
dev Soxplvovton and ™ I'OY oe enlnedo yewyetpnod xoouoroyixol unofdidpeou. H Onapln evég poviéhou
Tpononomuévng Boapbtntog uropel va tautonoundel wbvo ue T Blepebvnon NG BUVOIXNEC TWY XOOUOAOYLXEY
BLATOEALY WV YENOWOTIOLOVTUS CUYXEXQUEVO CTATIOTIXG oTolyeld mou AouBdvovTon UECK) TWV VLY VEUTWY
BUVIUIXAY TOEATNEHCHIWY TOCOTATOY, OTWS 1) cLoYETIOT 800 oNueiwy xaL To Pdoua Loy Dog TNG XATOVOUNS
Twv yohalidy, ta RSD xou WL.

Opuouevol and TNy Tapandve dlamicTwor oto xe@diono 7 TeayUATOTOWoUUE YEAETY TNG douUBaToTh-
T0C TV OeBOUEVLY oTaTIo TS Eg 1ot Sedopévwy mou oyetil{ovTal YE TUpUUORPOOELS OTO YWEo epUUPdS
petatémone (RDS) pe to Planck/ACDM povtého. Ta Pooind epwtiyata mou Véoaue elvon tor axdrovdor
o) Iolec elvon oL OMOTEAESUATIXES (PULVOUEVONOYIXES TOPOHUETPOTOLACELS TOL ECapTMVTOL and Ty gpudpy
HETATOTION TOV YEVIXELUEVWY XovovixoTouévey otodepdv Newton pg(z) xaw Xg(z) ou omole elvon
ouVenelc xou e oL GplaL omd TNV TUENVOSUVIEST) XOl UE TIC TUPATNEHOELS GTO NALIXO GUGTAHUN IOV Bl VouV 6Tl
n 'O anoxadiotatar oe LPNAS 2 xau ot onpepwy| enoyn; B) ool eivar o1 teploplopol Tou emBdihovton and
o Eg xou fog emxouponomnuéva oeT SeB0UEVWY YIo TIC TOPOUUETPOUS TWV TOPATAVE TUPUUETPOTOOEWY; Y)
O teplopiopol autol evioyouv tig evdellelc yia tnv e€acdévion e Bapltntac ot pxpéc epuipéc peTaToTi-
OELC Z IOV UTOBNAWVOLY évo To dedouéva Tou fog OTWE UTOBEXVOOLY PO YOUUEVES UEAETES;

‘Etou xataoxeudlovtag oUyypeoves cuAhoYEg Sedouévwy fog xou Eg Baclopévemv oe Tapatnenoels oy
nepLypdpouy to pudpd adEnome Twy xooporoyxmy dtatapaydy (RSD) xou aodeviv goxdv (WL) extpiooue
Ti¢ acLUPaTdTNTES PeTAd) TLY PEATIOTWY TWMY Topauétpwy ond Planck/ACDM xat twv BEATIGTOY THOY TeV
TUPUUETEWY OV ETULTUY YAVOVTAL 0To TALGLO Lo Tpomonotnuévng Yemplog Bapltntog ota TAalolor xatdAAnAng
TOPOUETEOTOMUEVNG EEEMENG TWV YEVIXEUUEVY XAVOVIXOTIONUEVRY GTOUUERMY UVATTUENS KOl QPOXWY [l XOL
Y@ avtiotoya. Befxope 6tL to eninedo acupBatdtnrag audvel and ta 3.50 otav 1 avdivon yivetow uévo
WE TN XeNHom TNS cLAROYTNC Bedopévwy fog ota 6o dtav elodyouue atny avdAuon Tn cuhoyt dedouévwy Eg.
Avtd ta anoteréopata evioylouy Tepatépw Tic evdellelg yia weakening modified gravity mou culntRdnxe
o€ dAAeC TPOOPATES UEAETECS.

Ta Boduwtd nedia ypnowonoobvton yia vo teptypddouv éva eupl @doua Baduny ehevdepioc oe éva
Towiho GUVORO YUY CUCTNUATWY OTN CWUATIOLXY PUOLXT, TNV XOOUOAOYid XAl TNV QUOUXY) CUUTUXY-
wpévng VAng. M otadeponomntiny enidpacn TOAATAGY 0ptlOVIOY OTIC TAYVOVIXEC Ao TAVEIEC UTtopEl Vol
el ddpopee evdlagépouoes ouvénetee. o napdderypa, ol tayvovixéc actdiees twv Yewpidv f(R) %o
v Baduotavuo Tixdy Yewpetdv urnopel vo xaduotepicouy onpavtixd oe undBadpoa mou nepthauBdvouy xoo-
pohoywxole opilovteg pe movés CUVETELES Yia TNV avdnTuEn tpolépuavons HeTd Tov TANYwEoUd. XTo Xe-
(pdAoto 8 yiveTtar LEAETN TRV TOYVOVIXDY Ao TOELDY ot duvoixy) eEEMET evig eheliepou palinol BaduwTtod
edlov P pe e&lowon duvopxon tne popgric V(¢) = m?¢?. Ebixdtepa ebvon yvwoté 611 1 avtiotoyn e&lowon
Klein Gordon (KG) O® +m?® = 0 éyel tayuovixée actodelc xataotdoeic ot peydhec xhipoxee (k2 < |ml?)
yio m? < m?, = 0 oc eninedo ywpdypovo Minkowski pe 1o péyioto pudud avdmtuine Qp(m) = |m| va
emituyydvetoan o k = 0. Me dedopévo authv tnv ORapEn Touovixdv actadeldy Yo m? < 0 otnv tapousio
evée eninedou undPoadpou (Minkowski background) Véooue tar mapoxdtw epwthuate: o) Iopauévouv ol Ba-
Yuwtée Tayvovixés aotddeiec vy m? < 0 mopoucia evée un eninedou (xaumilou) vroPddeou; B) Av vou,
e oANGleL 0 ypdvoe aotddelag xar o pudude avdntuing ot xopmiio undPadpeo; ) Iowec eivon ov Tpée
TUPUUETEWY Wiag UETEWXNG Xaumbilou unoPddpou mou amoutolVTOL Yiol Vo GUEACOUY ONUAVTIXE TN SLdpxeLa



Cwhe e aotddetag oe olyxplon Ue Ty Twn tng oe éva eninedo unoBadeo;

H épeuva emyxevipwinxe otny Umopén twv aotadeldy xar 6to puiud avdntuing Toug oTa ToEaXETe
un enineda (xoundda) Poputxd vnéBadpa: Reissner-Nordstrom-deSitter (RN-dS), Shwarzschild-deSitter
(SdS), pure deSitter, pure Schwarzschild. To Bacixd cuunepdopata tou e&dyoue etvon: o) H xplown A
e pélac Tou Baduwtol Tedlou m2, oe xouniio unbPadeo etvaw m?2,. = 0 énwe oto eninedo vrdPadeo (dnou
v m? < m?2, toyuovixf actéeln avontiooeton), B) H Baduwth toyvovixn aotdder tne eliowone Klein-
Gordon €yet Beaditepo pudud avdntuEng oto xaunvio utoBadeo oe GlYXEIoN UE TO ETINESO YWEOYEOVO Yid
ONEC TIC UETEIXES TOPUUETEOUE OTIOU UTEPYEL XOOUOAOYIXOC optlovTag.

'Onwe mpoavapépidnxe, 1 acLUBatdTnTa avdnTuéng, oy 8ev OPelAeTaL OE GTATIO TG 1) CUC TNUATIXG OQHA-
porter, UTOopel vor UTOBNAMYVEL TNV avdyxn Yo tpdoietous Baduole ehevdeplac nou emexteivouv to ACDM
povtého. Mo yevixr| mtpoéleuon tétowwy Poducdy eheudeplog pe Quowd xivntea etvon 1) enéxtaon tng 'OY oe
povtéha tpomononuévng Papdtntag. Mia peydhn mowakior tétolwy povtéhwy €youy mpotaldel péypl oTiyunc
yioe vor Audel n acupPoatotnta avdntugng. Mia evpeio xatnyopla TETOUWY TPOTOTOMUEVWY VEWELDY TOREYETOL
ané t Poapttnta Horndeski nou anotehel éva yevixeuuévo poviého Bapbtnrac. To povtéra Bopvtntac Horn-
deski etvar 1 mo yevixy Baduotavuo e Yewpio mou nepthauPdvel Boduntd Padud ehevdepiog oe téooeplg
dlao tdoeic pe ellonaele xivong dedtepne tdéng, emouéveg anogedyeton 1 aotddeto Ostrogradsky. Iopéyet
€vaL YEVIXO TAAOLO YOl TNV XUTAGKELT| LOVTEAWY OXOTEWVAC EVEPYELIS eVTOC TS 'O xardddg xan mAndwplouod.

Y10 xepdrono 9 yivetow yerétn tou Horndeski povtéhou Bapdtnrac oe ACDM unéBadpo pe yprion
1€008pwy ehellepwy aveddpTnTwy cuVIpTHoEWY Tou Ypdvou, tne a Bdone, «;(t) (i = M, K,B,T) mou
neptypdpel onowodnnote andxhon and v I'OX 6nov «;(t) = 0. H Siepedivnon twv povtéhwy Horndeski,
€YIve UTOVETOVTOC: o) GUUTEQLPOPS TIRMULOU XpOvou Tou elvan cUppwvn pe v FOX, B) topdtnta foputixdy
xupdtwy {on e Ty Toy T T PeTée, Y) aveloptnola xhpoxos k twv cuvapthoewy a;(t) ot xhipaxeg
xdte and tov opilovta tou fyou (subhorizon) tou Baduwtod nediov (k > aH/cs) oty oyeddv otauxy
npooéyylon (Quasi-Static Approximation (QSA)), 8) pudud Swotolic undBadpou tou curnavtoc H(z)
Tou avTiototyel ot wa eninedn xoopoloyic ACDM, €) eZdptnom twy cuvaptioewy a;(t) and tov napdyovta
wAPaxoe a TG op®hic o = g a® 6Tou oL oTadeREC v elvan oNUERLVES TWES Xou TO § elvorn xdmolog BeTindg
exdétne mou xodopiler TNy ypovixh eEENEN Yot T0 VEWPOVUEVO TEOTOTONUEVO HOVTEND PoplTnToC.

Kévovtag yerion twy napamdve utodéoewy eEdyaue T EMTRENOUEVES TEQLOYES TLV TUPUUETEWY TOU UOV-
Téhou Yo Bldpopes Tég Tou exdétn s. AdPBoape eniong Tic ETTEENOUEVES HOPQPES TWV PopUTIXGY TUPUUETEWY
avdntuéng xat ool fig = Ggrowth/G % X = Glensing/G 0UYXpIVOVTUS Tl AMOTEAECUOTY UG UE TRO-
nyolueveg yekéteg. Xpnowonoooue cuAoyec dedopévwy fog xau Eg pall ye tic Yewpnuxéc exppdoslg
v Tor otaTioTixd dedopéva fog xow Eg mpoxewévou va eE8youpE TEpLoplololc OTIC TOROHETPOUS [ XOl
Y6 xaw vor MBoupe To ETLTRETOUEVO EVPOC TwV cuvopThoewy anr(a) xou ap(a). H acdevic Bopdtnta elvou
éval BUoX0A0 xoECTWE ToL TEETeL Vo emitevyYel 0To TAUloLo BLOCLWY TEOTOTOMNUEVKY TewpLtdv Popdtn-
toc. Acellope bt unodétovtac po téhelo Budowun Aor vnofddpou, ACDM, unopolue vo meplopicoupe ta
povtéha Horndeski ypnowwonowdvac dedopéva fog xou Eq. Télog, eletdoape tov delxtn avdntuing v(z)
%ol pocdloploope TNV mEploy) TOEUUETEWY (0, XB0, S) TIOL AVTLOTOLYEL OE CUYXEXPWEVEC TEPLTTMOELS
Yo = 1 CPM w41 — AREPM (6mou 0 = v(z = 0) xou 11 = G .=0).

H mo evbiagépovoo acuufotomnto peydine xiipoxag evon auth tng otadepdc tou Hubble 6mwg
oulntioaue oto xePdAono 2. XpENOWOTOLBVTAC Wl TEOCEYYLON XAluaxoc andoToons, Ol TOTUXES UETEY-
oelc e otadepdc Hubble Hy 0dnyoly oe tié mou elvon onuovtind VYnASTERES omd AUTEC TOU GUVEYOVTOL
YEMOUWLOTOUOVTAS TN Ywvio xh{pona Stoxuudvoewy tou CMB oo mhaicto tou povtéhou ACDM. O tomxde
npoadlopiopde e otaepdc Hubble Hy yenotpomoidvtog wa npocéyylon xligaxas andéotaons eEoptdtat
amo Lot aAUGBA HETPHOEWY AMOCTACNE. LTNY TEOCEYYLoN TNS XAHoxag xoouxc amdoTacTg, xdde BrAuc Tng
oo ambotaong yenotponotel uedbdouc napdAhaEng 1/xon T YVWo T EYYEVH QOTEWSTNTO Ylag TUTIXAS
Tnyc xeptol yiol val Tpoodloploet Ty andhUTY (EYYEVH) PWTEWSGTNTA EVOS TULO PWTEVOD TUTIXOV XEPLOU TOU
Beloxetoan otov (Blo yahadio. ‘Etol, to tumixnd xepld vimihic puwtevdtntog Baduovopolvion yia To ENdUEVO
Bric, TEOXEWEVOU VoL PTACOUY OE AMOCTACELS PWTEWOTNTAS LPNATC epulpric petatomone. Edv pio and tig
METPNOEC aMOOTAOTNE UTOXELTAL GE CUCTNUATIXG OQAAUTA 1) VEX QUOLXY|, OAOL TAL ETOUEVO CXANOTATIAL TNG
xoouxnc xhipoxag andotaone etvon Adjoc.

H mpocéyyion tne xhpaxac andotoong Basiletan o ma pédodo otny omola npwtoctdtnoe 1 Henrietta
Swan Leavitt. Xuvewdntonoinoe 61l évag TOMOC TAAAOUEVWY AOTERLOY TOU elvol YVwoTol we petafAntol



Kngpeldeg éyouv uia meplodo maluodv mou e€aptdtar and 1N @uTewotntd touc. Auth n oyéorn Ilepiodou-
Potewédtnrog (IIP) ovoudleton vépog Leavitt. T'vwpllovtac ) gwtewvomta evéc Kneelda onuaiver dtu
N AndoTACN POTEVOTNTAC TOU UTopel Vo TpoadloploTel amAd TapATNEOVTISC TN QWTEVOTNTE TOU ToU €YEL
pewwdel and auth Ty andéotaoy. Enopéveg, oi Kneeldeg twv omolwv 1 gwtewvdtnto cucyetileton ye Tig
TEELOBOUC PETABANTOTNTAC TOUG UTOPEL VoL Elvol ToL TEMTOL TUTIXA XEELE 0TV XOoULXY) XALUaXa TNE ATOCTAOTC.
Telywvopetpxée uédodol napdihaéne urtopoly vo yenotgonotndody yio Tr Bodovounom twy TUTXGY XEQLLY
petoBAnTedv Kneeidwy oto tomixd Xlunav. 31 cuvEYEW, YPNOLLOTOUIVTIS TIC UETPOVUEVES UMOGTACELS
puTEVOTNTOC TwY Bardpovounuévey Kneeldwy, hopfdvetar 1 eyyevic otevdtnta twy xovuvéy (D ~ 20 —
40 Mpc) aniotevta potewvod tonou lo vrepxawvopavdy (Snla) mou xatowodv otoug Bloue yahalies ue
toug Kngeldec. Auth n Baduovéunon tou véou timou tumxol xepiol Snla xadopilel to andiuto péyedog
tov Mp xou 6T cuvéyela yenotwonoteitoan v Snla oe mo anopaxpuopévouc yoholiee (ot pory Hubble)
yioo T wétenon v Hy (2 € [0.01,0.1]) xou H(z) (2 € [0.01,2.3]) yéow tng UETENONG TWV ANOCTACEWY
PuTEVOTNTAC Toug. Elvan gavepd 6Tl 1o povtého mou yenowwomoteltar yioo T Bordpovéunon tov Kngeldwy
unopel va ennpedoel tov xadopoud tne otadepds tou Hubble.

Opuouevol and o Topamdve oto xe@dhaio 10 yenowonoimooue dedouéva and Knpeideg o unepxouvo-
pavelc TOMou Ta yiar vou SlepEUVACOUYE TAl AMOTEAECUATO TNG SLOXOUAVONG TV EUTELRIXOY THpoUETEWY Bord-
povounone twv Kneeldwy. Acilope 61t o0 povtéro OTou EMTEENETUL Plal TETOLX BLOXOUAVET) EUVOOUVTOL UE
Bdomn o xprtrpla emhoyic poviéhwy AIC xau BIC. Ta povtéha mou guvoolvto otadepd xou and o dvo,
10 AIC xau 1o BIC, nepilopfBdvouy wa yetdBoor elte oty napduetpo Yewuatog-guwTevdtntoc Ry elte oto
andiuto péyedog M};V v Kngeldwv o andotaon pyetagd 10 xou 20 Mpe. Yto mhaioo evde oyoloyevoic
Younavtog 6mou tneeiton 1 xoooloyxh apyy, avtd Yo Arav wa yeovixn wetdPBacn petold mepinou 25 -
70 exatoppvpionv ety mewv. Ta povtéha mou mepthouBdvouy uetdfBaon oto Ry euvoolvTal EAXPENOS EVaVTL
TV povtéhev 6mou undpyel uetdBouon oto MY . Ko ot 800 xatnyoplec poviéhav odnyolv oe twée Ho
nou ebvan ouyPotéc pe tic ouvaryouevee Tég and CMB e€ahelpovtag étol v acupBatoétnta tne otadepds
tou Hubble. M tétola petdfoocy tov nopopétewy twv Kneeldwy Yo unopoboe vo npoxakeiton and uia
Yeuehlnddn uown uetdBaon. To uéyedog tng petdfaocrg etvon ouvenég ye to péyedoc mou amanteltar yio TNV
enthuon e acuuPoatdétnrag e otadepds tou Hubble oto mhaiolo wog Yepeiinddous Baputinic petdBoong
7oL AaufBdvel ywpo amd wor Eapvixn) adgnomn g €vtaong Twy Baputixey oAANAeTdpdoewy Geg xatd Tepinou
10% o€ epuipéc petatonioec z < 0.01. Mo tétota petdBaon Yo adlave andtopa to andhuto péyedoc twv
uepxovoovey toTou la xatd AMp ~ 0.2. To ebpog andotaone/ypovixhic xhpaxac mov aviioTolyel ot
auty| N yetdBoon eivar oupwvo pe po tedogaty avdAuor tou detyvel wa tapduol UETBaoy oTo Thalolo
v Tully-Fisher 8edopyévwy xou elvon emlone cuvenée pe to dedouéva loToplag TOL NALIXOD GUGTHUATOC.
Adyw g anoteleoyotinotnTog Wiog Poputinhc yetdfoaone oty enthuor twv acuPotothitev Hubble xou
avanTUENG, TEoxVTTEL TO epdTNUA: T dpyouy VewenTind Yoviéha Tou Unopoly Yevixd v teofAédouy wa
TéTol UETEPoom oE Ywpexd 1 xpovixd eninedo ot z; < 0,01;

Me oxomé vo BKCOVUE ATdVTNOT OTO TUEUTAVG EPWTNUA 6TO xe@dioo 11 mopouctdlouvye €va HOVTEND
TOU TPOCQEREL Wial EVBLAPEROUCA VEA TROGEYYIOT Yia TNV Tpononoinoyn tng I'OX oe Sloxpitole yweoi
toueic. I'evixebooue To symmetron-screening unyaviowd emTEETOVTAC (Lot ENTY BLXOTY TG CUUPETELAC TOU
symmetron ¢? duvopixol xatd Tov xUB bpo ed3. e éva tétolo screening Boduwté medlo (asymmetron)
Ta 800 TOTXE EAYLOTO TOU BuVAUXOD OF TeployEg yopunhhc TuxvéTnTog dev elvan oUTE exuAoUEVA OUTE
ovupetexd (¢+ # —d—). Enopévec undpyet éva Peudéc xou éva pbvo ahndvd xevd Aoyw tne pntic dtoaxonic
e oudpetplac. Autd avouévetar va odnyrioel oe éva aotadéc asymmetron domain wall 8ixtuo mou nepth-
ouPdver plo yetdBaon otny T g evepyol Baputnrc otatepdc Geg o mhaiolo avagopds Jordan xodog
dlaoy(Ceton o asymmetron wall. To dixtuo dua Bploxdtay oe cuvey) GAANAETBpoOY UE TIG UTERTUXVOTNTEG
e VAN xou Yo 0dNY00oE GE EVOLUPELOUTES TTURPATNENCIAXES UTOYRIPES TOU Yol UTopolcay Vo avty Veutoly
we petomtooel Boputinol pudtuod xou Bl TOMAC 0T YWEo TNe epLlpNC UeTaTomoNC. XTo TAXLClO Ut
éyer oulntndel 1 ouvdgelo auTOY TV asymmetron wall Siauoppnoewy e npdogata dedoyéva and clus-
ter mpogih mou unopel vo epunveutel we €vBeln yior Slaxpltéc Baputixég WLOTNTES Optopévmy clusters. H
Baputint| uetdBaon mou TpoxUTTEL and autd To asymmetron povtélo umopel vor odnyrfoel oty enthuon Tng
acuuPototntog tng otadepds Tou Hubble 6nwg eniong xou e acupfatétntog e avdmtugng.

Y10 xepdlono 12 , mou amoteAel xan o Teheutalo xe@dAono TNE Tapoloug date3ric Topoucldlouye Ta
ocuvolxd cuprepdopata tne. Emmiéov yiveton avagopd o€ UTdpY0UoES XL ENEPYOUEVES ANOCTONES (TELPd-



MOLTOL) TIOU OVOEVETOL VoL BEATLOGOUY TNV TOLOTHTA %o TNV TocOTNTA Twv dedopévey. H avdhvon autdv twy
0edOPEVOLV PTOpEl VO BOOEL AMAVTACELS OTOL EVOLUPEPOVTOL AVOLY Td XOGUONOYIXA epwTrata Tou e€etdlovTon
oe auty| TN dlaTteBr.

Keivovtag, ota Ioapaptiuoata mopadétovpe wo Alota ye axpwviua, yerowes anodellelc xou tOnoug,
nivaxeg pe dedouéva xou xWBXEC Tou yenolonoinxay ot emuépoug avahboels. Téhog, mopatideton wlo
oUyypeovn xou extetopévy BiBAoypadpia.
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The Hubble constant Hj values with the 68% CL constraints derived by recent measure-
ments. The value of the Hubble constant Hy is derived by early time approaches based on
sound horizon, under the assumption of a ACDM background. . . ... ... ... ....
The one dimensional relative probability density value of Hy derived by recent measure-
ments (Planck CMB [14], ACT+WMAP CMB [19], BAO+RSD [20], BAO+WMAP CMB
[21], BAO+BBN [22], Snla-Cepheid [23], Snla-TRGB [24], Snla-Miras [25], SBF [26], Snell
[27], TD lensing [28], GW Standard Sirens [29], Masers [30], Tully Fisher [31], v-ray at-
tenuation [32], cosmic chronometers [33], HII galaxy [34]). All measurements are shown
as normalized Gaussian distributions. Notice that the tension is not so much between
early and late time approaches but more between approaches that calibrate based on low
z (2 $0.01) gravitational physics and those that are independent of this assumption. For
example cosmic chronometers and ~-ray attenuation which are late time but independent
of late gravitational physics are more consistent with the CMB-BAO than with late time
calibrators. . . . . . L L
The Hubble constant as a function of publication date, using a set of different tools. Sym-
bols in orange denote values of Hy determined in the late Universe with a calibration based
on the Cepheid distance scale (Key Project (KP) [35], SHOES [17, 23, 36—40], Carnegie
Hubble Program (CHP) [41]). Symbols in purple denote derived values of Hy from analysis
of the CMB data based on the sound horizon standard ruler (First Year WMAP (WMAP1)
[42], Three Year WMAP (WMAP3) [43], Five Year WMAP (WMAP5) [44], Seven Year
WMAP (WMAPT) [45], Nine Year WMAP (WMAP9) [46], Planck13 (P13) [47], Planck15
(P15) [16], Planck18 (P18) [14], BAO [22]). The orange and purple shaded regions demon-
strate the evolution of the uncertainties in these values which have been decreasing for
both methods. The most recent measurements disagree at greater than 5. . . . . . . ..
Left panel: The comoving Hubble parameter as a function of redshift. The black line
corresponds to the best fit obtained from the Planck18 CMB when the ACDM model is
considered, while the grey areas are the 1o regions. The blue point at redshift zero denotes
the inferred Hubble measurement by HST survey [39]. The orange points, green point, and
yellow points correspond to BAO data from BOSS DR12 survey [48], BOSS DR14 quasar
sample [19], and SDSS DR12 Ly« sample [38] respectively. The arrows indicate approaches
for the resolution of the Hubble tension: Down arrow (blue) corresponds to decrease of the
Riess et. al. (2019) datapoint due to systematics or transition of the absolute magnitude
M (light blue arrow). Up arrow (black) corresponds to recalibration of r, which shifts
the whole curve up or and late time deformation of H(z) (adapted from Ref. [14]). Right
panel: The comoving Hubble parameter as a function of redshift for a wCDM phantom
modification of ACDM model which drives upward the low z part of the H(z) curve shown
in left panel. Thus it brings the z = 0 prediction of the CMB closer to the Hy result of
the local measurements (late time H(z) deformation). . . . . .. ... ... .. ... ...
The predicted value of h as a function of the fixed w assuming one parameter dark energy
(wCDM) model. The theoretically predicted best fit values of h for different values of w in
the case of the wCDM model (orange line), whereas the linear fitting that has been made
(dashed blue line). The redpoints correspond to the actual best fit values, including the
errorbars, of h for specific values of w obtained by fitting these models to the CMB TT
anisotropy (from Ref. [50]). . . . . . . ... L



2.13 The predicted form of the CMB TT anisotropy spectrum with w = —1, h = 0.67, Qq,,, =
0.314 for ACDM (blue line) and with w = —1.2, h = 0.74, Q¢,, = 0.263 (green line). Red
points correspond to the binned high-I and low-I Planck data (from Ref. [50]). . ... ..

2.14 The Pantheon binned Snla absolute magnitudes Eq. (2.76) M; (blue points) [51] for a
Planck/ACDM luminosity distance. The data are inconsistent with the Snla absolute
magnitude M< = —19.24 calibrated by Cepheids but the inconsistency disappears if there
is a transition in the absolute magnitude with amplitude AM ~ —0.2 at redshift z; ~ 0.01
(from Ref. [52]). . . . o o

2.15 The potential V/Vy (with Vo = m2f%, n = 3 in Eq. (2.80)) as a function of ¢/f at early
times (H > m) (left panel) when the field ¢ is initially frozen in its potential due to
Hubble friction and acts as a cosmological constant with equation of state wy = —1, and
at a critical redshift z. when the Hubble parameter drops below some value (H ~ m)
(right panel) and the field becomes dynamical and begins to oscillate around its minimum
which is locally V ~ @2™. . . . . . e

2.16 Fractional contribution of EDE to the cosmic energy budget as a function of redshift
(adapted from Ref. [53]). . . . . . . . .

2.17 CMB TT power spectrum. The black solid and the red dashed lines correspond to ACDM
model with Hy = 68.07 kms~! Mpc~! and EDE model with Hy = 71.15 kms~! Mpc™!
respectively (from Ref. [53]). . . . . . . . .

2.18 Posterior 1D and 2D distributions of the cosmological ACDM parameters reconstructed
from a run to all data (including Planck high [ polarization) in EDE (red) and the ACDM
(blue) scenario. The gray bands correspond to the SHOES determination of Hy (adapted
from Ref. [54]). . . o o o o

3.1 The value of Sg with the 68% CL constraints derived by recent measurements. . . . . . .
3.2 Mollweide-projection view of preferred directions in galactic coordinates for different cos-
mological observations (see Table 3.2). . . . . . . .. ... . . L

4.1 Afog as a function of redshift for g, in the range g, € [—1.5,1.5] superimposed with the

early growth data (left panel), late data (middle panel) and full growth data (right panel).

4.2  The sensitivity measure S for the observable fog (i.e. AAfgs Vg2) for P = g, (left panel),
P = w (middle panel), and P = §,, (right panel) . . . . ... ... ... ... ... ...
4.3 Afog as a function of redshift for w in the range w € [—1.5, —0.5] superimposed with the

early growth data (left panel), late data (middle panel) and full growth data (right panel).

4.4 Afog as a function of redshift for ,, in the range ,,€ [0.25,0.35] superimposed with the

early growth data (left panel), late data (middle panel) and full growth data (right panel).

4.5 Af(z) as a function of redshift superimposed with the Euclid mock data for different values
of Qy, (left panel), w (middle panel), and g, (right panel). . . .. ... ......... ..

4.6 The deviation ADy (z) x "™ as a function of the redshift z for different values of Qp, (left

Ts

panel) and w (right panel). . . . . . . ... o
4.7 The deviation AH x 7}?"' as a function of the redshift z for different values of ., (left

panel) and w (right pariel) ....................................
4.8 The deviation AH(z) as a function of redshift using the full compilation of Table B.4 in
the Appendix B, for various values of €2, (left panel) and w (right panel). . . . . . . . ..
4.9 The deviation AD4 x rgld as a function of the redshift z for different values of Q,, (left
panel) and w (right panef) ....................................
4.10 The BAO observable distances for the Planck/ACDM best-fit parameter values along with
the corresponding data from Table B.2 in the Appendix B. The data appear to be in good
agreement with the Planck/ACDM predictions. . . . . . . .. ... ... ... ... ... .
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4.11

4.12

4.13

4.14

5.1

5.2

6.1

6.2

6.3

7.1

The 1o — 30 contours in the 2, — w parametric space. The contours describe the corre-

sponding confidence regions using the full compilation of Dy (z) X rf{:d data (left panel),
low redshift (z < 0.55) data (middle panel) and high redshift (z > 0.55) data (right panel)
from Table B.2 in the Appendix B. The red and green dots describe the Planck/ACDM

best fit and the best-fit values from the compilation of Dy (z) x Tg—d data. Notice that at
high z close to the blind spot for 2, and the optimum redshift forsw, the thickness of the
contours (uncertainty) increases along the ), axis and decreases along the w axis (the
contours are rotated clockwise) as expected from Fig. 4.6. . . ... ... ... ... .
The deviation of the distance modulus observable Ay as a function of redshift for Q,, (left
panel), w (middle panel) and g, (right panel) superimposed with the JLA data of Table
B.3in the Appendix B. . . . . . . ..
The sensitivity measure as a function of redshift z for €, (left panel), g, (middle panel)
and w (right panel). . . . . . ..
The deviation of the gravitational wave distance modulus with the parameter g,. The only
existing datapoint does not lead to any useful constraints. . . . . . .. ... ... .....

The effective potential Eq. (5.55) that determines the velocity rotation curves for param-
eter values [ = 10, M = 2. The GR prediction (continous blue line) is obtained for o = 0
while the upper and lower red short-dashed lines correspond to the Rindler metric (5 = 0)
with @ > 0 and o < 0 respectively. The upper and lower pink long-dashed lines correspond
to the metric of the reconstructed potential (8 > 0) for @ > 0 and « < 0 respectively. In
the later cases the GR prediction is obtained for large enough valuesof r. . . . . . . . ..
The best fit forms of the velocity profiles Eq. (5.57) (red dashed curve) and Eq. (5.58)
(green continuous curve) on the observed halo profiles (thick dots) of two typical galaxies
(S:610359 left panel and S:702916 right panel). The blue continuous shows the fit of GR
without dark matter which is clearly poor. . . . . . . ... ... .. oL

The deformation of the HUP in accordance with Eq. (6.4) after rescaling to dimensionless
form using a characteristic length scale of the quantum system (from Ref. [55]). . . . ..
The best fit forms of the scalar spectral index Eq. (6.76) (blue curve for HUP and red curve
for GFC Eq. (6.52)) on the observed data (thick dots). The green and brown continuous
curves correspond to —1o and +1o deviation of the parameter i respectively. The light
green and the orange dashed curves correspond to observationally allowed range for the
spectral index ng at approximately 2o level. . . . . . .. ... ..o oo
The 1o —30 contours in the (A, 1) parametric space. The contours describe the correspond-
ing confidence regions obtained from the full data set (left panel), large scales (k < 0.015
h/Mpc) data (middle panel), and small scales (k > 0.015 h/Mpc) data (right panel). The
red and green points correspond to the HUP and GUP best fits respectively.. . . . . . . .

The fos(z) data compilation from Table D.3 used in the present analysis. The subset
of the data with less correlation is indicated with dark red. The red curve shows the
Planck18/ACDM prediction (parameter values Qg,, = 0.315, g, = 0, og = 0.811), the blue
curve shows the best fit of the fog(z) in the context of parametrizations Eq. (7.14) with
a ACDM background (parameter values Qq,, = 0.272, g, = —1.306, 0g = 0.886) and the
shaded regions correspond to 1o confidence level around the best fit (see also Table 7.2). .
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7.2

7.3

7.4

7.5

7.6

7.7

7.8

The Eg(z) data compilation from Table D.4 (scales 3 < R < 150h~'Mpc) used in the
present analysis. The subset of the data with less correlation is indicated with dark red.
The red curve shows the theoretical prediction based on the Planck18/ACDM parameter
values (Qom = 0.315, o5 = 0.811, pug = 1, ¥ = 1), the blue curve shows the best
fit theoretical prediction based on the parametrizations (7.14) and (7.15) with parameter
values (Qo,, = 0.313, g, = —0.129, g, = —2.308). Notice that the best fit is significantly
below the Planck/ACDM theoretical prediction and implies weaker gravity (ug < 1 and
Y < 1) at the 4.60 level (see also Table 7.2). . . .. .. ... ... ... ... ......
The three 1o - 7o confidence contours in 2D projected parameter spaces of the parameter
space (Qom,0s,9gq) in the context of parametrization Eq. (7.14) with n = 2 including
the fiducial correction factor Eq. (7.17). The RSD data fog(z) from Table D.3 of the
Appendix D was used. The third parameter in each contour was fixed to the best fit value.
The red and green dots describe the Planck18/ACDM best fit and the best-fit values from

The three 1o - 50 confidence contours in 2D projected parameter spaces of the parameter
space (Qom, ga, gp) in the context of parametrizations Eqgs. (7.14) and (7.15) with n =
2,m = 2. The data Eg(z) from Table D.4 of the Appendix D were used. The third
parameter in each contour was fixed to the best fit value. The red and green dots describe
the Planck18/ACDM best fit and the best-fit values from data. . . ... ... ... ...
The six 1o - 7o confidence contours in 2D projected parameter spaces of the parameter
space (Qom, 08, Ja, gp) in the context of parametrizations Egs. (7.14)and (7.15) with n = 2
and m = 2 including the fiducial correction factor Eq. (7.17). The data Eg(z) and fos(z)
from Tables D.4 and D.3 of the Appendix D was used. The third and the forth parameter
in each contour were fixed to the best fit values. The red and green dots describe the
Planck18/ACDM best fit and the best-fit values from data. . . . . .. .. ... ... ...
Left: The 1o - 20 confidence contour of the parameter space (Qom, 08, gq) in the context
of parametrization Eq.(7.14) with n = 2 including the fiducial correction factor Eq. (7.17).
The RSD data fog(z) from Table D.3 of the Appendix D was used. The red and green dots
describe the Planck18/ACDM best fit and the best-fit values from data. Right: The 1o - 20
confidence contour of the parameter space (Qom, ga, gp) in the context of parametrizations
Egs. (7.14) and (7.15) with n = 2. The data Eg(z) from Table D.4 of the Appendix D was
used. The red and green dots describe the Planck18/ACDM best fit and the best-fit values
from data. The 3D contours include only the surfaces in 3D while the intermediate space
is not filled. Thus, the white gaps that appear in the right figure between the surfaces,
simply correspond to the white background seen from behind. . . . . . . .. .. ... ...
Evolution of ug and X as functions of the scale factor a considering the best fit values
for g, and gp in the context of parametrizations Eqs. (7.14) and (7.15) with n = 2, m = 2.
The data Eg(z) and fog(z) from Tables D.4 and D.3 of the Appendix D was used. The
dashed curves correspond to lo deviations of the parameters pug and ¥g. The red lines
correspond to the GR-ACDM model. . . . . . . .. .. ... L
The confidence contours of the parameter space (0g-{),,) in the context of GR (left panel)
and in the presence of the MG parameter g, (fixing w = —1) in the context of parametriza-
tion Eq. (7.14) with n = 2. We have considered both the case of a marginalized MG
parameter value (right panel) and the case of setting g, to its best fit value (middle panel).
The red and green dots describe the Planck18/ACDM best fit and the best-fit values from
data. The fog(z) data compilations of datapoints with less correlation from Table D.3 of
the Appendix D was used. Notice the reduction of tension between the growth data best

fit and the Planck/ACDM parameter values when the MG degree of freedom is introduced. 138



7.9

7.10

8.1

8.2

8.3

The confidence contours of the parameter space (0g-{2,,) in the context of GR (left panels)
and in the presence of the w parameter (fixing g, = 0 and g, = 0). We have considered
both the case of a marginalized w ([—1.5, —0.5]) parameter value (right panels) and the case
of setting w to its best fit value (—0.94 and —1.29 from fog(z) and fog(z) + Eg(z) data
respectively) (middle panels). The red and green dots describe the Planck18/ACDM best
fit and the best-fit values from data. The Eg(z) and fos(z) data compilations of datapoints
with less correlation from Tables D.4 and D.3 of the Appendix D was used. Notice that
the reduction of tension between the best fit parameter values and Planck/ACDM is less
efficient when the w degree of freedom (modified background expansion rate) is introduced
compared to the MG degree of freedom g, shown in Fig. 7.8. . . . ... ... ... . ...
Measurements of E¢ as a function of scale R in the range 0.15 < z < 0.43 (left panel) and
0.43 < z < 1.2 (right panel). The data Eg(R) from Tables D.5 and D.6 of the Appendix
D was used. The dashed black line shows the Planck18/ACDM prediction at z = 0.3, the
dotted black line shows the Planck18/ACDM prediction at z = 0.7, while the dotdashed
black line and the large dashed black line shows the best fit of the Eg in the context of
parametrizations Eqgs. (7.14) and (7.15) at z = 0.3 and at z = 0.7 respectively. . . . . ..

The critical values £ ¢ (g?) (with 0 < ¢ < 9/8) and ¢_ p(¢?) (with 1 < ¢® < 9/8) as a
function of ¢ at which ry = r¢ and r_ = ry respectively (left panel). The colored shaded
regions correspond to the physical corresponding regions of Fig. 8.6 discussed below. The
metric function f(r) as a function of r in the case of the RN-dS/SAS/RN spacetimes
for critical value &x ¢ (when event and cosmological horizons coincide) and _ g (when
inner Cauchy and outer event horizons coincide) (right panel). The blue, green and red
solid curves correspond to RN-dS spacetime while the purple and orange dashed curves
correspond to RN and SdS spacetime respectively. . . . . . . ... ... .. ... ... ..
The m?M? dependent Regge-Wheeler dimensionless potentials V M? (left panel) and V, M?
(middle panel) as a function of r/M and r./M respectively in the cases of the SAS (Q = 0)
(red curves) and RN-dS (Q/M = 0.9) (blue curves) spacetimes for angular scale [ = 0
and dimensionless parameter fixed to £ = 0.5. The solid curves correspond to the critical
value of the scalar field mass m?2,M? = 0. The right panel demonstrates the process for
identifying the zero eigenvalue eigenstate i.e. setting @ = 0in Eq. (8.39) and increasing the
dimensionless parameter m2M? until the solution ug(r./M) satisfies both end boundary
conditions (8.56)-(8.59) for = 0. This value of m?M? is the critical value for the
considered value of £&. The potential gets deeper and more accepting to bound states
(instabilities) as the m2M? gets lower. . . . . . . . . .. .
The ¢ dependent Regge-Wheeler dimensionless potentials VM? (left panel) and V,M?
(middle panel) as a function of r/M and r./M respectively in the case of the SAS (solid
curves) and RN-dS (dashed curves) spacetimes for angular scale | = 0 and critical value
for m? = m2, = 0. The radial function ug(r./M) (right panel) which is the radial zero
mode solution of Schrodinger like equation (8.39) with 2 = 0 and boundary conditions
(8.56) and (8.57) at large negative r.. For critical value of the scalar field mass m2,M? = 0
the boundary conditions (8.58) and (8.59) at large positive r, are satisfied. The brown
and purple dotted curves correspond to the pure Schwarzschild (@ = 0, £ = 0) and RN
(Q # 0, £ = 0) backgrounds respectively. The potential gets deeper as ¢ decreases and
Q/M increases. However, since the local maximum of the potential also increases as the
potential gets deeper, the critical value m..M for the existence of bound states remains
the same and equal to zeroin all cases. . . . . . . . .. ... ..o



8.4

8.5

8.6

8.7

8.8

8.9

8.10

9.1

The critical value of the scalar field mass m?,.M? is zero and independent of the dimension-
less parameter & (with £ € [0,£m,¢(q)]) in the case of the SAS and RN-dS spacetime (blue
straight line) for [ = 0. The solid curves show the form of m.,(q,£)2M? that saturates
the Sufficient for Instability Criterion (SIC) Eq. (8.60) while the corresponding dashed
curves shows the forms of m.,.(q, £)2M? that saturate the Sufficient for Stability Criterion
(SSC) Eq. (8.61) for three values of Q/M. As expected, the exact value of mq,M = 0 is
between the SIC lines (lower lines) and SSC lines (upper lines) so that none of the criteria
is violated (SSC or SIC). . . . . . . . . .
The dimensionless growth rate of the instability 2M as a function of the dimensionless
parameters £ and ¢ = Q?/M? for scalar field mass m?M? = —0.05 (cyan surface) and
m2M? = —0.2 (yellow surface). . . . . . . ...
The £ dependent relative growth rate of the instability Q/Qp (with Qp the growth rate of
the instability in flat spacetime) as a function of the dimensionless parameter ¢? = Q?/M?
for the scalar field mass m2M? = —0.05 (left panel) and m?M? = —0.2 (right panel). The
curves for a given parameter value £ (with £ < 1) turn out to be straight lines. The range
of values of £ and ¢ is determined by the physically interesting parameter region between
the green and blue lines of Fig. 8.1.The parameter region corresponding to linear behavior
of Q(q?) (yellow region) is also shown in Fig. 8.1. . . .. ... ... ... ... ......
The £ dependent dimensionless growth rate of the instability QM as a function of the scalar
field mass m?M? (with m(£)? < m.,(€)? = 0) for dimensionless parameters Q*/M? = 0
(SdS spacetime) (left panel) and Q?/M? = 0.3 (RN-dS spacetime) (right panel). The green
dashed curves correspond to QM (m?M?) in the case of the Minkowski spacetime. Clearly,
for a given field mass, the growth rate is more suppressed in the absence of charge and for
higher values of £&. . . . . . . . . . e
The m?/A dependent Regge-Wheeler dimensionless potential V. /A as a function of reVA
in the case of the deSitter spacetime (M = 0, £ = 0) for angular scale [ = 0 . The green
solid curve corresponds to the critical value of the scalar field mass m?2, /A = 0. The dotted
(m?/A > 0) and dashed (m?/A < 0) curves correspond to non-existence of bound states
(stabilities) and existence of bound states (instabilities) respectively. . . . . . . . ... ..
The dimensionless growth rate of the instability £/ VA as a function of the scalar field
mass m?/A (with m < m,, = 0) in the case of deSitter spacetime. Clearly Q(m?/A) < |m|
as in the other cases where a cosmological horizon is present. . . . . . .. ... ... ...
The m?M? dependent Regge-Wheeler dimensionless potentials V M? (left panel) and V, M?
(right panel) as a function of r/M and r,./M respectively in the case of the Schwarzschild
spacetime (A =0, £ = 0) for angular scale { = 0 . The blue solid curves correspond to the
critical value of the scalar field mass m2.M? = 0. The dotted (m?M? > 0) and dashed
(m2M? < 0) curves correspond to non-existence of bound states (stabilities) and existence
of bound states (instabilities) respectively. . . . . . . . . ... o oL

The stability (no ghost) region in the apo-apg parameter space is shown and divided into
a weak gravity regime today, pgo = pe(z = 0) < 1 (green area), and a strong gravity
regime today, pg.o > 1 (blue area). This is obtained by demanding ¢?(z) > 0 at all times
and assuming a flat ACDM background together with the parametrization Eq. (9.18) used
here for the values s = 0.5,1,1.5,2,2.5,3. The dark blue and dark green regions indicate

7o > yACPM | while the light blue and light green regions correspond to vy < 73 ¢PM.

Finally, the red curve determines the regions where either y; > YPCPM or < APNCPM,
We see in particular that for s < 2, essentially the weak gravity regime today is selected.
In the light green region, ug crosses 1 downwards with expansion, while it crosses upwards

in the dark blue region. . . . . . . . . . L



9.2

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

The best fit values of apg and «aps¢ are shown for s = 0.5,1,1.5,2 using the combined
constraints from the fog and E¢ data, 1o and 20 confidence regions are drawned (red
curves). As in Fig. 9.1, the green area corresponds to weak gravity today while the blue
area represents strong gravity today. Observations give the constraint vy > 74¢PM for
s < 2, marginally allowing o < v“PM for s = 2. Note that for higher values of s, the

best fit moves outside the colored region and is therefore ruled out. . . . ... ... ...

Fitting individual Ry to Cepheid data as derived from our work (red points) and from
Ref. [56] (blue points). For illustration purposes, the Dy, axis has been shifted slightly for
our values so that the error bars do not overlap. The red and blue dotted lines correspond
to Ry = 0.366 and Ry = 0.369 respectively. These Ry values are taken using the derived
individual parameters of anchor galaxies and M31 (due to its proximity) Rwk. . . . . . .
The best fit Ry, for various X; and X, datasets as a function of the critical dividing
distance D, € [0.01,37] Mpc as derived using the individual Ry (red points in Fig. 10.1).
The dark red points correspond to the dataset with galaxies that have distance below D,,
whereas the red points regard galaxies with distances above D.. . . . . . ... . ... ...
The o-distances between the various X7 and Y, datasets as a function of the critical
dividing distance D, as derived using the individual values of Ryy. The red and blue lines
correspond to the red (our results) and blue (the results in Ref. [56]) points of Fig. 10.2
respectively. A transition of the o-distance at D, ~ 22 Mpc is apparent. . . . . . ... ..
Fitting individual M}¥ to Cepheid data for global Ry, with a fixed value 0.386. Anchor
galaxies are denoted with dark red points and Snla host galaxies with green points. The
dotted line corresponds to M}Y = —5.98 mag as derived using the individual values of
anchor galaxies and M31 (due to its proximity) M}j’}fk. ....................
The best fit M}’Iv)bf for various ¥; and Y9 datasets as a function of the critical distances
D, as derived using the individual values of M}¥ (points in Fig. 10.4). The dark green
points correspond to the dataset with galaxies that have distance below D., whereas the
green points regard galaxies with distances above D.. . . . . . .. ... ... ... ....
The green line represents the o-distances between the various ¥»; and Yo datasets as
a function of the critical distances D. as derived using the individual values of M} .
In contrast the yellow lines correspond to 68% (one standard deviation) range of the o-
distances as a function of the critical distances D, produced by a Monte Carlo simulation of
100 sample datasets assuming artificial homogeneity of the M}¥ data. The simulations have
been performed for randomly varying MY values with a Gaussian probability distribution
with mean M}/ = —6mag provided by the full M} datapoints and standard deviation
equal to the corresponding 1o error. . . . . . . . ... oo e
The o-distances as a function of the critical distances D, for 100 sample datasets with
random distance values, normally distributed inside their individual 1-o range as derived
using the individual values of M}Y. A transition of the o-distance at D, ~ 22 Mpc remains
present for practically all of the Monte Carlo samples. . . . . . ... ... ... ......
The green lines represent the 68% range of the o-distances as a function of the critical
distances D, produced by a Monte Carlo simulation of 100 sample datasets. The simula-
tions have been performed for randomly varying galaxy distance values with a Gaussian
probability distribution with mean equal to the measured distance and standard deviation
equal to the corresponding 1o error. In contrast the pink region correspond to a Monte
Carlo simulation of 100 sample datasets assuming artificial homogeneity of the M} data.
In addition to this homogeneity the simulations have been performed for randomly varying
galaxy distance values with a Gaussian probability distribution. . . . . . . . .. .. .. ..
Fitting individual M}} to Cepheid data with a free global Ryy. Anchor galaxies are denoted
with cyan points and Snla host galaxies with magenta points. The dotted line corresponds
to M}/ = —5.90mag as derived using the individual values of anchor galaxies and M31
(due to its proximity) M}L/}fk ....................................



10.10The one dimensional relative probability density values of the color luminosity parameter
and the Cepheid absolute magnitude as derived using the DSS method for the cases I, 11,
and ITI. All measurements are shown as normalized Gaussian distributions. Notice that
the best fit values one for galaxies at distances D < D, and one for galaxies at D > D,
are inconsistent with each other at a level larger than 3o. . . . . . . .. . ... .. ...
10.11The best fit values of the parameter Ry, for base/base-SHOES, I and IV models as derived
using Cepheid data. Note that in terms of the AIC and BIC, fitting for two universal
values of Ry with global M}y is the preferred model (case IV, green region). . . . . . . .
10.12The best fit values of the parameter M} for base/base-SHOES, I1I and V models as derived
using the Cepheid data. Note that in terms of the AIC and BIC, fitting for two universal
values of M}’}’ with global Ry is the preferred model among the models shown (case V,
CYAI TEEION). o o v v v v v v e e e e e e e
10.13The AAIC and ABIC of models with different free parameter set compared to base
(subindex 1) and base-SHOES (subindex 2) models. Clearly, the case IV (two univer-
sal Ry and a global M}Y) is the best model and on the other hand, the case II (a global
Ry and individual M}Y ) is the worst one. . . . . ... .. ... ... ...
10.14The one dimensional relative probability density value of Snla absolute magnitude Mp for
all cases studied in this analysis compared to that obtained using CMB calibration. All
measurements are shown as normalized Gaussian distributions. Clearly, for all cases where
we do not consider the universality of parameters Ry, and M }{IV (i.e. I, I1, IIT, TV, V, VI)
the Mp is consistent with the CMB determination value. . . . . . ... ... ... .. ..
10.15The one dimensional relative probability density value of Hy as derived using the Eq.
(10.37) (solid lines) and the Eq. (10.39) (dashed lines) for all cases studied in this analysis
compared to that from the Planck CMB measurement (grey line). All measurements are
shown as normalized Gaussian distributions. It is evident that for all cases where we break
the assumption of universality of the parameters Ry and MY (i.e. I, II, III, IV, V, VI)
the derived values of Hy are consistent with the corresponding predicted Planck CMB best

11.1 Schematic plots of the asymmetron effective potential Eq. (11.31) in vacuum (purple) and
in high density (green) cosmological regions. Notice the asymmetric form of the effective
potential in which the degeneracy of the vacua is slightly broken. However in the presence
of sufficiently high density, a single minimum at ¢ = 0 restores GR as in the symmetron
CASE.  + v e e e e e e e e

11.2 The geometry of the spherical domain wall in the presence of spherical matter shell.

11.3 The scalar field ¢ as a function of the distance r corresponds to the solution in the case of
monotonic matter density increasing towards the center (with R,, = 1). In this resulting
minimum energy field configuration we see a collapse of the wall due to tension. The energy
minimization was performed numerically using N = 150 lattice points. . . . . . . . . . ..

11.4 The scalar field ¢ as a function of the distance r corresponds to the solution obtained
from the energy minimization method in the case of increasing matter density. This field
configuration appears to be stabilized by the combined effects of the wall tension and the
attraction of the increased matter density as r increases. . . . . . . . . . .. . ... ....

11.5 Left panel: The matter density of the spherical matter shell of the form (11.49) with radius
R,, = 15. Middle panel: The scalar field ¢ in symmetron case (¢ = 0) as a function of
the distance r corresponds to the solution obtained from the energy minimization method
in the case of matter density of the spherical matter shell of the form (11.49) with radius
R,, = 15. The final minimum energy configuration is independent of the initial guess shown
here in blue. Right panel: The scalar field ¢ in asymmetron case (¢ = 0.2) as a function of
the distance r corresponds to the solution obtained from the energy minimization method
in the case of matter density of the spherical matter shell of the form (11.49) with radius
Ry =15,

207



11.6

11.7

11.8

The form of the asymmetron (with e = 0.2) effective potential for the case p = 0 (vacuum)
and p = 3 (high density) (see Figs. 11.1 and 11.5). The red points represent the value of
the field and show how the asymmetron field changes as the wall is crossed by increasing r. 209
Simulation of time evolution of the perturbed scalar field corresponding to a perturbed
spherical asymmetron domain wall. The wall gets trapped at the matter shell as expected
(collapse is avoided). . . . . . . . . L 210
Mollweide projection view of 12 cluster locations of Ref. [57] in galactic coordinates (see
Table H.1). The colour of the points on the plot corresponds to their o significance for
a deviation from the GR, which is indicated in the horizontal colour bar. Four clusters
(in shaded green regions-bubbles) have large negative value for Z; parameter, significantly
(> 30) different from the GR (E; = 0) expectation. The size of the points Rppin: Was
designed according to the size of the clusters Rso9 and their distance D. . . . . . .. . .. 212



List of Tables

1.1

2.1

3.1

3.2

4.1

5.1

6.1

7.1
7.2

7.3

10.1

10.2

10.3

Special cases of the equation of state parameter w; and the corresponding relations p; =
p(pi), pi=pila) and a=alt). . . . . . ..

The Hubble constant Hy values at 68% CL through direct and indirect measurements by
different methods. . . . . . . . L

The value of the structure growth parameter combination Sg = 05(Q0,,/0.3)%?, the matter
density parameter g, and the the power spectrum amplitude og at 68% CL through direct
and indirect measurements by different methods. . . . . . . . . ... ... 0L
The amplitudes and the directions (I, b) (galactic coordinates) from different cosmological
observations (Fig. 3.2) along with the corresponding references. The amplitude of CMB
dipole has derived using the Eq. (3.33) (see e.g. Ref. [58]). . . . .. ... ... ... ...

Some recent and future large-scale structure surveys. Photometric surveys focus mainly on
WL, while spectroscopic surveys measure mainly RSD. The redshift range shifts to higher
redshifts for stage III and stage IV surveys. . . . . . . ... ... ... ... ...

The best fit values of parameters and the corresponding value of the adjusted R? of the
velocity profiles Egs. (5.57) and (5.58) on the observed halo profiles of two typical galaxies
S:610359 and S:702916 (rotation curve data obtained from Ref. [59]). . . . . . . .. .. ..

The best fit values of parameters A and i1 with the corresponding 1o standard deviations for the
fitted spectral index on the observed data [60]. . . . . . . .. .. ... Lo

Planck18/ACDM parameters values [14] based on TT,TE,EE+lowE+lensing likelihoods. .
Planck18/ACDM based on TT,TE,EE+lowE+ lensing likelihoods best fit [14] and the best-fit
values from data. . . . . . . . L L.
Sigma differences of the best fit contours from Planck18/ACDM. . . . . . . . .. .. ... ...

Fitting results and model comparison tests for different models. For the AAIC and ABIC
the comparisons are made respect to base (base-SHOES) models. The value of Hy derived
using the Eq. (10.37) (black font) and the Eq. (10.39) (green font). The best fit parameters
of Snla absolute magnitude Mp and the value of Hy in the parentheses correspond to
intrinsic scatter of LMC Cepheids orpc =0. . . 0 o 0 o 0 0 oo
The interpretation of differences AAIC and ABIC according to the calibrated Jeffreys’
scale [61] (see also Refs. [62-66]). However, it should be noted that the Jeffreys’ scale has
to be interpreted with care [63] because has been shown to lead to different qualitative
conclusions. . . . . ..
Ranking of models according to AIC' and BIC criteria. We see that in terms of the AIC
and BIC fitting for two universal values of Ry, with global M}Y is the preferred model
(case IV). . o o o

xxxii

189



12.1 Some existing and upcoming large-scale structure missions/experiments. . . . . . . . . ..
12.2 Some existing and upcoming CMB missions/experiments. . . . . . . ... ... ... ...
12.3 Some existing and upcoming GW experiments/observatories . . . . . . ... .. ... ...

A1l List of used aCronyms. . . . . . . . . . . o e e e e e

B.1 The compilation of RSD data used in our analysis (from Ref. [67]). . . . . . ... ... ..
B.2 A compilation of BAO data that have been published from 2006 until 2018 in chronological

OTder . . . . . L
B.3 The JLA binned data used in our analysis (from Ref. [68]). . . . .. ... ... ... ...
B.4 The H(z) data compilation used in our analysis (from Ref. [69]). . . .. ... ... .. ..

D.1 Planck18/ACDM based on TT,TE,EE+lowE+ lensing likelihoods best fit [14] and the best-fit
values from data compilation of datapoints with less correlation. . . . . . . . . . . .. .. ...
D.2 Sigma differences of the best fit contours from Planck18/ACDM. The Eg(z) and fos(z) data
compilations of datapoints with less correlation from Tables D.4 and D.3 was used. . . . . . ..
D.3 The fog updated data compilation of Ref. [67] used in our analysis. The subset of the
datapoints with less correlation is indicated with bold font in the index. . . . . . ... ..
D.4 The Eg(z) data compilation used in our analysis. The subset of the datapoints with less
correlation is indicated with bold font in the index. . . . . . . . . ... ... ... ... ..
D.5 The Eg(R) data compilation in the range 0.15 < z < 0.43 used in our analysis. . . . . ..
D.6 The Eg(R) data compilation in the range 0.43 < z < 1.2 used in our analysis. . . . . . . .

F.1 The fos updated data compilation of Ref. [4] used in our analysis. . . . . ... ... ...
F.2 The Eg(z) data compilation of Ref. [4] used in our analysis. . . .. ... .........

G.1 Photometric data for MW Cepheids from Table 1 in Ref. [40].. . . . . ... .. ... ...
G.2 Photometric data for LMC Cepheids from Table 2 in Ref. [39]. . . . ... ... ... ...
G.3 WFC3-IR data for 1486 Cepheids in the anchor galaxy NGC 4258 and in the host galaxies

from Table 4 in Ref. [17]. An electronic version of the complete table is available at [70]. .
G.4 Approximations for distance parameters from Table 5 in Ref. [17]. . . . . . ... ... ..

H.1 The collection of 12 clusters. From left to right the columns correspond to: Abell names,
galactic coordinates (from NED), redshifts (from NED), luminosity distances (from NED),
the halo radii for overdensity of A = 500 with respect to the critical density of the uni-
verse at the cluster’s redshift, the modified gravity parameters =; and 7 which track the
departure of DHOST theory from GR as derived by Ref. [57] and the corresponding o
significances. . . . .. L e e

227



Chapter 1

Introduction

Modern cosmology has its foundations in Einstein’s general relativity (GR). GR is the simplest successful
theory for gravity. It is consistent with the vast majority of experiments and observations from sub-mm
scales up to cosmological horizon scales [71, 72]. Alternative modified theories of gravity include more
degrees of freedom and parameters which are strongly constrained by a wide range of experiments and
astrophysical/cosmological observations to be very close to the values predicted by GR (see e.g. [73-76]).

In this introductory chapter, we present elements of GR and Cosmology and their basic concepts. At
the end of the chapter we present an introduction to the standard Lambda Cold Dark Matter (ACDM)
model.

1.1 Elements of General Relativity

1.1.1 Geometry and gravity-The metric

The geometric background on which the GR is based is the spacetime. The spacetime is the mathemat-
ical model that unites space and time in one continuum and is a four-dimensional pseudo-Riemannian
manifold. In the Special Relativity (SR) we have the flat spacetime or Minkowski spacetime while in
the GR we consider that the spacetime is curved by the presence of matter/energy. For each point of
4-dimensional spacetime we can define a 4-set of coordinates z°, z', 22, 23 that can be referred as {x%}.

The geometry of spacetime is characterized by the way the distance of two points is measured. If ds
the elementary spacetime distance or line element between two adjacent points then

ds? = gapdr®da® | (1.1)

where g, is a metric tensor that describes the geometrical properties of the spacetime. The spacetime
as a manifold with the introduction of the metric acquires a certain shape. The metric tensor in GR
describes the gravitational potential.

1.1.2 Geodesics

In flat space, straight lines are the most important curves. A straight line in the Euclidean space is the
only curve that simultaneously conveys its own tangent vector. More specifically, the tangent to the line
at one point is parallel to the tangent to the previous point. In a curved space, there are respectively
the curves that meet the requirement of the parallel transport of the tangent carrier. These curves are
called geodesics. If the tangent vector to the geodesic curve z#(\) (where A a affine parameter (e.g. the
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distance) measured along the curve which monotonically increases along the particle’s path) is dz#/dA
then the geodesic equation holds

d?x® dxt dx¥
a =0 1.2
ey ay (1:2)
where I}, is the Christoffel symbol defined as
« 1 al
Loy = 59" (9w + Drwn — Guwn) (1.3)

2

where g** is the inverse of g, and the commas denote partial differentiation i.e. gy, = 9gx,/0z".

At the flat spacetime where the Christoffel symbols are zero the solution of the geodetic equation is
the straight lines. The geodesic curves based on the principles of the GR represent the ’straight lines’ of
the curved spacetime over which the particles move under the influence of gravity alone (absence of any
other forces) performing a free fall.

1.1.3 Einstein’s field equations

The study of the inherent curvature of a spacetime is done through the Riemann tensor R}, , a four-
order tensor of the curvature. This tensor describes the deviation of the curve spacetime from the flat
spacetime. In the case of flat spacetime the Riemann tensor is zero. The contraction of the first and
third index of the Riemann tensor gives the Ricci tensor

R,, =R}, - (1.4)

pav

The Ricci tensor in terms of the Christoffel symbol expressed as

Ry =T%,,— T8, , +T0,T0, 19,15, (1.5)
where the commas denote partial differentiation. From Eqgs. (1.3) and (1.5) we see that the Ricci tensor
depends on the metric and its derivatives.

The contraction of the Ricci tensor gives the scalar curvature of g, or Ricci scalar defined at each
point of the manifold

R=g¢""R, =R, . (1.6)

The Einstein tensor that describes the curvature of spacetime in the field equations of GR is defined as
1

Guw =R — §9uvR . (1.7)

Fundamental properties of the Einstein tensor are that it is symmetric G,,, = G\, and divergenceless'
V,.G*" = 0 which holds as a contraction of the Bianchi identities.

The Einstein’s field equations relate the Einstein tensor describing the geometry to the en-
ergy—momentum tensor describing the energy

GMV = HT;},V ) (18)

where kK = 87G (¢ = 1), G = 6.67- 107" m3s 2 Kg~! is the bare Newton’s constant and 7}, is the
energy-momentum tensor, defined by

T, = 2 3Lmv=9) (1.9)

py = \/jg 5g,uu ’

with £, the matter Lagrangian and g the determinant of the metric.

IThe symbol V,, denotes the covariant derivative operator. Also, for the covariant derivative we use the symbol “; u”.
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The energy-momentum tensor 7}, of matter components is the generalization in the four-dimensional
spacetime of the following three-dimensional physical quantities: energy density, momentum density,
energy flux density and momentum flux density. It is a second-order symmetric tensor.

Note that we can derive the Einstein’s field equations (1.8) by varying with respect to the metric the
action of the gravitational theory given by

R
S=Spy+S z/d4x\/?g —— 4 L, (1.10)
167G
where Sgg is the Einstein—Hilbert action and S, is the action for the matter fields.
Einstein’s field equations are a system of ten conjugated nonlinear differential equations. The cosmo-
logical dynamics can be obtained by solving these equations.

1.2 Elements of Cosmology

1.2.1 Cosmic Expansion-Hubble’s law

Both Lemaitre in 1927 and Hubble in 1929 discovered that galaxies appear to be moving away from Earth.
In addition, the recession velocity v, at which galaxies appear to move away from us is proportional to
the distance d of the galaxy from Earth. This behavior of velocity is known as Hubble’s law. We can
describe Hubble’s law with the relation [11]

vy =Hd, (1.11)

where H is the Hubble parameter.

The Hubble parameter is a function of time but is independent of position at any time. The value
H(tg) = Hy at the present time tq is called Hubble constant.

Because of the uncertainty in the exact value of the Hubble constant Hj it is common to be written

as
Hy=100hKms ! Mpe™! =2.1332h- 10742 GeV (1.12)

where h is a factor which describes the uncertainty.

The Hubble constant corresponds to the slope of the line in the Hubble diagram which plots the
velocity against the distance (see Fig. 1.1).

The recession velocity is also called Hubble flow and suggests that the expanding universe is evolving
evenly in all directions. Expanding universe means that the universe has a finite age, or at least that
it has expanded in a finite time from a state of very high density. Thermal radiation indicates that the
universe was initially much warmer than it is today and has cooled. The extremely dense and warm
universe in its early stages form the basis of the Lemaitre Big Bang theory? which has been advocated
and developed by George Gamow.

We define the Hubble time or Hubble age ty as the inverse of the Hubble constant

1
=
For Hy = 67.8 kms~! Mpc~! the Hubble time is ¢ty = 4.55 - 10'7 s = 14.4 Gyr. This is different from the

real age of the universe which is approximately t; = 13.8 Gyr.
Also, the Hubble radius or Hubble length Ry is defined as

th (1.13)

- <
=T
where c is the speed of light. The Hubble radius is the distance between the Earth and the galaxies which

are currently receding from us at the speed of light and thus corresponds roughly to the size of the visible
universe.

Ry (1.14)

2The term Big Bang was first used by the astrophysicist Fred Hoyle, an opponent of the theory of Gamow, who did not
use the term to describe the theory but to taunt it.
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Figure 1.1: Edwin Hubble’s original plot of the velocity-distance relation among extra-galactic nebulae
(from Ref. [11]).

1.2.2 Redshift

Hubble made his discovery based on Slipher’s earlier observations by studying the spectral lines of galaxies.
He observed the shift of the spectral lines towards the red part of the spectrum and concluded that the
galaxies were moving away. This phenomenon is called redshift and is reminiscent of the Doppler effect.
However in reality as we will see below the coordinates of the galaxies do not change but space expands
and supports the galaxies.

A galaxy is observed to have a redshift parameter (stretching factor) defined by the formula:

>\ob - >\em
/\em ’

where A\, is the wavelength of the spectral line that we observe and A, the wavelength of the spectral
line that it emits. The redshift z is zero today and increases with distance.

The velocity v at which a galaxy moves away from the observer and the redshift z are related to the
Doppler relationship:

©
If

(1.15)

1+p
1 =4/ — 1.1
+z —5° (1.16)
where 8 = v/c. If § < 1 then we obtain
v~z (1.17)

which is approximately valid for small z.

1.2.3 Comoving Coordinates-Scale Factor

The comoving coordinate system is suitable for a space that isotropically expands. In this coordinate
system, galaxies remain stationary. In a perfectly homogeneous and isotropic universe all observers are
comoving in the sense that their coordinates x remain unchanged. The relationship between the physical
coordinate r and the comoving coordinate or distance parameter x is linear:

r=a(t)x, (1.18)

where a(t) is a ratio parameter called cosmic (or cosmological) scale factor. The scale factor depends
only on time.



Chapter 1. Introduction

In the expanding universe using the scale factor it is possible to determine the length r¢ at some point
in time ¢¢ if the length r1 is known at some earlier point in time ¢1 (to > t1)

a(to)
= 1.19
0 a(tl) 1, ( )
If we denote by ty the present time then by condition the present scale factor is normalized to ag =
a(to) =1.
The relation which connect the scale factor with the redshift is given by
Qo 1

t) = = . 1.20
at) =1 =153 (1.20)

From Eq. (1.18) we can find the total velocity
I =ax+ax = Vot = Up + Up , (1.21)

where dot denotes a derivative with respect to time t, v, = %r is the recessional velocity and v, = ax
is the peculiar velocity which can be considered negligible on cosmological scales. Thus the Hubble law
Eq. (1.11) emerges

Viot ~ U = Hr | (1.22)

where H is the Hubble parameter defined as H = % Clearly, it is an observable measure of the rate at
which the universe is expanding.
Using the conformal time

Tz/o %7 (1.23)

we obtain the conformal Hubble parameter

da
H=—=aH . 1.24
adr ( )
We also introduce another convenient dimensionless deceleration parameter g that measures whether

the expansion rate is increasing or decreasing

a aa
= =——. 1.25
aH? a? (1.25)
In an accelerating (decelerating) universe we have ¢ < 0 (¢ > 0).
The dimensionless normalized Hubble parameter is defined as:

H
E=—. 1.26
= (1.26)

1.2.4 The Friedmann — Lemaitre — Robertson — Walker geometry

The assumption that the universe at large scales is isotropic and homogeneous leads to the choice of a
coordinate system for 4-dimensional spacetime so that we have its separation into a temporal and three
spatial dimensions. The general metric in this case takes a simple form?:

ds® = g datds” = goo(dz®)? + gijdr'da? = —dt* + dI* (1.27)

where dl is the three-dimensional or spatially expanding metric of homogeneous and isotropic space.
This form of metric was developed by Friedmann (1924) as a solution to Einstein’s field equations, and

3We choose the Greek letter indices to run from 0 to 3 (the 0 reserved for the time-like coordinate) and the Latin letter
indices to run from 1 to 3 (spatial coordinates).
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was subsequently derived from the isotropy and homogeneity of the universe only by Robertson (1936)
and Walker (1936). Almost all modern cosmologists rely on this Friedmann-Lemaitre-Roberson-Walker
(FLRW) metric.

The universe under the assumption of the cosmological principle is described by the FLRW metric
(c=1)
dr?

2 _ 2 2

+r2(d6? + sin*0dp?)| (1.28)

where t is the physical cosmic time, (r, 0, ¢) are comoving spatial coordinates, K characterizes the constant
spatial curvature of the spatial slices. The values K = —1,0,+1 correspond to open hyperbolic space
(negative spatial curvature), flat Euclidean space (zero spatial curvature), and closed hyperspherical space
(positive spatial curvature) respectively.

Setting

dr?
d?= ———— 1.29
X T ke (1.29)

in order to remove the singularity, we obtain

siny K=+1,
r=Sk(x) ={x K=0, (1.30)
sinhy K=-1,

and the FLRW metric takes the more convenient form
ds* = —dt* + a(t)? [dx® + Sk (d6? + sin®0d?)] | (1.31)

where (, 0, ¢) are comoving coordinates and x € [0, c0] in spaces with K = —1,0 and x € [0, 7] in spaces
with K = +1.

1.2.5 Friedmann equations

From the FLRW metric Eq. (1.28) and the Eqgs. (1.3), (1.5) and (1.6) we obtain the Ricci tensor and the
scalar curvature

Roo = —3(H? + H) = 732 , (1.32)
. 2K
Rij = g;ja*(3H* + H + ?) . (1.33)
Rio = Ro; =0, (1.34)
. K a a* K
_ 2 By g2 x 8
R=6(2H +H+a2) 6(a+a2+a2). (1.35)

The energy content of the universe is considered to behave as a perfect fluid and the energy-momentum
tensor T}, is given by
TAW = (P + p)u#uu + pg;w ) (136)

where p and p are the pressure and matter density of the fluid respectively which are some functions of
time. Also u,, is the four-velocity of the fluid in comoving coordinates.

Using Einstein’s equations (1.8), the equations for the dynamic evolution of the FLRW universe known
as the Friedmann equations can be derived. From the (00) component (temporal part) of the Einstein
equations we obtain the first which gives the rate of expansion of the universe

N\ 2
5 (4@ _ 881G 7 5
H” = <a) =3P a2 (1.37)
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and from the (ii) components (spacial part) we obtain the second
9 . K
3H"+2H = —87Gp— — . (1.38)
a

From the above two equations, eliminating the term K/a?, a third equation (acceleration equation)
results: . G
a ™

Also the equation of fluid resulting from the first law of thermodynamics that expresses the principle
of the energy—momentum conservation (T’L” = 0) applied to a homogeneous and isotropic expansion is
given by

p+3H(p+p)=0. (1.40)

This equation is also called continuity equation and can in fact be derived directly from Eqs. (1.37) and
(1.39) by eliminating @ (multiplying Eq. (1.37) by a?, differentiating and using Eq. (1.39)).

1.2.6 Equation of state

The Friedmann equations of the previous subsection will be completed if for fluid we define a equation
which relates the pressure with density? p = p(p) which is valid for all times of the evolution of the
universe.

We can define a general linear relationship for the individual components of the cosmological fluid
using a equation-of-state parameter w; as (with ¢ = 1)

_ pi(t)
pi(t)

where the index 7 expresses the individual components of the cosmic fluid. For radiation or relativistic
particles, photons, neutrinos, non-relativistic matter, baryons, cold dark matter, dark energy, cosmological
constant and curvature we have i = r, i = v, i =v,i=m,i=bi=c¢,i=DE, i=Aandi=K
respectively. Considering photons and neutrinos as radiation (relativistic matter) and baryons (such as
protons and neutrons) and cold dark matter as non-relativistic matter we have

(1.41)

w;

Pm = Pb+ pe (1.42)

Pr=py+pPu - (1.43)

For constant equation-of-state parameter w;, the Eq. (1.40) integrates to
pi o a”30FW) o (14 2)30Fwa) (1.44)
and from Eq. (1.37) we obtain for the evolution during a component dominated era
a ot (1.45)

The most common and useful special cases of the equation of state parameter w; and the corresponding
relations p; = p(p;), p; = pi(a) and a = a(t) are shown in Table 1.1.

4In general, the pressure can depend both on density and on internal degrees of freedom of the fluid i.e. entropy s. In
the case of barotropic fluid the entropy is zero s = 0.



Chapter 1. Introduction

Table 1.1: Special cases of the equation of state parameter w; and the corresponding relations p; = p(p;),
pi = pi(a) and a = a(t).

Cosmological Constant Domain Walls Curvature Pressureless Matter Radiation
w 1 - - 0 :
Dpi PDE —Zppw —3PK 0 Lpr
Pi constant xa ! xa? x a3 x a4
a o efft o t2 o t o t2/3 o t1/2

1.2.7 Cosmological parameters

As critical density pepit we define the density of the total amount of matter and energy contained in the
universe in any form when the curvature is K = 0 (open spatially flat universe). Thus using Eq. (1.37)
the critical density is given by

3H?
crit = . 1.46
Perit e ( )
Its current value depends only on the value of the Hubble constant Hy
3H}? _ -
Perit,0 = 8“3 =1.88h%-107P gem ™2 . (1.47)

Generally, the energy density of the individual component of a multi-component fluid can be expressed
in units of the critical density by introducing the corresponding dimensionless density parameter

pi  8nGp;

O, = o =3I (1.48)
Also we have
_ K
O = e (1.49)
and A

The density parameters determine the evolution of the universe. For radiation, matter, curvature and
cosmological constant Eq. (1.37) can be rewritten as

H2 = Hg [Qoraizl + Qoma73 + QOK[172 + Qo/\] s (151)

and using Eq. (1.26) the dimensionless normalized Hubble parameter as

E = [Qoa™ + Qoma™ + Qoa™> + Qoa] (1.52)

where Qq; (with ¢ = (r,m, K,A)) are the density parameters today. Considering « = 1 in Eq. (1.51)
these density parameters obey the following relation

Qor + Qom + Qo +Qoa =1 (1.53)
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Figure 1.2: The luminosity distance is obtained from the apparent and absolute luminosities.

Dy

Figure 1.3: The angular diameter distance is obtained from the angular and physical scales.
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1.2.8 Cosmological Distances

Distances to cosmological objects constitute the most common way to probe the cosmic metric and the
expansion history of the Universe. In this subsection we present the two main cosmological distances
used to probe the cosmic expansion history.

e Luminosity distance

Consider a luminous cosmological source of absolute luminosity L (emitted power) and an observer
(Fig. 1.2) at a distance dj, from the luminous source. In a static cosmological setup, the power
radiated by the luminous source is conserved and distributed in the spherical shell with area 47d?
and therefore the apparent luminosity ! (energy flux) detected by the observer is

L
= —. (1.54)
4rd?
Eq. (1.54) defines the quantity d;, known as luminosity distance. It is straightforward to show that
in an expanding flat Universe, where the energy is not conserved due to the increase of the photon
wavelength and period with time, the luminosity distance can be expressed as [77, 78]
z dz/

dp(2)in = c(1+ z)  HZ (1.55)

The luminosity distance is an important cosmological observable that is measured using standard
candles (see Subsection 2.2.1)

e Angular diameter distance

Consider a source (standard ruler) with a physical scale r that subtends an angle 8 in the sky (Fig.
1.3). In Euclidean space, assuming that @ is small, the physical angular diameter distance D4 is
defined as [77, 79]

Da(z)=-. (1.56)

A particularly useful standard ruler is the sound horizon at recombination calibrated by the peaks
of the CMB anisotropy spectrum and observed either directly through the CMB anisotropies or
through its signatures in the large scale structure (Baryon Acoustic Oscillations (BAO)) (see Sub-
section 2.2.2).

It is straightforward to show that in an expanding flat Universe the physical angular diameter
distance can be expressed as e.g. [77]
c ®d

(1+2)Jo H(Z)

Da(2)in = (1.57)

The luminosity and angular diameter distances can be measured using standard candles and standard
rulers thus probing the cosmic expansion rate at both the present time (H(z = 0) = Hy) and at higher
redshifts (H(z)).

1.3 The ACDM cosmological model

The concordance or standard A Cold Dark Matter (ACDM) cosmological model [80-82] is a well defined,
predictive and simple cosmological model (see Ref. [83], for a review). It is defined by a set of simple
assumptions:

10
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e The Universe consists of radiation (photons, neutrinos), ordinary matter (baryons and leptons),
cold (non-relativistic) dark matter (CDM) [84-90] being responsible for structure formation and
cosmological constant A [82, 91], a homogeneous form of energy which is responsible for the late
time observed accelerated expansion. The cosmological constant is currently associated with a dark
energy or vacuum energy whose density remains constant even in an expanding background (see
Refs. [81, 92-94], for a review).

o General Relativity (GR) [95] is the correct theory that describes gravity on cosmological scales.
Thus, the action currently relevant on cosmological scales reads

1

1
= 4 - 724
S /d T/ —g [16 (R—2A) + 1 FF* + Lo, A)| (1.58)

where « is the fine structure constant, G' is Newton’s constant, F,, is the electromagnetic field-
strength tensor and L,, is the Lagrangian density for all matter fields ,,.

o The Cosmological Principle (CP) states that the Universe is statistically homogeneous and isotropic
in space and matter at sufficiently large scales (2 100 Mpc).

o There are six independent (free) parameters: the baryon w, = Qoph? and cold dark matter w, =
Qoch? energy densities (where h = Hy/100 km s~ Mpc~! is the dimensionless Hubble constant and
Qx = px/peit is the density of component X relative to the critical density), the angular diameter
distance to the sound horizon at last scattering 0, the amplitude A4 and tilt ng of primordial scalar
fluctuations and the reionization optical depth 7.

o The spatial part of the cosmic metric is assumed to be flat (K = 0) described by the FLRW metric
ds® = —dt* + a(t)*(dr? + r?d6* + r*sin*0d¢?) | (1.59)

which emerges from the CP.

Assuming this form of the metric and Einstein’s field equations with a A-term we obtain the
Friedmann equations which may be written as

a? _ 8nGp+ Ac?

H>=—=—"_""" 1.60
a2 3 ( )
a 4G 3p Ac?
o7 Iy 1.61
e (A (1.61)
The cosmological constant may also be viewed as a cosmic dark energy fluid with equation of state
parameter
w="Pr_ 4 , (1.62)

PA
where pp and py are the energy density and the pressure of the dark energy respectively.

o A primordial phase of cosmic inflation (a period of rapid accelerated expansion) is also assumed
in order to address the horizon and flatness problems [96-99]. During this period, Gaussian scale
invariant primordial fluctuations are produced from quantum fluctuations in the inflationary epoch.

Fundamental generalizations of the standard ACDM model may be produced by modifying the defining
action (1.58) by generalizing the fundamental constants to dynamical variables in the existing action or
adding new terms. Thus the following extensions of ACDM emerge:

e Promoting Newton’s constant to a dynamical degree of freedom by allowing it to depend on a
scalar field ® as G — G(®(r,t)) where the dynamics of ® is determined by kinetic and potential
terms added to the action. This class of theories is known as ’scalar-tensor theories’ with its most
general form with second order dynamical equations the Horndeski theories [100, 101] (see also Refs.
[102, 103], for a comprehensive review).

11



Chapter 1. Introduction

e Promoting the cosmological constant to a dynamical degree of freedom by the introduction of a
scalar field (quintessence) with A — V(®(r,t)) and the introduction of a proper kinetic term.

o Allowing for a dynamical Fine Structure Constant (Maxwell Dilaton theories) with o — a/(®(r, 1))
[104-108] (see also Ref. [109], for a review).

e Addition of new terms to the action which may be functions of the Ricci scalar, the torsion scalar
or other invariants ((f(R), f(T),...)) [96, 110-117].

The ACDM model has been remarkably successful in explaining most properties of a wide range of
cosmological observations including the accelerating expansion of the Universe [118, 119], the power
spectrum and statistical properties of the cosmic microwave background (CMB) anisotropies [120], the
spectrum and statistical properties of large scale structures of the Universe [83, 121] and the observed
abundances of different types of light nuclei hydrogen, deuterium, helium, and lithium [122-125].

Despite of its remarkable successes and simplicity, the validity of the cosmological standard model
ACDM is currently under intense investigation (see Refs. [10, 126-130], for a review). This is motivated
by a range of profound theoretical and observational difficulties of the model.

The most important theoretical difficulties that plague ACDM are the fine tuning [94, 131, 132] and
coincidence problems [133, 134]. The first fundamental problem is associated with the fact that there is
a large discrepancy between observations and theoretical expectations on the value of the cosmological
constant A (at least 60 orders of magnitude) [94, 131, 135, 136] and the second is connected to the
coincidence between the observed vacuum energy density 24 and the matter density (2, which are
approximately equal nowadays despite their dramatically different evolution properties. The anthropic
principle has been considered as a possible solution to these problems. It states that these ’coincidences’
result from a selection bias towards the existence of human life in the context of a multiverse [137, 138].

In addition to the above theoretical challenges, there are signals in cosmological and astrophysical
data that appear to be in some tension (20 or larger) with the standard ACDM model as specified by
the Planck18 parameter values [14, 139]. The most intriguing large scale tensions are the following® [10]
(see also Refs. [140, 141], for a recent overview of the main tensions):

o The Hubble tension (> 50): (see Section 2.2) Using a distance ladder approach, the local (late or
low redshift) measurements of the Hubble constant Hy are measured to values that are significantly
higher than those inferred using the angular scale of fluctuations of the CMB in the context of the
ACDM model. Combined local direct measurements of Hy are in 5o tension (or more if combinations
of local measurements are used) with CMB indirect measurements of Hy [28, 142, 143].

o The growth tension (2 — 30): (see Section 3.1) Direct measurements of the growth rate of
cosmological perturbations (Weak Lensing, Redshift Space Distortions (peculiar velocities), Cluster
Counts) indicate a lower growth rate than that indicated by the Planck/ACDM parameter values
at a level of about 2 — 30 [144-146]. In the context of General Relativity such lower growth rate
would imply a lower matter density and/or a lower amplitude of primordial fluctuation spectrum
than that indicated by Planck/ACDM [4, 67, 147, 148].

o CMB anisotropy anomalies (2 — 30): (see Section 3.2) These anomalies include lack of power
on large angular scales, small vs large scales tension (different best fit values of cosmological param-
eters), cold spot anomaly, hints for a closed Universe (CMB vs BAO), anomaly on super-horizon
scales, quadrupole-octopole alignment, anomalously strong ISW effect, cosmic hemispherical power
asymmetry, lensing anomaly, preference for odd parity correlations, parity violating rotation of
CMB linear polarization (cosmic birefringence) etc. (see Refs. [149, 150], for a review).

o Cosmic dipoles (2 — 50): (see Section 3.3) The large scale velocity flow dipole [151, 152], the
Hubble flow variance in the cosmic rest frame [153], the dipole anisotropy in radio source count

5We use the term ’curiosity’ as a term describing a discrepancy between datasets in ACDM best fit parameter values at
a level with a statistical significance < 30.
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[154], the quasar density dipole [58] and the fine structure constant dipole (quasar spectra) [155, 150]
indicate that the validity of the cosmological principle may have to be reevaluated.

o Baryon Acoustic Oscillations (BAO) curiosities (2.5 — 30): (see Section 3.4) There is a
discrepancy between galaxy and Lyman-a (Lya) BAO at an effective redshift of z ~ 2.34 [22, 157,
158].

o Parity violating rotation of CMB linear polarization (Cosmic Birefringence): (see Sec-
tion 3.5) The recent evidence of the non zero value of birefringence poses a problem for standard
ACDM cosmology and indicates a hint of a new ingredient beyond this standard model. In partic-
ular using a novel method developed in Refs. [159-161], a non-zero value of the isotropic cosmic
birefringence 3, = 0.35 &+ 0.14 deg (68% C.L) was recently detected in the Planck18 polarization
data at a 2.40 statistical significance level by Ref. [162].

o Small-scale curiosities: (see Section 3.6) Observations on galaxy scales indicate that the ACDM
model faces several problems (core-cusp problem, missing satellite problem, too big to fail problem,
angular momentum catastrophe, satellite planes problem, baryonic Tully-Fisher relation problem,
void phenomenon etc.) in describing structures at small scales (see Refs. [163, 164], for a review).

o Age of the Universe: (see Section 3.7) The age of the Universe as obtained from local measure-
ments using the ages of oldest stars in the Milky Way (MW) appears to be marginally larger and
in some tension with the corresponding age obtained using the CMB Planck18 data in the context
of ACDM cosmology [165].

o The Lithium problem (2 —40): (see Section 3.8) Measurements of old, metal-poor stars in the
Milky Way’s halo find 5 times less lithium than that BBN predicts [166].

e Quasars Hubble diagram (~ 40): (see Section 3.9) The distance modulus-redshift relation for
the sample of 1598 quasars at higher redshift (0.5 < z < 5.5) is in some tension with the concordance
ACDM model indicating some hints for phantom late time expansion [167-169].

o Oscillating signals in short range gravity experiments: (see Section 3.10) A reanalysis of
short range gravity experiments has indicated the presence of an oscillating force signal with sub-
millimeter wavelength [170, 171].

e Anomalously low baryon temperature (~ 3.80): (see Section 3.11) The Experiment to De-
tect the Global Epoch of Reionization Signature (EDGES) collaboration [172] using global (sky-
averaged) 21-cm absorption signal, reports anomalously low baryon temperature T, ~ 4K at z ~ 17
(half of its expected value).

o Colliding clusters with high velocity (~ 60): (see Section 3.12) The El Gordo (ACT-CL
J0102-4915) galaxy cluster at z = 0.87 is in its formation process which occurs by a collision of
two subclusters with mass ratio 3.6 merging at a very high velocity Vipgan ~ 2500km/s. Such
cluster velocities at such a redshift are extremely rare in the context of ACDM as demonstrated
by Ref. [173] using the estimation of Ref. [174] for the expected number of merging clusters from
interrogation of the DarkSky simulations.

The well known Hubble tension and the other less discussed curiosities of ACDM at a lower statistical
significance level may hint towards new physics (see Ref. [175], for a review).
In the context of the above observational puzzles the following strategic questions emerge

o What are the current cosmological and astrophysical datasets that include the above non-standard
signals?

o What is the statistical significance of each signal?

13



e Is there a common theoretical framework that may explain simultaneously many non-standard
signals?

These questions will be discussed in the Chapters 2 and 3. There have been previous works [176, 177]
collecting and discussing signals in data that are at some statistical level in tension with the standard
ACDM model but these are by now outdated and the more detailed and extended update provided
by our work may be a useful resource. In the Chapters 2 and 3 we present the current status of the
tensions, their level of significance and refer to recent resources where more details can be found for
each signal. We also discuss possible theoretical approaches that can explain the non-standard nature of
these signals.

In Table A.1 of the Appendix A we list the used acronyms. Also in Appendix I we provide the
links of the github repositories which include the algorithms used for the numerical analysis and for
construction of the figures of this dissertation.



Chapter 2

Challenges for ACDM: Hubble Tension

In this Chapter we focus on the Hubble tension. We provide a list of observational probes that can lead
to measurements of the Hubble constant, point out the current tension level among different probes and
discuss some of the possible generic extensions of ACDM model that can address this tension.

2.1 Introduction

The most prominent tension in the context of ACDM model is the Hy tension which indicates 50 level
inconsistencies between the local direct measurements of Hy and the CMB indirect measurements of Hy
[28, 142, 143]. The Planck/ACDM best fit value is Hy = 67.4 & 0.5 kms~! Mpc~! [14] while the local
measurements using Cepheid calibrators by the Supernovae Hy for the Equation of State (SHOES) of dark
energy team indicate Hy = 73.04+1.04kms~! Mpc~?! (~ 50) [23] (see Refs. [127, 178, 179], for a review).
In the previous analysis by the SHOES team [40] using the Gaia Early Data Release 3 (EDR3) parallaxes
[180] a value of Hy = 73.2 4+ 1.3kms~! Mpc~! is obtained, at a 4.20 tension with the prediction from
Planck18 CMB observations. A wide range of local observations appear to be consistently larger than the
Planck/ACDM measurement of Hy at various levels of statistical significance [28, 142, 143]. Theoretical
models addressing the Hubble tension utilize either a recalibration of the Planck/ACDM standard ruler
(the sound horizon) assuming new physics before the time of recombination [181-183] or a deformation of
the Hubble expansion rate H(z) at late times [50, 184] or a transition/recalibration of the Snla absolute
luminosity due to late time new physics [52]. For more detailed discussions of the proposed new-physics
models see Refs. [127-129, 185].

2.2 Methods for measuring H;, and data

The measurement of the Hubble constant Hy which is the local expansion rate of the Universe, is of
fundamental importance to cosmology. This measurement has improved in accuracy through a number
of probes (see Ref. [186], for a review of most well established probes).

2.2.1 Standard candles as probes of luminosity distance

The luminosity distance to a source may be probed using standardizable candles like Type Ia supernovae
(Snla) (z < 2.3) [51, 68, 118, 119] and gamma-ray bursts (GRBs) (0.1 < z < 9) [187-210].

Surveys can indicate the distance-redshift relation of Snla by measuring their peak luminosity that
is tightly correlated with the shape of their characteristic light curves (luminosity as a function of time
after the explosion) [211] and the redshifts of host galaxies. The latest and largest Snla dataset available
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that incorporates data from six different surveys is the Pantheon sample consisting of a total of 1048
Snla in the redshift range 0.01 < z < 2.26 (the number of Snla with z > 1.4 is only six) [51]. More
recently, the Pantheon+ sample which comprises 18 different samples has been released [212, 213] (see
also Refs. [214, 215]). Refs. [212, 213] present 1701 light curves of 1550 distinct Snla in the redshift range
0.001 < 2z < 2.26 including Snla which are in very nearby galaxies (2 < 0.01) with measured Cepheid
distances. For determination of Hy the SHOES team [23] uses as calibrator sample 42 Snla in the 37
Cepheid hosts and 277 Snla in the Hubble flow (0.0233 < z < 0.15) from the Pantheon+ sample.

The apparent magnitude! my;, of Snla in the context of a specified form of H(z), is related to their
luminosity distance dr(z) of Eq. (1.55) in Mpc as

dr(2)
=M +51 25 . 2.2
mn(2) = M + 1oy | )] 4 (22)
Using now the dimensionless Hubble free luminosity distance
Hyd
Dy(z) = == CL(Z) : (2.3)

the apparent magnitude can be written as

C/H()
Mpc

mep(2) = M + 5logq [Dr(2)] + 5logq { ] +25. (2.4)

The use of Eq. (2.4) to measure Hy using the measured apparent magnitudes of Snla requires knowledge
of the value of the Snla absolute magnitude M which can be obtained using calibrators of local Snla at
z < 0.01 (closer than the start of the Hubble flow) in the context of a distance ladder (e.g. Ref. [210])
using calibrators like Cepheid stars.

In the cosmic distance ladder approach each step of the distance ladder uses parallax methods and/or
the known intrinsic luminosity of a standard candle source to determine the absolute (intrinsic) luminosity
of a more luminous standard candle residing in the same galaxy. Thus highly luminous standard candles
are calibrated for the next step in order to reach out to high redshift luminosity distances.

Snla standard candles and their calibration

¢ Snla-Cepheid: Geometric anchors may be used to calibrate the Cepheid variable star standard
candles at the local Universe (primary distance indicators) whose luminosities are correlated with
their periods of variability?. The MW, the Large Magellanic Cloud (LMC) and NGC 4258 are used
as distance geometric anchor galaxies. For Cepheids in the anchor galaxies there are three different
ways of geometric distance calibration of their luminosities: trigonometric parallaxes in the MW
[38, 40, 219-224], Detached Eclipsing Binary Stars (DEBs) in the LMC [225] and water masers
(see Subsection 2.2.5) in NGC 4258 [226, 227]. The DEBs technique relies on surface-brightness
relations and is a one-step distance determination to nearby galaxies independent from Cepheids
[228].
Using the measured distances of the calibrated Cepheid stars the intrinsic luminosity of nearby Snla
residing in the same galaxies as the Cepheids is obtained. This Snla calibration which fixes M is
then used for Snla at distant galaxies to measure Hy (z € [0.01,0.1]) and H(z) (z € [0.01,2.3]).

IThe apparent magnitude m of an astrophysical source detected with flux I is defined as

l
m = —2.5 logy, (l—) , (2.1)
0

where o is a reference flux (zero point). The absolute magnitude M of an astrophysical source is the apparent magnitude
the source would have if it was placed at a distance of 10 pc from the observer.
2The period-luminosity (PL) relation is also called the Leavitt law [217, 218].
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o Snla-TRGB: Instead of Cepheid variable stars, the Tip of the Red Giant Branch (TRGB) stars in
the Hertzsprung-Russell diagram [229, 230] and Miras [25, 231] (see also [232], for a review) can be
used as calibrators of Snla. The Red Giant stars have nearly exhausted the hydrogen in their cores
and have just began helium burning (helium flash phase). Their brightness can be standardized
using parallax methods and they can serve as bright standard candles visible in the local Universe
for the subsequent calibration of Snla.

o Snla-Miras: Miras (named for the prototype star Mira) are highly evolved low mass variable stars
at the tip of Asymptotic Giant Branch (AGB) stars e.g. [233]. The water megamaser as distance
indicator (see Subsection 2.2.5) can be used to calibrate the Mira PL relation [231]. Miras with
short period (< 400 days) have low mass progenitors and are present in all galaxy types or in the
halos of galaxies, eliminating the necessity for low inclination Snla host galaxies.

e SBF: Another method to determine the Hubble constant based on calibration of the peak absolute
magnitude of Snla is the Surface Brightness Fluctuations (SBF) method [234-236]. SBF is a
secondary® luminosity distance indicator that uses stars in the old stellar populations (II) and can
reach larger distances than Cepheids even inside the Hubble flow region where the recession velocity
is larger than local peculiar velocities (z > 0.01) [237-243]. For SBF calibration Ref. [26] uses both
Cepheids and TRGB demonstrating that these calibrators are consistent with each other.

Assume that a galaxy includes a number of stars covering a range of luminosity. Using SBF in the
galaxy image for the determination of its distance, the ratio L of the second and first moments of
the stellar luminosity function in the galaxy is used along with the mean flux per star [ as follows
[237, 239]

L

d? ==
4rl’

(2.5)

where 2y )
- L)L*dL
I = L 7 , (2.6)
Jn(L)LdL (L)
with n(L) the expectation number of stars with luminosity L. Thus SBF can be viewed as providing
an average brightness. A galaxy with double distance appears with double smoothness due to the

effect of averaging.

Alternative cosmological standard candles

e Snell: An independent method to determine the Hubble constant utilizes Type II supernovae
(Snell) as cosmic distance indicators [244]. Snell are characterised by the presence of hydrogen
lines in their spectra [245, 246]. This feature distinguishes Snell from other types of supernovae.
Their light curve shapes include a plateau of varying steepness and length differ significantly from
those of Snla. The use of Snell as standard candles is motivated by the fact that they are more
abundant than Snla [247, 248] (although 1-2 mag fainter [249]) and are produced by different stellar
populations than Snla which are more difficult to standardize. The Snell progenitors (red super
giant stars) however are better understood than those of Snla.

Different Snell distance-measurement techniques have been proposed and tested. These include,
the expanding photosphere method [250-252], the spectral-fitting expanding atmosphere method
[253, 254], the standardized candle method [255], the photospheric magnitude method [256] and
the photometric color method [257]. For example, the standardized candle method is based on the
relation between the luminosity and the expansion velocity of the photosphere [255, 258-260].

¢« GRBs: In addition to Snla and Snell, GRBs are widely proposed as standard candles to trace
the Hubble diagram at high redshifts [198, 199, 261-263]. However GRBs distance calibration is

3Nearby Cepheids or stellar population models are used for the empirical or theoretical calibration of the SBF distances
respectively.
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Figure 2.1: The lo — 30 confidence contours in the parametric space (Qq,, M). The blue contours
correspond to the 1o — 30 full Pantheon dataset (1048 Snla datapoints) best fit, while the red contours
describe the 1o — 30 confidence contours of the four bins (from left to right). The black points represent
the best fit of each bin, while the green dot represents the best fit value indicated by the full Pantheon
dataset (Qo,n, = 0.285 and M = 23.803) (from Ref. [12]).

not easy and various cosmology independent methods (see e.g. Ref. [264]) or phenomenological
relations (see e.g. Ref. [265, 266]) have been proposed for their calibration.

Furthermore GRBs can be combined with other probes to study the redshift evolution of Hubble
constant [267] (see Ref. [268], for a review).

Using Snla to measure Hy and H(z): The best fit values of the parameter Hy and the deceleration
parameter gy may be obtained* [269] using local distance ladder measurements (e.g. Cepheid calibration
up to z ~ 0.01) to measure directly M, low z measurements of the Snla apparent magnitude m(z) and
a kinematic local expansion of D (z) (z < 0.1) as e.g. [270]

Dr(z,q0) = 2 {1 + %(1 - qo)z} . (2.7)

Alternatively, ¢o may be fixed to its ACDM value qo = —0.55 and Hy may be fit as a single parameter
[17, 37, 39).
Using higher z Snla the best fit parameters of ACDM may be obtained by fitting the ACDM expansion
rate H(z)
H?(z) = Hf [Qom(1+ 2)> + (1 = Qom)] (2.8)
where Qq,, is the matter density parameter today. Using Egs. (1.55), (2.3) and (2.8), the Hubble free

luminosity distance can be written as

z dzl
DAAQ%0_41+ZXA [Qom (1 + 2/)3 + (1 — Qo)) V2 29

A key assumption in the use of Snla in the measurement of Hy and H(z) is that they are standardiz-
able and after proper calibration they have a fixed absolute magnitude independent of redshift®. This
assumption has been tested in Refs. [12, 277-285].

4 ) — _ 1 d*a@®)
qo is the current deceleration parameter defined as qop = i
0

t=tg

5The possibility for intrinsic luminosity evolution of Snla with redshift was first pointed out by Ref. [271]. Also, the
assumption that the luminosity of Snla is independent of host galaxy properties (e.g. host age, host morphology, host mass)
and local star formation rate has been discussed in Refs. [272-276].
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Figure 2.2: The best fit values of M (left panel) and Qo,, (right panel) as well as the 1o errors for the
four bins, including the systematic uncertainties. This oscillating behaviour relatively improbable in the
context of constant underlying M and g, (from Ref. [12]).

Using the degenerate combination

C/HO
=M 1 2 2.1
M +5 oglO[Mpc}Jr 5 (2.10)
into Eq. (2.4), we obtain
m(Z,M,Ho,QOm)th :M(M,Ho) +510g10 [DL(ZaQOm)] . (211)

The theoretical prediction (2.11) may now be used to compare with the observed m,;s data and to obtain
the best fits for the parameters M and Q,,. Using the maximum likelihood analysis the best fit values
for these parameters may be found by minimizing the quantity

[mobs,i - mth(zﬁ M7 QOm)]2

XM, Qo) = > . (2.12)

0;

i

The results from the recent analysis by Ref. [12] using the Snla Pantheon data [51] (consisting of
1048 datapoints in the redshift range 0.01 < z < 2.3 sorting them from lowest to highest redshift and
dividing them in four equal uncorrelated bins) in the context of a ACDM model are shown in Figs. 2.1
and 2.2°. An oscillating signal for M and Qg,, (20) is apparent in Fig. 2.2 and its statistical significance
may be quantified using simulated data [280, 281].

The presence of large scale inhomogeneities at low z including voids or a supercluster [286] can be a
plausible physical explanation for this curious behavior. In the context of a local void model the analysis
by Ref. [12] indicated that the value of Hy increases by 2 — 3% which is less than the 9% required to
address the Hubble tension. The bias and systematics induced by such inhomogeneities on the Hubble
diagram within a well-posed fully relativistic framework (light cone averaging formalism [287] has been
discussed in Ref. [288]).

Ref. [52] has pointed out that this Hy tension is related to the mismatch between the Snla absolute
magnitude calibrated by Cepheids at z < 0.01 [269, 289]

M< = —19.2334 4- 0.0404 , (2.13)

6For M = —19.24 as indicated by Cepheid calibrators [269] of Snla at z < 0.01 and the Snla local determination
Ho = 74kms™ ! Mpc™! [39] Ref. [12] finds M = 23.80 which is consistent with the full Pantheon Snla best fit shown in
Fig. 2.1.
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and the Snla absolute magnitude using the parametric free inverse distance ladder calibrating Snla
absolute magnitude using the sound horizon scale [290]

M~ = —19.401 4+ 0.027 . (2.14)

Thus a transition in the absolute magnitude with amplitude AM ~ 0.2 may provide a solution to
this tension (see Subsection 2.3.4 and in Ref. [291], for a relevant talk). Alternatively if this discrepancy
is not due to systematics [185, 292], it could be an indication of incorrect estimate of the sound horizon
scale due e.g. to early dark energy [293] or to late phantom dark energy [50].

Note also that Ref. [294] finds discrepancies between ’Joint Light-curve Analysis’ (JLA) Snla and
Pantheon Snla datasets which imply an uncertainty in the calibration of the absolute magnitude or
equivalently of the Hubble constant which is large enough to undermine the claim for Hubble tension.

Observational data - Constraints

o Snla-Cepheid: Using the analysis of the Hubble Space Telescope (HST) observations [216] the
Hubble constant Hy value has been measured from Cepheid-calibrated supernovae (using 70 long-
period Cepheids in the LMC) by the SHOES collaboration [17, 37, 39]. The analysis by the SHOES
team using this local model-independent measurement refers Hy = 73.04 £+ 1.04kms~! Mpc~!
[23], which results in 50 tension with the value estimated by CMB Planckl18 [14] assuming the
ACDM model while in previous analysis by SHOES team [40] using the Gaia Early Data Release
3 (EDR3) parallaxes [180] and reaching 1.8% precision by improving the calibration a value of
Hy=732+13kms ! Mpc! is obtained, a 4.20 tension with the prediction from Planck18 CMB
observations. Ref. [38] analysing the HST data, using Cepheids as distance calibrators reports Hy =
73.48 £ 1.66kms~! Mpc~!. A reanalysis of the SHOES collaboration results using a cosmographic
method allowing also the deceleration parameter gg to be a free parameter by Ref. [289] leads to
Hy = 74.30 £ 1.45kms~! Mpc~1.

Ref. [295] considered companion and average cluster parallaxes instead of direct Cepheid paral-
laxes and obtained Hy = 72.8 + 1.9 (statistical + systematics) + 1.9 (ZP) kms™! Mpc~! when all
Cepheids are considered and Hy = 73.0+1.9 (statistical + systematics)£1.9 (ZP) kms~—! Mpc~! for
fundamental mode pulsators only (where ZP is the second Gaia data release (GDR2) [296] parallax
zero point).

Various other previous estimates of Hy have been obtained by treatments of the distance ladder [207—
299]. In particular, Ref. [297] finds Hy = 72.8 + 1.6 (statistical)4-2.7 (systematic) kms~! Mpc~!
using Snla as standard candles in the near-infrared (NIR), Ref. [298] finds Hy = 73.2 £ 2.3
kms~! Mpc™! analysing the final data release of the Carnegie Supernova Project” (CSP) I [300]
and Ref. [299] finds Hy = 73.15 £ 1.78 kms~! Mpc~! using a Bayesian hierarchical model of the
local distance ladder.

¢ Snla-TRGB: The Carnegie-Chicago Hubble Program® (CCHP) [229] using calibration of Snla
with the TRGB method estimates Hy = 69.8 & 0.8 (£1.1% stat) & 1.7 (£2.4%sys) kms~! Mpc~!
[301] and a revision of their measurements has lead to Hy = 69.6+£0.8 (£1.1% stat) +1.7 (£2.4% sys)
kms~! Mpc™t [230]. Recently, the updated TRGB calibration applied to a distant sample of
Snla from the CCHP lead to a value of the Hubble constant of Hy = 69.8 £+ 0.6 (stat) +
1.6 (sys) kms™! Mpc™! [302]. Using the LMC and the NGC 4258 as TRGB calibration of the
Snla distance ladder, the SHOES team finds Hy = 72.4 4+ 2kms~!Mpc~! [303] and Hy =
71.1 + 1.9kms~ ! Mpc~! [227] respectively. Refs. [230, 302, 304] argue that the difference in
the derived value of Hy by SHOES team compared to CCHP was due to incorrect assump-
tions regarding calibration of the TRGB in the LMC made by Ref. [303]. A value of Hy =
65.8 4 3.5 (stat) + 2.4 (sys) kms~* Mpc~! is obtained by Ref. [305] using peculiar velocities and

"https://csp.obs.carnegiescience.edu
8https ://carnegiescience.edu/projects/carnegie-hubble-program

20


https://csp.obs.carnegiescience.edu
https://carnegiescience.edu/projects/carnegie-hubble-program

Chapter 2. Challenges for ACDM: Hubble Tension

| Dark Maller, Gas, Pholon. Neulrino 14433 yra | [ Dark Malier, Gas, Pholon, Neutrir 0.23 Myrs |
z=1440

6624 :
. 8o -

Mass Profile of Perturbation
Meas Profile of Perturbaticn

a 50 100 160 200 a0 50 100 150 200
Radiuz {Mpec) Radiuzs (Mpc)
B = A S LI R O | et o Ty R —] T O B I e i e (W o e T i e P Al
|l Dark Malter, Gas, Pholon, Neutrino 0.57 Myrs 00 | Dark Matter, Gas, Pholon, Heutrino 1,45 Myrs |
=048 4 =470 ]

b
=
(==

Mass Profile of Perlurbalion
=
(=]

Mazs Profile of Perturbation

]
SR TR SR W NN TR TR SO S [N TR TR S S N T T S T PR S T S AN SN T TN TN N SN T TR T AN SR SO N W
50 100 150 200 o 50 100 150 200
Radius {Mpc) Radius {Mpc)
[, 1o L S . I S, T P T T O I e B R e I e e o L . . TS, (O s I | O T
I Dark Matber, Gas, Pholon, Neutrino 234 Myrs 4 - Dark Malter, Gas, Pholon, Neutrine 474.5 Myrs 1
S B z=79 ] SE00D |- z=10 -
3 8- ] E [ 1
£ ;
T s00f T 4000
b C [ |
s . B
b 400 7 &
£ £2000
=N 200 B =54
" [}
5 ]
Ci =
= B F i i b s o L e TR o B =y =
e s e -1 ]
U TR SR W N TR TR S S [N TN TR ST S N S ST S S E
a 50 100 160 200 0 50 100 130 200

Radiuz {Mpec) Radiuz (Mpe)

Figure 2.3: The snapshots show the radial mass profile of perturbation as a function of the comoving radius
of an initially point-like overdensity located at the origin for redshifts z = 6824, 1440, 848, 478,79,10. The
time after the Big Bang are given in each snapshots. The black, blue, red, and green lines correspond
to the dark matter, baryons, photons, and neutrinos (all perturbations are fractional for that species),
respectively. The top snapshots are for the early time before recombination where the overdensities in
photons and baryons evolve together, the middle snapshots for soon after but close to recombination
where the baryons freeze at the location reached with the photons forming a thick spherical shell, and the
bottom snapshots are for long after recombination where the baryon overdensities start to gravitationally
grow like dark matter overdensities (from Ref. [13]).
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Figure 2.4: The Planck1l8 CMB angular power spectrum Df7 = (I + 1)/(2m)CLT (top) and residual
angular power spectrum (bottom) of temperature fluctuations as a function of multipole moment [. The
light blue line in the upper panel is the best-fitting to the Planck TT, TE, EE4+lowE+lensing likelihoods
assuming the base-ACDM cosmology. The red points correspond to the binned Planck data. The lowest
multipole range (I < 30) is dominated by cosmic variance (approximated as Gaussian), while positions
and amplitudes of the acoustic peaks are accurately constrained (from Ref. [14]).

TRGB distances of 33 galaxies located between the Local Group and the Virgo cluster (~ 16.5 Mpc)
(mainly the sample of Virgo infall galaxies from Ref. [306]).

More recently, Ref. [307] has reported a measurement of Hy = 72.1 £ 2.0 kms~! Mpc~! using
the TRGB distance indicator calibrated from the European Space Agency (ESA) Gaia mission
Early Data Release 3 (EDR3) trigonometric parallax of Omega Centauri [180]. Ref. [308] finds
Hy = 71.54+ 1.8kms~! Mpc~! combining TRGB measurements with either the Pantheon or CSP
samples of supernova. Finally, Ref. [24] using NIR only cosmological analysis and TRGB distances
to calibrate the Snla luminosity of the CSP and RAISIN (an anagram for “Snla in the IR”) sam-
ples [309, 310] and Ref. [311] using TRGB calibration of Snla observed by the Zwicky Transient
Facility (ZTF) [312, 313] report Hy = 72.4+3.3kms ™! Mpc~! and Hy = 76.94+6.4kms~! Mpc~*
respectively.

e Snla-Miras: Calibration of Snla in the host NGC 1559 galaxy with the Miras method using
a sample of 115 oxygen-rich Miras? discovered in maser host NGC 4258 galaxy, has lead to a
measurement of the Hubble constant as Hy = 73.3 +4 kms~! Mpc~! [25].

o SBF: Calibrating the Snla luminosity with SBF method and extending it into the Hubble flow by
using a sample of 96 Snla in the redshift range 0.02 < z < 0.075, extracted from the Combined
Pantheon Sample has lead to the measurement Hy = 70.50 + 2.37 (stat)+3.38 (sys) kms~! Mpc~?
by Ref. [236]. Previously Ref. [235] combining distance measurement with the corrected recession
velocity of NGC 4993 reported a Hubble constant Hy = 71.9 & 7.1kms~! Mpc~!. A new measure-
ment of the Hubble constant Hy = 73.3 £ 0.7+ 2.4kms~! Mpc~! has recently been obtained based
on a set of 63 SBF [26] distances extending out to 100 Mpc.

9Miras can be divided into oxygen- and carbon-rich Miras.
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e Snell: Snell have also been used for the determination of Hy. Using 7 Snell as cosmological
standardisable candles with host-galaxy distances measured from Cepheid variables or the TRGB
the Hubble constant was measured to be Hy = 75.8752kms~ Mpc~! [244]. More recently, Ref.

[27] found Hy = 75.4%3 3 km s~ Mpc~! using 13 Snell.

2.2.2 Sound horizon as standard ruler: early time calibrators

Before recombination (z > 1100), the primeval plasma of coupled baryons to photons (baryon-photon
fluid) oscillates as spherical sound waves emanating from baryon gas perturbations are driven by photon
pressure. At recombination when the Universe has cooled enough the electrons and protons combine
to form hydrogen (see e.g. Ref. [314]), photons decouple from baryons and propagate freely since the
pressure becomes negligible. Thus the spherical sound wave shells of baryons become frozen. This process
which was first detected in the galaxy power spectrum by Refs. [15, 315] is illustrated in Fig. 2.3. It
inflicts a unique Baryon Acoustic Oscillations (BAO) scale on the CMB anisotropy spectrum peaks shown
in Fig. 2.4 and on the matter large scale structure (LSS) power spectrum on large scales at the radius
of the sound horizon (the distance that the sound waves have traveled before recombination). This scale
emerges as a peak in the correlation function £(s)!? as illustrated in Fig. 2.5 or equivalently as damped
oscillations in the LSS power spectrum [15, 317-319]. The characteristic BAO scale is also imprinted
in the Lyman-a (Lya) forest absorption lines of neutral hydrogen in the intergalactic medium (IGM)
detected in quasar (QSO) spectra.

The measured angular scale of the sound horizon 6, at the drag epoch when photon pressure vanishes
can be used to probe the Hubble expansion rate using the standard ruler relation e.g. [320, 321]

T
0, = = | 2.16

= (2.16)

where d4 = =(1+42)Da=c fo dz,) is the comoving angular diameter distance to last scattering

(at redshift z ~ 1100) and 75 is the radius of sound horizon at last scattering.

The radius 74 of the sound horizon at last scattering can be calculated by the distance that sound can
travel from the Big Bang, ¢ = 0, to time ¢4 at the drag epoch when the photon pressure can no longer
prevent gravitational instability in baryons. This happens shortly after the time ts of the last scattering
when the optical depth due to Thomson scattering reaches unity [317]. Thus [322]

re= [ ——dz =
* \/(; t / H Z Pb7P77Pc)

da. , (2.17)

N /0 a2H(aanan»Pc)

where the drag redshift z4 corresponds to time ¢4, py, p. and p, denote the densities for baryon, cold
dark matter and radiation (photons) respectively and ¢, is the sound speed in the photon-baryon fluid

given by [323, 324]
cs = ¢ = ¢ . (2.18)

\/3 (1+32) \/3 (14 3200

The expansion rate H(z) depends on the ratio of the matter density to radiation density and the sound
speed determined by the baryon-to-photon ratio. Both the matter-to-radiation ratio and the baryon-to-
photon ratio can be estimated from the details of the acoustic peaks in CMB anisotropy power spectrum

10The correlation function is defined as the excess probability of one galaxy to be found within a given distance of another.
Using the Landy-Szalay estimator [316] this function can be computed [15]

DD(s) — 2DR(s) + RR(s)
s) = (6(z)d(x +s)) = )
£(5) = (6(2)8(z + ) R
where s is the comoving galaxy separation distance and DD(s), RR(s) and DR(s) correspond to the number of galaxy
pairs with separations s in real-real, random-random and real-random catalogs, respectively.

(2.15)

23



Chapter 2. Challenges for ACDM: Hubble Tension

q T T T T T T T T T T T T T
[ | I
0:04 1 1 L] T 1 I Ll T L T I 1 L
wy=0.024, w,=0.13
1 i
wy=0.024, w,=014
W=0 , Wa=0.105
0.3 ]
W
et
0.1
0.04
0.02
0.00
—0.02 IS R N SIS TS N N RN R ST [N S (A L

50 100 150
Comoving Separation (h-! Mpc)

Figure 2.5: The signature of baryonic acoustic oscillations in galaxy two-point correlation function £(s) as
measured by Ref. [15] using the luminous red galaxy samples of the Sloan Digital Sky Survey. The data
show the existence of a baryonic acoustic peak in the galaxy correlation function £(s) around the comoving
separation scale 100 A~ 'Mpc. The solid green, red, and blue lines correspond to model predictions with
Qomh? = 0.12,0.13 and 0.14, respectively. All models are taken to have the same Qg,h? = 0.024 and
n = 0.98. The magenta line corresponds to a model with no baryons and Qg,,h? = 0.105, which has no
acoustic peaks (from Ref. [15]).
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(see e.g. Ref. [325]). Thus the CMB is possible to lead to an independent determination of the radius of
sound horizon. Alternatively an independent determination of the radius of sound horizon can obtained
using primordial deuterium measurements [22, 326]. Now using the Eqs. (1.57) and (2.16) we can write
the angular size of the sound horizon as

}JOTS

Zd dzl )
¢ E()

0, = (2.19)

where F(z) is the dimensionless normalized Hubble parameter defined by Eq. (1.26) and for a flat ACDM
model is given by

E(2) = [Qom(1 4+ 2)* + (1 = Q)]
Eq. (2.19) indicates that there is a degeneracy between r,, Hy and E(z). Thus Hj can not be derived
using the BAO data alone which constrain E(z) and the degeneracy is broken when r; is fixed using
either CMB power spectra [49] or deuterium abundance [22, 320].

For example r, = 147.05+0.30 Mpc is inferred from Planck18 TT,TE,EE+lowE CMB data [14]. Using
the independent determination of 75, measuring the angular acoustic scale 8, from the location of the first
acoustic peak in the CMB spectrum and fitting the integral in Eq. (2.19) using low z BAO or Snla data,
the Hubble constant Hy can be derived. This is the ’inverse distance ladder’ approach [322, 327, 328]
which uses the sound horizon scale calibrated by the CMB peaks or by Big Bang Nucleosynthesis (BBN)
[329] instead of the Snla absolute magnitude M calibrated by Cepheid stars to obtain Hy.

The deformation of the expansion rate H(a) before recombination using additional components like
early dark energy that increase H(a) in Eq. (2.17) and thus decrease r and increase the predicted value
of Hy for fixed measured 6, in Eq. (2.19), has been used as a possible approach to the solution of the
Hubble tension. A challenge for this class of models is the required fine-tuning so that the evolution of
H(z) returns quickly to its standard form after recombination for consistency with lower z cosmological
probes and growth measurements [330]. The assumed increase of H(z) at early times has been claimed
to lead to a worsened growth tension [331] as discussed below even though the issue is under debate
[332, 333].

(2.20)

Observational data - Constraints

e CMB: The measurement of the Hubble constant Hy using the sound horizon at recombination
as standard ruler calibrated by the CMB anisotropy spectrum is model dependent and is based
on assumptions about the nature of dark matter and dark energy as well as on an uncertain
list of relativistic particles (see Ref. [334], for a review). The best fit value obtained by the
Planck18/ACDM CMB temperature, polarization, and lensing power spectra is Hy = 67.36 £ 0.54
km s~ Mpc~? [14]. The measurements of the CMB from the combination Atacama Cosmology Tele-
scope (ACT)! and Wilkinson Microwave Anisotropy Probe (WMAP) estimated the Hubble con-
stant to be Hy = 67.6+1.1 kms~! Mpc~! and from ACT alone to be Hy = 67.941.5 kms~! Mpc~!
[19]. Note that the analysis of the nine-year data release of WMAP [335] alone prefers a value for
the Hubble constant Hy = 70.0 4+ 2.2 km s~ Mpc~t. More recently, Ref. [336] obtains CMB-based
constraints on Hubble parameter Hy = 67.4940.53 km s~ Mpc~! using combined South Pole Tele-
scope'? (SPT), Planck, and ACT DR4 datasets. Ref. [337] finds Hy = 68.8 & 1.5 kms~! Mpc~?
using SPT-3G data alone, while a previous analysis of SPT data by Ref. [338] results in
Hy=71.3+2.1kms ! Mpc~!.

e BAO: The analysis of the wiggle patterns of BAO is an independent way of measuring cosmic
distance using the CMB sound horizon as a standard ruler. This measurement has improved
in accuracy through a number of galaxy surveys which detect this cosmic distance scale: the
Sloan Digital Sky Survey (SDSS) supernova survey [339, 340] encompassing the Baryon Oscillation

Hhttps://act.princeton.edu
12https ://pole.uchicago.edu
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Spectroscopic Survey (BOSS) which has completed three different phases [341]. Its fourth phase
(SDSS-1V) [342] encompasses the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) [343]
(see also Refs. [344-348]), the WiggleZ Dark Energy Survey [349-351], the 2-degree Field Galaxy
Redshift Survey (2dFGRS) [315, 352], the 6-degree Field Galaxy Survey (6dFGS) [353-355].

More recently, BAO measurements have been extended in the context of quasar redshift surveys and
Lya absorption lines of neutral hydrogen in the IGM detected in QSO spectra using the complete
eBOSS survey. The measurement of BAO scale using first the auto-correlation of Lya function
[356-358] and then the Lya-quasar cross-correlation function [359, 360] or both the auto- and
cross-correlation functions [361] pushed BAO measurements to higher redshifts (z ~ 2.4). Recent
studies present BAO measurements from the Ly« using the eBOSS sixteenth data release (DR16)
[362] of the SDSS IV e.g. [361].

As discussed in subsection 2.2.2 BAO data alone cannot constrain Hy because BAO observations
measure the combination Hyr, rather than Hy and r4 individually (where r is the radius of sound
horizon). Using the CMB calibrated physical scale of the sound horizon and the combination of
BAO with Snla data (i.e inverse distance ladder) the value Hy = 67.3 £ 1.1 kms~! Mpc~! was
reported which is in agreement with the value obtained by CMB data alone [322]. The analysis
by Ref. [20] using a combination of BAO measurements from 6dFGS [354], Main Galaxy Sample
(MGS) [363], BOSS DR12 and eBOSS DR14 quasar sample in a flat ACDM cosmology reports
Hy = 69.13 £2.34 kms~!Mpc~!. Using BAO measurements and CMB data from WMAP, Ref.
[21] reported the constraints of Hy = 68.367023 km s~ Mpc~!. The analysis by Ref. [22] combining
galaxy and Ly« forest BAO with a precise estimate of the primordial deuterium abundance (BBN)
results in Hyp = 66.98 + 1.18 kms~! Mpc~! for the flat ACDM model. Ref. [364] finds Hy =
67.35 4+ 0.97km s~ Mpc~! using BOSS galaxy and eBOSS, with the BBN prior independent from
the CMB anisotropies. Ref. [365] obtains Hy = 68.5 & 2.2kms~! Mpc~! performing a analysis for
the cosmological parameters of the DR12 BOSS data using the Effective Field Theory of Large-Scale
Structure (EFTofLSS) formalism'® and Ref. [371] obtains Hy = 68.7 + 1.5 kms~! Mpc~! assuming
a BBN prior on the baryon fraction of the energy density instead of the baryon/dark-matter ratio.

Recently, Ref. [372] reported the constraints of Hy = 69.6 = 1.8 kms~! Mpc~! using BAO data,
including the released eBOSS DR16, and CMB data from Plank. Ref. [373] infers Hy = 68.19 &+
0.99kms~! Mpc~! imposing BBN priors on the baryon density and combining the BOSS Full
Shape with the BAO measurements from BOSS and eBOSS. Also, a new analysis of galaxy 2-point
functions in the BOSS survey, including full-shape information and post-reconstruction BAO by
Ref. [374] results in Hy = 69.23 £ 0.77kms~! Mpc™! and a full-shape analysis of BOSS DR12
by Ref. [375] results in Hy = 68.317083 kms~! Mpc—!. A previous analysis of BOSS DR12 on
anisotropic galaxy clustering in Fourier space by Ref. [376] gives Hy = 67.9 & 1.1kms~! Mpc~!.
Finally, analyzing the BOSS DR12 galaxy power spectra using a new approach based on the horizon
scale at matter-radiation equality Ref. [377] finds Hy = 69.573 2 kms~! Mpc~! and adding Planck
lensing Ref. [378] finds Hy = 70.6720 km s~ Mpc~.

2.2.3 Time delays: gravitational lensing

Gravitational lensing time-delay cosmography can be used to measure Hy. This approach was first
proposed by Ref. [379] and recently implemented by Ref. [28, 380, 381] (see also [382, 383], for clear
reviews). Strong gravitational lensing [379] arises from the gravitational deflection of light rays of a
background source when an intervening lensing mass distribution (e.g. a massive galaxy or cluster of
galaxies) exists along the line of sight. The light rays go through different paths such that multiple
images of the background source appear around the intervening lens [384].

The time delay At4p between two images 04 and 0y by a single deflector originating from the same

13The EFTofLSS formalism can provide a prediction of the LSS clustering in the mildly non-linear regime [366-370].
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Image A

Figure 2.6: Schematic illustration of a typical gravitational lens system.

source at angle $ shown in Fig. 2.6 is given as [385]

14z, DA(OL)D4(0OS)

Atap =
AB DA(LS)

[6(0a. 8) — 608, )] , (2.21)

where 2y, is the lens redshift, D 4(OL) is the angular diameter distance to the lens, D 4(OS) is the angular
diameter distance to the source, D 4 (LS) is the angular diameter distance between the lens and the source
and ¢(0, ) is the Fermat potential e.g. [385]

00.8) =L o). (222)

with (0) the lensing potential at the image direction. The time delay Atap in Eq. (2.21) is thus
connected to the time delay distance defined as e.g. [385, 380]

14 2z, DA(OL)D4(0S)
Day = . 2.23
At c D4(LS) (223)
This distance is inversely proportional to Hy
1
D — 2.24
At X HO ) ( )

and thus its measurement constrains Hy. Strongly lensed quasars (bright and time variable sources) lensed
by a foreground lensing mass are used to measure the above observable time delay on cosmologically
interesting scales [28, 387-390]. Active galactic nuclei (AGN) constitute another background source
which may be used to measure the time delay [391-393]. Recently, Ref. [394] proposed the strongly
lensed Snla as a precise late-universe probe to improve the measurements on the Hubble constant and
cosmic curvature. The inference of Hy from Da; is relatively insensitive to the assumed background
cosmology.

Note that a source of systematic effects in time delay cosmography is the uncertainty of the mass along
the line of sight modeling with respect to the mass sheet transformation (MST). This is a mathematical
degeneracy e.g. [395—400] and can bias the strong lensing determination of Hubble constant [401].

Observational data - Constraints

Strong gravitational lensing time delay measurements of Hy are consistent with the local measurements
using late time calibrators and in mild tension with Planck e.g. [390]. The method of the measurement
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of Hy Lenses in COSMOGRAIL’s Wellspring (HOLICOW) collaboration [28] is independent of the cosmic
distance ladder and is based on time delays between multiple images of the same source, as occurs in
strong gravitational lensing.

Using joint analysis of six gravitationally lensed quasars with measured time delays from the COS-
mological MOnitoring of GRAvItational Lenses (COSMOGRAIL) project, the value Hy = 73.3%17
kms~! Mpc~! was obtained which is in 3.1 tension with Planck CMB. Assuming the Universe is flat
and using lensing systems from the lensing program HOLiCOW and the Pantheon supernova compilation
a value of Hy = 72.2 4+ 2.1 kms~! Mpc~! was reported by the analysis of Ref. [102]. A similar value
of Hy = 72.8ﬂ:$ kms™' Mpc™! was found using updated HOLiCOW dataset consisting of six lenses
[403]. The reanalysis of the four publicly released lenses distance posteriors from the HOLICOW by [404]
leads to Hy = 73.6515 95 km s~ 'Mpc~!. The analysis of the strong lens system DES J0408 — 5354 by
[380] for strong lensing insights into dark energy survey collaboration (STRIDES), infers Hy = 74.21'%:(7)
kms~! Mpc™! in the ACDM cosmology. The analysis by [331] based on the strong lensing and using
Time-Delay COSMOgraphy (TDCOSMO'* %) data set alone infers Hy = 74.573% kms~! Mpc~! and
using a joint hierarchical analysis of the TDCOSMO and Sloan Lens ACS (SLACS) [406] sample re-
ports Hy = 67.4f§:% kms~! Mpc=!. Ref. [107] based on a joint analysis of 3 strong lensing system,
using ground-based adaptive optics (AO) from SHARP AO effort and the HST finds Hy = 76.8 &+ 2.6
kms~! Mpc~!. A reanalysis of six of the TDCOSMO lenses using a power-law mass profile model results
in Hy = 74.2 £ 1.6 kms~'Mpc~! [405]. Analysing 8 strongly, quadruply lensing systems Ref. [408]
presents a determination of the Hubble constant Hy = 71.813% kms™! Mpc~! which is consistent with
both early and late Universe observations. The value Hy = 73.6ﬂ:2 kms~! Mpc~! was reported by Ref.
[409] by combining the observations of ultra-compact structure in radio quasars and strong gravitational
lensing with quasars acting as background source.

2.2.4 Standard sirens: gravitational waves

An independent and potentially highly effective approach for the measurement of H(z) and the Hubble
constant is the use of gravitational wave (GW) observations and in particular those GW bursts that
have an electromagnetic (EM) counterpart (standard sirens) [410-414]. In analogy with the traditional
standard candles, it is possible to use standard sirens to directly measure the luminosity distance dj, of
the GW source.

Standard sirens involve the combination of a GW signal and its independently observed EM counter-
part. Such counterpart may involve short gamma-ray bursts (SGRBs) signal from binary neutron star
mergers [415] or associated isotropic kilonova emission [416, 417] and enables the immediate identifica-
tion of the host galaxy. In contrast to traditional standard candles such as Snla calibrated by Cepheid
variables, standard sirens do not require any form of cosmological distance ladder. Instead they are
calibrated in the context of general relativity through the observed GW waveform.

The simultaneous observations of the GW signal and its EM counterpart (multi-messenger observa-
tions) of nearby compact-object merger leads to a measurement of the luminosity distance which depends
on the inclination angle of the binary orbit with respect to the line of sight and the redshift (measured
using photons) of the host galaxy respectively. An EM counterpart detected with a GW observation
can further constrain the inclination angle and may also indicate the source’s sky position and the GW
merger’s time and phase e.g. [414].

In the case of GW events with small enough localization volumes without an observed EM counterpart
(dark sirens) [418] a statistical analysis over a set of potential host galaxies within the event localization
region may provide redshift information. A candidate for such statistical method is a merger of stellar-
mass binary black holes'® (BBH) which is usually not expected to result in bright EM counterparts
unless it takes place in significantly gaseous environment [424]. For example, GW190521 [4125] is a

HMTDCOSMO collaboration [405] was formed by members of HOLICOW, STRIDES, COSMOGRAIL and SHARP.
Shttp://www.tdcosmo.org/
16 The stability analysis of the structures around black holes have been widely employed in the literature e.g. [419-423].
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possible candidate with EM counterpart corresponding to a stellar-origin BBH merger in active galactic
nucleus (AGN) disks [126] detected by ZTF [312, 313].

Alternatively, in the absence of an EM counterpart the redshift can be determined by exploiting
information on the properties of the source (e.g. the knowledge of neutron star equation of state) to derive
frequency-dependent features in the waveform [127] or using the gravitational waveform to determine the
redshift of the mass distribution of the sources [428, 429]. Also, Ref. [430] uses an alternative method,
presented in Ref. [431], for redshift determination by the statistical knowledge of the redshift distribution
of sources. Ref. [432] argues that any absolute determination of Hy may be biased due to the fundamental
degeneracy between redshift and Hy and therefore can not lead to reliable determination of Hy. According
to [432] the reliable determination of Hy with GW can only be achieved using standard sirens.

The luminosity distance-redshift relation Eq. (1.55) determines the Universe’s expansion history and
the associated cosmological parameters including the Hubble constant Hy [18, 433]. In particular using
the mergers of binary neutron stars (BNS), or a binary of a neutron star with a stellar-mass black hole
(NS-BH), which are excellent standard sirens, both the luminosity distance (from the gravitational wave
waveform) and redshift of the host galaxy (from the electromagnetic counterpart) can be measured.

Using a BNS or a NS-BH merger, the distance to the source can be estimated from the detected
amplitude (h) (r.m.s. - averaged over detector and source orientations) of the GW signal by the expression
[410, 434-437]

d=Cf2n)"trt, (2.25)
where f is the gravitational wave frequency, 7 = f/ f is the timescale of frequency change, C' is a known

numerical constant. Assuming a flat'” Universe the luminosity distance can then be obtained from the

relation
1

:1—1—2

For nearby sources, the recession velocity using the Hubble’s law is determined by the Eq. (1.11)

d(z) dr(z) . (2.26)

vr(z) = Hod(z) , (2.27)

and using Egs. (1.55), (2.3) and (2.26) is given by

2 /
vp(z) = Hicif(;) = cfi(j) = cH, ; ;(Z,) . (2.28)
At low redshifts using the local expansion Eq. (2.7) we obtain
wle) = 15 [14 50w | (2.20)
1+2 2
which is approximated for d < 100 Mpc (or z < 0.03 ) as
vr(2) = cz = Hod . (2.30)

Using Eqgs. (2.27) and (2.29), the equation for the determination of Hy as a function of observables, z
and d is e.g. [438]

1
H() = 1 + *(1 — Q())Z:| 5 (231)

cz
d(1+z) 2
where the deceleration parameter may be set by a fit to the GW data or may be fixed to its Planck/ACDM
best fit form (¢ = —0.55).

7Tn an open (closed) Universe the distance in Hubble’s law is given d(z) = 1J1rz ﬁdL (2) (d(z) = liz ﬁdL (2)) .
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Figure 2.7: The probability of different values of Hy with the maximum at Hy = 70.01'515_2(50 kms~! Mpc~?
(solid blue curve) derived by BNS event GW170817. The dashed and dotted lines show minimal 68.3%
(1o) and 95.4% (20) credible intervals. The shaded green and orange bands show the 1o and 20 con-
straints from the analysis of the CMB data obtained by the Planck [16] and from the analysis of the Snla
data obtained by SHOES [17] respectively (from Ref. [18]).
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Observational data - Constraints

The first multi-messenger detection of a BNS merger, GW170817, by LIGO [439] and Virgo [440] interfer-
ometers enabled the first standard siren measurement of the Hubble constant Hy. Using the BNS merger
GW170817, the distance to the source was estimated to be d = 43.872°5 Mpc (i.e. at redshift z ~ 0.01)
from the detected amplitude (h) (r.m.s. - averaged over detector and source orientations) of the GW
signal by the Eq. (2.25) [18]. Also using the Hubble flow velocity vy = 3017 4 166 km s~! inferred from
measurement of the redshift of the host galaxy, NGC 4993 (NGC 4993 was identified as the unique host
galaxy), the Hubble constant was determined to be Hy = 70.073%° kms~ Mpc~! [18] (see Fig. 2.7) by
using Eq. (2.30).

Using continued monitoring of the the radio counterpart of GW17081 combining with earlier GW and
EM data Ref. [441] obtains a improved measurement of Hy = 68.9fiig kms~! Mpc~!. Note that using the
BNS merger GW170817 in Ref. [433] and a statistical analysis (as first proposed in Ref. [410]) over a cat-
alog of potential host galaxies, the Hubble constant was determined to be Hy = 77.01“?573:8 kms~! Mpc~*.
Using density-estimation Likelihood-Free Inference (LFT) Ref. [442] focused on the inference of the cos-
mological expansion Hy from GW-selected catalogues of BNS mergers with EM counterparts.

Also using the BBH merger GW170814 as a standard (dark) siren in the absence of an electromagnetic
counterpart, combined with a photometric redshift catalog from the Dark Energy Survey (DES) [443] the
analysis by Ref. [444] results in Hy = 75739 kms~! Mpc~'. Using multiple GW observations (the BNS
event GW170817 and the BBH events observed by advanced LIGO and Virgo in their first and second ob-
serving runs) in Ref. [445] the Hubble constant was constrained as Hy = 69.0735° kms~* Mpc~'. Using
the event GW190814 from merger of a black hole with a lighter compact object the Hubble constant was
measured to be Hy = 75729 kms~! Mpc™! [29]. In Ref. [446] the BBH merger GW190521 was analysed
choosing the NRSur7dq4 waveform'® for the estimation of luminosity distance, after marginalizing over
matter density Qo,, when the ACDM model is considered and using its EM counterpart ZTF19abanrhr!®
as identified in Ref. [424] the Hubble constant was measured to be Hy = 50.4735%1 kms~! Mpc~!.
The same study [446] choosing different types of waveform finds Hy = 43.1721% kms=' Mpc~' and
Hy = 62.2729% kms~! Mpc~!. Combining their results with the binary neutron star event GW170817
leads to Ho = 67.67)5 kms~! Mpc~!. In Ref. [448] for the same GW-EM event, assuming a flat wCDM
model has obtained Hy = 48735 kms~! Mpc~!.

The analysis by Ref. [449] using 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA
Gravitational-Wave Transient Catalog (GWTC-3), infers Hy = 6813% kms~! Mpc~!. Ref. [450] finds
Hy = 72.77Jj;15'(5) km s~ Mpc~! using the best available gravitational wave events, uniform galaxy catalog
from the Dark Energy Spectroscopic Instrument (DESI) [451, 452] Legacy Survey and combining with
the GW170817. The value Hy = 88.6737% kms~! Mpc~! for GW190521 event was reported, and Hy =
73.4782. kms~! Mpc~! was obtained when combing the GW190521 with the results of the neutron star
merger GW170817 [453]. More recently, Ref. [454] reported Hy = 67753 kms~ Mpc~! combining the
bright standard siren measurement from GW170817 with a better measurement of peculiar velocity.

2.2.5 Megamaser technique

Observations of water megamasers which are found in the accretion disks around supermassive black
holes (SMBHs) in AGN have been demonstrated to be powerful one-step geometric probes for measuring
extragalactic distances [455-457].

Assuming a Keplerian circular orbit around the SMBH, the centripetal acceleration and the velocity

18NRSur7dq4 is a numerical relativity surrogate 7-dimensional approximate waveform model of binary black hole merger
with mass ratios ¢ = % < 4 [447]. This model is made publicly available through the gwsurrogate (see https://pypi.
org/project/gusurrogate) and surfinBH (see https://pypi.org/project/surfinBH) Python packages.

9The ZTF19abanrhr event was reported by ZTF [312]. This candidate EM counterpart is flare after a kicked BBH
merger in the accretion disk of an AGN [426] with peak luminosity occurred 50 days after the BBH event GW19052.
The ZTF19abanrhr was first observed after 34 days from the GW detection at the sky direction (RA = 192.426259,
Dec = 34.82472°) and was associated with an AGN J124942.3 + 344929 at redshift z = 0.438 [424].
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of a masing cloud are given as [457]

; (2.32)

V= W : (2.33)

where G is the Newton’s constant, M is the mass of the central supermassive black hole, and r is the
distance of a masing cloud from the supermassive black hole.
The angular scale 6 subtended by r is given by

g="_ (2.34)

where d is the distance to the galaxy.
Thus, from the velocity and acceleration measurements obtained from the maser spectrum, the dis-
tance to the maser may be determined

d=— (2.35)

where A is measured from the change in Doppler velocity with time by monitoring the maser spectrum
on month timescales. Using Hubble’s law the Hubble constant may be approximated as [457]

Hy =~ = (2.36)
where v, is the measured recessional velocity.

In order to constrain the Hubble constant the Megamaser Cosmology Project (MCP) Ref. [158] uses
angular diameter distance measurements to disk megamaser-hosting galaxies well into the Hubble flow
(50 — 200 Mpc). These distances are independent of standard candle distances and their measurements
do not rely on distance ladders, gravitational lenses or the CMB [30]. Early measurements of Hy using
masers tended to favor lower values of Hy ~ 67kms~! Mpc~! while more recent measurements favor
higher values Hy ~ 73kms~! Mpc~! as shown in Table 2.1.

Observational data - Constraints

Recently, the Megamaser Cosmology Project (MCP) [458] using geometric distance measurements to
megamaser-hosting galaxies and assuming a global velocity uncertainty of 250 km s~! associated with
peculiar motions of the maser galaxies constrains the Hubble constant to be Hy = 73,943 kms~! Mpc~!
[30]. Previously the MCP reported results on galaxies, UGC 3789 with Hy = 68.9 & 7.1kms~! Mpc~!
[457], NGC 6264 with Hy = 68.0 + 9.0kms~ Mpc~! [459], NGC 6323 with Hy = 73725 kims~! Mpc~!
[460] and NGC 5765b with Hy = 66.0 + 6.0kms~! Mpc™! [461]. Ref. [227] uses a improved distance
estimation of the maser galaxy NGC 4258 (also known as Messier 106) to calibrate the Cepheid-SN Ia
distance ladder combined with geometric distances from MW parallaxes and DEBs in the LMC. The
measured value of the Hubble constant is Hy = 73.5 + 1.4kms~! Mpc 1.

2.2.6 Tully-Fisher relation (TFR) as distance indicator

The Tully-Fisher (TF) method is a historically useful distance indicator based on the empirical relation
between the intrinsic total luminosity (or the stellar mass) of a spiral galaxy?" and its rotation velocity (or
neutral hydrogen (HI) 21 cm emission line width) [464]. This method has been used widely in measuring
extragalactic distances e.g. [465].

20Gimilarly, in the case of a elliptical galaxy the Faber—Jackson (FJ) empirical power-law relation L o« o7F1 (where L
is the luminosity of galaxy, o the velocity dispersion of its stars and yp; is a index close to 4) [462] can be used as a
distance indicator. The FJ relation is the projection of the fundamental plane (FP) of elliptical galaxies which defined as
Reg o< 051 I;?E (where Reg is the effective radius and Iog is the mean surface brightness within Reg) [463].

32



Chapter 2. Challenges for ACDM: Hubble Tension

The Baryonic Tully Fisher relation (BTFR) [466—469] connects the rotation speed V. and total bary-
onic mass M, (stars plus gas) of a spiral galaxy as

M, = AJVS (2.37)

where s (with s & 3 — 4 [466, 469, 470]) is a parameter and log A, is the zero point in a log-log BTFR
plot. This relation has been measured for hundreds of galaxies. The rotation speed V, can be measured
independently of distance while the total baryonic mass M, may be used as distance indicator since it is
connected to the intrinsic luminosity. Thus, the BTFR is a useful cosmic distance indicator approximately
independent of redshift and thus can be used to obtain Hy.

The BTFR has a smaller amount of scatter with a corresponding better accuracy as a distance
indicator than the classic TF relation [470]. In addition the BTFR recovers two decades in velocity and
six decades in mass [466, 469, 471-474].

A simple heuristic analytical derivation for the BTFR is obtained [475] by considering a star rotating
with velocity v in a circular orbit of radius R around a central mass M. Then the star velocity is connected
with the central mass as

v? =G My/R = v* = (G My/R)?> ~ My S G* , (2.38)

where G is Newton’s constant and S the surface density S = M/R? which may be shown to be approxi-
mately constant [176]. From Egs. (2.37) and (2.38) we have

A~ G257 (2.39)

which indicates that the zero point intercept of the BTFR can probe both galaxy formation dynamics
(through e.g. S) and possible fundamental constant dynamics (through G) [477].

Observational data - Constraints

The analysis by Ref. [31] using infrared data of sample galaxies and the Tully Fisher relation determined
the value of Hubble constant to be Hy = 76.0£1.1 (stat.) £2.3 (sys.) kms~ Mpc~!. In Ref. [474] a value
of Hy = 75.1 + 2.3 (stat.) £ 1.5 (sys.) kms~! Mpc~! was found using Baryonic Tully Fisher relation for
95 independent Spitzer photometry and accurate rotation curves (SPARC) galaxies?! (up to distances of
~ 130 Mpc).

2.2.7 Extragalactic background light vy-ray attenuation

This method is based on the fact that the extragalactic background light (EBL) which is a diffuse radiation
field that fills the Universe from ultraviolet (UV) through infrared wavelength induces opacity for very
high energy (VHE) photons (> 30 GeV) induced by photon-photon interaction [479]. In this process a
~v-ray and an EBL photon in the intergalactic medium may annihilate and produce an electron-positron
pair [480]. The induced attenuation in the spectra of 4-ray sources is characterized by an optical depth
Ty~ that scales as nopl (where n is the photon density of the EBL, o is the Thomson cross section, and
[ is the distance from the ~-ray source to Earth). The cosmic evolution and the matter content of the
Universe determine the «-ray optical depth and the amount of y-ray attenuation along the line of sight
[32, 481]. Thus a derivation of Hy can be obtained by measuring the y-ray optical depth with the y-ray
telescopes [482]. This derivation is independent and complementary to that based on the distance ladder
and CMB and seems to favor lower values of Hy as shown in Table 2.1.

21The SPARC catalogue contains 175 nearby (up to distances of ~ 130 Mpc) late-type galaxies (spirals and irregulars)
[470, 478]. The SPARC data are publicly available at http://astroweb.cwru.edu/SPARC.
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Observational data - Constraints

The analysis by Ref. [481] using extragalactic background light + - ray attenuation data from Fermi Large
Area Telescope (Fermi-LAT) derives Hy = 67.4755 kms= Mpc~! and Q,, = 0.147505. The analysis
by Ref. [32] fitting the > 10 GeV extragalactic background data with modeled extragalactic background
spectrum results in Hy = 64.9755kms™ Mpc~! and Qq,,, = 0.317015.

2.2.8 Cosmic chronometers

Cosmic chronometers are objects whose evolution history is known. For instance such objects are some
types of galaxies. The observation of these objects at different redshifts and the corresponding differences
in their evolutionary state has been used to obtain the value of H(z) at each redshift z.

The cosmic chronometer technique for the determination of Hy was originally suggested in Ref. [183]
and is based on the quasi-local (0.07 < z < 2.36) measurements along the Hubble flow of the Hubble
parameter expressed as

1 dz

1+zdt’
Thus, the expansion rate may be obtained by measuring the age difference At between two old and
passively evolving galaxies?? which are separated by a small redshift interval Az, to infer the dz/dt
[484, 485].

This approach determines the Hy = H(z = 0) independent of the early-Universe physics and is not
based on the distance ladder e.g. [33, 483, 486-488]. The estimated Hy values are more consistent with
the values estimated from recent CMB and BAO data than those values estimated from Snla. The value
of Hy can not be derived using the cosmic chronometers observations alone because there is a background
degeneracy between Hy and )y, and this degeneracy is broken when these observations are combined.

H(z) = (2.40)

Observational data - Constraints

In Ref. [486] the value of Hubble constant was found to be Hy = 68.373 % kms~! Mpc ™~ in the flat ACDM
model relying on 28 H(z) measurements and their extrapolation to redshift zero. Analysing 31 H(z) data
determined by the cosmic chronometric (CCH) method, and 5 H(z) data by BAO observations and using
the Gaussian Process (GP) method [189-492] to determine a continuous H(z) function the Hubble con-
stant is estimated to be Hy ~ 67 &= 4kms~! Mpc—! by Ref. [33]. Also using the GP an extension of this
analysis by Ref. [488], including the H(z) measurements obtained from Pantheon compilation and HST
CANDELS and CLASH Multi-Cycle Treasury (MCT) programs, finds Hy = 67.06 + 1.68 kms~! Mpc~!
which is more consistent again with the lower range of values for Hy. The GP method [493] is used as a
'non-parametric’ technique which does not assume any parametrization or any cosmological model (see
Ref. [494], for a discussion about GP as model independent method). The GP modeling approach has
been performed by several authors to reconstruct cosmological parameters and thus to extract cosmolog-
ical information directly from data (see e.g Refs. [495, 496, 496-533]).

Recently, a analysis by Ref. [268] reported Hy = 67.81“;:; kms~!Mpc™t and Hy = 66.5 +
5.4kms™' Mpc~! for a generic open wCDM and for a flat ACDM respectively. The analysis by Ref.
[268] examine the possible effects that can systematically bias the measurement and can affect the CC
method. It should be pointed out however that the quality and reliability of cosmic chronometer data
has been challenged by some authors. This is partly due to the fact that these datapoints are not model
independent and are obtained by combining several datasets [488]. This has improved significantly in the
context of the aforementioned analysis by Ref. [268] where a detailed study of the covariance matrix and
the effects of systematics has been implemented.

22These galaxies form only a few new stars and become fainter and redder with time. The time that has elapsed since
they stopped star formation can be deduced.
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2.2.9 HII galaxy measurements

The ionized hydrogen gas (HII) galaxies (HIIG) emit massive and compact bursts generated by the
violent star formation (VSF) in dwarf irregular galaxies. The HIIG measurements can be used to probe
the background evolution of the Universe. This method of Hy determination is based on the standard
candle calibration provided by a L — o (luminosity-velocity dispersion) relation. This relation exists in
HIIGs and Giant extragalactic HII regions (GEHR) in nearby spiral and irregular galaxies. The turbulent
emission line ionized gas velocity dispersion o of the prominent Balmer lines?® H-alpha (Ha) and H-beta
(Hp) relates with its integrated emission line luminosity L [534-543]. The relationship between L(H )
and o(H ) has a small enough scatter to define a cosmic distance indicator (that can be utilized out to
z ~ 4) independently of redshift and can be approximated as [537-545]

log L(HP) = vlogo(HB) + , (2.41)

where v and k are constants representing the slope and the logarithmic luminosity at logo(Hj3) = 0.
From Eq. (1.54) the luminosity L(Hf) is given by

L(HB) = 4nd21(Hp) . (2.42)
Thus using Eq. (2.41), the distance modulus 4 = m — M of an HIIG can be obtained [540-545]

tobs = 2.5 [v1ogo(HP) + k —logl(HB)] — 100.2 . (2.43)

This observational distance modulus can be compared with the theoretical distance modulus. From
the Eq. (2.2) this is given

dL(Z)
pen(z) = 5logyg [Mpc

} +25. (2.44)

Using now the dimensionless Hubble free luminosity distance Eq. (2.3) this can be written as

C/HO
Mpc

ten(2) = blogyo [Dr(2)] + 5logyg [ } +25. (2.45)

In order to obtain the best fit values for the parameters g, and Hy this theoretical prediction may now
be used to compared with the observed p.ps data. Using the maximum likelihood analysis the best fit
values for these parameters may be found in the usual manner by minimizing the quantity

2
2 [tobs,i — ten(2is Ho, Qom)]
Ho, Qom) = : , 2.46
X~ (Ho, Qom) ; 2 (2.46)

where €; is the uncertainty of the ith measurement.

Observational data - Constraints

Using 156 HII galaxy measurements as a new distance indicator and implementing the model-independent
GP, the Hubble constant was found to be Hy = 76.12f§‘_ﬂ kms~! Mpc~! which is more consistent
with the recent local measurements [546]. Using data of 130 giant HII regions in 73 galaxies with
Cepheid determined distances the best estimate of the Hubble parameter is Hy = 71.0 & 2.8 (random) =+
2.1 (systematic) kms~! Mpc~! [34].

23The Balmer series, or Balmer lines is one of a set of six named series describing the spectral line emissions of the
hydrogen atom. This is characterized by the electron transitioning from n > 3 to n = 2 (where n is the principal quantum
number of the electron. The transitions n = 3 to n = 2 and n = 4 to n = 2 are called H-alpha and H-beta respectively.
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2.2.10 Combinations of data

The Hubble constant Hy values at 68% CL through direct and indirect measurements obtained by the
different methods described in this Section 2.2 are shown in Table 2.1 and described in more detail below
in Fig. 2.8. Also the relative probability density value of Hy was derived by recently published studies
in the literature are shown in Fig. 2.9.

Cosmological parameter degeneracies from each individual probe can be broken using combination of
probes. The multi-probe analysis are crucial for independent Hy determination and are required in order
to reduce systematic uncertainties [547, 548] (see Ref. [268], for a review).

The analysis by Ref. [28] using a combination of SHOES and HOLiCOW results reports Hy = 73.8+1.1
km s~ Mpc~—! which raises the Hubble tension to 5.30 between late Universe determinations of Hy and
Planck. This has been discredited by Ref. [401] who points out that an artificial reduction of the allowed
degrees of freedom can lead to very precise but inaccurate estimates of Hy based on gravitational lens
time delays.

The analysis by Ref. [549] using a combination of the Dark Energy Survey (DES) [145, 550, 551]
clustering and weak lensing measurements with BAO and BBN experiments assuming a flat ACDM model
with minimal neutrino mass (¥m, = 0.06 ¢V) finds Hy = 67.27}2 kms~! Mpc~! which is consistent
with the value obtained with CMB data.

Using an extension of the standard GP formalism, and a combination of low-redshift expansion rate
data (Snla+BAO+CC) the Hubble constant was estimated to be Hy = 68.5270 0371V 1 s=1 Mpe?
by Ref. [526]. Using an alternative method Ref. [552] analysing the current CMB lensing data from Planck
combined with Pantheon supernovae and using conservative priors, finds an r, independent constraint
of Hy = 73.5 £ 5.3 kms~!Mpc~!. Analysing low-redshift cosmological data from Snla, BAO, strong
gravitanional lensing, H(z) measurements using cosmic chronometers and growth measurements from
LSS observations for ACDM model Ref. [553] finds Hy = 70.30713¢ km s~ Mpc~! which is in ~ 20
tension with various low and high redshift observations.

Table 2.1: The Hubble constant Hy values at 68% CL through direct and indirect measurements by
different methods.

Dataset Hy [kms™! Mpc™1] Year Refs.
Planck CMB 67.27 + 0.60 2020 [14]
Planck CMB+lensing 67.36 + 0.54 2020 [14]
Planck+SPT+ACT CMB 67.49 + 0.53 2021 [336]
eBOSS+Planck CMB 69.6 + 1.8 2020 [372]
SPT-3G CMB 68.8+ 1.5 2021 [337]
ACT CMB 67.9+1.5 2020 [554]
ACT+WMAP CMB 67.6 + 1.1 2020 [554]
SPT CMB 71.34+2.1 2018 33¢]
WMAP9 CMB 70.0 £ 2.2 2013 [335]
BAO+WMAP CMB 68.361025 2019 [21]
BOSS correlation function+BAO+BBN 68.19 +0.99 2022 [373]
P+BAO+BBN 69.23 £ 0.77 2022 [374]
P-+Bispectrum+BAO+BBN 68.3170-53 2022 [375]
BAO+BBN 66.98 £1.18 2018 [22]
BOSS DR12+BBN 68.5 £2.2 2020 [365]
BOSS DR12+BBN 68.7+ 1.5 2020 [371]

Continued on next page
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Table 2.1 — continued from previous page

Dataset Hy [km s~ *Mpc™1] Year Refs.
BOSS DR12+BBN 67.9+ 1.1 2020 [376]
BOSS+eBOSS+BBN 67.35 4 0.97 2020 [364]
LSS t., standard ruler 69.5752 2022 [377]
LSS teq standard ruler+lensing 70.673% 2020 [378]
BAO-+RSD 69.13 + 2.34 2017 [20]
Snla-Cepheid 73.04 £+ 1.04 2022 [23]
Snla-Cepheid 74.30 + 1.45 2021 [289]
Snla-Cepheid 73.20 + 1.30 2021 [40]
Snla-Cepheid 74.03 4 1.42 2019 [39]
Snla-Cepheid 73.48 4+ 1.66 2018 [38]
Snla-Cepheid 72.80 + 2.70 2020 [295]
Snla-Cepheid 73.00 £ 2.70 2020 [295]
Snla-TRGB 76.94 4 6.4 2022 [311]
Snla-TRGB 72.4+3.3 2022 [24]
Snla-TRGB 71.5+1.8 2021 [308]
Snla-TRGB 69.84+1.7 2021 [302]
Snla-TRGB 65.8 4 4.2 2021 [305]
Snla-TRGB 72.10 + 2.10 2020 [307]
Snla-TRGB 69.60 + 1.90 2020 [230]
Snla-TRGB 69.80 + 1.90 2019 [301]
Snla-TRGB 711+ 1.9 2019 [227]
Snla-TRGB 72.40 £ 2.00 2019 [303]
Snla-Miras 73.30 £ 4.00 2020 [25]
SBF 73.30 + 2.50 2021 [26]

SBF 70.50 + 4.10 2020 236]

SBF 71.90 + 7.10 2018 [235]
Snell 75.47528 2022 [27]

Snell 75.8752 2020 [244]
Time-delay (TD) lensing 71.875% 2021 [408]
TD lensing 733718 2020 [28]

TD lensing 72.8%1°S 2020 [403]

TD lensing 72.24 2.1 2020 [402]

TD lensing 73.6575 50 2020 [404]

TD lensing 742+1.6 2020 [405]

TD lensing 73.6713 2021 [409]

TD lensing 742750 2020 [380]

TD lensing 745129 2020 381]

TD lensing+SLACS 674741 2020 [381]
TD lensing+SLACS 76.8 + 2.6 2019 [407]
GW Standard Sirens 67153 2022 [454]
GW Standard Sirens 68112 2021 [449]
GW Standard Sirens 72,7710 2021 [450]
GW Standard Sirens 734750 2021 [453]
GW Standard Sirens 75199 2020 [29]

Continued on next page
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Table 2.1 — continued from previous page

Dataset Hy [km s Mpc™1] Year Refs.
GW Standard Sirens 50.4775°% 2020 [446]
GW Standard Sirens 67.6735 2020 [446]
GW Standard Sirens 48128 2020 [448]
GW Standard Sirens 69.07 35,0 2019 [445]
GW Standard Sirens 755 2019 [444]
GW Standard Sirens 68.977% 2019 [441]
GW Standard Sirens 77.0013500 2019 [433]
GW Standard Sirens 70.073%° 2017 [18]
Masers 73.90 £+ 3.00 2020 [30]
Masers 73.50 + 1.40 2019 [227]
Masers 66.0+6.0 2016 [461]
Masers 73.0735°9 2015 [460]
Masers 68.0+9.0 2013 [459]
Masers 68.9+7.1 2013 [457]
Tully Fisher 76.00 £ 2.60 2020 31]
Tully Fisher 75.1£2.80 2020 [474]
~-ray attenuation 67.4750 2019 [481]
7-ray attenuation 64.9755 2019 [32]
HII galaxy 71.00 £ 2.8 2018 [34]
HII galaxy 76.1215-97 2017 [546]
Cosmic chronometers, flat ACDM with systematics 66.5 + 5.4 2022 [268]
Cosmic chronometers, open wCDM with systematics 67.8757 2022 [268]
Cosmic chronometers, without systematics 67.06 + 1.68 2018 [488]
Cosmic chronometers, without systematics 67.00 £ 4.00 2018 [33]
Cosmic chronometers, without systematics 68.375% 2017 [486]
H(z)4+BAO+SN-Pantheon+SN-DES+QSO+HIIG+ GRB 69.7£1.2 2022 [555]
CMB (rs-independent)+lensing+Pantheon 73.5+5.3 2021 [552]
Snla-Cepheid and TD lensing 73.8+1.1 2020 [28]
Snla+BAO+TD lensing+cosmic chronometers+ LSS 70.301 ]38 2019 [553]
BAO+BBN+WL-CC 67.207173 2018 [549]
Snla+BAO+CC 68.521 0 01251 ve) 2018 [526]

More recently, the joint analysis of lower-redshift, non-CMB, data such as BAO, H(z), Snla, QSO,
HIT and GRBs by Ref. [555] has given a model-independent determinations of the Hubble constant,
Hy=69.7+1.2 kms~! Mpc! (see also Refs. [556-559], for previous joint analyses).

Many other estimates of Hy have been obtained in the literature within the standard ACDM model
or in alternative scenarios by using joint analysis [509, 512]. In addition, many analyses using various
combinations of data assuming a ACDM model or a extended model beyond ACDM cosmology investigate
whether the Hy tension persists (or not). For example Ref. [560] uses non-CMB data and specifically
adopt the data from BAO, BBN, and Snla to study the Hy tension. They show that this tension exists
in a broad framework beyond the standard ACDM model.
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Figure 2.8: The Hubble constant Hy values with the 68% CL constraints derived by recent measurements.
The value of the Hubble constant Hj is derived by early time approaches based on sound horizon, under
the assumption of a ACDM background.
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Hy Measurements (most do not assume ACDM)

— Planck CMB
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Figure 2.9: The one dimensional relative probability density value of Hy derived by recent measurements
(Planck CMB [14], ACT+WMAP CMB [19], BAO+RSD [20], BAO+WMAP CMB [21], BAO+BBN [22],
Snla-Cepheid [23], Snla-TRGB [24], Snla-Miras [25], SBF [26], Snell [27], TD lensing [28], GW Standard
Sirens [29], Masers [30], Tully Fisher [31], y-ray attenuation [32], cosmic chronometers [33], HII galaxy
[34]). All measurements are shown as normalized Gaussian distributions. Notice that the tension is not
so much between early and late time approaches but more between approaches that calibrate based on
low z (z < 0.01) gravitational physics and those that are independent of this assumption. For example
cosmic chronometers and v-ray attenuation which are late time but independent of late gravitational
physics are more consistent with the CMB-BAO than with late time calibrators.
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Figure 2.10: The Hubble constant as a function of publication date, using a set of different tools. Symbols
in orange denote values of Hy determined in the late Universe with a calibration based on the Cepheid
distance scale (Key Project (KP) [35], SHOES [17, 23, 36-10], Carnegie Hubble Program (CHP) [11]).
Symbols in purple denote derived values of Hy from analysis of the CMB data based on the sound
horizon standard ruler (First Year WMAP (WMAP1) [42], Three Year WMAP (WMAP3) [43], Five
Year WMAP (WMAPS5) [44], Seven Year WMAP (WMAP7) [45], Nine Year WMAP (WMAP9) [46],
Planck13 (P13) [47], Planck15 (P15) [16], Planck18 (P18) [14], BAO [22]). The orange and purple shaded
regions demonstrate the evolution of the uncertainties in these values which have been decreasing for both

methods. The most recent measurements disagree at greater than 5o.
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Figure 2.11: Left panel: The comoving Hubble parameter as a function of redshift. The black line
corresponds to the best fit obtained from the Planckl8 CMB when the ACDM model is considered,
while the grey areas are the lo regions. The blue point at redshift zero denotes the inferred Hubble
measurement by HST survey [39]. The orange points, green point, and yellow points correspond to
BAO data from BOSS DR12 survey [48], BOSS DR14 quasar sample [49], and SDSS DR12 Ly« sample
[38] respectively. The arrows indicate approaches for the resolution of the Hubble tension: Down arrow
(blue) corresponds to decrease of the Riess et. al. (2019) datapoint due to systematics or transition of
the absolute magnitude M (light blue arrow). Up arrow (black) corresponds to recalibration of rg which
shifts the whole curve up or and late time deformation of H(z) (adapted from Ref. [14]). Right panel:
The comoving Hubble parameter as a function of redshift for a wCDM phantom modification of ACDM
model which drives upward the low z part of the H(z) curve shown in left panel. Thus it brings the z = 0
prediction of the CMB closer to the Hy result of the local measurements (late time H(z) deformation).

2.2.11 The current status - Historic evolution

Hubble’s initial value in 1929 for the expansion rate, now called the Hubble constant, was approximately
500kms~! Mpc~!. From the 1970s, through the 80s and into the 90s the value of Hy was estimated
to be between 50 and 100 kms~ Mpc—t [561]. Of interest is the historical Hubble constant debate
between, for example, long series of papers by Gérard de Vaucouleurs, who claimed that the value of
Hy is 90 < Hy < 100kms~!Mpc™! e.g. [562, 563], and Allan Sandage , who claimed the value is
50 < Hy < 55kms~! Mpc! [564, 565] (see Ref. [566], for a historical review).

During the last decades there has been remarkable progress in measuring the Hubble constant. The
available technology and measurement methods determine the accuracy of this quantity. The Hubble
constant as a function of publication date, using a set of different methods is shown in Fig. 2.10. The
values of Hy determined in the late Universe with a calibration based on the Cepheid distance scale and
the derived values of Hy from analysis of the CMB anisotropy spectrum data are shown. The uncertainties
in these values have been decreasing for both methods and the recent measurements disagree beyond 4o.

Furthermore the comoving Hubble expansion rate as a function of redshift obtained from the Planck18
CMB is shown in Fig. 2.11 along with a few relevant data-points demonstrating the Hubble tension.

The basic strategic questions emerge

o How can H(z) derived from Cepheid late time calibrators (blue point in Fig. 2.11) become consistent
with H(z) derived from the sound horizon early time calibrator (black line in Fig. 2.11)?

e« What type of systematics could move the blue point down or shift black line up in Fig. 2.11 in
early and late time calibrators?

e To what extend can dynamical dark energy address the Hubble tension by distorting the black line
in Fig. 2.117
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Figure 2.12: The predicted value of h as a function of the fixed w assuming one parameter dark energy
(wCDM) model. The theoretically predicted best fit values of h for different values of w in the case of
the wCDM model (orange line), whereas the linear fitting that has been made (dashed blue line). The
redpoints correspond to the actual best fit values, including the errorbars, of h for specific values of w
obtained by fitting these models to the CMB TT anisotropy (from Ref. [50]).

These important Hubble tension questions will be discussed in the next subsection.

2.3 Theoretical models

A wide range of models have been used to address the Hy tension by introducing additional degrees of
freedom to ACDM model where additional parameters are allowed to vary such as quintessence [567—
581], in which a scalar field plays the role of dark energy or modified gravity [582—-587], in which General
Relativity is modified on cosmological scales (see Refs. [135, 588], for a review).

The extensions of ACDM model which can be used to resolve the Hubble constant H, tension fall
into two categories: models with late time and models with early time modification (in the epoch before
the recombination) (see Refs. [127, 128, 185], for a review).

The models with late time modification can be divided in four broad classes: deformations of the
Hubble expansion rate H(z) at late times e.g. late time phantom dark energy [50, 184], deformations
of the Hubble expansion rate H(z) with additional interactions/degrees of freedom e.g. interacting
dark energy [589, 590] and decaying dark matter [591]), deformations of the Hubble expansion rate
H(z) due to inhomogeneous/anisotropic modifications e.g. inhomogeneous causal horizons [592] and
transition/recalibration of the Snla absolute luminosity [12] or combination of the previous classes e.g.
late w — M phantom transition [593].

Model selection statistical tools and approaches include the Akaike Information Criterion (AIC) [594],
the Bayesian Information Criterion (BIC) [595] and the Deviance Information Criterion (DIC) [596] and
Bayesian model comparison e.g. [63, 597-600]. These tools have been developed and used to test,
discriminate and compare the proposed models [62, 601-603] (see also Ref. [10], for a list of statistical
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tools).

2.3.1 Late time deformations of the Hubble expansion rate H(z)

These late time models for the solution of the Hubble tension use a late time smooth deformation of
the Hubble expansion rate Planck18/ACDM H(z) so that it can match the locally measured value of
Hj while keeping the radius rs of the sound horizon at the last scattering surface (see Subsection 2.2.2).
Many of these models effectively fix the comoving distance to the last scattering surface and the matter
energy density w,, = Qomh? to values consistent with Planck/ACDM to maintain consistency with the
CMB anisotropy spectrum while introducing late time phantom dark energy to deform H(z) so that it
matches the local measurements of H(z). The required phantom behavior of such H(z) deformations can
not be provided by minimally coupled quintessence models and therefore such models have been shown
to be unable to resolve the Hubble tension [604, 605]. These models have three problems

o They tend to worsen the fit to low z distance probes such as BAO and Snla e.g. [50]
o They tend to worsen level of the growth tension [606].

e They tend to predict a lower value of Snla absolute magnitude than the one determined by local
Cepheid calibrators shown in Eq. (2.2) [52, 269, 289].

Thus, these models can not fully resolve the Hubble tension [328, 4177, 195, 196, 607-616].

Physical models where the deformation of H(z) may be achieved include the following: phantom
dark energy e.g. [50], running vacuum model e.g. [617], phenomenologically emergent dark energy [618],
vacuum phase transition e.g. [619], phase transition in dark energy e.g. [620]. Plethora of late dark
energy models with an equation of state w # —1 (w < —1 or w > —1) both constant or dynamical with
redshift e.g. [621] were proposed to address the Hubble tension. Recently, using a model-independent
approach and a fully analytical analysis Refs. [622, 623] derived a set of necessary conditions that any
late dark energy model must satisfy in order to potentially address both the Hubble and the growth
tensions. In particular, solving the Hy tension requires w(z) < —1 at some z and solving both the H
and og tensions demands time-varying dark energy equation of state which cross the phantom divide.
However Ref. [606] has shown that H(z) deformation approaches to the Hubble tension tend to worsen
the og growth tension.

The following models may be classified in this class of theories: the holographic dark energy [624-631],
the considering Chevallier - Polarski - Linder (CPL) [632-634] parameterization [635], the considering
w dependence on non-vanishing spatial curvature [636], the phantom brane dark energy [637, 638], the
negative cosmological constant [639-641], the negative dark energy [642], the graduated dark energy [643],
the simple-graduated dark energy [644], the A;CDM model (sign-switching) [645], the transitional dark
energy [646], the frame dependent dark energy [647], the running Hy with redshift [648, 649], the varying
gravitational constant [650], the deviation from the cold dark matter [651] and the phantom crossing
[652]). For example in the case of the holographic dark energy model [625] and phantom crossing [652]
models the tension on Hy appears to be significantly alleviated within 1o even though the three problems
mentioned above do remain.

Phantom dark energy

The deformation of H(z) through the implementation of late time phantom dark energy [50, 184, 653-650]
can address the Hubble tension as shown in Fig. 2.11.

The analysis by Ref. [50] indicates that mildly phantom models with mean equation of state parameter
w = —1.2 have the potential to alleviate this tension. It was shown that the best fit value of Hy in
the context of the CMB power spectrum is degenerate with a constant equation of state parameter w.
The CMB anisotropy spectrum was shown to be unaffected when changing H(z) provided that specific
parameter combinations remain unchanged. These cosmological parameters fix to high accuracy the form
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Figure 2.13: The predicted form of the CMB TT anisotropy spectrum with w = —1, h = 0.67, Qq,,, =
0.314 for ACDM (blue line) and with w = —1.2, h = 0.74, Qo,, = 0.263 (green line). Red points
correspond to the binned high-I and low-I Planck data (from Ref. [50]).

of the CMB anisotropy spectrum. The values of these parameters as determined by the Planck/ACDM
CMB temperature power spectrum are the following [14].

Wi, Planck = 0.1430 % 0.0011 (2.47)

W, Planck = 0.02237 + 0.00015 (2.48)

Wr Planck = (4.644+0.3) 1077 (2.49)

Wk, Planck = —0.0047 £ 0.0029 , ( )

da Planck = (4.62 £ 0.08) (kms™ " Mpc™)~! | (2.51)

where w; pranck = o, Plancih? is the energy density of component 7 and d A,Planck 1s the comoving angular

diameter distance.
Using the Eq. (1.57) the comoving angular diameter distance d4 to the recombination surface is

(c=1)

odz = dz
da = _ 2.52
A7), H(z) /0 h(z) 100km s~ Mpc—1 ’ (2:52)
where 2, ~ 1100 is the redshift of recombination and h(z) = H(z)( 100kms™ Mpc~!)~! is the dimen-

sionless Hubble parameter which in general takes the form

)]1/2

h(z) = [wr(l +2) w14 2% + (h? —w, — wn) foe(z , (2.53)

where h = h(z = 0) and fpg(z) determines the evolution of dark energy.
In the context of a simple one parameter parametrization where the equation of state w remains
constant in time and redshift (wCDM model), fpg(z) takes the simple form

foe(z) = (1+2)30+w) (2.54)

If the four energy densities Eqs. (2.47), (2.48), (2.49) and (2.50) and the observed value of the comoving
angular diameter Eq. (2.51) are fixed then they provide the analytically predicted best fit value of the
Hubble parameter Hy (or h) given the dark energy equation of state parameter w(wq,ws,...,z) where
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wg, W1,... are the parameters entering the w(z) parametrization. Thus assuming a flat Universe (w, = 0)
and solving the following equation with respect to h

dA (wm,Plancky Wr Plancks Wb, Planck h = 0674, w = _1) = dA (wm,Plancka Wr Plancks Wb, Planck h, w) )
(2.55)
it is straightforward to derive the degeneracy function h(z = 0,w) = h shown in Fig. 2.12 (continuous
orange line). In the range w € [—1.5,—1], h(w) is approximated as a straight line (dashed blue line in
Fig. 2.12)
h(w) ~ —0.3093w + 0.3647 . (2.56)

For w = —1, this linear degeneracy equation leads to the best fit dimensionless Hubble constant
h = 0.674 as expected while for w = —1.217 the corresponding predicted CMB best fit is h = 0.74
which is consistent with the value obtained by local distance ladder measurements. The invariance
of the CMB power spectrum when the cosmological parameters are varied along the above described
degeneracy directions is shown in Fig. 2.13. This method of Ref. [50] can be used to find general
degeneracy relations between fpg(z) and Hy and fixing h = 0.74 gives infinite fpg(z), w(z) forms that
can potentially resolve the Hy problem if they can also properly fit the low z date (e.g. BAO, Snla,
Cepheid value of absolute luminosity M). Low z distance data (BAO and Snla) will determine which one
of these forms is observationally favored. However, none of these forms can provide a quality of fit to low
z data equally good or better than ACDM despite the introduced additional parameters. In addition,
these models suffer from the other two problems mentioned above (worse growth tension and lower value
of Snla absolute magnitude).

Running vacuum model

The running vacuum models (RVM) [617, 657662, 662-676] (see Refs. [136, 677-683], for a review)
attempts to address both the Hubble constant Hy tension [684] and the og growth tension using a
mechanism that has common features with the IDE models e.g. [685-690] (for relaxing the growth
tension, see Subsection 3.1.2).

The RVM of the cosmic evolution is well motivated by the generic idea of renormalization group
formalism which is used in Quantum Field Theory (QFT) [691-693] (see also Refs. [669, 694], for a
approach using adiabatic regularization and renormalization techniques). In the RVM the cosmological
constant, the corresponding vacuum energy density and pressure are assumed to be functions of the
Hubble rate e.g. a power series of the Hubble rate and its cosmic time derivative with even time derivatives
of the scale factor [695]

A=ag+ > apH* +> b H" (2.57)
k=1 k=1

pa = pa(H) = A9 and py = pa(H) = —pa(H) respectively.

For the current Universe the vacuum energy density can be written in the relatively simple form e.g.
[679, 684, 695, 696]
AH) 3
8rG 871G
Ao

where ¢y = HZ(Qop — V) ~ = (with Ag the current value) is an integration constant which is fixed by
the boundary condition pj(Ho) = pa,0 (With pa o the current value) and v is a dimensionless running
parameter which characterizes the dynamics of the vacuum at low energy. For v = 0 the vacuum energy
remains constant at all times and for v > 0 the vacuum energy density decreases with the time. In QFT
the running parameter is |v| ~ 1076 — 1073 [691] but in RVM it has been treated as a free parameter by
fitting to the observational data e.g. [695, 696].

pa(H) = (co +vH?), (2.58)
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Phenomenologically emergent dark energy

Phenomenologically emergent dark energy (PEDE) is a zero freedom dark energy scenario proposed by
Ref. [618]. In this model the dark energy density has the following form

QDE(Z) = QODE [1 — tanh (10g10(1 + Z))] 5 (259)

where QODE =1- QOm - QO’I"

The dark energy in this model has no effective presence in the past and emerges at the later times
and with the same number (six) of parameters compared to the spatially flat ACDM scenario. It has the
potential for alleviating the Hy tension [618, 697-702]. The generalised emergent dark energy (GEDE)
model has one extra dimensionless free parameter A including both ACDM model as well as the PEDE
model as two of its special limits introduced by Ref. [703]. In the GEDE model the dark energy density
has the following form [704]

1 — tanh (A log;( 111'; ))

1 + tanh (Alogyo(1 + 2¢))

Qpp(z) = Qe (2.60)

where z; is the transition redshift where dark energy density equals to matter density. For A = 0 and
A =1 this model recovers ACDM and PEDE model respectively. Using the latest observational Hubble
dataset [705] revisited and constrained the free parameters of the PEDE and GEDE models.

Other versions of the PEDE model are the Modified Emergent Dark Energy (MEDE) [706] and the
Transitional Dark Energy (TDE) [707] models. The MEDE model with one extra degree of freedom
reduces the Hubble tension to 2.40 [706] even though it also suffers from the three problems of the late
time H(z) deformation models.

Vacuum phase transition

Vacuum phase transition [619, 702, 708, 709] based on vacuum metamorphosis (VM) or vacuum cold
dark matter model (VCDM) [710-712] has the potential to address the Hy tension. This mechanism with
six free parameters as the spatially flat ACDM. It also assumes a phase transition in the nature of the
vacuum similar to Sakharov’s induced gravity [713]. The phase transition occurs when the evolving Ricci
scalar curvature R becomes equal to the value of scalar field mass squared m? [619]

R=6(H+ H*) =m?, (2.61)

where the dot corresponds to the derivative with respect to cosmic time ¢t. After the transition the Ricci
scalar curvature remains constant with R = m? and this changes the expansion rate below (z < z;) due
to the phase transition

H? 4 \*
— = Q1 +2)° + Qo1 +2)* + M 1- |3 M(1— M)>3 L2 >z, (2.62)
HO 3QOm
H2
4
2 = (A=M)A+2)"+ M, z< 2, (2.63)
0
where M = %g and z; = —1 + 4(31%0%) is the transition redshift.
0

Phase transition in dark energy

o Phase transition in dark energy explored by [620, 714-716] can address the Hubble tension. Gen-
eralizing this model by assigning a more realistic time evolution of dark energy Ref. [717] proposes
the critically emergent dark energy (CEDE) model.
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In Ref. [718] the form of phase transition parametrized phenomenologically by a hyperbolic tangent
function. This scenario for dark energy is similar used independently as PEDE and GEDE.

o Late dark energy (LDE) transition [609] at redshifts z < 0.1 can reduce the Hubble tension. This
class of H(z) deformation models has a more intense form of the third problem of the deformation
class as they predict a significantly lower value of the Snla absolute magnitude than the other H(z)
deformation models [289, 593].

In this scenario the true Hubble constant is given by [609, 719]
H2 = H2(1+20), (2.64)

where Hy is the prediction for a flat ACDM model in the context of a CMB sound horizon calibration.

In Refs. [609, 720] it was shown that this model can not fully resolve the Hubble problem as it
would imply a transition in the Snla apparent magnitude which is not observed. These models
however become viable in the context of a Snla absolute magnitude transition [52, 593].

2.3.2 Deformations of the Hubble expansion rate H(z) with additional inter-
actions/degrees of freedom

There exist several varieties of the models for the solution of the Hubble tension which use deformations
of the Hubble expansion rate H(z) with additional interactions/degrees of freedom. For example the
interacting dark energy models e.g. [589, 590] with an extra non-gravitational interaction between the
components of the Universe and the decaying dark matter models e.g. [591] with additional degrees of
freedom are able to alleviate the Hubble constant Hy tension.

The following models may be classified in this class of theories: multi-interacting dark energy [721],
new interacting dark energy [722], interacting vacuum energy [723], metastable dark energy [724, 725],
Quintom dark energy [726], cannibal dark matter [727], baryons-dark energy interacting [728] [see also
729, 730], swampland conjectures [731-733], nonlocal gravity [734, 735], late time transitions in the
quintessence field [736], Galileon gravity [737-741], f(R) gravity [742-745], f(T) gravity [497, 532, 746—
752], f(T, B) gravity [753], f(Q) gravity [754], Brans-Dicke gravity [755, 756], minimal theory of massive
gravity [757], scale-dependent gravity [758], unimodular gravity [759, 760], the screened fifth forces
[761, 762], the minimally modified gravity [763], the Lifshitz cosmology [764], the Milne cosmology [765],
4D Gauss-Bonnet gravity [766], the generalized Chaplygin gas [767], the unified cosmologies [768], the A-
gravity [769, 770], the A(t)-model [771, 772], the bulk viscous cosmology [773-776] and the surface tension
hypothesis [777]. For instance in the case of the metastable dark energy [725], generalized Chaplygin gas
[767] and Galileon gravity [737] models the tension on Hy appears to be significantly alleviated to within
about 1o even though the there problems of the H(z) deformation models remain to be addressed.

Interacting dark energy

In the cosmological interacting dark energy (IDE) models [589, 590, 778-819] (see Refs. [820, 821], for a
review) the dark components of the Universe i.e dark matter (DM) and dark energy (DE) have an extra
non-gravitational interaction. The IDE model was proposed to address the coincidence problem e.g. [822—
830]. In addition the interaction between the dark fluids has been shown to be effective in substantially
alleviating the Hubble constant Hy tension [589, 590, 792, 799, 800, 814, 819, 831-836] or in addressing
the structure growth og tension between the values inferred from the CMB and the WL measurements
[837-840] (see Subsection 3.1.2) or in solving the two tensions simultaneously [794, 804, 809].

In IDE cosmology assuming spatially flat Friedmann-Lemaftre-Roberson-Walker background and
pressureless dark matter (w. = 0) the equations of evolution of the dark matter and dark energy densities
pe and ppp respectively are given by [341]
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ppE +3H(1+wpg)ppe = —Q(1) , (2.66)

where the dot corresponds to the derivative with respect to cosmic time t, wpg = % is the equation

of state of dark energy and @ represents the interaction rate between the dark sectors (i.e. the rate
of energy transfer between the dark fluids). For @ < 0 energy flows from dark matter to dark energy,
whereas for @) > 0 the energy flow is opposite.

These models combine the deformation of H(z) with an extra modification of the growth rate of
perturbations due to the tuned evolution of ,,(z) induced by the interaction term . This additional
tuning allows for a simultaneous improvement of the growth tension in contrast to models that involve a
simple H(z) deformation.

Various phenomenological IDE models were proposed in the literature where the rate of the interaction
@ has a variety of possible functional forms [842]. For example in some classes of IDE models the rate of
the interaction @ is proportional to the energy density of dark energy Q = d Hppg [590, 794, 804, 809]
or cold dark matter Q = 6 Hp. [792] (where § is a constant and § = 0 in the ACDM cosmology), or some
combination of the two. Note that in the case of functional form @) = d Hp, instabilities develop in the
dark sector perturbations at early times [843].

Decaying dark matter

Decaying dark matter into dark radiation (i.e. an unknown relativistic species that is not directly de-
tectable), which has been first analysed by Ref. [844] and studied by Refs. [845-853], provides a promising
scenario to relieve the Hubble constant Hy tension e.g. [591]. Also, it has been shown that this scenario
can resolve the og growth tension [854, 855] or the two tensions simultaneously [356] by a similar mecha-
nism as in the IDE models. However, using the Planck data the analysis of the model by Refs. [357, 858]
has shown that the cosmological tensions are only slightly alleviated (see Ref. [859], for a different result).

In these models assuming spatially flat Friedmann-Lemaftre-Roberson-Walker Universe, pressureless
dark matter, w. = 0 and equation of state of dark radiation wpr = 1/3, the equations of evolution of
the dark matter and dark radiation densities p. and ppg respectively are given by [841]

pe+3Hp.=—-Tp., (2.67)

ppr+4Hppr =Tp. , (2.68)

where I' = % is the decay rate of dark matter particles (with 7 the particle’s lifetime). In the literature a
variety of possible functional forms of the decay rate has been explored [854, 857, 859, 860]. For example
in some cases the decay rate is proportional to the Hubble rate, I' o« H [856]. Constraints on the decay
rate of dark matter have been obtained by the analysis of Refs. [854, 861].

A model with decaying dark matter into dark radiation in early/late Universe (7 < ts / 7 > ts,
where t, is the time of last scattering) increases/decreases the expansion rate H(a; pp, pys Pe, PDRs PDE)
at high/low redshifts as it predicts a smaller matter content and a larger radiation content as time
evolves (the early/late Universe is dominated by the radiation/matter and the dark radiation density
decreases more rapidly than the matter density, ppr x a=* and p. < a=2). In the case of 7 < tg, the
faster cosmological expansion H(z) decreases the scale of the sound horizon ry in Eq. (2.17) because the
baryon-to-photon ratio, and thus ¢ in Eq. (2.18), is tightly constrained by CMB fluctuations and BBN
[862]. In the context of the degeneracy Hor, shown in Eq. (2.19) the lower scale of the sound horizon 7
yields a larger value of Hy. In the case of 7 > t,, the lower dimensionless normalized Hubble rate F(z) in
the late-time leads to a larger value of Hy since 5 and s must be kept fixed in Eq. (2.19). Accordingly,
both early and late decaying dark matter model are able to alleviate the Hubble constant Hy tension (see
Refs. [863, 864], for a detailed discussion).

There are alternative decaying dark matter models such as the light dark matter [365], the dynamical
dark matter [866], the many-body or 2-body decaying cold dark matter scenarios [867] and the decaying
warm dark matter scenario [368]. In the 2-body decaying cold dark matter scenario the decaying dark
matter produces two particles, one massive warm dark matter particle and one massless relativistic
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particle (dark radiation). This scenario can address the Hubble constant Hy tension [869-871] and the
og growth tension [872].

A self-interacting dark matter model with a light force mediator coupled to dark radiation studied
by Refs. [873, 874]. This model can simultaneously reduce the tension between CMB and low-redshift
astronomical observations of Hy and og.

Ref. [875] pointed out that a dark particle from reheating [876] can alleviate the Hy tension through
its decay to relativistic component which contributes to the dark radiation.

Recently, Ly-a constraints on possible models of dark-matter physics have been evaluated by Ref.
[877]. In particular the Ly-o bounds on different classes of dark-matter velocity distributions have been
obtained.

2.3.3 Deformations of the Hubble expansion rate H(z) with inhomoge-
neous/anisotropic modifications

Models where the cosmological principle and the FLRW metric are relaxed by considering inhomoge-
neous/anisotropic modifications have the potential to resolve the Hubble problem [878]. Physical models
where the deformation of H(z) may be achieved with inhomogeneous/anisotropic modifications, include
the following: Chameleon dark energy e.g. [879], cosmic voids [880] and inhomogeneous causal horizons
[592], charged dark matter [881-883], Bianchi type I spacetime [884] and emerging spatial curvature
[885, 886].

Chameleon dark energy

Chameleon dark energy [887, 888] (see also Refs.[889-897]) attempts to address the Hubble constant
Hy tension by introducing a cosmic inhomogeneity in the Hubble expansion rate at late-time from the
chameleon field coupled to the local matter overdensities [879]. This field trapped at a higher potential
energy density acts as an effective cosmological constant and results in a faster local expansion rate than
that of the background with lower matter density.

Cosmic voids

In cosmic void models the local Hy departs significantly from the cosmic mean H because of the presence
of an under-dense region (local void) [898]. However in Refs. [880, 899] it was shown that this alternative
theory is inconsistent with current observations. The analysis was based on the assumption of the validity
of standard ACDM and a study of the sample variance in the local measurements of the Hubble constant
this alternative theory has been shown inconsistent with current observations. Ref. [880] estimated
that the required radius of void to resolve the tension in Hy is about 150 Mpc and density contrast of
= p%,ﬁ ~ —(0.8 which is inconsistent at ~ 200 with the ACDM cosmology [399, 900].

In the context of this inconsistency, Ref. [900] considered a cosmological Milgromian dynamics or
modified Newtonian dynamics (MOND) model [901] with the presence of 11eV/c? sterile neutrinos®* to
show that the Keenan-Barger-Cowie (KBC) void?® has the potential to resolve the Hubble tension.

Inhomogeneous Causal Horizons

Ref. [592] proposed a simple solution to the Hy tension based on causally disconnected regions of the
CMB temperature anisotropy maps from Planck [908]. It was pointed out that CMB maps show ’causal
horizons’ where cosmological parameters have distinct values. This could be justified by the fact that
these regions of the Universe have never been in causal contact. Thus it was shown that the Hubble
constant Hy takes values which differ up to 20% among different causally disconnected regions. These

24Gterile neutrinos are a special kind of neutrino with right handed chirality that might interact only through gravity
[902, 903] (see Refs. [904-906], for a review). They have been proposed to resolve some anomalies in neutrino data.

25The KBC void [907] is a large local underdensity between 40 and 300 Mpc (i.e. 0.01 < z < 0.07) around the Local
Group.
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cosmological parameter inhomogeneities are in agreement with the model of the Universe proposed in
Ref. [909] (see also Refs. [910-912] for details) where the cosmological constant is simply formulated as
a boundary term in the Einstein equations and where ’Causal Horizons’ naturally arise. Thus if there
are similar ’causal horizons’ in the local universe (i.e, z < 1100), then 20% variations between the local
and high-z measures of Hy are indeed to be expected [592].

2.3.4 Late time modifications - Transition/Recalibration of the Snla absolute
luminosity

This class of models can address the problems of the H(z) deformation models (especially the low M prob-
lem) by assuming a rapid variation (transition) of the Snla intrinsic luminosity and absolute magnitude
due e.g. to a gravitational physics transition at a redshift z; < 0.01 [52, 477, 593].

Gravity and evolution of the Snla intrinsic luminosity

As shown in the recent analysis by Ref. [12] there are abnormal features which may be interpreted
as evolution of the measured parameter combination M (see Section 2.2.1). This measured parameter
combination M in Eq. (2.10) depends on the absolute magnitude M and on the Hubble constant H
(M and Hy are degenerate parameters). Any variation of the parameter M is due to a variation of M
which could be induced by a varying ug(z) = %j) (where Gy is the local value of the Newton’s constant
G(z)). If the calibrated Snla absolute magnitude M were truly constant then the parameter M should
also be constant (independent of redshift).

A possible variation of the absolute magnitude M and equivalently of the absolute luminosity
L ~1072M/5 (2.69)

could be due to a variation of the fine structure constant « or the Newton’s constant G.
If the absolute luminosity is proportional to the Chandrasekhar mass L ~ My, we have [913, 914]

L~G3/%, (2.70)
Thus L will increase as G decreases?S.
Under these assumptions, we obtain
15
M(z) — My = vy log pa(2) , (2.71)

where M corresponds to a reference local value of the absolute magnitude and pg = c% is the relative
effective gravitational constant (with G the strength of the gravitational interaction and Gy the locally
measured Newton’s constant).

Then, the Eq. (2.10) takes the following form

15 ¢/Hy
M(z) = My + vy log c(2) + 5logg [W} +25, (2.72)
and the apparent magnitude Eq. (2.11) can be written as
m(Z7H07QOm>th = M(Z,Ho) +510g10 [DL(Z,QQm)] . (273)

A mild tension at 20 level in the best fit value of M was found in between the low-redshfit (z < 0.2)
data and the full Pantheon dataset in the context of a ACDM model. This tension can be interpreted as

12]

26 Adopting a semi-analytical model which takes into account the stretch of Snla light curves but assumes fixed mass of
Ni, obtaining Snla light curves in the context of modified gravity Ref. [915] has claimed that L will increase as G increases.
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Figure 2.14: The Pantheon binned Snla absolute magnitudes Eq. (2.76) M; (blue points) [51] for a
Planck/ACDM luminosity distance. The data are inconsistent with the Snla absolute magnitude M < =
—19.24 calibrated by Cepheids but the inconsistency disappears if there is a transition in the absolute
magnitude with amplitude AM ~ —0.2 at redshift z; ~ 0.01 (from Ref. [52]).

« a locally higher value of Hy by about 2%, corresponding to a local matter underdensity.

¢ a time variation of Newton’s constant which implies an evolving Chandrasekhar mass and thus an
evolving absolute luminosity L and absolute magnitude M of low z Snla.

In addition, the oscillating features shown in Fig. 2.2 hint also to the possibility of evolutionary effects
of M. As discussed below such evolutionary effects if they exist in the form of a transition may provide
a solution to the Hubble and growth tensions.

Transition of the Snla absolute magnitude M at a redshift z ~ 0.01

Recently, Ref. [52] has proposed that a rapid transition (abrupt deformation) at a transition redshift
z¢ >~ 0.01 in the value of the Snla absolute magnitude M of the form

M~ (z) =M<+ AMO(z — z) , (2.74)

(where O is the Heaviside step function) due to a rapid transition of the gravitational constant can address
the Hubble tension.

In particular the analysis by Ref. [52] has shown that a 10% rapid transition in the value of the
relative effective gravitational constant pug at z; ~ 0.01 is sufficient to induce the required reduction of
M

AM=M> —-—M<~-0.2, (2.75)

where M < is the Snla absolute magnitude of Eq. (2.13) calibrated by Cepheids at z < 0.01 [269, 289)]
and M~ is the Snla absolute magnitude of Eq. (2.14) using the parametric-free inverse distance ladder of
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[290]. Fig. 2.14 shows the Pantheon Snla absolute magnitudes for a Planck/ACDM luminosity distance
[51] obtained from

dr(z
M; = m; — 5logy, [ ﬁ;c)] — 95, (2.76)

where m; are the apparent magnitude datapoints.

The data are in disagreement with the Snla absolute magnitude M < calibrated by Cepheids but they
become consistent if there is a transition in the absolute magnitude with amplitude AM ~ —0.2 [52].
Thus, this class of M-transition models avoids the M-problem of late time H(z) deformation models.

Assuming the power law dependence Eq. (2.70) and using RSD and WL data [4, 50, 916] reported
a best fit value Aug = pg — ps = —0.19 £ 0.09 (uG corresponds to z > 0.01 and pS corresponds to
z < 0.01) in the context of a ACDM background H(z). The analysis by Ref. [52] showed that a rapid
~ 10% increase of the effective gravitational constant roughly 150 million years ago can also solve ,,-0g
growth tension.

Recently, Ref. [606] has demonstrated that this model has an advantage over both early time and
late time deformations of H(z) to fully resolve the Hubble tension while at the same time improving the
level of the Q,,-0s growth tension. In addition it has the potential to provide equally good fit to low z
distance probes such as BAO and Snla as the Planck18/ACDM model.

More recently, Ref. [9] generalized the symmetron screening mechanism?’ [940, 941] by allowing
for an explicit symmetry Z, breaking of the symmetron ¢* potential (see in Chapter 11 for details).
The explicit symmetry breaking can create an asymmeron wall network pinned on matter overdensities
separating regions with distinct gravitational properties which could constitute a physical mechanism
for the realization of gravitational transitions in redshift space that could help in the resolution of the
Hubble and growth tensions. Another theoretical model leading to a gravitational transition could include
a pressure non-crushing cosmological singularity in the recent past [942].

Late (low-redshift) w — M phantom transition

The late (low-redshift) w — M phantom transition [593] is a late time approach involving a combination
of the previous two classes: the transition of the Snla absolute luminosity and the deformation of the
Hubble expansion rate H(z). A rapid phantom transition of the dark energy equation of state parameter
w at a transition redshift z; < 0.1 of the form

w(z) = -1+ AwO(z — 2) , (2.77)
with Aw < 0 and a similar transition in the value of the Snla absolute magnitude M of the form
M(z) =Mc+ AMO(z — z) , (2.78)

with AM < 0 due to evolving fundamental constants can address the Hubble tension [593]. Where ©
is the Heaviside step function, M¢ is the Snla absolute magnitude Eq. (2.13) calibrated by Cepheids
[269, 289] at z < 0.01 and AM, Aw are parameters to be fit by the data. Ref. [593] finds AM ~ —0.1,
Aw ~ —4 for z; = 0.02 which imply a lower value of ug at z > 0.02 (about 6%) compared to the pure
M -transition model.

The late (low-redshift) w — M phantom transition (LwMPT) can lead to a resolution of the Hubble
tension in a more consistent manner than smooth deformations of the Hubble tension and other types
of late time transitions such as the Hubble expansion rate transition [609, 720]. Its main advantages
include the consistency in the predicted value of the Snla absolute magnitude M and the potential for
simultaneous resolution of the growth tension.

Refs. [8, 56, 943] have analyzed the color-luminosity relation of Cepheids in anchor galaxies and Snla
host galaxies by identifying the color-luminosity relation for each individual galaxy instead of enforcing a

2"For reviews of modified gravity theories with screening mechanisms, such as the Vainshtein [917-919] and the chameleon
[887, 888, 892, 920-926] models see Refs. [927-938] and for screening effects see Ref. [939].
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universal color-luminosity relation to correct the NIR Cepheid magnitudes. A systematic brightening of
Cepheids at distances larger than about 20 Mpc which could be enough to resolve the Hubble tension was
found. In addition, Ref. [8] investigating the effects of variation of the Cepheid calibration empirical pa-
rameters (the color-luminosity parameter or the Cepheid absolute magnitude) finds hints for the presence
of a fundamental physics transition taking place at a time more recent than 100 Myrs ago. The magnitude
of the transition lead to value of Hy that is consistent with the CMB inferred value thus eliminating the
Hubble tension. The distance range/timescale corresponding to this transition is consistent with solar
system history data [944] indicating an increase of the rate of impactors on the Moon and Earth surfaces
by about a factor of 2-3 during the past 100 Myrs which correspond to z < 0.008 [945-951] and low
redshift galaxy surveys data [952]. Such a transition is also consistent with a recent analysis by Ref. [477]
indicating a transition in the context of the Tully-Fisher data.

In particular, using a robust dataset of 118 Tully-Fisher datapoints Ref. [477] has demonstrated
that evidence for a transition in the evolution of BTFR appears at a level of more than 3o. Such effect
could be interpreted as a transition of the effective Newton’s constant. The amplitude and sign of the
gravitational transition are consistent with the mechanisms for the resolution of the Hubble and growth
tension discussed above [52, 593] (see in [953], for a talk of the tensions of the ACDM and a gravitational
transition).

2.3.5 Early time modifications of sound horizon

Modifying the scale of sound horizon rg (i.e. the scale of the standard ruler) by introducing new physics
before recombination that deform H(z) at prerecombination redshifts z 22 1100 can increase the CMB
inferred value of Hy [954-957] and thus resolve the Hubble tension. Such deformation may be achieved by
introducing various types of additional to the standard model components (see Ref. [958], for a review).
These models have the problem of predicting stronger growth of perturbations than implied by dynamical
probes like redshift space distortion (RSD) and weak lensing (WL) data and thus may worsen the €,,-0s
growth tension [331, 606].

A wide range of mechanisms has been proposed for the decrease of the the sound horizon scale at
recombination. These mechanisms include the introduction of early dark energy, extra neutrinos or some
other dark sector at recombination, features in the primordial power spectrum, modified scenarios of
recombination etc. The following models and theories may be classified in this class of mechanisms: early
dark energy e.g. [182], dark radiation e.g. [959], neutrino self-interactions e.g [960], large primordial non-
Gaussianities [961], Heisenberg’s uncertainty principle [962], early modified gravity [963], cosmological
inflation physics [964-976], dark matter - photon coupling [977, 978], dark matter-neutrino interactions
[979], interacting dark radiation [980], ultralight dark photon [981], primordial black holes [982, 983],
primordial magnetic fields [984-986], non-standard recombination [987], unparticles dark energy [988],
varying fundamental constants [989-993], early-time thermalization of cosmic components [994], CMB
monopole temperature shift [995], open and hotter universe [996, 997], Axi-Higgs cosmology [998, 999],
string Cosmology [1000, 1001] and dark massive vector fields [1002]. In this list of proposed cosmological
models the tension on Hj is alleviated with a significance ranging from the 1o to the 3o level.

Early dark energy

In the early dark energy (EDE) model [54, 181-183, 1003-1023] an additional dynamical scalar field
behaves like a cosmological constant at early times (near matter-radiation equality but before recom-
bination). This field decays rapidly after recombination thus leaving the rest of the expansion history
practically unaffected up to a rescaling which modifies Hy. This rescaling allows for the resolution of
the Hubble constant tension. Using the Eq. (2.17) in a EDE model the radius of sound horizon at last
scattering can be calculated by

tq o0 aq
e = / cs(@) gy _ / cs(2) dz = / _ cs(a) da (2.79)
o a(t) .. H(z:pv, py, pes PDE) o a2H(a;py, pvy, pe, PDE)

54



Chapter 2. Challenges for ACDM: Hubble Tension

10, T
EDE model (H>>m) !
8 v |
—=[1-cos (¢/N]"
Vo '
6
NN
4
2
0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-4 -2

SIS st

Figure 2.15: The potential V/V, (with Vo = m2f? n = 3 in Eq. (2.80)) as a function of ¢/f at early
times (H > m) (left panel) when the field ¢ is initially frozen in its potential due to Hubble friction and
acts as a cosmological constant with equation of state wy, = —1, and at a critical redshift z. when the
Hubble parameter drops below some value (H ~ m) (right panel) and the field becomes dynamical and

EDE model (H~m)

4 [z (#/N] ”
—=|1-cos |
7 ’ E

(4

SIS St

begins to oscillate around its minimum which is locally V ~ ¢2".

0.10

0.08

fepe(2)
o
o
{o)]

0.04

0.02

0.00

10!
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Figure 2.17: CMB TT power spectrum. The black solid and the red dashed lines correspond to ACDM
model with Hy = 68.07 kms~! Mpc~! and EDE model with Hy = 71.15 kms~' Mpc™! respectively
(from Ref. [53]).

The baryon-to-photon ratio, and thus ¢, in Eq. (2.18), is tightly constrained by CMB fluctuations and
BBN [862]. As a consequence a EDE phase before and around the recombination epoch would increase
H(z) and thus decrease the scale of the sound horizon 7 in Eq. (2.79). In the context of the degeneracy
Hors shown in Eq. (2.19) this decrease of 7, leads to an increased value of Hy for a fixed measured value
of 0,.

An EDE model can be implemented by several functional forms of scalar field which contribute to
the cosmic energy shortly before matter-radiation equality. Possible functional forms of scalar field are
the axion-like potential (higher-order periodic potential) inspired by string axiverse scenarios for dark
energy [181, 1024-1027], the single axion-like particle potential consisting of two cosine functions which
unifies the inflaton and DM while reheating the universe [1028, 1029], the power-law potential [183], the
acoustic dark energy [1014, 1030, 1031], the a-attractor-like potential [1032] and others.

Ref. [182] considers two physical models. One that involves an oscillating scalar field and another
with a slowly-rolling scalar field. In the case of the first model of the proposal of Ref. [182], the potential
of the scalar field ¢ is a generalization of the axion potential of the form

V(9) =m?f? (1 — cos(¢/f))" (2.80)

where m is the field mass (for ultralight scalar field m ~ 10728 eV) and f is a decay constant.
Consider the time evolution of the EDE scalar field which may be written as

d+3HG+V'(p) =0, (2.81)

where the dot and the prime denote the derivatives with respect to cosmic time ¢ and field ¢ respectively.

At early times, deep in the radiation era the field ¢ is initially frozen in its potential due to Hubble
friction (H > m) and acts as a cosmological constant with equation of state wgs = —1 (hence the name
Early Dark Energy), but when the Hubble parameter drops below some value (H ~ m) at a critical
redshift z. (for EDE this happens when z. ~ z4 for m ~ 10727 eV) the field becomes dynamical and
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Figure 2.18: Posterior 1D and 2D distributions of the cosmological ACDM parameters reconstructed from
a run to all data (including Planck high ! polarization) in EDE (red) and the ACDM (blue) scenario.

The gray bands correspond to the SHOES determination of Hy (adapted from Ref. [54]).
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begins to oscillate around its minimum which is locally V ~ ¢?" (Fig. 2.15). It thus begins to behave
like a fluid with an equation of state [1033]
n—1

— , 2.82
we =7 (2.82)

The energy density of the field dilutes as a=3(*%4) and thus when n = 1, n = 2 and n > 3 dilutes as
cold dark matter (a3, wg = 0), as radiation (a=*, ws = 1/3) and faster than radiation (a=% with z > 4,
wy > 1/3) respectively. Also when n — oo the energy density dilutes as free scalar field (stiff matter
[1034]) (a=C, wey = 1) i.e. the scalar field is fully dominated by its kinetic energy.

The EDE models are parameterized by the critical redshift z. , the dimensionless quantity 0; = ¢;/ f
(with ¢; the initial value of the scalar field and 0 < 6; < 7) and the peak EDE energy density fraction of
the Universe fgpg(z.) which is given by

Qg(z.)  pepe(2)

) = - , 2.83
fEDE (Z ) Qtot(zc) 3M§1H(ZC)2 ( )
where Qg is the EDE energy density which evolves as [182, 1027]
204 (2.
Qy(z) = s(zc) (2.84)

[(1+20) /(1 + )Pt 41

The fractional contribution of EDE to the cosmic energy budget as a function of redshift, i.e. fppg(2),
is shown in Fig. 2.16 (from the analysis by Ref. [53]). Clearly, for z ~ z. the EDE contributes the most
to the total energy density (~ 10%), for z > z. the EDE is not dynamically important while for z < z
decays away as radiation or faster than radiation leaving the later evolution of the Universe relatively
unchanged. By construction, the EDE models can nicely match the CMB TT power spectrum of ACDM
and therefore of Planck as illustrated in Fig. 2.17. The black solid and the red dashed lines (almost
identical) correspond to ACDM model with Hy = 68.07 kms~! Mpc~! and EDE model with Hy = 71.15
kms~! Mpc~! respectively [53].

EDE models face the fine-tuning issues [1013] and suffer from a coincidence problem [1012]. Refs.
[1013, 1035] proposed a natural explanation for this coincidence using the idea of neutrino-assisted early
dark energy.

EDE modifies growth and H(z) at early times (around recombination) and higher matter density is
required to compensate for this effect in the CMB. Higher matter density contradicts the required low
value of matter density at late times from weak lensing and growth data as shown in Fig. 2.18. In
particular the analysis by Refs. [1036, 1037] has shown that an EDE model can not practically resolve
the Hubble tension because it results in higher value of the late-time density fluctuation amplitude og
and thus the tension with LSS dynamical probes WL, RSD and CC data can get worse. In addition Ref.
[331] argued that any model which attempts to reconcile the CMB inferred value of Hy by solely reducing
the sound horizon results into tension with either the BAO or the galaxy weak lensing data. Thus, a
compelling and full resolution of the Hubble tension may require multiple modifications (more than just
the size of the sound horizon) of the ACDM cosmology.

Recent studies by Refs. [332, 333] reexamining the above issue and using combined data method show
that the EDE scenario remains a potential candidate solution to the Hubble tension. Future observations
will provide data with improved quality and thus will enable more detailed tests of the EDE model.

Many alternative models have been proposed to implement the basic EDE scenario such as Chain
EDE [1038], Axion EDE [1039, 1040], Anti-de Sitter EDE [1040-1045], assisted quintessence EDE [1046],
EDE with extra radiation [1047], EDE in the framework of the ultralight scalar decay to massless fields
[1048] and New EDE (NEDE) [1049-1053] which can potentially address the Hubble tension. In NEDE
a vacuum first-order phase transition of the NEDE scalar field is assumed to have taken place before
recombination in the early Universe. The NEDE sudden transition can be described by a scalar field
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whose potential at some critical point develops two non-degenerate minima (true and false vacuum)?®.

Ref. [1054] develop a phenomenological dark sector with decaying dark energy and ultra-light axions
which addresses the Hubble tension similarly to the EDE and NEDE scenarios and simultaneously can
resolve the Sg tension. Refs. [1055-1057] argue that a EDE model may require a more complicated
dynamics in order to soften both the Hy and Sy tensions. In particular, Ref. [1057] introduced the Early
Dark Sector (EDS) model considering an EDE-dependence of the mass of dark matter. The considering
form of the potential is given by Eq. (2.80) (with n = 3) and the form of the field-dependent mass given
by

_ K3 2.85)

m(g) = moexp(+-) 2

pl

as motivated by the the Swampland Distance Conjecture (SDC) [1058] and its extension to axions [1059—
1062].

Dark radiation

Modifications in the light relic sector can relieve the tension by changing the early-time dynamics of the
Universe [1063, 1064]. The dark radiation model assumes an increased number of light relics [655, 954,
1065-1078] which are weakly interacting components of radiation (i.e. relativistic species). For example
the addition of hidden photons, sterile neutrinos [1079-1082], Goldstone bosons, Majoron [1083], axions
[1084-1086] which are predicted in many extensions of the Standard Model (SM) increases the value in
the effective number of relativistic particles Nog beyond its canonical expectation value stlfv[ ~ 3.044
[1087-1092]. These extra particles modify the time of matter-radiation equality and would lead to a lower
rs sound horizon. As a consequence a lower expansion rate of the Universe and a higher value of Hj
emerges from early-time physics [959] (see Eq. (2.19)).

Another interesting approach was presented by Refs. [860, 1064, 1093-1105], in which dark matter
(DM) interacts with a new form of dark radiation (DR) aimed at solving Hy tension. Assuming the
Effective Theory of Structure Formation (ETHOS) paradigm [1106, 1107] the interaction between the
dark matter and dark radiation components is a 2-to-2 scattering DM + DR < DM + DR.

Neutrino self-interactions

The strong (massive) neutrino self-interactions cosmological model can provide a larger value of Hy and
smaller og, hence can resolve the tensions between cosmological datasets [960]. The strong neutrino
self-interactions were proposed in Ref. [1108] and further studied in Refs. [1063, 1109]. The introduction
of strong self-interacting neutrinos increases the value in the effective number of relativistic particles
Neg = 4.02 £ 0.29 without extra neutrino species. This model modifies the standard neutrino free-
streaming in the early Universe. The onset of neutrino free-streaming is delayed until close to the matter
radiation equality epoch. This late-decoupling of the neutrinos shifts the CMB power spectra peaks
towards smaller scales as compared to ACDM model. This shift modifies the scale of sound horizon r;
that can resolve the Hubble constant Hy tension [960].

Furthermore self-interactions between the neutrinos or between other additional light relics was stud-
ied by Refs. [1110-1126]. The strong neutrino self-interactions models are basically excluded by various
existing data or experimental tests [1116, 1120, 1127-1129]. The analysis by Ref. [1122] leads to conclu-
sion that these models can not ease the Hubble tension more effectively than the ACDM+ N g approach
alone.

Models with nonstandard neutrinos - dark matter interactions were studied by Refs. [1130-1140].
These models increase the value in the effective number of relativistic particle Nog and thus can provide
a solution to the Hubble problem. However, in this class of models it is not possible to solve simultaneously
the Hubble and growth tensions [1138].

281t has recently been pointed out [8, 9, 52, 477, 593, 944, 952] that a similar mechanism in the context of the ultra late
transition taking place at a redshift z < 0.01 can lead to a resolution of the Hubble tension.
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Large primordial non-Gaussianities

The presence of large primordial non-Gaussianity in the CMB can affect the higher-order n-point correla-
tion functions statistics. A non-vanishing primordial trispectrum (n = 4) which is the Fourier transform
of the connected four-point correlation function leads to the non-Gaussian covariance of the angular
power spectrum estimators [1141-1143]. The trispectrum is nonzero when there is a strong coupling be-
tween long-wavelength (super-CMB) modes and short-wavelength modes. The non-Gaussian covariance
scenario (Super-ACDM model) has two extra free parameters relative to those in ACDM and provides a
larger value of Hy reducing tension with late Universe measurements of the Hubble constant [961].

Heisenberg’s uncertainty principle

The Heisenberg’s uncertainty principle [1144, 1145] and the generalized uncertainty Principle [1146-1170]
(see Ref. [1171], for a review) can provide constraints to the values for certain pairs of physical quantities
of a particle and raise the possibility of the existence of observational signatures in cosmological data e.g.
[3, 55]. Ref. [962] has argued that the Heisenberg’s uncertainty principle can provide an explanation for
the Hubble constant Hy tension. In particular the authors equate the luminosity distance (expanded for
low z as in Eqgs. (2.3) and (2.7)) with the photon (assumed massive) Compton wavelength

h

Ao = — 2.86
C me’ ( )

and express the corresponding effective “rest mass” of the photon as a function of the cosmological redshift

B hHy
z2c? [1 +2(1- qo)]
Thus, choosing z = 1, fixing ¢y = —1/2 and setting Hy = 74 kms~!Mpc~! and Hy = 67 kms~! Mpc~!
in Eq. (2.87) find m = 1.61 x 107% kg and m = 1.46 x 107% kg respectively?”. Thus using these results

infer that the tension on the Hy measurements can be the effect of the uncertainty on the photon mass
ie.

: (2.87)

Am AHO

— = ~0.1. 2.88

m Ty (2.88)
Note that the non-zero photon mass could emerge through the Heisenberg’s uncertainty principle and

through the recent analysis of the Standard-Model Extension® [1175, 1176].

Early modified gravity
A ST modified gravity model can be described by the following action

S — / A/ =g {F;")R _ %aﬂaaﬂ _A—V(0)| 45, (2.89)
where R is the Ricci scalar, A is the cosmological constant, S, is the action for matter fields, o is a scalar
field non-minimally coupled to the Ricci scalar, F(o) is the coupling to the Ricci scalar and V(o) is the
potential for the scalar field. A variety of possible types of the non-minimal coupling of the scalar field
to the Ricci F(o) and of the potential for the scalar field which can alleviate the Hy tension by reducing
the sound horizon scale through modified early cosmic expansion, has been considered in the literature
[1177-1181].

In particular Ref. [963] introduces a model of early modified gravity®'. This model has a non-minimal
coupling of the form [963]
F(o) = M} + &o? | (2.90)

29The current upper limit on the photon mass is m = 10734 kg [1172].

30For studies of the massive photons in the Standard-Model Extension, see Refs. [1173, 1174].

31Tt should not be confused with the previously introduced differed model with the same name 'Early Modified Gravity’
[1182-1184]. In this model gravity is allowed to be modified after BBN, before and during recombination.
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and a quartic potential
Aot

V(o) = 1 (2.91)
where A\ and £ are dimensionless parameters. For £ = 0 this model reduces to the EDE model of Ref.
[183]. In the early modified gravity model, gravity changes with redshift in such a way that the Hj
estimate from CMB can have larger values. Ref. [963] has shown that this model can resolve the Hubble
tension and at the same time, in contrast to an EDE model, results in lower value of the late-time
density fluctuation amplitude og and thus the tension with LSS dynamical probes WL, RSD and CC
data can be at least partially resolved. In general early modified gravity model compared to the EDE
can provide a better fit to LSS data and can imply better predictions on LSS observables.



Chapter 3

Challenges for ACDM: Other Tensions

In this Chapter we provide a list of the non-standard signals in cosmological data and the tensions of the
ACDM cosmology beyond the Hubble tension which is currently the most widely studied and among the
most statistically significant tensions. In many cases the signals are controversial and there is currently
debate in the literature on the possible physical or systematic origin of these signals. For completeness
we refer to all signals we could identify in the literature referring also to references that dispute the
physical origin of these signals.

3.1 Growth tension

The Planck/ACDM parameter values in the context of GR indicate stronger growth of cosmological
perturbations than the one implied by observational data of dynamical probes. In this section we review
the observational evidence for this tension also known as the €,,, — o tension or simply ’growth tension’.

3.1.1 Methods and data

The value of the growth parameter combination Sg = 0g(0,,,/0.3)%% (where oy is discussed in more detail
in what follows) is found by weak lensing (WL) [144, 145, 1185-1189], cluster counts (CC) [1190-1195]
and redshift space distortion (RSD) data [4, 67, 146-148, 278, 1196-1198] to be lower compared to the
Planck CMB (TT,TE,EE+lowE) value Sg = 0.834 £ 0.016 [14] at a level of about 2 — 30 as shown' in
Table 3.1 and in Fig. 3.1 (see Refs. [10, 141], for a recent review of this tension). The tension is also
confirmed by the latest ACT+WMAP CMB analysis [554] which finds Ss = 0.840 + 0.030.

This is also expressed by the fact that dynamical cosmological probes (WL, RSD, CC) favor lower
value of the matter density parameter Qg,, ~ 0.26+£0.04 [344] than geometric probes (CMB, BAO, Snla).
This could be a signal of weaker gravity than the predictions of General Relativity in the context of a
ACDM background [4, 67, 147, 148, 1199] (for a recent study on a weak gravity in the context of a ACDM
background, see Ref. [6]).

The observational evidence for weaker growth indicated by the dynamical probes of the cosmic ex-
pansion and the gravitational law on cosmological scales may be reviewed as follows:

IThe definition Sg = 08(Qom /0.3)® with a = 1/2 has been uniformly used for all points. In those cases where o # 1/2
has been used in some references, the value of Sg with o = 1/2 was recalculated (along with the uncertainties) using the
constraints on og and {20, shown in those references, assuming their errors 0,5 and oq,,, are Gaussian. The errors of the
Sg constraints are propagated according to U%s = (QOm/O.3)2"‘a’§8 + O'gaz(ﬂom/o‘?))Qa_ZU?zOm, with o = 1/2.
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Table 3.1: The value of the structure growth parameter combination Sz = 05(Q0,,/0.3)%?, the matter
density parameter g, and the the power spectrum amplitude og at 68% CL through direct and indirect

measurements by different methods.

Dataset Sy Qom os Refs.
CMB Planck TT,TE,EE+lowE 0.834£0.016  0.3166 =0.0084 0.812 % 0.007 [14]
CMB Planck TT,TE,EE+lowE+lens.  0.832+0.013  0.3153 4+ 0.0073  0.811 4 0.006 [14]
CMB ACT+WMAP 0.832+0.013  0.3153+0.0073 0.840+0.030  [554]
WL KiDS-1000 0.75970-027 - - [1200]
WL KiDS + VIKING + DES-Y1 0.7551 0057 - - [1186]
WL KiDS + VIKING + DES-Y1 0.76210 055 - - [1201]
WL KiDS+VIKING-450 0.71670033 - - [1202]
WL KiDS+VIKING-450 0.7370 030 - - [1203]
WL KiDS-450 0.651 + 0.058 - - [1187]
WL KiDS-450 0.745 + 0.039 - - [1188]
WL DES-Y3 0.75910-025 0.2909-052 0.78310578  [1204, 1205]
WL DES-Y1 0.7821 0057 - - [550]
WL HSC-TPCF 0.80470055 0.346709%8 0.76610 059 [1206]
WL KiDS-1000 pseudo-C) 0.754 10027 - - [1207]
WL HSC-pseudo-C 0.78015-939 - - [1208]
WL CFHTLenS 0.740+0-033 - - [1209]
WL+CMB lens. DES-Y3+SPT+Planck 0.7370 03 0.2570 0% 0.827008 [1210]
WL4GC? 0.79570-039 0.38375028 0.7185-0%1 [1211]
WL+GC+CMB lensing® 0.7781+0.0094  0.3057005:  0.774+0.033  [1212]
WL+GC KiDS-1000 3 x 2pt 0.76613:52 0.3051001% 0.7610050 [1213]
WL+GC KiDS-450 3 x 2pt 0.742 + 0.035 0.24310-09° 0.83270:0% [144]
WL+GC KiDS+GAMA 3 x 2pt 0.80015-922 0.3370-08 0.7819-08 [1214]
WL+GC DES-Y3 3 x 2pt 0.776 0 01+ 0.33971 0052 0.7337005% [1215]
WL+GC DES-Y1 3 x 2pt 0.77310 050 0.26710:0% 0.8171005% [145]
WL+GC KiDS+VIKING-450+BOSS ~ 0.728 +0.026 0.32370011  0.702+£0.029  [1210]
GC BOSS DRI12 bispectrum 0.751 % 0.039 0.3240:01 0.72275:0% [375]
GC BOSS+eBOSS 0.72 £ 0.042 - - [1217]
GC BOSS galaxy power spectrum 0.703 +0.045 0.293 +0.012  0.713 +0.045 [376]
GC BOSS power spectra 0.736 + 0.051 0.303+£0.0082  0.733 £+ 0.047 [374]
GC BOSS DR12 0.729 + 0.048 0.31779515  0.710+£0.049  [1216]
GC+CMB lensing DESI4Plank 0.73 £0.03 - - [1218]
GC+CMB lensing unWISE+4Plank 0.784+0.015  0.307+0.018  0.77540.029  [1219]
CC AMICO KiDS-DR3 0.78 +0.04 0.24700% 0.86 +0.07 [1220]
CC SDSS-DRS 0.7970 9% 0.2275:9% 0.91701% [1194]
CC ROSAT (WtG) 0.77 4 0.05 0.26 + 0.03 0.83 + 0.04 [1221]
CC DES-Y1 0.6500% 0.17910034 0.8570 06 [1189]
CC XMM-XXL 0.83+0.11 0.40 + 0.09 0.72 +0.07 [1222]
CC SPT-tSZ 0.749+£0.055  0.276+0.047  0.7814+0.037  [1223]
CC Planck tSZ 0.785 + 0.038 0.32 + 0.02 0.76 4 0.03 [1224]
CC Planck tSZ 0.792 + 0.056 0.31 +0.04 0.78 + 0.04 [1193]
RSD+BAO-Pantheon+CC 0.7770:0%0 0.288 +0.008  0.79373:918 [1225]
RSD+BAO-+Pantheon 0.7620-050 0.286 +0.008  0.780870921  [1227]
RSD 0.73970-0%0 0.25470-0%% 0.8047007% [1225]
RSD 0.70010 035 0.20119-93¢ 0.85715-045 [510]
RSD 0.74740.029  0.27940.028  0.775+ 0.018 [67]
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Weak lensing

The weak gravitational lensing from matter fluctuations along the line of sight slightly distorts the shapes
(shear) and size (magnification) of distant galaxies (see Ref. [1226-1228], for a review). This distortion is
a powerful and principal cosmological probe of the mass distribution which can be predicted theoretically
[1229-1232]. Using various statistical methods shape distortions can be measured by analyzing the
angular shear correlation function, or its Fourier transform, the shear power spectrum [1200, 1208]. A
special type of WL is the galaxy-galaxy lensing (GGL) [1233, 1234] which is the slight distortion of shapes
of source galaxies in the background of a lens galaxy arising from the gravitational deflection of light due
to the gravitational potential of the lens galaxy along the line of sight.

The WL surveys, the Kilo Degree Survey (KiDS) [1235-1238], the Subaru Hyper Suprime-Cam lensing
survey (HSC) [1239, 1240] and the Dark Energy Survey (DES) [1241, 1242] provide data useful for cosmic
shear studies. In particular WL measurements of Sg obtained from the shear catalogues by the lensing
analysis of the Canada-France-Hawaii Telescope Lensing (CFHTLenS) [1209, 1243-1247] and the KiDS
[1187, 1188] appear to be lower compared to the Planck value at a level of about 30. The analysis by Ref.
[1188] adopting a spatially flat ACDM model and using the KiDS-450 data reports Sg = 0.745 £ 0.039
which results in 2.30 tension with the value estimated by Planck15. This KiDS-Planck discordance has
also been investigated in Ref. [1187] where applying the quadratic estimator to KiDS-450 shear data
reports Sg = 0.651 + 0.058 which is in tension with the Planck2015 results at the 3.20 level. Using a
combination of the measurements of KiDS-450 and VISTA Kilo-Degree infrared Galaxy Survey (VIKING)
[1248], Ref. [1203] finds Sg = 0.73770 538 which is discrepant with measurements from the Planck analysis
at the 2.30 level. For the KiDS+VIKING-450 (or KV450) Ref. [1202] reports an updated constraint of
Sg = 0.71670:033. Meanwhile, using the DES first year (DES-Y1) data assuming a ACDM model Ref.
[550] reports Sg = 0.78275-027 which is in ~ 2.30 tension? with the Planck18 result. The constraint on
Sg from the combined tomographic weak lensing analysis of KiDS + VIKING + DES-Y1 adopting a flat
ACDM model by Ref. [1201] is Sg = 0.76270:92% which is in 2.50 tension with Planck18 result and by
Ref. [1186] is Sg = 0.75570 03] which is in 3.20 tension with Planck18 result. Analysing the most recent
KiDS cosmic shear data release (KiDS-1000 [1250]) alone and assuming a spatially flat ACDM model
the value Sg = 0.75970521 was estimated by Ref. [1200]. Analysing the first-year data of HSC in the
context of the flat ACDM model and using the pseudo-spectrum (pseudo-C;) method®, Ref. [1208] finds
Sg = 0.780f8:8gg and adopting the standard two-point correlation functions (TPCF) estimators, {1, Ref.
[1206] finds Sg = 0.8041“8:833. Recently, a analysis of the KiDS-1000 data using pseudo-C; method by Ref.
[1207] has lead to Sg = 0.75470:027. The latest cosmic shear analysis of the DES third Year (DES-Y3)
[1204, 1205] in the context of the ACDM model constrains the clustering amplitude as Sg = 0.75975-025.
Also, recently Ref. [1210] found Sg = 0.73f8:8§ using the cross-correlations of galaxy positions and shears
from DES-Y3 with CMB lensing maps from SPT and Planck.

The analysis of galaxy clustering and weak gravitational lensing of the DES-Y1 data combining three
two-point functions (the so-called 3 x 2pt analysis) of gravitational lensing and galaxy positions (the
cosmic shear correlation function, the galaxy clustering angular autocorrelation function, the galaxy-
galaxy lensing cross-correlation function) by Ref. [145] gives Sg = 0.77375:020 and Qo,, = 0.26715:939
in flat ACDM model. This value is in ~ 2.30 tension with Planckl8 result. In the latest analysis by
Ref. [1215] the constraints Sg = 0.776 70017 and Qo = 0.33970 537 in flat ACDM model are obtained
using an improvement in signal-to-noise of the DES-Y3 3 x 2pt data relative to DES-Y1 by a factor
of 2.1. Also, Ref. [1213] using 3 x 2pt analysis of KiDS-1000+BOSS+ 2-degree Field Lensing Survey®
(2dFLenS) [1255] data finds Sg = 0.76670075. While previous analyses 3 x 2pt of KiDS+GAMA data
and KiDS-450+B0SS+2dFLenS data by Ref. [1214] and Ref. [144] obtained Sg = 0.80079:92) and

4This tension was calculated by Ref. [1249]. The authors have explored a number of different methods to quantify the
tension relative to the best-fit Planck2018 cosmology.

5For a realistic experiment the pseudo-C) statistics from cut-sky maps which provide incomplete data are applied in
order to obtain unbiased estimates of the angular power and cross-power spectra by correcting for the convolution with the
survey window (see Refs. [1251-1254], for details of this method).

Shttps://2dflens.swin.edu.au
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Ss = 0.742 + 0.035 respectively. A combined analysis of KiDS+VIKING-450+BOSS data by Ref. [1210]
resulted in Sg = 0.728 4+ 0.026. Performing a Joint analysis of galaxy-galaxy weak lensing and galaxy
clustering from first-year data of HSC and SDSSS-ITI/BOSS DR11 Ref. [1211] found Sg = 0.79575-0%.
Also, from a combined analysis of KiDS-1000 and DES-Y1 cosmic shear and galaxy clustering, eBOSS
quasars, DESI, Planck CMB lensing data Ref. [1212] obtains a constraint Sg = 0.7781 + 0.0094.

Clearly, the tension between WL and CMB measurements is a level more than 20 as seen in Table
3.1 and in Fig. 3.1. In addition, the tension with more recent measurements persists at the level of ~ 20.
Finally, combined analyses of WL with galaxy clustering does not change the tension level.

Cluster counts

Galaxy clusters which are related to peaks in the matter density field on large scales constitute a probe
of the growth history of structures [1256, 1257] (see Refs. [1258, 1259], for a review). Current analy-
ses from the number counts of galaxy clusters use catalogs from surveys at different wavelengths of the
electromagnetic spectrum. Such surveys include Planck”, South Pole Telescope (SPT) and Atacama Cos-
mology Telescope (ACT) in the microwave (millimeter) via the thermal Sunyaev-Zel’dovich (tSZ) effect®
[1263-1265], extended Roentgen survey with an imaging telescope array (eROSITA?) [1266-1269] in the
X-ray that finds extended sources and measures the X-ray luminosity and temperature, Sloan Digital
Sky Survey'? (SDSS) and Dark Energy Survey'! (DES) in the optical/NIR. These surveys find peaks
in the galaxy distribution and measure the richness of the corresponding clusters. The microwave/tSZ
and X-ray surveys detection techniques are based on the hot ICM [1270, 1271] and in some cases require
auxiliary data to obtain useful constraints e.g. redshift estimates (see Refs. [1272, 1273], for recent
methods).

The CC method is based on the predicted halo abundance (number density) n(M, z) of halos with
mass less than M at redshift z which is also known as the halo mass function (HMF). This formalism
was originally introduced by Press and Schechter [1274]. A general mathematical form for the comoving
number density expression of haloes is e.g. [1275-1279)]

dn %dlno_l

at =% (3.)

where pp, = perit§dn is the mean matter density of the Universe, o is the rms variance of the linear density
field smoothed on a spherical volume containing a mass M, and f(o) is a model-dependent ‘universal’ halo
multiplicity function'?. There are numerous parametrizations of the multiplicity function f(o) based on
numerical N-body simulations or theoretical models. A popular parametrization provided by Ref. [1279]

1S
g

flo)=A [(b)_x + 1} e (3.2)

where A, x, b, ¢ are four free parameters that depend on the halo definition and need to be calibrated.
Measurements of the abundance of galaxy clusters n(M, z) provide consistent constraints on the
density of matter g, the root mean square density fluctuation og, the parameter combination Sg(a) =
08(Q0m /0.3)* e.g. [1200, 1208, 1280] (where o ~ 0.2 — 0.6 and Sg = Sg(a = 0.5)), the dark energy
equation-of-state w and the sum of the neutrino masses » m, (massive neutrinos can suppress the
matter power spectrum on small scales and this directly affect the growth of cosmic structure) [186].
More recently, Ref. [1281, 1282] used a method of clustering measurements at higher redshift (z = 4—10)

"https://www.cosmos.esa.int

8The inverse Compton scattering between CMB photons and hot electrons in the intracluster medium (ICM) (see Refs.
[1260-1262], for a review).

mttps://www.mpe.mpg.de/eROSITA

Ohttps://www.sdss.org/

Hhttps://waw.darkenergysurvey.org

I2For a publicly available cluster toolkit Python package, see in https://cluster-toolkit.readthedocs.io/en/latest/
source/massfunction.html.
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based on UV galaxy luminosity function data from the Hubble Space Telescope e.g. [1283, 1284]. They
derive the large-scale matter clustering amplitude to be og = 0.761513.

Using cluster abundance analysis in the SDSS DRS for a flat ACDM cosmological model with massive
neutrinos Ref. [1194] finds Sg = 0.7975:03. Ref. [1221] using Weighting the Giant (WtG) [1285, 1286]
lensing analysis of the X-ray ROentgen SATellite (ROSAT) cluster catalogs [1287] finds Sg = 0.77 £0.05.
The analysis of the counts and weak lensing signal of of the DES-Y1 dataset by Ref. [1189] gives
Sg = 0.6540.04 and Qo,,, = 0.26775:032 in flat ACDM. Also, assuming a flat ACDM model and performing
a galaxy cluster abundance analysis in the AMICO KiDS-DR3 catalogue Ref. [1220] obtains Sg =
0.78 £ 0.04.

Using galaxy clusters observed in millimeter wavelengths through the tSZ effect Ref. [1224] reports
Sg = 0.785 + 0.038 assuming ACDM model. The analysis of the Planck 2015 cluster counts via the tSZ
signal by Ref. [1193] finds Ss = 0.792 + 0.056. Recently, assuming a flat ACDM model, in which the
total neutrino mass is a free parameter, the analysis of SPT tSZ cluster counts by Ref. [1223] results
in Sg = 0.749 £ 0.055. Using X-ray clusters detected from the XMM-XXL survey [1288] for a flat
ACDM cosmological model Ref. [1222] reports Sg = 0.83 £ 0.10. Also, constraints on structure growth
parameter combination Sg from cluster abundance data have been obtained by Ref. [1289-1294]. For
example using GalWCat19 [1295], a catalog of 1800 galaxy clusters was derived from the SDSS-DR13
[1296] and assuming a flat ACDM cosmology Ref. [1290] measured the matter density and the amplitude
of fluctuations to be Q,, = 0.31070523 + 0.041 (systematic) and og = 0.81070:03% 4 0.035 (systematic)
respectively.

The results of Sg from all cluster count experiments as seen in Table 3.1 and in Fig. 3.1 are in agree-
ment with WL measurements and similarly prefer a lower value compared to the CMB measurements.

Redshift space distortion-Galaxy clustering

Peculiar motions of galaxies falling towards overdense region generate large scale galaxy clustering,
anisotropic in redshift space. Measuring this illusory anisotropy that distorts the distribution of galaxies
in redshift space (i.e. RSD) we can quantify the galaxy velocity field. This important probe of LSS can
be used to constrain the growth rate of cosmic structures [1297-1299].

In particular the RSD is sensitive to the cosmological growth rate of matter density perturbations f
which depends on the theory of gravity and is defined as [1300-1302]

- dln 5(@) y(a)
fla) = dma = [Qm (@) (3.3)
where a = ?12 is the scale factor, § = %” is the matter overdensity field (with p the matter density of

the background and dp its first order perturbation) and ~ is the growth index e.g. [1303]. The nearly
constant and scale-independent value v ~ % ~ 0.545 corresponds to General Relativity (GR) prediction
in the context of ACDM e.g. [1301].

The observable combination fog(a) = f(a)-o(a) is measured at various redshifts by different surveys
as a probe of the growth of matter density perturbations. On subhorizon scales (i.e. k? > a?H?) the
theoretically predicted value of this product can be obtained from the solution 6(a) of the equation
[112, 1304-1308)

5"(a) + (2 2 ((5))) '(a) - 2%%6232(%?5@) 0, (3.4)
using the definition
2o o

where G is Newton’s constant as measured by local experiments, G is the effective gravitational coupling
which is related to the growth of matter perturbation, o(a) is the redshift dependent rms fluctuations of
the linear density field within spheres of radius R = 8h~'Mpc and oy is its value today.
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Hence, the more robust bias free quantity fog is given by [1309]
fos(a) =

g8

sa=D ad'(a), (3.6)

RSD growth data in the form of fog'® have been provided by wide variety of surveys including the 2-degree
Field Galaxy Redshift Survey (2dFGRS) [1312, 1313], VIMOS-VLT Deep Survey (VVDS) [1314], SDSS
[340, 1315-1319], WiggleZ [1320], 6dFGS [355, 1321], Galaxy and Mass Assembly (GAMA) [1322], BOSS
[48, 1323-1325], Subaru Fiber Multi-Object Spectrograph (FMOS) galaxy redshift survey (FastSound)
[1326], VIMOS Public Extra-galactic Redshift Survey (VIPERS) [1327-1329], eBOSS [344, 1330-1335],
DESI [451, 452]. Using such data the Qq,, and og parameters in the context of a ACDM background
can be constrained. Thus, Ref. [67] using a compilation of 63 RSD datapoints finds the ACDM best fit
value Qq,, = 0.279 4+ 0.028 and og = 0.775 + 0.018. Ref. [510] using RSD selected data and assuming
ACDM model reports Sg = 0.70070935, Qqp,, = 0.20115038 and oy = 0.85715 035 which are in 3¢
tension with the Planck 2018 results. Recently, using RSD data and the RSD+BAO+Pantheon and
RSD+BAO+Pantheon+CC dataset combinations Ref. [1225] finds Sg = 0.73915:0%, Ss = 0.76270 052
and Sg = 0.7771502% respectively.

Galaxy clustering methods, such as the galaxy power spectrum and bispectrum have also been used to
constrain Sg. Constraints from the BOSS galaxy power spectrum [376] gave Sg = 0.703 +0.045 and from
BOSS DR12 bispectrum [375] gave Sg = 0.751+0.039. Previous analysis of the BOSS DR12 data by Ref.
[1216] gave Ss = 0.729 4+ 0.048. A analysis of the power spectrum of eBOSS by Ref. [1217] resulted in
Ss = 0.720 £ 0.042. Recently, using the BOSS power spectra Ref. [374] found Sg = 0.736 + 0.051. Also,
the combination of the auto- and cross-correlation signal of unWISE 1* galaxies [1337] and Planck CMB
lensing maps [1338] by Ref. [1219] gave Ss = 0.784 £ 0.015. Finally, using the luminous red galaxies of
the DESI in combination with Planck CMB lensing maps Ref. [1218] found Sg = 0.73 & 0.03.

Clearly, as seen in Table 3.1 and in Fig. 3.1 the analyses of RSD data gives Sg values in tension with
CMB measurements at level more than 20, in agreement with other dynamical cosmological probes (WL
and CC).

3.1.2 Theoretical models

Non-gravitational mechanisms can address the Sg tension (see Ref. [1339], for a review). Such mechanisms
include the following;:

e Dynamical dark energy models [366, 632, 633, 1340-1361] and running vacuum models [685—
688, 690, 1362-1364], which modify the cosmological background H(z) to a form different from
ACDM (see Subsection 2.3.1). This modification may involve the presence of dynamical dark en-
ergy dominant at late cosmological times or at times before recombination.

o Interacting dark energy models, which modify the equation for the evolution of linear matter fluc-
tuations as well as the H(z) cosmological background [837-840] as discussed in Subsection 2.3.2.
This class of models can address the structure growth og tension between the values inferred from
the CMB and the WL measurements.

o Effects of massive neutrinos [955, 1354, 1365-1370] which are relativistic at early times and con-
tribute to radiation while at late times they become non-relativistic but with significant velocities
(hot dark matter) (see Ref. [1371-1374], for a review). The change of radiation to hot dark matter
affects the Hubble expansion. Simultaneously the residual streaming velocities are still large enough
at late times to slow down the growth of structure [1375]. This effect of massive neutrinos slows
down the growth as required by the RSD data and relieves the Sg tension coming from WL data
[1369].

I3For an extensive compilation of RSD data points fos, see in Ref. [4] and for other compilations, see in Refs. [I, 67,
148, 1196, 1310]. Also for a publicly available RSD likelihood for MontePython see in Refs. [1198, 1311].

1 Wide-field Infrared Survey Explorer (WISE) [1336] is a NASA infrared astronomy space telescope and is mapping the
whole sky.
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Figure 3.1: The value of Sg with the 68% CL constraints derived by recent measurements.
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o Primordial magnetic fields [984, 1376] (see Ref. [1377-1379], for a review) induce additional mildly
non-linear, small-scale baryon inhomogeneities present in the plasma before recombination. The
required field results in a reduction of the sound horizon scale at recombination and has the potential
to resolve both the Hy and Sy tension [985, 986, 1380].

o Non-thermal dark radiation [1381] seems to help alleviate the Sg tension to a great extent. However,
the inclusion of BAO data reduces significantly the quality of fit of this model.

In addition to these non-gravitational mechanisms discussed above that can slow down growth at low
redshifts a possible interesting new fundamental physics approach can also reduce the Sg tension. Such an
approach is most likely to affect three basic observable parameters: the Hubble parameter H(z, w) (with
w the dark energy equation of state parameter), as well as the effective Newton constants for growth of

perturbations
Geff (Zv k)

ne(z, k) = —a (3.7)
and lensing . y
2G’(ka) = % ’ (38)

where G is the locally measured value of the Newton’s constant. According to ACDM H(z) = H(z,w =
—1)7 HGg = 1, ZG =1.

The Bardeen potentials [1382] (the Newtonian potential ¥ and the spatial curvature potential @)
appear in the scalar perturbed FLRW metric in the conformal Newtonian gauge [582, 1383, 1384]

ds® = —(1+20)dt? + a2(1 — 2®)di? | (3.9)

The LSS probes are sensitive to the Bardeen potentials ¥ and ®. In particular the WL probe is
sensitive to V2(¥ + ®). The galaxy clustering arises from the gravitational attraction of matter and is
sensitive only to the potential ¥. The RSD probe is sensitive to the rate of growth of matter density
perturbations f (see Eq. (3.3)) and provides measurements of fog (see Eq. (3.6)) that depends on the
potential W.

At linear level, in modified gravity models, using the perturbed metric Eq. (3.9) and the gravitational
field equations the following phenomenological equations in Fourier space emerge for the scalar pertur-
bation potentials defining the functions ug(a, k) and $g(a, k) on subhorizon scales (i.e. k% > a?H?)

E* (U + @) = —87GX¢(a, k)a*pA | (3.10)

kU = —47Guc(a, k)a’pA | (3.11)

where p is the matter density of the background, A the comoving matter density contrast defined as
A =6+ 3Ha(l +w)v/k which is gauge-invariant [330], w = p/p is the equation-of-state parameter and
vt = —V'u is the irrotational component of the peculiar velocity u [587].

Using the gravitational slip parameter 7 (or anisotropic stress parameter) which describes the possible
inequality [931, 1385] of the two Bardeen potentials that may occur in modified gravity theories

®(a, k)
= .12
n(a, k) T(a k)’ (3.12)
the two LSS parameters ug and X are related via
1

So(a, k) = gcla k) [1+n(a, k)] (3.13)

The the Hubble parameter H(z) is usually parametrized as wCDM

1/2

H(2) = Ho [Qom(1+ 2)* + (1 = Qo) (1 + 20| 7, (3.14)
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while the two LSS parameters pug and X do not have a commonly accepted parametrization. A model
and scale independent parametrization for pg and Y which reduce to the GR value at early times and
at the present time as indicated by solar system (ignoring possible screening effects) and BBN constraints
(g =1and p, =0for a =1 and pg =1 for a <« 1) [1386-1388] is of the form [4, 67, 148, 1389]

z z
=1+g,1-a)"—ga(1 —a)”" =14 ga(-——)" — ga(——)*", 3.15
pe =1+ ga(l —a)" = ga(1 —a) +g(1+z) g(Hz) (3.15)
z z
Yo=1 1—a)™ — (1l —a)?™ =1 m_ 2m 3.16
G + (1 —a)™ —gp(1 —a) +gb(1+z) 9”(1+z) ; (3.16)

where g, and g, are parameters to be fit and n and m are integer parameters with n > 2 and m > 2.
Alternatively, a rapid transition parametrization is of the form [52, 593]

pa(2) = ps + Apg O(z — z) (3.17)
Y5(2) =25 + AT O(z — 2) (3.18)

where © is the Heaviside step function, z; is a transition redshift, uZ and X2 correspond to z > z; and
ps and X5 correspond to z < z.

Various studies utilize modified gravity theories including Teleparallel theories of gravity® [1402, 1403]
(see Ref. [1404], for a review), Horndeski theories [1405, 1406] or theories beyond Horndeski [1407] to
reduce the effective Newton’s constant Geg at low redshifts and slow down growth at low redshifts. The
above parametrizations can be realized in the context of physical models based on the above theories.

3.2 CMB anisotropy anomalies

There is a wide range of other less discussed no-standard signals and statistical anomalies of the large angle
fluctuations in the CMB [1408] with a typical 2 to 3o significance. As mentioned a main assumption of the
ACDM model is that the fluctuations are Gaussian and statistically homogeneous and isotropic. Diverse
anomalies have been noticed in the CMB at large angular scales by the space missions Cosmic Background
Explorer (COBE) [1409], Wilkinson Microwave Anisotropy Probe (WMAP) [1410] and Planck satellite
[1411], which appear to violate this assumption (see Refs. [149, 150], for a review). Ref. [1412] presents
possible explanations of the observed CMB anomalies and Ref. [1413] explores the kinetic and the
polarized Sunyaev-Zel’dovich effects as potential probes of physical models of these anomalies.

In what follows we discuss some of these signals. Note that some of these may not be independent!S.
Some of these signals have been attributed to the look-elsewhere effect. Based on this effect any large
dataset will have a small number of peculiar features when there is a careful search for such features.
However, this argument may not be applicable when the considered statistics are simple and generic as
are most of the signals discussed below (see Refs. [1415-1417], for a detailed discussion).

3.2.1 Hints for a closed Universe (CMB vs BAO)

The Universe under the assumption of the cosmological principle is described by the Friedmann-Lemaitre-
Roberson-Walker (FLRW) metric

d 2
ds? = —di* + a(t)? 1_77'[(73 +r2(d? + sin20d?) | | (3.19)
where K characterizes the constant spatial curvature of the spatial slices with K = —1,0, 41 correspond-

ing to open hyperbolic space (negative spatial curvature), flat Euclidean space (zero spatial curvature),

15Many authors have studied the extensions of the Teleparallel gravity such as the scalar-torsion theories of gravity
[1390-1396] and the Teleparallel Horndeski theories [1397—1401].

16The covariance of CMB anomalies in the standard ACDM model has been studied by Ref. [1414]. This study focusing
on the correlation of observed anomalies (i.e. the relationship or connection between all of them) examines the independence
of large-angle CMB feature quantities.
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and closed hyperspherical space (positive spatial curvature) respectively. The curvature density parame-
ter is defined as Qi = —K/(Ha)? so that a closed Universe corresponds to Qg < 0 and an open Universe
to Qg > 0. This parameter plays a crucial role in determining the evolution of the Universe, and is
closely related with the early Universe physics.

The Planck18 temperature and polarization data [14] show a preference (~ 3.40) for a closed Universe
(Qx < 0) in the context of ACDM. In particular using these data from Planckl8 the curvature density
parameter was constrained to be —0.095 < Qx < —0.007 at 99% C.L [14, 1418]. This anomaly may
be connected with other asymmetries of the CMB anisotropy spectrum discussed below. The preference
for closed universe however disappears when the CMB data are combined with the BAO data. Refs.
[1419-1421] pointed out that Planck+BAO can give a biased result because Planck and BAO are in
disagreement at more than 30. Combining Planckl18 data with recent BAO measurements the curvature
density parameter was estimated to be Qg = 0.0008 £ 0.0019 [1419-1421] in agreement with a spatially
flat Universe. Using the full-shape galaxy power spectrum measurements P(k), Ref. [1422] has also
confirmed that the Planck data are in tension with both the full-shape power spectrum and BAO with
respect to Q. The recent study by Ref. [1423] confirms the tension between Planck and BAO data
in the context of cosmic curvature. Ref. [1423] used a new statistical analysis (the alternative Planck
CamSpec likelihood TTTEEE instead of Plik as discussed in Ref. [1424]) to show that Planck favors a
closed Universe at more than 99% CL. However, Planck+BAO was again found to be in agreement with a
spatially flat Universe with Qx = 0.0004 + 0.0018 thus confirming previous studies by Refs. [1420, 1421].

In an effort to further investigate this tension between Planck and BAO data, the analysis of Ref.
[1425] combined Planckl8 CMB temperature and polarization data with cosmic chronometer measure-
ments and was lead to confirm that the Universe is consistent with spatial flatness to O(1072) level.

A positive curvature (closed Universe) may be a plausible source of the anomalous lensing amplitude
[1419-1421] (see Subsection 3.2.8).

3.2.2 Anomalously strong ISW effect

The decay of cosmological large-scale gravitational potential ¥ causes the integrated Sachs-Wolfe (ISW)
effect [1426] which imprints tiny secondary anisotropies to the primary fluctuations of the CMB and is a
complementary probe of dark energy e.g. [1427]. Using a stacking technique in the CMB data (see Refs.
[1428, 1429], for a detailed discussion) anomalously strong integrated Sachs—-Wolfe (ISW) signal (> 30)
has been detected for supervoids and superclusters on scales larger than 100h~*Mpe [1430, 1431]. This
stronger than expected within standard ACDM signal of the ISW effect first emphasised in Ref. [1432]
has been studied by Refs. [1433-1439].

In particular the analysis by Ref. [1438] for DES data alone found an excess ISW imprinted profile
with Argw = ATt /ATHheory ~ 4.1 + 2.0 amplitude (where A;sy = 1 corresponds to the ACDM
prediction). Also a combination with independent BOSS data leads to Ajgyw = 5.2+ 1.6. This is in 2.60
tension with ACDM cosmology.

The average expansion rate approximation (AvERA) inhomogeneous cosmological simulation [1440]
uses the separate Universe conjecture to calculates the spatial average of the expansion rate of local
mini-Universes predicts. It indicates under the inhomogeneity assumption, about ~ 2 — 5 times higher
ISW effect than ACDM depending on the [ index of the spherical power spectrum [1441]. Thus large scale
spatial inhomogeneities could provide an explanation to this ISW excess signal. Ref. [1442] uses angular
cross-correlation techniques and combines several tracer catalogues to report A;sw =~ 1.38 + 0.32.

Ref. [1443] investigated the early Integrated Sachs-Wolfe (eISW) effect (see e.g. [1444, 1445]) which
is assumed to occur soon after recombination (30 < z < 1100), due to the presence of a non-negligible
radiation. Constraints were thus imposed on the parameter A.;sw introduced by Ref. [1446]. Using
Planck CMB data, this parameter was constrained to A.;syw = 0.988 £ 0.027, in perfect agreement with
ACDM. Note that in previous studies the parameter A.;syw was constrained to A.rsw = 0.979 £ 0.055
using data from WMAPT+SPT [1446], to Acrsw = 1.06 +0.04 from the Planck 2015 data release [1447],
and to Acrsw = 1.064 + 0.042 from the Planck 2018 temperature data alone [1448].
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In general the reported A;syw amplitude varies in the literature depending on the dataset and the
assumptions of the analysis. Further investigation of this issue is needed.

3.2.3 CMB cold spot

The cold (blue) spot was first found in WMAP 1-year temperature data by Ref. [1449] and was confirmed
in Planck data [150, 1429, 1450] in the southern hemisphere at the galactic longitude and latitude (I,b) =
(209°, —579). It is a statistical anomaly of the large-angle fluctuations in the CMB indicating non-
Gaussian features. This inconsistency with Gaussian simulations has a p-value of ~ 1%.

The cold spot is an unusually large region of low temperature with the mean temperature decrement
AT =~ —100 uK and is not consistent with the prediction of gaussianity of the standard ACDM model
[1451-1453).

Refs. [1437, 1454, 1455] pointed out that the anomalous nature of the cold spot corresponds to a
rather cold area with an angular radius in the sky of about 5° — 10° from the centre surrounded by a hot
ring.

Possible approaches for the explanation of the Cold Spot include: non-Gaussian feature due to a large
statistical fluctuation [1449], an artifact of inflation [1451], the foreground [1452, 1456], multiple voids
[1457], the imprint of a supervoid (about 140 — 200 Mpc radius completely empty void at z < 1) through
the ISW effect [1430, 1458-1460], the axis of rotation of the Universe [1461], cosmic texture [1451, 1462],
adiabatic perturbation on the last scattering surface [1463] (see Refs. [1464, 1465], for a review).

3.2.4 Cosmic hemispherical power asymmetry

The cosmic hemispherical power asymmetry (or dipolar asymmetry) is a directional dependency of the
CMB angular power spectrum [1466-1469]. The continuous dipolar modulation of hemispherical power
asymmetry corresponds to a hemispherical temperature variance asymmetry (signal in the CMB temper-
ature field) [150, 1429, 1466, 1467, 1470-1474].

The dipolar modulated/observed CMB temperature fluctuation %|mod in the direction n which
appears to extend to I, ~ 64 can be expressed as [1472, 1475, 1476]'7

e o) = [1+ Agit 5] 5 o) (3.20)
where % liso is a statistically unmodulated /isotropic temperature fluctuation, A4y, denotes the amplitude
of dipolar modulation and 7 - p corresponds to the dipolar modulation between the line-of-sight (LOS) of
the observer (with unit vector ) and the preferred dipolar direction (with unit vector p). The amplitude
of dipolar modulation Ay, is large at large angular scales 2 < | < 64 (k < 0.035Mpc~1), small at
small angular scales [ 2 64 and vanishes by a multipole moment of ~ 500 — 600 [150, 1429, 1450]. The
scale dependence of the hemispherical power asymmetry was suggested by Refs. [1477-1487] and was
investigated by Refs. [1488, 1489].

According to the hemispherical asymmetry nearly aligned with the Ecliptic, the temperature fluc-
tuations are larger on one side of the CMB sky than on the other, resulting in an unexpected dipole
configuration in the CMB power spectrum with an anomalously lower value of the variance in the north-
ern sky compared to the southern sky [1450]. The preferred direction for the asymmetry from the
Planck18 data is (I,b) = (2219, —20°) in galactic coordinates and the amplitude is Agy, ~ 0.07 with sta-
tistically significant at the ~ 3o level [150]. This amplitude is ~ 2 times higher than expected asymmetry
due to cosmic variance (Agy, ~ 0.03) and it is inconsistent with isotropy (Agm = 0) at the ~ 3o level.
The hemispherical power asymmetry in CMB can be explained by assuming a superhorizon perturbation
[1475, 1490] or asymmetric initial states of the quantum perturbations [1486].

17Note that the hemispherical dipole is distinct from the usual CMB dipole. In the former case the power spectrum
is assumed modulated discontinuously across a circle on the sky and in the second the actual temperature map has a
component modulated by a smooth cosine function across the sky [1476].
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3.2.5 Quadrupole-octopole alignment

The fluctuations in the standard ACDM model are Gaussian and statistically isotopic. Thus in harmonic
space the quadrupole (I = 2) and octopole (I = 3) harmonics are expected to have independent and
random orientations and shapes. The quadrupole and octopole have been observed to be planar and
unexpectedly aligned with each other [1491-1496]. This implies a violation of statistical isotropy.

In particular in this low multipole moment anomaly the quadrupole and octopole planes are found to
be mutually aligned with the direction of the cosmic dipole or CMB dipole (see Subsection 3.3 and Table
3.2) and perpendicular to the Ecliptic [149].

In order to study this large-angle anomaly one can use the maximum angular momentum dispersion
[1491]

1
Wl L)) = Y m?|ap, (i) (3.21)

m=—I

where the CMB map is represented by a wave function

— () = (ny) . (3.22)

Here aj,,, () correspond to the spherical harmonic coeflicients of the CMB map in a coordinate system
with its z-axis in the the n;-direction.

The preferred axis 1; is the axis around which the angular momentum dispersion is maximized. The
directions of the quadrupole fig and the octopole 13 are [1491]

oy = (—0.1145, —0.5265,0.8424) , (3.23)
nz = (—0.2578,—-0.4207,0.8698) , (3.24)

with
fig - ig| ~ 0.9838 . (3.25)

This unexpected alignment of the fis and fiz directions has only a 1/62 probability of happening.

An approach in the analysis of this large-angle anomaly may also involve the use the multipole
vectors [1497] (an alternative to the spherical harmonics) where each multipole order [ is represented by
[ unit vectors i.e a dipole [ = 1 can be constructed by a vector, a quadrupole by the product of two
vectors/dipoles, an octopole from three vectors/dipoles etc.

The alignment of low multipoles indicates the existence of a preferred direction in the CMB tem-
perature anisotropy. Furthermore possible relation between the quadrupole-octopole alignment and the
dipolar asymmetry has been investigated by Refs. [1471, 1475]. A negligible relation between these
anomalies was reported. However the analysis by Ref. [1498] has shown that a particular dipolar modu-
lation including the scale dependence may be connected with the quadrupole-octopole alignment.

3.2.6 Lack of large-angle CMB temperature correlations

There is a lack of large-angle CMB temperature correlations as first was observed by COBE satellite
[1499] and was confirmed by the WMAP [42, 1500] and Planck [150, 1429] temperature maps in the
range [ = 2 to 32. This is in tension with the ACDM prediction.

This anomaly is directly connected to the temperature T two-point angular correlation function
CTT(0) of the CMB at large angular scale (6 > 60°) which is unexpectedly close to zero [1495, 1501, 1502].
In angular space the two-point angular correlation function is defined as

CTT(0) = (T(m)T (o)) = i Z(Ql + 1)C,P(cos ) , (3.26)
1
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where the average is over all pairs of directions 7 with 7; - e = cos@, Pj(cosf) are the Legendre
polynomials and Cj is the angular power spectrum

l
_ 1 2
“= g m;l ol 0

with a;,, the spherical harmonic coefficients of the temperature fluctuations.

The simplest and most useful statistic is Sy 5 first introduced in the WMAP first-year release [42] in
order to measure the deviation of the angular correlation function from zero at angular scales 60° < 6 <
180°. It is defined as

Syp = /M " [CTT(6)]” d(cos 6) , (3.28)

with p1 = cosf; = cos60° = 1/2 and g = cosfly = cos 180" = —1.

A number of alternative statistics have been proposed in the literature [150, 1503—1505]. For example
a generalization of the S/, statistic suggested by Ref. [1506]. This statistic known as STQ uses the two-
point angular correlation function between fluctuations in the temperature T and the Stokes parameter!®
Q, CT9(0), which can be expressed in terms of the two-point angular power spectrum, Cl'E (with E
the gradient mode of polarization). The significance of a test statistic can be quantified by using the
p-value!'?, suggested by Ref. [1450].

No sufficient explanation has yet been suggested for this large-angle anomaly. Ref. [1512] studies
the ISW effect, Ref. [1513] explores a non-trivial spatial topology of the Universe and Ref. [1514]
studies the topology of the Planck CMB temperature fluctuations in order to find a possible explanation
to the suppression of large-angle CMB temperature correlations. Also the low observed power in the
quadrupole is a potential explanation for the lack of correlation in the temperature maps. Ref. [1501]
argues that there is a cancellation between the combined contributions of C; with multipoles [ < 5 and
the contributions of C; with multipoles [ > 6.

3.2.7 Anomaly on super-horizon scales

Ref. [1515] analysed the topological characteristics of the CMB temperature fluctuation. Using mathe-
matical investigations on persistent homology to describe the cosmic mass distribution and performing
experiments on Planck 2020 data release 4 (DR4) (based on the NPIPE data processing pipeline [1516]),
Ref. [1515] claimed a detection of an anomalous topological signature in the Planck CMB maps indicat-
ing non-Gaussian fluctuations. In particular Ref. [1515] reports an anomaly in the behavior of the loops
(a 40 deviation in the number of loops) in the observed sky compared to the analysis of the redshift
evolution of structure on simulations when the ACDM model is considered.

3.2.8 The lensing anomaly

The recent Planckl8 release by Ref. [14] has confirmed the higher compared to that expected in the
standard ACDM model, anomalous, lensing contribution in the CMB power spectra which is quantified
by the phenomenological parameter, Ay, [1517, 1518]. This weak lensing parameter Ay, rescales the lensing
potential power spectrum as?0

oY — ALCY (3.29)

18The Stokes parameters Q and U (for the Stokes parameters formalism see Ref. [1507]) are used to describe the state of
CMB polarization e.g. [77, 1508]. These parameters are directly related to the E and B modes [1509-1511]. The polarization
amplitude is given by P = /Q2 + UZ2.

19The probability value or p-value is the probability of measuring a test statistic equal to or more extreme as the observed
one, considering that the null hypothesis is correct [1450]. It provides the lower value of significance at which the model
would be ruled out. A low p-value means that there is strong indication of new physics beyond the null hypothesis.

20Note that this is not the usual C; but it is the additional contribution due to lensing.
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where Aj, = 0 corresponds to unlensed while A;, = 1 is the expected lensed result [1517] measuring the
lensing effect in the CMB temperature power spectrum.

Since the main impacts of lensing on the CMB temperature power spectrum are to add power at small
scales and to smooth the structure of the acoustic peaks and troughs (the peaks are reduced slightly,
and the troughs between them filled in) [1519, 1520] the adding of parameter Ay, changes the amount of
smoothing of the CMB primary spectra peaks and troughs. A higher lensing amplitude (A > 1) than
predicted in the flat ACDM cosmology (Ar, = 1) by roughly 10% (at the level of 2.80) has been found in
the temperature power spectra by the Planck team [14].

It should be noted that the oscillatory residuals between the Planck temperature power spectra and
the best-fit ACDM model in the multipole range I € [900, 1700] are in opposite phase compared to the
CMB and thus phenomenologically similar to the effects of gravitational lensing [1521, 1522].

A plausible explanation of the anomalous lensing amplitude is a positive curvature (closed Universe)
which was investigated by Refs. [1419-1421]. Other possible sources which explain the lensing anomaly
by mimicking a lensing effect are: a component of cold dark matter isocurvature (CDI) perturbation with
a blue tilt (see Ref. [1523], for a detailed discussion) and oscillations in the primordial power spectrum
which have the same frequency but opposite phase with the acoustic peaks [14]. All these effects are
degenerate with the smoothing effect of lensing.

Furthermore, the modified gravity models could be candidates for a solution of the lensing anomaly
[716, 862, 1524, 1525]. In particular the hints for 3¢ > 1 (where Xy the current value of parameter X
which modifies the equation for the lensing potential i.e. Eq. (3.10)) are directly connected to the lensing
anomaly as characterized by Ay > 1 [1524, 1525].

3.2.9 High-low ] consistency

Ref. [1526] pointed out that there are internal inconsistencies in the Planck TT power spectrum. The
ACDM parameter values derived by the high [ part of the CMB anisotropy spectrum (I > 1000) are
in 2 — 30 tension with the corresponding values of these parameters derived from the low [ part of the
spectrum (1 < 1000). For example the low [ multipoles predict a lower value of the cold dark matter
density parameter w. than the high I multipoles, with discrepancy at 2.50 [1526]. In addition it has been
shown that the value of Hy predicted by Planck from [ > 1000, Hy = 64.1+ 1.7 kms~! Mpc~!, disagrees
with the value predicted by Planck from [ < 1000, Hy = 69.7+1.7 kms~! Mpc~! at the 2.30 level. Thus
it is found that the value of Hy depends on the CMB [-range examined.

This anomaly is probably related to the lensing anomaly i.e. the fact that ACDM is more consistent
with the low [ part of the spectrum that this not affected by the lensing anomaly (see Refs. [17, 1521, 1527],
for a discussion).

3.2.10 The preference for odd parity correlations

There is an anomalous power excess (deficit) of odd (even) ! multipoles in the CMB anisotropy spectrum
on the largest angular scales (2 < I < 30), [150, 1528-1533]. A map consisting of odd (even) multipoles
possesses odd (even) parity thus this effect may be considered as power (spectrum) asymmetry between
even and odd parity map which is known as parity asymmetry.

In order to compare even and odd multipoles Ref. [1530] considers the parity asymmetry statistic
defined as the ratio P = P*/P~ of quantities P™ and P~ which represent the mean power in even and
odd only multipoles respectively for the range 2 <1 < a0z

l
LR 1+ (=D I+ DO
PE=> g : (3.30)

2

A different statistic to quantify the parity asymmetry has been proposed by Ref. [1534].
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Figure 3.2: Mollweide-projection view of preferred directions in galactic coordinates for different cosmo-
logical observations (see Table 3.2).

3.3 Cosmic dipoles

There have been studies pointing out the presence of signals which indicate the violation of the cosmo-
logical principle. A physical mechanism producing such violation on Hubble scales is studied by Ref.
[1535]. Various other possible mechanisms have been suggested to explain the observed violations of
statistical isotropy e.g. superhorizon perturbations which introduce a preferred direction in our Universe
[1490, 15306] (see also Ref. [1412], for a review). The dipole amplitudes and the directions (I, b) (galactic
coordinates) from the different cosmological observations described below are shown in Fig. 3.2 and along
with the corresponding references in Table 3.2.

The physical origin of these dipoles is described in the following subsections.

3.3.1 Velocity radio dipole

A large scale velocity flow dipole?? was pointed out in Refs. [151, 152]. The dipole moment of the
peculiar velocity field (dipole bulk flow) which is a sensitive probe of the amplitude and growth rate of
fluctuations on large scales [1544] was investigated by Refs. [151, 152, 1545-1551]. In many cases the
results are controversial and there is a debate in the literature on the consistency with the ACDM model.

A recent detailed analysis has indicated that ’tilted observers’ within the bulk flow can be misled into
inferring acceleration [1552, 1553].

Ref. [1554] uses Snla JLA data to demonstrate that the indications for cosmic accceleration found in
the Snla data disappears if a bulk flow induced anisotropy is allowed in the Snla data. Thus, a bulk flow

22For peculiar velocities as variation of the Hubble expansion produced by nearby nonlinear structures see in Ref. [153]
and for dipole anisotropy in radio source count, see in Ref. [154].
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Table 3.2: The amplitudes and the directions (I,b) (galactic coordinates) from different cosmological
observations (Fig. 3.2) along with the corresponding references. The amplitude of CMB dipole has
derived using the Eq. (3.33) (see e.g. Ref. [58]).

Observations [ [deg] b [deg] Amplitude Refs.
CMB Dipole (Planck) 264.021 £ 0.011 48.253 £ 0.005 ~ 0.007 [908, 1537]

Velocity Radio Dipole (TGSS) 243.00 £12.00 45.00 £ 3.00 0.070 + 0.004 [154]
Velocity Radio Dipole (NVSS) 253.12+11.00 27.28 £ 3.00 0.023 £ 0.004 [154

Velocity Radio Dipole (NVSS) 953.00 £2.00 28.71+£12.00 0.019+0.002  [1538]

Velocity Radio Dipole (NVSS) 253.00 32.00+12.00 0.012+0.005  [1530]
Quasar Dipole 238.20 28.80 0.01554 [58

a Dipole (VLT/UVES) 330+ 15 ~13+10 0977032 x 1075 [155]

CMB Quadrupole (Planck SMICA?!) 238.5 76.6 [1450]

CMB Octopole (Planck SMICA) 239.0 64.3 [1450]
CMB Hemispher. Asym. (Planck) 221 —22 0.07 [150]

CMB Hemispher. Asym. (WMAP) 297 —o7 0.07 [1542]
Maximum Acceleration (Pantheon) 286.93 +18.52 27.02+6.50 0.0018 £ 0.0002 [12]

Maximum Acceleration (Union2) 3091‘33 18"_%5 [1543]

dipole (at 3.90) aligned with the local bulk flow is identified while any monopole (which can be attributed
to A) is consistent with zero (at 1.40).23

Tt is usually assumed that our local (solar system) peculiar motion with respect to the CMB rest frame
produces the CMB dipole anisotropy (I = 1) [1556, 1557] (also known as solar dipole [1537, 1558]). In
the standard model, this implies that the LSS distribution should have a similar kinematic dipole known
as the velocity dipole or radio dipole which arises from the Doppler boosting of the CMB monopole and
from special relativistic aberration effects [1559].

In order to describe the origin of this dipole, a population of sources with power-law spectra depending
on frequency v is usually assumed

Sy, xv™ (3.31)

where S, is the flux density and o4 is an individual spectral index with typically assumed value o ~ 0.75
[1560]. The integral source counts per unit solid angle above some limiting flux density S, can be

approximated by a power law

%(> S) o ST, (3.32)

where & ~ 1 and can be different for each survey. An observer moving with velocity v < ¢ with respect
to the frame in which these sources are isotropically distributed sees a dipole anisotropy 1+ D cos @ over
the sky with amplitude [1561]

D=[2+z(1+ oz)]% . (3.33)

According to the most recent measurements the inferred velocity of the Sun relative to the CMB rest

frame is [908, 1537]
= 2 — (1.23357 4 0.00036) x 10~ , (3.34)

23 A recent model independent analysis of Snla data (Pantheon) data Ref. [1555] implementing machine learning has
confirmed a ~ 4.50 detection of the accelerated expansion even though that analysis did not allow for anisotropic dipole
effects.

24The individual spectral index a should not be confused with the fine-structure constant c.
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or v=369.82+011kms ", (3.35)

along the direction with galactic longitude and latitude (I,b) = (264.021° 4+ 0.011°, 48.253% & 0.005°) or
RA ~ 168°, Dec ~ —7° [908, 1537].

The CMB rest frame is conventionally taken to correspond to the standard of cosmic rest frame and
is assumed to be statistically homogeneous and isotropic in the context of the FLRW model. In this rest
frame the Hubble flow should be most uniform (minimum Hubble variation frame) and the comoving
observers should not see a kinematic dipole. However it has been observed [153, 1562] that the dipole
structure of the velocity field is less in the reference frame of the Local Group of galaxies than in the
CMB frame. This persistence of the dipole structure of the velocity flow in the CMB frame at large
distances is not unexpected if we are located in an underdensity [1563].

According to the standard model if the Universe is isotropic our velocity with respect to the CMB
rest frame and our velocity relative to the LSS should be identical. However, as was first noted by Ref.
[1564], while the direction of the radio dipole is consistent with that of the CMB, the velocity of our local
motion obtained from the radio dipole exceeds that obtained from the CMB dipole. Radio continuum
surveys which sample the Universe at intermediate redshifts (z ~ 1) have been used as an excellent probe
to large scale isotropy and a discrepancy between the predicted and measured amplitudes of the velocity
have been revealed [154, 1538, 1539, 1565-1567]. In particular the analysis by Ref. [154] has shown that
the radio dipole using the sky distribution of radio sources from the NRAO VLA Sky Survey (NVSS)
dataset [1568] and TIFR GMRT Sky Survey (TGSS) dataset [154, 1569, 1570] is ~ 2 and ~ 5 times larger
than predicted by the mock realisations within the context of ACDM cosmology respectively. The above
observed discrepancy between the radio and CMB dipoles has been confirmed by independent groups and
could imply the existence of an anisotropic Universe.

Possible explanations of the violation of statistical isotropy are: systematics due to the incomplete sky
coverage of the radio continuum surveys [1539, 1565, 1571], intrinsic dipole in the local LSS [1572], nearby
nonlinear structures of voids and walls and filaments [153], remnant of the pre-inflationary Universe [1573]
and superhorizon perturbation [1574, 1575].

3.3.2 Quasar dipole

The distribution of quasars across the sky may provide independent probe of the cosmological principle
[1576]. As previously discussed there is an expected anisotropy related to the CMB dipole anisotropy
(about 1 part in 1000) due to our motion with respect to the CMB rest frame.

Ref. [58] used mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) [1336] to
create reliable AGN/quasar catalogs and a custom quasar sample from the new CatWISE2020 data
release [1577]. Tt was shown that there is a statistically significant dipole in the density of distant quasars
with direction (I,b) = (238.2°,28.8%) which is 27.8° away from the direction of the CMB dipole. Its
amplitude was found to be 0.01554, ~ 2 times larger than predicted, with statistical significance at the
4.90 level (or with a p-value of 5 x 10~7) for a normal distribution. This result is in conflict with the
cosmological principle.

3.3.3 Fine structure constant o dipole

In the past 20 years there has been interest in the possibility of the variation of the fine structure constant
a = e%/(4meghc) (where e, €, h, and c are the electron charge, the vacuum permittivity, the reduced
Planck’s constant, and the speed of light) [156, 1578-1586] (see Ref. [109], for review of varying fine
structure constant).

The analysis by Refs. [155, 156] uses the “many multiplet” (MM) method [1587-1590] to analyze
quasar absorption line spectra obtained using the Ultraviolet and Visual Echelle Spectrograph (UVES)
[1591] on the Very Large Telescope (VLT). It indicates both the violation of the cosmological principle
and the spatial variation of the fine structure constant o which is approximated as a spatial dipole
with direction (I,b) = (330° £ 15°, —13° + 10°) and amplitude 0.9770 35 x 1075, preferred over a simple
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monopole model with significance at the 4.20 (see Refs. [1592-1594], for possible systematics in this
analysis).
The variation of « across the sky was shown to be well fit by an angular dipole model of the form
[155]
Ao  a—a

—_— = =Cypcos60+Cpg, (3.36)
a a

where g is the present local value, 6 is the angle with respect to the dipole direction, C'4 is the angular
amplitude of the dipole term and Cp is a monopole term.

It is worth to note that the analysis by Ref. [1595] suggests that there are no robust indications of
time or space variations of a. However recent measurements of quasar absorption-line spectra indicate a
spatially dependent value of fine structure constant « at a ~ 4o significance level over a simple monopole
(no-variation) model [1596, 1597]. In addition, it is found that the fine structure constant « dipole is
anomalously aligned with other dipoles and the preferred direction in Aa/« is correlated with the one in
the distribution of Snla [1598, 1599].

3.4 BAO curiosities

As mentioned above (see Subsection 2.2.2) the BAO measurements can be classified in two classes: galaxy
BAO and Lya BAO (with Ly« auto-correlation function and Lya-quasar cross-correlation function). A
2.5 — 30 discrepancy between the BAO peak position in the Lya at an effective redshift of z ~ 2.34 and
the CMB predictions from Planck/ACDM cosmological model has been found [322, 359, 1600].

For example, Ref. [322] uses the Lya auto-correlation function and the Lya-quasar cross-correlation
function to report the measurements of the BAO scale in the line-of-sight direction

Dy(z = 2.40)/ry = 8.94 +0.22 , (3.37)

and in the transverse direction
Dy(z=240)/rs =36.6 £1.2, (3.38)

where Dy (z) = 7z is the Hubble distance and Dy(z) = (1 4 2)Da(z) = da(z) is the comoving
angular diameter distance. These values are in ~ 2.30 tension with CMB predictions Dy (z = 2.40)/ry =
8.586 £ 0.021 and Djs(z = 2.40)/rs = 39.77 £ 0.09 by Planck 2015 flat ACDM cosmology [16].

The galaxy BAO peak position in the matter correlation function £(s) (see Eq. (2.15) and Fig. 2.5)
and the measurements Dy (z = 2.40)/rs and Dys(z = 2.40)/rs were found to be consistent with CMB
predictions. This discrepancy between galaxy and Lya BAO constitutes the BAO anomaly which has
been investigated in Refs. [22, 157, 158].

Using new Lya BAO measurements from the BOSS survey and from its extended version eBOSS in
the SDSS DR14 the tension with CMB predictions was reduced to ~ 1.7¢ [357, 360] and from eBOSS in
the SDSS DR16 to only ~ 1.5¢ [361].

Ref. [158] argues that this anomaly arises by cosmological effects at z < 2.34 and the tension is caused
by evolution of dark energy equation of state w(z) for redshift range 0.57 < z < 2.34.

3.5 Parity violating rotation of CMB linear polarization (Cos-
mic Birefringence)

In the standard model of elementary particles and fields, parity violation is observed only in the weak
interaction sector [1601, 1602]. A certain class of quintessence models should generically generate such
parity asymmetric physics [1603, 1604]. In particular a parity violating (nearly) massless axionlike scalar
field ¢ (dark matter or dark energy) would rotate CMB polarisation angles of CMB photons as they travel
from the last scattering surface (z ~ 1000) to the present by a non-zero angle 3, (cosmic birefringence).
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A Chern—Simons coupling between a time-dependent axionlike field ¢(¢) and the electromagnetic
tensor and its dual in the Lagrangian density (e.g. [1603, 1605])

1 ~
L= ng)’yd)F;wFHV s (339)

7

induces a cosmic isotropic birefringence angle (e.g. [1606, 1607])

1 to,
Ba = §g¢7/ ¢dt (3.40)
ts
and produces a non-zero observed EB spectrum [1608]
1
CPP = 5 sin(46.)(C"F = CPP) (3.41)

where g4+ is a Chern-Simons coupling constant which has mass-dimension —1, F® is the dual of the
electromagnetic tensor of F),,, and to and ¢, are the times at present and last scattering surface, respec-
tively.

Using a novel method developed in Refs. [159-161], a non-zero value of the isotropic cosmic birefrin-
gence B, = 0.35 £ 0.14 deg (68% C.L) was recently detected in the Planck18 polarization data at a 2.40
statistical significance level by Ref. [162]. This recent evidence of the non zero value of birefringence
poses a problem for standard ACDM cosmology and indicates a hint of a new ingredient beyond this
model.

An axion or an axion-like particle with a weak coupling to photon as a possible source of the cosmic
birefringence was investigated by Ref. [1609]. Ref. [1610] showed that if an ultralight axion coupled
to photons forms domain walls due to inflationary fluctuations, the domain-wall network can explain
the hint for isotropic cosmic birefringence found by Ref. [162]. This model predicts a testable peculiar
anisotropic cosmic birefringence as well. In contrast to the approach of Ref. [1609], this scenario explains
the birefringence with the photon anomalous coefficient of the axion-like particle ~ O(1). Furthermore,
birefringence inducing axion-like particles could be candidates for an early dark energy resolution to the
Hubble tension [1609]. Refs. [1611, 1612] study the anisotropic birefringence and constraints are derived.
The axion field fluctuations over space and time generate anisotropic birefringence.

3.6 Small-scale curiosities

On small scales (on scales of hundreds of kpc and below) the predictions of ACDM model are in many
cases inconsistent with observations [1613-1615]. In particular observations on galaxy scales indicate that
the ACDM model faces several problems in describing structures at small scales (< 1Mpc) (see Refs.
[163, 164, 1616—-1618], for a review). Alternative models that modify the nature of dark matter have been
used to solve these problems e.g. warm [1619-1623], fuzzy [1624-1627], self-interacting [1628-1631] and
meta-cold dark matter [1632] (see also Ref. [1633], for a review). Other models which have the potential
to provide a solution to these problems have been proposed by Refs. [1094, 1101, 1107, 1634-1636]. In
particular Refs. [1634, 1635] argued that the existence of a dissipative hidden dark matter sector (dark
matter coupled to a massless dark photon) can solve some of these problems (core-cusp, missing satellites,
and plane of satellites problem).
These small scale signals include the following:

3.6.1 The core-cusp curiosity

The core-cusp curiosity [1637, 1638] refers to a discrepancy between the density of a dark matter halo
profile of low-mass galaxies p(r) o< 7~* in N-body simulations (an important tool for evaluating the
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predictions of the ACDM model) with 1 < 2 < 1.5 (cusp profile)?® [1640-1643] and the astronomical
observed profile with « ~ 0 (core profile) [1637, 1638, 1640, 1641, 1644-1648]. Ref. [1649] probes this
problem in low surface brightness galaxies.

3.6.2 The missing satellites problem (or dwarf galaxy problem)

The missing satellites problem (or dwarf galaxy problem) [1650—-1653] refers to an over-abundance of
the predicted number of halo substructures in detailed collisionless N-body simulations compared to the
observed number of satellite galaxies in the Local Group. In particular the ACDM model predicts orders
of magnitude larger number of satellites (~ 1000) than the observed number of dwarf galaxies (~ 50)
[1652, 1654].

3.6.3 The Too Big To Fail (TBTF) problem

The Too Big To Fail (TBTF) problem [1655—-1660] refers to an inconsistency between the predicted mass
of dark matter subhaloes in ACDM theory and the observed central mass of brightest satellite galaxies
in the Local Group [1657, 1658] (also in the Milky Way [1655, 1656] or in the Andromeda (M31) [1659]).

In particular the ACDM predicted central densities of the most massive dark matter subhalos are
systematically larger than the inferred from kinematics of the brightest Local Group satellites [1656, 1657,
1661]. An observed bright satellite is more likely to reside in subhalos with lower mass than is expected
in a ACDM model. The simulated massive dark matter subhalos ’failed’ to form a comparatively bright
satellite galaxy.

This problem is possibly related to the missing satellites problem but it is a distinct problem which
dependents on the internal structure of subhalos or the central shapes of density profiles of satellite halos
[1657].

Alternative models that modify the nature of dark matter have been investigated to solve this problem:
non-trivial dark matter physics [1662, 1663], interaction between the dark matter and dark radiation
components [1094, 1107], self-interacting dark matter [1664, 1665] and fuzzy dark matter [1626]

3.6.4 The problem of satellite planes

In the problem of satellite planes [1666—1670] several satellite galaxies of the Milky Way, of neighboring
Andromeda galaxy (M31), and of Centaurus A (CenA) are part of thin plane that is approximately
perpendicular to the Galactic disk. Moreover measurement of the motions of satellite galaxies has shown
that their orbits appear to be correlated [1671-1673]. This flattened structure and coherent motions of
satellite galaxy systems is in inconsistency with the prediction of the ACDM model as inferred from sim-
ulations [1670]. The simulations based on ACDM cosmology indicate uncorrelated and close to isotropic
satellite structures [1674, 1675]. In these simulations the observed structure formations with spatial and
kinematic coherence distribution are very rare with a probability ~ 1072 [1669, 1670].

3.6.5 The angular momentum catastrophe

The angular momentum catastrophe [1676] concerns a catastrophic angular momentum loss of gas during
disk galaxies formation in Smooth Particle Hydrodynamics (SPH) [1677] simulations. The formed disks
in simulations according to the predictions of ACDM have smaller scale lengths by a factor of 2 — 3
compared with observed ones [1678]. An axion dark matter model may resolve this discrepancy between
the observed and predicted angular momentum distributions of baryons (ordinary cold dark matter) in
the dwarf galaxies [1679].

25The well know Navarro-Frenk-White profile [1639, 1640] is cusped with p(r — 0) ~ 7~1.
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3.6.6 Baryonic Tully-Fisher Relation (BTFR)

Baryonic Tully-Fisher Relation (BTFR) [470, 1680]. As mentioned above, the well known Tully-Fisher
(TF) [464] empirical relation connects the velocity of rotation of a spiral galaxy with its intrinsic luminos-
ity while the Baryonic Tully-Fisher Relation (BTFR) [166-468] Eq. (2.37) is a scaling relation between
the observed total baryonic mass M, (stars plus gas) of a spiral galaxy and its rotation velocity V. (see
Subsection 2.2.6). The problem for ACDM model as inferred from simulations (see e.g. Ref. [1681]) is
that the BTFR leads to existence of a higher intrinsic scatter (~ 0.15dex) and a lower slope (s = 3)
compared to the observed ( ~ 0.10dex and s ~ 4) [470]. Ref. [471] suggests the Modified Newtonian Dy-
namics (MOND) [901] as a possible solution to this problem. However some simulations or semi-analytic
approaches of galaxy formation within a ACDM cosmological context can reproduce a realistic BTFR
slope but not its small scatter e.g. [1682—1685].

3.6.7 The void phenomenon

The void phenomenon [1686] refers to the emptiness of voids (the number of small galaxies in the void).
Cosmological N-body simulations in the context of ACDM have established a clear prediction [1687] that
many small dark matter haloes should reside in voids [1688, 1689]. This is consistent with observations
on large scales but is inconsistent with observations on small scales. In particular the local void contains
much fewer galaxies than expected from ACDM theory [1690].

3.7 Age of the Universe

A lower limit can be set on the age of the Universe by the ages of the oldest stars (or oldest astrophysical
objects) because on cosmological timescales they form shortly after the Big Bang. In the context of
ACDM cosmology, the standard theory [1691-1695] and cosmological numerical simulations [1696—1698]
predict that the first stars, the so-called population III (Pop III), formed in dark matter minihaloes of
typical mass M ~ 10° — 10° M, at redshifts z ~ 20 — 30 (about 100 million years after the Big Bang
i.e. about around the end of the cosmic dark ages) (see Refs. [1699, 1700], for models indicating late,
z ~ 2 — 7, Pop III star formation).

The age of the Universe t, as obtained from local measurements using the ages of oldest observed
stars (the so-called population II (Pop II)) in the Milky way appears to be larger and in some tension
with the corresponding age of the Universe ¢y obtained using the CMB Planck data in the context of
ACDM [165].

The age of the Universe in the flat ACDM model is an observable determined by the integral

=t dz' 1 = dz'
t(z) =/ —_ = —/ . (3.42)
o (A+2)H(Z)  HolJo (14 2)[Qom(1+2)3+ Qor(1+2)* + (1= Qo>

where ¢ is the cosmic time corresponding to redshift z;. Thus the age of the Universe is ty = t(z; = 00).

For example the age of the Milky Way Population IT halo, metal deficient, high velocity subgiant
HD-140283 (also known as Methuselah star) is estimated to be t, = 14.46 + 0.31 Gyr by Ref. [1701] and
using new sets of stellar models is estimated to be ¢, = 14.27 £+ 0.80 Gyr by Ref. [1702]. These estimates
of the age of this star are slightly higher (~ 2¢) than the age of Universe ¢ty = 13.800+0.024 Gyr inferred
by CMB Planck18 data [14] but within the errors it does not conflict with this age.

Despite of the above indications the analysis by Ref. [1703] using new parallaxes from the Gaia
space mission [1704, 1705] in place of the older HST, reports a revision of the age of HD-140283 to
t, = 13.5 + 0.7 Gyr which is more compatible with the age ty inferred by Planck data. Also the analysis
by Ref. [1706] using populations of stars in globular clusters (very-low-metallicity stars) reports age of
the Universe constrained to be larger than ¢, = 13.5701% Gyr.
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Clearly, Eq. (3.42) indicates that in a ACDM Universe the quantities Hy, ty and Qq,, are related.
Therefore the determination of the age of older objects based on local Universe observations provides a
test of the current cosmological model and plays an important role in the studies of Hubble and spatial
curvature tensions [1419, 1420, 1703].

3.8 The Lithium problem

It has long been known (since the early 80’s) that absorption lines in the photospheres of old, metal-poor
(Population II) halo stars in the Milky Way’s halo indicate ~ 3.5 times less primordial abundance of
lithium isotope 7 Li compared to the prediction of the standard BBN theory [1707-1709]. The observed
value of the lithium abundance?® "Li/H = (1.6 & 0.3) x 10719 [1710] is smaller than the theoretically
expected value "Li/H = (5.624£0.25) x 10710 [1711] at a level ~ 50. This constitutes the lithium problem
[166]. No such problem exists for the observed abundances of other light elements 2H (or D), 3He, and
4He that are in broad quantitative agreement with BBN predictions + WMAP /Planck cosmic baryon
density €2, which is deduced by the CMB [125, 1172].

A number of theoretical or experimental studies in the literature have attempted to address the
lithium problem e.g. [1712—-1725]. For example the analysis by Ref. [1726] shows that the variations in
Nature’s fundamental constants on primordial nucleosynthesis provide a possible solution to the lithium
problem. Specifically, they determined that if the value of the fine-structure constant « at the primordial
nucleosynthesis epoch was larger than the present one by ten parts per million of relative variation, the
lithium problem could be resolved.

It was also proposed by Ref. [1727] that decaying dark matter into dark radiation in the early Universe
can solve the long-standing lithium problem, leaving completely unaffected the abundance of other light
elements. This mechanism was also proposed to alleviate the Hy tension (see Subsection 2.3.1) but is
severely constrained by the Planck data [363].

Measurements of lithium (e.g. [1728, 1729]) may not be representative of the cosmological production
mechanism [1730, 1731]. It is thus possible that the solution to the lithium problem lies in the effects
of stars in the lithium abundance. Therefore a precise knowledge of the stellar formation process and
physics of stellar atmosphere is necessary to provide a fully satisfactory solution. Thus, possible solutions
to this persistent problem can be classified into four categories (see Refs. [125, 166, 1732], for a review):

o Cosmological solutions (e.g. new theory beyond the standard BBN including variations of funda-
mental constants) [1720, 1726, 1733-1739]

o Nuclear Physics solutions (e.g. reactions destroy lithium during or after BBN) [1722-1724, 1740—
1744)

 Astrophysical solutions (e.g. stars destroy lithium after BBN) [1745—-1748]

o Extensions of the standard model (e.g. simultaneous imposition of photon cooling after BBN, X-

particle decay and a primordial magnetic field [1714, 1749], destruction of "Be due to the decay of
a sterile neutrino [1719] and including new particles or interactions [1718].

3.9 Quasars Hubble diagram

The quasar distances can be estimated from their X-ray (coronal) emission generated by a plasma of
hot relativistic electrons around the accretion disk. The emission is induced through inverse-Compton
scattering processes and ultraviolet (UV) emission generated by the accretion disk where the gravitational
energy of the infalling material is partially converted to radiation [167, 169].

26Usually in the literature the abundance of lithium is expressed by A(7Li) = 12 + log;o[n(" Li)/n(H)] where n is the
number density of atoms and 12 is the solar hydrogen abundance.
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In recent years model independent derivation®” of the distance modulus-redshift relation using high-z
quasars (z < 7) as distance indicators (quasars Hubble diagram) provides a new bright standard candle
in the higher redshifts and earlier times beyond Snla. The method used is based on a non-linear relation
between the X-ray and the UV emissions at low redshift which is of the form [167]

logyy Lx = vqlogig Luv + By » (3.43)

where Ly and Lyy are the rest-frame monochromatic luminosities at 2 keV and at 2500 A, respectively
[1751]. Also 4 ~ 0.6 [167] and f, are fitting parameters of the luminosities.

Extending a Hubble diagram up to redshift z = 5.5 shows hints for phantom dark energy [167—
169]. In particular the distance modulus-redshift relation for a sample of 1598 quasars at higher redshift
(0.5 < z < 5.5) is in disagreement with the concordance model at a ~ 4o significance level®® [167].
Moreover, the analysis by Ref. [169] building a Hubble diagram by combining three samples of Pantheon,
quasars, and gamma-ray bursts (GRBs) reported tension at more than the ~ 4o statistical level with the
flat ACDM model. Recently Ref. [1756] using an updated, larger QSO dataset [1757] containing 2421
QSO measurements with redshifts up to z ~ 7.5 has demonstrated that the Lx-Lyy relation parameter
values depend on the cosmological model thus cannot be used to constrain cosmological parameters.

3.10 Oscillating signals in short range gravity experiments

The most constraining test of gravity at very short distance (sub-millimeter) scales looking for departures
from Newtonian gravity is implemented via torsion balance experiments. A reanalysis of short range grav-
ity experiments has indicated the presence of an oscillating force signal with sub-millimeter wavelength
[170, 171]. In particular Ref. [170] has indicated the presence of a signal at 20 level of spatially oscillating
new force residuals in the torsion balance data of the Washington experiment [73]. As an extension of
the previous analysis the study by Ref. [171] using Monte Carlo simulation and analysing the data of the
Stanford Optically Levitated Microsphere Experiment (SOLME) which involves force measurements an
optically levitated microsphere as a function of its distance z from a gold coated silicon cantilever [1758]
reports a oscillating signal at about 20 level.
The sub-millimeter scale of the quantum nature of dark energy may be written as

h

Mo = 42 %~ 0.085mm | 3.44
P
de

where it is assumed that Qg,, = 0.3 and Hy = 70 kms—! Mpc~!.

Thus, if the accelerating expansion of the Universe is connected with effects of modified gravity due to
quantum gravity it would be natural to expect some modification of Newton’s law at the submillimeter
scale.

The deviations from Newton’s law of gravitation is usually described in the context of scalar-tensor
[582, 1388] and flat extra dimension theories [1759—-1765] by a short range Yukawa type potential of the
form

Veg = —G% (1 + Olyeimr) s (3'45)

where ay and m are parameters to be constrained by the data.
Alternatively, a power law ansatz may also generalize the gravitational potential to the form

k—1
M - 1
Vg = —G— |1+ 88 | — . (3.46)
r mr
27Ref. [1750] argued that even though the data used in this approach are valid, their analysis involves significant
uncertainties as it may lead to spurious artificial tensions.
28The analyses of the high—z quasar data has lead to a wide range of conclusions [1750, 1752-1755]. For example Ref.

[1750] concludes that the log polynomial expansion generically fails to recover flat ACDM beyond z ~ 2, thus implying that
the previously derived ~ 4o tension may be artificial.
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This power law parametrization is motivated by some brane world models [1766—-1769].
For m? < 0 the Yukawa gravitational potential becomes oscillating and takes the form

M
Ve = fGT [1 4 ay cos (mr +0)] , (3.47)

where 6 is a parameter.

Recently a reanalysis of the data of the Washington experiment searching for modifications of Newton’s
Law on sub-millimeter scales by Ref. [1197] has indicated that a spatially oscillating signal is hidden in
this dataset. In addition it is shown that even though this signal cannot be explained in the context
of standard modified gravity theories?? (viable ST and f(R) theories), it occurs naturally in nonlocal
(infinite derivative) gravity theories [1770—1772] that predict such spatial oscillations without the presence
of ghosts (instabilities) and has a well-defined Newtonian limit.

The origin of oscillating signals could be due to three possible effects:

o A statistical fluctuation of the data.
e A periodic distance-dependent systematic feature in the data.
o A signal for a short distance modification of GR (e.g. non-local modified theory of gravity).

In the later case, it is important to identify modified theories that are consistent with such an oscillating
signal and are not associated with instabilities e.g. [1773, 1774].

3.11 Anomalously low baryon temperature

The Experiment to Detect the Global Epoch of Reionization Signature (EDGES) collaboration [172]
report anomalously low baryon temperature T, ~ 4K at z = 17 (half of its expected value). This
temperature was inferred from the detection of global (sky-averaged) 21-cm absorption signal which is
centred at a frequency of ~ 78 MHz. The absorption depth of cosmic CMB photons at redshifts range
15 < 2 < 20 estimated by EDGES is more than twice the maximal value expected in the ACDM model,
at ~ 3.80 significance.

Possible explanations of this discrepancy were investigated and various models were proposed (e.g.
[1775-1778]). For example Ref. [1775] argue that EDE can explain this anomaly.

The EDGES observation has been used to constrain various cosmological models of dark matter and
dark energy [767, 1775, 1779, 1780].

3.12 Colliding clusters with high velocity

Observed galaxy clusters like the massive (~ 105 M) high-redshift (z = 0.87) interacting pair known as
El Gordo (ACT-CL J0102-4915) [1781] have a very high relative velocity. This implies that formation of
large structures may have taken place earlier than expected in ACDM cosmology. Ref. [173] based on
light cone tomography estimated that the too-early formation of El Gordo rules out ACDM cosmology
at 6.160 confidence. The early and rapid formation of clusters which consist of two colliding massive
galaxy clusters at a high redshift may constitute a problem of the ACDM model. Ref. [173] argues that
MOND with light sterile neutrinos model as suggested by Ref. [900] can resolve this issue.

29For a free massive scalar Ref. [5] investigates the physical conditions that can eliminate the tachyonic instabilities or
at least drastically change their lifetime.



Chapter 4

Constraining Power of Cosmological Observ-

ables on Cosmological Parameters as a Func-
tion of Redshift

The analysis presented in this chapter is based on the work which was done in collaboration with PhD
student Lavrentios Kazantzidis and Prof. Leandros Perivolaropoulos and has been published in Physical
Review D [1].

In this chapter, we determine the optimum and the blind redshift ranges of basic cosmological
observables with respect to the cosmological parameters. In an optimum range of redshifts, the
observable can constrain the parameter in the most effective manner while in the blind redshift ranges
the observable values may be degenerate with respect to the cosmological parameter values and thus
inefficient in constraining the given parameter.

As we discussed in Chapters 2 and 3 the validity of the ACDM cosmological model is currently under
intense investigation using a wide range of cosmological observational probes including CMB experiments,
galaxy photometric and spectroscopic surveys, attempts to BAO, WL, RSD, cluster counts, as well as
the use of Snla as standard candles. This investigation has revealed the presence of tensions within the
ACDM model, i.e. inconsistencies among the parameter values determined using different observational
probes. The following question therefore emerge: Are these tensions an early indication of the need
for a modified theory of gravity beyond the standard model or are they a result of systematic/statistical
fluctuations in the data? The analysis presented in this chapter aims to address this question.

4.1 Introduction

The main goal of completed, existing and upcoming CMB experiment and large scale structure surveys
(see Subsection 12.2) is to provide explanation of the curiosities of ACDM cosmology. These surveys
are classified in four stages. Stages I and II correspond to completed surveys and CMB experiments,
while stages III and IV correspond to existing and upcoming projects respectively. For example stage 11
CMB experiments include WMAP [1782], Planck [14, 1783], Atacama Cosmology Telescope Polarimeter
(ACTPol) [1784] and SPT-Pol [1785], while stage III CMB experiments include AdvACT [1786] and SPT-
3G [1787]. Future stage IV CMB probes on the ground[1788] and in space such as Lite (Light) satellite for
the studies of B-mode polarization and Inflation from cosmic background Radiation Detection (LiteBIRD)
[1789, 1790] mainly aim to measure CMB lensing and the CMB-B modes in detail.

Improvement in the quality and quantity of data is expected in the coming two decades from large
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scale structure surveys (see Table 4.1). Stage III large scale structure surveys include the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) [1791], the Kilo Degree Survey (KiDS) [1792, 1793], the
extended Baryon Oscillation Spectroscopic Survey (eBOSS) [1794], the Dark Energy Survey (DES) [1795—
1797] and the Hobby Eberly Telescope Dark Energy Experiment (HETDEX) [1798]. Finally, stage IV
large scale structure surveys include ground-based telescopes such as the Dark Energy Spectroscopic
Instrument (DESI), the Large Synoptic Survey Telescope (LSST) [1799, 1800] and the Square Kilometer
Array (SKA) [1801-1804] as well as space based telescopes such as Euclid [1805, 1806] and the Wide
Field Infrared Survey Telescope (WFIRST) [1807, 1808]. The redshift ranges of some surveys with their
type and duration are presented in Table 4.1.

Table 4.1: Some recent and future large-scale structure surveys. Photometric surveys focus mainly on
WL, while spectroscopic surveys measure mainly RSD. The redshift range shifts to higher redshifts for
stage IIT and stage IV surveys.

Survey Redshift Type Duration Refs.
SDSS 0.1 <z<0.6 Spectroscopic  2006-2010 [1809]
WIGGLEZ 0.4 <z<0.8 Spectroscopic  2006-2010 [1810]
BOSS 0.35, 0.6, 2.5 Spectroscopic ~ 2009-2014 [1810]
KIDS 0<2z<08 Photometric 2011- [1792, 1793]
DES 03<2z<1.0 Photometric 2012-2018 [1795-1797]
HETDEX 1.9 < z< 3.5  Spectroscopic  2015-2017 [1798]
eBOSS 0.6 <z <22 Spectroscopic  2015-2018 [1794]
DESI 0.6 < 2z < 1.7  Spectroscopic > 2019 [1811-1813]
DESI-Bright Galaxies 0.0 < z < 0.4  Spectroscopic > 2019 [1811-1813]
Euclid 0.8 < z<20 Spectroscopic  2022-2027  [1805, 1806, 1814]
LSST 056<2<3 Photometric > 2019 [1799, 1800]
WFIRST 1<z<3 Spectroscopic > 2020 [1807, 1808]

Clearly, the redshift ranges of more recent surveys tend to increase in comparison with earlier surveys.
The assumption of increasing constraining power of observables on cosmological parameters with redshift
therefore emerge. As demonstrated in our analysis however, this assumption is not always true.

Thus, we address the following questions:

o What is the redshift dependence of the constraining power of a given observable with respect to a
given cosmological parameter?

e Is there an optimal redshift range where the constraining power of a given observable is maximal
with respect to a given cosmological parameter?

o Are there blind redshift spots where a given observable is degenerate with respect to specific cos-
mological parameters?

A previous analysis [1307] has found the existence of degeneracies for the case of growth of fluctuations
observable fog with respect to the equation of state parameter w in specific redshift ranges. In our study
we extend these results to a wider range of observables and cosmological parameters.

In particular the goals of our analysis are the following:
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Figure 4.1: Afog as a function of redshift for g, in the range g, € [—1.5,1.5] superimposed with the
early growth data (left panel), late data (middle panel) and full growth data (right panel).

o Extensive up-to-date compilations of recent measurements of cosmological observables including
growth of perturbations, BAO, and luminosity distance observables.

o Identify the sensitivity of these observables as a function of redshift for three cosmological param-
eters: the present matter density parameter €2,,, the dark energy equation of state parameter w
(assumed constant), and a parameter g, describing the evolution of the effective Newton’s constant
in the context of a well motivated parametrization [67, 148].

o Identify possible trends for deviations of the above parameters from their standard Planck/ACDM
values in the context of the above data compilations.

The Chapter is organised as follows. In the next Section 4.2 we review the basic equations determining
the growth of cosmological density perturbations (see also Subsection 3.1.1). These equations can lead
to the predicted evolution of the observable combination fos(a) = f(a) - o(a), where a is the scale
factor a = lJer, (a) = dlnd(a)/dIna is the growth rate of cosmological perturbations, §(a) = dp/p
is the linear matter overdensity (with p the matter density of the background and dp its first order
perturbation), and og is the rms matter density fluctuations within spheres of radius 8h=1Mpc . We
investigate the sensitivity of the observables fog(z) and f(z) on the matter density parameter €Q,,, the
equation of state parameter w and a modified gravity parameter g, as a function of redshift. For these
growth observables blind redshift spots and optimal redshift ranges are identified. The selection of these
particular parameters (£2,,, w and g,) is important as their combination can lead to direct test of GR
by simultaneously constraining the background expansion rate through H(z) and the possible evolution
of the effective Newton’s constant Geg(2). It is important to notice that the evolution of the effective
Newton’s obtained through the parameter g, is degenerate with H(z) constant and can only be probed
once H(z) is also efficiently constrained through the parameters ,, and w. In Sec. 4.3 we consider
cosmological observables obtained from BAO data, construct an updated extensive compilation of such
data, and identify the sensitivity of the BAO observables on the parameters €),,, w and g, as a function
of redshift. As in the case of the growth observables, blind redshift spots and optimal redshift ranges
are identified. The effects of the data redshift range on the shape and size of the uncertainty contours in
the above cosmological parameter space are also identified. In Sec. 4.4 we use the luminosity distance
moduli as obtained from Snla and gravitational waves and identify the sensitivity of these observables to
the parameters €,,, w and g, as a function of redshift. Binned JLA data are superimposed on the plots
to demonstrate the sensitivity of the distance moduli to the cosmological parameters. Finally in Sec. 4.5
we conclude and discuss the results of the analysis of this Chapter.
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4.2 Growth of Density Perturbations: The Observables fog and
f(z)

The evolution of the linear matter overdensity § (see also Subsection 3.1.1) in the context of both GR
and most modified gravity theories is given by

6+ 2HS — 4nGeg pd = 0 (4.1)

where dots denote differentiation with respect to time ¢, H is the Hubble parameter, p is the background
matter density and Geg is the effective Newton’s constant which in general depends on redshift z and
cosmological scale k. In terms of the scale factor Eq. (4.1) on subhorizon scales (k? > a>H?) takes the
form of Eq. (3.4), while in terms of the redshift z can be written as [112, 1304-1308]

5" i ((H(Z)2)/ 1 ) 5 3 (1 —|—Z) Qm Geff(z>k)/G §=0 ; (42)

2H(z)? 1+z) 2 H(z)%/H2

where primes denote differentiation with respect to the redshift. The effective Newton’s constant Geg
emerges from a generalized Poisson equation

V2V x 4nGegp § (4.3)

where W is the perturbed metric potential in the Newtonian gauge where the perturbed FLRW metric
takes the form of Eq. (3.9). Note that GR predicts a constant homogeneous Geg(z, k) = G (with G the
Newton’s constant as measured by local experiments).

Solar System [1389] and BBN [1815] constraints imply that Geg is close to the GR predicted form in
both low and high redshifts. In particular at low z we have [1389]

’M <107*h <1 (4.4)
G z=0 ’ ’
while the second derivative is effectively unconstrained since
Gog(2) 57 —2
T < 10°h™* . 4.5
’ G z=0 ( )
Furthermore, at high z and at 1o, BBN [1815] impose the following constraint [1389]
|Gt /G — 1] <0.2. (4.6)
A parametrization of Geg(2) respecting these constraints is off the following form [148]
Geti(ay ga,m) z \" z \"T
T L =14 g (1 —a)" — g1 —a)" ™™ =1+g, — Ja , 4.7
i a1 —a)" — g, (1~ a) too (1) — o (1 (47)

where n and m are integer parameters with n > 2 and m > 0 which we set equal to 2 in our analysis.

The observable fog(a) of Eq. (3.6) can be obtained from the solution d(a) of Eq. (3.4) using the
definitions f(a) of Eq. (3.3) and o(a) of Eq. (3.5) (see Subsection 3.1.1).

Therefore, both the observable fog(a) and the growth rate f(a) (or equivalently fog(z) and f(z))
can be obtained by numerically solving Eq. (3.4) (or Eq. (4.2)). The solution of these equations requires
the specification of proper parametrizations for both the background expansion H(z) and the effective
Newton’s constant Geg(z). In the context of our analysis we assume a flat universe and a wC DM model
background expansion of the form
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and Geg parametrized by Eq. (4.7) with n = m = 2. Using these parametrizations and initial conditions
corresponding to GR in the matter domination era (6(a) ~ a) we can obtain the predicted evolution of
the observables fog and f(z) for various parameter values around the standard Planck/ACDM model
parameters (QF =0.31, w = —1, g, = 0).

For each observable O(Q,,,w, ) (e.g. O =fog(z)) we consider the deviation! with respect to each
cosmological parameter P = (,,,,w, g,). Thus for parameter P = Q,, the deviation of O(Q,,,w, g,) is
defined as

AOq,, = 0(Qp, —1,0) — O(QF,~1,0) . (4.9)

Similar deviations AO,, and AQ,, are defined for the other two parameters in the context of a given
observable O

AO, =0(QF w,0)—0(QF —1,0), (4.10)
AO,, =0(QF, —1,9,) —O(QL ,—1,0) . (4.11)

In Fig. 4.1 we show the deviation A fog,, for g, in the range g, € [—1.5, 1.5] superposed with a recent
compilation of the fog data [67] shown in Table B.1 in the Appendix B (with early data published before
2015 in the left panel, recent data published after 2016 in the middle panel and full dataset in the right
panel). No fiducial model correction has been implemented for the datapoints shown, but the effects of
this correction are less than about 3% [67, 147].

The following three comments can be made on the results shown in Fig. 4.1.

o Early data favor weaker gravity (g, < 0) for redshifts around z ~ 0.5 assuming a fixed
Planck/ACDM background. This trend is well known [147] and has been demonstrated and dis-
cussed extensively, e.g. in Refs. [146, 148, 507, 687, 688, 1196, 1310, 1816, 1817].

e The observable fog has a blind spot with respect to the parameter g, at redshift z ~ 2.7. Such
a blind spot was also pointed out in Ref. [1307] with respect to a similar gravitational strength

parameter (where it was called “sweet spot" in that Ref. [1307] even though the term “blind spot"
should have been used).

e There is a redshift range around z ~ 0.5 of optimal sensitivity of the observable fog with respect
to the parameter g,. Despite of the existence of this optimal redshift range much of the recent fog
data appear at larger redshifts approaching the blind spot region. These datapoints have reduced
sensitivity in identifying deviations of Geg from its GR value G.

We may also quantify the existence of blind spots and optimal redshifts of an observable O with
respect to a cosmological parameter P using the definition of the ’sensitivity’ measure including the
effects of the survey volume Veg(k, 2). The effective survey volume probed for a particular k¥ mode with
the power spectrum p(k, z) in a survey of sky area surveyed AQ is given by [1818, 1819]

_aq [C [ @k ) 77 av
Vest (k, 2) = AQ/O [1 +n(z')p(k’72/)} dz'd{}

where z is the maximum redshift corresponding to the survey volume Vog and n(z) is the number density
of galaxies that are detected, which is given as

o dN
n(z) :/ dM . (4.13)

dz', (4.12)

The function Mj;,,(2) is the limiting mass threshold which is detected for the given survey and dV is the
infinitesimal comoving volume element

r?(z)

V=He)

dQdz (4.14)

1In certain cases we consider the deviation around €2, =0.3 instead of Q, :Q,i.
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Figure 4.2: The sensitivity measure S for the observable fogs (i.e. AAf;s Vclﬁ/z) for P = g, (left panel),
P = w (middle panel), and P = Q,, (right panel)

where

c [* dY
and FE(z') is given by Eq. (4.8)

The constraining power of the observable O depends on the survey volume Vg (k, ), since the mean
square fluctuation o, on the measurement of the power spectrum p(k, z) increases as the effective survey
volume Vg (k, z) decreases (i.e. as less k modes are measured by the survey) as [1818, 1820-1822]

o \° 2 27)®  [14n(2)p(k,2)]”
p(k,2))  4Ank3A(logk) Vig(k,2) | n(2)p(k, 2) )
Thus, since the the mean square fluctuation o, on the measurement of the power spectrum p(k,z)

is inversely proportional to the square root of he survey volume Vig(k, z), the ’sensitivity’ measure is
defined as

(4.16)

AO(P)
AP
where AO is the deviation of the observable O when a given parameter varies in a fixed small range
AP = Pnaz — Ppnin around a fiducial model value (e.g. Planckl5/ACDM). Plots of the sensitivity
measure S for the observable fog for the three parameters g, (left panel), w (middle panel) and £, (right
panel) are shown in Fig. 4.2. The presence of blind spots is manifest as roots of the sensitivity measure,
while optimal redshifts appear as maxima of the magnitude of S. We have fixed k such as that np = 3
assuming sufficient signal to noise per pixel [1821]. We have also rescaled sensitivity measure statistic
so that it is unity at its maximum absolute value. The nonlinear modes may be excluded by setting a
minimum redshift which is of O(1072) and are much smaller than the derived optimal redshifts and blind
spots identified in our analysis. Notice that the sensitivity measure indicates the existence of blind spots
for all three parameters. For w the blind spot is close to z ~ 2 while for €2, is close to z ~ 1. The
corresponding optimal redshifts are at z ~ 1.2 for g,, at z ~ 0.8 for w and at z ~ 0.5 for Q,,. (Although
the region z > 2 for w and €2, provides better sensitivity, there are currently almost no data available in
this redshift range). Notice also in Figs. 4.1 and 4.2 that when including the effects of the survey volume

the optimal redshifts shift to somewhat higher redshifts, while the blind spots remain unaffected.

As shown in Figs. 4.3 and 4.4 for both cases, recent data approach the blind spot regions in contrast
to early published data that efficiently probed the optimal redshift regions for both parameters w and
Q.. Also, early data seem to favor weaker growth of perturbations which occurs for lower, g,, and £2,,
and higher w [67, 147, 148]. If this trend is partly attributed to a lower value of Gog in the recent past,
then it is difficult to reconcile with the most generic modified gravity theories like f(R) and ST theories
[148]. In particular f(R) gravity theory generically predict stronger gravity at small z compared to its
present time [1823].

We perform a similar analysis for the growth rate observable f(z) which will be probed by the Euclid
mission [1806]. Mock Euclid data assuming a Planck/ACDM fiducial model are shown in Fig. 4.5 with
proper redshifts and error bars [1806] along with the deviation of the observable f(z) with respect to Q,,

59 = Vit (k, 2)'/2 (4.17)
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Figure 4.3: Afog as a function of redshift for w in the range w € [—1.5, —0.5] superimposed with the
early growth data (left panel), late data (middle panel) and full growth data (right panel).
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Figure 4.4: Afog as a function of redshift for Q,, in the range Q,,€ [0.25,0.35] superimposed with the
early growth data (left panel), late data (middle panel) and full growth data (right panel).
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Figure 4.5: Af(z) as a function of redshift superimposed with the Euclid mock data for different values
of Q,, (left panel), w (middle panel), and g, (right panel).
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(left panel), w (middle panel) and g, (right panel). Clearly, the predicted redshift range of the Euclid
data is optimal for the identification of new gravitational physics (right panel), but it is not optimized
for constraining the matter density parameter (left panel of Fig. 4.5) or the equation of state parameter
if w < —1 (middle panel).

The observable f(z) is considered due to the approach of Ref. [1806], where the Euclid team indicated
that the large number of galaxies of the Euclid survey combined with the depth of the survey will allow
a reliable estimate of the bias simultaneously with the growth rate f(z) obtained through the redshift
distortion factor 8. The redshift distortion factor 5 is defined as

Qp(2)” _ f(2)

(4.18)

where b(z) is the linear bias factor between galaxy and matter density distributions defined as b = %9

(with ¢, the galaxy overdensity).

Thus, the survey will not only probe the bias-free combination fog, but also directly probe the growth
observable f(z) which is modeled in Ref. [1806] with errorbars and is also considered separately in our
analysis. Of course, what is actually observable is the redshift distortion S factor which is obtained
through the ratio between the monopoles of the correlation functions in real and in redshift space. Thus,
the derived blind spot and optimal redshift for the growth rate f(z) are accurate under the assumption
that the bias b(z) has a very weak dependence on the redshift.

4.3 Baryon Acoustic Oscillations: the Observables Dy (z) x rflid,
H x ngd and D4 x Tf:d

4.3.1 BAO Observables and their Variation with Cosmological Parameters.

In this section, we use a variety of isotropic and anisotropic BAO observables given in the literature.

Waves induced by radiation pressure in the pre-recombination plasma inflict a characteristic BAO
scale on the late-time matter clustering at the radius of the sound horizon rs defined by Eq. (2.17).
This BAO scale appears as a peak in the correlation function or equivalently as damped oscillations in
the large scale structure power spectrum (see Subsection 2.2.2). In the context of standard matter and
radiation epochs, the Planck 2015 measurements of the matter and baryon densities €2, and €} specify
the BAO scale to great accuracy (uncertainty less than 1%). An anisotropic BAO analysis measuring
the sound horizon scale along the line of sight and along the transverse direction can measure both H(z)
and the comoving angular diameter distance Dy (z) related to the physical angular diameter distance
D4 defined by Eq. (1.57) in Subsection 1.2.8 in a flat universe as [358]

z dzl
o H(z')~

Dy(z) =(1+2)Da(z)=c (4.19)

Deviation of cosmological parameters can change r,, so BAO measurements actually constrain the com-
fid fid .
binations Dy (z) x “— or equivalently D(z) x T;‘,S , H(z) x iz where {1 is the sound horizon (BAO

Ts

scale) in the context of the fiducial cosmology assumed in the construction of the large-scale structure
correlation function.
An angle-averaged galaxy BAO measurement constrains the combination

oo - [

Taking into account the variation of cosmological parameters the constrained combination becomes

(4.20)

fid
Dy(z) x “—. Statistical isotropy can be used to constrain the observable combination H(z)Dys(z)
using an anisotropic BAO analysis in the context of the Alcock-Paczynski test [1824].
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Figure 4.6: The deviation ADy (z) x Tg—d as a function of the redshift z for different values of €2, (left
panel) and w (right panel).

The sound horizon 7,(z4) at the drag epoch z4 that enters the BAO observables may be calculated in
the context of a given cosmological model, either numerically (e.g. with CAMB [1825]) or using a fitting
formula for z4 [317] of the form

1291(€2,,h2)0-251

_ 1 QO h2)b2 4.21
4= T3 6m0(0, e LT o] (4.21)
where
by = 0.313(Q,,h%) %419 [1 4 0.607(Q,,h2) ™) (4.22)
by = 0.238(Q,,,1h?)%-2%3 | (4.23)

and from Eq. (2.17)

rs(2) \f/ o ; (4.24)

49, 1+z

where Q, = 2.469 x 107°h =2 for Tepp = 2.725 K, and

) 1/2
H(z) = Hy [Qm(l +22+ Q1+ 2)t +Qa(1 + z)3<1““)} , (4.25)

with Q, = Q,(1 4 0.2271Neg) (Neg =~ 3 is the number of neutrino species) and

Qo + Q. +Qx =1, (4.26)

in the context of a flat universe (K = 0). It has been shown [1826] that when the fitting formula is used
to obtain z4 close to the Planck/ACDM parameter values, a correction factor of 154.66,/150.82 should be
used on 7¢ obtained from Eq. (4.24) to obtain agreement with the more accurate numerical estimate of
Ts.

Using Eqgs. (1.57), (4.20), (4.24) and a Planck/ACDM fiducial cosmology (h = 0.676, Q,h? = 0.0223,
Q= 0.31 and 7{*® = 147.49 Mpc), it is stralghtforward to construct the theoretlcally predicted redshift

dependence of the BAO observables Dy (z) x
parameters €2, and w and superpose this dependence with correspondmg currently available data shown
in Table B.2 in the Appendix B.

The predicted evolution of the deviation of the observable Dy (z) x m (left
panel) and of w (right panel) is shown in Fig. 4.6. The deviation of the “parameter Q,, (left panel) was
performed around the value §2,,, = 0.3 while the deviation of the parameter w was performed around the

fid
, H x ?;d and Dy x T-;_ for various values of the
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Figure 4.7: The deviation AH X 7 as a function of the redshift z for different values of €2, (left panel)
and w (right panel)
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Figure 4.8: The deviation AH(z) as a function of redshift using the full compilation of Table B.4 in the
Appendix B, for various values of 0, (left panel) and w (right panel).
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Figure 4.9: The deviation AD 4 X 72 a5 a function of the redshift z for different values of Q,, (left panel)
and w (right panel)

ACDM Value w=—1 (see Eq. (4.9)). Notice the existence of a blind spot at z ~ 1.2 for the observable

Dy (z) x m, while the optimal redshift in the same plot is z ~ 0.6.
Even though the region z > 2 also seems to be optimal, there are currently almost no data available in
this redshift range. In contrast, for the same observable with respect to the parameter w there is no blind
spot, while the optimal redshift range is at z > 1.2.

In Fig. 4.7 we show the predicted evolution of the deviation of the observable H x % for various

values of €, (left panel) and of w (right panel). For this observable there is no blind “redshift spot,
while the sensitivity appears to increase monotonically with redshift for both observables. Notice the
asymmetry obtained for the equation of state parameter which is due to the fact that for w < —1 at early
times the effects of dark energy are negligible for all values of w, leading to a degeneracy for this range
of parameters at high z. For comparison, in Fig. 4.8, we show the deviation of the observable Hubble
expansion rate for various values of Q,, (left panel) and of w (right panel) along with corresponding
data obtained from the spectroscopic evolution of galaxies used as cosmic chronometers, shown in Table
B.4 in the Appendix B along with the corresponding citations (for previous compilations see also Refs.
[485, 1827, 1828]). Even though Figs. 4.7 and 4.8 are qualitatively similar, it is clear that the BAO
data are significantly more constraining compared to the cosmic chronometer data with respect to both
parameters 2, and w, especially at low redshifts.

In Fig. 4.9 we show the predicted evolution of the deviation of the observable D 4 -
values of Q (left panel) and w (right panel) The behavior of this observable is similar to that of

Dy (z) x m appears at a higher redshift

(z ~ 2), whlle at higher redshifts the sensitivity of this observable with respect to the parameter €2, is
fid
significantly reduced compared to the sensitivity of Dy (z) x Tjs .

A comparison of the three BAO observable distances 22{}?, [T):\(/? and zi’ff(zz ) las Dy (z) = e )] for
the Planck/ACDM best fit parameter values along with the corresponding data from Table B.2 of the
Appendix B is shown in Fig. 4.10. This plot is in excellent agreement with the corresponding plot of Ref.
[48] (Fig. 14) even though here we superpose the Planck/ACDM prediction with a significantly larger
compilation of datapoints. As demonstrated in the next subsection the BAO data are in good agreement

with the Planck/ACDM parameter values.

4.3.2 Contour Shapes and Redshift Ranges

The presence of optimal and blind redshift ranges for the BAO observables with respect to cosmological
parameters has an effect on the form of maximum likelihood contours obtained from data at various
redshift ranges. In particular, the Figure of Merit (reciprocal of the area of confidence contours in
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Figure 4.10: The BAO observable distances for the Planck/ACDM best-fit parameter values along with
the corresponding data from Table B.2 in the Appendix B. The data appear to be in good agreement
with the Planck/ACDM predictions.

parameter space) tends to decrease for datasets with redshifts close to blind redshift spots and increase
for datasets with redshifts close to optimal redshift regions. In order to demonstrate this effect, we
construct the confidence contours for the parameters 2, and w using the BAO observables in different
redshift regions.

In order to construct x? we first consider the vector

VléAO (Ziv Qm? ’LU) = BAOzm - BAO;?Leoretical ) (4'27)

where m runs from 1 to 3 indicating the different types of BAO data of Table B.2 in the Appendix B
Fid fid
f , Dy (z) x Tgs and H x %7 are given in Egs. (1.57), (4.20)

and the theoretical expressions for D4 x qu =

and (4.25) respectively. x? is obtained as
X2 =VIF; VI (4.28)

where Fj; is the Fisher matrix (inverse of the covariance matrix Cj;).

fid
. data takes the form

T

The covariance matrix for the Dy (z) X

o? 0 0

BAO,total WiggleZ

ij,thjzrfid‘/rs) = 0 Cij ggte 0 --- ) (429)
0 0 0%

where N = 28 and [1829]
218 —1.12 047 \ '
WiggleZ —
Cl99% = Fo ez = 10* [ =112 171 —0.72 | | (4.30)
0.47 —0.72 1.65

fid

s . . .

whereas for both D4 x =— and H x -7 we have assumed a diagonal covariance matrix
s TS

cprotRi= 1 003 0 - |, (4.31)

where N is equal to the considered number of datapoints.
The forms of Egs. (4.29) and (4.31) are clearly oversimplifications of the actual covariance matrices,
since these forms ignore possible correlations between the considered BAO data. However, to the best of
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Figure 4.11: The 1o —30 contours in the {2, —w parametric space. The contours describe the correspond-

ing confidence regions using the full compilation of Dy (2) x = (left panel), low redshift (z < 0.55)
data (middle panel) and high redshift (z > 0.55) data (right panel) from Table B.2 in the Appendix B.
The red and green dots describe the Planck/ ACDM best fit and the best-fit values from the compilation

of Dy (z) x m and the optimum redshift for
w, the thlckness of the contours (uncertainty) increases along the Q,, axis and decreases along the w axis
(the contours are rotated clockwise) as expected from Fig. 4.6.

our knowledge the non-diagonal terms of the D4 and H covariance matrices are not publicly available. In
order to estimate the magnitude of the effects of these terms we have performed Monte Carlo simulations
including random nondiagonal terms to the covariance matrices for D4 and H of relative magnitude
similar to the nondiagonal terms of the nondiagonal terms corresponding to Dy setting the magnitude
of the matrix [67]

1
Cij == 50'1' . O'j 5 (432)

where o; and o; are the errors of the published datapoints ¢ and j respectively. These simulations
indicated that the likelihood contours and the best fit parameter values do not change more than 10%
when we include the nondiagonal terms in the covariance matrix. Thus, possible reasonable correlations
among datapoints are not expected to significantly affect our results [1830].

In the left panel of Fig. 4.11 we show the 1o — 30 €, — w contour plots for the full Dy (z) x
of Table B.2 in the Appendix B using Eqgs. (4.27)-(4.29) and ignoring the possible correlations améng the
datapoints. The best fit parameter values are within 1o from the corresponding best fit Planck/ACDM
values (red dot).

Furthermore we construct the same contour plots for low-redshift Dy (z) x

of Fig. 4.11), where z < 0.55 (14 datapoints), and for high-redshift Dy (z) x (right panel of
Fig. 4.11), where z > 0.55 (14 datapoints). The low-redshift data correspond to optlmal redshift for the
parameter ), (see Fig. 4.6) and thus the confidence contours are thinner in the direction of the Q,,
axis while the contours are elongated in the w direction. In contrast the high-redshift data are close to
the €, blind spot and thus the confidence contours are thicker in the €2, direction (left panel), while
the contours are suppressed in the w direction (as expected from Fig. 4.6) which indicates an optimal
high-redshift range for the parameter w.

(middle panel

4.4 Distance Moduli from Snla and from Gravitational Waves

The luminosity distance defined by Eq. (1.55) is an important cosmological observable that is measured
using standard candles like Snla or standard gravitational wave sirens, like merging binary neutron star
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Figure 4.12: The deviation of the distance modulus observable Apu as a function of redshift for Q,, (left

panel), w (middle panel) and g, (right panel) superimposed with the JLA data of Table B.3 in the
Appendix B.
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Figure 4.13: The sensitivity measure as a function of redshift z for Q,, (left panel), g, (middle panel)
and w (right panel).

systems observed via multi-messenger observations (see Subsections 2.2.1 and 2.2.4).

The distance modulus 4 = m — M is the difference between the apparent magnitude m and the
absolute magnitude M of standard candle. Thus using Eq. (2.2) it is related to the luminosity distance
dr, in Mpc as

dL (Z)
3 QU w) =51
(25 w) 0810 [ M

pc

] +25. (4.33)

In the context of a varying effective Newton’s constant Geg(2) the absolute magnitude of Snla is expected
to vary with redshift as [913, 914, 1831]

15 Ge
M — MO = ZlOglo ( GH) 5

(4.34)

where the subscript 0 refers to local value of M. Thus, for Snla 4 also depends on the evolution of Geg(2)
(or equivalently on the parameter g,) as

15 Get(2; ga
(25 Qi w, ga) = logio(dr) + Zlogm (H(zg)> +25. (4.35)

G

In the case of gravitational wave luminosity distance, the corresponding gravitational wave distance
modulus obtained from standard sirens is of the form [1832]

(4.36)

Ge
:u’gw(Z;QmMU,ga) - 5l0910 (dL GH> + 25 .

In Fig. 4.12 we show the deviation Ay as a function of redshift for €2, (left panel), w (middle panel)
and g, (right panel) superimposed with the JLA Snla binned data of Table B.3 in the Appendix B.
The corresponding sensitivity measure is shown in Fig. 4.13. Notice that even though the deviation
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Figure 4.14: The deviation of the gravitational wave distance modulus with the parameter g,. The only
existing datapoint does not lead to any useful constraints.

Apigw appears to be increasing with redshift for all the parameters considered, the absolute value of the
sensitivity measure with respect to the parameter g, has a maximum for redshifts in the range z € [4, 5],
indicating the presence of an optimal redshift range.

The deviations Apg,(z) with respect to the parameters 2, and w is identical to the corresponding
deviations Ap(z), since for g, = 0 we have Ap(z) = Apgw(2). The deviation Apg,(z) with respect to
the parameter g, is shown in Fig. 4.14 along with the single available datapoint from the standard siren
GW170817 [18, 1833]. Clearly even though standard siren data can in principle be used to constrain
the evolution of G.g, a dramatic improvement is required before such probes become competitive with
growth and Snla data.

4.5 Conclusions

In this Chapter we have demonstrated that the constraining power (sensitivity) of a wide range of cos-
mological observables on cosmological parameters is a rapidly varying function of the redshift where the
observable is measured. In fact, this sensitivity in many cases does not vary monotonically with redshift
but has degeneracy points (redshift blind spots) and maxima (optimal redshift ranges) which are rela-
tively close in redshift space. The identification of such regions can contribute to the optimal design and
redshift range selection of cosmological probes aimed at constraining specific cosmological parameters
through measurement of cosmological observables.

In addition, we have shown that many of the recent fog RSD data, which tend to be at higher redshifts
(z > 0.8) are close to blind spots of the observable fog with respect to all three cosmological parameters
considered (,, w and g,). A similar trend for probing higher redshifts also exists for upcoming surveys
as demonstrated in Table 4.1. A more efficient strategy for this observable would be an improvement of
the measurements at lower redshifts instead of focusing on higher redshifts. Such a strategy would lead
to improved constraints on all three parameters considered.

Even though our analysis has revealed the generic existence of optimal redshifts and blind spots of
observables with respect to specific cosmological parameters, it still has not taken into account all relevant
effects that play a role in determining the exact location of these points in redshift space. For example,
we have not explicitly taken into account the number of linear modes available to a survey in redshift
space as well as the dependence of the effective volume Vg on the number of tracers and their selection.
We anticipate that these effects could mildly shift the location of the derived blind spots and optimal
redshifts determined by our analysis.

The results of our analysis may be helpful in the proper design of upcoming missions aimed at
measuring cosmological observables in specific redshift ranges.



Chapter 5

Modified Model for Gravity through Dimen-
sional Reduction

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [2].

In this chapter using a dark matter density profile we reconstruct an effective field theory model for
gravity at large distances from a central object by demanding that the vacuum solution has the same
gravitational properties as the density profile has in the context of GR.

Modified theories of gravity include more degrees of freedom and parameters which are strongly
constrained by a wide range of experiments and astrophysical/cosmological observations to be very close
to the values predicted by GR (see e.g. [73-706]). Despite of its successes and simplicity, GR requires
additional undetected matter/energy components to explain observations on galactic scales or larger. In
particular, the existence of dark matter [87-90, 476, 1834, 1835] is required for the description of observed
dynamics and structure formation on galactic scales or larger while dark energy with negative pressure
or a fine tuned cosmological constant (see Ref. [81] for a review) is required for the consistency of GR
with the observed accelerating cosmic expansion [118; 119, 1836]. Even on solar system scales or sub-mm
scales there have been hints of possible inconsistency of the theory with particular observations (e.g.
Pioneer anomaly [1837-1841]) or short range gravity experiments (peculiar oscillating signals in some
datasets [1842]). In addition, the theory predicts the existence of unphysical singularities in a wide range
of its solutions which should describe physical phenomena.

Any observed inconsistency between the geometric left hand side (LHS) of the Einstein equation and
the matter-energy right hand side (RHS) is thus usually addressed by modifying the RHS through the
conservative assumption of some yet undetected form of matter-energy chosen in such a way as to restore
the equality of the geometric and matter parts of the Einstein equation. A more fundamental approach
is to modify the geometric LHS of the Einstein which is equivalent to modifying the fundamental action
of the gravitational theory. There is a wide range of modified gravity models aiming at the explanation
of the accelerating expansion of the universe [135, 1843, 1844]. Such theories include scalar tensor
theories [587, 1845-1847] including the most general class of Horndeski models [100, 1848], f(R) theories
[96, 111, 112, 584, 1849, 1850] which generalize the Ricci scalar R of the action to a general function
f(R), generalized teleparallel gravity f(7T) theories [114, 115, 1851, 1852] which generalize the torsion
scalar T of the action to a general function of it, non-local gravity theories [1853-1855] which introduce
nonlocal operators in the gravitational action which involve effectively an infinite sum of derivatives etc.
On the other hand, modified gravity models (see Ref. [1856] for a review) aiming at the explanation
of the dynamics of matter at galactic and cluster scales without dark matter are much more limited
[1857, 1858]. This is due to the very diverse nature of matter dynamical behaviors that need to be
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explained which appears to require a large number of parameters for the fundamental theory that would
attempt to explain it without dark matter. The main representative of this class of theories is the modified
Newtonian Dynamics (MOND) theory [1859—1861] based on the existence of a fundamental acceleration
scale which has been recently shown however to be highly unlikely to exist [1862].

5.1 Introduction

An alternative approach towards a geometric fundamental description of the dynamics of matter on
galactic and cluster scales without dark matter has been proposed by Grumiller [1863, 1864]. Assuming
spherical symmetry of the metric and implementing dimensional reduction of the Einstein Hilbert action
to two space-time dimensions (t—r) it was shown that the emerging 2-dimensional ST effective field theory
action with a constant potential can be generalized to include a non-trivial potential. The simplest form of
this potential with no infrared curvature singularities, leads to a generic Rindler constant acceleration term
in the vacuum spherically symmetric metric of the new theory [1863]. It has been shown recently [1865]
that such a term in the background metric can give rise to a new type of metastable topological defects
(spherical domain walls). It was also argued that such a term can give rise to the observed velocity rotation
curves of galaxies without incorporating dark matter [1866]. It was later shown [1867, 1868] however that
the Rindler term is only able to provide acceptable fits to a relatively small number of observed velocity
rotation curves which is limited to those rotation curves where the velocity continues to increase with
distance through the halo. Such a behavior is not typical for most rotation curves which are either flat
[87—-89] or in fact tend to decrease with distance at large distances from the galactic core [1869]. Thus,
the Rindler acceleration even though it is appealing due to its possible fundamental geometric origin,
does not provide enough degrees of freedom to describe the data in contrast to the commonly used dark
matter density profiles (Navarro-Frenk-White [1639, 1640] and Burkert [1870]) which provide excellent
fits to the rotation curve data. Thus, the following questions arise:

o Is it possible to generalize the fundamental 2-dimensional geometric effective action (and its scalar
field potential emerging from dimensional reduction) such that the corresponding vacuum spherically
symmetric metric reproduces the observed velocity rotation curves equally well as the standard dark
matter density profiles?

o If yes, what is the form of the required geometric scalar field potential and how is it related to the
simple Rindler potential of Refs. [1865, 186/]

e Can an arbitrary vacuum spherically symmetric metric be reproduced by a properly selected geometric
scalar field potential?

The goal of the our analysis is to address these questions using both theoretical reconstruction of the
fundamental action and direct comparison with specific velocity rotation data.

The structure of this Chapter is the following: In the next Section 5.2 we consider a class of simple
spherically symmetric metrics in 3 + 1 dimensions and identify the profiles and properties of the perfect
fluids that can give rise to such metrics. In Section 5.3 we assume spherical symmetry and use it
to dimensionally reduce the 3 4+ 1 dimensional Einstein-Hilbert action to an effective two dimensional
scalar-tensor action with a constant potential. We generalize this geometric potential thus modifying the
gravitational action to an arbitrary form and derive the corresponding generalized vacuum spherically
symmetric metric in terms of the geometric potential. In Section 5.4 we consider special forms of the
geometric potential and of the background fluid and derive the corresponding metric. Thus the case of a
constant potential (GR) we derive the Schwarzschild vacuum metric while for a simple quadratic potential
we obtain the Rindler acceleration and cosmological constant terms in agreement with Ref. [1863]. We
also reconstruct the geometric potential that leads to a vacuum metric that is identical with the metric
derived assuming a given dark matter fluid density profile in the context of GR. In the context of a
particular example we assume a Navarro-Frenk-White (NFW) [1639, 1640] density profile and derive the
corresponding geometric potential and vacuum metric. We show that this metric generalizes the Rindler
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term of the Grumiller metric and show fits of the velocity profiles it generates on typical galactic velocity
rotation data. Finally in Section 5.5 we conclude and discuss the implications and possible extensions of

our analysis. In what follows we assume a metric signature + — ——.

5.2 Spherically Symmetric Metrics in GR and Perfect Fluids

Consider the spherically symmetric metric in 4-dimensions of the form

ds® = f(r)dt* — f(r)"'dr? — r*(d6* + sin*0d¢?) .

(5.1)

What is the most general form of perfect fluid energy momentum tensor that is consistent with this metric

in the context of GR?
In order to address this question we set

flr)=1—=g(r),
and obtain the Einstein tensor corresponding to this metric as
eif(r) 0 0 0
v — 0 e(r) 0 O
K710 0 exr) O ’
0 0 0 eax(r)
with
g9(r)  g'(r)
ei(r) = 2 + .
/ r 1 r
s = 20 20

Using Egs. (5.4), (5.5) and the Einstein equations G¥ = kT* we find

RATIONIE

po(r) =po(r) = 5 —[20'(r) + rg"(r)]

where k = 87G and the energy momentum tensor of the perfect fluid is

Tﬁ = diag [p(’l“), —Pr (7“), —Pe (7“)7 —p¢(7“)] :

Expanding g(r) as a power series

N
f(r)y=1- Z anr”™,
n=—N

the Einstein tensor may be expressed as [1865]

N an(n+1)rn=2 0 0
0 an(n+1)rn=2 0
po_
Gy _ZN 0 0 fapn(n+ 1)r"=2
A 0 0 0 Fann(n
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Therefore, the energy - momentum tensor supporting the metric function Eq. (5.9) is

N
1
70 = = n-2 — .
$= LY ahnr =y, (5.11)
n=—N
T; =19 = —pr (5.12)
1N
Tg = oy ann(l + n)rn72 = —Do , (5~13)
k n=—N
T3 =T) = —py - (5.14)
As expected the term n = —1 (Schwarzschild metric) corresponds to the vacuum solution (p = p = 0)

while for n = 2 we have the cosmological constant term (constant energy density-pressure). The Rindler
constant acceleration term n = 1 is generated by a perfect fluid with

2a
p="r=—pr=—2py = —2p; . (5.15)

Kr

For n = 0 (constant term in the metric function) we have the case of a global monopole (zero angular
pressure components and energy density ~ r~2 [1871-1875]). Thus any power law term of the spherically
symmetric metric function g(r) can be generated by a corresponding power law term of the energy
momentum tensor of a perfect fluid provided that its radial pressure equation of state parameter w, is
—1 and there is equality between the angular pressure components.

The question we address in the next section is the following: Can the spherically symmetric metric Eq.
(5.1) also emerge as a vacuwum solution in a modified gravity theory? In other words, given a spherically
symmetric fluid and its corresponding metric in the context of GR, what is the spherically symmetric
modified gravity theory that leads to the same metric as its vacuum solution?

5.3 Modifying Spherically Symmetric GR through Dimensional
Reduction

Consider the generalization of the spherically symmetric metric Eq. (5.1) to a d-dimensional form
ds® = f(r)dt* — f(r)"dr® — ®(r)%dQ (5.16)

where ®(r) denotes the the surface radius and df? is the solid angle in d — 2 dimensions. The Einstein-
Hilbert gravitational action describing the dynamics of the metric Eq. (5.16) in the context of GR. is of
the form

1
. m/d%me) +/ddx@g;j> : (5.17)

where R(9 is the Ricci scalar in d dimensions and Cg\(/i[) is the matter Lagrangian density assumed to

describe a spherically symmetric perfect fluid. It is straightforward to show using the metric Eq. (5.16)

that the d—dimensional Ricci scalar can be expressed in terms of the corresponding 2-dimensional (¢ —r)

scalar as [1870]

(d—2)(d—3)
o2

while for the d-dimensional spherically symmetric metric determinant we have

V—g@ = 12,/—g® . (5.19)

2(d —2)

R@ — p@ _ [1+ (09)%] - V0, | (5.18)
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Using Egs. (5.18) and (5.19) in (5.17) we may integrate trivially over the angular coordinates and
dimensionally reduce this action to a 2-dimensional (¢ — r) scalar-tensor action of the form

Va—2

=g 2Kq

d*z\/—g® [@d ’R®) + (d —2)(d — 3)89*(09)* — (d—2)(d—3)<I>d_4}+Vd,2/d%d—g@)ﬁﬁ),

(5.20)
where V;_5 is the d — 2 dimensional angular volume which is equal to 47 for d = 4. For d = 4 the
2-dimensional action takes the form

g é Par/—g@ [@2}2(2) +2(09)2 — 2} +53 (5.21)

A modification of spherically symmetric GR can be implemented at this stage by generalizing the effective
dimensionally reduced GR action Eq. (5.21) to a general ST action [1877, 1878] of the form

S =15 [ @ovV=9® [F@R® - Z@)@0) ~2v(®)] + 5 | (5.22)

where F(®), Z(®), V(®) are arbitrary functions of the field ®!

The origin of this generalized ST action Eq. (5.22) could either come from physics at the effective
2-dimensional (¢ — r) level or could emerge through dimensional reduction of a spherically symmetric ST
theory.

In particular consider the d-dimensional scalar-tensor action

S = d4z\/—g [ D)RD — ((9)(0D)% — U(®)] + 5P (5.23)

2/€d

which for x(®) =1, ((®) = 0 and U(®) = 0 reduces to the Einstein - Hilbert action Eq. (5.17).
It is straightforward to show that the action Eq. (5.23) can be dimensionally reduced using spherical
symmetry and the metric Eq. (5.16) to the 2-dimensional action

= Vet [ /=g {x(2) 2RO 4 [(d — 2)(d — 3)x(®)P + 2(d — 2)(B)2
(5.24)

—((D)B12](9D)? — (d — 2)(d — 3)x(®) D — BI2U(®)} + ST |

where the prime (') denotes derivative with respect to the surface radius field ®. Clearly for d = 4 the
action Eq. (5.24) reduces to Eq. (5.22) by setting

F(®) = x(®)®* , (5.25)
Z(®) = —2x(®) — 4\ (D)® + ((P)P? , (5.26)
V(®) = x(P) + %QU(CD) . (5.27)

In what follows we set d = 4. Variation of the action Eq. (5.22) with respect to ® leads to the equation
of motion (EOM)

5£(2)

F'(®)RP + Z'(9)(09)? + 2Z(D)V’9,® — 2V'(®) = —2G —2L o

(5.28)

INote that for the dimensionally reduced metric ®(r) can be considered as a scalar field (up to a dimensionful parameter)
in correspondence with e.g. the radion field which is an effective scalar field in 4-dimensions describing the dynamics of
extra dimensions in a cosmological setup [1762] in the context of an effective ST theory in 4-dimensions.
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and variation with respect to g"” leads to the EOM
1
V.0, — 9u, V0] F(®) + Z(®) |0,20,P — §gw((’“)<l>)2 = gV (®) —2GT2) . (5.29)

Using the 2-dimensional metric
ds* = f(r)dt* — f(r)"tdr? (5.30)
it is straightforward to show that the 2-dimensional Ricci scalar is of the form

&2f

R® = .
dr?

(5.31)

Using ES\? =T =p? —pi? [1879], Eq. (5.31) and the ansatz ® = r in Eq. (5.28) we obtain the EOM

[ =2Zf = Z'f -2V = 2260 — pl?) (5-32)

where p(?) and pi’” are the 2-dimensional density and pressure respectively and the prime (') denotes

derivative with respect to r.
Also for p=v =0 in Eq. (5.29) we obtain (with the same ansatz for ®)

f'F +2fF" + Zf —2V = —4Gp? . (5.33)
Similarly for y =v =1 Eq. (5.29) gives
f'F —Zf —2V = 4Gp? . (5.34)

The system Egs. (5.32)-(5.34) is overdetermined since there is only one unknown function f(r). Thus for
a solution to exist Egs. (5.32)-(5.34) must be equivalent to each other (up to a constant of integration).
It may be shown that this consistency requires that

Z=—F", p@=_p® . (5.35)
Indeed using Egs. (5.35), the system Egs. (5.32)-(5.34) is equivalent to a single equation
FE 4 fF" — 9V = 74Gp(2) — 4Gp$2) . (5.36)

The general equation Eq. (5.36) connects the metric function f with the geometric potential V'
emerging from dimensional reduction and the nonminimal coupling F' in the presence of a static spherically
symmetric perfect fluid whose equation of state parameter is —1. Thus, any spherically symmetric metric
of the form Eq. (5.1) can emerge either due to an appropriate perfect fluid or as a vacuum solution of
dimensionally reduced modified gravity with properly selected nonminimal coupling F' and/or potential
V.

In what follows we focus on modifications of GR due to the geometric potential V' and fix F' to the
GR form F = &% implying Z = —2 (from Eq. (5.35)). Then Eq. (5.36) becomes

rf 4+ f =V =-2Gp® =2Gp? . (5.37)
In order to quantify deviations from GR we set

f(r)=1-g(r), (5.38)
V(®)=1+Vi(®), (5.39)

and expressing the dimensionally reduced density p(® in terms of its 4-dimensional counterpart p as

pP(r) = 4n®?p(r) , (5.40)
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in Eq. (5.37), we obtain

1 |g(r
prr(r) = o) + (1) = - [ 2 1) (5.41)
kr| T
where the geometric effective energy density is defined as
Vi(®)
= - . 5.42
v (T) 2 ( )

Therefore the generalization of the scalar-tensor potential leads to an effective energy density of geometric
origin which generates the same spherically symmetric metric as a corresponding spherically symmetric
perfect fluid with equation of state parameter w = —1 and energy density p,,(r) = py (7). This derived
equivalence between geometric and matter energy density allows the reconstruction of the geometric
potential by demanding that its gravitational effects in the vacuum should be identical with the grav-
itational effects of a given matter fluid in the context of GR. This reconstruction from a realistic dark
matter profile will be the main focus of the next section.

5.4 Special Cases - Reconstruction of Gravitational Action

5.4.1 Vacuum GR and Grumiller’s gravity model

A special case of the geometric potential introduced in the previous section has been considered by
Grumiller [1863, 1864]. In particular, the following dimensionally reduced action was investigated

1

STe

Px\/—g@[®2RP +2(89)% 4 6AD? — 8ad — 2] . (5.43)

This is a special case of the general action Eq. (5.22) with the GR coupling FF = ®2, Z = —2 and a
geometric potential of the form
V(®) =1+ 4ad — 3A0? . (5.44)

The ansatz ® = r and our general reconstruction equation Eq. (5.41) leads to the Schwarzschild-Rindler-
deSitter metric function as a vacuum solution (p,, = 0)

f(r)=1-2GM/r + 2ar — Ar? , (5.45)

in agreement with Grumiller’s metric [1863].

The main advantages of the Grumiller potential Eq. (5.44) include its simplicity and its generic
nature as it involves terms that dominate at large distances while at the same time it does not lead to
any curvature singularities at infinity where the Ricci scalar Eq. (5.31) remains finite. On the other hand
the metric function Eq. (5.45) has been used to reconstruct the velocity profiles of galaxies without dark
matter with mixed results [1866-1868]. Even though it was found that the constant acceleration Rindler
term can provide satisfactory fits to the observed velocity rotation curves of some galaxies in regions
where these curves are rising with distance it became clear that for universal fits more parameters are
needed in the potential. Such parameters however should be introduced in a way that is most efficient
phenomenologically i.e. inspired from observed dark matter density profiles while at the same time they
preserve the advantages of the Grumiller potential (simplicity and lack of large scale singularities). Using
these principles in the next subsection we generalize the Grumiller geometric potential by demanding
that the new potential reproduces in the vacuum the gravitational effects of a well known dark matter
density profile parametrization: the Navarro-Frenk-White density profile [1639, 1640].
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5.4.2 Reconstruction of Geometric Potential

The Navarro-Frenk-White (NFW) profile [1639, 1640] can give good fits to a wide range of observed
rotation curves of galaxies in the context of general relativity (GR). It is of the form

Po

- o (5.46)

PNFW(T) =

where the scale radius R, and p, are parameters which vary from halo to halo.
The GR gravitational effects of this profile can be reproduced in the vacuum of a modified gravity
model with a geometric potential reconstructed using Eq. (5.42) as

TA(®)

pv(?") = /4;7'2 = PNFW(T) 5 (547)
which leads to a potential of the form
4aP
Vie)=14 —— , 5.48

with 8 = R% and o = 2rGp,Rs. This potential reduces to the Rindler-Grumiller potential [1863] for
B8 = 0. The new parameter 8 introduces no large scale curvature singularities while it is designed to
maximize the efficiency of fits to the observed rotation curves to the extend that such fit is obtained by
the NFW density profile in the context of GR. Also the above potential reconstruction method can be
easily generalized for any other density profile.

Solving Eq. (5.41) in the vacuum (p,, = 0) with the geometric density py obtained from the recon-

structed potential Eq. (5.48) we obtain the term g(r) of the metric function

_1
g(r) = C  dalg ;21:(1 + Br)] | (5.49)

where C is a constant of integration. Expansion of g(r) of Eq. (5.49) as a power series demonstrates that
this metric function is a generalization of the Rindler-Grumiller metric function Eq. (5.45) for A =0

_ 4«

g(r) = " B oar + gaBTQ +0(r)?, (5.50)

which after a redefinition of the integration constant C' clearly reduces to the Rindler-Grumiller metric
function for fr <« 1. Setting C = 2GM + 2—3‘ and using Eq. (5.38), the metric function f(r) becomes

fry=1- 2GM _4a1—ﬁ—ln(l+ﬁr)

. 7 : (5.51)

which generalizes the Grumiller metric Eq. (5.45) with one additional parameter () and is based on the
geometric potential reconstructed from the NFW density profile. In the next subsection we check the
efficiency of this metric in fitting two representative observed velocity rotation curves. The quality of fit
will also be compared with the corresponding fit of of the Rindler-Grumiller metric [1863].

5.4.3 Fitting Velocity Rotation Curves

It is straightforward to show that the radial timelike geodesics in a background metric of the form Eq.

(5.1) may be written as
1 /dr\? s K
~ (== of = 2 52
2 <d7‘> v 2’ (5.52)
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Figure 5.1: The effective potential Eq. (5.55) that determines the velocity rotation curves for parameter
values | = 10, M = 2. The GR prediction (continous blue line) is obtained for v = 0 while the upper
and lower red short-dashed lines correspond to the Rindler metric (8 = 0) with « > 0 and o < 0
respectively. The upper and lower pink long-dashed lines correspond to the metric of the reconstructed
potential (8 > 0) for a > 0 and « < 0 respectively. In the later cases the GR prediction is obtained for
large enough values of r.

where k is a constant,

eff f(?”‘) 12
AV S .

V 5 ( + ol I (5.53)

is the effective potential and [ is the constant angular momentum per unit mass.
In the special case of the vacuum Schwarzschild-Rindler-deSitter metric function Eq. (5.45) the

effective potential reads
GM 2 GMI?  Ar? 2

yeft - 7 4 T 1+—= . 5.54
r +2r2 r3 2 +ar( +r2> (5:54)

In what follows we set A = 0 since the effects of the cosmological constant can be ignored on galactic
scales. For the metric function Eq. (5.51) emerging from the NFW reconstructed potential Eq. (5.48)
we have

GM 12 GMI?

2 1 12

where we have dropped the constant terms on the RHS of Eqgs. (5.54) and (5.55). A plot of this
effective potential for various values of parameters is shown in Fig. 5.1. The predicted rotation velocities
of test particles may be approximated as

(5.55)

aveﬂ
or

: (5.56)
=0

1}2(1") ~
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Figure 5.2: The best fit forms of the velocity profiles Eq. (5.57) (red dashed curve) and Eq. (5.58) (green
continuous curve) on the observed halo profiles (thick dots) of two typical galaxies (S:610359 left panel
and S:702916 right panel). The blue continuous shows the fit of GR without dark matter which is clearly
poor.

where we have set [ = 0 to avoid double counting of the angular momentum [1868]. Thus for the
Schwarzschild-Rindler metric in the dark matter halo we have [1863, 1830]?

M
v3(r) = GT +ar, (5.57)

where M is the luminous mass in the galactic core. For the velocity profile corresponding to the NFW
reconstructed potential Eq. (5.55) we have
GM 2« Br—1 Br
2
=—+4+ |1 - —In(1 . 5.58
vi(r) r + B2r + 1+ 8r (14 pr)? n(l + fr) ( )
The predicted rotation velocities Egs. (5.57) and (5.58) can also be derived from the effective potentials
Egs. (5.54) and (5.55) assuming circular motion. Setting

dveff
=0, (5.59)

solving Eq. (5.59) for the angular momentum [ = vr and ignoring higher order terms. For example for
the Grumiller effective potential Eq. (5.54) we obtain

GM 3G?M*>
v3(r) ~ - +ar+2GMa + —a o’r? (5.60)
which reduces to Eq. (5.57) if we ignore higher order terms in M and a.
The rotation curve is the sum of the following three terms expressed by
v3(r) = vg(r) + v§(r) + vgn(r) | (5.61)

where vZ(r), v%(r) and vZ,,(r) are the different contributions in velocity of gas, stars and gravitational
model (Rindler-Grumiller or reconstructed potential) respectively. The term vZ,,(r) gives rise to the
velocity rotation curves of galaxies without incorporating dark matter halo. We assume that the density
(of gas and stars) drops to zero at r,,;,. Thus, in our analysis, we use data in the range i < 7 < Tmax
and for a total mass M we obtain the best fit forms of the velocity profiles corresponding the Rindler-
Grumiller and reconstructed geometric potential.

2For further developments of this velocity profile see Refs. [1881, 1882]
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Table 5.1: The best fit values of parameters and the corresponding value of the adjusted R2 of the velocity
profiles Egs. (5.57) and (5.58) on the observed halo profiles of two typical galaxies S:610359 and S:702916
(rotation curve data obtained from Ref. [59]).

Grumiller-Rindler Potential Reconstructed Potential
Galaxy @ M R? «a I} M R?
[x107 1 ]| [x10'0 M) [x10722] | [x1072m '] | [x 10" M)

S 1610359 | 7.90 £ 0.36 | 0.01 £0.020.959 | —4.10 £0.16 | 3.17+0.13 |0.32 £0.02|0.983

S 1702916 | 4.64 +0.55 | 4.11 £0.47|0.923 | —4.78 £0.38 | 1.794+0.12 |3.72 £0.27|0.998

In Fig. 5.2 we show the best fit forms of the velocity profiles Eqs. (5.57) (red dashed curve) and (5.58)
(green continuous curve) on the observed halo profiles (thick dots) of two typical galaxies (S:610359 left
panel and S:702916 right panel). Velocity rotation data were obtained from the ’S-sample’ of Ref. [59].
The S:610359 [1883] (also known as UGC 10359) has a typical rising velocity profile and is a SB(s)cdpec?
galaxy from Gassendi HAlpha survey of SPirals (GHASP) [1885]. The spiral galaxy S:702916 [1883] (also
known as UGS 2916) has a flat and slowly droping velocity profile and is a Sab* galaxy from early type
galaxies survey [1880].

Clearly the velocity profile corresponding to the reconstructed geometric potential provides a much
better fit to the data for both observed velocity profiles and especially for the flat velocity profile. This
is demonstrated quantitatively by the adjusted R? statistic [1887-1839] which measures the quality of
fit of a parametrization to a given set of data penalizing also for increased number of parameters. As
shown in Table 5.1, the value of the adjusted R? is much closer to its optimal value 1 in the case of the
velocity profile corresponding the reconstructed geometric potential than the Grumiller Rindler potential
or the simple Newtonian potential without dark matter. In Table 5.1 we also show the best fit values
of parameters for each fitted velocity profile which in the case of Rindler potential agrees with previous
studies [1864, 1868, 1890, 1891]. Notice that the best fir value of « for the reconstructed potential is
a < 0 with is consistent with Eq. (5.47) and the fact that pyprw > 0.

5.5 Conclusions

In this Chapter we have used dimensional reduction of spherically symmetric gravity to construct a
modified gravity model whose vacuum spherically symmetric metric has the same gravitational effects as
the NF'W dark matter density profile in GR. The model is a generalization of the Grumiller model whose
vacuum spherically symmetric metric includes a Rindler term in addition to the standard Schwarzschild
and cosmological constant terms. We have also shown that for any spherically symmetric perfect fluid
with proper equation of state (w = —1) there is a modified gravity model, defined by a geometric potential,

3A late-type barred peculiar spiral galaxy. It have well-developed, open, and knotty spiral arms with little or no bulge
and without rings structures (see Ref. [1884] for morphology types of galaxies)
4 An intermediate-type unbarred spiral galaxy with tightly-wrapped spiral arms and a significant bulge (see Ref. [1884])
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whose spherically symmetric vacuum metric is the same as the GR metric in the presence of the given
fluid.

In particular we have shown that in order to reproduce the GR gravitational effects of the NFW
density profile in the vacuum, the reconstructed dimensionally reduced geometric potential is of the
form V(®) = 1+ 4a®/(1 + f®)? — 3AD? where «, 3 are parameters and ®(r) is a field emerging from
dimensional reduction. In the limit 3 — 0 this geometric potential reduces to the Grumiller potential
Eq. (5.44) [1863, 1864].

The reconstructed potential has the following interesting features:

e It leads to a vacuum metric that provides significantly better fits to the velocity rotation profiles
than the Grumiller linear potential term that leads to Rindler term in the vacuum metric.

o It leads to a vacuum metric that reduces to the GR vacuum on scales much larger than the =1
or the galactic scales. Thus on cosmological scales it is consistent with ACDM . In contrast, the
Grumiller-Rindler term is comparable to the cosmological constant on cosmological scales thus
spoiling homogeneity and diverging from the standard ACDM cosmic accelerating expansion.

e Due to its non-polynomial form, it involves no IR curvature singularities while being distinct from
the Grumiller potential thus demonstrating that this potential is not the only potential free from
IR singularities.

The cosmological effects of the model considered could be examined under the assumption of the exis-
tence of a large number of homogeneously distributed isotropic centers leading to large scale homogeneity
in addition to isotropy around a single center (spherical symmetry). In such a physical setup, the geomet-
ric fluid density py defined in Eq. (5.47) could be extended on cosmological scales as a homogeneous and
isotropic fluid by replacing r with the scale factor a over the Hubble parameter Hy. Thus, on dimensional
grounds the corresponding homogeneous geometric fluid would have an energy density scaling as

40£H0

 wa(1+ Ba/Hy)?’ (562

pv(a) =
where the Hubble parameter Hy has been introduced on dimensional grounds. The derivation of Eq.
(5.62) has been heuristic and based mainly on dimensional analysis. A proper derivation would involve
the detailed superposition of homogeneously distributed centers of isotropy and is beyond the goals of our
analysis. Nevertheless, the following comments can be made on this predicted geometric homogeneous
dark matter

e For 5 = 0 the geometric fluid energy density reduces to the Rindler fluid whose energy density scales
like 1/7 or 1/a in a cosmological setup. This scaling is distinct from the matter density (~ 1/a%),
the effects of spatial curvature (~ 1/a?) and the cosmological constant (constant effective density).
Such a physically motivated and simple term can be efficiently constrained using cosmological data
probing the evolution of the Hubble parameter H(a) even though a homogeneous component of
ordinary dark matter would be required for a proper fit in addition to the cosmological constant.

e For 8 > Hj which is expected for a value of S reconstructed from galactic rotation curves, the
geometric fluid density Eq. (5.62) scales as 1/a® ie as ordinary homogeneous dark matter. Thus
such a geometric fluid would not only provide better fits of galactic rotation curves but could
also provide the homogeneous dark matter on cosmological scales. Such a geometric dark matter
would have a predicted scaling signature of the form Eq. (5.62) leading to constraints on 3 from
both galactic rotation curve data and cosmological data probing the cosmic expansion rate. The
consistency of these constraints could provide an efficient test for this class of models.

Other interesting extensions of our analysis include the following
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e The reconstruction of the geometric potential obtained from other special cases of spherically sym-
metric vacua. Such metrics could have oscillating components leading to oscillating terms in New-
ton’s law at sub-mm scales which appear to be mildly favored by some short range gravity experi-
ment data [170, 171].

e The use of solar system data, short range gravity experiments data or other velocity profile data to
impose constraints on the parameters « and S of the reconstructed potential Eq. (5.48).

e The generalization of the dimensionally reduced modified gravity model Eq. (5.22) in different
directions including a more general form of the nonminimal coupling (beyond F(®) = ®2), the
consideration of f (R(2)) extensions of the dimensionally reduced model or the generalization of the
ansatz ® = r used for the derivation of the spherically symmetric vacuum metric.

In conclusion, dimensional reduction in the context of spherical symmetry offers an interesting point of
view for the modification of GR and can lead to a wide range of testable physically motivated models for
gravity.



Chapter 6

Observational Constraints on the GUP Pa-
rameter with Maximum Length Quantum
Mechanics

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [3].

In this chapter, we derive the generalized form of the primordial power spectrum of cosmological
perturbations generated during inflation due to the quantum fluctuations of scalar and tensor degrees
of freedom in the context of a generalization of quantum mechanics involving a maximum measurable
length scale.

A central issue of fundamental research is the unification of Quantum Theory (QT) and general
relativity (GR) in the framework of Quantum Gravity (QG). A critical scale in the context of this

unification is the Planck scale defined as l,; = /2§ = 1073 m (see Ref. [1892], for a review) which has

been shown to be the minimum measurable scale if both QT and GR are applicable. Indeed it may be
shown [1893] that the high energies required to probe scales smaller than the Planck scale would lead
to the formation of a black hole through the gravitational disturbances of spacetime structure which
would prohibit any measurement on smaller scales. The existence of such a minimum measurable length
would lead to a modification of the Heisenberg Uncertainty Principle [1144, 1145] (HUP) to the so-called
Generalized (Gravitational) Uncertainty Principle (GUP) (see Ref. [1171], for a review)

Awtp> D1+ pap?) (6.1)

where 8 is the GUP parameter defined as 8 = By/Mpc? = 6ol§l/h2, Mpyc? = 10" GeV, I is the 4-
dimensional fundamental Planck scale and [ is a dimensionless parameter expected to be of order unity.
Such a GUP is closely related to the concept of noncommutative geometry [1894] and has been extensively
investigated in Refs. [1146-1156, 1158-1161, 11631166, 1168]. In particular interest in a minimum
measurable length or equivalently in a ultraviolet cutoff has been motivated by studies of string theory
[1895-1901], loop quantum gravity [1902-1908], quantum geometry [1909], Doubly Special Relativity
(DSR) [1910-1915] and by black hole physics [1148, 1157, 1162, 1169] or even Gedanken experiments
[1916] and thermodynamic properties of gravity [1917].

Several phenomenological implications of minimal length theories and quantum gravity phenomenol-
ogy were investigated and a number of researchers have studied phenomenological aspects of GUP effects
in several contexts (e.g. in Refs. [1918, 1919] atomic physics experiments such as Lamb’s shift and
Landau levels have been considered and constraints on the minimum length scale parameter 5 have been
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estimated ). In Refs. [1920-1924] a model that is consistent with string theory, black hole physics and
DSR is presented and discussed. This model of GUP predicts both a minimal observable length and a
maximal momentum simultaneously [1921, 1925].

6.1 Introduction

The existence of a minimum measurable length is closely related to the existence of the black hole
horizon which tends to form if length scales below the Planck scale are probed. Correspondingly, there
is a maximum measurable length associated with the cosmological particle horizon [1926, 1927] which
provides due to causality a maximum measurable length scale in the Universe. The particle horizon
corresponds to the length scale of the boundary between the observable and the unobservable regions of
the universe. This scale at any time defines the size of the observable universe. The physical distance to
this maximum observable scale at the cosmic time ¢ is given by e.g. [79, 1928]

lmaz () = a(t)/o Zé; , (6.2)

where a(t) is the cosmic scale factor. For the best fit ACDM cosmic background at the present time %o

we have
lmaz(to) =~ 14Gpc ~ 10*° m . (6.3)

This existence of such a maximum measurable length would lead to modified version of the GUP of
the form ! [55]

h 1

As shown in Fig. 6.1, this GUP indicates the existence of maximum position uncertainty [55]

Linaw = ATmazs = /2 (6.5)

due to the divergence of the RHS of Eq. (6.4). As shown in Fig. 6.1 the existence of a maximum length
scale is associated with the presence of a minimum momentum scale Ap,,in.
The GUP (6.4) originates from a commutation relation of the form

1

Toan? (6.6)

[%p} =ih

Tt is straightforward to show (see in Appendix C) that this commutation relation leads to the GUP
(6.4) using the general uncertainty principle for the pair of non-commuting observables z, p

hoo. .
Azdp 2 3 | ([z.9]) |, (6.7)
with

Az = <(g:~ - <gz>)2> , (6.8)

ap= /{6~ B)) (6.9)

where Z,p are the operator representations of the observables z, p.

LA perturbative version of this GUP was introduced in Ref. [1929] as AzAp > 1+ aALz22

unity and L, is the characteristic, large length scale) and called extended uncertainty principle (EUP) by many authors
[1917, 1929-1936]. Here we keep the notation ’GUP’ instead of "EUP’ for consistency with Ref. [55].

(where « is a constant of order
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I S s y

6 Allowed Uncertainty Region

ap

2 a=0.01

Figure 6.1: The deformation of the HUP in accordance with Eq. (6.4) after rescaling to dimensionless
form using a characteristic length scale of the quantum system (from Ref. [55]).

The commutation relation (6.6) may be represented as shown in Appendix C by position and momen-
tum operators of the form

1

r=x0 , (6.11)

p

where o and pg are the usual position and momentum operators satisfying the Heisenberg commutation
relation [zg, po] = ih.

The representation Egs. (6.10), (6.11) may be used to solve the Schrodinger equation for simple
quantum systems to find the dependence of the energy spectrum on the maximum measurable scale ;4.
Such an analysis has indicated [55] that the current cosmic particle horizon is too large to lead to any
observable effects in present day quantum systems. This however is not necessarily the case in the Early
Universe when the particle horizon scale is much smaller and could leave an observable signature in the
quantum generation of the primordial fluctuations during inflation. Thus, in our analysis we wish to
address the following questions

e What is the deformation of the scale invariant spectrum of perturbations produced during inflation
due to the Heisenberg algebra deformation Eq. (6.6) corresponding to the existence of a maximum
measurable scale?

-2

e from the observed power

o What constraints can be imposed on the fundamental parameter o = [
spectrum of primordial fluctuations?

The structure of this Chapter is the following: In the next Section 6.2 we consider a simple harmonic
oscillator in the presence of a large maximum measurable scale and find the variance of the position as
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a function of the parameter « and the corresponding variance in the context of the HUP (o = 0). In
Section 6.3 we generalize this analysis to the case of systems with infinite degrees of freedom (fields)
and derive the spectrum and the spectral index of tensor and scalar perturbations generated during
inflation as a function of the parameter a and of the corresponding spectrum obtained in the context of
the HUP. In Section 6.4 we use the derived theoretical expression for the (running) spectral index along
with the corresponding observationally allowed range of the index as a function of the scale k to derive
constraints on the fundamental parameter « of the GUP. Finally in Section 6.5 we conclude and discuss
the implications and possible extensions of our analysis.

6.2 Toy Model: The position variance of the Harmonic Oscilla-
tor under GUP

In order to quantize the simple harmonic oscillator under the assumption of the GUP (6.4) we need to
generalize the expressions of the creation and annihilation operators @' and @ in terms of x, p so that the

commutation relation [1937]
[a,a'] =1, (6.12)

is retained while at the same time the GUP commutation relation (6.6) is also respected. Thus, in order
to satisfy these conditions, we generalize the analysis of Refs. [1938, 1939] which applies to the GUP
(6.1) and define

- \/21% @z + fla,2)] +ip) (6.13)
at = ! (wlz+ fla,z)] —ip) (6.14)

where f(«, ) is a function chosen so that the commutation relations (6.12) and (6.6) are respected.
It is straightforward to show that the following function satisfies the aforementioned conditions si-
multaneously

fla,z) = Z (;i)n g2t (6.15)

[\~
—_

n=1

while it reduces to 0 in the limit a« — 0 as it should.
Thus, we can rewrite Eqs.(6.13) and (6.14) as

o= \/% <w\/1&arctan(\/ax) + ip> : (6.16)

al = \/% (w\/laarctan(\/ax) — ip) , (6.17)

and the p and x operators are

p=—i\/— (a—al) , (6.18)

x = ﬁtan ( @@ + &T)> . (6.19)

. 3 5
Using tanz = = + & + 22 + ... we have
3 15 )

T=x +Lz8+2a2z8
) 15

+ oy (6.20)
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where

hoo .
T = E(a +al), (6.21)
is the position operator in the case of the HUP («a = 0). Keeping the lower order terms in « (assuming

ah < 1) we obtain

3
Oll’o h ~ At Oéh A AT\2
T =z + 5 — ¢ \/2w(a+a)[ —|—6w(a—|—a) (6.22)
For ao = 0 we have
T = v(w, t)a + v*(w, t)al (6.23)

where

B
v(w,t) =1/ %eﬂ“’t , (6.24)

is the properly normalized solution of the classical evolution equation of the harmonic oscillator ‘fi%’ +

w?v = 0. Therefore the position operator may be expressed as

z = (va+val) [1 + %(Ud + U*(~1T)2:| . (6.25)
Thus the variance of the position in the ground state takes the form

(|z]?) = (O\mTz|O> = (|z?) = Jv(w, t)? [1 —|—2a|v(w,t)|2] , (6.26)

which reduces to the familiar result for o = 0 (see e.g. Refs. [77, 1940]).

In the next section we generalize the above analysis to the case of quantum field fluctuations involving
infinite degrees of freedom aiming to derive the perturbation power spectrum generated during inflation
in the context of the GUP.

6.3 Primordial spectra of cosmological fluctuations with GUP

According to the decomposition theorem [1941] the perturbations of each type evolve independently
(at the linear level) and we can treat tensor (T) and scalar (S) perturbations of the metric separately.
Therefore for spatially flat Friedmann-Robertson-Walker (FRW) background plus the perturbations we
can write

dsy = a® [—dr® + (6;; + Hyj)da'da’] | (6.27)
and in conformal Newtonian gauge [1383]
dsg = a® [—(1+20)dr? + 6;;(1 + 2®)da’da’] | (6.28)

where a is the scale factor, 7 is the conformal time, ¥ corresponds to the gravitational potential of the
perturbations, ® is the perturbation of the spatial curvature? and H;; is the tensor perturbation which
has the form 3

hi hy O
[Hij] = | hy —hi0] . (6.29)
0 00

The classical evolution equations for the tensor mode perturbations hy (where T' = +, x for two polariza-
tion states [1943]) of the FRW metric during inflation in conformal time are obtained from the linearized
Einstein equations and may be written as [1944]

/
hlh + Q%h’T +k2hr =0, (6.30)

2In the absence of anisotropic stress (IT = 0) we have ¥ = —& [1942].
31t has this form in a coordinate system where wavevector k points along the z-axis.
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where primes denote derivatives with respect to 7. This becomes a simple harmonic oscillator equation
by defining

~ ah
hy = \/ﬁ , (6.31)
and Eq. (6.30) takes the form y }
N4 w?hy =0, (6.32)
where
a//
W=k = (6.33)
a

During slow roll inflation when the Hubble rate H is nearly constant [1945], the conformal time is
[1940, 1946]
-1

T = aiH . (6.34)

Thus we obtain 5

w?=k? - = (6.35)
We now quantize the tensor field fluctuations by promoting them to operators and imposing a generalized
field commutation (GFC) relation [1947, 1948] corresponding to Eq. (6.6). This GFC takes the form

(h=1)

- 1
[ (k), w7, (K')] = id (k — k/)m ; (6.36)
where 7, is the conjugate momentum to hr which is given by
- a’ ~
Ty = hp — ZhT , (6.37)
and p is a GFC parameter
pe~a? =101 (6.38)

where « is the parameter of the GUP (6.4). Thus we have an infinite number of decoupled harmonic
oscillators corresponding to Eq. (6.32) which may be quantized in accordance with the GFC (6.36). Using
the results of the previous section we connect the field normal modes with the creation and annihilation
operators which satisfy the commutation relation [ax, d;r(,} =6k — k'), as

o (k) = \}ﬁtan (\/g(ak + a;)) , (6.39)

(k) = —i g (ak - aL) : (6.40)

and obtain the variance of the perturbations as

(hl(k, 7)hp (K, 7)) = HZ;G lw(k, 7)[* [1+ 2afv(k, 7)) (27)?6° (k — k') = (27)* Py (k)6 (k — k') , (6.41)

where P, is the power spectrum of the primordial tensor perturbations of the metric, the Dirac delta
function enforces the independence of the different modes (h(k, 7) is uncorrelated with h(k’, 7) if k # k')
and

= puVi . (6.42)

Here the volume scale V, = §3(0) ~ [3

o o 18 an infrared regulator [1949] while v satisfies the Mukhanov-
Sasaki equation [1950-1952]

"

V" (k) + (K — %)U(k’,T) —0. (6.43)
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During slow-roll inflation with initial condition v(k,7) = ﬁe*“‘” and by virtue of Eq. (6.34) (as in
spatially flat de Sitter background) we obtain the Bunch-Davies solution of Eq. (6.43) [1940, 1953-1955]

w(k, 7) = 6\/% (1 - I;) . (6.44)

Using Eq. (6.41) we can write the primordial power spectrum for tensor modes as

=2
_ pl0) Ha~ 5(0)
P =P |14 2P0 | (6.45)
where 160G
Y
PO (k) = = olk, 7). (6.46)

Once k|7| < 1, the mode leaves the horizon, after which h remains constant. Thus, using Eqgs. (6.44)
and (6.46) we obtain
_l6rG 1 StGH?

(0)
P, (k) PEREYE i (6.47)
where the equality on the second line holds because we have assumed that H is constant and 7 = —ﬁ‘l.

In a similar manner we may investigate scalar perturbations induced by quantum fluctuations of the
inflaton scalar field ¢ [1940, 1956, 1957] of the form

d(x,t) = O () + dop(x, 1) , (6.48)

where ¢() is the zero-order part and ¢ is the first-order perturbation.
The fluctuations d¢ of the scalar field driving inflation evolve in conformal time 7 according to the
equation e.g. [1928]

/
56" + 2568 + k256 =0 . (6.49)
a
Using the definition
p=adg , (6.50)
Eq. (6.49) becomes
¢ +wip=0, (6.51)

"

with w? = k% — .
In the context of the maximal measurable length GUP as applied to the case of the inflaton fluctua-
tions, the field commutation relation gets generalized as

1
ok), 7, (K] = id(k — k') ——r | 6.52
where 7, is the conjugate momentum to ¢ which is given by
a/
T, =¢ — —e- (6.53)

Since Eq. (6.49) is identical to Eq. (6.30) we can use the result of Eq. (6.45) without the factor 167G
in order to turn the dimensionless A into a field §¢ with dimensions of mass

Psy(k) = P (k) |1 + 24> Py (k)| (6.54)
where 2
) (1) —
Py (k) = 55 - (6.55)

4We evaluate H at the time when the mode leaves the horizon.
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In the case i = 0 Egs. (6.45) and (6.54) reduce to the familiar results of HUP [1383].

The perturbation from the scalar field driving inflation d¢ gets transferred to the gravitational po-
tential ®. The post inflation power spectrum of ® is related to the horizon-crossing power spectrum of
d¢ via [77]

P, 6.56
oc [oo (6.56)

= % G) . (6.57)

We note that the Hubble slow-roll parameter € is equal to the first potential slow-roll parameter ey, to
leading order in the slow-roll approximation [1940, 1946, 1958—1960]

1V
167rG(7)2 ’ (6.58)

€EX ey =

where V is defined as the derivative of the potential V with respect to the field ¢(©).

In the case of single-field slow-roll models of inflation for modes which are outside the horizon (k|7| <
1) at the end of inflation, the primordial spectra of scalar and tensor perturbations do not depend on
time® and it is conventional to write [1946]

Ps(k}) = kJSP@(k) = Askn571 s (659)
Pr(k) = k*P,(k) = Ark"T | (6.60)

where Ag(Ar) is the scalar (tensor) amplitude and ns(nr) is the scalar (tensor) spectral index. The
special case with n; =1 (nr = 0) results in the scale-invariant spectrum.
From Egs. (6.45) and (6.60) we obtain

=2
_pO g [1 4 9 o
Pr) = PO |1+ Lo PO (6:61)
where (for k|7] < 1)
(0) o 8rG o 2

It is straightforward to show at the horizon crossing time (k = aH)

Pr(k) = PO (k) (1 + ’Z) . (6.63)

In Eq. (6.60) the tensor spectral index is defined as

_ dlnPT

Also by virtue of Eq. (6.57) we have that the logarithmic derivative of Hubble rate at horizon crossing is

dln H
dink (6.:65)
Therefore using Egs. (6.62), (6.63) and (6.64) we obtain that the tensor spectral index runs as
np=—2— 2. (6.66)

k

5We assume that non-adiabatic pressure terms are negligible.
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Similarly, from Eq. (6.54) and using Ps = kS%Pg¢ we obtain at horizon crossing time (k = aH)

9ﬂ6 0
Ps(k) = P (k) |1 4+ ——— P :
<) = PO |1+ gl P (6.67)
where CH?
8
PO (k) = (6.68)
9e

It is straightforward to show that the

Ps(k) = P (k) (1 + Z) . (6.69)

Notice that Egs. (6.67) and (6.68) have a generic form which could have been guessed even on the basis of
dimensional analysis. However, here we have demonstrated in detail that these equations are not simply
well motivated parametrizations based on dimensional analysis. Instead they constitute the unique and
generic prediction of the inflationary power spectrum of fluctuations generated in the context of the GUP
Eq. (6.52) as derived in the context of our analysis. Thus there is no room to modify Eq. (6.67) without
violating the physical principle corresponding to the GUP (6.52).

In Eq. (6.59) the scalar spectral index is defined as

_ dlan>
© dlnk

Now using the Eq. (6.58) and the Hubble slow-roll parameter [1960]

(6.70)

Ng —

1 d?¢© /at?

"= H Ao jar

(6.71)
we have that the logarithmic derivative of the slow-roll parameter e is
dlne
=2 . .72
Tk (e+9) (6.72)
Therefore using Eqs. (6.68), (6.69) and (6.70) we obtain that the scalar spectral index runs as

nS:1—4e—25—%. (6.73)

1

el V7” and the relation § = e—n°

Alternatively using the the second potential slow-roll parameter n =
[1946], we obtain

ns:1—6e+2n—%. (6.74)

In the next subsection we use observational scalar spectral index data to obtain bounds on .

6.4 Observational Constraints

The predicted form of the running spectral index Eq. (6.74) reduces to the standard form [1945, 1946] for
the HUP (i = 0) and may be used along with observational constraints of the spectral index to impose
constraints on the GFC parameter ji.

The parameters that can lead to deviations from scale invariance of the spectral index are the GFC
parameter g and the slow-roll parameter A defined as

6The second slow-roll parameter § and the second potential slow-roll parameter 1 are sometimes defined as 1 and 7y
respectively, so that the relation has the form n = ey — ny.
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HUP vs GUP best fit on the observed data

1.1f
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Figure 6.2: The best fit forms of the scalar spectral index Eq. (6.76) (blue curve for HUP and red
curve for GFC Eq. (6.52)) on the observed data (thick dots). The green and brown continuous curves
correspond to —1o and +1o deviation of the parameter i respectively. The light green and the orange
dashed curves correspond to observationally allowed range for the spectral index ng at approximately 20
level.

A =6e—2n. (6.75)
Thus using Eq. (6.74), the scalar spectral index takes the form

ng=1-XA—%5 (6.76)
k
In order to impose constraints on the parameters A, i1 we use constraints on the scalar spectral index
of Ref. [60] which are based on the angular power spectrum data of the 5 year Wilkinson Microwave
Anisotropy Probe (WMAPS5) Cosmic Microwave Background (CMB) temperature and polarization, the
Large Scale Structure (LSS) data of the Sloan Digital Sky Survey (SDSS) data release 7 (DR7) Luminous
Red Galaxy (LRG) power spectrum, and the Lyman-alpha forest (Lya) power spectrum constraints. The
allowed range on ng is shown in Fig. 6.2.
Expressing this range as a set of N = 60 datapoints leads to constraints on the parameters A,
through the maximum likelihood method [1961]. As a first step for the construction of x2, we consider
the vector [1962]

Vi(k’ia )‘7 ,L_L) = ngf}zs(kl) - ni]fz(kw >\7 ,L_L) ) (677)

obs
S,1

where n2° (k;) and n’;hl(k;z, A, i) are the observational and the theoretical spectral index at wavenumber

k; respectively (i = 1,..., N with NV corresponds to the number of datapoints). Then we obtain x? as
X2 =V'E;V7 | (6.78)

where F;; is the Fisher matrix [1963] (the inverse of the covariance matrix C;; of the data).
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Figure 6.3: The 1o — 30 contours in the (A, 1) parametric space. The contours describe the corresponding
confidence regions obtained from the full data set (left panel), large scales (k < 0.015 h/Mpc) data (middle
panel), and small scales (k > 0.015 h/Mpc) data (right panel). The red and green points correspond to
the HUP and GUP best fits respectively.

The N x N covariance matrix is assumed to be of the form

a2 0 0 -
[Cij]: 00’% 0o --- 5 (679)
00--0%

where o; denotes the 1o error of data point i.

The 68.3% (10), 95.4% (20) and 99.7% (30) confidence contours in the A and fi parametric space are
shown in Fig. 6.3. The contours correspond to confidence regions obtained from the full data set (left
panel), the large scales (k < 0.015 h/Mpc) data (middle panel), and the small scales (k > 0.015 h/Mpc)
data (right panel). The 1o-30 contours for parameters A and ji correspond to the curves x?(\, i) =
Xin 2.3, X2\, 1) = X2, +6.17 and x2(\, i) = X2, + 9.21 respectively. Notice (in Fig. 6.3) that the
large scales are most efficient in constraining the GFC parameter . The largest scales that correspond
to small k give the largest value for the correction i/k of the power spectrum and the spectral index
Eq. (6.76). Thus it is these scales that are more sensitive to the correction and lead to the strongest
constraints as shown in Fig. 6.3.

In Table 6.1 we show the best fit values of parameters A and i with the corresponding 1o standard
deviations. In the case of HUP (& = 0) the result agrees with the current best fit values of the scalar
spectral index from Planck which indicate that A ~ 0.04 [14] .

Using Eq. (6.38) and the 1o constraint on the GFC parameter i < 107°h/Mpc we can obtain the single
GUP free parameter as
a=p? <107 m? (6.80)

and the corresponding maximum measurable scale as
Imae = 1 210" m . (6.81)

This result is one order of magnitude larger than the present day particle horizon (I;ax(to) =~ 10?6 m)
given in Eq. (6.3). However, at about 20 level the physically anticipated maximum measurable scale
(the particle horizon scale) is included in the observationally allowed range of the maximum measurable
scales. Thus, the emergence of the parameter p in Egs. (6.36) and (6.52) as a consequence of a maximum
measurable length associated with the cosmological particle horizon remains an observationally viable
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Table 6.1: The best fit values of parameters A and ji with the corresponding 1o standard deviations for the fitted
spectral index on the observed data [60].

GFC
Parameter Full Large Scales Small Scales
Data (1o) Data (10) Data (10)
m 09+7.6 2.1+8.1 —149 + 535

[x107%h/Mpc] [x107%h/Mpc] [x107h/Mpc]

A 0.042 £0.0067  0.039 £0.0095 0.048 £ 0.0146

hypothesis. The parameter i is a fundamental parameter connected to the GUP (6.52) and it is not
necessarily connected with the detailed physics of inflation. Thus our analysis can not directly impose
constraints on models of inflation even though there may be an indirect connection of the present day
value of 4, with the scale of inflation. Such a connection would require a time dependent form to l,;4.
and is beyond the scope of the present analysis.

6.5 Conclusions

In this Chapter we have derived the generalized form of the primordial power spectrum of cosmological
perturbations generated during inflation due to the quantum fluctuations of scalar and tensor degrees of
freedom in the context of a generalization of quantum mechanics involving a maximum measurable length
scale. The existence of such a scale is motivated by the existence of the particle horizon in cosmology and
would lead to a generalization of the uncertainty principle (GUP) to the form AzAp > %ﬁ, which
implies the existence of a maximum position and a minimum momentum uncertainty (infrared cutoff) [55].
The GUP implies a generalization of the commutation relation between conjugate operators including
fields and their conjugate momenta. For example we showed that the generalized field commutation
(GFC) relation between a scalar field and its conjugate momentum [p(k), 7, (k")] = id(k — k/)ﬁﬂ(k)
which is implied by the GUP leads to a modified primordial spectrum of scalar perturbation are Pg(k) =
P (k) (1+ £) with a running spectral index of the form n, =1 — X — £ with A = 6¢ — 21

Using cosmological constraints of the scalar perturbations spectral index as a function of the
scale k [1962] we imposed constraints on the parameter of the GFC g =~ [l . We found that
i = (0.947.6)-107%h/Mpc at the 1o level which corresponds to an upper bound scale l,,,4, larger than
the present horizon scale. At 20 level we find that the observationally allowed range of l,,,4, includes the
current cosmological horizon scale l,,4; ~ 102 m. Thus at 20 level, the derived observational constraints
on l,qe are consistent with the physically anticipated maximum measurable scale which is the current
cosmological particle horizon and are much more powerful than the corresponding constraints obtained
using laboratory data measuring the energy spectrum of simple quantum systems obtained in Ref. [55].



Chapter 7

Tensions and Constraints on Modified Grav-
ity Parameters from the E; statistic and RSD
data and Implications for Weakening Gravity

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [/].

In this chapter, we present phenomenologically motivated parametrizations for the effective
Newton’s constant parameter and the light deflection parameter and describe how we use them in
order to probe possible deviations from GR. on cosmological scales using compilations of fog and Eg data.

A observational puzzle for ACDM involves persisting indications from observational probes measuring
the growth of matter perturbations that the observed growth is weaker than the growth predicted by the
standard Planck/ACDM parameter values (see Section 3.1). Modified gravity (MG) models constitute a
prime theoretical candidate to explain this tension. The combination of cosmological observational probes
is a powerful tool for the identification of signatures of MG [144, 1964-1969]. Such observational probes
may be divided in two classes: geometric and dynamical (or structure formation) probes [1850, 1970~
1972].  Geometric observations measure cosmological distances using standard candles (e.g. Type Ia
supernovae) and standard rulers (e.g. the horizon at the time of recombination probed through Baryon
Acoustic Oscillations) and thus probe directly the cosmic metric, independent of the underlying theory
of gravity (see Section 2.2). Dynamical observations probe the growth rate of cosmological perturbations
and thus the gravitational laws and the consistency of GR with data provided the background geometry
is known.

Dynamical probes include cluster counts (CC) [1190, 1191, 1972, 1973], weak lensing (WL) [144,
550, 17911793, 1797, 1974, 1975] and redshift-space distortions (RSD) [67, 147, 148, 1976, 1977] (see
Subsection 3.1.1). These probes are consistent with each other pointing either to a lower value of the
matter density parameter (g, in the context of GR or to weaker gravitational growth power than the
growth indicated by GR in the context of a Planck18/ACDM background geometry at about 2 — 3o level
[67, 147, 148]. Such weak growth may be quantified by the parameter og which is the matter density
rms fluctuations within spheres of radius 8h~! Mpc and is determined by the amplitude of the primordial
fluctuations power spectrum and by the growth rate of cosmological fluctuation.

Various possible mechanisms have been proposed to slow down growth at low redshifts and thus
reduce the above tension (see e.g. Ref. [1978] and Subsection 3.1.2). Such mechanisms may be divided in
two categories: non-gravitational and gravitational. The former includes the effects of interacting dark
energy models [792, 837, 839, 1979], dynamical dark energy models [1358, 1360], running vacuum models
[687, 688] and the effects of massive neutrinos [1369]. The latter includes the effects of MG theories with
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Table 7.1: Planck18/ACDM parameters values [14] based on TT,TE,EE+lowE+lensing likelihoods.

Parameter Planck18/ACDM
Qph? 0.02237 £+ 0.00015
Q.h? 0.1200 £ 0.0012
ng 0.9649 £ 0.0042
Hy [kms='Mpc™1] 67.36 £ 0.54
Qom 0.3153 £ 0.0073
w -1
o 0.8111 =+ 0.0060

a reduced (compared to GR) evolving effective Newton’s constant Geg at low redshifts [67, 148].

The effects of MG [65, 111, 1305, 1849, 1856, 1980-1984] models are indistinguishable from GR at the
geometric cosmological background level [926, 1970, 1985]. Signatures of MG can only be obtained by
investigating the dynamics of cosmological perturbations [1339, 1986] using specific statistics obtained
through dynamical probe observables such as the two-point correlation and power spectrum of the
galaxy distribution, the RSD and WL.

7.1 Introduction

A useful bias free statistic is the fog product of the rate of growth of matter density perturbations f
times og discussed in more detail in what follows. An alternative observable statistic is the ¢ which was
constructed to be independent of both the clustering bias factor b and the parameter og on linear scales.
This statistic was proposed in 2007 [1987] and thereafter has been used several times to test MG theories
[1988, 1989]. The expectation value of F¢ is equal to the ratio of the Laplacian of the sum of the Bardeen
potentials [1352] ¥ (the Newtonian potential) and ® (the spatial curvature potential) V(¥ + @) over

the peculiar velocity divergence § = V - Ht(’z) (where ¥ is the peculiar velocity and H(z) is the Hubble

parameter in terms of the redshift z).

The E¢ statistic has been proposed as a model independent test of any MG theory [1990] and is
constructed from three different probes of large scale structure (LSS): the galaxy-galaxy lensing (GGL),
the galaxy clustering and the galaxy velocity field which leads to galaxy redshift distortions. Alternatively,
E¢ may be constructed from galaxy-CMB lensing [1520] instead of galaxy-galaxy lensing as a more robust
tracer of the lensing field at higher redshifts [1991, 1992].

The first probe, the GGL (a special type of WL), is the slight distortion of shapes of source galaxies
in the background of a lens galaxy, which arises from the gravitational deflection of light due to the
gravitational potential of the lens galaxy along the line of sight (see for example [1226, 1227, 1993, 1994]).
This WL probe is sensitive to V(¥ + ®), since relativistic particles collect equal contributions from the
two Bardeen potentials which appear in the scalar perturbed FLRW metric in the Newtonian gauge Eq.
(3.9) [582, 1383, 1384].

The second probe, the galaxy clustering arises from the gravitational attraction of matter and is
sensitive only to the potential W. Similarly, the third probe, the galaxy velocity field, is quantified by
measuring RSD [355, 1297, 1299, 1810] (an illusory anisotropy that distorts the distribution of galaxies
in redshift space generated by their peculiar motions falling towards overdense regions). This important
probe of LSS is sensitive to the rate of growth of matter density perturbations f which depends on the
theory of gravity and provides measurements of fog that depends on the potential .

In most MG theories the potentials ® and ¥ obey generalized Poisson equations like the GR Newto-
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nian potential where the MG effects are encoded in generalized space-time dependent effective Newton
constants. These generalized Newton constants for the potential ¥ and for the lensing combination ¥+ &
are usually described by two parameters: the effective Newton’s constant parameter pg and the light
deflection parameter Y. In the modified Poisson equations [1995] the ug and Y are connected with
the potentials ¥ and ¥ + ® respectively. In GR the value of ug and X coincides with unity while in a
MG model pug and ¢ can be in general functions of both time and scale [1964, 1996]. Using fog and Fg
datasets constraints can be imposed on the parameters ug and X [76, 1968, 1997-2001]). Such analyses
have revealed various levels of tension of the best fit forms of ug and X with the GR prediction of unity
showing hints that these parameters may be less than unity implying weaker growth of perturbations
than that predicted in GR. The goal of our analysis is to extend these studies and use an updated data
compilation for both the fog and Eg statistics to identify the current level of tension with GR implied
by these data compilations.
In particular, we address the following questions:

o What are efficient phenomenological redshift dependent parametrizations of the generalized normal-
ized Newton constants pg(z) and Yg(z) that are consistent with solar system and nucleosynthesis
constraints that indicate that GR is restored at high z and at the present time in the solar system?

o What are the constraints imposed by the Eg and fog updated data compilations on the parameters
of the above parametrizations and do these constraints amplify the hints for weakening gravity at
low z implied by the fog data alone as indicated by previous studies?

The plan of this Chapter is the following: In the next Section 7.2 we present a brief review of the
theoretical expression for Eg. We also present phenomenologically motivated parametrizations for pug
and X and describe how we use them in order to probe possible deviations from GR on cosmological
scales. In Section 7.3 we use compilations of fog and Fg data along with the theoretical expressions
for fog and Eg which involve ug and g to derive constraints on these parameters and to identify
the tension level between the Planck/ACDM parameter values favoured by Planck 2018 [14] shown in
Table 7.1 and the corresponding parameter values favored by the two datasets. Finally in Section 7.4 we
conclude and discuss the implications and possible extensions of our analysis.

7.2 Theoretical background

7.2.1 FE; statistic

The Eg statistic [1987, 1990] is designed as a probe of the ratio of the Bardeen potentials of the perturbed
FLRW metric in such a way as to be independent of the effects of galaxy bias at linear order. It is defined
as the ratio of the cross correlation power spectrum Pyy2(g4w) between lensing maps (cosmic shear or
CMB) and galaxy positions, over the the cross-correlation power spectrum Pgy between galaxies and
velocity divergence field

Pyvz(@4w)
Eg=-+—"—"2. 7.1
E (71)
In Fourier space the Eq statistic may also be expressed as [1987]
Chg(l, Al
Eq(l,Al) = o ) (7.2)

3Hia 'y, qu(l,A)PS,

where Hj is the Hubble parameter today, [ is the magnitude of two-dimensional wavenumber of the on-sky
Fourier space, Cy4(l, Al) is the galaxy-galaxy lensing cross correlation power spectrum in bins of Al, Py,
is the galaxy-velocity cross correlations power spectrum between k, and kq41 (where k three-dimensional
wavenumber of the on-sky Fourier transform with k1 < ke < ... < ko < ...) and g (I, Al) is the weighting
function defined accordingly.
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The corresponding expectation value of Fg, averaged over [ is the the ratio of the Laplacian of the
gravitational scalar potentials ¥ and ® which appear in the scalar perturbed FLRW metric Eq. (3.9)
over the peculiar velocity divergence [1988]

V(U + @)

St , (7.3)
3HZa"10 L—l/;@z

(£a) = |

where x is the comoving mean distance corresponding to the mean redshift Zz.

In ACDM cosmology and assuming that the velocity field is generated under linear perturbation
theory, the peculiar velocity divergence is connected to the growth rate f as § = f§ [121] where § =
%p is the matter overdensity field (with p the matter density of the background and dp its first order

perturbation), f(a) = ‘“;175((1‘1) is the linear growth rate of structure and D(a) = % the growth factor

(see also Subsection 3.1.1).
In the case of GR and in the absence of any anisotropic stress the Bardeen potentials are equal
(¥ = @) and the gravitational field equations reduce to Poisson equations of the form

3
V20 = V20U = 47Ga’ps = §H§§20ma_1(5 , (7.4)
where Qo = Qn(z = 0) is the matter density parameter today and the second equality is straightfor-
wardly derived assuming non-relativistic matter species and using the equations HZ = SWG%, p = poa >
and Qg = p’:—oo (with po the matter density today and p. o the critical density today).
Therefore within GR Eq. (7.4), the Eq. (7.3) reduce to
Q
Eg =2 (7.5)

fz)°

where f is well approximated as f(z) ~ Q7 (z) with the growth index v in a narrow range near 0.55, for
a wide variety of dark-energy models in GR [320, 1300-1303, 1308, 2002-2004]. Note that Eg in GR is
scale independent (see Eq. (7.5)). This is not necessarily the case in the context of MG theories where
the growth rate f may be strongly scale dependent even on subhorizon scales.

7.2.2 The effective Newton’s constant parameter y; and the light deflection
parameter X

The gravitational slip parameter n which is defined by Eq. (3.12) describes the possible inequality
[931, 1385] of the two Bardeen potentials that may occur in MG theories. Clearly an observation of n # 1
would indicate physics beyond GR. In this case the gravitational field equations at linear level take the
form of Poisson equations that generalize Egs. (7.4). At linear level, in MG models, using the perturbed
metric Eq. (3.9) and the gravitational field equations the phenomenological equations (3.10) and (3.11)
emerge [330, 1977, 1996, 2005-2009] for the scalar perturbation potentials ¥ and ®.

They are in general functions of time and scale encoding the possible modifications of General Rela-
tivity defined as! (see also Subsection 3.1.2)

pala,k) = et (76
and o )
Sala,k) = % , (7.7)

with G is the Newton’s constant as measured by local experiments, Geg is the effective Newton’s con-
stant which is related to the growth of matter perturbation and G, is related to the lensing of light (the

INote that, in the literature ug and Zg are also referred to as Gj; and G, (e.g. in Refs. [148, 2008]) or as Gmatter and
Glignt (e.g. in Refs. [1977, 2006]).
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propagation of relativistic particles, such as photons when they traverse equal regions of space and time
along null geodesics experiencing gravitational lensing collecting equal contributions from two gravita-
tional potentials ¥ and ®). Using the gravitational slip Eq. (3.12) and the ratios of the Poisson equations
(3.10) ans (3.11) defined above the two LSS functions pg and X are related via

So(a, k) = gnc(a k) [1+n(a, k)] (7.8)

In GR which predicts a constant homogeneous Geg = G, we obtain ug =1, n =1 and X5 = 1.

Notice that Eqgs. (3.10) and (3.11) indicate that a possible observation of reduced gravitational growth
of the Bardeen potentials may be interpreted either as reduced strength of gravitational interaction
(reduced pg and/or Xg) or due to reduced matter density p (or Qo). In the context of a fixed value of
matter density determined by geometric probes of the cosmological background, the reduced gravitational
growth could be either interpreted as a tension within the ACDM parameter value for the matter density
or as a hint for weakening gravity. Indeed, such hints of weaker than expected gravitational growth of
the Bardeen potentials has been observed at low redshifts by a wide range of dynamical probes including
RSD observations [67, 147, 148, 1977], WL [144, 550, 1792, 1793, 1797, 1975] and CC data [1190, 1191,
1972, 1973]. In most cases this weak growth has been interpreted as a tension for the parameters og and
Qom which are found by dynamical probes to be smaller than the values indicated by geometric probes
in the context of ACDM .

The observables fog(a, k) and Eg(a, k) can probe directly the gravitational strength functions ug(a, k)
and ¥X¢(a, k). In particular foyg is easily expressed in terms of the amplitude og and the matter overdensity
d using the matter overdensity evolution equation (4.1) (see e.g. Ref. [582]). In terms of redshift Eq.
(4.1) takes the form [148, 582]

H(z2)?) 1 3 (14 2) Qom pa(zk)

8" ( - 8(z)— = UL = §(2) =0 7.9
(z)+ <2 H? 11z)" P T memE (z)=0, (7.9)

where primes denote differentiation with respect to the redshift.

While in terms of the scale factor we have [1305, 1308, 1817]

3 H'(a) 3 Qompc(a; k)

8" - §(a) — =———"26(a) =0 7.10
@+ (34 ) o) - § ettt . (7.10)

here primes denote differentiation with respect to the scale factor.

In Egs. (7.9) and (7.10) possible deviations from GR are expressed by allowing for a scale and redshift-
dependent pug = pg(z,k). In the present Section and in Section 7.3.1 we ignore scale dependence due
to the lack of good quality scale dependent fog and Eg data. However, in Section 7.3.2 we discuss the
scale dependence of Eqg data.

For a given parametrization of ug(a) and initial conditions deep in the matter era where GR is
assumed to be valid leading to 6 ~ a equations (7.9) and (7.10) may be easily solved numerically leading
to a predicted form of d(a) for a given €q,, and background expansion H(z). In the context of the present
analysis we assume a ACDM background H(z)

H?(z) = H§ [Qom (1 +2)* 4+ (1 = Qom)] - (7.11)
Once the evolution of § is known, the observable product fog(a) = f(a)-o(a) can be obtained using the
definitions f(a) of Eq. (3.3) and o(a) of Eq. (3.5) (see also Subsection 3.1.1). Thus, we have

fog(a, o8, Qom, ) = % a 8 (a, Qom, i3 - (7.12)

a=1
This theoretical prediction may now be used to compare with the observed fog data and obtain fits for
the parameters Qo,, os and ug(z) (assuming a specific parametrization of pg(2)).
The lensing gravity parameter Y (z) can be fit in the context of specific parametrizations using its
connection with the Fg(a) observable as [524, 2010, 2011]
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QOmEG(a)
f(aa QOmv N’G) .

This equation assumes that the redshift of the lens galaxies can be approximated by a single value while
E¢ corresponds to average value along the line of sight [524]. In the context of Eq. (7.13) and assuming
a specific parametrization for pug and X, the theoretical prediction for EFg may be used to compare with
the observed E¢ datapoints and lead to constraints on Qq,,, ta, 2. These constraints may be considered
either separately from those of the fog data or jointly by combining the F¢ and fog datasets. The allowed
range of these parameters may then be compared with the standard Planck/ACDM parameter values
e =1, ¢ =1, Qom = 0.315 £ 0.0073, 05 = 0.811 4 0.006 to identify the likelihood of Planck/ACDM
in the context of the dynamical probe data Eg and fog . This plan is implemented in what follows in
the context of specific parametrizations describing the possible evolution of ug and Xq.

On scales much smaller than the Hubble scale for most modified gravity models the scale dependence
of ug and Xg is weak. For example in ST model (for k > aH) pe is independent of the scale [2012].
Thus, we start by considering scale independent parametrizations for pug and ¥ which reduce to the
GR value at early times and at the present time as indicated by solar system (ignoring possible screening
effects) and BBN constraints (ug = 1 and py; = 0 for a = 1 and pg = 1 for a < 1) [1386, 1388, 2013].
Such parametrizations are the Egs. (3.15) and (3.16) with n > 2 and m > 2 which we set equal to 2 in
our analysis [67, 148, 1389]

Eg(a,Qom, pa, Xc) = (7.13)

z

z
pe =1 Jrga(l - a)2 - ga(l - a)4 =1 Jrga(m)z - ga(m)4 s (7'14)
Yo =1 1—a)?—g(l—a)t=1 2 g (—2—)1 7.15
G +gp(1 —a)* — gp(1 —a) +9b(1+z) gb(1+z) ; (7.15)

where g, and g, are parameters to be fit.

7.3 Observational Constraints

7.3.1 Scale Independent Analysis

The fog(z) and Eg(z) updated data compilations used in our analysis are shown in Tables D.3 and
D.4 of the Appendix D along with the references where each datapoint was originally published. The
datapoints are also shown in Figs. 7.1 and 7.2 along with curves corresponding to the Planck/ACDM
prediction and the best fit parameter values. As it can be seen the datapoints from the various surveys
are consistent with each other at any given redshift and at 1o level. Clearly, in both cases the data appear
to favor lower values of fog and E¢ than the values corresponding to the Planck/ACDM parameters.
This trend combined with the indications for a Planck/ACDM background from geometric probes may be
interpreted as a need for a new degree of freedom which in our approach is coming from MG. In addition,
we see that there is no tension between different fog datapoints. Instead, there is a combined trend of the
datapoints to be in tension with the Planck/ACDM prediction. This tension disappears when we keep
the same ACDM background but allow for a MG evolution of the effective Newton’s constant. In fact,
this trend may be shown to be translated into a trend for lower values for the gravitational parameters
ue and Yg and is quantified through a detailed maximum likelihood analysis.

Each fog(z) and Eg(z) datapoint of the compilations of Tables D.3 and D.4 has been published
separately in the context of independent analyses of distinct galaxy samples and lensing data. However,
the correlations among the datapoints considered due to overlap of the analyzed galaxy samples may
lead to an amplification of the existing trends indicated by the data and an amplification of the existing
tension of the best fit parameters with Planck/ACDM . Despite of this fact we have chosen to keep the
relatively large number of distinct published datapoints in order to maximize the information encoded
in the compilations considered keeping in mind that this may lead to an artificial amplification of the
trends that already exist in the data.
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Figure 7.1: The fos(z) data compilation from Table D.3 used in the present analysis. The subset of
the data with less correlation is indicated with dark red. The red curve shows the Planck18/ACDM
prediction (parameter values €, = 0.315, g, = 0, og = 0.811), the blue curve shows the best fit of
the fog(z) in the context of parametrizations Eq. (7.14) with a ACDM background (parameter values
Qom = 0.272, g, = —1.306, og = 0.886) and the shaded regions correspond to 1o confidence level around
the best fit (see also Table 7.2).

0.7 r r
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0.6 Best Fit (2 ,=0.313, g,=-0.129, g,=-2.308 , n=2, m=2)
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Figure 7.2: The Eg(z) data compilation from Table D.4 (scales 3 < R < 150h~'Mpc) used in the present
analysis. The subset of the data with less correlation is indicated with dark red. The red curve shows
the theoretical prediction based on the Planck18/ACDM parameter values (o, = 0.315, o5 = 0.811,
e =1, Xg = 1), the blue curve shows the best fit theoretical prediction based on the parametrizations
(7.14) and (7.15) with parameter values (Qq,, = 0.313, g, = —0.129, g, = —2.308). Notice that the best
fit is significantly below the Planck/ACDM theoretical prediction and implies weaker gravity (ug < 1
and X < 1) at the 4.60 level (see also Table 7.2).
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Figure 7.3: The three 1o - 7o confidence contours in 2D projected parameter spaces of the parameter
space (Qom,0s,gq) in the context of parametrization Eq. (7.14) with n = 2 including the fiducial
correction factor Eq. (7.17). The RSD data fos(z) from Table D.3 of the Appendix D was used. The
third parameter in each contour was fixed to the best fit value. The red and green dots describe the
Planck18/ACDM best fit and the best-fit values from data.

An additional motivation for keeping the full set of published datapoints is that it is not always
clear which one of the correlated points is more suitable to keep. Ignoring one of the correlated points
arbitrarily or simply based on time of publication criteria could lead to loss of useful information or
selection bias.

Keeping the full set of points does not significantly change the results and the level of tension
between the growth data best fit parameter values corresponding to MG and Planck/ACDM best fit
in the context of GR. In order to demonstrate the validity of the above reasons we have repeated our
analysis for a subset of the fog and Eg data where we have removed most earlier data that were
subject to correlations with more recent data as indicated with bold font in the index of the Tables
D.3 and D.4 and as shown in Figs. 7.1 and 7.2 with dark red. The result was a data compilation of
about half the fo8 and E¢ datapoints with significantly less correlation. The results of the statistical
analysis of this dataset are presented in Appendix D and indicate a minor reduction of the overall tension.

For the construction of the likelihood contours of the model parameters in the context of the fog and
E¢ datasets we construct X?‘ag and X%G For the construction of X?‘as we use the vector [67]

i fo-éh(ziap)
Vi (zi,p) = fog — —s e, (7.16)
Tos gz, Qom, Q)

where fagf’is is the the value of the ith datapoint, with ¢ = 1,..., Ny, (where Ny,, = 66 corresponds
to the total number of datapoints of Table D.3) and fof(z;,p) is the theoretical prediction, both at
redshift z;. The parameter vector p corresponds to the parameters og, Qom, ga of Eq. (7.12) with the
parametrization (7.14). The fiducial Alcock-Paczynski correction factor g [67, 147, 148] is defined as

fidy _ H(zi)da(z;)

0 Roms Bom) = 350 a2 o
where H(z), da(z) correspond to the Hubble parameter and the angular diameter distance of the true
cosmology and the superscript " fid" indicates the fiducial cosmology used in each survey to convert angles
and redshift to distances for evaluating <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>