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Abstract

My Ph.D. dissertation deals with cosmological observational constraints on modified gravity theories. The
General Relativity (GR) proposed by Einstein in 1915 is the fundamental theory of gravity interpretation
and has succeeded in a wide range of tests. The discovery of the accelerating expansion of the universe,
however, has given a strong impetus to the formulation of new modified theories of gravity. Modified
theories of gravity such as Scalar Tensor (ST), 𝑓(𝑅) theories etc. try to give answers where the GR
fails. The established cosmological model based on the GR is obviously not considered complete. The
studied modified theories can give a theoretical framework which will include the GR and can lead to the
understanding of the structures of the universe. These theories are necessary to incorporate gravitational
phenomena at all scales and at all times. The theories should be consistent with all experimental data
and able to explain early time and late time acceleration. They must also describe all the cosmological
eras and the transition from one epoch to another.

In Chapter 1, we present elements of GR and Cosmology and their basic concepts. At the end of the
chapter we present an introduction to the standard Lambda Cold Dark Matter (ΛCDM) model. The
ΛCDM model is a simple and generic model that has been shown to be consistent with a wide range
of cosmological observations including geometric and dynamical probes. Despite its successes, ΛCDM is
confronted with challenges at both the theoretical and the observational level. These challenges of the
standard ΛCDM model have been emerging during the past few years as the accuracy of cosmological
observations improves. A well known observational difficulty corresponds to the tension between the
cosmic microwave background (CMB) measured value of the Hubble constant 𝐻0 in the context of the
ΛCDM model and the local measurements from supernovae and lensing time delay indicators, with local
measurements suggesting a higher value. Another observational puzzle for ΛCDM involves persisting
indications from observational probes measuring the growth of matter perturbations that the observed
growth is weaker than the growth predicted by the standard Planck/ΛCDM parameter values. Modified
gravity (MG) models constitute a prime theoretical candidate to explain these tensions.

Thus in Chapter 2 and 3 we discuss in a unified manner many existing signals in cosmological and
astrophysical data that appear to be in some tension (2𝜎 or larger) with the standard ΛCDM model as
defined by the Planck18 parameter values. In addition to the major well studied 5𝜎 challenge of ΛCDM
(the Hubble 𝐻0 tension) and other well known tensions (the growth tension and the lensing amplitude 𝐴𝐿

anomaly), we discuss a wide range of other less discussed less-standard signals which appear at a lower
statistical significance level than the 𝐻0 tension which may also constitute hints towards new physics. For
example such signals include cosmic dipoles (fine structure constant 𝛼, velocity and quasar dipoles), CMB
asymmetries, BAO Ly𝛼 tension, age of the universe issues, the Lithium problem, small scale curiosities
like the core-cusp and missing satellite problems, quasars Hubble diagram, oscillating short range gravity
signals etc. We collectively present the current status of these signals and their level of significance, with
emphasis to the Hubble tension and refer to recent resources where more details can be found for each
signal. We also discuss possible theoretical approaches and modified models that can potentially explain
the non-standard nature of some of these signals.

In Chapter 4, we determine the optimum and the blind redshift ranges of basic cosmological observ-
ables with respect to three cosmological parameters: the matter density parameter Ω𝑚, the equation of
state parameter 𝑤 (assumed constant), and a modified gravity parameter 𝑔𝑎 which parametrizes a pos-
sible evolution of the effective Newton’s constant 𝐺eff . In an optimum range of redshifts, the observable
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can constrain the parameter in the most effective manner while in the blind redshift ranges the observ-
able values may be degenerate with respect to the cosmological parameter values and thus inefficient in
constraining the given parameter.

In Chapter 5, we study modified model for gravity through dimensional reduction. Using the Navarro-
Frenk-White (NFW) dark matter density profile we reconstruct an effective field theory model for gravity
at large distances from a central object by demanding that the vacuum solution has the same gravitational
properties as the NFW density profile has in the context of GR. The dimensionally reduced reconstructed
action for gravity leads to a vacuum metric that includes a modified Rindler acceleration term in addi-
tion to the Schwarzschild and cosmological constant terms. The new term is free from infrared curvature
singularities and leads to a much better fit of observed galaxy velocity rotation curves than the corre-
sponding simple Rindler term of the Grumiller metric, at the expense of one additional parameter. When
the new parameter is set to zero the new metric term reduces to a Rindler constant acceleration term.
We use galactic velocity rotation data to find the best fit values of the parameters of the reconstructed
geometric potential and discuss possible cosmological implications.

In Chapter 6, we obtain observational constraints on the Generalization of the Uncertainty Principle
(GUP) parameter with maximum length quantum mechanics. We derive the generalized form of the
primordial power spectrum of cosmological perturbations generated during inflation due to the quantum
fluctuations of scalar and tensor degrees of freedom in the context of a generalization of quantum me-
chanics involving a maximum measurable length scale. The existence of such a scale is motivated by
the existence of the particle horizon in cosmology and would lead to a GUP to a form which implies the
existence of a maximum position and a minimum momentum uncertainty. The GUP implies a gener-
alization of the commutation relation between conjugate operators including fields and their conjugate
momenta. We showed that the Generalized Field Commutation (GFC) relation between a scalar field
and its conjugate momentum which is implied by the GUP leads to a modified primordial spectrum of
scalar perturbation.

In Chapter 7 we obtain constraints on modified gravity parameters from the 𝐸𝐺 statistic and real-space
clustering and redshift space distortion (RSD) data. The 𝐸𝐺 statistic is a powerful probe for detecting
deviations from GR by combining weak lensing (WL), RSD measurements thus probing both the lensing
and the growth effective Newton constants (𝐺𝐿 and 𝐺eff). We present phenomenologically motivated
parametrizations for the effective Newton’s constant parameter 𝜇𝐺 and the light deflection parameter
Σ𝐺 and describe how we use them in order to probe possible deviations from GR on cosmological scales.
We use compilations of 𝑓𝜎8 and 𝐸𝐺 data along with the theoretical expressions for 𝑓𝜎8 and 𝐸𝐺 which
involve 𝜇𝐺 and Σ𝐺 to derive constraints on these parameters and to identify the tension level between
the Planck/ΛCDM parameter values favoured by Planck 2018 and the corresponding parameter values
favored by the two datasets.

Scalar fields are used to describe a wide range of degrees of freedom in various physical systems
in cosmology, gravitational theories, modified gravity scalar degrees of freedom like 𝑓(𝑅) theories or ST
theories etc. A stabilizing effect of multiple horizons on tachyonic instabilities may have various interesting
implications. Therefore in Chapter 8, we study the tachyonic instabilities in the dynamic evolution of a
free massive scalar field Φ with potential equation of the form 𝑉 (𝜑) = 𝑚2𝜑2. We focus on the existence of
instabilities and their growth rate in the following non flat (curved) gravitational backgrounds: Reissner-
Nordstrom-deSitter (RN-dS) and Shwarzschild-deSitter (SdS). We use spherical tortoise coordinates 𝑟*
in the context of an instability ansatz, to transform the Klein Gordon (KG) equation □Φ +𝑚2Φ = 0 to
a Schrodinger-like Regge-Wheeler equation for the radial function 𝑢𝑙(𝑟*) with potential that depends on
the angular scale 𝑙, the dimesionless parameters 𝜉 ≡ 9𝑀2Λ and 𝑞 ≡ 𝑄/𝑀 as well as the scalar field mass
𝑚2. The existence of unstable modes that are finite at the two horizons, is equivalent with the existence
of bound states of this Regge-Wheeler equation. We solve the Regge-Wheeler equation numerically and
identify the range 𝑚2(𝑞, 𝜉) for which bound states (unstable modes) exist. In the parameter range that
remains unstable (𝑚2 < 𝑚2

𝑐𝑟(𝑞, 𝜉)) we find the growth rate Ω of the instabilities. In the end of Chapter,
we discuss the scalar tachyonic instabilities in the limiting cases of pure deSitter and pure Schwarzschild
backgrounds.

In Chapter 9 we focus on the Horndeski modified gravity which provides a general framework to



construct models of dark energy inside GR. In the context of the 𝛼 parametrization as 𝛼𝑖 = 𝛼𝑖0 𝑎𝑠

(where 𝑖 = 𝑀,𝐵, 𝑎 is the scale factor and 𝛼𝑖0 (𝛼𝑀0, 𝛼𝐵0), 𝑠 are arbitrary parameters) and the Horndeski
modified gravity models obeying stability, velocity of gravitational waves 𝑐𝑇 equals 𝑐 and quasistatic
approximation (QSA) on subhorizon scales, we derive the allowed parameter regions for various values
of the exponent 𝑠. We also obtain the allowed forms of the growth and lensing reduced (dimensionless)
gravitational couplings 𝜇𝐺 ≡ 𝐺growth/𝐺 and Σ𝐺 ≡ 𝐺lensing/𝐺 comparing our results with previous
studies. We use compilations of 𝑓𝜎8 and 𝐸𝐺 data along with the theoretical expressions for 𝑓𝜎8 and
𝐸𝐺 statistics data in order to derive constraints on 𝜇𝐺 and Σ𝐺 and to obtain the allowed range of the
functions 𝛼𝑀 (𝑎) and 𝛼𝐵(𝑎). Finally, we consider the growth index 𝛾(𝑧) and identify the (𝛼𝑀0, 𝛼𝐵0, 𝑠)
parameter region that corresponds to specific signs of 𝛾0 − 𝛾Λ𝐶𝐷𝑀

0 , and 𝛾1 − 𝛾Λ𝐶𝐷𝑀
1 .

In Chapter 10 we study models involving a transition in Cepheid SnIa Calibrator parameters. We use
Cepheid SnIa calibrator data to investigate the effects of variation of the Cepheid calibration empirical
parameters 𝑅𝑊 (Cepheid Wesenheit color-luminosity parameter) and 𝑀𝑊

𝐻 (Cepheid Wesenheit H-band
absolute magnitude). We do not enforce a universal value of these empirical Cepheid calibration param-
eters, instead we allow for variation of either of these parameters for each individual galaxy. We consider
various cases (models) allowing for different types of empirical parameter variation and use criteria which
penalize models with large numbers of parameters for model selection and model comparison. Models
involving a transition in 𝑅𝑊 are slightly favored over models where there is a transition in 𝑀𝑊

𝐻 . We
investigate the impact of the allowed types of parameter variation on the SnIa absolute magnitude 𝑀𝐵

and on the corresponding derived value of Hubble constant 𝐻0. The models involving a transition lead
to values of 𝐻0 that are consistent with the CMB inferred values thus eliminating the Hubble tension.

In Chapter 11 we study a model which offers an interesting novel approach for the modification of
GR in distinct spatial sectors. We generalize the symmetron screening mechanism by allowing for an
explicit symmetry breaking of the symmetron 𝜑4 potential by the inclusion of a cubic term 𝜀𝜑3. Due to
the explicit symmetry breaking induced by the cubic term we call this field the ’asymmetron’. For large
matter density 𝜌 > 𝜌* ≡ 𝜇2𝑀2 + 9

4𝜀𝜂𝑀
2 the effective potential has a single minimum at 𝜑 = 0 leading to

restoration of GR as in the usual symmetron screening mechanism. For low matter density however, there
is a false vacuum and a single true vacuum due to the explicit symmetry breaking. This is expected to
lead to an unstable network of domain walls with slightly different value of the gravitational constant 𝐺 on
each side of the wall. This network would be in constant interaction with matter overdensities and would
lead to interesting observational signatures which could be detected as gravitational and expansion rate
transitions in redshift space. Such a gravitational transition has been recently proposed for the resolution
of the Hubble tension.

In Chapter 12, we summarize and discuss the results of the present Thesis. In the Appendices we
present a list of acronyms, useful proofs and types, tables with data and codes used in the individual
analyses. Finally, an extensive Bibliography is presented.



Εκτεταμένη Περίληψη

Η διδακτορική μου διατριβή ασχολείται με κοσμολογικούς παρατηρησιακούς περιορισμούς σε τροποποιη-

μένες θεωρίες βαρύτητας. Η Γενική Θεωρία της Σχετικότητας (ΓΘΣ) που προτάθηκε το 1915 από τον

Einstein αποτελεί τη θεμελιώδη θεωρία ερμηνείας της βαρύτητας και έχει επιτυχία σε ένα ευρύ φάσμα δοκι-
μασιών. Είναι συνεπής με τη συντριπτική πλειοψηφία των πειραμάτων και των παρατηρήσεων από τις sub-mm
κλίμακες έως τις κοσμολογικές κλίμακες. Η ανακάλυψη της επιταχυνόμενης διαστολής του σύμπαντος που

βασίστηκε σε παρατηρήσεις των υπερκαινοφανών τύπου Ια το 1998 έδωσε ωστόσο ένα ισχυρό κίνητρο για

διατύπωση νέων τροποποιημένων θεωριών βαρύτητας. Η εξήγηση που δίνεται στα πλαίσια της ΓΘΣ για αυτήν

την επιταχυνόμενη διαστολή του σύμπαντος είναι η ύπαρξη της σκοτεινής ενέργειας σε ποσοστό ∼ 70% της
συνολικής υλοενέργειας του σύμπαντος. Η εισαγωγή της κοσμολογικής σταθεράς και η ερμηνεία της ως

ενέργεια του κενού είναι προβληματική, μια που υπολογισμοί δείχνουν ότι υπάρχει μια τεράστια απόκλιση των

μέτρων των πυκνοτήτων ενέργειας τους. Οι τροποποιημένες θεωρίες της βαρύτητας όπως για παράδειγμα

οι βαθμοτανυστικές θεωρίες, οι 𝑓(𝑅) θεωρίες κ.α. προσπαθούν να δώσουν απαντήσεις εκεί που η ΓΘΣ
αδυνατεί. Το καθιερωμένο κοσμολογικό μοντέλο το οποίο στηρίζεται στη ΓΘΣ είναι φανερό ότι δεν μπορεί

να θεωρείται ολοκληρωμένο. Στη παρούσα διδακτορική διατριβή γίνεται μελέτη τροποποιημένων θεωριών οι

οποίες μπορούν να δώσουν ένα θεωρητικό πλαίσιο το οποίο θα συμπεριλάβει τη ΓΘΣ και μπορεί να οδηγήσει

στη κατανόηση των δομών του σύμπαντος. Οι θεωρίες αυτές είναι απαραίτητο να ενσωματώνουν τα βαρυτικά

φαινόμενα σε όλες τις κλίμακες και σε όλους τους χρόνους. Οι θεωρίες θα πρέπει να είναι σύμφωνες με όλα

τα πειραματικά δεδομένα και να μπορούν να εξηγήσουν την early time και την late time επιτάχυνση. Επίσης
πρέπει να περιγράφουν όλες τις κοσμολογικές εποχές και την μετάβαση από την μία εποχή στην άλλη.

Στο κεφάλαιο 1 της παρούσας διδακτορικής διατριβής γίνεται μια σύντομη ανασκόπηση της ΓΘΣ.
Παρουσιάζονται οι βασικές έννοιες και τα μαθηματικά εργαλεία της γεωμετρίας των καμπύλων χώρων.

Μελετάται η δομή του χωροχρόνου και πως αυτή συνδέεται με την κατανομή ύλης και ενέργειας και γράφεται

η τανυστική μορφή των πεδιακών εξισώσεων της ΓΘΣ. Επιπλέον στο ίδιο κεφάλαιο γίνεται μία παρουσίαση

των καταλυτικών εννοιών της Κοσμολογίας όπως η διαστολή του Hubble, η κοσμολογική ερυθρή μετατόπιση
και η κοσμολογική μετρική του χωροχρόνου Friedmann-Lemaître-Roberson-Walker (FLRW). Η μελέτη των
μοντέλων του σύμπαντος γίνεται με τις εξισώσεις Friedmann οι οποίες εξάγονται από την μετρική FLRW.
Στην συνέχεια παρουσιάζονται οι κοσμολογικές παράμετροι που σχετίζονται με την σταθερά του Hubble,
την ηλικία του σύμπαντος και τις συγκεντρώσεις των διάφορών συστατικών του. Στο τέλος του κεφαλαίου

γίνεται μια εισαγωγή στο τυπικό κοσμολογικό μοντέλο Lambda Cold Dark Matter (ΛCDM).
Το μοντέλο ΛCDM είναι ένα απλό και γενικό μοντέλο που έχει αποδειχθεί ότι είναι συνεπές με ένα

ευρύ φάσμα κοσμολογικών παρατηρήσεων, συμπεριλαμβανομένων γεωμετρικών και δυναμικών ανιχνευτών.

Παρά τις επιτυχίες του, το ΛCDM έρχεται αντιμέτωπο με προκλήσεις τόσο σε θεωρητικό όσο και σε επίπεδο
παρατήρησης. Η εγκυρότητα του κοσμολογικού μοντέλου ΛCDM το οποίο στηρίζεται στη ορθότητα της ΓΘΣ
και στην κοσμολογική αρχή της ομοιογένειας και της ισοτροπίας σε ένα επίπεδο Σύμπαν ερευνάται. Η έρευνα

χρησιμοποιεί τα σύγχρονα κοσμολογικά δεδομένα και τους κοσμολογικούς παρατηρησιακούς περιορισμούς

που αυτά εισάγουν στις παραμέτρους των τροποποιημένων θεωριών βαρύτητας. Τα δεδομένα σχετίζονται

με ένα ευρύ φάσμα κοσμολογικών παρατηρησιακών ανιχνευτών, συμπεριλαμβανομένων των πειραμάτων της

Κοσμικής Ακτινοβολίας Υποβάθρου (CMB), των φωτομετρικών και φασματοσκοπικών ερευνών γαλαξιών,
της προσπάθειας μέτρησης ακουστικών ταλαντώσεων βαρυονίων, του ασθενούς φαινομένου των βαρυτικών

φακών, καθώς και των παραμορφώσεων στο χώρο της ερυθράς μετατόπισης.

Οι τρέχουσες έρευνες που κάνουν χρήση τα σύγχρονα κοσμολογικά δεδομένα οδηγούν σε μια σαφή
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ύπαρξη ασυνεπειών, ασυμβατοτήτων και αποκλίσεων μεταξύ των τιμών παραμέτρων που προσδιορίστηκαν

χρησιμοποιώντας διαφορετικούς παρατηρησιακούς ανιχνευτετές. Η εντονότερη ασυμβατότητα εμφανίζεται

στην τιμή της σταθεράς Hubble 𝐻0 που ευνοείται από την τελευταία έκδοση των CMB δεδομένων από
Planck και αυτής που ευνοείται από τα δεδομένα του διαστημικού τηλεσκοπίου Hubble. Μια άλλη λιγότερο
έντονη απόκλιση εμφανίζεται στις τιμές των παραμέτρων Ω𝑚 και 𝜎8 που προκύπτουν από τα δεδομένα από
Planck CMB και αυτών από τις διαταραχές πυκνότητας (RSD και WL).
Τα κεφάλαια 2 και 3 είναι αφιερωμένα σε μία εκτενή παρουσίαση με ενοποιημένο τρόπο πολλών υπ-

αρχόντων σημάτων σε κοσμολογικά και αστροφυσικά δεδομένα που φαίνεται να είναι σε κάποια ασυμβατ-

ότητα (2σ ή μεγαλύτερη) με το τυπικό κοσμολογικό μοντέλο ΛCDM όπως ορίζεται από της τιμές των

παραμέτρων από Planck18. Εκτός από τη μεγάλη καλώς μελετημένη πρόκληση 5σ του ΛCDM της κρίσης
της σταθεράς του Hubble και των γνωστών ανωμαλιών ανάπτυξης και πλάτους φακού, συζητάμε ένα ευρύ
φάσμα άλλων λιγότερο τυπικών σημάτων που εμφανίζονται σε χαμηλότερο επίπεδο στατιστικής σημασίας

από αυτήν της σταθεράς του Hubble και που μπορούν επίσης να αποτελούν υποδείξεις προς μια νέα φυσική.
Για παράδειγμα, τέτοια σήματα περιλαμβάνουν κοσμικά δίπολα (όπως της σταθεράς λεπτής υφής, τα δίπολα

ταχύτητας και κβάζαρ), ασυμμετρίες CMB (όπως η έλλειψη ισχύος σε μεγάλες γωνιακές κλίμακες, η ασυμ-
βατότητα μικρών έναντι μεγάλων κλιμάκων, η ανωμαλία ψυχρού σημείου, οι ενδείξεις για ένα κλειστό σύμπαν,

η ανωμαλία σε κλίμακες υπερ-ορίζοντα, η ευθυγράμμιση τετράπολων-οκταπόλων, η ανωμαλία ισχυρής επί-

δρασης ISW, η ασυμμετρία κοσμικής ημισφαιρικής ισχύος, η ανωμαλία φακού, η προτίμηση για συσχετισμούς
περιττής ισοτιμίας, η ισοτιμία παραβίασης της περιστροφής της CMB γραμμικής πόλωσης κ.λπ.), προβλήματα
των βαρυονικών ακουστικών ταλαντώσεων, προβλήματα μικρής κλίμακας, θέματα ηλικίας του Σύμπαντος,

πρόβλημα του λιθίου, ανωμαλίες μικρής κλίμακας, Hubble διάγραμμα από κβάζαρς, ταλαντευόμενα σήματα
βαρύτητας μικρής εμβέλειας, ανώμαλη χαμηλή βαρυονική θερμοκρασία κ.λπ. Ο στόχος αυτών των δύο

κεφαλαίων είναι η παρουσίαση συλλογικά της τρέχουσας κατάστασης αυτών των σημάτων και το επίπεδο

ασυμβατότητας τους, με έμφαση στην κρίση της σταθεράς του Hubble και η αναφορά σε πρόσφατες πηγές
όπου μπορούν να βρεθούν περισσότερες λεπτομέρειες για κάθε σήμα. Επίσης γίνεται μια εκτενή συζήτηση

και παρουσίαση πιθανών θεωρητικών προσεγγίσεων που μπορεί δυνητικά να εξηγήσουν τη μη τυπική φύση

ορισμένων από αυτά τα σήματα και να δώσουν λύσεις στα υπάρχοντα προβλήματα του κοσμολογικό μον-

τέλου ΛCDM. ΄Ενα ευρύ φάσμα μοντέλων έχει χρησιμοποιηθεί για την αντιμετώπιση της ασυμβατότητας 𝐻0
εισάγοντας πρόσθετους βαθμούς ελευθερίας στο μοντέλο ΛCDM όπου επιτρέπεται να ποικίλλουν πρόσθετες
παράμετροι, όπως η πεμπτουσία στην οποία ένα βαθμωτό πεδίο παίζει το ρόλο της σκοτεινής ενέργειας ή

τροποποιημένη βαρύτητα στην οποία η Γενική Σχετικότητα τροποποιείται σε κοσμολογική κλίμακα.

΄Οπως τονίσαμε στα κεφάλαια 2 και 3, η εγκυρότητα του κοσμολογικού μοντέλου ΛCDM βρίσκεται επί του
παρόντος υπό εντατική έρευνα χρησιμοποιώντας ένα ευρύ φάσμα κοσμολογικών ανιχνευτών. Αυτή η έρευνα

αποκάλυψε την παρουσία ασυμβατοτήτων μέσα στο μοντέλο ΛCDM , δηλαδή ασυνεπειών μεταξύ των τιμών
των παραμέτρων που προσδιορίστηκαν χρησιμοποιώντας διαφορετικούς ανιχνευτές παρατήρησης. Προκύπτει

επομένως το ακόλουθο ερώτημα: Είναι αυτές οι ασυμβατότητες μια πρώιμη ένδειξη της ανάγκης για μια

τροποποιημένη θεωρία βαρύτητας πέρα από το τυπικό μοντέλο ή είναι αποτέλεσμα συστηματικών/στατιστικών

διακυμάνσεων στα δεδομένα; Η ανάλυση που παρουσιάζεται στο επόμενο κεφάλαιο 4 στοχεύει να αντιμετω-
πίσει αυτό το ερώτημα. Στο κεφάλαιο αυτό γίνεται μελέτη της περιοριστικής ισχύος (ευαισθησίας) ενός ευ-

ρέος φάσματος παρατηρήσιμων ποσοτήτων πάνω σε κοσμολογικές παραμέτρους ως συνάρτηση της ερυθρής

μετατόπισης στην οποία έγινε η μέτρηση. Τα βασικά ερωτήματα με τα οποία ασχοληθήκαμε σε αυτό το κε-

φάλαιο είναι: α) Ποια είναι η εξαρτώμενη από την κοσμολογική ερυθρή μετατόπιση εξάρτηση της περιοριστικής

δύναμης μιας συγκεκριμένης παρατηρήσιμης ποσότητας σε σχέση με μια δεδομένη κοσμολογική παράμετρο;

β) Υπάρχει μια βέλτιστη κλίμακα ερυθρής μετατόπισης όπου η περιοριστική ισχύς μιας παρατηρήσιμης ποσότη-

τας είναι μέγιστη σε σχέση με μια δεδομένη κοσμολογική παράμετρο; γ) Υπάρχουν τυφλά σημεία ερυθρής

μετατόπισης όπου μια παρατηρήσιμη ποσότητα είναι εκφυλισμένη σε σχέση με συγκεκριμένες κοσμολογικές

παραμέτρους;

Συγκεντρώσαμε σύγχρονες συλλογές μετρήσεων των κοσμολογικών παρατηρήσεων και προσδιορίσαμε

την ευαισθησία αυτών των παρατηρήσεων ως συνάρτηση της ερυθρής μετατόπισης για τρεις κοσμολογικές

παραμέτρους: τη παράμετρο πυκνότητας, τη παραμέτρο καταστατικής εξίσωσης της σκοτεινής ενέργειας και

μία παράμετρο που περιγράφει την εξέλιξη της σταθεράς του Νεύτωνα. Για κάθε παρατηρούμενη ποσότητα

εισάγαμε μια νέα στατιστική ως μέτρηση της περιοριστικής ισχύος της σε σχέση με μια κοσμολογική



παράμετρο σε συνάρτηση της ερυθρής μετατόπισης. Διαπιστώσαμε την ύπαρξη ΄τυφλών΄ σημείων ερυθρής

μετατόπισης και βέλτιστων σημείων για τις παρατηρήσιμες ποσότητες σε σχέση με τις παραμέτρους. Σε ένα

βέλτιστο εύρος ερυθρών μετατοπίσεων, η παρατηρήσιμη ποσότητα μπορεί να περιορίσει την παράμετρο με

τον πιο αποτελεσματικό τρόπο, ενώ στις τυφλές περιοχές ερυθρής μετατόπισης, οι παρατηρήσιμες ποσότητες

μπορεί να είναι εκφυλισμένες σε σχέση με τις τιμές των κοσμολογικών παραμέτρων και επομένως αναποτε-

λεσματικές στον περιορισμό της δεδομένης παραμέτρου.

Στο κεφάλαιο 5 ακολούθησε η μελέτη ενός τροποποιημένου μοντέλου της βαρύτητας μέσω της μείωσης
διαστάσεων. Εφαρμόσαμε μια εναλλακτική προσέγγιση με μια γεωμετρική περιγραφή της δυναμικής της ύλης

σε γαλαξιακές κλίμακες χωρίς σκοτεινή ύλη. Τα βασικά ερωτήματα με τα οποία ασχοληθήκαμε είναι: α) Είναι

δυνατόν να γενικευθεί η θεμελιώδης δισδιάστατη γεωμετρική δράση (και το δυναμικό του βαθμωτού πεδίου

που προκύπτει από την σύμπτυξη των διαστάσεων) έτσι ώστε η αντίστοιχη σφαιρικά συμμετρική μετρική του

κενού να αναπαράγει τις παρατηρούμενες καμπύλες περιστροφής ταχύτητας των γαλαξιών εξίσου καλά με τη

καθιερωμένη κατανομή της πυκνότητας ύλης; β) Εάν ναι, ποια είναι η μορφή του απαιτούμενου δυναμικού

γεωμετρικού βαθμωτού πεδίου και πώς σχετίζεται με το απλό δυναμικό Rindler; γ) Μπορεί να αναπαραχθεί
μια τυχαία σφαιρικά συμμετρική μετρική του κενού από ένα σωστά επιλεγμένο γεωμετρικό δυναμικό βαθμωτού

πεδίου;

Χρησιμοποιώντας το προφίλ πυκνότητας σκοτεινής ύλης Navarro-Frenk-White (NFW)
ανακατασκευάσαμε ένα μοντέλο θεωρίας βαρύτητας αποτελεσματικού πεδίου σε μεγάλες αποστάσεις

από ένα κεντρικό αντικείμενο, απαιτώντας η λύση του κενού να έχει τις ίδιες βαρυτικές ιδιότητες με το

προφίλ πυκνότητας NFW στο πλαίσιο της ΓΘΣ. Η διαστατικά μειωμένη ανοικοδομημένη δράση για τη

βαρύτητα οδηγεί σε μία μετρική κενού που περιλαμβάνει έναν τροποποιημένο όρο επιτάχυνσης Rindler
επιπλέον των τυπικών όρων Schwarzschild και κοσμολογικής σταθεράς. Ο νέος όρος είναι απαλλαγμένος
από τις ανωμαλίες καμπυλότητας της υπέρυθρης ακτινοβολίας και οδηγεί σε πολύ καλύτερη προσαρμογή

των παρατηρημένων καμπυλών περιστροφής ταχύτητας γαλαξία από τον αντίστοιχο απλό όρο Rindler της
μετρικής Grumiller, σε βάρος μιας επιπλέον παραμέτρου. ΄Οταν η νέα παράμετρος έχει οριστεί στο μηδέν, ο
νέος μετρικός όρος μειώνεται σε μία Rindler σταθερά επιτάχυνσης. Χρησιμοποιήσαμε δεδομένα περιστροφής
γαλαξιακής ταχύτητας για να βρούμε τις καλύτερες τιμές προσαρμογής των παραμέτρων του δομημένου

γεωμετρικού δυναμικού και συζητήσαμε πιθανές κοσμολογικές επιπτώσεις. Γενικά η ακολουθούμενη

μείωση των διαστάσεων στο πλαίσιο της σφαιρικής συμμετρίας προσφέρει μια ενδιαφέρουσα άποψη για την

τροποποίηση της ΓΘΣ και μπορεί να οδηγήσει σε ένα ευρύ φάσμα δοκίμων των τροποποιημένων μοντέλων

της βαρύτητας.

Κεντρικό ζητούμενο της θεμελιώδους έρευνας είναι η ενοποίηση ων δύο μεγάλων φυσικών θεωριών της

Κβαντικής Θεωρίας (ΚΘ) και της Γενικής Σχετικότητας (ΓΣ) στο πλαίσιο της Κβαντικής Βαρύτητας (ΚΒ).

Μια κρίσιμη κλίμακα στο πλαίσιο αυτής της ενοποίησης είναι η κλίμακα Planck η οποία έχει αποδειχθεί ότι
είναι η ελάχιστη μετρήσιμη κλίμακα εάν ισχύουν τόσο η ΚΘ όσο και η ΓΣ. Η ύπαρξη ενός τέτοιου ελάχιστου

μετρήσιμου μήκους μπορεί να οδηγήσει σε τροποποίηση της Αρχής της Αβεβαιότητας του Heisenberg στη
καλούμενης ως Γενικευμένη Αρχή της Αβεβαιότητας (ΓΑΑ). Αντίστοιχα, υπάρχει ένα μέγιστο μετρήσιμο

μήκος που σχετίζεται με τον κοσμολογικό ορίζοντα των σωματιδίων, το οποίο παρέχει λόγω αιτιότητας μια

κλίμακα μέγιστου μετρήσιμου μήκους στο Σύμπαν. Αυτή η ύπαρξη ενός τέτοιου μέγιστου μετρήσιμου μήκους

οδηγεί σε τροποποιημένη έκδοση της ΓΓΑ. Στο κεφάλαιο 6 ερευνήθηκαν οι επιδράσεις της τροποποιημένης
ΓΑΑ στο πρωταρχικό φάσμα ισχύος των κοσμολογικών διαταραχών που γεννήθηκαν κατά τη διάρκεια του

πληθωρισμού λόγω κβαντικών διακύμανσεων. Τα βασικά ερωτήματα με τα οποία ασχοληθήκαμε είναι: α)

Ποια είναι η παραμόρφωση του φάσματος ισχύος των διαταραχών που παράγεται κατά τον πληθωρισμό

λόγω της παραμόρφωσης της άλγεβρας Heisenberg που αντιστοιχεί στην ύπαρξη ενός μέγιστου μετρήσιμου
μήκους; β) Ποιοι περιορισμοί μπορούν να επιβληθούν στη θεμελιώδη παράμετρο που σχετίζεται με την

μέγιστη αβεβαιότητα θέσης από το παρατηρούμενο φάσμα ισχύος των πρωταρχικών διακυμάνσεων;

΄Ετσι στο πλαίσιο μιας γενίκευσης της κβαντικής μηχανικής που περιλαμβάνει μια κλίμακα μέγιστου

μετρήσιμου μήκους εξάγαμε τη γενικευμένη μορφή του αρχέγονου φάσματος ισχύος των κοσμολογικών

διαταραχών που δημιουργούνται κατά τη διάρκεια του πληθωρισμού λόγω των κβαντικών διακυμάνσεων

των βαθμωτών και τανυστικών βαθμών ελευθερίας. Η ύπαρξη μιας τέτοιας κλίμακας υποκινείται όπως

προαναφέρθηκε από την ύπαρξη του ορίζοντα των σωματιδίων στην κοσμολογία και οδηγεί σε μια γενίκευση

της αρχής της αβεβαιότητας σε μια μορφή που συνεπάγεται την ύπαρξη μιας μέγιστης θέσης και μιας



ελάχιστης αβεβαιότητας ορμής. Η ΓΑΑ συνεπάγεται μια γενίκευση της σχέσης μετάθεσης μεταξύ συζευγ-

μένων τελεστών συμπεριλαμβανομένων των πεδίων και των συζυγών ορμών τους. Ειδικότερα δείξαμε ότι η

Γενικευμένη σχέση Μετάθεσης Πεδίου (ΓΜΠ) μεταξύ ενός βαθμωτού πεδίου και της συζυγούς ορμής του

που υπονοείται από τη ΓΑΑ οδηγεί σε ένα τροποποιημένο αρχέγονο φάσμα βαθμωτών διαταραχών. Με τη

βοήθεια παρατηρησιακών περιορισμών του φασματικού δείκτη οδηγηθήκαμε σε περιορισμούς των παραμέτρων

του μοντέλου που μας βοήθησε να εκτιμήσουμε το μέγιστο μετρήσιμο μήκους. Αυτό βρέθηκε να είναι μία

τάξη μεγέθους μεγαλύτερο από το σημερινό κοσμολογικό ορίζοντα.

Παρά την συνέπεια του Planck/ΛCDM μοντέλου με τα δεδομένα κοσμικού υποβάθρου στις μεγάλες

κοσμολογικές κλίμακες έχει πρόσφατα καταστεί εμφανής η ύπαρξη μιας ήπιας ασυμβατότητας ανάμεσα στο

μοντέλο Planck/ΛCDM με μερικές παρατηρήσεις σε ενδιάμεσες κοσμολογικές κλίμακες (ερυθρές μετατοπί-
σεις 𝑧 ≤ 0.6). ΄Ενα τροποποιημένο μοντέλο βαρύτητας αποτελεί έναν κύριο θεωρητικό υποψήφιο για να εξ-
ηγήσει αυτή την ασυμβατότητα. Ο συνδυασμός των κοσμολογικών ανιχνευτών είναι ένα ισχυρό εργαλείο για

την αναγνώριση του κατάλληλου μοντέλου. Ωστόσο οι επιδράσεις των μοντέλων τροποποιημένης βαρύτητας

δεν διακρίνονται από τη ΓΘΣ σε επίπεδο γεωμετρικού κοσμολογικού υποβάθρου. Η ύπαρξη ενός μοντέλου

τροποποιημένης βαρύτητας μπορεί να ταυτοποιηθεί μόνο με τη διερεύνηση της δυναμικής των κοσμολογικών

διαταραχών χρησιμοποιώντας συγκεκριμένα στατιστικά στοιχεία που λαμβάνονται μέσω των ανιχνευτών

δυναμικών παρατηρήσιμων ποσοτήτων, όπως η συσχέτιση δύο σημείων και το φάσμα ισχύος της κατανομής

των γαλαξιών, τα RSD και WL.
Ορμώμενοι από την παραπάνω διαπίστωση στο κεφάλαιο 7 πραγματοποιήσαμε μελέτη της ασυμβατότη-

τας των δεδομένων στατιστικής 𝐸𝐺 και δεδομένων που σχετίζονται με παραμορφώσεις στο χώρο ερυθράς

μετατόπισης (RDS) με το Planck/ΛCDM μοντέλο. Τα βασικά ερωτήματα που θέσαμε είναι τα ακόλουθα:
α) Ποιες είναι οι αποτελεσματικές φαινομενολογικές παραμετροποιήσεις που εξαρτώνται από την ερυθρή

μετατόπιση των γενικευμένων κανονικοποιημένων σταθερών Newton 𝜇𝐺(𝑧) και Σ𝐺(𝑧) οι οποίες είναι
συνεπείς και με τα όρια από την πυρηνοσύνθεση και με τις παρατηρήσεις στο ηλιακό συστήμα που δείχνουν ότι

η ΓΘΣ αποκαθίσταται σε υψηλό 𝑧 και στη σημερινή εποχή; β) Ποιοι είναι οι περιορισμοί που επιβάλλονται από
τα 𝐸𝐺 και 𝑓𝜎8 επικαιροποιημένα σετ δεδομένων για τις παραμέτρους των παραπάνω παραμετροποιήσεων; γ)
Οι περιορισμοί αυτοί ενισχύουν τις ενδείξεις για την εξασθένιση της βαρύτητας σε μικρές ερυθρές μετατοπί-

σεις 𝑧 που υποδηλώνουν μόνο τα δεδομένα του 𝑓𝜎8 όπως υποδεικνύουν προηγούμενες μελέτες;
΄Ετσι κατασκευάζοντας σύγχρονες συλλογές δεδομένων 𝑓𝜎8 και 𝐸𝐺 βασισμένων σε παρατηρήσεις που

περιγράφουν το ρυθμό αύξησης των κοσμολογικών διαταραχών (RSD) και ασθενών φακών (WL) εκτιμήσαμε
τις ασυμβατότητες μεταξύ των βέλτιστων τιμών παραμέτρων από Planck/ΛCDM και των βέλτιστων τιμών των
παραμέτρων που επιτυγχάνονται στο πλαίσιο μιας τροποποιημένης θεωρίας βαρύτητας στα πλαίσια κατάλληλης

παραμετροποιημένης εξέλιξης των γενικευμένων κανονικοποιημένων σταθερών ανάπτυξης και φακών 𝜇𝐺 και

Σ𝐺 αντίστοιχα. Βρήκαμε ότι το επίπεδο ασυμβατότητας αυξάνει από τα 3.5𝜎 όταν η ανάλυση γίνεται μόνο
με τη χρήση της συλλογής δεδομένων 𝑓𝜎8 στα 6𝜎 όταν εισάγουμε στην ανάλυση τη συλλογή δεδομένων 𝐸𝐺.
Αυτά τα αποτελέσματα ενισχύουν περαιτέρω τις ενδείξεις για weakening modified gravity που συζητήθηκε
σε άλλες πρόσφατες μελέτες.

Τα βαθμωτά πεδία χρησιμοποιούνται για να περιγράψουν ένα ευρύ φάσμα βαθμών ελευθερίας σε ένα

ποικίλο σύνολο φυσικών συστημάτων στη σωματιδιακή φυσική, την κοσμολογία και την φυσυκή συμπυκν-

ωμένης ύλης. Μια σταθεροποιητική επίδραση πολλαπλών οριζόντων στις ταχυονικές αστάθειες μπορεί να

έχει διάφορες ενδιαφέρουσες συνέπειες. Για παράδειγμα, οι ταχυονικές αστάθειες των θεωριών 𝑓(𝑅) και
των βαθμοτανυστικών θεωριών μπορεί να καθυστερήσουν σημαντικά σε υπόβαθρα που περιλαμβάνουν κοσ-

μολογικούς ορίζοντες με πιθανές συνέπειες για την ανάπτυξη προθέρμανσης μετά τον πληθωρισμό. Στο κε-

φάλαιο 8 γίνεται μελέτη των ταχυονικών ασταθειών στη δυναμική εξέλιξη ενός ελεύθερου μαζικού βαθμωτού
πεδίου Φ με εξίσωση δυναμικού της μορφής 𝑉 (𝜑) = 𝑚2𝜑2

. Ειδικότερα είναι γνωστό ότι η αντίστοιχη εξίσωση

Klein Gordon (KG) □Φ+𝑚2Φ = 0 έχει ταχυονικές ασταθείς καταστάσεις σε μεγάλες κλίμακες (𝑘2 < |𝑚|2)
για 𝑚2 < 𝑚2

𝑐𝑟 = 0 σε επίπεδο χωρόχρονο Minkowski με το μέγιστο ρυθμό ανάπτυξης Ω𝐹 (𝑚) = |𝑚| να
επιτυγχάνεται σε 𝑘 = 0. Με δεδομένο αυτήν την ύπαρξη ταχυονικών ασταθειών για 𝑚2 < 0 στην παρουσία
ενός επίπεδου υπόβαθρου (Minkowski background) θέσαμε τα παρακάτω ερωτήματα: α) Παραμένουν οι βα-
θμωτές ταχυονικές αστάθειες για 𝑚2 < 0 παρουσία ενός μη επίπεδου (καμπύλου) υποβάθρου; β) Αν ναι,
πώς αλλάζει ο χρόνος αστάθειας και ο ρυθμός ανάπτυξης σε καμπύλο υπόβαθρο; γ) Ποιες είναι οι τιμές

παραμέτρων μιας μετρικής καμπύλου υποβάθρου που απαιτούνται για να αυξήσουν σημαντικά τη διάρκεια



ζωής της αστάθειας σε σύγκριση με την τιμή της σε ένα επίπεδο υπόβαθρο;

Η έρευνα επιγκεντρώθηκε στην ύπαρξη των ασταθειών και στο ρυθμό ανάπτυξης τους στα παρακάτω

μη επίπεδα (καμπύλα) βαρυτικά υπόβαθρα: Reissner-Nordstrom-deSitter (RN-dS), Shwarzschild-deSitter
(SdS), pure deSitter, pure Schwarzschild. Τα βασικά συμπεράσματα που εξάγαμε είναι: α) Η κρίσιμη τιμή
της μάζας του βαθμωτού πεδίου 𝑚2

𝑐𝑟 σε καμπύλο υπόβαθρο είναι 𝑚
2
𝑐𝑟 = 0 όπως στο επίπεδο υπόβαθρο (όπου

για 𝑚2 < 𝑚2
𝑐𝑟 ταχυονική αστάθεια αναπτύσσεται), β) Η βαθμωτή ταχυονική αστάθεια της εξίσωσης Klein-

Gordon έχει βραδύτερο ρυθμό ανάπτυξης στο καμπύλο υπόβαθρο σε σύγκριση με το επίπεδο χωρόχρονο για
όλες τις μετρικές παραμέτρους όπου υπάρχει κοσμολογικός ορίζοντας.

΄Οπως προαναφέρθηκε, η ασυμβατότητα ανάπτυξης, αν δεν οφείλεται σε στατιστικά ή συστηματικά σφάλ-

ματα, μπορεί να υποδηλώνει την ανάγκη για πρόσθετους βαθμούς ελευθερίας που επεκτείνουν το ΛCDM
μοντέλο. Μια γενική προέλευση τέτοιων βαθμών ελευθερίας με φυσικά κίνητρα είναι η επέκταση της ΓΘΣ σε

μοντέλα τροποποιημένης βαρύτητας. Μια μεγάλη ποικιλία τέτοιων μοντέλων έχουν προταθεί μέχρι στιγμής

για να λυθεί η ασυμβατότητα ανάπτυξης. Μια ευρεία κατηγορία τέτοιων τροποποιημένων θεωριών παρέχεται

από τη βαρύτητα Horndeski που αποτελεί ένα γενικευμένο μοντέλο βαρύτητας. Τα μοντέλα βαρύτητας Horn-
deski είναι η πιο γενική βαθμοτανυστική θεωρία που περιλαμβάνει βαθμωτό βαθμό ελευθερίας σε τέσσερις
διαστάσεις με εξισώσεις κίνησης δεύτερης τάξης, επομένως αποφεύγεται η αστάθεια Ostrogradsky. Παρέχει
ένα γενικό πλαίσιο για την κατασκευή μοντέλων σκοτεινής ενέργειας εντός της ΓΘΣ καθώς και πληθωρισμού.

Στο κεφάλαιο 9 γίνεται μελέτη του Horndeski μοντέλου βαρύτητας σε ΛCDM υπόβαθρο με χρήση

τεσσάρων ελεύθερων ανεξάρτητων συναρτήσεων του χρόνου, της 𝛼 βάσης, 𝛼𝑖(𝑡) (𝑖 = 𝑀,𝐾,𝐵, 𝑇 ) που
περιγράφει οποιαδήποτε απόκλιση από την ΓΘΣ όπου 𝛼𝑖(𝑡) = 0. Η διερεύνηση των μοντέλων Horndeski,
έγινε υποθέτοντας: α) συμπεριφορά πρώιμου χρόνου που είναι σύμφωνη με την ΓΘΣ, β) ταχύτητα βαρυτικών

κυμάτων ίση με την ταχύτητα του φωτός, γ) ανεξαρτησία κλίμακας 𝑘 των συναρτήσεων 𝛼𝑖(𝑡) σε κλίμακες
κάτω από τον ορίζοντα του ήχου (subhorizon) του βαθμωτού πεδίου (𝑘 ≫ 𝑎𝐻/𝑐𝑠) στην σχεδόν στατική

προσέγγιση (Quasi-Static Approximation (QSA)), δ) ρυθμό διαστολής υπόβαθρου του σύμπαντος 𝐻(𝑧)
που αντιστοιχεί σε μια επίπεδη κοσμολογία ΛCDM, ε) εξάρτηση των συναρτήσεων 𝛼𝑖(𝑡) από τον παράγοντα
κλίμακας 𝑎 της μορφής 𝛼𝑖 = 𝛼𝑖0 𝑎

𝑠
όπου οι σταθερές 𝛼𝑖0 είναι σημερινές τιμές και το 𝑠 είναι κάποιος θετικός

εκθέτης που καθορίζει την χρονική εξέλιξη για το θεωρούμενο τροποποιημένο μοντέλο βαρύτητας.

Κάνοντας χρήση των παραπάνω υποθέσεων εξάγαμε τις επιτρεπόμενες περιοχές των παραμέτρων του μον-

τέλου για διάφορες τιμές του εκθέτη 𝑠. Λάβαμε επίσης τις επιτρεπόμενες μορφές των βαρυτικών παραμέτρων
ανάπτυξης και φακού 𝜇𝐺 ≡ 𝐺growth/𝐺 και Σ𝐺 ≡ 𝐺lensing/𝐺 συγκρίνοντας τα αποτελέσματά μας με προ-
ηγούμενες μελέτες. Χρησιμοποιήσαμε συλλογές δεδομένων 𝑓𝜎8 και 𝐸𝐺 μαζί με τις θεωρητικές εκφράσεις

για τα στατιστικά δεδομένα 𝑓𝜎8 και 𝐸𝐺 προκειμένου να εξάγουμε περιορισμούς στις παραμέτρους 𝜇𝐺 και

Σ𝐺 και να λάβουμε το επιτρεπόμενο εύρος των συναρτήσεων 𝛼𝑀 (𝑎) και 𝛼𝐵(𝑎). Η ασθενής βαρύτητα είναι
ένα δύσκολο καθεστώς που πρέπει να επιτευχθεί στο πλαίσιο βιώσιμων τροποποιημένων θεωριών βαρύτη-

τας. Δείξαμε ότι υποθέτοντας μια τέλεια βιώσιμη λύση υποβάθρου, ΛCDM, μπορούμε να περιορίσουμε τα
μοντέλα Horndeski χρησιμοποιώντας δεδομένα 𝑓𝜎8 και 𝐸𝐺. Τέλος, εξετάσαμε τον δείκτη ανάπτυξης 𝛾(𝑧)
και προσδιορίσαμε την περιοχή παραμέτρων (𝛼𝑀0, 𝛼𝐵0, 𝑠) που αντιστοιχεί σε συγκεκριμένες περιπτώσεις
𝛾0 − 𝛾Λ𝐶𝐷𝑀

0 και 𝛾1 − 𝛾Λ𝐶𝐷𝑀
1 (όπου 𝛾0 ≡ 𝛾(𝑧 = 0) και 𝛾1 ≡ 𝑑𝛾

𝑑𝑧 |𝑧=0).
Η πιο ενδιαφέρουσα ασυμβατότητα μεγάλης κλίμακας είναι αυτή της σταθεράς του Hubble όπως

συζητήσαμε στο κεφάλαιο 2. Χρησιμοποιώντας μια προσέγγιση κλίμακας απόστασης, οι τοπικές μετρή-
σεις της σταθεράς Hubble 𝐻0 οδηγούν σε τιμές που είναι σημαντικά υψηλότερες από αυτές που συνάγονται
χρησιμοποιώντας τη γωνιακή κλίμακα διακυμάνσεων του CMB στο πλαίσιο του μοντέλου ΛCDM. Ο τοπικός
προσδιορισμός της σταθεράς Hubble 𝐻0 χρησιμοποιώντας μια προσέγγιση κλίμακας απόστασης εξαρτάται
από μια αλυσίδα μετρήσεων απόστασης. Στην προσέγγιση της κλίμακας κοσμικής απόστασης, κάθε βήμα της

κλίμακας απόστασης χρησιμοποιεί μεθόδους παράλλαξης ή/και τη γνωστή εγγενή φωτεινότητα μιας τυπικής

πηγής κεριού για να προσδιορίσει την απόλυτη (εγγενή) φωτεινότητα ενός πιο φωτεινού τυπικού κεριού που

βρίσκεται στον ίδιο γαλαξία. ΄Ετσι, τα τυπικά κεριά υψηλής φωτεινότητας βαθμονομούνται για το επόμενο

βήμα, προκειμένου να φτάσουν σε αποστάσεις φωτεινότητας υψηλής ερυθρής μετατόπισης. Εάν μία από τις

μετρήσεις απόστασης υπόκειται σε συστηματικά σφάλματα ή νέα φυσική, όλα τα επόμενα σκαλοπάτια της

κοσμικής κλίμακας απόστασης είναι λάθος.

Η προσέγγιση της κλίμακας απόστασης βασίζεται σε μια μέθοδο στην οποία πρωτοστάτησε η Henrietta
Swan Leavitt. Συνειδητοποίησε ότι ένας τύπος παλλόμενων αστεριών που είναι γνωστοί ως μεταβλητοί



Κηφείδες έχουν μια περίοδο παλμών που εξαρτάται από τη φωτεινότητά τους. Αυτή η σχέση Περιόδου-

Φωτεινότητας (ΠΦ) ονομάζεται νόμος Leavitt. Γνωρίζοντας τη φωτεινότητα ενός Κηφείδα σημαίνει ότι
η απόσταση φωτεινότητάς του μπορεί να προσδιοριστεί απλά παρατηρώντας τη φωτεινότητά του που έχει

μειωθεί από αυτή την απόσταση. Επομένως, οι Κηφείδες των οποίων η φωτεινότητα συσχετίζεται με τις

περιόδους μεταβλητότητάς τους μπορεί να είναι τα πρώτα τυπικά κεριά στην κοσμική κλίμακα της απόστασης.

Τριγωνομετρικές μέθοδοι παράλλαξης μπορούν να χρησιμοποιηθούν για τη βαθμονόμηση των τυπικών κεριών

μεταβλητών Κηφείδων στο τοπικό Σύμπαν. Στη συνέχεια, χρησιμοποιώντας τις μετρούμενες αποστάσεις

φωτεινότητας των βαθμονομημένων Κηφείδων, λαμβάνεται η εγγενής φωτεινότητα των κοντινών (𝐷 ≈ 20 −
40 Mpc) απίστευτα φωτεινού τύπου Ια υπερκαινοφανών (SnIa) που κατοικούν στους ίδιους γαλαξίες με
τους Κηφείδες. Αυτή η βαθμονόμηση του νέου τύπου τυπικού κεριού SnIa καθορίζει το απόλυτο μέγεθός
του 𝑀𝐵 και στη συνέχεια χρησιμοποιείται για SnIa σε πιο απομακρυσμένους γαλαξίες (στη ροή Hubble)
για τη μέτρηση των 𝐻0 (𝑧 ∈ [0.01, 0.1]) και 𝐻(𝑧) (𝑧 ∈ [0.01, 2.3]) μέσω της μέτρησης των αποστάσεων
φωτεινότητάς τους. Είναι φανερό ότι το μοντέλο που χρησιμοποιείται για τη βαθμονόμηση των Κηφείδων

μπορεί να επηρεάσει τον καθορισμό της σταθεράς του Hubble.
Ορμώμενοι από τα παραπάνω στο κεφάλαιο 10 χρησιμοποιήσαμε δεδομένα από Κηφείδες και υπερκαινο-

φανείς τύπου Ia για να διερευνήσουμε τα αποτελέσματα της διακύμανσης των εμπειρικών παραμέτρων βαθ-
μονόμησης των Κηφείδων. Δείξαμε ότι τα μοντέλα όπου επιτρέπεται μια τέτοια διακύμανση ευνοούνται με

βάση τα κριτήρια επιλογής μοντέλων AIC και BIC. Τα μοντέλα που ευνοούνται σταθερά και από τα δύο,
το AIC και το BIC, περιλαμβάνουν μια μετάβαση είτε στην παράμετρο χρώματος-φωτεινότητας 𝑅𝑊 είτε στο

απόλυτο μέγεθος 𝑀𝑊
𝐻 των Κηφείδων σε απόσταση μεταξύ 10 και 20 𝑀𝑝𝑐. Στο πλαίσιο ενός ομοιογενούς

Σύμπαντος όπου τηρείται η κοσμολογική αρχή, αυτό θα ήταν μια χρονική μετάβαση μεταξύ περίπου 25 -

70 εκατομμυρίων ετών πριν. Τα μοντέλα που περιλαμβάνουν μετάβαση στο 𝑅𝑊 ευνοούνται ελαφρώς έναντι

των μοντέλων όπου υπάρχει μετάβαση στο 𝑀𝑊
𝐻 . Και οι δύο κατηγορίες μοντέλων οδηγούν σε τιμές 𝐻0

που είναι συμβατές με τις συναγόμενες τιμές από CMB εξαλείφοντας έτσι την ασυμβατότητα της σταθεράς
του Hubble. Μια τέτοια μετάβαση των παραμέτρων των Κηφείδων θα μπορούσε να προκαλείται από μια
θεμελιώδη φυσική μετάβαση. Το μέγεθος της μετάβασης είναι συνεπές με το μέγεθος που απαιτείται για την

επίλυση της ασυμβατότητας της σταθεράς του Hubble στο πλαίσιο μιας θεμελιώδους βαρυτικής μετάβασης
που λαμβάνει χώρα από μια ξαφνική αύξηση της έντασης των βαρυτικών αλληλεπιδράσεων 𝐺eff κατά περίπου
10% σε ερυθρές μετατοπίσεις 𝑧 ≤ 0.01. Μια τέτοια μετάβαση θα αύξανε απότομα το απόλυτο μέγεθος των
υπερκαινοφανών τύπου Ia κατά Δ𝑀𝐵 ≈ 0.2. Το εύρος απόστασης/χρονικής κλίμακας που αντιστοιχεί σε
αυτή τη μετάβαση είναι σύμφωνο με μια πρόσφατη ανάλυση που δείχνει μια παρόμοια μετάβαση στο πλαίσιο

των Tully-Fisher δεδομένων και είναι επίσης συνεπές με τα δεδομένα ιστορίας του ηλιακού συστήματος.
Λόγω της αποτελεσματικότητας μιας βαρυτικής μετάβασης στην επίλυση των ασυμβατοτήτων Hubble και
ανάπτυξης, προκύπτει το ερώτημα: Υπάρχουν θεωρητικά μοντέλα που μπορούν γενικά να προβλέψουν μια

τέτοια μετάβαση σε χωρικό ή χρονικό επίπεδο σε 𝑧𝑡 ≲ 0, 01;
Με σκοπό να δώσουμε απάντηση στο παραπάνω ερώτημα στο κεφάλαιο 11 παρουσιάζουμε ένα μοντέλο

που προσφέρει μια ενδιαφέρουσα νέα προσέγγιση για την τροποποίηση της ΓΘΣ σε διακριτούς χωρικούς

τομείς. Γενικεύσαμε το symmetron-screening μηχανισμό επιτρέποντας μια ρητή διακοπή της συμμετρίας του
symmetron 𝜑4

δυναμικού κατά τον κυβικό όρο 𝜀𝜑3. Σε ένα τέτοιο screening βαθμωτό πεδίο (asymmetron)
τα δύο τοπικά ελάχιστα του δυναμικού σε περιοχές χαμηλής πυκνότητας δεν είναι ούτε εκφυλισμένα ούτε

συμμετρικά (𝜑+ ̸= −𝜑−). Επομένως υπάρχει ένα ψευδές και ένα μόνο αληθινό κενό λόγω της ρητής διακοπής
της συμμετρίας. Αυτό αναμένεται να οδηγήσει σε ένα ασταθές asymmetron domain wall δίκτυο που περιλ-
αμβάνει μια μετάβαση στην τιμή της ενεργού βαρυτικής σταθεράς 𝐺eff σε πλαίσιο αναφοράς Jordan καθώς
διασχίζεται το asymmetron wall. Το δίκτυο θα βρισκόταν σε συνεχή αλληλεπίδραση με τις υπερπυκνότητες
της ύλης και θα οδηγούσε σε ενδιαφέρουσες παρατηρησιακές υπογραφές που θα μπορούσαν να ανιχνευθούν

ως μεταπτώσεις βαρυτικού ρυθμού και διαστολής στο χώρο της ερυθρής μετατόπισης. Στο πλαίσιο αυτό

έχει συζητηθεί η συνάφεια αυτών των asymmetron wall διαμορφώσεων με πρόσφατα δεδομένα από clus-
ter προφίλ που μπορεί να ερμηνευθεί ως ένδειξη για διακριτές βαρυτικές ιδιότητες ορισμένων clusters. Η
βαρυτική μετάβαση που προκύπτει από αυτό το asymmetron μοντέλο μπορεί να οδηγήσει στην επίλυση της
ασυμβατότητας της σταθεράς του Hubble όπως επίσης και της ασυμβατότητας της ανάπτυξης.
Στο κεφάλαιο 12 , που αποτελεί και το τελευταίο κεφάλαιο της παρούσας διατριβής παρουσιάζουμε τα

συνολικά συμπεράσματα της. Επιπλέον γίνεται αναφορά σε υπάρχουσες και επερχόμενες αποστολές (πειρά-



ματα) που αναμένεται να βελτιώσουν την ποιότητα και την ποσότητα των δεδομένων. Η ανάλυση αυτών των

δεδομένων μπορεί να δώσει απαντήσεις στα ενδιαφέροντα ανοιχτά κοσμολογικά ερωτήματα που εξετάζονται

σε αυτή τη διατριβή.

Κλείνοντας, στα Παραρτήματα παραθέτουμε μια λίστα με ακρωνύμια, χρήσιμες αποδείξεις και τύπους,

πίνακες με δεδομένα και κώδικες που χρησιμοποιήθηκαν στις επιμέρους αναλύσεις. Τέλος, παρατίθεται μία

σύγχρονη και εκτεταμένη Βιβλιογραφία.
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𝑐𝑟𝑀
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Chapter 1

Introduction

Modern cosmology has its foundations in Einstein’s general relativity (GR). GR is the simplest successful
theory for gravity. It is consistent with the vast majority of experiments and observations from sub-mm
scales up to cosmological horizon scales [71, 72]. Alternative modified theories of gravity include more
degrees of freedom and parameters which are strongly constrained by a wide range of experiments and
astrophysical/cosmological observations to be very close to the values predicted by GR (see e.g. [73–76]).

In this introductory chapter, we present elements of GR and Cosmology and their basic concepts. At
the end of the chapter we present an introduction to the standard Lambda Cold Dark Matter (ΛCDM)
model.

1.1 Elements of General Relativity

1.1.1 Geometry and gravity-The metric
The geometric background on which the GR is based is the spacetime. The spacetime is the mathemat-
ical model that unites space and time in one continuum and is a four-dimensional pseudo-Riemannian
manifold. In the Special Relativity (SR) we have the flat spacetime or Minkowski spacetime while in
the GR we consider that the spacetime is curved by the presence of matter/energy. For each point of
4-dimensional spacetime we can define a 4-set of coordinates 𝑥0, 𝑥1, 𝑥2, 𝑥3 that can be referred as {𝑥𝛼}.

The geometry of spacetime is characterized by the way the distance of two points is measured. If 𝑑𝑠
the elementary spacetime distance or line element between two adjacent points then

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 , (1.1)

where 𝑔𝛼𝛽 is a metric tensor that describes the geometrical properties of the spacetime. The spacetime
as a manifold with the introduction of the metric acquires a certain shape. The metric tensor in GR
describes the gravitational potential.

1.1.2 Geodesics
In flat space, straight lines are the most important curves. A straight line in the Euclidean space is the
only curve that simultaneously conveys its own tangent vector. More specifically, the tangent to the line
at one point is parallel to the tangent to the previous point. In a curved space, there are respectively
the curves that meet the requirement of the parallel transport of the tangent carrier. These curves are
called geodesics. If the tangent vector to the geodesic curve 𝑥𝜇(𝜆) (where 𝜆 a affine parameter (e.g. the

1



Chapter 1. Introduction

distance) measured along the curve which monotonically increases along the particle’s path) is 𝑑𝑥𝜇/𝑑𝜆
then the geodesic equation holds

𝑑2𝑥𝛼

𝑑𝜆2 + Γ𝛼
𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= 0 , (1.2)

where Γ𝛼
𝜇𝜈 is the Christoffel symbol defined as

Γ𝛼
𝜇𝜈 = 1

2𝑔
𝛼𝜆(𝑔𝜆𝜇,𝜈 + 𝑔𝜆𝜈,𝜇 − 𝑔𝜇𝜈,𝜆) , (1.3)

where 𝑔𝛼𝜆 is the inverse of 𝑔𝛼𝜆 and the commas denote partial differentiation i.e. 𝑔𝜆𝜇,𝜈 ≡ 𝜕𝑔𝜆𝜇/𝜕𝑥
𝜈 .

At the flat spacetime where the Christoffel symbols are zero the solution of the geodetic equation is
the straight lines. The geodesic curves based on the principles of the GR represent the ’straight lines’ of
the curved spacetime over which the particles move under the influence of gravity alone (absence of any
other forces) performing a free fall.

1.1.3 Einstein’s field equations
The study of the inherent curvature of a spacetime is done through the Riemann tensor 𝑅𝛼

𝜇𝛽𝜈 , a four-
order tensor of the curvature. This tensor describes the deviation of the curve spacetime from the flat
spacetime. In the case of flat spacetime the Riemann tensor is zero. The contraction of the first and
third index of the Riemann tensor gives the Ricci tensor

𝑅𝜇𝜈 = 𝑅𝛼
𝜇𝛼𝜈 . (1.4)

The Ricci tensor in terms of the Christoffel symbol expressed as

𝑅𝜇𝜈 = Γ𝛼
𝜇𝜈,𝛼 − Γ𝛼

𝜇𝛼,𝜈 + Γ𝛼
𝜇𝜈Γ𝛽

𝛼𝛽 − Γ𝛼
𝜇𝛽Γ𝛽

𝛼𝜈 , (1.5)

where the commas denote partial differentiation. From Eqs. (1.3) and (1.5) we see that the Ricci tensor
depends on the metric and its derivatives.

The contraction of the Ricci tensor gives the scalar curvature of 𝑔𝜇𝜈 or Ricci scalar defined at each
point of the manifold

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 = 𝑅𝜇
𝜇 . (1.6)

The Einstein tensor that describes the curvature of spacetime in the field equations of GR is defined as

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 . (1.7)

Fundamental properties of the Einstein tensor are that it is symmetric 𝐺𝜇𝜈 = 𝐺𝜈𝜇 and divergenceless1

∇𝜇𝐺
𝜇𝜈 = 0 which holds as a contraction of the Bianchi identities.

The Einstein’s field equations relate the Einstein tensor describing the geometry to the en-
ergy–momentum tensor describing the energy

𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈 , (1.8)

where 𝜅 = 8𝜋𝐺 (𝑐 = 1), 𝐺 = 6.67 · 10−11 m3 s−2 Kg−1 is the bare Newton’s constant and 𝑇𝜇𝜈 is the
energy-momentum tensor, defined by

𝑇𝜇𝜈 ≡ − 2√
−𝑔

𝛿(ℒ𝑚
√

−𝑔)
𝛿𝑔𝜇𝜈

, (1.9)

with ℒ𝑚 the matter Lagrangian and 𝑔 the determinant of the metric.
1The symbol ∇𝜇 denotes the covariant derivative operator. Also, for the covariant derivative we use the symbol “; 𝜇”.
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Chapter 1. Introduction

The energy-momentum tensor 𝑇𝜇𝜈 of matter components is the generalization in the four-dimensional
spacetime of the following three-dimensional physical quantities: energy density, momentum density,
energy flux density and momentum flux density. It is a second-order symmetric tensor.

Note that we can derive the Einstein’s field equations (1.8) by varying with respect to the metric the
action of the gravitational theory given by

𝑆 = 𝑆𝐸𝐻 + 𝑆𝑚 =
∫︁
𝑑4𝑥

√
−𝑔
[︂

𝑅

16𝜋𝐺 + ℒ𝑚

]︂
, (1.10)

where 𝑆𝐸𝐻 is the Einstein–Hilbert action and 𝑆𝑚 is the action for the matter fields.
Einstein’s field equations are a system of ten conjugated nonlinear differential equations. The cosmo-

logical dynamics can be obtained by solving these equations.

1.2 Elements of Cosmology

1.2.1 Cosmic Expansion-Hubble’s law
Both Lemaître in 1927 and Hubble in 1929 discovered that galaxies appear to be moving away from Earth.
In addition, the recession velocity 𝜐𝑟 at which galaxies appear to move away from us is proportional to
the distance 𝑑 of the galaxy from Earth. This behavior of velocity is known as Hubble’s law. We can
describe Hubble’s law with the relation [11]

𝜐𝑟 = 𝐻 𝑑 , (1.11)

where 𝐻 is the Hubble parameter.
The Hubble parameter is a function of time but is independent of position at any time. The value

𝐻(𝑡0) = 𝐻0 at the present time 𝑡0 is called Hubble constant.
Because of the uncertainty in the exact value of the Hubble constant 𝐻0 it is common to be written

as
𝐻0 = 100ℎKm s−1 Mpc−1 = 2.1332ℎ · 10−42 GeV , (1.12)

where ℎ is a factor which describes the uncertainty.
The Hubble constant corresponds to the slope of the line in the Hubble diagram which plots the

velocity against the distance (see Fig. 1.1).
The recession velocity is also called Hubble flow and suggests that the expanding universe is evolving

evenly in all directions. Expanding universe means that the universe has a finite age, or at least that
it has expanded in a finite time from a state of very high density. Thermal radiation indicates that the
universe was initially much warmer than it is today and has cooled. The extremely dense and warm
universe in its early stages form the basis of the Lemaître Big Bang theory2 which has been advocated
and developed by George Gamow.

We define the Hubble time or Hubble age 𝑡𝐻 as the inverse of the Hubble constant

𝑡𝐻 = 1
𝐻0

. (1.13)

For 𝐻0 = 67.8 km s−1 Mpc−1 the Hubble time is 𝑡𝐻 = 4.55 · 1017 s = 14.4 Gyr. This is different from the
real age of the universe which is approximately 𝑡𝑈 = 13.8 Gyr.

Also, the Hubble radius or Hubble length 𝑅𝐻 is defined as

𝑅𝐻 = 𝑐

𝐻0
, (1.14)

where 𝑐 is the speed of light. The Hubble radius is the distance between the Earth and the galaxies which
are currently receding from us at the speed of light and thus corresponds roughly to the size of the visible
universe.

2The term Big Bang was first used by the astrophysicist Fred Hoyle, an opponent of the theory of Gamow, who did not
use the term to describe the theory but to taunt it.
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Figure 1.1: Edwin Hubble’s original plot of the velocity-distance relation among extra-galactic nebulae
(from Ref. [11]).

1.2.2 Redshift
Hubble made his discovery based on Slipher’s earlier observations by studying the spectral lines of galaxies.
He observed the shift of the spectral lines towards the red part of the spectrum and concluded that the
galaxies were moving away. This phenomenon is called redshift and is reminiscent of the Doppler effect.
However in reality as we will see below the coordinates of the galaxies do not change but space expands
and supports the galaxies.

A galaxy is observed to have a redshift parameter (stretching factor) defined by the formula:

𝑧 ≡ 𝜆𝑜𝑏 − 𝜆𝑒𝑚

𝜆𝑒𝑚
, (1.15)

where 𝜆𝑜𝑏 is the wavelength of the spectral line that we observe and 𝜆𝑒𝑚 the wavelength of the spectral
line that it emits. The redshift 𝑧 is zero today and increases with distance.

The velocity 𝜐 at which a galaxy moves away from the observer and the redshift 𝑧 are related to the
Doppler relationship:

1 + 𝑧 =

√︃
1 + 𝛽

1 − 𝛽
, (1.16)

where 𝛽 = 𝜐/𝑐. If 𝛽 ≪ 1 then we obtain
𝜐 ≃ 𝑐𝑧 , (1.17)

which is approximately valid for small z.

1.2.3 Comoving Coordinates-Scale Factor
The comoving coordinate system is suitable for a space that isotropically expands. In this coordinate
system, galaxies remain stationary. In a perfectly homogeneous and isotropic universe all observers are
comoving in the sense that their coordinates x remain unchanged. The relationship between the physical
coordinate r and the comoving coordinate or distance parameter x is linear:

r = 𝑎(𝑡)x , (1.18)

where 𝑎(𝑡) is a ratio parameter called cosmic (or cosmological) scale factor. The scale factor depends
only on time.

4
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In the expanding universe using the scale factor it is possible to determine the length 𝑟0 at some point
in time 𝑡0 if the length 𝑟1 is known at some earlier point in time 𝑡1 (𝑡0 > 𝑡1)

𝑟0 = 𝑎(𝑡0)
𝑎(𝑡1)𝑟1 , (1.19)

If we denote by 𝑡0 the present time then by condition the present scale factor is normalized to 𝑎0 =
𝑎(𝑡0) = 1.

The relation which connect the scale factor with the redshift is given by

𝑎(𝑡) = 𝑎0

1 + 𝑧
= 1

1 + 𝑧
. (1.20)

From Eq. (1.18) we can find the total velocity

ṙ = 𝑎̇x + 𝑎ẋ ⇒ 𝜐𝑡𝑜𝑡 = 𝜐𝑟 + 𝜐𝑝 , (1.21)

where dot denotes a derivative with respect to time 𝑡, 𝜐𝑟 = 𝑎̇
𝑎 r is the recessional velocity and 𝜐𝑝 = 𝑎ẋ

is the peculiar velocity which can be considered negligible on cosmological scales. Thus the Hubble law
Eq. (1.11) emerges

𝜐𝑡𝑜𝑡 ≃ 𝜐𝑟 = 𝐻r , (1.22)

where 𝐻 is the Hubble parameter defined as 𝐻 ≡ 𝑎̇
𝑎 . Clearly, it is an observable measure of the rate at

which the universe is expanding.
Using the conformal time

𝜏 =
∫︁ 𝑡

0

𝑑𝑡

𝑎(𝑡) , (1.23)

we obtain the conformal Hubble parameter

ℋ ≡ 𝑑𝑎

𝑎𝑑𝜏
= 𝑎𝐻 . (1.24)

We also introduce another convenient dimensionless deceleration parameter 𝑞 that measures whether
the expansion rate is increasing or decreasing

𝑞 ≡ − 𝑎̈

𝑎𝐻2 = − 𝑎̈𝑎

𝑎̇2 . (1.25)

In an accelerating (decelerating) universe we have 𝑞 < 0 (𝑞 > 0).
The dimensionless normalized Hubble parameter is defined as:

𝐸 ≡ 𝐻

𝐻0
. (1.26)

1.2.4 The Friedmann – Lemaître – Robertson – Walker geometry
The assumption that the universe at large scales is isotropic and homogeneous leads to the choice of a
coordinate system for 4-dimensional spacetime so that we have its separation into a temporal and three
spatial dimensions. The general metric in this case takes a simple form3:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔00(𝑑𝑥0)2 + 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 = −𝑑𝑡2 + 𝑑𝑙2 , (1.27)

where 𝑑𝑙 is the three-dimensional or spatially expanding metric of homogeneous and isotropic space.
This form of metric was developed by Friedmann (1924) as a solution to Einstein’s field equations, and

3We choose the Greek letter indices to run from 0 to 3 (the 0 reserved for the time-like coordinate) and the Latin letter
indices to run from 1 to 3 (spatial coordinates).
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was subsequently derived from the isotropy and homogeneity of the universe only by Robertson (1936)
and Walker (1936). Almost all modern cosmologists rely on this Friedmann-Lemaître-Roberson-Walker
(FLRW) metric.

The universe under the assumption of the cosmological principle is described by the FLRW metric
(𝑐 = 1)

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2
[︂

𝑑𝑟2

1 −𝐾𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)
]︂
, (1.28)

where 𝑡 is the physical cosmic time, (𝑟, 𝜃, 𝜑) are comoving spatial coordinates, 𝐾 characterizes the constant
spatial curvature of the spatial slices. The values 𝐾 = −1, 0,+1 correspond to open hyperbolic space
(negative spatial curvature), flat Euclidean space (zero spatial curvature), and closed hyperspherical space
(positive spatial curvature) respectively.

Setting

𝑑𝜒2 = 𝑑𝑟2

1 −𝐾𝑟2 , (1.29)

in order to remove the singularity, we obtain

𝑟 = 𝑆𝐾(𝜒) =

⎧⎪⎨⎪⎩
sin𝜒 𝐾 = +1 ,
𝜒 𝐾 = 0 ,
sinh𝜒 𝐾 = −1 ,

(1.30)

and the FLRW metric takes the more convenient form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2 [︀𝑑𝜒2 + 𝑆2
𝐾(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)

]︀
, (1.31)

where (𝜒, 𝜃, 𝜑) are comoving coordinates and 𝜒 ∈ [0,∞] in spaces with 𝐾 = −1, 0 and 𝜒 ∈ [0, 𝜋] in spaces
with 𝐾 = +1.

1.2.5 Friedmann equations
From the FLRW metric Eq. (1.28) and the Eqs. (1.3), (1.5) and (1.6) we obtain the Ricci tensor and the
scalar curvature

𝑅00 = −3 (𝐻2 + 𝐻̇) = −3 𝑎̈
𝑎
, (1.32)

𝑅𝑖𝑗 = 𝑔𝑖𝑗𝑎
2(3𝐻2 + 𝐻̇ + 2𝐾

𝑎2 ) , (1.33)

𝑅𝑖0 = 𝑅0𝑖 = 0 , (1.34)

𝑅 = 6 (2𝐻2 + 𝐻̇ + 𝐾

𝑎2 ) = 6 ( 𝑎̈
𝑎

+ 𝑎̇2

𝑎2 + 𝐾

𝑎2 ) . (1.35)

The energy content of the universe is considered to behave as a perfect fluid and the energy-momentum
tensor 𝑇𝜇𝜈 is given by

𝑇𝜇𝜈 = (𝜌+ 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 , (1.36)

where 𝑝 and 𝜌 are the pressure and matter density of the fluid respectively which are some functions of
time. Also 𝑢𝜇 is the four-velocity of the fluid in comoving coordinates.

Using Einstein’s equations (1.8), the equations for the dynamic evolution of the FLRW universe known
as the Friedmann equations can be derived. From the (00) component (temporal part) of the Einstein
equations we obtain the first which gives the rate of expansion of the universe

𝐻2 =
(︂
𝑎̇

𝑎

)︂2
= 8𝜋𝐺

3 𝜌− 𝐾

𝑎2 , (1.37)
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and from the (ii) components (spacial part) we obtain the second

3𝐻2 + 2𝐻̇ = −8𝜋𝐺𝑝− 𝐾

𝑎2 . (1.38)

From the above two equations, eliminating the term 𝐾/𝑎2, a third equation (acceleration equation)
results:

𝑎̈

𝑎
= −4𝜋𝐺

3 (𝜌+ 3𝑝) . (1.39)

Also the equation of fluid resulting from the first law of thermodynamics that expresses the principle
of the energy–momentum conservation (𝑇𝜇𝜈

;𝜇 = 0) applied to a homogeneous and isotropic expansion is
given by

𝜌̇+ 3𝐻(𝜌+ 𝑝) = 0 . (1.40)

This equation is also called continuity equation and can in fact be derived directly from Eqs. (1.37) and
(1.39) by eliminating 𝑎̈ (multiplying Eq. (1.37) by 𝑎2, differentiating and using Eq. (1.39)).

1.2.6 Equation of state
The Friedmann equations of the previous subsection will be completed if for fluid we define a equation
which relates the pressure with density4 𝑝 = 𝑝(𝜌) which is valid for all times of the evolution of the
universe.

We can define a general linear relationship for the individual components of the cosmological fluid
using a equation-of-state parameter 𝑤𝑖 as (with 𝑐 = 1)

𝑤𝑖 = 𝑝𝑖(𝑡)
𝜌𝑖(𝑡)

, (1.41)

where the index 𝑖 expresses the individual components of the cosmic fluid. For radiation or relativistic
particles, photons, neutrinos, non-relativistic matter, baryons, cold dark matter, dark energy, cosmological
constant and curvature we have 𝑖 = 𝑟, 𝑖 = 𝛾, 𝑖 = 𝜈, 𝑖 = 𝑚, 𝑖 = 𝑏, 𝑖 = 𝑐, 𝑖 = 𝐷𝐸, 𝑖 = Λ and 𝑖 = 𝐾
respectively. Considering photons and neutrinos as radiation (relativistic matter) and baryons (such as
protons and neutrons) and cold dark matter as non-relativistic matter we have

𝜌𝑚 = 𝜌𝑏 + 𝜌𝑐 , (1.42)

𝜌𝑟 = 𝜌𝛾 + 𝜌𝜈 . (1.43)

For constant equation-of-state parameter 𝑤𝑖, the Eq. (1.40) integrates to

𝜌𝑖 ∝ 𝑎−3(1+𝑤𝑖) , 𝜌𝑖 ∝ (1 + 𝑧)3(1+𝑤𝑖) , (1.44)

and from Eq. (1.37) we obtain for the evolution during a component dominated era

𝑎 ∝ 𝑡
2

3(1+𝑤) . (1.45)

The most common and useful special cases of the equation of state parameter 𝑤𝑖 and the corresponding
relations 𝑝𝑖 = 𝑝(𝜌𝑖), 𝜌𝑖 = 𝜌𝑖(𝑎) and 𝑎 = 𝑎(𝑡) are shown in Table 1.1.

4In general, the pressure can depend both on density and on internal degrees of freedom of the fluid i.e. entropy 𝑠. In
the case of barotropic fluid the entropy is zero 𝑠 = 0.
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Table 1.1: Special cases of the equation of state parameter 𝑤𝑖 and the corresponding relations 𝑝𝑖 = 𝑝(𝜌𝑖),
𝜌𝑖 = 𝜌𝑖(𝑎) and 𝑎 = 𝑎(𝑡).

Cosmological Constant Domain Walls Curvature Pressureless Matter Radiation

𝑤𝑖 -1 − 2
3 − 1

3 0 1
3

𝑝𝑖 𝜌𝐷𝐸 − 2
3𝜌𝐷𝑊 − 1

3𝜌𝐾 0 1
3𝜌𝑟

𝜌𝑖 constant ∝ 𝑎−1 ∝ 𝑎−2 ∝ 𝑎−3 ∝ 𝑎−4

a ∝ 𝑒𝐻𝑡 ∝ 𝑡2 ∝ 𝑡 ∝ 𝑡2/3 ∝ 𝑡1/2

1.2.7 Cosmological parameters
As critical density 𝜌crit we define the density of the total amount of matter and energy contained in the
universe in any form when the curvature is 𝐾 = 0 (open spatially flat universe). Thus using Eq. (1.37)
the critical density is given by

𝜌crit = 3𝐻2

8𝜋𝐺 . (1.46)

Its current value depends only on the value of the Hubble constant 𝐻0

𝜌crit,0 = 3𝐻2
0

8𝜋𝐺 = 1.88ℎ2 · 10−29 g cm−3 . (1.47)

Generally, the energy density of the individual component of a multi-component fluid can be expressed
in units of the critical density by introducing the corresponding dimensionless density parameter

Ω𝑖 ≡ 𝜌𝑖

𝜌crit
= 8𝜋𝐺𝜌𝑖

3𝐻2 . (1.48)

Also we have
Ω𝐾 ≡ − 𝐾

𝑎2𝐻2 , (1.49)

and
ΩΛ ≡ Λ

3𝐻2 . (1.50)

The density parameters determine the evolution of the universe. For radiation, matter, curvature and
cosmological constant Eq. (1.37) can be rewritten as

𝐻2 = 𝐻2
0
[︀
Ω0𝑟𝑎

−4 + Ω0𝑚𝑎
−3 + Ω0𝐾𝑎

−2 + Ω0Λ
]︀
, (1.51)

and using Eq. (1.26) the dimensionless normalized Hubble parameter as

𝐸 =
[︀
Ω0𝑟𝑎

−4 + Ω0𝑚𝑎
−3 + Ω0𝐾𝑎

−2 + Ω0Λ
]︀1/2

, (1.52)

where Ω0𝑖 (with 𝑖 = (𝑟,𝑚,𝐾,Λ)) are the density parameters today. Considering 𝑎 = 1 in Eq. (1.51)
these density parameters obey the following relation

Ω0𝑟 + Ω0𝑚 + Ω0𝐾 + Ω0Λ = 1 . (1.53)
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Figure 1.2: The luminosity distance is obtained from the apparent and absolute luminosities.

Figure 1.3: The angular diameter distance is obtained from the angular and physical scales.
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1.2.8 Cosmological Distances
Distances to cosmological objects constitute the most common way to probe the cosmic metric and the
expansion history of the Universe. In this subsection we present the two main cosmological distances
used to probe the cosmic expansion history.

• Luminosity distance
Consider a luminous cosmological source of absolute luminosity 𝐿 (emitted power) and an observer
(Fig. 1.2) at a distance 𝑑𝐿 from the luminous source. In a static cosmological setup, the power
radiated by the luminous source is conserved and distributed in the spherical shell with area 4𝜋𝑑2

𝐿

and therefore the apparent luminosity 𝑙 (energy flux) detected by the observer is

𝑙 = 𝐿

4𝜋𝑑2
𝐿

. (1.54)

Eq. (1.54) defines the quantity 𝑑𝐿 known as luminosity distance. It is straightforward to show that
in an expanding flat Universe, where the energy is not conserved due to the increase of the photon
wavelength and period with time, the luminosity distance can be expressed as [77, 78]

𝑑𝐿(𝑧)𝑡ℎ = 𝑐(1 + 𝑧)
∫︁ 𝑧

0

𝑑𝑧′

𝐻(𝑧′) . (1.55)

The luminosity distance is an important cosmological observable that is measured using standard
candles (see Subsection 2.2.1)

• Angular diameter distance
Consider a source (standard ruler) with a physical scale 𝑟 that subtends an angle 𝜃 in the sky (Fig.
1.3). In Euclidean space, assuming that 𝜃 is small, the physical angular diameter distance 𝐷𝐴 is
defined as [77, 79]

𝐷𝐴(𝑧) = 𝑟

𝜃
. (1.56)

A particularly useful standard ruler is the sound horizon at recombination calibrated by the peaks
of the CMB anisotropy spectrum and observed either directly through the CMB anisotropies or
through its signatures in the large scale structure (Baryon Acoustic Oscillations (BAO)) (see Sub-
section 2.2.2).
It is straightforward to show that in an expanding flat Universe the physical angular diameter
distance can be expressed as e.g. [77]

𝐷𝐴(𝑧)𝑡ℎ = 𝑐

(1 + 𝑧)

∫︁ 𝑧

0

𝑑𝑧′

𝐻(𝑧′) . (1.57)

The luminosity and angular diameter distances can be measured using standard candles and standard
rulers thus probing the cosmic expansion rate at both the present time (𝐻(𝑧 = 0) ≡ 𝐻0) and at higher
redshifts (𝐻(𝑧)).

1.3 The ΛCDM cosmological model
The concordance or standard Λ Cold Dark Matter (ΛCDM) cosmological model [80–82] is a well defined,
predictive and simple cosmological model (see Ref. [83], for a review). It is defined by a set of simple
assumptions:

10
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• The Universe consists of radiation (photons, neutrinos), ordinary matter (baryons and leptons),
cold (non-relativistic) dark matter (CDM) [84–90] being responsible for structure formation and
cosmological constant Λ [82, 91], a homogeneous form of energy which is responsible for the late
time observed accelerated expansion. The cosmological constant is currently associated with a dark
energy or vacuum energy whose density remains constant even in an expanding background (see
Refs. [81, 92–94], for a review).

• General Relativity (GR) [95] is the correct theory that describes gravity on cosmological scales.
Thus, the action currently relevant on cosmological scales reads

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔
[︂

1
16𝜋𝐺 (𝑅− 2Λ) + 1

4𝛼𝐹𝜇𝜈𝐹
𝜇𝜈 + ℒ𝑚(𝜓,𝐴)

]︂
, (1.58)

where 𝛼 is the fine structure constant, 𝐺 is Newton’s constant, 𝐹𝜇𝜈 is the electromagnetic field-
strength tensor and ℒ𝑚 is the Lagrangian density for all matter fields 𝜓𝑚.

• The Cosmological Principle (CP) states that the Universe is statistically homogeneous and isotropic
in space and matter at sufficiently large scales (≳ 100 Mpc).

• There are six independent (free) parameters: the baryon 𝜔𝑏 = Ω0𝑏ℎ
2 and cold dark matter 𝜔𝑐 =

Ω0𝑐ℎ
2 energy densities (where ℎ = 𝐻0/100 km s−1 Mpc−1 is the dimensionless Hubble constant and

Ω𝑋 ≡ 𝜌𝑋/𝜌crit is the density of component 𝑋 relative to the critical density), the angular diameter
distance to the sound horizon at last scattering 𝜃𝑠, the amplitude 𝐴𝑠 and tilt 𝑛𝑠 of primordial scalar
fluctuations and the reionization optical depth 𝜏 .

• The spatial part of the cosmic metric is assumed to be flat (𝐾 = 0) described by the FLRW metric

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2) , (1.59)

which emerges from the CP.
Assuming this form of the metric and Einstein’s field equations with a Λ-term we obtain the
Friedmann equations which may be written as

𝐻2 ≡ 𝑎̇2

𝑎2 = 8𝜋𝐺𝜌+ Λ𝑐2

3 , (1.60)

𝑎̈

𝑎
= −4𝜋𝐺

3 (𝜌+ 3𝑝
𝑐2 ) + Λ𝑐2

3 . (1.61)

The cosmological constant may also be viewed as a cosmic dark energy fluid with equation of state
parameter

𝑤 = 𝑝Λ

𝜌Λ
= −1 , (1.62)

where 𝜌Λ and 𝑝Λ are the energy density and the pressure of the dark energy respectively.

• A primordial phase of cosmic inflation (a period of rapid accelerated expansion) is also assumed
in order to address the horizon and flatness problems [96–99]. During this period, Gaussian scale
invariant primordial fluctuations are produced from quantum fluctuations in the inflationary epoch.

Fundamental generalizations of the standard ΛCDM model may be produced by modifying the defining
action (1.58) by generalizing the fundamental constants to dynamical variables in the existing action or
adding new terms. Thus the following extensions of ΛCDM emerge:

• Promoting Newton’s constant to a dynamical degree of freedom by allowing it to depend on a
scalar field Φ as 𝐺 → 𝐺(Φ(𝑟, 𝑡)) where the dynamics of Φ is determined by kinetic and potential
terms added to the action. This class of theories is known as ’scalar-tensor theories’ with its most
general form with second order dynamical equations the Horndeski theories [100, 101] (see also Refs.
[102, 103], for a comprehensive review).
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• Promoting the cosmological constant to a dynamical degree of freedom by the introduction of a
scalar field (quintessence) with Λ → 𝑉 (Φ(𝑟, 𝑡)) and the introduction of a proper kinetic term.

• Allowing for a dynamical Fine Structure Constant (Maxwell Dilaton theories) with 𝛼 → 𝛼(Φ(𝑟, 𝑡))
[104–108] (see also Ref. [109], for a review).

• Addition of new terms to the action which may be functions of the Ricci scalar, the torsion scalar
or other invariants ((𝑓(𝑅), 𝑓(𝑇 ), . . .)) [96, 110–117].

The ΛCDM model has been remarkably successful in explaining most properties of a wide range of
cosmological observations including the accelerating expansion of the Universe [118, 119], the power
spectrum and statistical properties of the cosmic microwave background (CMB) anisotropies [120], the
spectrum and statistical properties of large scale structures of the Universe [83, 121] and the observed
abundances of different types of light nuclei hydrogen, deuterium, helium, and lithium [122–125].

Despite of its remarkable successes and simplicity, the validity of the cosmological standard model
ΛCDM is currently under intense investigation (see Refs. [10, 126–130], for a review). This is motivated
by a range of profound theoretical and observational difficulties of the model.

The most important theoretical difficulties that plague ΛCDM are the fine tuning [94, 131, 132] and
coincidence problems [133, 134]. The first fundamental problem is associated with the fact that there is
a large discrepancy between observations and theoretical expectations on the value of the cosmological
constant Λ (at least 60 orders of magnitude) [94, 131, 135, 136] and the second is connected to the
coincidence between the observed vacuum energy density ΩΛ and the matter density Ω𝑚 which are
approximately equal nowadays despite their dramatically different evolution properties. The anthropic
principle has been considered as a possible solution to these problems. It states that these ’coincidences’
result from a selection bias towards the existence of human life in the context of a multiverse [137, 138].

In addition to the above theoretical challenges, there are signals in cosmological and astrophysical
data that appear to be in some tension (2𝜎 or larger) with the standard ΛCDM model as specified by
the Planck18 parameter values [14, 139]. The most intriguing large scale tensions are the following5 [10]
(see also Refs. [140, 141], for a recent overview of the main tensions):

• The Hubble tension (> 5𝜎): (see Section 2.2) Using a distance ladder approach, the local (late or
low redshift) measurements of the Hubble constant 𝐻0 are measured to values that are significantly
higher than those inferred using the angular scale of fluctuations of the CMB in the context of the
ΛCDM model. Combined local direct measurements of𝐻0 are in 5𝜎 tension (or more if combinations
of local measurements are used) with CMB indirect measurements of 𝐻0 [28, 142, 143].

• The growth tension (2 − 3𝜎): (see Section 3.1) Direct measurements of the growth rate of
cosmological perturbations (Weak Lensing, Redshift Space Distortions (peculiar velocities), Cluster
Counts) indicate a lower growth rate than that indicated by the Planck/ΛCDM parameter values
at a level of about 2 − 3𝜎 [144–146]. In the context of General Relativity such lower growth rate
would imply a lower matter density and/or a lower amplitude of primordial fluctuation spectrum
than that indicated by Planck/ΛCDM [4, 67, 147, 148].

• CMB anisotropy anomalies (2 − 3𝜎): (see Section 3.2) These anomalies include lack of power
on large angular scales, small vs large scales tension (different best fit values of cosmological param-
eters), cold spot anomaly, hints for a closed Universe (CMB vs BAO), anomaly on super-horizon
scales, quadrupole-octopole alignment, anomalously strong ISW effect, cosmic hemispherical power
asymmetry, lensing anomaly, preference for odd parity correlations, parity violating rotation of
CMB linear polarization (cosmic birefringence) etc. (see Refs. [149, 150], for a review).

• Cosmic dipoles (2 − 5𝜎): (see Section 3.3) The large scale velocity flow dipole [151, 152], the
Hubble flow variance in the cosmic rest frame [153], the dipole anisotropy in radio source count

5We use the term ’curiosity’ as a term describing a discrepancy between datasets in ΛCDM best fit parameter values at
a level with a statistical significance ≲ 3𝜎.
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[154], the quasar density dipole [58] and the fine structure constant dipole (quasar spectra) [155, 156]
indicate that the validity of the cosmological principle may have to be reevaluated.

• Baryon Acoustic Oscillations (BAO) curiosities (2.5 − 3𝜎): (see Section 3.4) There is a
discrepancy between galaxy and Lyman-𝛼 (Ly𝛼) BAO at an effective redshift of 𝑧 ∼ 2.34 [22, 157,
158].

• Parity violating rotation of CMB linear polarization (Cosmic Birefringence): (see Sec-
tion 3.5) The recent evidence of the non zero value of birefringence poses a problem for standard
ΛCDM cosmology and indicates a hint of a new ingredient beyond this standard model. In partic-
ular using a novel method developed in Refs. [159–161], a non-zero value of the isotropic cosmic
birefringence 𝛽𝑎 = 0.35 ± 0.14 deg (68% C.L) was recently detected in the Planck18 polarization
data at a 2.4𝜎 statistical significance level by Ref. [162].

• Small-scale curiosities: (see Section 3.6) Observations on galaxy scales indicate that the ΛCDM
model faces several problems (core-cusp problem, missing satellite problem, too big to fail problem,
angular momentum catastrophe, satellite planes problem, baryonic Tully-Fisher relation problem,
void phenomenon etc.) in describing structures at small scales (see Refs. [163, 164], for a review).

• Age of the Universe: (see Section 3.7) The age of the Universe as obtained from local measure-
ments using the ages of oldest stars in the Milky Way (MW) appears to be marginally larger and
in some tension with the corresponding age obtained using the CMB Planck18 data in the context
of ΛCDM cosmology [165].

• The Lithium problem (2 − 4𝜎): (see Section 3.8) Measurements of old, metal-poor stars in the
Milky Way’s halo find 5 times less lithium than that BBN predicts [166].

• Quasars Hubble diagram (∼ 4𝜎): (see Section 3.9) The distance modulus-redshift relation for
the sample of 1598 quasars at higher redshift (0.5 < 𝑧 < 5.5) is in some tension with the concordance
ΛCDM model indicating some hints for phantom late time expansion [167–169].

• Oscillating signals in short range gravity experiments: (see Section 3.10) A reanalysis of
short range gravity experiments has indicated the presence of an oscillating force signal with sub-
millimeter wavelength [170, 171].

• Anomalously low baryon temperature (∼ 3.8𝜎): (see Section 3.11) The Experiment to De-
tect the Global Epoch of Reionization Signature (EDGES) collaboration [172] using global (sky-
averaged) 21-cm absorption signal, reports anomalously low baryon temperature 𝑇𝑏 ≈ 4K at 𝑧 ≈ 17
(half of its expected value).

• Colliding clusters with high velocity (∼ 6𝜎): (see Section 3.12) The El Gordo (ACT-CL
J0102-4915) galaxy cluster at 𝑧 = 0.87 is in its formation process which occurs by a collision of
two subclusters with mass ratio 3.6 merging at a very high velocity 𝑉infall ≃ 2500 km/s. Such
cluster velocities at such a redshift are extremely rare in the context of ΛCDM as demonstrated
by Ref. [173] using the estimation of Ref. [174] for the expected number of merging clusters from
interrogation of the DarkSky simulations.

The well known Hubble tension and the other less discussed curiosities of ΛCDM at a lower statistical
significance level may hint towards new physics (see Ref. [175], for a review).

In the context of the above observational puzzles the following strategic questions emerge

• What are the current cosmological and astrophysical datasets that include the above non-standard
signals?

• What is the statistical significance of each signal?
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• Is there a common theoretical framework that may explain simultaneously many non-standard
signals?

These questions will be discussed in the Chapters 2 and 3. There have been previous works [176, 177]
collecting and discussing signals in data that are at some statistical level in tension with the standard
ΛCDM model but these are by now outdated and the more detailed and extended update provided
by our work may be a useful resource. In the Chapters 2 and 3 we present the current status of the
tensions, their level of significance and refer to recent resources where more details can be found for
each signal. We also discuss possible theoretical approaches that can explain the non-standard nature of
these signals.

In Table A.1 of the Appendix A we list the used acronyms. Also in Appendix I we provide the
links of the github repositories which include the algorithms used for the numerical analysis and for
construction of the figures of this dissertation.



Chapter 2

Challenges for ΛCDM: Hubble Tension

In this Chapter we focus on the Hubble tension. We provide a list of observational probes that can lead
to measurements of the Hubble constant, point out the current tension level among different probes and
discuss some of the possible generic extensions of ΛCDM model that can address this tension.

2.1 Introduction
The most prominent tension in the context of ΛCDM model is the 𝐻0 tension which indicates 5𝜎 level
inconsistencies between the local direct measurements of 𝐻0 and the CMB indirect measurements of 𝐻0
[28, 142, 143]. The Planck/ΛCDM best fit value is 𝐻0 = 67.4 ± 0.5 km s−1 Mpc−1 [14] while the local
measurements using Cepheid calibrators by the Supernovae 𝐻0 for the Equation of State (SH0ES) of dark
energy team indicate 𝐻0 = 73.04±1.04 km s−1 Mpc−1 (∼ 5𝜎) [23] (see Refs. [127, 178, 179], for a review).
In the previous analysis by the SH0ES team [40] using the Gaia Early Data Release 3 (EDR3) parallaxes
[180] a value of 𝐻0 = 73.2 ± 1.3 km s−1 Mpc−1 is obtained, at a 4.2𝜎 tension with the prediction from
Planck18 CMB observations. A wide range of local observations appear to be consistently larger than the
Planck/ΛCDM measurement of 𝐻0 at various levels of statistical significance [28, 142, 143]. Theoretical
models addressing the Hubble tension utilize either a recalibration of the Planck/ΛCDM standard ruler
(the sound horizon) assuming new physics before the time of recombination [181–183] or a deformation of
the Hubble expansion rate 𝐻(𝑧) at late times [50, 184] or a transition/recalibration of the SnIa absolute
luminosity due to late time new physics [52]. For more detailed discussions of the proposed new-physics
models see Refs. [127–129, 185].

2.2 Methods for measuring 𝐻0 and data
The measurement of the Hubble constant 𝐻0 which is the local expansion rate of the Universe, is of
fundamental importance to cosmology. This measurement has improved in accuracy through a number
of probes (see Ref. [186], for a review of most well established probes).

2.2.1 Standard candles as probes of luminosity distance
The luminosity distance to a source may be probed using standardizable candles like Type Ia supernovae
(SnIa) (𝑧 < 2.3) [51, 68, 118, 119] and gamma-ray bursts (GRBs) (0.1 < 𝑧 ≲ 9) [187–210].

Surveys can indicate the distance-redshift relation of SnIa by measuring their peak luminosity that
is tightly correlated with the shape of their characteristic light curves (luminosity as a function of time
after the explosion) [211] and the redshifts of host galaxies. The latest and largest SnIa dataset available
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that incorporates data from six different surveys is the Pantheon sample consisting of a total of 1048
SnIa in the redshift range 0.01 < 𝑧 < 2.26 (the number of SnIa with 𝑧 > 1.4 is only six) [51]. More
recently, the Pantheon+ sample which comprises 18 different samples has been released [212, 213] (see
also Refs. [214, 215]). Refs. [212, 213] present 1701 light curves of 1550 distinct SnIa in the redshift range
0.001 < 𝑧 < 2.26 including SnIa which are in very nearby galaxies (𝑧 ≲ 0.01) with measured Cepheid
distances. For determination of 𝐻0 the SH0ES team [23] uses as calibrator sample 42 SnIa in the 37
Cepheid hosts and 277 SnIa in the Hubble flow (0.0233 < 𝑧 < 0.15) from the Pantheon+ sample.

The apparent magnitude1 𝑚𝑡ℎ of SnIa in the context of a specified form of 𝐻(𝑧), is related to their
luminosity distance 𝑑𝐿(𝑧) of Eq. (1.55) in Mpc as

𝑚𝑡ℎ(𝑧) = 𝑀 + 5 log10

[︂
𝑑𝐿(𝑧)
𝑀𝑝𝑐

]︂
+ 25 . (2.2)

Using now the dimensionless Hubble free luminosity distance

𝐷𝐿(𝑧) = 𝐻0𝑑𝐿(𝑧)
𝑐

, (2.3)

the apparent magnitude can be written as

𝑚𝑡ℎ(𝑧) = 𝑀 + 5 log10 [𝐷𝐿(𝑧)] + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 . (2.4)

The use of Eq. (2.4) to measure 𝐻0 using the measured apparent magnitudes of SnIa requires knowledge
of the value of the SnIa absolute magnitude 𝑀 which can be obtained using calibrators of local SnIa at
𝑧 < 0.01 (closer than the start of the Hubble flow) in the context of a distance ladder (e.g. Ref. [216])
using calibrators like Cepheid stars.

In the cosmic distance ladder approach each step of the distance ladder uses parallax methods and/or
the known intrinsic luminosity of a standard candle source to determine the absolute (intrinsic) luminosity
of a more luminous standard candle residing in the same galaxy. Thus highly luminous standard candles
are calibrated for the next step in order to reach out to high redshift luminosity distances.

SnIa standard candles and their calibration

• SnIa-Cepheid: Geometric anchors may be used to calibrate the Cepheid variable star standard
candles at the local Universe (primary distance indicators) whose luminosities are correlated with
their periods of variability2. The MW, the Large Magellanic Cloud (LMC) and NGC 4258 are used
as distance geometric anchor galaxies. For Cepheids in the anchor galaxies there are three different
ways of geometric distance calibration of their luminosities: trigonometric parallaxes in the MW
[38, 40, 219–224], Detached Eclipsing Binary Stars (DEBs) in the LMC [225] and water masers
(see Subsection 2.2.5) in NGC 4258 [226, 227]. The DEBs technique relies on surface-brightness
relations and is a one-step distance determination to nearby galaxies independent from Cepheids
[228].
Using the measured distances of the calibrated Cepheid stars the intrinsic luminosity of nearby SnIa
residing in the same galaxies as the Cepheids is obtained. This SnIa calibration which fixes 𝑀 is
then used for SnIa at distant galaxies to measure 𝐻0 (𝑧 ∈ [0.01, 0.1]) and 𝐻(𝑧) (𝑧 ∈ [0.01, 2.3]).

1The apparent magnitude 𝑚 of an astrophysical source detected with flux 𝑙 is defined as

𝑚 = −2.5 log10

(︁
𝑙

𝑙0

)︁
, (2.1)

where 𝑙0 is a reference flux (zero point). The absolute magnitude 𝑀 of an astrophysical source is the apparent magnitude
the source would have if it was placed at a distance of 10 pc from the observer.

2The period–luminosity (PL) relation is also called the Leavitt law [217, 218].
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• SnIa-TRGB: Instead of Cepheid variable stars, the Tip of the Red Giant Branch (TRGB) stars in
the Hertzsprung-Russell diagram [229, 230] and Miras [25, 231] (see also [232], for a review) can be
used as calibrators of SnIa. The Red Giant stars have nearly exhausted the hydrogen in their cores
and have just began helium burning (helium flash phase). Their brightness can be standardized
using parallax methods and they can serve as bright standard candles visible in the local Universe
for the subsequent calibration of SnIa.

• SnIa-Miras: Miras (named for the prototype star Mira) are highly evolved low mass variable stars
at the tip of Asymptotic Giant Branch (AGB) stars e.g. [233]. The water megamaser as distance
indicator (see Subsection 2.2.5) can be used to calibrate the Mira PL relation [231]. Miras with
short period (< 400 days) have low mass progenitors and are present in all galaxy types or in the
halos of galaxies, eliminating the necessity for low inclination SnIa host galaxies.

• SBF: Another method to determine the Hubble constant based on calibration of the peak absolute
magnitude of SnIa is the Surface Brightness Fluctuations (SBF) method [234–236]. SBF is a
secondary3 luminosity distance indicator that uses stars in the old stellar populations (II) and can
reach larger distances than Cepheids even inside the Hubble flow region where the recession velocity
is larger than local peculiar velocities (𝑧 > 0.01) [237–243]. For SBF calibration Ref. [26] uses both
Cepheids and TRGB demonstrating that these calibrators are consistent with each other.
Assume that a galaxy includes a number of stars covering a range of luminosity. Using SBF in the
galaxy image for the determination of its distance, the ratio 𝐿̄ of the second and first moments of
the stellar luminosity function in the galaxy is used along with the mean flux per star 𝑙̄ as follows
[237, 239]

𝑑2 = 𝐿̄

4𝜋𝑙̄
, (2.5)

where
𝐿̄ =

∫︀
𝑛(𝐿)𝐿2𝑑𝐿∫︀
𝑛(𝐿)𝐿𝑑𝐿 = 𝜎2

𝐿

⟨𝐿⟩
, (2.6)

with 𝑛(𝐿) the expectation number of stars with luminosity 𝐿. Thus SBF can be viewed as providing
an average brightness. A galaxy with double distance appears with double smoothness due to the
effect of averaging.

Alternative cosmological standard candles

• SneII: An independent method to determine the Hubble constant utilizes Type II supernovae
(SneII) as cosmic distance indicators [244]. SneII are characterised by the presence of hydrogen
lines in their spectra [245, 246]. This feature distinguishes SneII from other types of supernovae.
Their light curve shapes include a plateau of varying steepness and length differ significantly from
those of SnIa. The use of SneII as standard candles is motivated by the fact that they are more
abundant than SnIa [247, 248] (although 1-2 mag fainter [249]) and are produced by different stellar
populations than SnIa which are more difficult to standardize. The SneII progenitors (red super
giant stars) however are better understood than those of SnIa.
Different SneII distance-measurement techniques have been proposed and tested. These include,
the expanding photosphere method [250–252], the spectral-fitting expanding atmosphere method
[253, 254], the standardized candle method [255], the photospheric magnitude method [256] and
the photometric color method [257]. For example, the standardized candle method is based on the
relation between the luminosity and the expansion velocity of the photosphere [255, 258–260].

• GRBs: In addition to SnIa and SneII, GRBs are widely proposed as standard candles to trace
the Hubble diagram at high redshifts [198, 199, 261–263]. However GRBs distance calibration is

3Nearby Cepheids or stellar population models are used for the empirical or theoretical calibration of the SBF distances
respectively.
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Figure 2.1: The 1𝜎 − 3𝜎 confidence contours in the parametric space (Ω0𝑚, ℳ). The blue contours
correspond to the 1𝜎 − 3𝜎 full Pantheon dataset (1048 SnIa datapoints) best fit, while the red contours
describe the 1𝜎− 3𝜎 confidence contours of the four bins (from left to right). The black points represent
the best fit of each bin, while the green dot represents the best fit value indicated by the full Pantheon
dataset (Ω0𝑚 = 0.285 and ℳ = 23.803) (from Ref. [12]).

not easy and various cosmology independent methods (see e.g. Ref. [264]) or phenomenological
relations (see e.g. Ref. [265, 266]) have been proposed for their calibration.
Furthermore GRBs can be combined with other probes to study the redshift evolution of Hubble
constant [267] (see Ref. [268], for a review).

Using SnIa to measure 𝐻0 and 𝐻(𝑧): The best fit values of the parameter 𝐻0 and the deceleration
parameter 𝑞0 may be obtained4 [269] using local distance ladder measurements (e.g. Cepheid calibration
up to 𝑧 ≃ 0.01) to measure directly 𝑀 , low 𝑧 measurements of the SnIa apparent magnitude 𝑚(𝑧) and
a kinematic local expansion of 𝐷𝐿(𝑧) (𝑧 < 0.1) as e.g. [270]

𝐷𝐿(𝑧, 𝑞0) = 𝑧

[︂
1 + 1

2(1 − 𝑞0)𝑧
]︂
. (2.7)

Alternatively, 𝑞0 may be fixed to its ΛCDM value 𝑞0 = −0.55 and 𝐻0 may be fit as a single parameter
[17, 37, 39].

Using higher 𝑧 SnIa the best fit parameters of ΛCDM may be obtained by fitting the ΛCDM expansion
rate 𝐻(𝑧)

𝐻2(𝑧) = 𝐻2
0
[︀
Ω0𝑚(1 + 𝑧)3 + (1 − Ω0𝑚)

]︀
, (2.8)

where Ω0𝑚 is the matter density parameter today. Using Eqs. (1.55), (2.3) and (2.8), the Hubble free
luminosity distance can be written as

𝐷𝐿(𝑧,Ω0𝑚) = (1 + 𝑧)
∫︁ 𝑧

0

𝑑𝑧′

[Ω0𝑚(1 + 𝑧′)3 + (1 − Ω0𝑚)]1/2 . (2.9)

A key assumption in the use of SnIa in the measurement of 𝐻0 and 𝐻(𝑧) is that they are standardiz-
able and after proper calibration they have a fixed absolute magnitude independent of redshift5. This
assumption has been tested in Refs. [12, 277–285].

4𝑞0 is the current deceleration parameter defined as 𝑞0 ≡ − 1
𝐻2

0

𝑑2𝑎(𝑡)
𝑑𝑡2

⃒⃒⃒
𝑡=𝑡0

.
5The possibility for intrinsic luminosity evolution of SnIa with redshift was first pointed out by Ref. [271]. Also, the

assumption that the luminosity of SnIa is independent of host galaxy properties (e.g. host age, host morphology, host mass)
and local star formation rate has been discussed in Refs. [272–276].
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Figure 2.2: The best fit values of ℳ (left panel) and Ω0𝑚 (right panel) as well as the 1𝜎 errors for the
four bins, including the systematic uncertainties. This oscillating behaviour relatively improbable in the
context of constant underlying ℳ and Ω0𝑚 (from Ref. [12]).

Using the degenerate combination

ℳ = 𝑀 + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 (2.10)

into Eq. (2.4), we obtain

𝑚(𝑧,𝑀,𝐻0,Ω0𝑚)𝑡ℎ = ℳ(𝑀,𝐻0) + 5 log10 [𝐷𝐿(𝑧,Ω0𝑚)] . (2.11)

The theoretical prediction (2.11) may now be used to compare with the observed 𝑚𝑜𝑏𝑠 data and to obtain
the best fits for the parameters ℳ and Ω0𝑚. Using the maximum likelihood analysis the best fit values
for these parameters may be found by minimizing the quantity

𝜒2(ℳ,Ω0𝑚) =
∑︁

𝑖

[𝑚𝑜𝑏𝑠,𝑖 −𝑚𝑡ℎ(𝑧𝑖; ℳ,Ω0𝑚)]2

𝜎2
𝑖

. (2.12)

The results from the recent analysis by Ref. [12] using the SnIa Pantheon data [51] (consisting of
1048 datapoints in the redshift range 0.01 < 𝑧 < 2.3 sorting them from lowest to highest redshift and
dividing them in four equal uncorrelated bins) in the context of a ΛCDM model are shown in Figs. 2.1
and 2.26. An oscillating signal for ℳ and Ω0𝑚 (2𝜎) is apparent in Fig. 2.2 and its statistical significance
may be quantified using simulated data [280, 281].

The presence of large scale inhomogeneities at low 𝑧 including voids or a supercluster [286] can be a
plausible physical explanation for this curious behavior. In the context of a local void model the analysis
by Ref. [12] indicated that the value of 𝐻0 increases by 2 − 3% which is less than the 9% required to
address the Hubble tension. The bias and systematics induced by such inhomogeneities on the Hubble
diagram within a well-posed fully relativistic framework (light cone averaging formalism [287] has been
discussed in Ref. [288]).

Ref. [52] has pointed out that this 𝐻0 tension is related to the mismatch between the SnIa absolute
magnitude calibrated by Cepheids at 𝑧 < 0.01 [269, 289]

𝑀< = −19.2334 ± 0.0404 , (2.13)
6For 𝑀 = −19.24 as indicated by Cepheid calibrators [269] of SnIa at 𝑧 < 0.01 and the SnIa local determination

𝐻0 = 74 km s−1 Mpc−1 [39] Ref. [12] finds ℳ = 23.80 which is consistent with the full Pantheon SnIa best fit shown in
Fig. 2.1.
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and the SnIa absolute magnitude using the parametric free inverse distance ladder calibrating SnIa
absolute magnitude using the sound horizon scale [290]

𝑀> = −19.401 ± 0.027 . (2.14)

Thus a transition in the absolute magnitude with amplitude Δ𝑀 ≃ 0.2 may provide a solution to
this tension (see Subsection 2.3.4 and in Ref. [291], for a relevant talk). Alternatively if this discrepancy
is not due to systematics [185, 292], it could be an indication of incorrect estimate of the sound horizon
scale due e.g. to early dark energy [293] or to late phantom dark energy [50].

Note also that Ref. [294] finds discrepancies between ’Joint Light-curve Analysis’ (JLA) SnIa and
Pantheon SnIa datasets which imply an uncertainty in the calibration of the absolute magnitude or
equivalently of the Hubble constant which is large enough to undermine the claim for Hubble tension.

Observational data - Constraints

• SnIa-Cepheid: Using the analysis of the Hubble Space Telescope (HST) observations [216] the
Hubble constant 𝐻0 value has been measured from Cepheid-calibrated supernovae (using 70 long-
period Cepheids in the LMC) by the SH0ES collaboration [17, 37, 39]. The analysis by the SH0ES
team using this local model-independent measurement refers 𝐻0 = 73.04 ± 1.04 km s−1 Mpc−1

[23], which results in 5𝜎 tension with the value estimated by CMB Planck18 [14] assuming the
ΛCDM model while in previous analysis by SH0ES team [40] using the Gaia Early Data Release
3 (EDR3) parallaxes [180] and reaching 1.8% precision by improving the calibration a value of
𝐻0 = 73.2 ± 1.3 km s−1 Mpc−1 is obtained, a 4.2𝜎 tension with the prediction from Planck18 CMB
observations. Ref. [38] analysing the HST data, using Cepheids as distance calibrators reports 𝐻0 =
73.48 ± 1.66 km s−1 Mpc−1. A reanalysis of the SH0ES collaboration results using a cosmographic
method allowing also the deceleration parameter 𝑞0 to be a free parameter by Ref. [289] leads to
𝐻0 = 74.30 ± 1.45 km s−1 Mpc−1.
Ref. [295] considered companion and average cluster parallaxes instead of direct Cepheid paral-
laxes and obtained 𝐻0 = 72.8 ± 1.9 (statistical + systematics) ± 1.9 (ZP) km s−1 Mpc−1 when all
Cepheids are considered and 𝐻0 = 73.0±1.9 (statistical + systematics)±1.9 (ZP) km s−1 Mpc−1 for
fundamental mode pulsators only (where ZP is the second Gaia data release (GDR2) [296] parallax
zero point).
Various other previous estimates of𝐻0 have been obtained by treatments of the distance ladder [297–
299]. In particular, Ref. [297] finds 𝐻0 = 72.8 ± 1.6 (statistical)±2.7 (systematic) km s−1 Mpc−1

using SnIa as standard candles in the near-infrared (NIR), Ref. [298] finds 𝐻0 = 73.2 ± 2.3
km s−1 Mpc−1 analysing the final data release of the Carnegie Supernova Project7 (CSP) I [300]
and Ref. [299] finds 𝐻0 = 73.15 ± 1.78 km s−1 Mpc−1 using a Bayesian hierarchical model of the
local distance ladder.

• SnIa-TRGB: The Carnegie–Chicago Hubble Program8 (CCHP) [229] using calibration of SnIa
with the TRGB method estimates 𝐻0 = 69.8 ± 0.8 (±1.1% stat) ± 1.7 (±2.4% sys) km s−1 Mpc−1

[301] and a revision of their measurements has lead to 𝐻0 = 69.6±0.8 (±1.1% stat)±1.7 (±2.4% sys)
km s−1 Mpc−1 [230]. Recently, the updated TRGB calibration applied to a distant sample of
SnIa from the CCHP lead to a value of the Hubble constant of 𝐻0 = 69.8 ± 0.6 (stat) ±
1.6 (sys) km s−1 Mpc−1 [302]. Using the LMC and the NGC 4258 as TRGB calibration of the
SnIa distance ladder, the SH0ES team finds 𝐻0 = 72.4 ± 2 km s−1 Mpc−1 [303] and 𝐻0 =
71.1 ± 1.9 km s−1 Mpc−1 [227] respectively. Refs. [230, 302, 304] argue that the difference in
the derived value of 𝐻0 by SH0ES team compared to CCHP was due to incorrect assump-
tions regarding calibration of the TRGB in the LMC made by Ref. [303]. A value of 𝐻0 =
65.8 ± 3.5 (stat) ± 2.4 (sys) km s−1 Mpc−1 is obtained by Ref. [305] using peculiar velocities and

7https://csp.obs.carnegiescience.edu
8https://carnegiescience.edu/projects/carnegie-hubble-program
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Figure 2.3: The snapshots show the radial mass profile of perturbation as a function of the comoving radius
of an initially point-like overdensity located at the origin for redshifts 𝑧 = 6824, 1440, 848, 478, 79, 10. The
time after the Big Bang are given in each snapshots. The black, blue, red, and green lines correspond
to the dark matter, baryons, photons, and neutrinos (all perturbations are fractional for that species),
respectively. The top snapshots are for the early time before recombination where the overdensities in
photons and baryons evolve together, the middle snapshots for soon after but close to recombination
where the baryons freeze at the location reached with the photons forming a thick spherical shell, and the
bottom snapshots are for long after recombination where the baryon overdensities start to gravitationally
grow like dark matter overdensities (from Ref. [13]).
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Figure 2.4: The Planck18 CMB angular power spectrum 𝒟𝑇 𝑇
𝑙 ≡ 𝑙(𝑙 + 1)/(2𝜋)𝐶𝑇 𝑇

𝑙 (top) and residual
angular power spectrum (bottom) of temperature fluctuations as a function of multipole moment 𝑙. The
light blue line in the upper panel is the best-fitting to the Planck TT, TE, EE+lowE+lensing likelihoods
assuming the base-ΛCDM cosmology. The red points correspond to the binned Planck data. The lowest
multipole range (𝑙 ≤ 30) is dominated by cosmic variance (approximated as Gaussian), while positions
and amplitudes of the acoustic peaks are accurately constrained (from Ref. [14]).

TRGB distances of 33 galaxies located between the Local Group and the Virgo cluster (∼ 16.5 Mpc)
(mainly the sample of Virgo infall galaxies from Ref. [306]).
More recently, Ref. [307] has reported a measurement of 𝐻0 = 72.1 ± 2.0 km s−1 Mpc−1 using
the TRGB distance indicator calibrated from the European Space Agency (ESA) Gaia mission
Early Data Release 3 (EDR3) trigonometric parallax of Omega Centauri [180]. Ref. [308] finds
𝐻0 = 71.5 ± 1.8 km s−1 Mpc−1 combining TRGB measurements with either the Pantheon or CSP
samples of supernova. Finally, Ref. [24] using NIR only cosmological analysis and TRGB distances
to calibrate the SnIa luminosity of the CSP and RAISIN (an anagram for “SnIa in the IR”) sam-
ples [309, 310] and Ref. [311] using TRGB calibration of SnIa observed by the Zwicky Transient
Facility (ZTF) [312, 313] report 𝐻0 = 72.4 ± 3.3 km s−1 Mpc−1 and 𝐻0 = 76.94 ± 6.4 km s−1 Mpc−1

respectively.

• SnIa-Miras: Calibration of SnIa in the host NGC 1559 galaxy with the Miras method using
a sample of 115 oxygen-rich Miras9 discovered in maser host NGC 4258 galaxy, has lead to a
measurement of the Hubble constant as 𝐻0 = 73.3 ± 4 km s−1 Mpc−1 [25].

• SBF: Calibrating the SnIa luminosity with SBF method and extending it into the Hubble flow by
using a sample of 96 SnIa in the redshift range 0.02 < 𝑧 < 0.075, extracted from the Combined
Pantheon Sample has lead to the measurement 𝐻0 = 70.50 ± 2.37 (stat)±3.38 (sys) km s−1 Mpc−1

by Ref. [236]. Previously Ref. [235] combining distance measurement with the corrected recession
velocity of NGC 4993 reported a Hubble constant 𝐻0 = 71.9 ± 7.1 km s−1 Mpc−1. A new measure-
ment of the Hubble constant 𝐻0 = 73.3 ± 0.7 ± 2.4 km s−1 Mpc−1 has recently been obtained based
on a set of 63 SBF [26] distances extending out to 100 Mpc.

9Miras can be divided into oxygen- and carbon-rich Miras.
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• SneII: SneII have also been used for the determination of 𝐻0. Using 7 SneII as cosmological
standardisable candles with host-galaxy distances measured from Cepheid variables or the TRGB
the Hubble constant was measured to be 𝐻0 = 75.8+5.2

−4.9 km s−1 Mpc−1 [244]. More recently, Ref.
[27] found 𝐻0 = 75.4+3.8

−3.7 km s−1 Mpc−1 using 13 SneII.

2.2.2 Sound horizon as standard ruler: early time calibrators
Before recombination (𝑧 > 1100), the primeval plasma of coupled baryons to photons (baryon-photon
fluid) oscillates as spherical sound waves emanating from baryon gas perturbations are driven by photon
pressure. At recombination when the Universe has cooled enough the electrons and protons combine
to form hydrogen (see e.g. Ref. [314]), photons decouple from baryons and propagate freely since the
pressure becomes negligible. Thus the spherical sound wave shells of baryons become frozen. This process
which was first detected in the galaxy power spectrum by Refs. [15, 315] is illustrated in Fig. 2.3. It
inflicts a unique Baryon Acoustic Oscillations (BAO) scale on the CMB anisotropy spectrum peaks shown
in Fig. 2.4 and on the matter large scale structure (LSS) power spectrum on large scales at the radius
of the sound horizon (the distance that the sound waves have traveled before recombination). This scale
emerges as a peak in the correlation function 𝜉(𝑠)10 as illustrated in Fig. 2.5 or equivalently as damped
oscillations in the LSS power spectrum [15, 317–319]. The characteristic BAO scale is also imprinted
in the Lyman-𝛼 (Ly𝛼) forest absorption lines of neutral hydrogen in the intergalactic medium (IGM)
detected in quasar (QSO) spectra.

The measured angular scale of the sound horizon 𝜃𝑠 at the drag epoch when photon pressure vanishes
can be used to probe the Hubble expansion rate using the standard ruler relation e.g. [320, 321]

𝜃𝑠 = 𝑟𝑠

𝑑𝐴
, (2.16)

where 𝑑𝐴 ≡ 𝐷𝐴

𝑎 ≡ (1 + 𝑧)𝐷𝐴 = 𝑐
∫︀ 𝑧

0
𝑑𝑧′

𝐻(𝑧′) is the comoving angular diameter distance to last scattering
(at redshift 𝑧 ≈ 1100) and 𝑟𝑠 is the radius of sound horizon at last scattering.

The radius 𝑟𝑠 of the sound horizon at last scattering can be calculated by the distance that sound can
travel from the Big Bang, 𝑡 = 0, to time 𝑡𝑑 at the drag epoch when the photon pressure can no longer
prevent gravitational instability in baryons. This happens shortly after the time 𝑡𝑠 of the last scattering
when the optical depth due to Thomson scattering reaches unity [317]. Thus [322]

𝑟𝑠 =
∫︁ 𝑡𝑑

0

𝑐𝑠(𝑎)
𝑎(𝑡) 𝑑𝑡 =

∫︁ ∞

𝑧𝑑

𝑐𝑠(𝑧)
𝐻(𝑧; 𝜌𝑏, 𝜌𝛾 , 𝜌𝑐)𝑑𝑧 =

=
∫︁ 𝑎𝑑

0

𝑐𝑠(𝑎)
𝑎2𝐻(𝑎; 𝜌𝑏, 𝜌𝛾 , 𝜌𝑐)𝑑𝑎 , (2.17)

where the drag redshift 𝑧𝑑 corresponds to time 𝑡𝑑, 𝜌𝑏, 𝜌𝑐 and 𝜌𝛾 denote the densities for baryon, cold
dark matter and radiation (photons) respectively and 𝑐𝑠 is the sound speed in the photon-baryon fluid
given by [323, 324]

𝑐𝑠 = 𝑐√︂
3
(︁

1 + 3𝜌𝑏

4𝜌𝛾

)︁ = 𝑐√︂
3
(︁

1 + 3𝜔𝑏

4𝜔𝛾
𝑎
)︁ . (2.18)

The expansion rate 𝐻(𝑧) depends on the ratio of the matter density to radiation density and the sound
speed determined by the baryon-to-photon ratio. Both the matter-to-radiation ratio and the baryon-to-
photon ratio can be estimated from the details of the acoustic peaks in CMB anisotropy power spectrum

10The correlation function is defined as the excess probability of one galaxy to be found within a given distance of another.
Using the Landy-Szalay estimator [316] this function can be computed [15]

𝜉(𝑠) ≡ ⟨𝛿(𝑥)𝛿(𝑥 + 𝑠)⟩ =
𝐷𝐷(𝑠) − 2𝐷𝑅(𝑠) + 𝑅𝑅(𝑠)

𝑅𝑅(𝑠)
, (2.15)

where 𝑠 is the comoving galaxy separation distance and 𝐷𝐷(𝑠), 𝑅𝑅(𝑠) and 𝐷𝑅(𝑠) correspond to the number of galaxy
pairs with separations 𝑠 in real-real, random-random and real-random catalogs, respectively.
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Figure 2.5: The signature of baryonic acoustic oscillations in galaxy two-point correlation function 𝜉(𝑠) as
measured by Ref. [15] using the luminous red galaxy samples of the Sloan Digital Sky Survey. The data
show the existence of a baryonic acoustic peak in the galaxy correlation function 𝜉(𝑠) around the comoving
separation scale 100ℎ−1Mpc. The solid green, red, and blue lines correspond to model predictions with
Ω0𝑚ℎ

2 = 0.12, 0.13 and 0.14, respectively. All models are taken to have the same Ω0𝑏ℎ
2 = 0.024 and

𝑛 = 0.98. The magenta line corresponds to a model with no baryons and Ω0𝑚ℎ
2 = 0.105, which has no

acoustic peaks (from Ref. [15]).

24



Chapter 2. Challenges for ΛCDM: Hubble Tension

(see e.g. Ref. [325]). Thus the CMB is possible to lead to an independent determination of the radius of
sound horizon. Alternatively an independent determination of the radius of sound horizon can obtained
using primordial deuterium measurements [22, 326]. Now using the Eqs. (1.57) and (2.16) we can write
the angular size of the sound horizon as

𝜃𝑠 = 𝐻0𝑟𝑠

𝑐
∫︀ 𝑧𝑑

0
𝑑𝑧′

𝐸(𝑧′)
, (2.19)

where 𝐸(𝑧) is the dimensionless normalized Hubble parameter defined by Eq. (1.26) and for a flat ΛCDM
model is given by

𝐸(𝑧) =
[︀
Ω0𝑚(1 + 𝑧)3 + (1 − Ω0𝑚)

]︀1/2
. (2.20)

Eq. (2.19) indicates that there is a degeneracy between 𝑟𝑠, 𝐻0 and 𝐸(𝑧). Thus 𝐻0 can not be derived
using the BAO data alone which constrain 𝐸(𝑧) and the degeneracy is broken when 𝑟𝑠 is fixed using
either CMB power spectra [49] or deuterium abundance [22, 326].

For example 𝑟𝑠 = 147.05±0.30 Mpc is inferred from Planck18 TT,TE,EE+lowE CMB data [14]. Using
the independent determination of 𝑟𝑠, measuring the angular acoustic scale 𝜃𝑠 from the location of the first
acoustic peak in the CMB spectrum and fitting the integral in Eq. (2.19) using low z BAO or SnIa data,
the Hubble constant 𝐻0 can be derived. This is the ’inverse distance ladder’ approach [322, 327, 328]
which uses the sound horizon scale calibrated by the CMB peaks or by Big Bang Nucleosynthesis (BBN)
[329] instead of the SnIa absolute magnitude 𝑀 calibrated by Cepheid stars to obtain 𝐻0.

The deformation of the expansion rate 𝐻(𝑎) before recombination using additional components like
early dark energy that increase 𝐻(𝑎) in Eq. (2.17) and thus decrease 𝑟𝑠 and increase the predicted value
of 𝐻0 for fixed measured 𝜃𝑠 in Eq. (2.19), has been used as a possible approach to the solution of the
Hubble tension. A challenge for this class of models is the required fine-tuning so that the evolution of
𝐻(𝑧) returns quickly to its standard form after recombination for consistency with lower 𝑧 cosmological
probes and growth measurements [330]. The assumed increase of 𝐻(𝑧) at early times has been claimed
to lead to a worsened growth tension [331] as discussed below even though the issue is under debate
[332, 333].

Observational data - Constraints

• CMB: The measurement of the Hubble constant 𝐻0 using the sound horizon at recombination
as standard ruler calibrated by the CMB anisotropy spectrum is model dependent and is based
on assumptions about the nature of dark matter and dark energy as well as on an uncertain
list of relativistic particles (see Ref. [334], for a review). The best fit value obtained by the
Planck18/ΛCDM CMB temperature, polarization, and lensing power spectra is 𝐻0 = 67.36 ± 0.54
km s−1 Mpc−1 [14]. The measurements of the CMB from the combination Atacama Cosmology Tele-
scope (ACT)11 and Wilkinson Microwave Anisotropy Probe (WMAP) estimated the Hubble con-
stant to be 𝐻0 = 67.6±1.1 km s−1 Mpc−1 and from ACT alone to be 𝐻0 = 67.9±1.5 km s−1 Mpc−1

[19]. Note that the analysis of the nine-year data release of WMAP [335] alone prefers a value for
the Hubble constant 𝐻0 = 70.0 ± 2.2 km s−1 Mpc−1. More recently, Ref. [336] obtains CMB-based
constraints on Hubble parameter 𝐻0 = 67.49±0.53 km s−1 Mpc−1 using combined South Pole Tele-
scope12 (SPT), Planck, and ACT DR4 datasets. Ref. [337] finds 𝐻0 = 68.8 ± 1.5 km s−1 Mpc−1

using SPT-3G data alone, while a previous analysis of SPT data by Ref. [338] results in
𝐻0 = 71.3 ± 2.1 km s−1 Mpc−1.

• BAO: The analysis of the wiggle patterns of BAO is an independent way of measuring cosmic
distance using the CMB sound horizon as a standard ruler. This measurement has improved
in accuracy through a number of galaxy surveys which detect this cosmic distance scale: the
Sloan Digital Sky Survey (SDSS) supernova survey [339, 340] encompassing the Baryon Oscillation

11https://act.princeton.edu
12https://pole.uchicago.edu
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Spectroscopic Survey (BOSS) which has completed three different phases [341]. Its fourth phase
(SDSS-IV) [342] encompasses the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) [343]
(see also Refs. [344–348]), the WiggleZ Dark Energy Survey [349–351], the 2-degree Field Galaxy
Redshift Survey (2dFGRS) [315, 352], the 6-degree Field Galaxy Survey (6dFGS) [353–355].
More recently, BAO measurements have been extended in the context of quasar redshift surveys and
Ly𝛼 absorption lines of neutral hydrogen in the IGM detected in QSO spectra using the complete
eBOSS survey. The measurement of BAO scale using first the auto-correlation of Ly𝛼 function
[356–358] and then the Ly𝛼-quasar cross-correlation function [359, 360] or both the auto- and
cross-correlation functions [361] pushed BAO measurements to higher redshifts (𝑧 ∼ 2.4). Recent
studies present BAO measurements from the Ly𝛼 using the eBOSS sixteenth data release (DR16)
[362] of the SDSS IV e.g. [361].
As discussed in subsection 2.2.2 BAO data alone cannot constrain 𝐻0 because BAO observations
measure the combination 𝐻0𝑟𝑠 rather than 𝐻0 and 𝑟𝑠 individually (where 𝑟𝑠 is the radius of sound
horizon). Using the CMB calibrated physical scale of the sound horizon and the combination of
BAO with SnIa data (i.e inverse distance ladder) the value 𝐻0 = 67.3 ± 1.1 km s−1 Mpc−1 was
reported which is in agreement with the value obtained by CMB data alone [322]. The analysis
by Ref. [20] using a combination of BAO measurements from 6dFGS [354], Main Galaxy Sample
(MGS) [363], BOSS DR12 and eBOSS DR14 quasar sample in a flat ΛCDM cosmology reports
𝐻0 = 69.13 ± 2.34 km s−1 Mpc−1. Using BAO measurements and CMB data from WMAP, Ref.
[21] reported the constraints of 𝐻0 = 68.36+0.53

−0.52 km s−1 Mpc−1. The analysis by Ref. [22] combining
galaxy and Ly𝛼 forest BAO with a precise estimate of the primordial deuterium abundance (BBN)
results in 𝐻0 = 66.98 ± 1.18 km s−1 Mpc−1 for the flat ΛCDM model. Ref. [364] finds 𝐻0 =
67.35 ± 0.97 km s−1 Mpc−1 using BOSS galaxy and eBOSS, with the BBN prior independent from
the CMB anisotropies. Ref. [365] obtains 𝐻0 = 68.5 ± 2.2 km s−1 Mpc−1 performing a analysis for
the cosmological parameters of the DR12 BOSS data using the Effective Field Theory of Large-Scale
Structure (EFTofLSS) formalism13 and Ref. [371] obtains 𝐻0 = 68.7 ± 1.5 km s−1 Mpc−1 assuming
a BBN prior on the baryon fraction of the energy density instead of the baryon/dark-matter ratio.
Recently, Ref. [372] reported the constraints of 𝐻0 = 69.6 ± 1.8 km s−1 Mpc−1 using BAO data,
including the released eBOSS DR16, and CMB data from Plank. Ref. [373] infers 𝐻0 = 68.19 ±
0.99 km s−1 Mpc−1 imposing BBN priors on the baryon density and combining the BOSS Full
Shape with the BAO measurements from BOSS and eBOSS. Also, a new analysis of galaxy 2-point
functions in the BOSS survey, including full-shape information and post-reconstruction BAO by
Ref. [374] results in 𝐻0 = 69.23 ± 0.77 km s−1 Mpc−1 and a full-shape analysis of BOSS DR12
by Ref. [375] results in 𝐻0 = 68.31+0.83

−0.86 km s−1 Mpc−1. A previous analysis of BOSS DR12 on
anisotropic galaxy clustering in Fourier space by Ref. [376] gives 𝐻0 = 67.9 ± 1.1 km s−1 Mpc−1.
Finally, analyzing the BOSS DR12 galaxy power spectra using a new approach based on the horizon
scale at matter-radiation equality Ref. [377] finds 𝐻0 = 69.5+3.0

−3.5 km s−1 Mpc−1 and adding Planck
lensing Ref. [378] finds 𝐻0 = 70.6+3.0

−5.4 km s−1 Mpc−1.

2.2.3 Time delays: gravitational lensing
Gravitational lensing time-delay cosmography can be used to measure 𝐻0. This approach was first
proposed by Ref. [379] and recently implemented by Ref. [28, 380, 381] (see also [382, 383], for clear
reviews). Strong gravitational lensing [379] arises from the gravitational deflection of light rays of a
background source when an intervening lensing mass distribution (e.g. a massive galaxy or cluster of
galaxies) exists along the line of sight. The light rays go through different paths such that multiple
images of the background source appear around the intervening lens [384].

The time delay Δ𝑡𝐴𝐵 between two images 𝜃A and 𝜃B by a single deflector originating from the same
13The EFTofLSS formalism can provide a prediction of the LSS clustering in the mildly non-linear regime [366–370].
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Figure 2.6: Schematic illustration of a typical gravitational lens system.

source at angle 𝛽 shown in Fig. 2.6 is given as [385]

Δ𝑡𝐴𝐵 = 1 + 𝑧𝐿

𝑐

𝐷𝐴(𝑂𝐿)𝐷𝐴(𝑂𝑆)
𝐷𝐴(𝐿𝑆) [𝜑(𝜃A, 𝛽) − 𝜑(𝜃B, 𝛽)] , (2.21)

where 𝑧𝐿 is the lens redshift, 𝐷𝐴(𝑂𝐿) is the angular diameter distance to the lens, 𝐷𝐴(𝑂𝑆) is the angular
diameter distance to the source, 𝐷𝐴(𝐿𝑆) is the angular diameter distance between the lens and the source
and 𝜑(𝜃, 𝛽) is the Fermat potential e.g. [385]

𝜑(𝜃, 𝛽) = (𝜃 − 𝛽)2

2 − 𝜓(𝜃) , (2.22)

with 𝜓(𝜃) the lensing potential at the image direction. The time delay Δ𝑡𝐴𝐵 in Eq. (2.21) is thus
connected to the time delay distance defined as e.g. [385, 386]

𝐷Δ𝑡 = 1 + 𝑧𝐿

𝑐

𝐷𝐴(𝑂𝐿)𝐷𝐴(𝑂𝑆)
𝐷𝐴(𝐿𝑆) . (2.23)

This distance is inversely proportional to 𝐻0

𝐷Δ𝑡 ∝ 1
𝐻0

, (2.24)

and thus its measurement constrains 𝐻0. Strongly lensed quasars (bright and time variable sources) lensed
by a foreground lensing mass are used to measure the above observable time delay on cosmologically
interesting scales [28, 387–390]. Active galactic nuclei (AGN) constitute another background source
which may be used to measure the time delay [391–393]. Recently, Ref. [394] proposed the strongly
lensed SnIa as a precise late-universe probe to improve the measurements on the Hubble constant and
cosmic curvature. The inference of 𝐻0 from 𝐷Δ𝑡 is relatively insensitive to the assumed background
cosmology.

Note that a source of systematic effects in time delay cosmography is the uncertainty of the mass along
the line of sight modeling with respect to the mass sheet transformation (MST). This is a mathematical
degeneracy e.g. [395–400] and can bias the strong lensing determination of Hubble constant [401].

Observational data - Constraints

Strong gravitational lensing time delay measurements of 𝐻0 are consistent with the local measurements
using late time calibrators and in mild tension with Planck e.g. [390]. The method of the measurement
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of 𝐻0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration [28] is independent of the cosmic
distance ladder and is based on time delays between multiple images of the same source, as occurs in
strong gravitational lensing.

Using joint analysis of six gravitationally lensed quasars with measured time delays from the COS-
mological MOnitoring of GRAvItational Lenses (COSMOGRAIL) project, the value 𝐻0 = 73.3+1.7

−1.8
km s−1 Mpc−1 was obtained which is in 3.1𝜎 tension with Planck CMB. Assuming the Universe is flat
and using lensing systems from the lensing program H0LiCOW and the Pantheon supernova compilation
a value of 𝐻0 = 72.2 ± 2.1 km s−1 Mpc−1 was reported by the analysis of Ref. [402]. A similar value
of 𝐻0 = 72.8+1.6

−1.7 km s−1 Mpc−1 was found using updated H0LiCOW dataset consisting of six lenses
[403]. The reanalysis of the four publicly released lenses distance posteriors from the H0LiCOW by [404]
leads to 𝐻0 = 73.65+1.95

−2.26 𝑘𝑚 𝑠−1𝑀𝑝𝑐−1. The analysis of the strong lens system DES 𝐽0408 − 5354 by
[380] for strong lensing insights into dark energy survey collaboration (STRIDES), infers 𝐻0 = 74.2+2.7

−3.0
km s−1 Mpc−1 in the ΛCDM cosmology. The analysis by [381] based on the strong lensing and using
Time-Delay COSMOgraphy (TDCOSMO14, 15) data set alone infers 𝐻0 = 74.5+5.6

−6.1 km s−1 Mpc−1 and
using a joint hierarchical analysis of the TDCOSMO and Sloan Lens ACS (SLACS) [406] sample re-
ports 𝐻0 = 67.4+4.1

−3.2 km s−1 Mpc−1. Ref. [407] based on a joint analysis of 3 strong lensing system,
using ground-based adaptive optics (AO) from SHARP AO effort and the HST finds 𝐻0 = 76.8 ± 2.6
km s−1 Mpc−1. A reanalysis of six of the TDCOSMO lenses using a power-law mass profile model results
in 𝐻0 = 74.2 ± 1.6 km s−1 Mpc−1 [405]. Analysing 8 strongly, quadruply lensing systems Ref. [408]
presents a determination of the Hubble constant 𝐻0 = 71.8+3.9

−3.3 km s−1 Mpc−1 which is consistent with
both early and late Universe observations. The value 𝐻0 = 73.6+1.8

−1.6 km s−1 Mpc−1 was reported by Ref.
[409] by combining the observations of ultra-compact structure in radio quasars and strong gravitational
lensing with quasars acting as background source.

2.2.4 Standard sirens: gravitational waves
An independent and potentially highly effective approach for the measurement of 𝐻(𝑧) and the Hubble
constant is the use of gravitational wave (GW) observations and in particular those GW bursts that
have an electromagnetic (EM) counterpart (standard sirens) [410–414]. In analogy with the traditional
standard candles, it is possible to use standard sirens to directly measure the luminosity distance 𝑑𝐿 of
the GW source.

Standard sirens involve the combination of a GW signal and its independently observed EM counter-
part. Such counterpart may involve short gamma-ray bursts (SGRBs) signal from binary neutron star
mergers [415] or associated isotropic kilonova emission [416, 417] and enables the immediate identifica-
tion of the host galaxy. In contrast to traditional standard candles such as SnIa calibrated by Cepheid
variables, standard sirens do not require any form of cosmological distance ladder. Instead they are
calibrated in the context of general relativity through the observed GW waveform.

The simultaneous observations of the GW signal and its EM counterpart (multi-messenger observa-
tions) of nearby compact-object merger leads to a measurement of the luminosity distance which depends
on the inclination angle of the binary orbit with respect to the line of sight and the redshift (measured
using photons) of the host galaxy respectively. An EM counterpart detected with a GW observation
can further constrain the inclination angle and may also indicate the source’s sky position and the GW
merger’s time and phase e.g. [414].

In the case of GW events with small enough localization volumes without an observed EM counterpart
(dark sirens) [418] a statistical analysis over a set of potential host galaxies within the event localization
region may provide redshift information. A candidate for such statistical method is a merger of stellar-
mass binary black holes16 (BBH) which is usually not expected to result in bright EM counterparts
unless it takes place in significantly gaseous environment [424]. For example, GW190521 [425] is a

14TDCOSMO collaboration [405] was formed by members of H0LiCOW, STRIDES, COSMOGRAIL and SHARP.
15http://www.tdcosmo.org/
16The stability analysis of the structures around black holes have been widely employed in the literature e.g. [419–423].
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possible candidate with EM counterpart corresponding to a stellar-origin BBH merger in active galactic
nucleus (AGN) disks [426] detected by ZTF [312, 313].

Alternatively, in the absence of an EM counterpart the redshift can be determined by exploiting
information on the properties of the source (e.g. the knowledge of neutron star equation of state) to derive
frequency-dependent features in the waveform [427] or using the gravitational waveform to determine the
redshift of the mass distribution of the sources [428, 429]. Also, Ref. [430] uses an alternative method,
presented in Ref. [431], for redshift determination by the statistical knowledge of the redshift distribution
of sources. Ref. [432] argues that any absolute determination of 𝐻0 may be biased due to the fundamental
degeneracy between redshift and 𝐻0 and therefore can not lead to reliable determination of 𝐻0. According
to [432] the reliable determination of 𝐻0 with GW can only be achieved using standard sirens.

The luminosity distance-redshift relation Eq. (1.55) determines the Universe’s expansion history and
the associated cosmological parameters including the Hubble constant 𝐻0 [18, 433]. In particular using
the mergers of binary neutron stars (BNS), or a binary of a neutron star with a stellar-mass black hole
(NS-BH), which are excellent standard sirens, both the luminosity distance (from the gravitational wave
waveform) and redshift of the host galaxy (from the electromagnetic counterpart) can be measured.

Using a BNS or a NS-BH merger, the distance to the source can be estimated from the detected
amplitude ⟨ℎ⟩ (r.m.s. - averaged over detector and source orientations) of the GW signal by the expression
[410, 434–437]

𝑑 = 𝐶𝑓−2⟨ℎ⟩−1𝜏−1 , (2.25)

where 𝑓 is the gravitational wave frequency, 𝜏 ≡ 𝑓/𝑓 is the timescale of frequency change, 𝐶 is a known
numerical constant. Assuming a flat17 Universe the luminosity distance can then be obtained from the
relation

𝑑(𝑧) = 1
1 + 𝑧

𝑑𝐿(𝑧) . (2.26)

For nearby sources, the recession velocity using the Hubble’s law is determined by the Eq. (1.11)

𝜐𝑟(𝑧) = 𝐻0𝑑(𝑧) , (2.27)

and using Eqs. (1.55), (2.3) and (2.26) is given by

𝜐𝑟(𝑧) = 𝐻0𝑑𝐿(𝑧)
1 + 𝑧

= 𝑐𝐷𝐿(𝑧)
1 + 𝑧

= 𝑐𝐻0

∫︁ 𝑧

0

𝑑𝑧′

𝐻(𝑧′) . (2.28)

At low redshifts using the local expansion Eq. (2.7) we obtain

𝜐𝑟(𝑧) = 𝑐𝑧

1 + 𝑧

[︂
1 + 1

2(1 − 𝑞0)𝑧
]︂
, (2.29)

which is approximated for 𝑑 ≤ 100 𝑀𝑝𝑐 (or 𝑧 ≤ 0.03 ) as

𝜐𝑟(𝑧) = 𝑐𝑧 = 𝐻0𝑑 . (2.30)

Using Eqs. (2.27) and (2.29), the equation for the determination of 𝐻0 as a function of observables, 𝑧
and 𝑑 is e.g. [438]

𝐻0 = 𝑐𝑧

𝑑(1 + 𝑧)

[︂
1 + 1

2(1 − 𝑞0)𝑧
]︂
, (2.31)

where the deceleration parameter may be set by a fit to the GW data or may be fixed to its Planck/ΛCDM
best fit form (𝑞0 = −0.55).

17In an open (closed) Universe the distance in Hubble’s law is given 𝑑(𝑧) = 1
1+𝑧

𝜒
sinh 𝜒

𝑑𝐿(𝑧) (𝑑(𝑧) = 1
1+𝑧

𝜒
sin 𝜒

𝑑𝐿(𝑧)) .
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Figure 2.7: The probability of different values of 𝐻0 with the maximum at 𝐻0 = 70.0+12.0
−8.0 km s−1 Mpc−1

(solid blue curve) derived by BNS event GW170817. The dashed and dotted lines show minimal 68.3%
(1𝜎) and 95.4% (2𝜎) credible intervals. The shaded green and orange bands show the 1𝜎 and 2𝜎 con-
straints from the analysis of the CMB data obtained by the Planck [16] and from the analysis of the SnIa
data obtained by SH0ES [17] respectively (from Ref. [18]).

30



Chapter 2. Challenges for ΛCDM: Hubble Tension

Observational data - Constraints

The first multi-messenger detection of a BNS merger, GW170817, by LIGO [439] and Virgo [440] interfer-
ometers enabled the first standard siren measurement of the Hubble constant 𝐻0. Using the BNS merger
GW170817, the distance to the source was estimated to be 𝑑 = 43.8+2.9

−6.9 Mpc (i.e. at redshift 𝑧 ∼ 0.01)
from the detected amplitude ⟨ℎ⟩ (r.m.s. - averaged over detector and source orientations) of the GW
signal by the Eq. (2.25) [18]. Also using the Hubble flow velocity 𝜐𝐻 = 3017 ± 166 km s−1 inferred from
measurement of the redshift of the host galaxy, NGC 4993 (NGC 4993 was identified as the unique host
galaxy), the Hubble constant was determined to be 𝐻0 = 70.0+12.0

−8.0 km s−1 Mpc−1 [18] (see Fig. 2.7) by
using Eq. (2.30).

Using continued monitoring of the the radio counterpart of GW17081 combining with earlier GW and
EM data Ref. [441] obtains a improved measurement of𝐻0 = 68.9+4.7

−4.6 km s−1 Mpc−1. Note that using the
BNS merger GW170817 in Ref. [433] and a statistical analysis (as first proposed in Ref. [410]) over a cat-
alog of potential host galaxies, the Hubble constant was determined to be 𝐻0 = 77.0+37.0

−18.0 km s−1 Mpc−1.
Using density-estimation Likelihood-Free Inference (LFI) Ref. [442] focused on the inference of the cos-
mological expansion 𝐻0 from GW-selected catalogues of BNS mergers with EM counterparts.

Also using the BBH merger GW170814 as a standard (dark) siren in the absence of an electromagnetic
counterpart, combined with a photometric redshift catalog from the Dark Energy Survey (DES) [443] the
analysis by Ref. [444] results in 𝐻0 = 75+40

−32 km s−1 Mpc−1. Using multiple GW observations (the BNS
event GW170817 and the BBH events observed by advanced LIGO and Virgo in their first and second ob-
serving runs) in Ref. [445] the Hubble constant was constrained as 𝐻0 = 69.0+16.0

−8.0 km s−1 Mpc−1. Using
the event GW190814 from merger of a black hole with a lighter compact object the Hubble constant was
measured to be 𝐻0 = 75+59

−13 km s−1 Mpc−1 [29]. In Ref. [446] the BBH merger GW190521 was analysed
choosing the NRSur7dq4 waveform18 for the estimation of luminosity distance, after marginalizing over
matter density Ω0𝑚 when the ΛCDM model is considered and using its EM counterpart ZTF19abanrhr19

as identified in Ref. [424] the Hubble constant was measured to be 𝐻0 = 50.4+28.1
−19.5 km s−1 Mpc−1.

The same study [446] choosing different types of waveform finds 𝐻0 = 43.1+24.6
−11.4 km s−1 Mpc−1 and

𝐻0 = 62.2+29.5
−19.7 km s−1 Mpc−1. Combining their results with the binary neutron star event GW170817

leads to 𝐻0 = 67.6+4.3
−4.2 km s−1 Mpc−1. In Ref. [448] for the same GW-EM event, assuming a flat wCDM

model has obtained 𝐻0 = 48+23
−10 km s−1 Mpc−1.

The analysis by Ref. [449] using 47 gravitational-wave sources from the Third LIGO–Virgo–KAGRA
Gravitational-Wave Transient Catalog (GWTC–3), infers 𝐻0 = 68+12

−7 km s−1 Mpc−1. Ref. [450] finds
𝐻0 = 72.77+11.0

−7.55 km s−1 Mpc−1 using the best available gravitational wave events, uniform galaxy catalog
from the Dark Energy Spectroscopic Instrument (DESI) [451, 452] Legacy Survey and combining with
the GW170817. The value 𝐻0 = 88.6+17.1

−34.3 km s−1 Mpc−1 for GW190521 event was reported, and 𝐻0 =
73.4+6.9

−10.7 km s−1 Mpc−1 was obtained when combing the GW190521 with the results of the neutron star
merger GW170817 [453]. More recently, Ref. [454] reported 𝐻0 = 67+6.3

−3.8 km s−1 Mpc−1 combining the
bright standard siren measurement from GW170817 with a better measurement of peculiar velocity.

2.2.5 Megamaser technique
Observations of water megamasers which are found in the accretion disks around supermassive black
holes (SMBHs) in AGN have been demonstrated to be powerful one-step geometric probes for measuring
extragalactic distances [455–457].

Assuming a Keplerian circular orbit around the SMBH, the centripetal acceleration and the velocity
18NRSur7dq4 is a numerical relativity surrogate 7-dimensional approximate waveform model of binary black hole merger

with mass ratios 𝑞 ≡ 𝑚1
𝑚2 ≤ 4 [447]. This model is made publicly available through the gwsurrogate (see https://pypi.

org/project/gwsurrogate) and surfinBH (see https://pypi.org/project/surfinBH) Python packages.
19The ZTF19abanrhr event was reported by ZTF [312]. This candidate EM counterpart is flare after a kicked BBH

merger in the accretion disk of an AGN [426] with peak luminosity occurred 50 days after the BBH event GW19052.
The ZTF19abanrhr was first observed after 34 days from the GW detection at the sky direction (𝑅𝐴 = 192.426250,
𝐷𝑒𝑐 = 34.824720) and was associated with an AGN J124942.3 + 344929 at redshift 𝑧 = 0.438 [424].
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of a masing cloud are given as [457]

𝐴 = 𝑉 2

𝑟
, (2.32)

𝑉 =
√︂
𝐺𝑀

𝑟
, (2.33)

where 𝐺 is the Newton’s constant, 𝑀 is the mass of the central supermassive black hole, and 𝑟 is the
distance of a masing cloud from the supermassive black hole.

The angular scale 𝜃 subtended by 𝑟 is given by

𝜃 = 𝑟

𝑑
, (2.34)

where 𝑑 is the distance to the galaxy.
Thus, from the velocity and acceleration measurements obtained from the maser spectrum, the dis-

tance to the maser may be determined

𝑑 = 𝑉 2

𝐴𝜃
, (2.35)

where 𝐴 is measured from the change in Doppler velocity with time by monitoring the maser spectrum
on month timescales. Using Hubble’s law the Hubble constant may be approximated as [457]

𝐻0 ≈ 𝜐𝑟

𝑑
, (2.36)

where 𝜐𝑟 is the measured recessional velocity.
In order to constrain the Hubble constant the Megamaser Cosmology Project (MCP) Ref. [458] uses

angular diameter distance measurements to disk megamaser-hosting galaxies well into the Hubble flow
(50 − 200 Mpc). These distances are independent of standard candle distances and their measurements
do not rely on distance ladders, gravitational lenses or the CMB [30]. Early measurements of 𝐻0 using
masers tended to favor lower values of 𝐻0 ≃ 67 km s−1 Mpc−1 while more recent measurements favor
higher values 𝐻0 ≃ 73 km s−1 Mpc−1 as shown in Table 2.1.

Observational data - Constraints

Recently, the Megamaser Cosmology Project (MCP) [458] using geometric distance measurements to
megamaser-hosting galaxies and assuming a global velocity uncertainty of 250 km s−1 associated with
peculiar motions of the maser galaxies constrains the Hubble constant to be 𝐻0 = 73, 9±3 km s−1 Mpc−1

[30]. Previously the MCP reported results on galaxies, UGC 3789 with 𝐻0 = 68.9 ± 7.1 km s−1 Mpc−1

[457], NGC 6264 with 𝐻0 = 68.0 ± 9.0 km s−1 Mpc−1 [459], NGC 6323 with 𝐻0 = 73+26
−22 km s−1 Mpc−1

[460] and NGC 5765𝑏 with 𝐻0 = 66.0 ± 6.0 km s−1 Mpc−1 [461]. Ref. [227] uses a improved distance
estimation of the maser galaxy NGC 4258 (also known as Messier 106) to calibrate the Cepheid-SN Ia
distance ladder combined with geometric distances from MW parallaxes and DEBs in the LMC. The
measured value of the Hubble constant is 𝐻0 = 73.5 ± 1.4 km s−1 Mpc−1.

2.2.6 Tully-Fisher relation (TFR) as distance indicator
The Tully-Fisher (TF) method is a historically useful distance indicator based on the empirical relation
between the intrinsic total luminosity (or the stellar mass) of a spiral galaxy20 and its rotation velocity (or
neutral hydrogen (HI) 21 cm emission line width) [464]. This method has been used widely in measuring
extragalactic distances e.g. [465].

20Similarly, in the case of a elliptical galaxy the Faber–Jackson (FJ) empirical power-law relation 𝐿 ∝ 𝜎𝛾FJ (where 𝐿
is the luminosity of galaxy, 𝜎 the velocity dispersion of its stars and 𝛾FJ is a index close to 4) [462] can be used as a
distance indicator. The FJ relation is the projection of the fundamental plane (FP) of elliptical galaxies which defined as
𝑅eff ∝ 𝜎𝑠1 𝐼𝑠2

eff (where 𝑅eff is the effective radius and 𝐼eff is the mean surface brightness within 𝑅eff) [463].
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The Baryonic Tully Fisher relation (BTFR) [466–469] connects the rotation speed 𝑉𝑐 and total bary-
onic mass 𝑀𝑏 (stars plus gas) of a spiral galaxy as

𝑀𝑏 = 𝐴𝑐𝑉
𝑠

𝑐 , (2.37)

where 𝑠 (with 𝑠 ≈ 3 − 4 [466, 469, 470]) is a parameter and log𝐴𝑐 is the zero point in a log-log BTFR
plot. This relation has been measured for hundreds of galaxies. The rotation speed 𝑉𝑐 can be measured
independently of distance while the total baryonic mass 𝑀𝑏 may be used as distance indicator since it is
connected to the intrinsic luminosity. Thus, the BTFR is a useful cosmic distance indicator approximately
independent of redshift and thus can be used to obtain 𝐻0.

The BTFR has a smaller amount of scatter with a corresponding better accuracy as a distance
indicator than the classic TF relation [470]. In addition the BTFR recovers two decades in velocity and
six decades in mass [466, 469, 471–474].

A simple heuristic analytical derivation for the BTFR is obtained [475] by considering a star rotating
with velocity 𝑣 in a circular orbit of radius 𝑅 around a central mass 𝑀 . Then the star velocity is connected
with the central mass as

𝑣2 = 𝐺 𝑀𝑏/𝑅 =⇒ 𝑣4 = (𝐺 𝑀𝑏/𝑅)2 ∼ 𝑀𝑏 𝑆 𝐺
2 , (2.38)

where 𝐺 is Newton’s constant and 𝑆 the surface density 𝑆 ≡ 𝑀/𝑅2 which may be shown to be approxi-
mately constant [476]. From Eqs. (2.37) and (2.38) we have

𝐴𝑐 ∼ 𝐺−2𝑆−1 , (2.39)

which indicates that the zero point intercept of the BTFR can probe both galaxy formation dynamics
(through e.g. 𝑆) and possible fundamental constant dynamics (through 𝐺) [477].

Observational data - Constraints

The analysis by Ref. [31] using infrared data of sample galaxies and the Tully Fisher relation determined
the value of Hubble constant to be 𝐻0 = 76.0±1.1 (stat.)±2.3 (sys.) km s−1 Mpc−1. In Ref. [474] a value
of 𝐻0 = 75.1 ± 2.3 (stat.) ± 1.5 (sys.) km s−1 Mpc−1 was found using Baryonic Tully Fisher relation for
95 independent Spitzer photometry and accurate rotation curves (SPARC) galaxies21 (up to distances of
∼ 130 Mpc).

2.2.7 Extragalactic background light 𝛾-ray attenuation
This method is based on the fact that the extragalactic background light (EBL) which is a diffuse radiation
field that fills the Universe from ultraviolet (UV) through infrared wavelength induces opacity for very
high energy (VHE) photons (≥ 30 GeV) induced by photon-photon interaction [479]. In this process a
𝛾-ray and an EBL photon in the intergalactic medium may annihilate and produce an electron-positron
pair [480]. The induced attenuation in the spectra of 𝛾-ray sources is characterized by an optical depth
𝜏𝛾𝛾 that scales as 𝑛𝜎𝑇 𝑙 (where 𝑛 is the photon density of the EBL, 𝜎𝑇 is the Thomson cross section, and
𝑙 is the distance from the 𝛾-ray source to Earth). The cosmic evolution and the matter content of the
Universe determine the 𝛾-ray optical depth and the amount of 𝛾-ray attenuation along the line of sight
[32, 481]. Thus a derivation of 𝐻0 can be obtained by measuring the 𝛾-ray optical depth with the 𝛾-ray
telescopes [482]. This derivation is independent and complementary to that based on the distance ladder
and CMB and seems to favor lower values of 𝐻0 as shown in Table 2.1.

21The SPARC catalogue contains 175 nearby (up to distances of ∼ 130 Mpc) late-type galaxies (spirals and irregulars)
[470, 478]. The SPARC data are publicly available at http://astroweb.cwru.edu/SPARC.
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Observational data - Constraints

The analysis by Ref. [481] using extragalactic background light 𝛾 - ray attenuation data from Fermi Large
Area Telescope (Fermi-LAT) derives 𝐻0 = 67.4+6.0

−6.2 km s−1 Mpc−1 and Ω0𝑚 = 0.14+0.06
−0.07. The analysis

by Ref. [32] fitting the > 10 GeV extragalactic background data with modeled extragalactic background
spectrum results in 𝐻0 = 64.9+4.6

−4.3 km s−1 Mpc−1 and Ω0𝑚 = 0.31+0.13
−0.14.

2.2.8 Cosmic chronometers
Cosmic chronometers are objects whose evolution history is known. For instance such objects are some
types of galaxies. The observation of these objects at different redshifts and the corresponding differences
in their evolutionary state has been used to obtain the value of 𝐻(𝑧) at each redshift 𝑧.

The cosmic chronometer technique for the determination of 𝐻0 was originally suggested in Ref. [483]
and is based on the quasi-local (0.07 ≲ 𝑧 ≲ 2.36) measurements along the Hubble flow of the Hubble
parameter expressed as

𝐻(𝑧) = − 1
1 + 𝑧

𝑑𝑧

𝑑𝑡
. (2.40)

Thus, the expansion rate may be obtained by measuring the age difference Δ𝑡 between two old and
passively evolving galaxies22 which are separated by a small redshift interval Δ𝑧, to infer the 𝑑𝑧/𝑑𝑡
[484, 485].

This approach determines the 𝐻0 = 𝐻(𝑧 = 0) independent of the early-Universe physics and is not
based on the distance ladder e.g. [33, 483, 486–488]. The estimated 𝐻0 values are more consistent with
the values estimated from recent CMB and BAO data than those values estimated from SnIa. The value
of 𝐻0 can not be derived using the cosmic chronometers observations alone because there is a background
degeneracy between 𝐻0 and Ω0𝑚 and this degeneracy is broken when these observations are combined.

Observational data - Constraints

In Ref. [486] the value of Hubble constant was found to be 𝐻0 = 68.3+2.7
−2.6 km s−1 Mpc−1 in the flat ΛCDM

model relying on 28𝐻(𝑧) measurements and their extrapolation to redshift zero. Analysing 31𝐻(𝑧) data
determined by the cosmic chronometric (CCH) method, and 5𝐻(𝑧) data by BAO observations and using
the Gaussian Process (GP) method [489–492] to determine a continuous 𝐻(𝑧) function the Hubble con-
stant is estimated to be 𝐻0 ∼ 67 ± 4 km s−1 Mpc−1 by Ref. [33]. Also using the GP an extension of this
analysis by Ref. [488], including the 𝐻(𝑧) measurements obtained from Pantheon compilation and HST
CANDELS and CLASH Multi-Cycle Treasury (MCT) programs, finds 𝐻0 = 67.06 ± 1.68 km s−1 Mpc−1

which is more consistent again with the lower range of values for 𝐻0. The GP method [493] is used as a
’non-parametric’ technique which does not assume any parametrization or any cosmological model (see
Ref. [494], for a discussion about GP as model independent method). The GP modeling approach has
been performed by several authors to reconstruct cosmological parameters and thus to extract cosmolog-
ical information directly from data (see e.g Refs. [495, 496, 496–533]).

Recently, a analysis by Ref. [268] reported 𝐻0 = 67.8+8.7
−7.2 km s−1 Mpc−1 and 𝐻0 = 66.5 ±

5.4 km s−1 Mpc−1 for a generic open wCDM and for a flat ΛCDM respectively. The analysis by Ref.
[268] examine the possible effects that can systematically bias the measurement and can affect the CC
method. It should be pointed out however that the quality and reliability of cosmic chronometer data
has been challenged by some authors. This is partly due to the fact that these datapoints are not model
independent and are obtained by combining several datasets [488]. This has improved significantly in the
context of the aforementioned analysis by Ref. [268] where a detailed study of the covariance matrix and
the effects of systematics has been implemented.

22These galaxies form only a few new stars and become fainter and redder with time. The time that has elapsed since
they stopped star formation can be deduced.
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2.2.9 HII galaxy measurements
The ionized hydrogen gas (HII) galaxies (HIIG) emit massive and compact bursts generated by the
violent star formation (VSF) in dwarf irregular galaxies. The HIIG measurements can be used to probe
the background evolution of the Universe. This method of 𝐻0 determination is based on the standard
candle calibration provided by a 𝐿 − 𝜎 (luminosity-velocity dispersion) relation. This relation exists in
HIIGs and Giant extragalactic HII regions (GEHR) in nearby spiral and irregular galaxies. The turbulent
emission line ionized gas velocity dispersion 𝜎 of the prominent Balmer lines23 H-alpha (𝐻𝛼) and H-beta
(𝐻𝛽) relates with its integrated emission line luminosity 𝐿 [534–543]. The relationship between 𝐿(𝐻𝛽)
and 𝜎(𝐻𝛽) has a small enough scatter to define a cosmic distance indicator (that can be utilized out to
𝑧 ∼ 4) independently of redshift and can be approximated as [537–545]

log𝐿(𝐻𝛽) = 𝜈 log 𝜎(𝐻𝛽) + 𝜅 , (2.41)

where 𝜈 and 𝜅 are constants representing the slope and the logarithmic luminosity at log 𝜎(𝐻𝛽) = 0.
From Eq. (1.54) the luminosity 𝐿(𝐻𝛽) is given by

𝐿(𝐻𝛽) = 4𝜋𝑑2
𝐿𝑙(𝐻𝛽) . (2.42)

Thus using Eq. (2.41), the distance modulus 𝜇 ≡ 𝑚−𝑀 of an HIIG can be obtained [540–545]

𝜇𝑜𝑏𝑠 = 2.5 [𝜈 log 𝜎(𝐻𝛽) + 𝜅− log 𝑙(𝐻𝛽)] − 100.2 . (2.43)

This observational distance modulus can be compared with the theoretical distance modulus. From
the Eq. (2.2) this is given

𝜇𝑡ℎ(𝑧) = 5 log10

[︂
𝑑𝐿(𝑧)
𝑀𝑝𝑐

]︂
+ 25 . (2.44)

Using now the dimensionless Hubble free luminosity distance Eq. (2.3) this can be written as

𝜇𝑡ℎ(𝑧) = 5 log10 [𝐷𝐿(𝑧)] + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 . (2.45)

In order to obtain the best fit values for the parameters Ω0𝑚 and 𝐻0 this theoretical prediction may now
be used to compared with the observed 𝜇𝑜𝑏𝑠 data. Using the maximum likelihood analysis the best fit
values for these parameters may be found in the usual manner by minimizing the quantity

𝜒2(𝐻0,Ω0𝑚) =
∑︁

𝑖

[𝜇𝑜𝑏𝑠,𝑖 − 𝜇𝑡ℎ(𝑧𝑖;𝐻0,Ω0𝑚)]2

𝜀2
𝑖

, (2.46)

where 𝜀𝑖 is the uncertainty of the 𝑖𝑡ℎ measurement.

Observational data - Constraints

Using 156 HII galaxy measurements as a new distance indicator and implementing the model-independent
GP, the Hubble constant was found to be 𝐻0 = 76.12+3.47

−3.44 km s−1 Mpc−1 which is more consistent
with the recent local measurements [546]. Using data of 130 giant HII regions in 73 galaxies with
Cepheid determined distances the best estimate of the Hubble parameter is 𝐻0 = 71.0 ± 2.8 (random) ±
2.1 (systematic) km s−1 Mpc−1 [34].

23The Balmer series, or Balmer lines is one of a set of six named series describing the spectral line emissions of the
hydrogen atom. This is characterized by the electron transitioning from 𝑛 ≥ 3 to 𝑛 = 2 (where n is the principal quantum
number of the electron. The transitions 𝑛 = 3 to 𝑛 = 2 and 𝑛 = 4 to 𝑛 = 2 are called H-alpha and H-beta respectively.
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2.2.10 Combinations of data
The Hubble constant 𝐻0 values at 68% CL through direct and indirect measurements obtained by the
different methods described in this Section 2.2 are shown in Table 2.1 and described in more detail below
in Fig. 2.8. Also the relative probability density value of 𝐻0 was derived by recently published studies
in the literature are shown in Fig. 2.9.

Cosmological parameter degeneracies from each individual probe can be broken using combination of
probes. The multi-probe analysis are crucial for independent 𝐻0 determination and are required in order
to reduce systematic uncertainties [547, 548] (see Ref. [268], for a review).

The analysis by Ref. [28] using a combination of SH0ES and H0LiCOW results reports 𝐻0 = 73.8±1.1
km s−1 Mpc−1 which raises the Hubble tension to 5.3𝜎 between late Universe determinations of 𝐻0 and
Planck. This has been discredited by Ref. [401] who points out that an artificial reduction of the allowed
degrees of freedom can lead to very precise but inaccurate estimates of 𝐻0 based on gravitational lens
time delays.

The analysis by Ref. [549] using a combination of the Dark Energy Survey (DES) [145, 550, 551]
clustering and weak lensing measurements with BAO and BBN experiments assuming a flat ΛCDM model
with minimal neutrino mass (Σ𝑚𝜈 = 0.06 eV) finds 𝐻0 = 67.2+1.2

−1.0 km s−1 Mpc−1 which is consistent
with the value obtained with CMB data.

Using an extension of the standard GP formalism, and a combination of low-redshift expansion rate
data (SnIa+BAO+CC) the Hubble constant was estimated to be 𝐻0 = 68.52+0.94+2.51(sys)

−0.94 km s−1 Mpc−1

by Ref. [526]. Using an alternative method Ref. [552] analysing the current CMB lensing data from Planck
combined with Pantheon supernovae and using conservative priors, finds an 𝑟𝑠 independent constraint
of 𝐻0 = 73.5 ± 5.3 km s−1 Mpc−1. Analysing low-redshift cosmological data from SnIa, BAO, strong
gravitanional lensing, 𝐻(𝑧) measurements using cosmic chronometers and growth measurements from
LSS observations for ΛCDM model Ref. [553] finds 𝐻0 = 70.30+1.36

−1.35 km s−1 Mpc−1 which is in ∼ 2𝜎
tension with various low and high redshift observations.

Table 2.1: The Hubble constant 𝐻0 values at 68% CL through direct and indirect measurements by
different methods.

Dataset 𝐻0 [ km s−1 Mpc−1] Year Refs.

Planck CMB 67.27 ± 0.60 2020 [14]
Planck CMB+lensing 67.36 ± 0.54 2020 [14]

Planck+SPT+ACT CMB 67.49 ± 0.53 2021 [336]
eBOSS+Planck CMB 69.6 ± 1.8 2020 [372]

SPT-3G CMB 68.8 ± 1.5 2021 [337]
ACT CMB 67.9 ± 1.5 2020 [554]

ACT+WMAP CMB 67.6 ± 1.1 2020 [554]
SPT CMB 71.3 ± 2.1 2018 [338]

WMAP9 CMB 70.0 ± 2.2 2013 [335]
BAO+WMAP CMB 68.36+0.53

−0.52 2019 [21]
BOSS correlation function+BAO+BBN 68.19 ± 0.99 2022 [373]

P+BAO+BBN 69.23 ± 0.77 2022 [374]
P+Bispectrum+BAO+BBN 68.31+0.83

−0.86 2022 [375]
BAO+BBN 66.98 ± 1.18 2018 [22]

BOSS DR12+BBN 68.5 ± 2.2 2020 [365]
BOSS DR12+BBN 68.7 ± 1.5 2020 [371]

Continued on next page
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Table 2.1 – continued from previous page

Dataset 𝐻0 [𝑘𝑚 𝑠−1𝑀𝑝𝑐−1] Year Refs.

BOSS DR12+BBN 67.9 ± 1.1 2020 [376]
BOSS+eBOSS+BBN 67.35 ± 0.97 2020 [364]
LSS 𝑡𝑒𝑞 standard ruler 69.5+3.0

−3.5 2022 [377]
LSS 𝑡𝑒𝑞 standard ruler+lensing 70.6+3.0

−5.4 2020 [378]
BAO+RSD 69.13 ± 2.34 2017 [20]

SnIa-Cepheid 73.04 ± 1.04 2022 [23]
SnIa-Cepheid 74.30 ± 1.45 2021 [289]
SnIa-Cepheid 73.20 ± 1.30 2021 [40]
SnIa-Cepheid 74.03 ± 1.42 2019 [39]
SnIa-Cepheid 73.48 ± 1.66 2018 [38]
SnIa-Cepheid 72.80 ± 2.70 2020 [295]
SnIa-Cepheid 73.00 ± 2.70 2020 [295]
SnIa-TRGB 76.94 ± 6.4 2022 [311]
SnIa-TRGB 72.4 ± 3.3 2022 [24]
SnIa-TRGB 71.5 ± 1.8 2021 [308]
SnIa-TRGB 69.8 ± 1.7 2021 [302]
SnIa-TRGB 65.8 ± 4.2 2021 [305]
SnIa-TRGB 72.10 ± 2.10 2020 [307]
SnIa-TRGB 69.60 ± 1.90 2020 [230]
SnIa-TRGB 69.80 ± 1.90 2019 [301]
SnIa-TRGB 71.1 ± 1.9 2019 [227]
SnIa-TRGB 72.40 ± 2.00 2019 [303]
SnIa-Miras 73.30 ± 4.00 2020 [25]

SBF 73.30 ± 2.50 2021 [26]
SBF 70.50 ± 4.10 2020 [236]
SBF 71.90 ± 7.10 2018 [235]
SneII 75.4+3.8

−3.7 2022 [27]
SneII 75.8+5.2

−4.9 2020 [244]
Time-delay (TD) lensing 71.8+3.9

−3.3 2021 [408]
TD lensing 73.3+1.7

−1.8 2020 [28]
TD lensing 72.8+1.6

−1.7 2020 [403]
TD lensing 72.2 ± 2.1 2020 [402]
TD lensing 73.65+1.95

−2.26 2020 [404]
TD lensing 74.2 ± 1.6 2020 [405]
TD lensing 73.6+1.8

−1.6 2021 [409]
TD lensing 74.2+2.7

−3.0 2020 [380]
TD lensing 74.5+5.6

−6.1 2020 [381]
TD lensing+SLACS 67.4+4.1

−3.2 2020 [381]
TD lensing+SLACS 76.8 ± 2.6 2019 [407]
GW Standard Sirens 67+6.3

−3.8 2022 [454]
GW Standard Sirens 68+12

−7 2021 [449]
GW Standard Sirens 72.77+11.0

−7.55 2021 [450]
GW Standard Sirens 73.4+6.9

−10.7 2021 [453]
GW Standard Sirens 75+59

−13 2020 [29]
Continued on next page
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Table 2.1 – continued from previous page

Dataset 𝐻0 [𝑘𝑚 𝑠−1𝑀𝑝𝑐−1] Year Refs.

GW Standard Sirens 50.4+28.1
−19.5 2020 [446]

GW Standard Sirens 67.6+4.3
−4.2 2020 [446]

GW Standard Sirens 48+23
−10 2020 [448]

GW Standard Sirens 69.0+16.0
−8.0 2019 [445]

GW Standard Sirens 75+40
−32 2019 [444]

GW Standard Sirens 68.9+4.7
−4.6 2019 [441]

GW Standard Sirens 77.00+37.00
−18.00 2019 [433]

GW Standard Sirens 70.0+12.0
−8.0 2017 [18]

Masers 73.90 ± 3.00 2020 [30]
Masers 73.50 ± 1.40 2019 [227]
Masers 66.0 ± 6.0 2016 [461]
Masers 73.0+26.0

−22.0 2015 [460]
Masers 68.0 ± 9.0 2013 [459]
Masers 68.9 ± 7.1 2013 [457]

Tully Fisher 76.00 ± 2.60 2020 [31]
Tully Fisher 75.1 ± 2.80 2020 [474]

𝛾-ray attenuation 67.4+6.0
−6.2 2019 [481]

𝛾-ray attenuation 64.9+4.6
−4.3 2019 [32]

HII galaxy 71.00 ± 2.8 2018 [34]
HII galaxy 76.12+3.47

−3.44 2017 [546]
Cosmic chronometers, flat ΛCDM with systematics 66.5 ± 5.4 2022 [268]

Cosmic chronometers, open 𝑤CDM with systematics 67.8+8.7
−7.2 2022 [268]

Cosmic chronometers, without systematics 67.06 ± 1.68 2018 [488]
Cosmic chronometers, without systematics 67.00 ± 4.00 2018 [33]
Cosmic chronometers, without systematics 68.3+2.7

−2.6 2017 [486]

H(z)+BAO+SN-Pantheon+SN-DES+QSO+HIIG+ GRB 69.7 ± 1.2 2022 [555]
CMB (𝑟𝑠-independent)+lensing+Pantheon 73.5 ± 5.3 2021 [552]

SnIa-Cepheid and TD lensing 73.8 ± 1.1 2020 [28]
SnIa+BAO+TD lensing+cosmic chronometers+ LSS 70.30+1.36

−1.35 2019 [553]
BAO+BBN+WL-CC 67.20+1.2

−1.0 2018 [549]
SnIa+BAO+CC 68.52+0.94+2.51(𝑠𝑦𝑠)

−0.94 2018 [526]

More recently, the joint analysis of lower-redshift, non-CMB, data such as BAO, 𝐻(𝑧), SnIa, QSO,
HII and GRBs by Ref. [555] has given a model-independent determinations of the Hubble constant,
𝐻0 = 69.7 ± 1.2 km s−1 Mpc−1 (see also Refs. [556–559], for previous joint analyses).

Many other estimates of 𝐻0 have been obtained in the literature within the standard ΛCDM model
or in alternative scenarios by using joint analysis [509, 512]. In addition, many analyses using various
combinations of data assuming a ΛCDM model or a extended model beyond ΛCDM cosmology investigate
whether the 𝐻0 tension persists (or not). For example Ref. [560] uses non-CMB data and specifically
adopt the data from BAO, BBN, and SnIa to study the 𝐻0 tension. They show that this tension exists
in a broad framework beyond the standard ΛCDM model.
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Haridasu et al. (2018), SnIa+BAO+CC: 68.5±0.94
Abbott et al. (2018), BAO+BBN+WL-CC: 67.2±1.2

Dutta et al. (2019), SnIa+BAO+TD lensing+cosmic chronometers+ LSS: 70.3-1.35
+1.36

Wong et al. (2020), SnIa-Cepheid and TD lensing: 73.8±1.1
Baxter, Sherwin (2021), (rs-independent)+lensing+Pantheon: 73.5±5.3

Cao and Ratra (2022), H(z)+BAO+SN-Pantheon+SN-DES+QSO+HIIG+GRB: 69.7±1.2

Dominguez et al. (2019): 67.4-6.2
+6.0

Zeng, Yan (2019): 64.9-4.3
+4.6

Yu, Ratra, Wang (2018), without systematics: 67.0 ± 4
Gomez-Valent, Amendola (2018), without systematics: 67.06 ± 1.68

Haridasu et al. (2018), without systematics: 68.52 ± 0.94
Moresco et al. (2022), open wCDM with systematics: 67.8-7.2

+8.7
Moresco et al. (2022), flat ΛCDM with systematics: 66.5 ± 5.4

Hotokezaka et al. (2019): 70.3-5.0
+5.3

Mukherjee et al. (2019), GW170817+VLBI: 68.3-4.5
+4.6

Mukherjee et al. (2020), GW170817+ZTF: 67.6-4.2
+4.3

Gayathri et al. (2020), GW190521+GW170817: 73.4-10.7
+6.9

Palmese et al. (2021), GW170817: 72.77-7.55
+11

Abbott et al. (2021), GWTC–3: 68-8.0
+12.0

Mukherjee et al. (2022), GW170817+GWTC–3: 67-3.8
+6.3

Wong et al. (2019), H0LiCOW 2019: 73.3-1.8
+1.7

Shajib et al. (2019), STRIDES: 74.2-3.0
+2.7

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8-1.7

+1.6
Qi et al. (2020): 73.6-1.6

+1.8
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): 73.65-2.26
+1.95

Birrer et al. (2020), TDCOSMO+SLACS: 67.4-3.2
+4.1

Birrer et al. (2020), TDCOSMO: 74.5-6.1
+5.6

Denzel et al. (2021): 71.8-3.3
+3.9

Wang, Meng (2017): 76.12-3.44
+3.47

Fernandez Arenas et al. (2018): 71.0 ± 3.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Reid et al. (2019): 73.5 ± 1.4
Pesce et al. (2020): 73.9 ± 3.0

de Jaeger et al. (2020): 75.8-4.9
+5.2

de Jaeger et al. (2022): 75.4-3.7
+3.8

Cantiello et al. (2018): 71.9 ± 7.1
Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Huang et al. (2019): 73.3 ± 4.0

Yuan et al. (2019), SH0ES: 72.4 ± 2.0
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0
Kim, Kang, Lee, Jang (2020): 65.8 ± 4.2

Freedman (2021): 69.8 ± 1.7
Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8

Jones et al. (2022): 72.4 ± 3.3
Dhawan et al. (2022): 76.94 ± 6.4

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.03 ± 1.42

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2021), R21: 73.2 ± 1.3

Camarena, Marra (2021): 74.30 ± 1.45
Riess et al. (2022), R22: 73.04 ± 1.04

Farren et al. (2021): 69.5-3.5
+3.0

Philcox et al. (2020), Pl (k)+CMB lensing: 70.6-5.0
+3.7

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5
D' Amico et al. (2020), BOSS DR12+BBN: 68.5 ± 2.2

Philcox, Ivanov (2022), P+Bispectrum+BAO+BBN: 68.31-0.86
+0.83

Chen et al. (2022), P+BAO+BBN: 69.23±0.77
Zhang et al. (2022), BOSS correlation function+BAO+BBN: 68.19±0.99

Hinshaw et al. (2013), WMAP9: 70.0 ± 2.2
Henning et al. (2018), SPT: 71.3 ± 2.1

Zhang, Huang (2019), WMAP9+BAO: 68.36-0.52
+0.53

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5
Dutcher et al. (2021), SPT: 68.8 ± 1.5

Ade et al. (2016), Planck 2015: 67.27 ± 0.66
Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60
Pogosian et al. (2020), eBOSS+Planck mH2: 69.6 ± 1.8

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.5
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Figure 2.8: The Hubble constant 𝐻0 values with the 68% CL constraints derived by recent measurements.
The value of the Hubble constant 𝐻0 is derived by early time approaches based on sound horizon, under
the assumption of a ΛCDM background.
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Figure 2.9: The one dimensional relative probability density value of 𝐻0 derived by recent measurements
(Planck CMB [14], ACT+WMAP CMB [19], BAO+RSD [20], BAO+WMAP CMB [21], BAO+BBN [22],
SnIa-Cepheid [23], SnIa-TRGB [24], SnIa-Miras [25], SBF [26], SneII [27], TD lensing [28], GW Standard
Sirens [29], Masers [30], Tully Fisher [31], 𝛾-ray attenuation [32], cosmic chronometers [33], HII galaxy
[34]). All measurements are shown as normalized Gaussian distributions. Notice that the tension is not
so much between early and late time approaches but more between approaches that calibrate based on
low 𝑧 (𝑧 ≲ 0.01) gravitational physics and those that are independent of this assumption. For example
cosmic chronometers and 𝛾-ray attenuation which are late time but independent of late gravitational
physics are more consistent with the CMB-BAO than with late time calibrators.
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Figure 2.10: The Hubble constant as a function of publication date, using a set of different tools. Symbols
in orange denote values of 𝐻0 determined in the late Universe with a calibration based on the Cepheid
distance scale (Key Project (KP) [35], SH0ES [17, 23, 36–40], Carnegie Hubble Program (CHP) [41]).
Symbols in purple denote derived values of 𝐻0 from analysis of the CMB data based on the sound
horizon standard ruler (First Year WMAP (WMAP1) [42], Three Year WMAP (WMAP3) [43], Five
Year WMAP (WMAP5) [44], Seven Year WMAP (WMAP7) [45], Nine Year WMAP (WMAP9) [46],
Planck13 (P13) [47], Planck15 (P15) [16], Planck18 (P18) [14], BAO [22]). The orange and purple shaded
regions demonstrate the evolution of the uncertainties in these values which have been decreasing for both
methods. The most recent measurements disagree at greater than 5𝜎.
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Figure 2.11: Left panel: The comoving Hubble parameter as a function of redshift. The black line
corresponds to the best fit obtained from the Planck18 CMB when the ΛCDM model is considered,
while the grey areas are the 1𝜎 regions. The blue point at redshift zero denotes the inferred Hubble
measurement by HST survey [39]. The orange points, green point, and yellow points correspond to
BAO data from BOSS DR12 survey [48], BOSS DR14 quasar sample [49], and SDSS DR12 Ly𝛼 sample
[38] respectively. The arrows indicate approaches for the resolution of the Hubble tension: Down arrow
(blue) corresponds to decrease of the Riess et. al. (2019) datapoint due to systematics or transition of
the absolute magnitude 𝑀 (light blue arrow). Up arrow (black) corresponds to recalibration of 𝑟𝑠 which
shifts the whole curve up or and late time deformation of 𝐻(𝑧) (adapted from Ref. [14]). Right panel:
The comoving Hubble parameter as a function of redshift for a wCDM phantom modification of ΛCDM
model which drives upward the low 𝑧 part of the 𝐻(𝑧) curve shown in left panel. Thus it brings the 𝑧 = 0
prediction of the CMB closer to the 𝐻0 result of the local measurements (late time 𝐻(𝑧) deformation).

2.2.11 The current status - Historic evolution
Hubble’s initial value in 1929 for the expansion rate, now called the Hubble constant, was approximately
500 km s−1 Mpc−1. From the 1970s, through the 80s and into the 90s the value of 𝐻0 was estimated
to be between 50 and 100 km s−1 Mpc−1 [561]. Of interest is the historical Hubble constant debate
between, for example, long series of papers by Gérard de Vaucouleurs, who claimed that the value of
𝐻0 is 90 < 𝐻0 < 100 km s−1 Mpc−1 e.g. [562, 563], and Allan Sandage , who claimed the value is
50 < 𝐻0 < 55 km s−1 Mpc−1 [564, 565] (see Ref. [566], for a historical review).

During the last decades there has been remarkable progress in measuring the Hubble constant. The
available technology and measurement methods determine the accuracy of this quantity. The Hubble
constant as a function of publication date, using a set of different methods is shown in Fig. 2.10. The
values of 𝐻0 determined in the late Universe with a calibration based on the Cepheid distance scale and
the derived values of 𝐻0 from analysis of the CMB anisotropy spectrum data are shown. The uncertainties
in these values have been decreasing for both methods and the recent measurements disagree beyond 4𝜎.

Furthermore the comoving Hubble expansion rate as a function of redshift obtained from the Planck18
CMB is shown in Fig. 2.11 along with a few relevant data-points demonstrating the Hubble tension.

The basic strategic questions emerge

• How can 𝐻(𝑧) derived from Cepheid late time calibrators (blue point in Fig. 2.11) become consistent
with 𝐻(𝑧) derived from the sound horizon early time calibrator (black line in Fig. 2.11)?

• What type of systematics could move the blue point down or shift black line up in Fig. 2.11 in
early and late time calibrators?

• To what extend can dynamical dark energy address the Hubble tension by distorting the black line
in Fig. 2.11?
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Figure 2.12: The predicted value of ℎ as a function of the fixed 𝑤 assuming one parameter dark energy
(wCDM) model. The theoretically predicted best fit values of ℎ for different values of 𝑤 in the case of
the wCDM model (orange line), whereas the linear fitting that has been made (dashed blue line). The
redpoints correspond to the actual best fit values, including the errorbars, of ℎ for specific values of 𝑤
obtained by fitting these models to the CMB TT anisotropy (from Ref. [50]).

These important Hubble tension questions will be discussed in the next subsection.

2.3 Theoretical models
A wide range of models have been used to address the 𝐻0 tension by introducing additional degrees of
freedom to ΛCDM model where additional parameters are allowed to vary such as quintessence [567–
581], in which a scalar field plays the role of dark energy or modified gravity [582–587], in which General
Relativity is modified on cosmological scales (see Refs. [135, 588], for a review).

The extensions of ΛCDM model which can be used to resolve the Hubble constant 𝐻0 tension fall
into two categories: models with late time and models with early time modification (in the epoch before
the recombination) (see Refs. [127, 128, 185], for a review).

The models with late time modification can be divided in four broad classes: deformations of the
Hubble expansion rate 𝐻(𝑧) at late times e.g. late time phantom dark energy [50, 184], deformations
of the Hubble expansion rate 𝐻(𝑧) with additional interactions/degrees of freedom e.g. interacting
dark energy [589, 590] and decaying dark matter [591]), deformations of the Hubble expansion rate
𝐻(𝑧) due to inhomogeneous/anisotropic modifications e.g. inhomogeneous causal horizons [592] and
transition/recalibration of the SnIa absolute luminosity [12] or combination of the previous classes e.g.
late 𝑤 −𝑀 phantom transition [593].

Model selection statistical tools and approaches include the Akaike Information Criterion (AIC) [594],
the Bayesian Information Criterion (BIC) [595] and the Deviance Information Criterion (DIC) [596] and
Bayesian model comparison e.g. [63, 597–600]. These tools have been developed and used to test,
discriminate and compare the proposed models [62, 601–603] (see also Ref. [10], for a list of statistical
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tools).

2.3.1 Late time deformations of the Hubble expansion rate 𝐻(𝑧)
These late time models for the solution of the Hubble tension use a late time smooth deformation of
the Hubble expansion rate Planck18/ΛCDM 𝐻(𝑧) so that it can match the locally measured value of
𝐻0 while keeping the radius 𝑟𝑠 of the sound horizon at the last scattering surface (see Subsection 2.2.2).
Many of these models effectively fix the comoving distance to the last scattering surface and the matter
energy density 𝜔𝑚 = Ω0𝑚ℎ

2 to values consistent with Planck/ΛCDM to maintain consistency with the
CMB anisotropy spectrum while introducing late time phantom dark energy to deform 𝐻(𝑧) so that it
matches the local measurements of 𝐻(𝑧). The required phantom behavior of such 𝐻(𝑧) deformations can
not be provided by minimally coupled quintessence models and therefore such models have been shown
to be unable to resolve the Hubble tension [604, 605]. These models have three problems

• They tend to worsen the fit to low z distance probes such as BAO and SnIa e.g. [50]

• They tend to worsen level of the growth tension [606].

• They tend to predict a lower value of SnIa absolute magnitude than the one determined by local
Cepheid calibrators shown in Eq. (2.2) [52, 269, 289].

Thus, these models can not fully resolve the Hubble tension [328, 477, 495, 496, 607–616].
Physical models where the deformation of 𝐻(𝑧) may be achieved include the following: phantom

dark energy e.g. [50], running vacuum model e.g. [617], phenomenologically emergent dark energy [618],
vacuum phase transition e.g. [619], phase transition in dark energy e.g. [620]. Plethora of late dark
energy models with an equation of state 𝑤 ̸= −1 (𝑤 < −1 or 𝑤 > −1) both constant or dynamical with
redshift e.g. [621] were proposed to address the Hubble tension. Recently, using a model-independent
approach and a fully analytical analysis Refs. [622, 623] derived a set of necessary conditions that any
late dark energy model must satisfy in order to potentially address both the Hubble and the growth
tensions. In particular, solving the 𝐻0 tension requires 𝑤(𝑧) < −1 at some 𝑧 and solving both the 𝐻0
and 𝜎8 tensions demands time-varying dark energy equation of state which cross the phantom divide.
However Ref. [606] has shown that 𝐻(𝑧) deformation approaches to the Hubble tension tend to worsen
the 𝜎8 growth tension.

The following models may be classified in this class of theories: the holographic dark energy [624–631],
the considering Chevallier - Polarski - Linder (CPL) [632–634] parameterization [635], the considering
𝑤 dependence on non-vanishing spatial curvature [636], the phantom brane dark energy [637, 638], the
negative cosmological constant [639–641], the negative dark energy [642], the graduated dark energy [643],
the simple-graduated dark energy [644], the ΛsCDM model (sign-switching) [645], the transitional dark
energy [646], the frame dependent dark energy [647], the running 𝐻0 with redshift [648, 649], the varying
gravitational constant [650], the deviation from the cold dark matter [651] and the phantom crossing
[652]. For example in the case of the holographic dark energy model [625] and phantom crossing [652]
models the tension on 𝐻0 appears to be significantly alleviated within 1𝜎 even though the three problems
mentioned above do remain.

Phantom dark energy

The deformation of 𝐻(𝑧) through the implementation of late time phantom dark energy [50, 184, 653–656]
can address the Hubble tension as shown in Fig. 2.11.

The analysis by Ref. [50] indicates that mildly phantom models with mean equation of state parameter
𝑤 = −1.2 have the potential to alleviate this tension. It was shown that the best fit value of 𝐻0 in
the context of the CMB power spectrum is degenerate with a constant equation of state parameter 𝑤.
The CMB anisotropy spectrum was shown to be unaffected when changing 𝐻(𝑧) provided that specific
parameter combinations remain unchanged. These cosmological parameters fix to high accuracy the form
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Figure 2.13: The predicted form of the CMB TT anisotropy spectrum with 𝑤 = −1, ℎ = 0.67, Ω0𝑚 =
0.314 for ΛCDM (blue line) and with 𝑤 = −1.2, ℎ = 0.74, Ω0𝑚 = 0.263 (green line). Red points
correspond to the binned high-𝑙 and low-𝑙 Planck data (from Ref. [50]).

of the CMB anisotropy spectrum. The values of these parameters as determined by the Planck/ΛCDM
CMB temperature power spectrum are the following [14].

𝜔𝑚,𝑃 𝑙𝑎𝑛𝑐𝑘 = 0.1430 ± 0.0011 , (2.47)
𝜔𝑏,𝑃 𝑙𝑎𝑛𝑐𝑘 = 0.02237 ± 0.00015 , (2.48)
𝜔𝑟,𝑃 𝑙𝑎𝑛𝑐𝑘 = (4.64 ± 0.3) 10−5 , (2.49)
𝜔𝑘,𝑃 𝑙𝑎𝑛𝑐𝑘 = −0.0047 ± 0.0029 , (2.50)
𝑑𝐴,𝑃 𝑙𝑎𝑛𝑐𝑘 = (4.62 ± 0.08) ( km s−1 Mpc−1)−1 , (2.51)

where 𝜔𝑖,𝑃 𝑙𝑎𝑛𝑐𝑘 = Ω0𝑖,𝑃 𝑙𝑎𝑛𝑐𝑘ℎ
2 is the energy density of component 𝑖 and 𝑑𝐴,𝑃 𝑙𝑎𝑛𝑐𝑘 is the comoving angular

diameter distance.
Using the Eq. (1.57) the comoving angular diameter distance 𝑑𝐴 to the recombination surface is

(𝑐 = 1)
𝑑𝐴 =

∫︁ 𝑧𝑟

0

𝑑𝑧

𝐻(𝑧) =
∫︁ 𝑧𝑟

0

𝑑𝑧

ℎ(𝑧) 100 km s−1 Mpc−1 , (2.52)

where 𝑧𝑟 ≃ 1100 is the redshift of recombination and ℎ(𝑧) = 𝐻(𝑧)( 100 km s−1 Mpc−1)−1 is the dimen-
sionless Hubble parameter which in general takes the form

ℎ(𝑧) =
[︀
𝜔𝑟(1 + 𝑧)4 + 𝜔𝑚(1 + 𝑧)3 + (ℎ2 − 𝜔𝑟 − 𝜔𝑚)𝑓𝐷𝐸(𝑧)

]︀1/2
, (2.53)

where ℎ = ℎ(𝑧 = 0) and 𝑓𝐷𝐸(𝑧) determines the evolution of dark energy.
In the context of a simple one parameter parametrization where the equation of state 𝑤 remains

constant in time and redshift (wCDM model), 𝑓𝐷𝐸(𝑧) takes the simple form

𝑓𝐷𝐸(𝑧) = (1 + 𝑧)3(1+𝑤) . (2.54)

If the four energy densities Eqs. (2.47), (2.48), (2.49) and (2.50) and the observed value of the comoving
angular diameter Eq. (2.51) are fixed then they provide the analytically predicted best fit value of the
Hubble parameter 𝐻0 (or ℎ) given the dark energy equation of state parameter 𝑤(𝑤0, 𝑤1, ..., 𝑧) where
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𝑤0, 𝑤1,... are the parameters entering the 𝑤(𝑧) parametrization. Thus assuming a flat Universe (𝜔𝑘 = 0)
and solving the following equation with respect to ℎ

𝑑𝐴(𝜔𝑚,𝑃 𝑙𝑎𝑛𝑐𝑘, 𝜔𝑟,𝑃 𝑙𝑎𝑛𝑐𝑘, 𝜔𝑏,𝑃 𝑙𝑎𝑛𝑐𝑘, ℎ = 0.674, 𝑤 = −1) = 𝑑𝐴(𝜔𝑚,𝑃 𝑙𝑎𝑛𝑐𝑘, 𝜔𝑟,𝑃 𝑙𝑎𝑛𝑐𝑘, 𝜔𝑏,𝑃 𝑙𝑎𝑛𝑐𝑘, ℎ, 𝑤) ,
(2.55)

it is straightforward to derive the degeneracy function ℎ(𝑧 = 0, 𝑤) ≡ ℎ shown in Fig. 2.12 (continuous
orange line). In the range 𝑤 ∈ [−1.5,−1], ℎ(𝑤) is approximated as a straight line (dashed blue line in
Fig. 2.12)

ℎ(𝑤) ≈ −0.3093𝑤 + 0.3647 . (2.56)

For 𝑤 = −1, this linear degeneracy equation leads to the best fit dimensionless Hubble constant
ℎ = 0.674 as expected while for 𝑤 = −1.217 the corresponding predicted CMB best fit is ℎ = 0.74
which is consistent with the value obtained by local distance ladder measurements. The invariance
of the CMB power spectrum when the cosmological parameters are varied along the above described
degeneracy directions is shown in Fig. 2.13. This method of Ref. [50] can be used to find general
degeneracy relations between 𝑓𝐷𝐸(𝑧) and 𝐻0 and fixing ℎ = 0.74 gives infinite 𝑓𝐷𝐸(𝑧), 𝑤(𝑧) forms that
can potentially resolve the 𝐻0 problem if they can also properly fit the low 𝑧 date (e.g. BAO, SnIa,
Cepheid value of absolute luminosity 𝑀). Low 𝑧 distance data (BAO and SnIa) will determine which one
of these forms is observationally favored. However, none of these forms can provide a quality of fit to low
z data equally good or better than ΛCDM despite the introduced additional parameters. In addition,
these models suffer from the other two problems mentioned above (worse growth tension and lower value
of SnIa absolute magnitude).

Running vacuum model

The running vacuum models (RVM) [617, 657–662, 662–676] (see Refs. [136, 677–683], for a review)
attempts to address both the Hubble constant 𝐻0 tension [684] and the 𝜎8 growth tension using a
mechanism that has common features with the IDE models e.g. [685–690] (for relaxing the growth
tension, see Subsection 3.1.2).

The RVM of the cosmic evolution is well motivated by the generic idea of renormalization group
formalism which is used in Quantum Field Theory (QFT) [691–693] (see also Refs. [669, 694], for a
approach using adiabatic regularization and renormalization techniques). In the RVM the cosmological
constant, the corresponding vacuum energy density and pressure are assumed to be functions of the
Hubble rate e.g. a power series of the Hubble rate and its cosmic time derivative with even time derivatives
of the scale factor [695]

Λ = 𝑎0 +
∑︁
𝑘=1

𝑎𝑘𝐻
2𝑘 +

∑︁
𝑘=1

𝑏𝑘𝐻̇
𝑘 , (2.57)

𝜌Λ = 𝜌Λ(𝐻) = Λ(𝐻)
8𝜋𝐺 and 𝑝Λ = 𝑝Λ(𝐻) = −𝜌Λ(𝐻) respectively.

For the current Universe the vacuum energy density can be written in the relatively simple form e.g.
[679, 684, 695, 696]

𝜌Λ(𝐻) = Λ(𝐻)
8𝜋𝐺 = 3

8𝜋𝐺 (𝑐0 + 𝜈𝐻2) , (2.58)

where 𝑐0 = 𝐻2
0 (Ω0Λ − 𝜈) ≃ Λ0

3 (with Λ0 the current value) is an integration constant which is fixed by
the boundary condition 𝜌Λ(𝐻0) = 𝜌Λ,0 (with 𝜌Λ,0 the current value) and 𝜈 is a dimensionless running
parameter which characterizes the dynamics of the vacuum at low energy. For 𝜈 = 0 the vacuum energy
remains constant at all times and for 𝜈 > 0 the vacuum energy density decreases with the time. In QFT
the running parameter is |𝜈| ≃ 10−6 − 10−3 [691] but in RVM it has been treated as a free parameter by
fitting to the observational data e.g. [695, 696].
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Phenomenologically emergent dark energy

Phenomenologically emergent dark energy (PEDE) is a zero freedom dark energy scenario proposed by
Ref. [618]. In this model the dark energy density has the following form

Ω̃𝐷𝐸(𝑧) = Ω0𝐷𝐸 [1 − tanh (log10(1 + 𝑧))] , (2.59)

where Ω0𝐷𝐸 = 1 − Ω0𝑚 − Ω0𝑟.
The dark energy in this model has no effective presence in the past and emerges at the later times

and with the same number (six) of parameters compared to the spatially flat ΛCDM scenario. It has the
potential for alleviating the 𝐻0 tension [618, 697–702]. The generalised emergent dark energy (GEDE)
model has one extra dimensionless free parameter Δ including both ΛCDM model as well as the PEDE
model as two of its special limits introduced by Ref. [703]. In the GEDE model the dark energy density
has the following form [704]

Ω̃𝐷𝐸(𝑧) = Ω0𝐷𝐸

1 − tanh
(︁

Δ log10( 1+𝑧
1+𝑧𝑡

)
)︁

1 + tanh (Δ log10(1 + 𝑧𝑡))
, (2.60)

where 𝑧𝑡 is the transition redshift where dark energy density equals to matter density. For Δ = 0 and
Δ = 1 this model recovers ΛCDM and PEDE model respectively. Using the latest observational Hubble
dataset [705] revisited and constrained the free parameters of the PEDE and GEDE models.

Other versions of the PEDE model are the Modified Emergent Dark Energy (MEDE) [706] and the
Transitional Dark Energy (TDE) [707] models. The MEDE model with one extra degree of freedom
reduces the Hubble tension to 2.4𝜎 [706] even though it also suffers from the three problems of the late
time 𝐻(𝑧) deformation models.

Vacuum phase transition

Vacuum phase transition [619, 702, 708, 709] based on vacuum metamorphosis (VM) or vacuum cold
dark matter model (VCDM) [710–712] has the potential to address the 𝐻0 tension. This mechanism with
six free parameters as the spatially flat ΛCDM. It also assumes a phase transition in the nature of the
vacuum similar to Sakharov’s induced gravity [713]. The phase transition occurs when the evolving Ricci
scalar curvature 𝑅 becomes equal to the value of scalar field mass squared 𝑚2 [619]

𝑅 = 6(𝐻̇ +𝐻2) = 𝑚2 , (2.61)

where the dot corresponds to the derivative with respect to cosmic time 𝑡. After the transition the Ricci
scalar curvature remains constant with 𝑅 = 𝑚2 and this changes the expansion rate below (𝑧 < 𝑧𝑡) due
to the phase transition

𝐻2

𝐻2
0

= Ω0𝑚(1 + 𝑧)3 + Ω0𝑚(1 + 𝑧)3 +𝑀

⎧⎨⎩1 −

[︃
3
(︂

4
3Ω0𝑚

)︂4
𝑀(1 −𝑀)3

]︃−1
⎫⎬⎭ , 𝑧 > 𝑧𝑡 , (2.62)

𝐻2

𝐻2
0

= (1 −𝑀)(1 + 𝑧)4 +𝑀, 𝑧 ≤ 𝑧𝑡 , (2.63)

where 𝑀 = 𝑚2

12𝐻2
0

and 𝑧𝑡 = −1 + 3Ω0𝑚

4(1−𝑀) is the transition redshift.

Phase transition in dark energy

• Phase transition in dark energy explored by [620, 714–716] can address the Hubble tension. Gen-
eralizing this model by assigning a more realistic time evolution of dark energy Ref. [717] proposes
the critically emergent dark energy (CEDE) model.
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In Ref. [718] the form of phase transition parametrized phenomenologically by a hyperbolic tangent
function. This scenario for dark energy is similar used independently as PEDE and GEDE.

• Late dark energy (LDE) transition [609] at redshifts 𝑧 ≪ 0.1 can reduce the Hubble tension. This
class of 𝐻(𝑧) deformation models has a more intense form of the third problem of the deformation
class as they predict a significantly lower value of the SnIa absolute magnitude than the other 𝐻(𝑧)
deformation models [289, 593].
In this scenario the true Hubble constant is given by [609, 719]

𝐻2
0 = 𝐻̃2

0 (1 + 2𝛿) , (2.64)

where 𝐻̃0 is the prediction for a flat ΛCDM model in the context of a CMB sound horizon calibration.
In Refs. [609, 720] it was shown that this model can not fully resolve the Hubble problem as it
would imply a transition in the SnIa apparent magnitude which is not observed. These models
however become viable in the context of a SnIa absolute magnitude transition [52, 593].

2.3.2 Deformations of the Hubble expansion rate 𝐻(𝑧) with additional inter-
actions/degrees of freedom

There exist several varieties of the models for the solution of the Hubble tension which use deformations
of the Hubble expansion rate 𝐻(𝑧) with additional interactions/degrees of freedom. For example the
interacting dark energy models e.g. [589, 590] with an extra non-gravitational interaction between the
components of the Universe and the decaying dark matter models e.g. [591] with additional degrees of
freedom are able to alleviate the Hubble constant 𝐻0 tension.

The following models may be classified in this class of theories: multi-interacting dark energy [721],
new interacting dark energy [722], interacting vacuum energy [723], metastable dark energy [724, 725],
Quintom dark energy [726], cannibal dark matter [727], baryons-dark energy interacting [728] [see also
729, 730], swampland conjectures [731–733], nonlocal gravity [734, 735], late time transitions in the
quintessence field [736], Galileon gravity [737–741], 𝑓(𝑅) gravity [742–745], 𝑓(𝑇 ) gravity [497, 532, 746–
752], 𝑓(𝑇,𝐵) gravity [753], 𝑓(𝑄) gravity [754], Brans-Dicke gravity [755, 756], minimal theory of massive
gravity [757], scale–dependent gravity [758], unimodular gravity [759, 760], the screened fifth forces
[761, 762], the minimally modified gravity [763], the Lifshitz cosmology [764], the Milne cosmology [765],
4D Gauss-Bonnet gravity [766], the generalized Chaplygin gas [767], the unified cosmologies [768], the Λ-
gravity [769, 770], the Λ(𝑡)-model [771, 772], the bulk viscous cosmology [773–776] and the surface tension
hypothesis [777]. For instance in the case of the metastable dark energy [725], generalized Chaplygin gas
[767] and Galileon gravity [737] models the tension on 𝐻0 appears to be significantly alleviated to within
about 1𝜎 even though the there problems of the 𝐻(𝑧) deformation models remain to be addressed.

Interacting dark energy

In the cosmological interacting dark energy (IDE) models [589, 590, 778–819] (see Refs. [820, 821], for a
review) the dark components of the Universe i.e dark matter (DM) and dark energy (DE) have an extra
non-gravitational interaction. The IDE model was proposed to address the coincidence problem e.g. [822–
830]. In addition the interaction between the dark fluids has been shown to be effective in substantially
alleviating the Hubble constant 𝐻0 tension [589, 590, 792, 799, 800, 814, 819, 831–836] or in addressing
the structure growth 𝜎8 tension between the values inferred from the CMB and the WL measurements
[837–840] (see Subsection 3.1.2) or in solving the two tensions simultaneously [794, 804, 809].

In IDE cosmology assuming spatially flat Friedmann-Lemaß̂tre-Roberson-Walker background and
pressureless dark matter (𝑤𝑐 = 0) the equations of evolution of the dark matter and dark energy densities
𝜌𝑐 and 𝜌𝐷𝐸 respectively are given by [841]

𝜌̇𝑐 + 3𝐻𝜌𝑐 = 𝑄(𝑡) , (2.65)
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𝜌̇𝐷𝐸 + 3𝐻(1 + 𝑤𝐷𝐸)𝜌𝐷𝐸 = −𝑄(𝑡) , (2.66)

where the dot corresponds to the derivative with respect to cosmic time 𝑡, 𝑤𝐷𝐸 = 𝑝𝐷𝐸

𝜌𝐷𝐸
is the equation

of state of dark energy and 𝑄 represents the interaction rate between the dark sectors (i.e. the rate
of energy transfer between the dark fluids). For 𝑄 < 0 energy flows from dark matter to dark energy,
whereas for 𝑄 > 0 the energy flow is opposite.

These models combine the deformation of 𝐻(𝑧) with an extra modification of the growth rate of
perturbations due to the tuned evolution of Ω𝑚(𝑧) induced by the interaction term 𝑄. This additional
tuning allows for a simultaneous improvement of the growth tension in contrast to models that involve a
simple 𝐻(𝑧) deformation.

Various phenomenological IDE models were proposed in the literature where the rate of the interaction
𝑄 has a variety of possible functional forms [842]. For example in some classes of IDE models the rate of
the interaction 𝑄 is proportional to the energy density of dark energy 𝑄 = 𝛿 𝐻𝜌𝐷𝐸 [590, 794, 804, 809]
or cold dark matter 𝑄 = 𝛿 𝐻𝜌𝑐 [792] (where 𝛿 is a constant and 𝛿 = 0 in the ΛCDM cosmology), or some
combination of the two. Note that in the case of functional form 𝑄 = 𝛿 𝐻𝜌𝑐 instabilities develop in the
dark sector perturbations at early times [843].

Decaying dark matter

Decaying dark matter into dark radiation (i.e. an unknown relativistic species that is not directly de-
tectable), which has been first analysed by Ref. [844] and studied by Refs. [845–853], provides a promising
scenario to relieve the Hubble constant 𝐻0 tension e.g. [591]. Also, it has been shown that this scenario
can resolve the 𝜎8 growth tension [854, 855] or the two tensions simultaneously [856] by a similar mecha-
nism as in the IDE models. However, using the Planck data the analysis of the model by Refs. [857, 858]
has shown that the cosmological tensions are only slightly alleviated (see Ref. [859], for a different result).

In these models assuming spatially flat Friedmann-Lemaß̂tre-Roberson-Walker Universe, pressureless
dark matter, 𝑤𝑐 = 0 and equation of state of dark radiation 𝑤𝐷𝑅 = 1/3, the equations of evolution of
the dark matter and dark radiation densities 𝜌𝑐 and 𝜌𝐷𝑅 respectively are given by [841]

𝜌̇𝑐 + 3𝐻𝜌𝑐 = −Γ𝜌𝑐 , (2.67)

𝜌̇𝐷𝑅 + 4𝐻𝜌𝐷𝑅 = Γ𝜌𝑐 , (2.68)

where Γ = 1
𝜏 is the decay rate of dark matter particles (with 𝜏 the particle’s lifetime). In the literature a

variety of possible functional forms of the decay rate has been explored [854, 857, 859, 860]. For example
in some cases the decay rate is proportional to the Hubble rate, Γ ∝ 𝐻 [856]. Constraints on the decay
rate of dark matter have been obtained by the analysis of Refs. [854, 861].

A model with decaying dark matter into dark radiation in early/late Universe (𝜏 ≪ 𝑡𝑠 / 𝜏 ≫ 𝑡𝑠,
where 𝑡𝑠 is the time of last scattering) increases/decreases the expansion rate 𝐻(𝑎; 𝜌𝑏, 𝜌𝛾 , 𝜌𝑐, 𝜌𝐷𝑅, 𝜌𝐷𝐸)
at high/low redshifts as it predicts a smaller matter content and a larger radiation content as time
evolves (the early/late Universe is dominated by the radiation/matter and the dark radiation density
decreases more rapidly than the matter density, 𝜌𝐷𝑅 ∝ 𝑎−4 and 𝜌𝑐 ∝ 𝑎−3). In the case of 𝜏 ≪ 𝑡𝑠, the
faster cosmological expansion 𝐻(𝑧) decreases the scale of the sound horizon 𝑟𝑠 in Eq. (2.17) because the
baryon-to-photon ratio, and thus 𝑐𝑠 in Eq. (2.18), is tightly constrained by CMB fluctuations and BBN
[862]. In the context of the degeneracy 𝐻0𝑟𝑠 shown in Eq. (2.19) the lower scale of the sound horizon 𝑟𝑠

yields a larger value of 𝐻0. In the case of 𝜏 ≫ 𝑡𝑠, the lower dimensionless normalized Hubble rate 𝐸(𝑧) in
the late-time leads to a larger value of 𝐻0 since 𝜃𝑠 and 𝑟𝑠 must be kept fixed in Eq. (2.19). Accordingly,
both early and late decaying dark matter model are able to alleviate the Hubble constant 𝐻0 tension (see
Refs. [863, 864], for a detailed discussion).

There are alternative decaying dark matter models such as the light dark matter [865], the dynamical
dark matter [866], the many-body or 2-body decaying cold dark matter scenarios [867] and the decaying
warm dark matter scenario [868]. In the 2-body decaying cold dark matter scenario the decaying dark
matter produces two particles, one massive warm dark matter particle and one massless relativistic
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particle (dark radiation). This scenario can address the Hubble constant 𝐻0 tension [869–871] and the
𝜎8 growth tension [872].

A self-interacting dark matter model with a light force mediator coupled to dark radiation studied
by Refs. [873, 874]. This model can simultaneously reduce the tension between CMB and low-redshift
astronomical observations of 𝐻0 and 𝜎8.

Ref. [875] pointed out that a dark particle from reheating [876] can alleviate the 𝐻0 tension through
its decay to relativistic component which contributes to the dark radiation.

Recently, Ly-𝛼 constraints on possible models of dark-matter physics have been evaluated by Ref.
[877]. In particular the Ly-𝛼 bounds on different classes of dark-matter velocity distributions have been
obtained.

2.3.3 Deformations of the Hubble expansion rate 𝐻(𝑧) with inhomoge-
neous/anisotropic modifications

Models where the cosmological principle and the FLRW metric are relaxed by considering inhomoge-
neous/anisotropic modifications have the potential to resolve the Hubble problem [878]. Physical models
where the deformation of 𝐻(𝑧) may be achieved with inhomogeneous/anisotropic modifications, include
the following: Chameleon dark energy e.g. [879], cosmic voids [880] and inhomogeneous causal horizons
[592], charged dark matter [881–883], Bianchi type I spacetime [884] and emerging spatial curvature
[885, 886].

Chameleon dark energy

Chameleon dark energy [887, 888] (see also Refs.[889–897]) attempts to address the Hubble constant
𝐻0 tension by introducing a cosmic inhomogeneity in the Hubble expansion rate at late-time from the
chameleon field coupled to the local matter overdensities [879]. This field trapped at a higher potential
energy density acts as an effective cosmological constant and results in a faster local expansion rate than
that of the background with lower matter density.

Cosmic voids

In cosmic void models the local 𝐻0 departs significantly from the cosmic mean 𝐻0 because of the presence
of an under-dense region (local void) [898]. However in Refs. [880, 899] it was shown that this alternative
theory is inconsistent with current observations. The analysis was based on the assumption of the validity
of standard ΛCDM and a study of the sample variance in the local measurements of the Hubble constant
this alternative theory has been shown inconsistent with current observations. Ref. [880] estimated
that the required radius of void to resolve the tension in 𝐻0 is about 150 Mpc and density contrast of
𝛿 ≡ 𝜌−𝜌

𝜌 ≃ −0.8 which is inconsistent at ∼ 20𝜎 with the ΛCDM cosmology [899, 900].
In the context of this inconsistency, Ref. [900] considered a cosmological Milgromian dynamics or

modified Newtonian dynamics (MOND) model [901] with the presence of 11eV/c2 sterile neutrinos24 to
show that the Keenan-Barger-Cowie (KBC) void25 has the potential to resolve the Hubble tension.

Inhomogeneous Causal Horizons

Ref. [592] proposed a simple solution to the 𝐻0 tension based on causally disconnected regions of the
CMB temperature anisotropy maps from Planck [908]. It was pointed out that CMB maps show ’causal
horizons’ where cosmological parameters have distinct values. This could be justified by the fact that
these regions of the Universe have never been in causal contact. Thus it was shown that the Hubble
constant 𝐻0 takes values which differ up to 20% among different causally disconnected regions. These

24Sterile neutrinos are a special kind of neutrino with right handed chirality that might interact only through gravity
[902, 903] (see Refs. [904–906], for a review). They have been proposed to resolve some anomalies in neutrino data.

25The KBC void [907] is a large local underdensity between 40 and 300 Mpc (i.e. 0.01 ≲ 𝑧 ≲ 0.07) around the Local
Group.
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cosmological parameter inhomogeneities are in agreement with the model of the Universe proposed in
Ref. [909] (see also Refs. [910–912] for details) where the cosmological constant is simply formulated as
a boundary term in the Einstein equations and where ’Causal Horizons’ naturally arise. Thus if there
are similar ’causal horizons’ in the local universe (i.e, 𝑧 < 1100), then 20% variations between the local
and high-z measures of 𝐻0 are indeed to be expected [592].

2.3.4 Late time modifications - Transition/Recalibration of the SnIa absolute
luminosity

This class of models can address the problems of the 𝐻(𝑧) deformation models (especially the low 𝑀 prob-
lem) by assuming a rapid variation (transition) of the SnIa intrinsic luminosity and absolute magnitude
due e.g. to a gravitational physics transition at a redshift 𝑧𝑡 ≲ 0.01 [52, 477, 593].

Gravity and evolution of the SnIa intrinsic luminosity

As shown in the recent analysis by Ref. [12] there are abnormal features which may be interpreted
as evolution of the measured parameter combination ℳ (see Section 2.2.1). This measured parameter
combination ℳ in Eq. (2.10) depends on the absolute magnitude 𝑀 and on the Hubble constant 𝐻0
(𝑀 and 𝐻0 are degenerate parameters). Any variation of the parameter ℳ is due to a variation of 𝑀
which could be induced by a varying 𝜇𝐺(𝑧) ≡ 𝐺(𝑧)

𝐺0
(where 𝐺0 is the local value of the Newton’s constant

𝐺(𝑧)). If the calibrated SnIa absolute magnitude 𝑀 were truly constant then the parameter ℳ should
also be constant (independent of redshift).

A possible variation of the absolute magnitude 𝑀 and equivalently of the absolute luminosity

𝐿 ∼ 10−2𝑀/5 , (2.69)

could be due to a variation of the fine structure constant 𝛼 or the Newton’s constant 𝐺.
If the absolute luminosity is proportional to the Chandrasekhar mass 𝐿 ∼ 𝑀𝐶ℎ we have [913, 914]

𝐿 ∼ 𝐺−3/2 . (2.70)

Thus 𝐿 will increase as 𝐺 decreases26.
Under these assumptions, we obtain

𝑀(𝑧) −𝑀0 = 15
4 log𝜇𝐺(𝑧) , (2.71)

where 𝑀0 corresponds to a reference local value of the absolute magnitude and 𝜇𝐺 ≡ 𝐺
𝐺0

is the relative
effective gravitational constant (with 𝐺 the strength of the gravitational interaction and 𝐺0 the locally
measured Newton’s constant).

Then, the Eq. (2.10) takes the following form

ℳ(𝑧) = 𝑀0 + 15
4 log𝜇𝐺(𝑧) + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 , (2.72)

and the apparent magnitude Eq. (2.11) can be written as

𝑚(𝑧,𝐻0,Ω0𝑚)𝑡ℎ = ℳ(𝑧,𝐻0) + 5 log10 [𝐷𝐿(𝑧,Ω0𝑚)] . (2.73)

A mild tension at 2𝜎 level in the best fit value of ℳ was found in between the low-redshfit (𝑧 ≲ 0.2)
data and the full Pantheon dataset in the context of a ΛCDM model. This tension can be interpreted as
[12]

26Adopting a semi-analytical model which takes into account the stretch of SnIa light curves but assumes fixed mass of
Ni, obtaining SnIa light curves in the context of modified gravity Ref. [915] has claimed that 𝐿 will increase as 𝐺 increases.
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Figure 2.14: The Pantheon binned SnIa absolute magnitudes Eq. (2.76) 𝑀𝑖 (blue points) [51] for a
Planck/ΛCDM luminosity distance. The data are inconsistent with the SnIa absolute magnitude 𝑀< =
−19.24 calibrated by Cepheids but the inconsistency disappears if there is a transition in the absolute
magnitude with amplitude Δ𝑀 ≃ −0.2 at redshift 𝑧𝑡 ≃ 0.01 (from Ref. [52]).

• a locally higher value of 𝐻0 by about 2%, corresponding to a local matter underdensity.

• a time variation of Newton’s constant which implies an evolving Chandrasekhar mass and thus an
evolving absolute luminosity 𝐿 and absolute magnitude 𝑀 of low 𝑧 SnIa.

In addition, the oscillating features shown in Fig. 2.2 hint also to the possibility of evolutionary effects
of 𝑀 . As discussed below such evolutionary effects if they exist in the form of a transition may provide
a solution to the Hubble and growth tensions.

Transition of the SnIa absolute magnitude 𝑀 at a redshift 𝑧 ≃ 0.01

Recently, Ref. [52] has proposed that a rapid transition (abrupt deformation) at a transition redshift
𝑧𝑡 ≃ 0.01 in the value of the SnIa absolute magnitude 𝑀 of the form

𝑀>(𝑧) = 𝑀< + Δ𝑀 Θ(𝑧 − 𝑧𝑡) , (2.74)

(where Θ is the Heaviside step function) due to a rapid transition of the gravitational constant can address
the Hubble tension.

In particular the analysis by Ref. [52] has shown that a 10% rapid transition in the value of the
relative effective gravitational constant 𝜇𝐺 at 𝑧𝑡 ≃ 0.01 is sufficient to induce the required reduction of
𝑀

Δ𝑀 ≡ 𝑀> −𝑀< ≃ −0.2 , (2.75)
where 𝑀< is the SnIa absolute magnitude of Eq. (2.13) calibrated by Cepheids at 𝑧 < 0.01 [269, 289]
and 𝑀> is the SnIa absolute magnitude of Eq. (2.14) using the parametric-free inverse distance ladder of
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[290]. Fig. 2.14 shows the Pantheon SnIa absolute magnitudes for a Planck/ΛCDM luminosity distance
[51] obtained from

𝑀𝑖 = 𝑚𝑖 − 5 log10

[︂
𝑑𝐿(𝑧𝑖)
𝑀𝑝𝑐

]︂
− 25 , (2.76)

where 𝑚𝑖 are the apparent magnitude datapoints.
The data are in disagreement with the SnIa absolute magnitude 𝑀< calibrated by Cepheids but they

become consistent if there is a transition in the absolute magnitude with amplitude Δ𝑀 ≃ −0.2 [52].
Thus, this class of 𝑀 -transition models avoids the 𝑀 -problem of late time 𝐻(𝑧) deformation models.

Assuming the power law dependence Eq. (2.70) and using RSD and WL data [4, 50, 916] reported
a best fit value Δ𝜇𝐺 ≡ 𝜇>

𝐺 − 𝜇<
𝐺 = −0.19 ± 0.09 (𝜇>

𝐺 corresponds to 𝑧 > 0.01 and 𝜇<
𝐺 corresponds to

𝑧 < 0.01) in the context of a ΛCDM background 𝐻(𝑧). The analysis by Ref. [52] showed that a rapid
∼ 10% increase of the effective gravitational constant roughly 150 million years ago can also solve Ω𝑚-𝜎8
growth tension.

Recently, Ref. [606] has demonstrated that this model has an advantage over both early time and
late time deformations of 𝐻(𝑧) to fully resolve the Hubble tension while at the same time improving the
level of the Ω𝑚-𝜎8 growth tension. In addition it has the potential to provide equally good fit to low 𝑧
distance probes such as BAO and SnIa as the Planck18/ΛCDM model.

More recently, Ref. [9] generalized the symmetron screening mechanism27 [940, 941] by allowing
for an explicit symmetry 𝑍2 breaking of the symmetron 𝜑4 potential (see in Chapter 11 for details).
The explicit symmetry breaking can create an asymmeron wall network pinned on matter overdensities
separating regions with distinct gravitational properties which could constitute a physical mechanism
for the realization of gravitational transitions in redshift space that could help in the resolution of the
Hubble and growth tensions. Another theoretical model leading to a gravitational transition could include
a pressure non-crushing cosmological singularity in the recent past [942].

Late (low-redshift) 𝑤 −𝑀 phantom transition

The late (low-redshift) 𝑤 −𝑀 phantom transition [593] is a late time approach involving a combination
of the previous two classes: the transition of the SnIa absolute luminosity and the deformation of the
Hubble expansion rate 𝐻(𝑧). A rapid phantom transition of the dark energy equation of state parameter
𝑤 at a transition redshift 𝑧𝑡 < 0.1 of the form

𝑤(𝑧) = −1 + Δ𝑤Θ(𝑧𝑡 − 𝑧) , (2.77)

with Δ𝑤 < 0 and a similar transition in the value of the SnIa absolute magnitude 𝑀 of the form

𝑀(𝑧) = 𝑀𝐶 + Δ𝑀 Θ(𝑧 − 𝑧𝑡) , (2.78)

with Δ𝑀 < 0 due to evolving fundamental constants can address the Hubble tension [593]. Where Θ
is the Heaviside step function, 𝑀𝐶 is the SnIa absolute magnitude Eq. (2.13) calibrated by Cepheids
[269, 289] at 𝑧 < 0.01 and Δ𝑀 , Δ𝑤 are parameters to be fit by the data. Ref. [593] finds Δ𝑀 ≃ −0.1,
Δ𝑤 ≃ −4 for 𝑧𝑡 = 0.02 which imply a lower value of 𝜇𝐺 at 𝑧 > 0.02 (about 6%) compared to the pure
𝑀 -transition model.

The late (low-redshift) 𝑤 − 𝑀 phantom transition (LwMPT) can lead to a resolution of the Hubble
tension in a more consistent manner than smooth deformations of the Hubble tension and other types
of late time transitions such as the Hubble expansion rate transition [609, 720]. Its main advantages
include the consistency in the predicted value of the SnIa absolute magnitude 𝑀 and the potential for
simultaneous resolution of the growth tension.

Refs. [8, 56, 943] have analyzed the color-luminosity relation of Cepheids in anchor galaxies and SnIa
host galaxies by identifying the color-luminosity relation for each individual galaxy instead of enforcing a

27For reviews of modified gravity theories with screening mechanisms, such as the Vainshtein [917–919] and the chameleon
[887, 888, 892, 920–926] models see Refs. [927–938] and for screening effects see Ref. [939].
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universal color-luminosity relation to correct the NIR Cepheid magnitudes. A systematic brightening of
Cepheids at distances larger than about 20 Mpc which could be enough to resolve the Hubble tension was
found. In addition, Ref. [8] investigating the effects of variation of the Cepheid calibration empirical pa-
rameters (the color-luminosity parameter or the Cepheid absolute magnitude) finds hints for the presence
of a fundamental physics transition taking place at a time more recent than 100 Myrs ago. The magnitude
of the transition lead to value of 𝐻0 that is consistent with the CMB inferred value thus eliminating the
Hubble tension. The distance range/timescale corresponding to this transition is consistent with solar
system history data [944] indicating an increase of the rate of impactors on the Moon and Earth surfaces
by about a factor of 2-3 during the past 100 Myrs which correspond to 𝑧 < 0.008 [945–951] and low
redshift galaxy surveys data [952]. Such a transition is also consistent with a recent analysis by Ref. [477]
indicating a transition in the context of the Tully-Fisher data.

In particular, using a robust dataset of 118 Tully-Fisher datapoints Ref. [477] has demonstrated
that evidence for a transition in the evolution of BTFR appears at a level of more than 3𝜎. Such effect
could be interpreted as a transition of the effective Newton’s constant. The amplitude and sign of the
gravitational transition are consistent with the mechanisms for the resolution of the Hubble and growth
tension discussed above [52, 593] (see in [953], for a talk of the tensions of the ΛCDM and a gravitational
transition).

2.3.5 Early time modifications of sound horizon
Modifying the scale of sound horizon 𝑟𝑠 (i.e. the scale of the standard ruler) by introducing new physics
before recombination that deform 𝐻(𝑧) at prerecombination redshifts 𝑧 ≳ 1100 can increase the CMB
inferred value of 𝐻0 [954–957] and thus resolve the Hubble tension. Such deformation may be achieved by
introducing various types of additional to the standard model components (see Ref. [958], for a review).
These models have the problem of predicting stronger growth of perturbations than implied by dynamical
probes like redshift space distortion (RSD) and weak lensing (WL) data and thus may worsen the Ω𝑚-𝜎8
growth tension [331, 606].

A wide range of mechanisms has been proposed for the decrease of the the sound horizon scale at
recombination. These mechanisms include the introduction of early dark energy, extra neutrinos or some
other dark sector at recombination, features in the primordial power spectrum, modified scenarios of
recombination etc. The following models and theories may be classified in this class of mechanisms: early
dark energy e.g. [182], dark radiation e.g. [959], neutrino self-interactions e.g [960], large primordial non-
Gaussianities [961], Heisenberg’s uncertainty principle [962], early modified gravity [963], cosmological
inflation physics [964–976], dark matter - photon coupling [977, 978], dark matter-neutrino interactions
[979], interacting dark radiation [980], ultralight dark photon [981], primordial black holes [982, 983],
primordial magnetic fields [984–986], non-standard recombination [987], unparticles dark energy [988],
varying fundamental constants [989–993], early-time thermalization of cosmic components [994], CMB
monopole temperature shift [995], open and hotter universe [996, 997], Axi-Higgs cosmology [998, 999],
string Cosmology [1000, 1001] and dark massive vector fields [1002]. In this list of proposed cosmological
models the tension on 𝐻0 is alleviated with a significance ranging from the 1𝜎 to the 3𝜎 level.

Early dark energy

In the early dark energy (EDE) model [54, 181–183, 1003–1023] an additional dynamical scalar field
behaves like a cosmological constant at early times (near matter-radiation equality but before recom-
bination). This field decays rapidly after recombination thus leaving the rest of the expansion history
practically unaffected up to a rescaling which modifies 𝐻0. This rescaling allows for the resolution of
the Hubble constant tension. Using the Eq. (2.17) in a EDE model the radius of sound horizon at last
scattering can be calculated by

𝑟𝑠 =
∫︁ 𝑡𝑑

0

𝑐𝑠(𝑎)
𝑎(𝑡) 𝑑𝑡 =

∫︁ ∞

𝑧𝑑

𝑐𝑠(𝑧)
𝐻(𝑧; 𝜌𝑏, 𝜌𝛾 , 𝜌𝑐, 𝜌𝐷𝐸)𝑑𝑧 =

∫︁ 𝑎𝑑

0

𝑐𝑠(𝑎)
𝑎2𝐻(𝑎; 𝜌𝑏, 𝜌𝛾 , 𝜌𝑐, 𝜌𝐷𝐸)𝑑𝑎 , (2.79)
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Figure 2.15: The potential 𝑉/𝑉0 (with 𝑉0 = 𝑚2𝑓2, 𝑛 = 3 in Eq. (2.80)) as a function of 𝜑/𝑓 at early
times (𝐻 ≫ 𝑚) (left panel) when the field 𝜑 is initially frozen in its potential due to Hubble friction and
acts as a cosmological constant with equation of state 𝑤𝜑 = −1, and at a critical redshift 𝑧𝑐 when the
Hubble parameter drops below some value (𝐻 ∼ 𝑚) (right panel) and the field becomes dynamical and
begins to oscillate around its minimum which is locally 𝑉 ∼ 𝜑2𝑛.

Figure 2.16: Fractional contribution of EDE to the cosmic energy budget as a function of redshift (adapted
from Ref. [53]).

55



Chapter 2. Challenges for ΛCDM: Hubble Tension

Figure 2.17: CMB TT power spectrum. The black solid and the red dashed lines correspond to ΛCDM
model with 𝐻0 = 68.07 km s−1 Mpc−1 and EDE model with 𝐻0 = 71.15 km s−1 Mpc−1 respectively
(from Ref. [53]).

The baryon-to-photon ratio, and thus 𝑐𝑠 in Eq. (2.18), is tightly constrained by CMB fluctuations and
BBN [862]. As a consequence a EDE phase before and around the recombination epoch would increase
𝐻(𝑧) and thus decrease the scale of the sound horizon 𝑟𝑠 in Eq. (2.79). In the context of the degeneracy
𝐻0𝑟𝑠 shown in Eq. (2.19) this decrease of 𝑟𝑠 leads to an increased value of 𝐻0 for a fixed measured value
of 𝜃𝑠.

An EDE model can be implemented by several functional forms of scalar field which contribute to
the cosmic energy shortly before matter-radiation equality. Possible functional forms of scalar field are
the axion-like potential (higher-order periodic potential) inspired by string axiverse scenarios for dark
energy [181, 1024–1027], the single axion-like particle potential consisting of two cosine functions which
unifies the inflaton and DM while reheating the universe [1028, 1029], the power-law potential [183], the
acoustic dark energy [1014, 1030, 1031], the 𝛼-attractor-like potential [1032] and others.

Ref. [182] considers two physical models. One that involves an oscillating scalar field and another
with a slowly-rolling scalar field. In the case of the first model of the proposal of Ref. [182], the potential
of the scalar field 𝜑 is a generalization of the axion potential of the form

𝑉 (𝜑) = 𝑚2𝑓2 (1 − 𝑐𝑜𝑠(𝜑/𝑓))𝑛
, (2.80)

where 𝑚 is the field mass (for ultralight scalar field 𝑚 ∼ 10−28 eV) and 𝑓 is a decay constant.
Consider the time evolution of the EDE scalar field which may be written as

𝜑+ 3𝐻𝜑̇+ 𝑉 ′(𝜑) = 0 , (2.81)

where the dot and the prime denote the derivatives with respect to cosmic time 𝑡 and field 𝜑 respectively.
At early times, deep in the radiation era the field 𝜑 is initially frozen in its potential due to Hubble

friction (𝐻 ≫ 𝑚) and acts as a cosmological constant with equation of state 𝑤𝜑 = −1 (hence the name
Early Dark Energy), but when the Hubble parameter drops below some value (𝐻 ∼ 𝑚) at a critical
redshift 𝑧𝑐 (for EDE this happens when 𝑧𝑐 ∼ 𝑧𝑑 for 𝑚 ∼ 10−27 eV) the field becomes dynamical and
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EDE

ΛCDM

Figure 2.18: Posterior 1D and 2D distributions of the cosmological ΛCDM parameters reconstructed from
a run to all data (including Planck high 𝑙 polarization) in EDE (red) and the ΛCDM (blue) scenario.
The gray bands correspond to the SH0ES determination of 𝐻0 (adapted from Ref. [54]).
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begins to oscillate around its minimum which is locally 𝑉 ∼ 𝜑2𝑛 (Fig. 2.15). It thus begins to behave
like a fluid with an equation of state [1033]

𝑤𝜑 = 𝑛− 1
𝑛+ 1 . (2.82)

The energy density of the field dilutes as 𝑎−3(1+𝑤𝜑) and thus when 𝑛 = 1, 𝑛 = 2 and 𝑛 ≥ 3 dilutes as
cold dark matter (𝑎−3, 𝑤𝜑 = 0), as radiation (𝑎−4, 𝑤𝜑 = 1/3) and faster than radiation (𝑎−𝑥 with 𝑥 > 4,
𝑤𝜑 > 1/3) respectively. Also when 𝑛 → ∞ the energy density dilutes as free scalar field (stiff matter
[1034]) (𝑎−6, 𝑤𝜑 = 1) i.e. the scalar field is fully dominated by its kinetic energy.

The EDE models are parameterized by the critical redshift 𝑧𝑐 , the dimensionless quantity 𝜃𝑖 = 𝜑𝑖/𝑓
(with 𝜑𝑖 the initial value of the scalar field and 0 < 𝜃𝑖 < 𝜋) and the peak EDE energy density fraction of
the Universe 𝑓𝐸𝐷𝐸(𝑧𝑐) which is given by

𝑓𝐸𝐷𝐸(𝑧𝑐) ≡ Ω𝜑(𝑧𝑐)
Ω𝑡𝑜𝑡(𝑧𝑐) = 𝜌𝐸𝐷𝐸(𝑧𝑐)

3𝑀2
𝑝𝑙𝐻(𝑧𝑐)2 , (2.83)

where Ω𝜑 is the EDE energy density which evolves as [182, 1027]

Ω𝜑(𝑧) = 2Ω𝜑(𝑧𝑐)
[(1 + 𝑧𝑐)/(1 + 𝑧)]3(𝑤𝑛+1) + 1

. (2.84)

The fractional contribution of EDE to the cosmic energy budget as a function of redshift, i.e. 𝑓𝐸𝐷𝐸(𝑧),
is shown in Fig. 2.16 (from the analysis by Ref. [53]). Clearly, for 𝑧 ≃ 𝑧𝑐 the EDE contributes the most
to the total energy density (∼ 10%), for 𝑧 > 𝑧𝑐 the EDE is not dynamically important while for 𝑧 < 𝑧𝑐

decays away as radiation or faster than radiation leaving the later evolution of the Universe relatively
unchanged. By construction, the EDE models can nicely match the CMB TT power spectrum of ΛCDM
and therefore of Planck as illustrated in Fig. 2.17. The black solid and the red dashed lines (almost
identical) correspond to ΛCDM model with 𝐻0 = 68.07 km s−1 Mpc−1 and EDE model with 𝐻0 = 71.15
km s−1 Mpc−1 respectively [53].

EDE models face the fine-tuning issues [1013] and suffer from a coincidence problem [1012]. Refs.
[1013, 1035] proposed a natural explanation for this coincidence using the idea of neutrino-assisted early
dark energy.

EDE modifies growth and 𝐻(𝑧) at early times (around recombination) and higher matter density is
required to compensate for this effect in the CMB. Higher matter density contradicts the required low
value of matter density at late times from weak lensing and growth data as shown in Fig. 2.18. In
particular the analysis by Refs. [1036, 1037] has shown that an EDE model can not practically resolve
the Hubble tension because it results in higher value of the late-time density fluctuation amplitude 𝜎8
and thus the tension with LSS dynamical probes WL, RSD and CC data can get worse. In addition Ref.
[331] argued that any model which attempts to reconcile the CMB inferred value of 𝐻0 by solely reducing
the sound horizon results into tension with either the BAO or the galaxy weak lensing data. Thus, a
compelling and full resolution of the Hubble tension may require multiple modifications (more than just
the size of the sound horizon) of the ΛCDM cosmology.

Recent studies by Refs. [332, 333] reexamining the above issue and using combined data method show
that the EDE scenario remains a potential candidate solution to the Hubble tension. Future observations
will provide data with improved quality and thus will enable more detailed tests of the EDE model.

Many alternative models have been proposed to implement the basic EDE scenario such as Chain
EDE [1038], Axion EDE [1039, 1040], Anti-de Sitter EDE [1040–1045], assisted quintessence EDE [1046],
EDE with extra radiation [1047], EDE in the framework of the ultralight scalar decay to massless fields
[1048] and New EDE (NEDE) [1049–1053] which can potentially address the Hubble tension. In NEDE
a vacuum first-order phase transition of the NEDE scalar field is assumed to have taken place before
recombination in the early Universe. The NEDE sudden transition can be described by a scalar field
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whose potential at some critical point develops two non-degenerate minima (true and false vacuum)28.
Ref. [1054] develop a phenomenological dark sector with decaying dark energy and ultra-light axions
which addresses the Hubble tension similarly to the EDE and NEDE scenarios and simultaneously can
resolve the 𝑆8 tension. Refs. [1055–1057] argue that a EDE model may require a more complicated
dynamics in order to soften both the 𝐻0 and 𝑆8 tensions. In particular, Ref. [1057] introduced the Early
Dark Sector (EDS) model considering an EDE-dependence of the mass of dark matter. The considering
form of the potential is given by Eq. (2.80) (with 𝑛 = 3) and the form of the field-dependent mass given
by

𝑚(𝜑) = 𝑚0 exp( 𝑐𝜑
𝑀𝑝𝑙

) , (2.85)

as motivated by the the Swampland Distance Conjecture (SDC) [1058] and its extension to axions [1059–
1062].

Dark radiation

Modifications in the light relic sector can relieve the tension by changing the early-time dynamics of the
Universe [1063, 1064]. The dark radiation model assumes an increased number of light relics [655, 954,
1065–1078] which are weakly interacting components of radiation (i.e. relativistic species). For example
the addition of hidden photons, sterile neutrinos [1079–1082], Goldstone bosons, Majoron [1083], axions
[1084–1086] which are predicted in many extensions of the Standard Model (SM) increases the value in
the effective number of relativistic particles 𝑁eff beyond its canonical expectation value 𝑁SM

eff ≃ 3.044
[1087–1092]. These extra particles modify the time of matter-radiation equality and would lead to a lower
𝑟𝑠 sound horizon. As a consequence a lower expansion rate of the Universe and a higher value of 𝐻0
emerges from early-time physics [959] (see Eq. (2.19)).

Another interesting approach was presented by Refs. [860, 1064, 1093–1105], in which dark matter
(DM) interacts with a new form of dark radiation (DR) aimed at solving 𝐻0 tension. Assuming the
Effective Theory of Structure Formation (ETHOS) paradigm [1106, 1107] the interaction between the
dark matter and dark radiation components is a 2-to-2 scattering DM + DR ↔ DM + DR.

Neutrino self-interactions

The strong (massive) neutrino self-interactions cosmological model can provide a larger value of 𝐻0 and
smaller 𝜎8, hence can resolve the tensions between cosmological datasets [960]. The strong neutrino
self-interactions were proposed in Ref. [1108] and further studied in Refs. [1063, 1109]. The introduction
of strong self-interacting neutrinos increases the value in the effective number of relativistic particles
𝑁eff = 4.02 ± 0.29 without extra neutrino species. This model modifies the standard neutrino free-
streaming in the early Universe. The onset of neutrino free-streaming is delayed until close to the matter
radiation equality epoch. This late-decoupling of the neutrinos shifts the CMB power spectra peaks
towards smaller scales as compared to ΛCDM model. This shift modifies the scale of sound horizon 𝑟𝑠

that can resolve the Hubble constant 𝐻0 tension [960].
Furthermore self-interactions between the neutrinos or between other additional light relics was stud-

ied by Refs. [1110–1126]. The strong neutrino self-interactions models are basically excluded by various
existing data or experimental tests [1116, 1120, 1127–1129]. The analysis by Ref. [1122] leads to conclu-
sion that these models can not ease the Hubble tension more effectively than the ΛCDM+𝑁eff approach
alone.

Models with nonstandard neutrinos - dark matter interactions were studied by Refs. [1130–1140].
These models increase the value in the effective number of relativistic particle 𝑁eff and thus can provide
a solution to the Hubble problem. However, in this class of models it is not possible to solve simultaneously
the Hubble and growth tensions [1138].

28It has recently been pointed out [8, 9, 52, 477, 593, 944, 952] that a similar mechanism in the context of the ultra late
transition taking place at a redshift 𝑧 ≲ 0.01 can lead to a resolution of the Hubble tension.
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Large primordial non-Gaussianities

The presence of large primordial non-Gaussianity in the CMB can affect the higher-order 𝑛-point correla-
tion functions statistics. A non-vanishing primordial trispectrum (𝑛 = 4) which is the Fourier transform
of the connected four-point correlation function leads to the non-Gaussian covariance of the angular
power spectrum estimators [1141–1143]. The trispectrum is nonzero when there is a strong coupling be-
tween long-wavelength (super-CMB) modes and short-wavelength modes. The non-Gaussian covariance
scenario (Super-ΛCDM model) has two extra free parameters relative to those in ΛCDM and provides a
larger value of 𝐻0 reducing tension with late Universe measurements of the Hubble constant [961].

Heisenberg’s uncertainty principle

The Heisenberg’s uncertainty principle [1144, 1145] and the generalized uncertainty Principle [1146–1170]
(see Ref. [1171], for a review) can provide constraints to the values for certain pairs of physical quantities
of a particle and raise the possibility of the existence of observational signatures in cosmological data e.g.
[3, 55]. Ref. [962] has argued that the Heisenberg’s uncertainty principle can provide an explanation for
the Hubble constant 𝐻0 tension. In particular the authors equate the luminosity distance (expanded for
low 𝑧 as in Eqs. (2.3) and (2.7)) with the photon (assumed massive) Compton wavelength

𝜆𝐶 = ℏ
𝑚 𝑐

, (2.86)

and express the corresponding effective “rest mass” of the photon as a function of the cosmological redshift

𝑚 = ℏ𝐻0

𝑧𝑐2
[︀
1 + 𝑧

2 (1 − 𝑞0)
]︀ , (2.87)

Thus, choosing 𝑧 = 1, fixing 𝑞0 = −1/2 and setting 𝐻0 = 74 km s−1 Mpc−1 and 𝐻0 = 67 km s−1 Mpc−1

in Eq. (2.87) find 𝑚 = 1.61 × 10−69 kg and 𝑚 = 1.46 × 10−69 kg respectively29. Thus using these results
infer that the tension on the 𝐻0 measurements can be the effect of the uncertainty on the photon mass
i.e.

Δ𝑚
𝑚

= Δ𝐻0

𝐻0
≃ 0.1 . (2.88)

Note that the non-zero photon mass could emerge through the Heisenberg’s uncertainty principle and
through the recent analysis of the Standard-Model Extension30 [1175, 1176].

Early modified gravity

A ST modified gravity model can be described by the following action

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔
[︂
𝐹 (𝜎)

2 𝑅− 𝑔𝜇𝜈

2 𝜕𝜇𝜎𝜕𝜈𝜎 − Λ − 𝑉 (𝜎)
]︂

+ 𝑆𝑚 , (2.89)

where 𝑅 is the Ricci scalar, Λ is the cosmological constant, 𝑆𝑚 is the action for matter fields, 𝜎 is a scalar
field non-minimally coupled to the Ricci scalar, 𝐹 (𝜎) is the coupling to the Ricci scalar and 𝑉 (𝜎) is the
potential for the scalar field. A variety of possible types of the non-minimal coupling of the scalar field
to the Ricci 𝐹 (𝜎) and of the potential for the scalar field which can alleviate the 𝐻0 tension by reducing
the sound horizon scale through modified early cosmic expansion, has been considered in the literature
[1177–1181].

In particular Ref. [963] introduces a model of early modified gravity31. This model has a non-minimal
coupling of the form [963]

𝐹 (𝜎) = 𝑀2
𝑝𝑙 + 𝜉𝜎2 , (2.90)

29The current upper limit on the photon mass is 𝑚 = 10−54 kg [1172].
30For studies of the massive photons in the Standard-Model Extension, see Refs. [1173, 1174].
31It should not be confused with the previously introduced differed model with the same name ’Early Modified Gravity’

[1182–1184]. In this model gravity is allowed to be modified after BBN, before and during recombination.
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and a quartic potential

𝑉 (𝜎) = 𝜆𝜎4

4 , (2.91)

where 𝜆 and 𝜉 are dimensionless parameters. For 𝜉 = 0 this model reduces to the EDE model of Ref.
[183]. In the early modified gravity model, gravity changes with redshift in such a way that the 𝐻0
estimate from CMB can have larger values. Ref. [963] has shown that this model can resolve the Hubble
tension and at the same time, in contrast to an EDE model, results in lower value of the late-time
density fluctuation amplitude 𝜎8 and thus the tension with LSS dynamical probes WL, RSD and CC
data can be at least partially resolved. In general early modified gravity model compared to the EDE
can provide a better fit to LSS data and can imply better predictions on LSS observables.



Chapter 3

Challenges for ΛCDM: Other Tensions

In this Chapter we provide a list of the non-standard signals in cosmological data and the tensions of the
ΛCDM cosmology beyond the Hubble tension which is currently the most widely studied and among the
most statistically significant tensions. In many cases the signals are controversial and there is currently
debate in the literature on the possible physical or systematic origin of these signals. For completeness
we refer to all signals we could identify in the literature referring also to references that dispute the
physical origin of these signals.

3.1 Growth tension
The Planck/ΛCDM parameter values in the context of GR indicate stronger growth of cosmological
perturbations than the one implied by observational data of dynamical probes. In this section we review
the observational evidence for this tension also known as the Ω0𝑚 −𝜎8 tension or simply ’growth tension’.

3.1.1 Methods and data
The value of the growth parameter combination 𝑆8 ≡ 𝜎8(Ω0𝑚/0.3)0.5 (where 𝜎8 is discussed in more detail
in what follows) is found by weak lensing (WL) [144, 145, 1185–1189], cluster counts (CC) [1190–1195]
and redshift space distortion (RSD) data [4, 67, 146–148, 278, 1196–1198] to be lower compared to the
Planck CMB (TT,TE,EE+lowE) value 𝑆8 = 0.834 ± 0.016 [14] at a level of about 2 − 3𝜎 as shown1 in
Table 3.1 and in Fig. 3.1 (see Refs. [10, 141], for a recent review of this tension). The tension is also
confirmed by the latest ACT+WMAP CMB analysis [554] which finds 𝑆8 = 0.840 ± 0.030.

This is also expressed by the fact that dynamical cosmological probes (WL, RSD, CC) favor lower
value of the matter density parameter Ω0𝑚 ≈ 0.26±0.04 [344] than geometric probes (CMB, BAO, SnIa).
This could be a signal of weaker gravity than the predictions of General Relativity in the context of a
ΛCDM background [4, 67, 147, 148, 1199] (for a recent study on a weak gravity in the context of a ΛCDM
background, see Ref. [6]).

The observational evidence for weaker growth indicated by the dynamical probes of the cosmic ex-
pansion and the gravitational law on cosmological scales may be reviewed as follows:

1The definition 𝑆8 = 𝜎8(Ω0𝑚/0.3)𝛼 with 𝛼 = 1/2 has been uniformly used for all points. In those cases where 𝛼 ̸= 1/2
has been used in some references, the value of 𝑆8 with 𝛼 = 1/2 was recalculated (along with the uncertainties) using the
constraints on 𝜎8 and Ω0𝑚 shown in those references, assuming their errors 𝜎𝜎8 and 𝜎Ω0𝑚 are Gaussian. The errors of the
𝑆8 constraints are propagated according to 𝜎2

𝑆8
= (Ω0𝑚/0.3)2𝛼𝜎2

𝜎8 + 𝜎2
8𝛼2(Ω0𝑚/0.3)2𝛼−2𝜎2

Ω0𝑚
, with 𝛼 = 1/2.
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Table 3.1: The value of the structure growth parameter combination 𝑆8 ≡ 𝜎8(Ω0𝑚/0.3)0.5, the matter
density parameter Ω0𝑚 and the the power spectrum amplitude 𝜎8 at 68% CL through direct and indirect
measurements by different methods.

Dataset 𝑆8 Ω0𝑚 𝜎8 Refs.
CMB Planck TT,TE,EE+lowE 0.834 ± 0.016 0.3166 ± 0.0084 0.812 ± 0.007 [14]

CMB Planck TT,TE,EE+lowE+lens. 0.832 ± 0.013 0.3153 ± 0.0073 0.811 ± 0.006 [14]
CMB ACT+WMAP 0.832 ± 0.013 0.3153 ± 0.0073 0.840 ± 0.030 [554]

WL KiDS-1000 0.759+0.024
−0.021 - - [1200]

WL KiDS + VIKING + DES-Y1 0.755+0.019
−0.021 - - [1186]

WL KiDS + VIKING + DES-Y1 0.762+0.025
−0.024 - - [1201]

WL KiDS+VIKING-450 0.716+0.043
−0.038 - - [1202]

WL KiDS+VIKING-450 0.737+0.040
−0.036 - - [1203]

WL KiDS-450 0.651 ± 0.058 - - [1187]
WL KiDS-450 0.745 ± 0.039 - - [1188]
WL DES-Y3 0.759+0.025

−0.023 0.290+0.039
−0.063 0.783+0.073

−0.092 [1204, 1205]
WL DES-Y1 0.782+0.027

−0.027 - - [550]
WL HSC-TPCF 0.804+0.032

−0.029 0.346+0.052
−0.100 0.766+0.110

−0.098 [1206]
WL KiDS-1000 pseudo-𝐶𝑙 0.754+0.027

−0.029 - - [1207]
WL HSC-pseudo-𝐶𝑙 0.780+0.030

−0.033 - - [1208]
WL CFHTLenS 0.740+0.033

−0.038 - - [1209]
WL+CMB lens. DES-Y3+SPT+Planck 0.73+0.04

−0.03 0.25+0.03
−0.04 0.82+0.08

−0.07 [1210]
WL+GC2 0.795+0.049

−0.042 0.383+0.028
−0.053 0.718+0.044

−0.031 [1211]
WL+GC+CMB lensing3 0.7781 ± 0.0094 0.305+0.021

−0.025 0.774 ± 0.033 [1212]
WL+GC KiDS-1000 3 × 2pt 0.766+0.020

−0.014 0.305+0.010
−0.015 0.76+0.025

−0.020 [1213]
WL+GC KiDS-450 3 × 2pt 0.742 ± 0.035 0.243+0.026

−0.045 0.832+0.080
−0.079 [144]

WL+GC KiDS+GAMA 3 × 2pt 0.800+0.029
−0.027 0.33+0.05

−0.06 0.78+0.06
−0.08 [1214]

WL+GC DES-Y3 3 × 2pt 0.776+0.017
−0.017 0.339+0.032

−0.031 0.733+0.039
−0.049 [1215]

WL+GC DES-Y1 3 × 2pt 0.773+0.026
−0.020 0.267+0.030

−0.017 0.817+0.045
−0.056 [145]

WL+GC KiDS+VIKING-450+BOSS 0.728 ± 0.026 0.323+0.014
−0.017 0.702 ± 0.029 [1216]

GC BOSS DR12 bispectrum 0.751 ± 0.039 0.32+0.01
−0.01 0.722+0.032

−0.036 [375]
GC BOSS+eBOSS 0.72 ± 0.042 - - [1217]

GC BOSS galaxy power spectrum 0.703 ± 0.045 0.293 ± 0.012 0.713 ± 0.045 [376]
GC BOSS power spectra 0.736 ± 0.051 0.303 ± 0.0082 0.733 ± 0.047 [374]

GC BOSS DR12 0.729 ± 0.048 0.317+0.015
−0.019 0.710 ± 0.049 [1216]

GC+CMB lensing DESI+Plank 0.73 ± 0.03 - - [1218]
GC+CMB lensing unWISE+Plank 0.784 ± 0.015 0.307 ± 0.018 0.775 ± 0.029 [1219]

CC AMICO KiDS-DR3 0.78 ± 0.04 0.24+0.03
−0.04 0.86 ± 0.07 [1220]

CC SDSS-DR8 0.79+0.05
−0.04 0.22+0.05

−0.04 0.91+0.11
−0.10 [1194]

CC ROSAT (WtG) 0.77 ± 0.05 0.26 ± 0.03 0.83 ± 0.04 [1221]
CC DES-Y1 0.65+0.04

−0.04 0.179+0.031
−0.038 0.85+0.04

−0.06 [1189]
CC XMM-XXL 0.83 ± 0.11 0.40 ± 0.09 0.72 ± 0.07 [1222]

CC SPT-tSZ 0.749 ± 0.055 0.276 ± 0.047 0.781 ± 0.037 [1223]
CC Planck tSZ 0.785 ± 0.038 0.32 ± 0.02 0.76 ± 0.03 [1224]
CC Planck tSZ 0.792 ± 0.056 0.31 ± 0.04 0.78 ± 0.04 [1193]

RSD+BAO+Pantheon+CC 0.777+0.026
−0.027 0.288 ± 0.008 0.793+0.018

−0.020 [1225]
RSD+BAO+Pantheon 0.762+0.030

−0.025 0.286 ± 0.008 0.7808+0.021
−0.019 [1225]

RSD 0.739+0.036
−0.040 0.254+0.038

−0.058 0.804+0.048
−0.071 [1225]

RSD 0.700+0.038
−0.037 0.201+0.036

−0.033 0.857+0.044
−0.042 [510]

RSD 0.747 ± 0.029 0.279 ± 0.028 0.775 ± 0.018 [67]
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Weak lensing

The weak gravitational lensing from matter fluctuations along the line of sight slightly distorts the shapes
(shear) and size (magnification) of distant galaxies (see Ref. [1226–1228], for a review). This distortion is
a powerful and principal cosmological probe of the mass distribution which can be predicted theoretically
[1229–1232]. Using various statistical methods shape distortions can be measured by analyzing the
angular shear correlation function, or its Fourier transform, the shear power spectrum [1200, 1208]. A
special type of WL is the galaxy-galaxy lensing (GGL) [1233, 1234] which is the slight distortion of shapes
of source galaxies in the background of a lens galaxy arising from the gravitational deflection of light due
to the gravitational potential of the lens galaxy along the line of sight.

The WL surveys, the Kilo Degree Survey (KiDS) [1235–1238], the Subaru Hyper Suprime-Cam lensing
survey (HSC) [1239, 1240] and the Dark Energy Survey (DES) [1241, 1242] provide data useful for cosmic
shear studies. In particular WL measurements of 𝑆8 obtained from the shear catalogues by the lensing
analysis of the Canada-France-Hawaii Telescope Lensing (CFHTLenS) [1209, 1243–1247] and the KiDS
[1187, 1188] appear to be lower compared to the Planck value at a level of about 3𝜎. The analysis by Ref.
[1188] adopting a spatially flat ΛCDM model and using the KiDS-450 data reports 𝑆8 = 0.745 ± 0.039
which results in 2.3𝜎 tension with the value estimated by Planck15. This KiDS-Planck discordance has
also been investigated in Ref. [1187] where applying the quadratic estimator to KiDS-450 shear data
reports 𝑆8 = 0.651 ± 0.058 which is in tension with the Planck2015 results at the 3.2𝜎 level. Using a
combination of the measurements of KiDS-450 and VISTA Kilo-Degree infrared Galaxy Survey (VIKING)
[1248], Ref. [1203] finds 𝑆8 = 0.737+0.040

−0.036 which is discrepant with measurements from the Planck analysis
at the 2.3𝜎 level. For the KiDS+VIKING-450 (or KV450) Ref. [1202] reports an updated constraint of
𝑆8 = 0.716+0.043

−0.038. Meanwhile, using the DES first year (DES-Y1) data assuming a ΛCDM model Ref.
[550] reports 𝑆8 = 0.782+0.027

−0.027 which is in ∼ 2.3𝜎 tension4 with the Planck18 result. The constraint on
𝑆8 from the combined tomographic weak lensing analysis of KiDS + VIKING + DES-Y1 adopting a flat
ΛCDM model by Ref. [1201] is 𝑆8 = 0.762+0.025

−0.024 which is in 2.5𝜎 tension with Planck18 result and by
Ref. [1186] is 𝑆8 = 0.755+0.019

−0.021 which is in 3.2𝜎 tension with Planck18 result. Analysing the most recent
KiDS cosmic shear data release (KiDS-1000 [1250]) alone and assuming a spatially flat ΛCDM model
the value 𝑆8 = 0.759+0.024

−0.021 was estimated by Ref. [1200]. Analysing the first-year data of HSC in the
context of the flat ΛCDM model and using the pseudo-spectrum (pseudo-𝐶𝑙) method5, Ref. [1208] finds
𝑆8 = 0.780+0.030

−0.033 and adopting the standard two-point correlation functions (TPCF) estimators, 𝜉±, Ref.
[1206] finds 𝑆8 = 0.804+0.032

−0.029. Recently, a analysis of the KiDS-1000 data using pseudo-𝐶𝑙 method by Ref.
[1207] has lead to 𝑆8 = 0.754+0.027

−0.029. The latest cosmic shear analysis of the DES third Year (DES-Y3)
[1204, 1205] in the context of the ΛCDM model constrains the clustering amplitude as 𝑆8 = 0.759+0.025

−0.023.
Also, recently Ref. [1210] found 𝑆8 = 0.73+0.04

−0.03 using the cross-correlations of galaxy positions and shears
from DES-Y3 with CMB lensing maps from SPT and Planck.

The analysis of galaxy clustering and weak gravitational lensing of the DES-Y1 data combining three
two-point functions (the so-called 3 × 2pt analysis) of gravitational lensing and galaxy positions (the
cosmic shear correlation function, the galaxy clustering angular autocorrelation function, the galaxy-
galaxy lensing cross-correlation function) by Ref. [145] gives 𝑆8 = 0.773+0.026

−0.020 and Ω0𝑚 = 0.267+0.030
−0.017

in flat ΛCDM model. This value is in ∼ 2.3𝜎 tension with Planck18 result. In the latest analysis by
Ref. [1215] the constraints 𝑆8 = 0.776+0.017

−0.017 and Ω0𝑚 = 0.339+0.032
−0.031 in flat ΛCDM model are obtained

using an improvement in signal-to-noise of the DES-Y3 3 × 2pt data relative to DES-Y1 by a factor
of 2.1. Also, Ref. [1213] using 3 × 2pt analysis of KiDS-1000+BOSS+ 2-degree Field Lensing Survey6

(2dFLenS) [1255] data finds 𝑆8 = 0.766+0.020
−0.014. While previous analyses 3 × 2pt of KiDS+GAMA data

and KiDS-450+BOSS+2dFLenS data by Ref. [1214] and Ref. [144] obtained 𝑆8 = 0.800+0.029
−0.027 and

4This tension was calculated by Ref. [1249]. The authors have explored a number of different methods to quantify the
tension relative to the best-fit Planck2018 cosmology.

5For a realistic experiment the pseudo-𝐶𝑙 statistics from cut-sky maps which provide incomplete data are applied in
order to obtain unbiased estimates of the angular power and cross-power spectra by correcting for the convolution with the
survey window (see Refs. [1251–1254], for details of this method).

6https://2dflens.swin.edu.au
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𝑆8 = 0.742 ± 0.035 respectively. A combined analysis of KiDS+VIKING-450+BOSS data by Ref. [1216]
resulted in 𝑆8 = 0.728 ± 0.026. Performing a Joint analysis of galaxy-galaxy weak lensing and galaxy
clustering from first-year data of HSC and SDSSS-III/BOSS DR11 Ref. [1211] found 𝑆8 = 0.795+0.049

−0.042.
Also, from a combined analysis of KiDS-1000 and DES-Y1 cosmic shear and galaxy clustering, eBOSS
quasars, DESI, Planck CMB lensing data Ref. [1212] obtains a constraint 𝑆8 = 0.7781 ± 0.0094.

Clearly, the tension between WL and CMB measurements is a level more than 2𝜎 as seen in Table
3.1 and in Fig. 3.1. In addition, the tension with more recent measurements persists at the level of ∼ 2𝜎.
Finally, combined analyses of WL with galaxy clustering does not change the tension level.

Cluster counts

Galaxy clusters which are related to peaks in the matter density field on large scales constitute a probe
of the growth history of structures [1256, 1257] (see Refs. [1258, 1259], for a review). Current analy-
ses from the number counts of galaxy clusters use catalogs from surveys at different wavelengths of the
electromagnetic spectrum. Such surveys include Planck7, South Pole Telescope (SPT) and Atacama Cos-
mology Telescope (ACT) in the microwave (millimeter) via the thermal Sunyaev-Zel’dovich (tSZ) effect8

[1263–1265], extended Roentgen survey with an imaging telescope array (eROSITA9) [1266–1269] in the
X-ray that finds extended sources and measures the X-ray luminosity and temperature, Sloan Digital
Sky Survey10 (SDSS) and Dark Energy Survey11 (DES) in the optical/NIR. These surveys find peaks
in the galaxy distribution and measure the richness of the corresponding clusters. The microwave/tSZ
and X-ray surveys detection techniques are based on the hot ICM [1270, 1271] and in some cases require
auxiliary data to obtain useful constraints e.g. redshift estimates (see Refs. [1272, 1273], for recent
methods).

The CC method is based on the predicted halo abundance (number density) 𝑛(𝑀, 𝑧) of halos with
mass less than 𝑀 at redshift 𝑧 which is also known as the halo mass function (HMF). This formalism
was originally introduced by Press and Schechter [1274]. A general mathematical form for the comoving
number density expression of haloes is e.g. [1275–1279]

𝑑𝑛

𝑑𝑀
= 𝑓(𝜎)𝜌𝑚

𝑀

𝑑 ln 𝜎−1

𝑑𝑀
, (3.1)

where 𝜌𝑚 = 𝜌𝑐𝑟𝑖𝑡Ω𝑚 is the mean matter density of the Universe, 𝜎 is the rms variance of the linear density
field smoothed on a spherical volume containing a mass 𝑀 , and 𝑓(𝜎) is a model-dependent ‘universal’ halo
multiplicity function12. There are numerous parametrizations of the multiplicity function 𝑓(𝜎) based on
numerical N-body simulations or theoretical models. A popular parametrization provided by Ref. [1279]
is

𝑓(𝜎) = 𝐴

[︂(︁𝜎
𝑏

)︁−𝜒

+ 1
]︂
𝑒−𝑐/𝜎2

, (3.2)

where 𝐴,𝜒, 𝑏, 𝑐 are four free parameters that depend on the halo definition and need to be calibrated.
Measurements of the abundance of galaxy clusters 𝑛(𝑀, 𝑧) provide consistent constraints on the

density of matter Ω0𝑚, the root mean square density fluctuation 𝜎8, the parameter combination 𝑆8(𝛼) =
𝜎8(Ω0𝑚/0.3)𝛼 e.g. [1200, 1208, 1280] (where 𝛼 ∼ 0.2 − 0.6 and 𝑆8 ≡ 𝑆8(𝛼 = 0.5)), the dark energy
equation-of-state 𝑤 and the sum of the neutrino masses

∑︀
𝑚𝜈 (massive neutrinos can suppress the

matter power spectrum on small scales and this directly affect the growth of cosmic structure) [186].
More recently, Ref. [1281, 1282] used a method of clustering measurements at higher redshift (𝑧 = 4−10)

7https://www.cosmos.esa.int
8The inverse Compton scattering between CMB photons and hot electrons in the intracluster medium (ICM) (see Refs.

[1260–1262], for a review).
9https://www.mpe.mpg.de/eROSITA

10https://www.sdss.org/
11https://www.darkenergysurvey.org
12For a publicly available cluster toolkit Python package, see in https://cluster-toolkit.readthedocs.io/en/latest/

source/massfunction.html.
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based on UV galaxy luminosity function data from the Hubble Space Telescope e.g. [1283, 1284]. They
derive the large-scale matter clustering amplitude to be 𝜎8 = 0.76+0.12

−0.14.
Using cluster abundance analysis in the SDSS DR8 for a flat ΛCDM cosmological model with massive

neutrinos Ref. [1194] finds 𝑆8 = 0.79+0.05
−0.04. Ref. [1221] using Weighting the Giant (WtG) [1285, 1286]

lensing analysis of the X-ray ROentgen SATellite (ROSAT) cluster catalogs [1287] finds 𝑆8 = 0.77 ± 0.05.
The analysis of the counts and weak lensing signal of of the DES-Y1 dataset by Ref. [1189] gives
𝑆8 = 0.65±0.04 and Ω0𝑚 = 0.267+0.030

−0.017 in flat ΛCDM. Also, assuming a flat ΛCDM model and performing
a galaxy cluster abundance analysis in the AMICO KiDS-DR3 catalogue Ref. [1220] obtains 𝑆8 =
0.78 ± 0.04.

Using galaxy clusters observed in millimeter wavelengths through the tSZ effect Ref. [1224] reports
𝑆8 = 0.785 ± 0.038 assuming ΛCDM model. The analysis of the Planck 2015 cluster counts via the tSZ
signal by Ref. [1193] finds 𝑆8 = 0.792 ± 0.056. Recently, assuming a flat ΛCDM model, in which the
total neutrino mass is a free parameter, the analysis of SPT tSZ cluster counts by Ref. [1223] results
in 𝑆8 = 0.749 ± 0.055. Using X-ray clusters detected from the XMM-XXL survey [1288] for a flat
ΛCDM cosmological model Ref. [1222] reports 𝑆8 = 0.83 ± 0.10. Also, constraints on structure growth
parameter combination 𝑆8 from cluster abundance data have been obtained by Ref. [1289–1294]. For
example using GalWCat19 [1295], a catalog of 1800 galaxy clusters was derived from the SDSS-DR13
[1296] and assuming a flat ΛCDM cosmology Ref. [1290] measured the matter density and the amplitude
of fluctuations to be Ω𝑚 = 0.310+0.023

−0.027 ± 0.041 (systematic) and 𝜎8 = 0.810+0.031
−0.036 ± 0.035 (systematic)

respectively.
The results of 𝑆8 from all cluster count experiments as seen in Table 3.1 and in Fig. 3.1 are in agree-

ment with WL measurements and similarly prefer a lower value compared to the CMB measurements.

Redshift space distortion-Galaxy clustering

Peculiar motions of galaxies falling towards overdense region generate large scale galaxy clustering,
anisotropic in redshift space. Measuring this illusory anisotropy that distorts the distribution of galaxies
in redshift space (i.e. RSD) we can quantify the galaxy velocity field. This important probe of LSS can
be used to constrain the growth rate of cosmic structures [1297–1299].

In particular the RSD is sensitive to the cosmological growth rate of matter density perturbations 𝑓
which depends on the theory of gravity and is defined as [1300–1302]

𝑓(𝑎) ≡ 𝑑 ln 𝛿(𝑎)
𝑑 ln 𝑎 ≃ [Ω𝑚(𝑎)]𝛾(𝑎) , (3.3)

where 𝑎 = 1
1+𝑧 is the scale factor, 𝛿 ≡ 𝛿𝜌

𝜌 is the matter overdensity field (with 𝜌 the matter density of
the background and 𝛿𝜌 its first order perturbation) and 𝛾 is the growth index e.g. [1303]. The nearly
constant and scale-independent value 𝛾 ≃ 6

11 ≃ 0.545 corresponds to General Relativity (GR) prediction
in the context of ΛCDM e.g. [1301].

The observable combination 𝑓𝜎8(𝑎) ≡ 𝑓(𝑎) ·𝜎(𝑎) is measured at various redshifts by different surveys
as a probe of the growth of matter density perturbations. On subhorizon scales (i.e. 𝑘2 ≫ 𝑎2𝐻2) the
theoretically predicted value of this product can be obtained from the solution 𝛿(𝑎) of the equation
[112, 1304–1308]

𝛿′′(𝑎) +
(︂

3
𝑎

+ 𝐻 ′(𝑎)
𝐻(𝑎)

)︂
𝛿′(𝑎) − 3

2
Ω0𝑚𝐺eff(𝑎)/𝐺
𝑎5𝐻(𝑎)2/𝐻2

0
𝛿(𝑎) = 0 , (3.4)

using the definition
𝜎(𝑎) ≡ 𝜎8

𝛿(𝑎)
𝛿(𝑎 = 1) , (3.5)

where 𝐺 is Newton’s constant as measured by local experiments, 𝐺eff is the effective gravitational coupling
which is related to the growth of matter perturbation, 𝜎(𝑎) is the redshift dependent rms fluctuations of
the linear density field within spheres of radius 𝑅 = 8ℎ−1Mpc and 𝜎8 is its value today.
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Hence, the more robust bias free quantity 𝑓𝜎8 is given by [1309]

𝑓𝜎8(𝑎) = 𝜎8

𝛿(𝑎 = 1) 𝑎 𝛿
′(𝑎) , (3.6)

RSD growth data in the form of 𝑓𝜎8
13 have been provided by wide variety of surveys including the 2-degree

Field Galaxy Redshift Survey (2dFGRS) [1312, 1313], VIMOS-VLT Deep Survey (VVDS) [1314], SDSS
[340, 1315–1319], WiggleZ [1320], 6dFGS [355, 1321], Galaxy and Mass Assembly (GAMA) [1322], BOSS
[48, 1323–1325], Subaru Fiber Multi-Object Spectrograph (FMOS) galaxy redshift survey (FastSound)
[1326], VIMOS Public Extra-galactic Redshift Survey (VIPERS) [1327–1329], eBOSS [344, 1330–1335],
DESI [451, 452]. Using such data the Ω0𝑚 and 𝜎8 parameters in the context of a ΛCDM background
can be constrained. Thus, Ref. [67] using a compilation of 63 RSD datapoints finds the ΛCDM best fit
value Ω0𝑚 = 0.279 ± 0.028 and 𝜎8 = 0.775 ± 0.018. Ref. [510] using RSD selected data and assuming
ΛCDM model reports 𝑆8 = 0.700+0.038

−0.037, Ω0𝑚 = 0.201+0.036
−0.033 and 𝜎8 = 0.857+0.044

−0.042 which are in 3𝜎
tension with the Planck 2018 results. Recently, using RSD data and the RSD+BAO+Pantheon and
RSD+BAO+Pantheon+CC dataset combinations Ref. [1225] finds 𝑆8 = 0.739+0.036

−0.040, 𝑆8 = 0.762+0.030
−0.025

and 𝑆8 = 0.777+0.026
−0.027 respectively.

Galaxy clustering methods, such as the galaxy power spectrum and bispectrum have also been used to
constrain 𝑆8. Constraints from the BOSS galaxy power spectrum [376] gave 𝑆8 = 0.703 ± 0.045 and from
BOSS DR12 bispectrum [375] gave 𝑆8 = 0.751±0.039. Previous analysis of the BOSS DR12 data by Ref.
[1216] gave 𝑆8 = 0.729 ± 0.048. A analysis of the power spectrum of eBOSS by Ref. [1217] resulted in
𝑆8 = 0.720 ± 0.042. Recently, using the BOSS power spectra Ref. [374] found 𝑆8 = 0.736 ± 0.051. Also,
the combination of the auto- and cross-correlation signal of unWISE 14 galaxies [1337] and Planck CMB
lensing maps [1338] by Ref. [1219] gave 𝑆8 = 0.784 ± 0.015. Finally, using the luminous red galaxies of
the DESI in combination with Planck CMB lensing maps Ref. [1218] found 𝑆8 = 0.73 ± 0.03.

Clearly, as seen in Table 3.1 and in Fig. 3.1 the analyses of RSD data gives 𝑆8 values in tension with
CMB measurements at level more than 2𝜎, in agreement with other dynamical cosmological probes (WL
and CC).

3.1.2 Theoretical models
Non-gravitational mechanisms can address the 𝑆8 tension (see Ref. [1339], for a review). Such mechanisms
include the following:

• Dynamical dark energy models [366, 632, 633, 1340–1361] and running vacuum models [685–
688, 690, 1362–1364], which modify the cosmological background 𝐻(𝑧) to a form different from
ΛCDM (see Subsection 2.3.1). This modification may involve the presence of dynamical dark en-
ergy dominant at late cosmological times or at times before recombination.

• Interacting dark energy models, which modify the equation for the evolution of linear matter fluc-
tuations as well as the 𝐻(𝑧) cosmological background [837–840] as discussed in Subsection 2.3.2.
This class of models can address the structure growth 𝜎8 tension between the values inferred from
the CMB and the WL measurements.

• Effects of massive neutrinos [955, 1354, 1365–1370] which are relativistic at early times and con-
tribute to radiation while at late times they become non-relativistic but with significant velocities
(hot dark matter) (see Ref. [1371–1374], for a review). The change of radiation to hot dark matter
affects the Hubble expansion. Simultaneously the residual streaming velocities are still large enough
at late times to slow down the growth of structure [1375]. This effect of massive neutrinos slows
down the growth as required by the RSD data and relieves the 𝑆8 tension coming from WL data
[1369].

13For an extensive compilation of RSD data points 𝑓𝜎8, see in Ref. [4] and for other compilations, see in Refs. [1, 67,
148, 1196, 1310]. Also for a publicly available RSD likelihood for MontePython see in Refs. [1198, 1311].

14Wide-field Infrared Survey Explorer (WISE) [1336] is a NASA infrared astronomy space telescope and is mapping the
whole sky.
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Figure 3.1: The value of 𝑆8 with the 68% CL constraints derived by recent measurements.
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• Primordial magnetic fields [984, 1376] (see Ref. [1377–1379], for a review) induce additional mildly
non-linear, small-scale baryon inhomogeneities present in the plasma before recombination. The
required field results in a reduction of the sound horizon scale at recombination and has the potential
to resolve both the 𝐻0 and 𝑆8 tension [985, 986, 1380].

• Non-thermal dark radiation [1381] seems to help alleviate the 𝑆8 tension to a great extent. However,
the inclusion of BAO data reduces significantly the quality of fit of this model.

In addition to these non-gravitational mechanisms discussed above that can slow down growth at low
redshifts a possible interesting new fundamental physics approach can also reduce the 𝑆8 tension. Such an
approach is most likely to affect three basic observable parameters: the Hubble parameter 𝐻(𝑧, 𝑤) (with
𝑤 the dark energy equation of state parameter), as well as the effective Newton constants for growth of
perturbations

𝜇𝐺(𝑧, 𝑘) ≡ 𝐺eff(𝑧, 𝑘)
𝐺

, (3.7)

and lensing
Σ𝐺(𝑧, 𝑘) ≡ 𝐺𝐿(𝑧, 𝑘)

𝐺
, (3.8)

where 𝐺 is the locally measured value of the Newton’s constant. According to ΛCDM 𝐻(𝑧) = 𝐻(𝑧, 𝑤 =
−1), 𝜇𝐺 = 1, Σ𝐺 = 1.

The Bardeen potentials [1382] (the Newtonian potential Ψ and the spatial curvature potential Φ)
appear in the scalar perturbed FLRW metric in the conformal Newtonian gauge [582, 1383, 1384]

𝑑𝑠2 = −(1 + 2Ψ)𝑑𝑡2 + 𝑎2(1 − 2Φ)𝑑𝑥⃗2 , (3.9)
The LSS probes are sensitive to the Bardeen potentials Ψ and Φ. In particular the WL probe is

sensitive to ∇2(Ψ + Φ). The galaxy clustering arises from the gravitational attraction of matter and is
sensitive only to the potential Ψ. The RSD probe is sensitive to the rate of growth of matter density
perturbations 𝑓 (see Eq. (3.3)) and provides measurements of 𝑓𝜎8 (see Eq. (3.6)) that depends on the
potential Ψ.

At linear level, in modified gravity models, using the perturbed metric Eq. (3.9) and the gravitational
field equations the following phenomenological equations in Fourier space emerge for the scalar pertur-
bation potentials defining the functions 𝜇𝐺(𝑎, 𝑘) and Σ𝐺(𝑎, 𝑘) on subhorizon scales (i.e. 𝑘2 ≫ 𝑎2𝐻2)

𝑘2(Ψ + Φ) = −8𝜋𝐺Σ𝐺(𝑎, 𝑘)𝑎2𝜌Δ , (3.10)

𝑘2Ψ = −4𝜋𝐺𝜇𝐺(𝑎, 𝑘)𝑎2𝜌Δ , (3.11)
where 𝜌 is the matter density of the background, Δ the comoving matter density contrast defined as
Δ ≡ 𝛿 + 3𝐻𝑎(1 + 𝑤)𝜐/𝑘 which is gauge-invariant [330], 𝑤 = 𝑝/𝜌 is the equation-of-state parameter and
𝜐𝑖 = −∇𝑖𝑢 is the irrotational component of the peculiar velocity 𝑢 [587].

Using the gravitational slip parameter 𝜂 (or anisotropic stress parameter) which describes the possible
inequality [931, 1385] of the two Bardeen potentials that may occur in modified gravity theories

𝜂(𝑎, 𝑘) = Φ(𝑎, 𝑘)
Ψ(𝑎, 𝑘) , (3.12)

the two LSS parameters 𝜇𝐺 and Σ𝐺 are related via

Σ𝐺(𝑎, 𝑘) = 1
2𝜇𝐺(𝑎, 𝑘) [1 + 𝜂(𝑎, 𝑘)] . (3.13)

The the Hubble parameter 𝐻(𝑧) is usually parametrized as wCDM

𝐻(𝑧) = 𝐻0

[︁
Ω0𝑚(1 + 𝑧)3 + (1 − Ω0𝑚)(1 + 𝑧)3(1+𝑤)

]︁1/2
, (3.14)
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while the two LSS parameters 𝜇𝐺 and Σ𝐺 do not have a commonly accepted parametrization. A model
and scale independent parametrization for 𝜇𝐺 and Σ𝐺 which reduce to the GR value at early times and
at the present time as indicated by solar system (ignoring possible screening effects) and BBN constraints
(𝜇𝐺 = 1 and 𝜇′

𝐺 = 0 for 𝑎 = 1 and 𝜇𝐺 = 1 for 𝑎 ≪ 1) [1386–1388] is of the form [4, 67, 148, 1389]

𝜇𝐺 = 1 + 𝑔𝑎(1 − 𝑎)𝑛 − 𝑔𝑎(1 − 𝑎)2𝑛 = 1 + 𝑔𝑎( 𝑧

1 + 𝑧
)𝑛 − 𝑔𝑎( 𝑧

1 + 𝑧
)2𝑛 , (3.15)

Σ𝐺 = 1 + 𝑔𝑏(1 − 𝑎)𝑚 − 𝑔𝑏(1 − 𝑎)2𝑚 = 1 + 𝑔𝑏( 𝑧

1 + 𝑧
)𝑚 − 𝑔𝑏( 𝑧

1 + 𝑧
)2𝑚 , (3.16)

where 𝑔𝑎 and 𝑔𝑏 are parameters to be fit and 𝑛 and 𝑚 are integer parameters with 𝑛 ≥ 2 and 𝑚 ≥ 2.
Alternatively, a rapid transition parametrization is of the form [52, 593]

𝜇>
𝐺(𝑧) = 𝜇<

𝐺 + Δ𝜇𝐺 Θ(𝑧 − 𝑧𝑡) , (3.17)

Σ>
𝐺(𝑧) = Σ<

𝐺 + ΔΣ𝐺 Θ(𝑧 − 𝑧𝑡) , (3.18)
where Θ is the Heaviside step function, 𝑧𝑡 is a transition redshift, 𝜇>

𝐺 and Σ>
𝐺 correspond to 𝑧 > 𝑧𝑡 and

𝜇<
𝐺 and Σ<

𝐺 correspond to 𝑧 < 𝑧𝑡.
Various studies utilize modified gravity theories including Teleparallel theories of gravity15 [1402, 1403]

(see Ref. [1404], for a review), Horndeski theories [1405, 1406] or theories beyond Horndeski [1407] to
reduce the effective Newton’s constant 𝐺eff at low redshifts and slow down growth at low redshifts. The
above parametrizations can be realized in the context of physical models based on the above theories.

3.2 CMB anisotropy anomalies
There is a wide range of other less discussed no-standard signals and statistical anomalies of the large angle
fluctuations in the CMB [1408] with a typical 2 to 3𝜎 significance. As mentioned a main assumption of the
ΛCDM model is that the fluctuations are Gaussian and statistically homogeneous and isotropic. Diverse
anomalies have been noticed in the CMB at large angular scales by the space missions Cosmic Background
Explorer (COBE) [1409], Wilkinson Microwave Anisotropy Probe (WMAP) [1410] and Planck satellite
[1411], which appear to violate this assumption (see Refs. [149, 150], for a review). Ref. [1412] presents
possible explanations of the observed CMB anomalies and Ref. [1413] explores the kinetic and the
polarized Sunyaev-Zel’dovich effects as potential probes of physical models of these anomalies.

In what follows we discuss some of these signals. Note that some of these may not be independent16.
Some of these signals have been attributed to the look-elsewhere effect. Based on this effect any large
dataset will have a small number of peculiar features when there is a careful search for such features.
However, this argument may not be applicable when the considered statistics are simple and generic as
are most of the signals discussed below (see Refs. [1415–1417], for a detailed discussion).

3.2.1 Hints for a closed Universe (CMB vs BAO)
The Universe under the assumption of the cosmological principle is described by the Friedmann-Lemaître-
Roberson-Walker (FLRW) metric

𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2
[︂

𝑑𝑟2

1 −𝐾𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2)
]︂
, (3.19)

where 𝐾 characterizes the constant spatial curvature of the spatial slices with 𝐾 = −1, 0,+1 correspond-
ing to open hyperbolic space (negative spatial curvature), flat Euclidean space (zero spatial curvature),

15Many authors have studied the extensions of the Teleparallel gravity such as the scalar-torsion theories of gravity
[1390–1396] and the Teleparallel Horndeski theories [1397–1401].

16The covariance of CMB anomalies in the standard ΛCDM model has been studied by Ref. [1414]. This study focusing
on the correlation of observed anomalies (i.e. the relationship or connection between all of them) examines the independence
of large-angle CMB feature quantities.
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and closed hyperspherical space (positive spatial curvature) respectively. The curvature density parame-
ter is defined as Ω𝐾 ≡ −𝐾/(𝐻𝑎)2 so that a closed Universe corresponds to Ω𝐾 < 0 and an open Universe
to Ω𝐾 > 0. This parameter plays a crucial role in determining the evolution of the Universe, and is
closely related with the early Universe physics.

The Planck18 temperature and polarization data [14] show a preference (∼ 3.4𝜎) for a closed Universe
(Ω𝐾 < 0) in the context of ΛCDM. In particular using these data from Planck18 the curvature density
parameter was constrained to be −0.095 < Ω𝐾 < −0.007 at 99 % C.L [14, 1418]. This anomaly may
be connected with other asymmetries of the CMB anisotropy spectrum discussed below. The preference
for closed universe however disappears when the CMB data are combined with the BAO data. Refs.
[1419–1421] pointed out that Planck+BAO can give a biased result because Planck and BAO are in
disagreement at more than 3𝜎. Combining Planck18 data with recent BAO measurements the curvature
density parameter was estimated to be Ω𝐾 = 0.0008 ± 0.0019 [1419–1421] in agreement with a spatially
flat Universe. Using the full-shape galaxy power spectrum measurements 𝑃 (𝑘), Ref. [1422] has also
confirmed that the Planck data are in tension with both the full-shape power spectrum and BAO with
respect to Ω𝐾 . The recent study by Ref. [1423] confirms the tension between Planck and BAO data
in the context of cosmic curvature. Ref. [1423] used a new statistical analysis (the alternative Planck
CamSpec likelihood TTTEEE instead of Plik as discussed in Ref. [1424]) to show that Planck favors a
closed Universe at more than 99% CL. However, Planck+BAO was again found to be in agreement with a
spatially flat Universe with Ω𝐾 = 0.0004 ± 0.0018 thus confirming previous studies by Refs. [1420, 1421].

In an effort to further investigate this tension between Planck and BAO data, the analysis of Ref.
[1425] combined Planck18 CMB temperature and polarization data with cosmic chronometer measure-
ments and was lead to confirm that the Universe is consistent with spatial flatness to 𝒪(10−2) level.

A positive curvature (closed Universe) may be a plausible source of the anomalous lensing amplitude
[1419–1421] (see Subsection 3.2.8).

3.2.2 Anomalously strong ISW effect
The decay of cosmological large-scale gravitational potential Ψ causes the integrated Sachs-Wolfe (ISW)
effect [1426] which imprints tiny secondary anisotropies to the primary fluctuations of the CMB and is a
complementary probe of dark energy e.g. [1427]. Using a stacking technique in the CMB data (see Refs.
[1428, 1429], for a detailed discussion) anomalously strong integrated Sachs–Wolfe (ISW) signal (> 3𝜎)
has been detected for supervoids and superclusters on scales larger than 100ℎ−1𝑀𝑝𝑐 [1430, 1431]. This
stronger than expected within standard ΛCDM signal of the ISW effect first emphasised in Ref. [1432]
has been studied by Refs. [1433–1439].

In particular the analysis by Ref. [1438] for DES data alone found an excess ISW imprinted profile
with 𝐴𝐼𝑆𝑊 ≡ Δ𝑇 𝑑𝑎𝑡𝑎/Δ𝑇 𝑡ℎ𝑒𝑜𝑟𝑦 ≈ 4.1 ± 2.0 amplitude (where 𝐴𝐼𝑆𝑊 = 1 corresponds to the ΛCDM
prediction). Also a combination with independent BOSS data leads to 𝐴𝐼𝑆𝑊 = 5.2 ± 1.6. This is in 2.6𝜎
tension with ΛCDM cosmology.

The average expansion rate approximation (AvERA) inhomogeneous cosmological simulation [1440]
uses the separate Universe conjecture to calculates the spatial average of the expansion rate of local
mini-Universes predicts. It indicates under the inhomogeneity assumption, about ∼ 2 − 5 times higher
ISW effect than ΛCDM depending on the 𝑙 index of the spherical power spectrum [1441]. Thus large scale
spatial inhomogeneities could provide an explanation to this ISW excess signal. Ref. [1442] uses angular
cross-correlation techniques and combines several tracer catalogues to report 𝐴𝐼𝑆𝑊 ≈ 1.38 ± 0.32.

Ref. [1443] investigated the early Integrated Sachs-Wolfe (eISW) effect (see e.g. [1444, 1445]) which
is assumed to occur soon after recombination (30 < 𝑧 < 1100), due to the presence of a non-negligible
radiation. Constraints were thus imposed on the parameter 𝐴𝑒𝐼𝑆𝑊 introduced by Ref. [1446]. Using
Planck CMB data, this parameter was constrained to 𝐴𝑒𝐼𝑆𝑊 = 0.988 ± 0.027, in perfect agreement with
ΛCDM. Note that in previous studies the parameter 𝐴𝑒𝐼𝑆𝑊 was constrained to 𝐴𝑒𝐼𝑆𝑊 = 0.979 ± 0.055
using data from WMAP7+SPT [1446], to 𝐴𝑒𝐼𝑆𝑊 = 1.06 ± 0.04 from the Planck 2015 data release [1447],
and to 𝐴𝑒𝐼𝑆𝑊 = 1.064 ± 0.042 from the Planck 2018 temperature data alone [1448].
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In general the reported 𝐴𝐼𝑆𝑊 amplitude varies in the literature depending on the dataset and the
assumptions of the analysis. Further investigation of this issue is needed.

3.2.3 CMB cold spot
The cold (blue) spot was first found in WMAP 1-year temperature data by Ref. [1449] and was confirmed
in Planck data [150, 1429, 1450] in the southern hemisphere at the galactic longitude and latitude (𝑙, 𝑏) =
(2090,−570). It is a statistical anomaly of the large-angle fluctuations in the CMB indicating non-
Gaussian features. This inconsistency with Gaussian simulations has a p-value of ∼ 1%.

The cold spot is an unusually large region of low temperature with the mean temperature decrement
Δ𝑇 ≈ −100𝜇K and is not consistent with the prediction of gaussianity of the standard ΛCDM model
[1451–1453].

Refs. [1437, 1454, 1455] pointed out that the anomalous nature of the cold spot corresponds to a
rather cold area with an angular radius in the sky of about 50 − 100 from the centre surrounded by a hot
ring.

Possible approaches for the explanation of the Cold Spot include: non-Gaussian feature due to a large
statistical fluctuation [1449], an artifact of inflation [1451], the foreground [1452, 1456], multiple voids
[1457], the imprint of a supervoid (about 140 − 200 Mpc radius completely empty void at 𝑧 ≤ 1) through
the ISW effect [1430, 1458–1460], the axis of rotation of the Universe [1461], cosmic texture [1451, 1462],
adiabatic perturbation on the last scattering surface [1463] (see Refs. [1464, 1465], for a review).

3.2.4 Cosmic hemispherical power asymmetry
The cosmic hemispherical power asymmetry (or dipolar asymmetry) is a directional dependency of the
CMB angular power spectrum [1466–1469]. The continuous dipolar modulation of hemispherical power
asymmetry corresponds to a hemispherical temperature variance asymmetry (signal in the CMB temper-
ature field) [150, 1429, 1466, 1467, 1470–1474].

The dipolar modulated/observed CMB temperature fluctuation Δ𝑇
𝑇 |𝑚𝑜𝑑 in the direction 𝑛̂ which

appears to extend to 𝑙𝑚𝑎𝑥 ≃ 64 can be expressed as [1472, 1475, 1476]17

Δ𝑇
𝑇

|𝑚𝑜𝑑(𝑛̂) = [1 +𝐴𝑑𝑚𝑛̂ · 𝑝] Δ𝑇
𝑇

|𝑖𝑠𝑜(𝑛̂) , (3.20)

where Δ𝑇
𝑇 |𝑖𝑠𝑜 is a statistically unmodulated/isotropic temperature fluctuation, 𝐴𝑑𝑚 denotes the amplitude

of dipolar modulation and 𝑛̂ · 𝑝 corresponds to the dipolar modulation between the line-of-sight (LOS) of
the observer (with unit vector 𝑛̂) and the preferred dipolar direction (with unit vector 𝑝). The amplitude
of dipolar modulation 𝐴𝑑𝑚 is large at large angular scales 2 < 𝑙 ≲ 64 (𝑘 ≲ 0.035 Mpc−1), small at
small angular scales 𝑙 ≳ 64 and vanishes by a multipole moment of ∼ 500 − 600 [150, 1429, 1450]. The
scale dependence of the hemispherical power asymmetry was suggested by Refs. [1477–1487] and was
investigated by Refs. [1488, 1489].

According to the hemispherical asymmetry nearly aligned with the Ecliptic, the temperature fluc-
tuations are larger on one side of the CMB sky than on the other, resulting in an unexpected dipole
configuration in the CMB power spectrum with an anomalously lower value of the variance in the north-
ern sky compared to the southern sky [1450]. The preferred direction for the asymmetry from the
Planck18 data is (𝑙, 𝑏) = (2210,−200) in galactic coordinates and the amplitude is 𝐴𝑑𝑚 ∼ 0.07 with sta-
tistically significant at the ∼ 3𝜎 level [150]. This amplitude is ∼ 2 times higher than expected asymmetry
due to cosmic variance (𝐴𝑑𝑚 ∼ 0.03) and it is inconsistent with isotropy (𝐴𝑑𝑚 = 0) at the ∼ 3𝜎 level.
The hemispherical power asymmetry in CMB can be explained by assuming a superhorizon perturbation
[1475, 1490] or asymmetric initial states of the quantum perturbations [1486].

17Note that the hemispherical dipole is distinct from the usual CMB dipole. In the former case the power spectrum
is assumed modulated discontinuously across a circle on the sky and in the second the actual temperature map has a
component modulated by a smooth cosine function across the sky [1476].
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3.2.5 Quadrupole-octopole alignment
The fluctuations in the standard ΛCDM model are Gaussian and statistically isotopic. Thus in harmonic
space the quadrupole (𝑙 = 2) and octopole (𝑙 = 3) harmonics are expected to have independent and
random orientations and shapes. The quadrupole and octopole have been observed to be planar and
unexpectedly aligned with each other [1491–1496]. This implies a violation of statistical isotropy.

In particular in this low multipole moment anomaly the quadrupole and octopole planes are found to
be mutually aligned with the direction of the cosmic dipole or CMB dipole (see Subsection 3.3 and Table
3.2) and perpendicular to the Ecliptic [149].

In order to study this large-angle anomaly one can use the maximum angular momentum dispersion
[1491]

⟨𝜓|(n̂𝑙 · L)2|𝜓⟩ =
𝑙∑︁

𝑚=−𝑙

𝑚2|𝑎𝑙𝑚(n̂𝑙)|2 , (3.21)

where the CMB map is represented by a wave function

Δ𝑇
𝑇

(n̂𝑙) ≡ 𝜓(n̂𝑙) . (3.22)

Here 𝑎𝑙𝑚(n̂𝑙) correspond to the spherical harmonic coefficients of the CMB map in a coordinate system
with its 𝑧-axis in the the n̂𝑙-direction.

The preferred axis n̂𝑙 is the axis around which the angular momentum dispersion is maximized. The
directions of the quadrupole n̂2 and the octopole n̂3 are [1491]

n̂2 = (−0.1145,−0.5265, 0.8424) , (3.23)

n̂3 = (−0.2578,−0.4207, 0.8698) , (3.24)

with
|n̂2 · n̂3| ≃ 0.9838 . (3.25)

This unexpected alignment of the n̂2 and n̂3 directions has only a 1/62 probability of happening.
An approach in the analysis of this large-angle anomaly may also involve the use the multipole

vectors [1497] (an alternative to the spherical harmonics) where each multipole order 𝑙 is represented by
𝑙 unit vectors i.e a dipole 𝑙 = 1 can be constructed by a vector, a quadrupole by the product of two
vectors/dipoles, an octopole from three vectors/dipoles etc.

The alignment of low multipoles indicates the existence of a preferred direction in the CMB tem-
perature anisotropy. Furthermore possible relation between the quadrupole-octopole alignment and the
dipolar asymmetry has been investigated by Refs. [1471, 1475]. A negligible relation between these
anomalies was reported. However the analysis by Ref. [1498] has shown that a particular dipolar modu-
lation including the scale dependence may be connected with the quadrupole-octopole alignment.

3.2.6 Lack of large-angle CMB temperature correlations
There is a lack of large-angle CMB temperature correlations as first was observed by COBE satellite
[1499] and was confirmed by the WMAP [42, 1500] and Planck [150, 1429] temperature maps in the
range 𝑙 = 2 to 32. This is in tension with the ΛCDM prediction.

This anomaly is directly connected to the temperature 𝑇 two-point angular correlation function
𝐶𝑇 𝑇 (𝜃) of the CMB at large angular scale (𝜃 ≳ 600) which is unexpectedly close to zero [1495, 1501, 1502].
In angular space the two-point angular correlation function is defined as

𝐶𝑇 𝑇 (𝜃) ≡ ⟨𝑇 (𝑛̂1)𝑇 (𝑛̂2)⟩ = 1
4𝜋
∑︁

𝑙

(2𝑙 + 1)𝐶𝑙𝑃𝑙(cos 𝜃) , (3.26)
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where the average is over all pairs of directions 𝑛̂ with 𝑛̂1 · 𝑛̂2 = cos 𝜃, 𝑃𝑙(cos 𝜃) are the Legendre
polynomials and 𝐶𝑙 is the angular power spectrum

𝐶𝑙 ≡ 1
2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

|𝑎𝑙𝑚|2 , (3.27)

with 𝑎𝑙𝑚 the spherical harmonic coefficients of the temperature fluctuations.
The simplest and most useful statistic is 𝑆1/2 first introduced in the WMAP first-year release [42] in

order to measure the deviation of the angular correlation function from zero at angular scales 600 < 𝜃 <
1800. It is defined as

𝑆1/2 =
∫︁ 𝜇1

𝜇2

[︀
𝐶𝑇 𝑇 (𝜃)

]︀2
𝑑(cos 𝜃) , (3.28)

with 𝜇1 ≡ cos 𝜃1 = cos 600 = 1/2 and 𝜇2 ≡ cos 𝜃2 = cos 1800 = −1.
A number of alternative statistics have been proposed in the literature [150, 1503–1505]. For example

a generalization of the 𝑆1/2 statistic suggested by Ref. [1506]. This statistic known as 𝑆𝑇 𝑄 uses the two-
point angular correlation function between fluctuations in the temperature 𝑇 and the Stokes parameter18

𝑄, 𝐶𝑇 𝑄(𝜃), which can be expressed in terms of the two-point angular power spectrum, 𝐶𝑇 𝐸
𝑙 (with 𝐸

the gradient mode of polarization). The significance of a test statistic can be quantified by using the
p-value19, suggested by Ref. [1450].

No sufficient explanation has yet been suggested for this large-angle anomaly. Ref. [1512] studies
the ISW effect, Ref. [1513] explores a non-trivial spatial topology of the Universe and Ref. [1514]
studies the topology of the Planck CMB temperature fluctuations in order to find a possible explanation
to the suppression of large-angle CMB temperature correlations. Also the low observed power in the
quadrupole is a potential explanation for the lack of correlation in the temperature maps. Ref. [1501]
argues that there is a cancellation between the combined contributions of 𝐶𝑙 with multipoles 𝑙 ≤ 5 and
the contributions of 𝐶𝑙 with multipoles 𝑙 ≥ 6.

3.2.7 Anomaly on super-horizon scales
Ref. [1515] analysed the topological characteristics of the CMB temperature fluctuation. Using mathe-
matical investigations on persistent homology to describe the cosmic mass distribution and performing
experiments on Planck 2020 data release 4 (DR4) (based on the NPIPE data processing pipeline [1516]),
Ref. [1515] claimed a detection of an anomalous topological signature in the Planck CMB maps indicat-
ing non-Gaussian fluctuations. In particular Ref. [1515] reports an anomaly in the behavior of the loops
(a 4𝜎 deviation in the number of loops) in the observed sky compared to the analysis of the redshift
evolution of structure on simulations when the ΛCDM model is considered.

3.2.8 The lensing anomaly
The recent Planck18 release by Ref. [14] has confirmed the higher compared to that expected in the
standard ΛCDM model, anomalous, lensing contribution in the CMB power spectra which is quantified
by the phenomenological parameter, 𝐴𝐿 [1517, 1518]. This weak lensing parameter 𝐴𝐿 rescales the lensing
potential power spectrum as20

𝐶Ψ
𝑙 → 𝐴𝐿𝐶

Ψ
𝑙 , (3.29)

18The Stokes parameters Q and U (for the Stokes parameters formalism see Ref. [1507]) are used to describe the state of
CMB polarization e.g. [77, 1508]. These parameters are directly related to the E and B modes [1509–1511]. The polarization
amplitude is given by 𝑃 =

√︀
𝑄2 + 𝑈2.

19The probability value or p-value is the probability of measuring a test statistic equal to or more extreme as the observed
one, considering that the null hypothesis is correct [1450]. It provides the lower value of significance at which the model
would be ruled out. A low p-value means that there is strong indication of new physics beyond the null hypothesis.

20Note that this is not the usual 𝐶𝑙 but it is the additional contribution due to lensing.
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where 𝐴𝐿 = 0 corresponds to unlensed while 𝐴𝐿 = 1 is the expected lensed result [1517] measuring the
lensing effect in the CMB temperature power spectrum.

Since the main impacts of lensing on the CMB temperature power spectrum are to add power at small
scales and to smooth the structure of the acoustic peaks and troughs (the peaks are reduced slightly,
and the troughs between them filled in) [1519, 1520] the adding of parameter 𝐴𝐿 changes the amount of
smoothing of the CMB primary spectra peaks and troughs. A higher lensing amplitude (𝐴𝐿 > 1) than
predicted in the flat ΛCDM cosmology (𝐴𝐿 = 1) by roughly 10% (at the level of 2.8𝜎) has been found in
the temperature power spectra by the Planck team [14].

It should be noted that the oscillatory residuals between the Planck temperature power spectra and
the best-fit ΛCDM model in the multipole range 𝑙 ∈ [900, 1700] are in opposite phase compared to the
CMB and thus phenomenologically similar to the effects of gravitational lensing [1521, 1522].

A plausible explanation of the anomalous lensing amplitude is a positive curvature (closed Universe)
which was investigated by Refs. [1419–1421]. Other possible sources which explain the lensing anomaly
by mimicking a lensing effect are: a component of cold dark matter isocurvature (CDI) perturbation with
a blue tilt (see Ref. [1523], for a detailed discussion) and oscillations in the primordial power spectrum
which have the same frequency but opposite phase with the acoustic peaks [14]. All these effects are
degenerate with the smoothing effect of lensing.

Furthermore, the modified gravity models could be candidates for a solution of the lensing anomaly
[716, 862, 1524, 1525]. In particular the hints for Σ0 > 1 (where Σ0 the current value of parameter Σ
which modifies the equation for the lensing potential i.e. Eq. (3.10)) are directly connected to the lensing
anomaly as characterized by 𝐴𝐿 > 1 [1524, 1525].

3.2.9 High-low l consistency
Ref. [1526] pointed out that there are internal inconsistencies in the Planck TT power spectrum. The
ΛCDM parameter values derived by the high 𝑙 part of the CMB anisotropy spectrum (𝑙 > 1000) are
in 2 − 3𝜎 tension with the corresponding values of these parameters derived from the low 𝑙 part of the
spectrum (1 < 1000). For example the low 𝑙 multipoles predict a lower value of the cold dark matter
density parameter 𝜔𝑐 than the high 𝑙 multipoles, with discrepancy at 2.5𝜎 [1526]. In addition it has been
shown that the value of 𝐻0 predicted by Planck from 𝑙 > 1000, 𝐻0 = 64.1 ± 1.7 km s−1 Mpc−1, disagrees
with the value predicted by Planck from 𝑙 < 1000, 𝐻0 = 69.7 ± 1.7 km s−1 Mpc−1 at the 2.3𝜎 level. Thus
it is found that the value of 𝐻0 depends on the CMB 𝑙-range examined.

This anomaly is probably related to the lensing anomaly i.e. the fact that ΛCDM is more consistent
with the low 𝑙 part of the spectrum that this not affected by the lensing anomaly (see Refs. [17, 1521, 1527],
for a discussion).

3.2.10 The preference for odd parity correlations
There is an anomalous power excess (deficit) of odd (even) 𝑙 multipoles in the CMB anisotropy spectrum
on the largest angular scales (2 < 𝑙 < 30), [150, 1528–1533]. A map consisting of odd (even) multipoles
possesses odd (even) parity thus this effect may be considered as power (spectrum) asymmetry between
even and odd parity map which is known as parity asymmetry.

In order to compare even and odd multipoles Ref. [1530] considers the parity asymmetry statistic
defined as the ratio 𝑃 ≡ 𝑃+/𝑃− of quantities 𝑃+ and 𝑃− which represent the mean power in even and
odd only multipoles respectively for the range 2 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥

𝑃± =
𝑙𝑚𝑎𝑥∑︁

2

[︀
1 ± (−1)𝑙

]︀
𝑙(𝑙 + 1)𝐶𝑙

4𝜋 . (3.30)

A different statistic to quantify the parity asymmetry has been proposed by Ref. [1534].
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Figure 3.2: Mollweide-projection view of preferred directions in galactic coordinates for different cosmo-
logical observations (see Table 3.2).

3.3 Cosmic dipoles
There have been studies pointing out the presence of signals which indicate the violation of the cosmo-
logical principle. A physical mechanism producing such violation on Hubble scales is studied by Ref.
[1535]. Various other possible mechanisms have been suggested to explain the observed violations of
statistical isotropy e.g. superhorizon perturbations which introduce a preferred direction in our Universe
[1490, 1536] (see also Ref. [1412], for a review). The dipole amplitudes and the directions (𝑙, 𝑏) (galactic
coordinates) from the different cosmological observations described below are shown in Fig. 3.2 and along
with the corresponding references in Table 3.2.

The physical origin of these dipoles is described in the following subsections.

3.3.1 Velocity radio dipole
A large scale velocity flow dipole22 was pointed out in Refs. [151, 152]. The dipole moment of the
peculiar velocity field (dipole bulk flow) which is a sensitive probe of the amplitude and growth rate of
fluctuations on large scales [1544] was investigated by Refs. [151, 152, 1545–1551]. In many cases the
results are controversial and there is a debate in the literature on the consistency with the ΛCDM model.

A recent detailed analysis has indicated that ’tilted observers’ within the bulk flow can be misled into
inferring acceleration [1552, 1553].

Ref. [1554] uses SnIa JLA data to demonstrate that the indications for cosmic accceleration found in
the SnIa data disappears if a bulk flow induced anisotropy is allowed in the SnIa data. Thus, a bulk flow

22For peculiar velocities as variation of the Hubble expansion produced by nearby nonlinear structures see in Ref. [153]
and for dipole anisotropy in radio source count, see in Ref. [154].
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Table 3.2: The amplitudes and the directions (𝑙, 𝑏) (galactic coordinates) from different cosmological
observations (Fig. 3.2) along with the corresponding references. The amplitude of CMB dipole has
derived using the Eq. (3.33) (see e.g. Ref. [58]).

Observations 𝑙 [deg] 𝑏 [deg] Amplitude Refs.

CMB Dipole (Planck) 264.021 ± 0.011 48.253 ± 0.005 ∼ 0.007 [908, 1537]
Velocity Radio Dipole (TGSS) 243.00 ± 12.00 45.00 ± 3.00 0.070 ± 0.004 [154]
Velocity Radio Dipole (NVSS) 253.12 ± 11.00 27.28 ± 3.00 0.023 ± 0.004 [154]
Velocity Radio Dipole (NVSS) 253.00 ± 2.00 28.71 ± 12.00 0.019 ± 0.002 [1538]
Velocity Radio Dipole (NVSS) 253.00 32.00 ± 12.00 0.012 ± 0.005 [1539]

Quasar Dipole 238.20 28.80 0.01554 [58]
𝛼 Dipole (VLT/UVES) 330 ± 15 −13 ± 10 0.97+0.22

−0.20 × 10−5 [155]
CMB Quadrupole (Planck SMICA21) 238.5 76.6 [1450]

CMB Octopole (Planck SMICA) 239.0 64.3 [1450]
CMB Hemispher. Asym. (Planck) 221 −22 0.07 [150]
CMB Hemispher. Asym. (WMAP) 227 −27 0.07 [1542]
Maximum Acceleration (Pantheon) 286.93 ± 18.52 27.02 ± 6.50 0.0018 ± 0.0002 [12]
Maximum Acceleration (Union2) 309+23

−3 18+11
−10 [1543]

dipole (at 3.9𝜎) aligned with the local bulk flow is identified while any monopole (which can be attributed
to Λ) is consistent with zero (at 1.4𝜎).23

It is usually assumed that our local (solar system) peculiar motion with respect to the CMB rest frame
produces the CMB dipole anisotropy (𝑙 = 1) [1556, 1557] (also known as solar dipole [1537, 1558]). In
the standard model, this implies that the LSS distribution should have a similar kinematic dipole known
as the velocity dipole or radio dipole which arises from the Doppler boosting of the CMB monopole and
from special relativistic aberration effects [1559].

In order to describe the origin of this dipole, a population of sources with power-law spectra depending
on frequency 𝜈 is usually assumed

𝑆𝜈 ∝ 𝜈−𝛼 , (3.31)
where 𝑆𝜈 is the flux density and 𝛼24 is an individual spectral index with typically assumed value 𝛼 ∼ 0.75
[1560]. The integral source counts per unit solid angle above some limiting flux density 𝑆𝜈 can be
approximated by a power law

𝑑𝑁

𝑑Ω (> 𝑆) ∝ 𝑆−𝑥
𝜈 , (3.32)

where 𝑥 ∼ 1 and can be different for each survey. An observer moving with velocity 𝜐 ≪ 𝑐 with respect
to the frame in which these sources are isotropically distributed sees a dipole anisotropy 1 +𝐷 cos 𝜃 over
the sky with amplitude [1561]

𝐷 = [2 + 𝑥(1 + 𝛼)]𝜐
𝑐
. (3.33)

According to the most recent measurements the inferred velocity of the Sun relative to the CMB rest
frame is [908, 1537]

𝛽 ≡ 𝜐

𝑐
= (1.23357 ± 0.00036) × 10−3 , (3.34)

23A recent model independent analysis of SnIa data (Pantheon) data Ref. [1555] implementing machine learning has
confirmed a ∼ 4.5𝜎 detection of the accelerated expansion even though that analysis did not allow for anisotropic dipole
effects.

24The individual spectral index 𝛼 should not be confused with the fine-structure constant 𝛼.
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𝑜𝑟 𝜐 = 369.82 ± 0.11 km s−1 , (3.35)

along the direction with galactic longitude and latitude (𝑙, 𝑏) = (264.0210 ± 0.0110, 48.2530 ± 0.0050) or
𝑅𝐴 ∼ 1680, 𝐷𝑒𝑐 ∼ −70 [908, 1537].

The CMB rest frame is conventionally taken to correspond to the standard of cosmic rest frame and
is assumed to be statistically homogeneous and isotropic in the context of the FLRW model. In this rest
frame the Hubble flow should be most uniform (minimum Hubble variation frame) and the comoving
observers should not see a kinematic dipole. However it has been observed [153, 1562] that the dipole
structure of the velocity field is less in the reference frame of the Local Group of galaxies than in the
CMB frame. This persistence of the dipole structure of the velocity flow in the CMB frame at large
distances is not unexpected if we are located in an underdensity [1563].

According to the standard model if the Universe is isotropic our velocity with respect to the CMB
rest frame and our velocity relative to the LSS should be identical. However, as was first noted by Ref.
[1564], while the direction of the radio dipole is consistent with that of the CMB, the velocity of our local
motion obtained from the radio dipole exceeds that obtained from the CMB dipole. Radio continuum
surveys which sample the Universe at intermediate redshifts (𝑧 ∼ 1) have been used as an excellent probe
to large scale isotropy and a discrepancy between the predicted and measured amplitudes of the velocity
have been revealed [154, 1538, 1539, 1565–1567]. In particular the analysis by Ref. [154] has shown that
the radio dipole using the sky distribution of radio sources from the NRAO VLA Sky Survey (NVSS)
dataset [1568] and TIFR GMRT Sky Survey (TGSS) dataset [154, 1569, 1570] is ∼ 2 and ∼ 5 times larger
than predicted by the mock realisations within the context of ΛCDM cosmology respectively. The above
observed discrepancy between the radio and CMB dipoles has been confirmed by independent groups and
could imply the existence of an anisotropic Universe.

Possible explanations of the violation of statistical isotropy are: systematics due to the incomplete sky
coverage of the radio continuum surveys [1539, 1565, 1571], intrinsic dipole in the local LSS [1572], nearby
nonlinear structures of voids and walls and filaments [153], remnant of the pre-inflationary Universe [1573]
and superhorizon perturbation [1574, 1575].

3.3.2 Quasar dipole
The distribution of quasars across the sky may provide independent probe of the cosmological principle
[1576]. As previously discussed there is an expected anisotropy related to the CMB dipole anisotropy
(about 1 part in 1000) due to our motion with respect to the CMB rest frame.

Ref. [58] used mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) [1336] to
create reliable AGN/quasar catalogs and a custom quasar sample from the new CatWISE2020 data
release [1577]. It was shown that there is a statistically significant dipole in the density of distant quasars
with direction (𝑙, 𝑏) = (238.20, 28.80) which is 27.80 away from the direction of the CMB dipole. Its
amplitude was found to be 0.01554, ∼ 2 times larger than predicted, with statistical significance at the
4.9𝜎 level (or with a p-value of 5 × 10−7) for a normal distribution. This result is in conflict with the
cosmological principle.

3.3.3 Fine structure constant 𝛼 dipole
In the past 20 years there has been interest in the possibility of the variation of the fine structure constant
𝛼 ≡ 𝑒2/(4𝜋𝜖0ℏ𝑐) (where 𝑒, 𝜖0, ℏ, and 𝑐 are the electron charge, the vacuum permittivity, the reduced
Planck’s constant, and the speed of light) [156, 1578–1586] (see Ref. [109], for review of varying fine
structure constant).

The analysis by Refs. [155, 156] uses the “many multiplet” (MM) method [1587–1590] to analyze
quasar absorption line spectra obtained using the Ultraviolet and Visual Echelle Spectrograph (UVES)
[1591] on the Very Large Telescope (VLT). It indicates both the violation of the cosmological principle
and the spatial variation of the fine structure constant 𝛼 which is approximated as a spatial dipole
with direction (𝑙, 𝑏) = (3300 ± 150,−130 ± 100) and amplitude 0.97+0.22

−0.20 × 10−5, preferred over a simple
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monopole model with significance at the 4.2𝜎 (see Refs. [1592–1594], for possible systematics in this
analysis).

The variation of 𝛼 across the sky was shown to be well fit by an angular dipole model of the form
[155]

Δ𝛼
𝛼

≡ 𝛼− 𝛼0

𝛼
= 𝐶𝐴 cos 𝜃 + 𝐶𝐵 , (3.36)

where 𝛼0 is the present local value, 𝜃 is the angle with respect to the dipole direction, 𝐶𝐴 is the angular
amplitude of the dipole term and 𝐶𝐵 is a monopole term.

It is worth to note that the analysis by Ref. [1595] suggests that there are no robust indications of
time or space variations of 𝛼. However recent measurements of quasar absorption-line spectra indicate a
spatially dependent value of fine structure constant 𝛼 at a ∼ 4𝜎 significance level over a simple monopole
(no-variation) model [1596, 1597]. In addition, it is found that the fine structure constant 𝛼 dipole is
anomalously aligned with other dipoles and the preferred direction in Δ𝛼/𝛼 is correlated with the one in
the distribution of SnIa [1598, 1599].

3.4 BAO curiosities
As mentioned above (see Subsection 2.2.2) the BAO measurements can be classified in two classes: galaxy
BAO and Ly𝛼 BAO (with Ly𝛼 auto-correlation function and Ly𝛼-quasar cross-correlation function). A
2.5 − 3𝜎 discrepancy between the BAO peak position in the Ly𝛼 at an effective redshift of 𝑧 ∼ 2.34 and
the CMB predictions from Planck/ΛCDM cosmological model has been found [322, 359, 1600].

For example, Ref. [322] uses the Ly𝛼 auto-correlation function and the Ly𝛼-quasar cross-correlation
function to report the measurements of the BAO scale in the line-of-sight direction

𝐷𝐻(𝑧 = 2.40)/𝑟𝑠 = 8.94 ± 0.22 , (3.37)

and in the transverse direction
𝐷𝑀 (𝑧 = 2.40)/𝑟𝑠 = 36.6 ± 1.2 , (3.38)

where 𝐷𝐻(𝑧) ≡ 𝑐
𝐻(𝑧) is the Hubble distance and 𝐷𝑀 (𝑧) ≡ (1 + 𝑧)𝐷𝐴(𝑧) = 𝑑𝐴(𝑧) is the comoving

angular diameter distance. These values are in ∼ 2.3𝜎 tension with CMB predictions 𝐷𝐻(𝑧 = 2.40)/𝑟𝑠 =
8.586 ± 0.021 and 𝐷𝑀 (𝑧 = 2.40)/𝑟𝑠 = 39.77 ± 0.09 by Planck 2015 flat ΛCDM cosmology [16].

The galaxy BAO peak position in the matter correlation function 𝜉(𝑠) (see Eq. (2.15) and Fig. 2.5)
and the measurements 𝐷𝐻(𝑧 = 2.40)/𝑟𝑠 and 𝐷𝑀 (𝑧 = 2.40)/𝑟𝑠 were found to be consistent with CMB
predictions. This discrepancy between galaxy and Ly𝛼 BAO constitutes the BAO anomaly which has
been investigated in Refs. [22, 157, 158].

Using new Ly𝛼 BAO measurements from the BOSS survey and from its extended version eBOSS in
the SDSS DR14 the tension with CMB predictions was reduced to ∼ 1.7𝜎 [357, 360] and from eBOSS in
the SDSS DR16 to only ∼ 1.5𝜎 [361].

Ref. [158] argues that this anomaly arises by cosmological effects at 𝑧 < 2.34 and the tension is caused
by evolution of dark energy equation of state 𝑤(𝑧) for redshift range 0.57 < 𝑧 < 2.34.

3.5 Parity violating rotation of CMB linear polarization (Cos-
mic Birefringence)

In the standard model of elementary particles and fields, parity violation is observed only in the weak
interaction sector [1601, 1602]. A certain class of quintessence models should generically generate such
parity asymmetric physics [1603, 1604]. In particular a parity violating (nearly) massless axionlike scalar
field 𝜑 (dark matter or dark energy) would rotate CMB polarisation angles of CMB photons as they travel
from the last scattering surface (𝑧 ≈ 1000) to the present by a non-zero angle 𝛽𝑎 (cosmic birefringence).
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A Chern–Simons coupling between a time-dependent axionlike field 𝜑(𝑡) and the electromagnetic
tensor and its dual in the Lagrangian density (e.g. [1603, 1605])

ℒ = 1
4𝑔𝜑𝛾𝜑𝐹𝜇𝜈𝐹

𝜇𝜈 , (3.39)

induces a cosmic isotropic birefringence angle (e.g. [1606, 1607])

𝛽𝑎 = 1
2𝑔𝜑𝛾

∫︁ 𝑡0

𝑡𝑠

𝜑̇𝑑𝑡 , (3.40)

and produces a non-zero observed 𝐸𝐵 spectrum [1608]

𝐶𝐸𝐵
𝑙 = 1

2 sin (4𝛽𝑎)(𝐶𝐸𝐸
𝑙 − 𝐶𝐵𝐵

𝑙 ) , (3.41)

where 𝑔𝜑𝛾 is a Chern-Simons coupling constant which has mass-dimension −1, 𝐹𝜇𝜈 is the dual of the
electromagnetic tensor of 𝐹𝜇𝜈 , and 𝑡0 and 𝑡𝑠 are the times at present and last scattering surface, respec-
tively.

Using a novel method developed in Refs. [159–161], a non-zero value of the isotropic cosmic birefrin-
gence 𝛽𝑎 = 0.35 ± 0.14 deg (68% C.L) was recently detected in the Planck18 polarization data at a 2.4𝜎
statistical significance level by Ref. [162]. This recent evidence of the non zero value of birefringence
poses a problem for standard ΛCDM cosmology and indicates a hint of a new ingredient beyond this
model.

An axion or an axion-like particle with a weak coupling to photon as a possible source of the cosmic
birefringence was investigated by Ref. [1609]. Ref. [1610] showed that if an ultralight axion coupled
to photons forms domain walls due to inflationary fluctuations, the domain-wall network can explain
the hint for isotropic cosmic birefringence found by Ref. [162]. This model predicts a testable peculiar
anisotropic cosmic birefringence as well. In contrast to the approach of Ref. [1609], this scenario explains
the birefringence with the photon anomalous coefficient of the axion-like particle ∼ 𝑂(1). Furthermore,
birefringence inducing axion-like particles could be candidates for an early dark energy resolution to the
Hubble tension [1609]. Refs. [1611, 1612] study the anisotropic birefringence and constraints are derived.
The axion field fluctuations over space and time generate anisotropic birefringence.

3.6 Small-scale curiosities
On small scales (on scales of hundreds of 𝑘𝑝𝑐 and below) the predictions of ΛCDM model are in many
cases inconsistent with observations [1613–1615]. In particular observations on galaxy scales indicate that
the ΛCDM model faces several problems in describing structures at small scales (≲ 1 Mpc) (see Refs.
[163, 164, 1616–1618], for a review). Alternative models that modify the nature of dark matter have been
used to solve these problems e.g. warm [1619–1623], fuzzy [1624–1627], self-interacting [1628–1631] and
meta-cold dark matter [1632] (see also Ref. [1633], for a review). Other models which have the potential
to provide a solution to these problems have been proposed by Refs. [1094, 1101, 1107, 1634–1636]. In
particular Refs. [1634, 1635] argued that the existence of a dissipative hidden dark matter sector (dark
matter coupled to a massless dark photon) can solve some of these problems (core-cusp, missing satellites,
and plane of satellites problem).

These small scale signals include the following:

3.6.1 The core-cusp curiosity
The core-cusp curiosity [1637, 1638] refers to a discrepancy between the density of a dark matter halo
profile of low-mass galaxies 𝜌(𝑟) ∝ 𝑟−𝑥 in N-body simulations (an important tool for evaluating the
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predictions of the ΛCDM model) with 1 ≲ 𝑥 ≲ 1.5 (cusp profile)25 [1640–1643] and the astronomical
observed profile with 𝑥 ∼ 0 (core profile) [1637, 1638, 1640, 1641, 1644–1648]. Ref. [1649] probes this
problem in low surface brightness galaxies.

3.6.2 The missing satellites problem (or dwarf galaxy problem)
The missing satellites problem (or dwarf galaxy problem) [1650–1653] refers to an over-abundance of
the predicted number of halo substructures in detailed collisionless N-body simulations compared to the
observed number of satellite galaxies in the Local Group. In particular the ΛCDM model predicts orders
of magnitude larger number of satellites (∼ 1000) than the observed number of dwarf galaxies (∼ 50)
[1652, 1654].

3.6.3 The Too Big To Fail (TBTF) problem
The Too Big To Fail (TBTF) problem [1655–1660] refers to an inconsistency between the predicted mass
of dark matter subhaloes in ΛCDM theory and the observed central mass of brightest satellite galaxies
in the Local Group [1657, 1658] (also in the Milky Way [1655, 1656] or in the Andromeda (M31) [1659]).

In particular the ΛCDM predicted central densities of the most massive dark matter subhalos are
systematically larger than the inferred from kinematics of the brightest Local Group satellites [1656, 1657,
1661]. An observed bright satellite is more likely to reside in subhalos with lower mass than is expected
in a ΛCDM model. The simulated massive dark matter subhalos ’failed’ to form a comparatively bright
satellite galaxy.

This problem is possibly related to the missing satellites problem but it is a distinct problem which
dependents on the internal structure of subhalos or the central shapes of density profiles of satellite halos
[1657].

Alternative models that modify the nature of dark matter have been investigated to solve this problem:
non-trivial dark matter physics [1662, 1663], interaction between the dark matter and dark radiation
components [1094, 1107], self-interacting dark matter [1664, 1665] and fuzzy dark matter [1626]

3.6.4 The problem of satellite planes
In the problem of satellite planes [1666–1670] several satellite galaxies of the Milky Way, of neighboring
Andromeda galaxy (M31), and of Centaurus A (CenA) are part of thin plane that is approximately
perpendicular to the Galactic disk. Moreover measurement of the motions of satellite galaxies has shown
that their orbits appear to be correlated [1671–1673]. This flattened structure and coherent motions of
satellite galaxy systems is in inconsistency with the prediction of the ΛCDM model as inferred from sim-
ulations [1670]. The simulations based on ΛCDM cosmology indicate uncorrelated and close to isotropic
satellite structures [1674, 1675]. In these simulations the observed structure formations with spatial and
kinematic coherence distribution are very rare with a probability ∼ 10−3 [1669, 1670].

3.6.5 The angular momentum catastrophe
The angular momentum catastrophe [1676] concerns a catastrophic angular momentum loss of gas during
disk galaxies formation in Smooth Particle Hydrodynamics (SPH) [1677] simulations. The formed disks
in simulations according to the predictions of ΛCDM have smaller scale lengths by a factor of 2 − 3
compared with observed ones [1678]. An axion dark matter model may resolve this discrepancy between
the observed and predicted angular momentum distributions of baryons (ordinary cold dark matter) in
the dwarf galaxies [1679].

25The well know Navarro–Frenk–White profile [1639, 1640] is cusped with 𝜌(𝑟 → 0) ∼ 𝑟−1.
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3.6.6 Baryonic Tully-Fisher Relation (BTFR)
Baryonic Tully-Fisher Relation (BTFR) [470, 1680]. As mentioned above, the well known Tully-Fisher
(TF) [464] empirical relation connects the velocity of rotation of a spiral galaxy with its intrinsic luminos-
ity while the Baryonic Tully-Fisher Relation (BTFR) [466–468] Eq. (2.37) is a scaling relation between
the observed total baryonic mass 𝑀𝑏 (stars plus gas) of a spiral galaxy and its rotation velocity 𝑉𝑐 (see
Subsection 2.2.6). The problem for ΛCDM model as inferred from simulations (see e.g. Ref. [1681]) is
that the BTFR leads to existence of a higher intrinsic scatter (∼ 0.15 dex) and a lower slope (𝑠 = 3)
compared to the observed ( ∼ 0.10 dex and 𝑠 ∼ 4) [470]. Ref. [471] suggests the Modified Newtonian Dy-
namics (MOND) [901] as a possible solution to this problem. However some simulations or semi-analytic
approaches of galaxy formation within a ΛCDM cosmological context can reproduce a realistic BTFR
slope but not its small scatter e.g. [1682–1685].

3.6.7 The void phenomenon
The void phenomenon [1686] refers to the emptiness of voids (the number of small galaxies in the void).
Cosmological N-body simulations in the context of ΛCDM have established a clear prediction [1687] that
many small dark matter haloes should reside in voids [1688, 1689]. This is consistent with observations
on large scales but is inconsistent with observations on small scales. In particular the local void contains
much fewer galaxies than expected from ΛCDM theory [1690].

3.7 Age of the Universe
A lower limit can be set on the age of the Universe by the ages of the oldest stars (or oldest astrophysical
objects) because on cosmological timescales they form shortly after the Big Bang. In the context of
ΛCDM cosmology, the standard theory [1691–1695] and cosmological numerical simulations [1696–1698]
predict that the first stars, the so-called population III (Pop III), formed in dark matter minihaloes of
typical mass 𝑀 ∼ 105 − 106𝑀⊙ at redshifts 𝑧 ∼ 20 − 30 (about 100 million years after the Big Bang
i.e. about around the end of the cosmic dark ages) (see Refs. [1699, 1700], for models indicating late,
𝑧 ∼ 2 − 7, Pop III star formation).

The age of the Universe 𝑡* as obtained from local measurements using the ages of oldest observed
stars (the so-called population II (Pop II)) in the Milky way appears to be larger and in some tension
with the corresponding age of the Universe 𝑡𝑈 obtained using the CMB Planck data in the context of
ΛCDM [165].

The age of the Universe in the flat ΛCDM model is an observable determined by the integral

𝑡(𝑧) =
∫︁ 𝑧𝑡

0

𝑑𝑧′

(1 + 𝑧′)𝐻(𝑧′) = 1
𝐻0

∫︁ 𝑧𝑡

0

𝑑𝑧′

(1 + 𝑧′) [Ω0𝑚(1 + 𝑧′)3 + Ω0𝑟(1 + 𝑧′)4 + (1 − Ω0𝑚)]1/2 , (3.42)

where 𝑡 is the cosmic time corresponding to redshift 𝑧𝑡. Thus the age of the Universe is 𝑡𝑈 = 𝑡(𝑧𝑡 = ∞).
For example the age of the Milky Way Population II halo, metal deficient, high velocity subgiant

HD-140283 (also known as Methuselah star) is estimated to be 𝑡* = 14.46 ± 0.31 Gyr by Ref. [1701] and
using new sets of stellar models is estimated to be 𝑡* = 14.27 ± 0.80 Gyr by Ref. [1702]. These estimates
of the age of this star are slightly higher (∼ 2𝜎) than the age of Universe 𝑡𝑈 = 13.800±0.024 Gyr inferred
by CMB Planck18 data [14] but within the errors it does not conflict with this age.

Despite of the above indications the analysis by Ref. [1703] using new parallaxes from the Gaia
space mission [1704, 1705] in place of the older HST, reports a revision of the age of HD-140283 to
𝑡* = 13.5 ± 0.7 Gyr which is more compatible with the age 𝑡𝑈 inferred by Planck data. Also the analysis
by Ref. [1706] using populations of stars in globular clusters (very-low-metallicity stars) reports age of
the Universe constrained to be larger than 𝑡* = 13.5+0.16

−0.14 Gyr.
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Clearly, Eq. (3.42) indicates that in a ΛCDM Universe the quantities 𝐻0, 𝑡𝑈 and Ω0𝑚 are related.
Therefore the determination of the age of older objects based on local Universe observations provides a
test of the current cosmological model and plays an important role in the studies of Hubble and spatial
curvature tensions [1419, 1420, 1703].

3.8 The Lithium problem
It has long been known (since the early 80’s) that absorption lines in the photospheres of old, metal-poor
(Population II) halo stars in the Milky Way’s halo indicate ∼ 3.5 times less primordial abundance of
lithium isotope 7𝐿𝑖 compared to the prediction of the standard BBN theory [1707–1709]. The observed
value of the lithium abundance26 7𝐿𝑖/𝐻 = (1.6 ± 0.3) × 10−10 [1710] is smaller than the theoretically
expected value 7𝐿𝑖/𝐻 = (5.62±0.25)×10−10 [1711] at a level ∼ 5𝜎. This constitutes the lithium problem
[166]. No such problem exists for the observed abundances of other light elements 2𝐻 (or 𝐷), 3𝐻𝑒, and
4𝐻𝑒 that are in broad quantitative agreement with BBN predictions + WMAP/Planck cosmic baryon
density Ω𝑏 which is deduced by the CMB [125, 1172].

A number of theoretical or experimental studies in the literature have attempted to address the
lithium problem e.g. [1712–1725]. For example the analysis by Ref. [1726] shows that the variations in
Nature’s fundamental constants on primordial nucleosynthesis provide a possible solution to the lithium
problem. Specifically, they determined that if the value of the fine-structure constant 𝛼 at the primordial
nucleosynthesis epoch was larger than the present one by ten parts per million of relative variation, the
lithium problem could be resolved.

It was also proposed by Ref. [1727] that decaying dark matter into dark radiation in the early Universe
can solve the long-standing lithium problem, leaving completely unaffected the abundance of other light
elements. This mechanism was also proposed to alleviate the 𝐻0 tension (see Subsection 2.3.1) but is
severely constrained by the Planck data [863].

Measurements of lithium (e.g. [1728, 1729]) may not be representative of the cosmological production
mechanism [1730, 1731]. It is thus possible that the solution to the lithium problem lies in the effects
of stars in the lithium abundance. Therefore a precise knowledge of the stellar formation process and
physics of stellar atmosphere is necessary to provide a fully satisfactory solution. Thus, possible solutions
to this persistent problem can be classified into four categories (see Refs. [125, 166, 1732], for a review):

• Cosmological solutions (e.g. new theory beyond the standard BBN including variations of funda-
mental constants) [1720, 1726, 1733–1739]

• Nuclear Physics solutions (e.g. reactions destroy lithium during or after BBN) [1722–1724, 1740–
1744]

• Astrophysical solutions (e.g. stars destroy lithium after BBN) [1745–1748]

• Extensions of the standard model (e.g. simultaneous imposition of photon cooling after BBN, X-
particle decay and a primordial magnetic field [1714, 1749], destruction of 7Be due to the decay of
a sterile neutrino [1719] and including new particles or interactions [1718].

3.9 Quasars Hubble diagram
The quasar distances can be estimated from their X-ray (coronal) emission generated by a plasma of
hot relativistic electrons around the accretion disk. The emission is induced through inverse-Compton
scattering processes and ultraviolet (UV) emission generated by the accretion disk where the gravitational
energy of the infalling material is partially converted to radiation [167, 169].

26Usually in the literature the abundance of lithium is expressed by 𝐴(7𝐿𝑖) = 12 + log10[𝑛(7𝐿𝑖)/𝑛(𝐻)] where 𝑛 is the
number density of atoms and 12 is the solar hydrogen abundance.
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In recent years model independent derivation27 of the distance modulus–redshift relation using high-𝑧
quasars (𝑧 ≲ 7) as distance indicators (quasars Hubble diagram) provides a new bright standard candle
in the higher redshifts and earlier times beyond SnIa. The method used is based on a non-linear relation
between the X-ray and the UV emissions at low redshift which is of the form [167]

log10 𝐿𝑋 = 𝛾𝑞 log10 𝐿𝑈𝑉 + 𝛽𝑞 , (3.43)

where 𝐿𝑋 and 𝐿𝑈𝑉 are the rest-frame monochromatic luminosities at 2 keV and at 2500 Å, respectively
[1751]. Also 𝛾𝑞 ∼ 0.6 [167] and 𝛽𝑞 are fitting parameters of the luminosities.

Extending a Hubble diagram up to redshift 𝑧 = 5.5 shows hints for phantom dark energy [167–
169]. In particular the distance modulus-redshift relation for a sample of 1598 quasars at higher redshift
(0.5 < 𝑧 < 5.5) is in disagreement with the concordance model at a ∼ 4𝜎 significance level28 [167].
Moreover, the analysis by Ref. [169] building a Hubble diagram by combining three samples of Pantheon,
quasars, and gamma-ray bursts (GRBs) reported tension at more than the ∼ 4𝜎 statistical level with the
flat ΛCDM model. Recently Ref. [1756] using an updated, larger QSO dataset [1757] containing 2421
QSO measurements with redshifts up to 𝑧 ∼ 7.5 has demonstrated that the 𝐿𝑋 -𝐿𝑈𝑉 relation parameter
values depend on the cosmological model thus cannot be used to constrain cosmological parameters.

3.10 Oscillating signals in short range gravity experiments
The most constraining test of gravity at very short distance (sub-millimeter) scales looking for departures
from Newtonian gravity is implemented via torsion balance experiments. A reanalysis of short range grav-
ity experiments has indicated the presence of an oscillating force signal with sub-millimeter wavelength
[170, 171]. In particular Ref. [170] has indicated the presence of a signal at 2𝜎 level of spatially oscillating
new force residuals in the torsion balance data of the Washington experiment [73]. As an extension of
the previous analysis the study by Ref. [171] using Monte Carlo simulation and analysing the data of the
Stanford Optically Levitated Microsphere Experiment (SOLME) which involves force measurements an
optically levitated microsphere as a function of its distance 𝑧 from a gold coated silicon cantilever [1758]
reports a oscillating signal at about 2𝜎 level.

The sub-millimeter scale of the quantum nature of dark energy may be written as

𝜆𝑑𝑒 ≡ 4

√︃
ℏ𝑐
𝜌𝑑𝑒

≈ 0.085 mm , (3.44)

where it is assumed that Ω0𝑚 = 0.3 and 𝐻0 = 70 km s−1 Mpc−1.
Thus, if the accelerating expansion of the Universe is connected with effects of modified gravity due to

quantum gravity it would be natural to expect some modification of Newton’s law at the submillimeter
scale.

The deviations from Newton’s law of gravitation is usually described in the context of scalar-tensor
[582, 1388] and flat extra dimension theories [1759–1765] by a short range Yukawa type potential of the
form

𝑉eff = −𝐺𝑀
𝑟

(︀
1 + 𝛼𝑌 𝑒

−𝑚𝑟
)︀
, (3.45)

where 𝛼𝑌 and 𝑚 are parameters to be constrained by the data.
Alternatively, a power law ansatz may also generalize the gravitational potential to the form

𝑉eff = −𝐺𝑀
𝑟

[︃
1 + 𝛽𝑘

(︂
1
𝑚𝑟

)︂𝑘−1
]︃
. (3.46)

27Ref. [1750] argued that even though the data used in this approach are valid, their analysis involves significant
uncertainties as it may lead to spurious artificial tensions.

28The analyses of the high−𝑧 quasar data has lead to a wide range of conclusions [1750, 1752–1755]. For example Ref.
[1750] concludes that the log polynomial expansion generically fails to recover flat ΛCDM beyond 𝑧 ∼ 2, thus implying that
the previously derived ∼ 4𝜎 tension may be artificial.
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This power law parametrization is motivated by some brane world models [1766–1769].
For 𝑚2 < 0 the Yukawa gravitational potential becomes oscillating and takes the form

𝑉eff = −𝐺𝑀
𝑟

[1 + 𝛼𝑌 cos (𝑚𝑟 + 𝜃)] , (3.47)

where 𝜃 is a parameter.
Recently a reanalysis of the data of the Washington experiment searching for modifications of Newton’s

Law on sub-millimeter scales by Ref. [1197] has indicated that a spatially oscillating signal is hidden in
this dataset. In addition it is shown that even though this signal cannot be explained in the context
of standard modified gravity theories29 (viable ST and 𝑓(𝑅) theories), it occurs naturally in nonlocal
(infinite derivative) gravity theories [1770–1772] that predict such spatial oscillations without the presence
of ghosts (instabilities) and has a well-defined Newtonian limit.

The origin of oscillating signals could be due to three possible effects:

• A statistical fluctuation of the data.

• A periodic distance-dependent systematic feature in the data.

• A signal for a short distance modification of GR (e.g. non-local modified theory of gravity).

In the later case, it is important to identify modified theories that are consistent with such an oscillating
signal and are not associated with instabilities e.g. [1773, 1774].

3.11 Anomalously low baryon temperature
The Experiment to Detect the Global Epoch of Reionization Signature (EDGES) collaboration [172]
report anomalously low baryon temperature 𝑇𝑏 ≈ 4 K at 𝑧 ≈ 17 (half of its expected value). This
temperature was inferred from the detection of global (sky-averaged) 21-cm absorption signal which is
centred at a frequency of ∼ 78 MHz. The absorption depth of cosmic CMB photons at redshifts range
15 ≲ 𝑧 ≲ 20 estimated by EDGES is more than twice the maximal value expected in the ΛCDM model,
at ∼ 3.8𝜎 significance.

Possible explanations of this discrepancy were investigated and various models were proposed (e.g.
[1775–1778]). For example Ref. [1775] argue that EDE can explain this anomaly.

The EDGES observation has been used to constrain various cosmological models of dark matter and
dark energy [767, 1775, 1779, 1780].

3.12 Colliding clusters with high velocity
Observed galaxy clusters like the massive (∼ 1015𝑀⊙) high-redshift (𝑧 = 0.87) interacting pair known as
El Gordo (ACT-CL J0102-4915) [1781] have a very high relative velocity. This implies that formation of
large structures may have taken place earlier than expected in ΛCDM cosmology. Ref. [173] based on
light cone tomography estimated that the too-early formation of El Gordo rules out ΛCDM cosmology
at 6.16𝜎 confidence. The early and rapid formation of clusters which consist of two colliding massive
galaxy clusters at a high redshift may constitute a problem of the ΛCDM model. Ref. [173] argues that
MOND with light sterile neutrinos model as suggested by Ref. [900] can resolve this issue.

29For a free massive scalar Ref. [5] investigates the physical conditions that can eliminate the tachyonic instabilities or
at least drastically change their lifetime.



Chapter 4

Constraining Power of Cosmological Observ-
ables on Cosmological Parameters as a Func-
tion of Redshift

The analysis presented in this chapter is based on the work which was done in collaboration with PhD
student Lavrentios Kazantzidis and Prof. Leandros Perivolaropoulos and has been published in Physical
Review D [1].

In this chapter, we determine the optimum and the blind redshift ranges of basic cosmological
observables with respect to the cosmological parameters. In an optimum range of redshifts, the
observable can constrain the parameter in the most effective manner while in the blind redshift ranges
the observable values may be degenerate with respect to the cosmological parameter values and thus
inefficient in constraining the given parameter.

As we discussed in Chapters 2 and 3 the validity of the ΛCDM cosmological model is currently under
intense investigation using a wide range of cosmological observational probes including CMB experiments,
galaxy photometric and spectroscopic surveys, attempts to BAO, WL, RSD, cluster counts, as well as
the use of SnIa as standard candles. This investigation has revealed the presence of tensions within the
ΛCDM model, i.e. inconsistencies among the parameter values determined using different observational
probes. The following question therefore emerge: Are these tensions an early indication of the need
for a modified theory of gravity beyond the standard model or are they a result of systematic/statistical
fluctuations in the data? The analysis presented in this chapter aims to address this question.

4.1 Introduction
The main goal of completed, existing and upcoming CMB experiment and large scale structure surveys
(see Subsection 12.2) is to provide explanation of the curiosities of ΛCDM cosmology. These surveys
are classified in four stages. Stages I and II correspond to completed surveys and CMB experiments,
while stages III and IV correspond to existing and upcoming projects respectively. For example stage II
CMB experiments include WMAP [1782], Planck [14, 1783], Atacama Cosmology Telescope Polarimeter
(ACTPol) [1784] and SPT-Pol [1785], while stage III CMB experiments include AdvACT [1786] and SPT-
3G [1787]. Future stage IV CMB probes on the ground[1788] and in space such as Lite (Light) satellite for
the studies of B-mode polarization and Inflation from cosmic background Radiation Detection (LiteBIRD)
[1789, 1790] mainly aim to measure CMB lensing and the CMB-B modes in detail.

Improvement in the quality and quantity of data is expected in the coming two decades from large
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scale structure surveys (see Table 4.1). Stage III large scale structure surveys include the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS) [1791], the Kilo Degree Survey (KiDS) [1792, 1793], the
extended Baryon Oscillation Spectroscopic Survey (eBOSS) [1794], the Dark Energy Survey (DES) [1795–
1797] and the Hobby Eberly Telescope Dark Energy Experiment (HETDEX) [1798]. Finally, stage IV
large scale structure surveys include ground-based telescopes such as the Dark Energy Spectroscopic
Instrument (DESI), the Large Synoptic Survey Telescope (LSST) [1799, 1800] and the Square Kilometer
Array (SKA) [1801–1804] as well as space based telescopes such as Euclid [1805, 1806] and the Wide
Field Infrared Survey Telescope (WFIRST) [1807, 1808]. The redshift ranges of some surveys with their
type and duration are presented in Table 4.1.

Table 4.1: Some recent and future large-scale structure surveys. Photometric surveys focus mainly on
WL, while spectroscopic surveys measure mainly RSD. The redshift range shifts to higher redshifts for
stage III and stage IV surveys.

Survey Redshift Type Duration Refs.

SDSS 0.1 < 𝑧 < 0.6 Spectroscopic 2006-2010 [1809]
WIGGLEZ 0.4 < 𝑧 < 0.8 Spectroscopic 2006-2010 [1810]

BOSS 0.35, 0.6, 2.5 Spectroscopic 2009-2014 [1810]
KIDS 0 < 𝑧 < 0.8 Photometric 2011- [1792, 1793]
DES 0.3 < 𝑧 < 1.0 Photometric 2012-2018 [1795–1797]

HETDEX 1.9 < 𝑧 < 3.5 Spectroscopic 2015-2017 [1798]
eBOSS 0.6 < 𝑧 < 2.2 Spectroscopic 2015-2018 [1794]
DESI 0.6 < 𝑧 < 1.7 Spectroscopic > 2019 [1811–1813]

DESI-Bright Galaxies 0.0 < 𝑧 < 0.4 Spectroscopic > 2019 [1811–1813]
Euclid 0.8 < 𝑧 < 2.0 Spectroscopic 2022-2027 [1805, 1806, 1814]
LSST 0.5 < 𝑧 < 3 Photometric > 2019 [1799, 1800]

WFIRST 1 < 𝑧 < 3 Spectroscopic > 2020 [1807, 1808]

Clearly, the redshift ranges of more recent surveys tend to increase in comparison with earlier surveys.
The assumption of increasing constraining power of observables on cosmological parameters with redshift
therefore emerge. As demonstrated in our analysis however, this assumption is not always true.

Thus, we address the following questions:

• What is the redshift dependence of the constraining power of a given observable with respect to a
given cosmological parameter?

• Is there an optimal redshift range where the constraining power of a given observable is maximal
with respect to a given cosmological parameter?

• Are there blind redshift spots where a given observable is degenerate with respect to specific cos-
mological parameters?

A previous analysis [1307] has found the existence of degeneracies for the case of growth of fluctuations
observable 𝑓𝜎8 with respect to the equation of state parameter 𝑤 in specific redshift ranges. In our study
we extend these results to a wider range of observables and cosmological parameters.

In particular the goals of our analysis are the following:
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Figure 4.1: Δ𝑓𝜎8 as a function of redshift for 𝑔𝑎 in the range 𝑔𝑎 ∈ [−1.5, 1.5] superimposed with the
early growth data (left panel), late data (middle panel) and full growth data (right panel).

• Extensive up-to-date compilations of recent measurements of cosmological observables including
growth of perturbations, BAO, and luminosity distance observables.

• Identify the sensitivity of these observables as a function of redshift for three cosmological param-
eters: the present matter density parameter Ω𝑚, the dark energy equation of state parameter 𝑤
(assumed constant), and a parameter 𝑔𝑎 describing the evolution of the effective Newton’s constant
in the context of a well motivated parametrization [67, 148].

• Identify possible trends for deviations of the above parameters from their standard Planck/ΛCDM
values in the context of the above data compilations.

The Chapter is organised as follows. In the next Section 4.2 we review the basic equations determining
the growth of cosmological density perturbations (see also Subsection 3.1.1). These equations can lead
to the predicted evolution of the observable combination 𝑓𝜎8(𝑎) ≡ 𝑓(𝑎) · 𝜎(𝑎), where 𝑎 is the scale
factor 𝑎 = 1

1+𝑧 , 𝑓(𝑎) ≡ 𝑑 ln 𝛿(𝑎)/𝑑 ln 𝑎 is the growth rate of cosmological perturbations, 𝛿(𝑎) ≡ 𝛿𝜌/𝜌
is the linear matter overdensity (with 𝜌 the matter density of the background and 𝛿𝜌 its first order
perturbation), and 𝜎8 is the rms matter density fluctuations within spheres of radius 8ℎ−1𝑀𝑝𝑐 . We
investigate the sensitivity of the observables 𝑓𝜎8(𝑧) and 𝑓(𝑧) on the matter density parameter Ω𝑚, the
equation of state parameter 𝑤 and a modified gravity parameter 𝑔𝑎 as a function of redshift. For these
growth observables blind redshift spots and optimal redshift ranges are identified. The selection of these
particular parameters (Ω𝑚, 𝑤 and 𝑔𝑎) is important as their combination can lead to direct test of GR
by simultaneously constraining the background expansion rate through 𝐻(𝑧) and the possible evolution
of the effective Newton’s constant 𝐺eff(𝑧). It is important to notice that the evolution of the effective
Newton’s obtained through the parameter 𝑔𝑎 is degenerate with 𝐻(𝑧) constant and can only be probed
once 𝐻(𝑧) is also efficiently constrained through the parameters Ω𝑚 and 𝑤. In Sec. 4.3 we consider
cosmological observables obtained from BAO data, construct an updated extensive compilation of such
data, and identify the sensitivity of the BAO observables on the parameters Ω𝑚, 𝑤 and 𝑔𝑎 as a function
of redshift. As in the case of the growth observables, blind redshift spots and optimal redshift ranges
are identified. The effects of the data redshift range on the shape and size of the uncertainty contours in
the above cosmological parameter space are also identified. In Sec. 4.4 we use the luminosity distance
moduli as obtained from SnIa and gravitational waves and identify the sensitivity of these observables to
the parameters Ω𝑚, 𝑤 and 𝑔𝑎 as a function of redshift. Binned JLA data are superimposed on the plots
to demonstrate the sensitivity of the distance moduli to the cosmological parameters. Finally in Sec. 4.5
we conclude and discuss the results of the analysis of this Chapter.
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4.2 Growth of Density Perturbations: The Observables 𝑓𝜎8 and
𝑓(𝑧)

The evolution of the linear matter overdensity 𝛿 (see also Subsection 3.1.1) in the context of both GR
and most modified gravity theories is given by

𝛿 + 2𝐻𝛿̇ − 4𝜋𝐺eff 𝜌 𝛿 ≈ 0 , (4.1)

where dots denote differentiation with respect to time 𝑡, 𝐻 is the Hubble parameter, 𝜌 is the background
matter density and 𝐺eff is the effective Newton’s constant which in general depends on redshift 𝑧 and
cosmological scale 𝑘. In terms of the scale factor Eq. (4.1) on subhorizon scales (𝑘2 ≫ 𝑎2𝐻2) takes the
form of Eq. (3.4), while in terms of the redshift 𝑧 can be written as [112, 1304–1308]

𝛿′′ +
(︂

(𝐻(𝑧)2)′

2 𝐻(𝑧)2 − 1
1 + 𝑧

)︂
𝛿′ − 3

2
(1 + 𝑧) Ω𝑚 𝐺eff(𝑧, 𝑘)/𝐺

𝐻(𝑧)2/𝐻2
0

𝛿 = 0 , (4.2)

where primes denote differentiation with respect to the redshift. The effective Newton’s constant 𝐺eff
emerges from a generalized Poisson equation

∇2Ψ ≈ 4𝜋𝐺eff𝜌 𝛿 , (4.3)

where Ψ is the perturbed metric potential in the Newtonian gauge where the perturbed FLRW metric
takes the form of Eq. (3.9). Note that GR predicts a constant homogeneous 𝐺eff(𝑧, 𝑘) = 𝐺 (with 𝐺 the
Newton’s constant as measured by local experiments).

Solar System [1389] and BBN [1815] constraints imply that 𝐺eff is close to the GR predicted form in
both low and high redshifts. In particular at low 𝑧 we have [1389]⃒⃒⃒𝐺′

eff(𝑧)
𝐺

⃒⃒⃒
𝑧=0

< 10−3ℎ−1 ≪ 1 , (4.4)

while the second derivative is effectively unconstrained since⃒⃒⃒𝐺′′
eff(𝑧)
𝐺

⃒⃒⃒
𝑧=0

< 105ℎ−2 . (4.5)

Furthermore, at high 𝑧 and at 1𝜎, BBN [1815] impose the following constraint [1389]

|𝐺eff/𝐺− 1| ≤ 0.2 . (4.6)

A parametrization of 𝐺eff(𝑧) respecting these constraints is off the following form [148]

𝐺eff(𝑎, 𝑔𝑎, 𝑛)
𝐺

= 1 + 𝑔𝑎(1 − 𝑎)𝑛 − 𝑔𝑎(1 − 𝑎)𝑛+𝑚 = 1 + 𝑔𝑎

(︂
𝑧

1 + 𝑧

)︂𝑛

− 𝑔𝑎

(︂
𝑧

1 + 𝑧

)︂𝑛+𝑚

, (4.7)

where 𝑛 and 𝑚 are integer parameters with 𝑛 ≥ 2 and 𝑚 > 0 which we set equal to 2 in our analysis.
The observable 𝑓𝜎8(𝑎) of Eq. (3.6) can be obtained from the solution 𝛿(𝑎) of Eq. (3.4) using the

definitions 𝑓(𝑎) of Eq. (3.3) and 𝜎(𝑎) of Eq. (3.5) (see Subsection 3.1.1).
Therefore, both the observable 𝑓𝜎8(𝑎) and the growth rate 𝑓(𝑎) (or equivalently 𝑓𝜎8(𝑧) and 𝑓(𝑧))

can be obtained by numerically solving Eq. (3.4) (or Eq. (4.2)). The solution of these equations requires
the specification of proper parametrizations for both the background expansion 𝐻(𝑧) and the effective
Newton’s constant 𝐺eff(𝑧). In the context of our analysis we assume a flat universe and a 𝑤𝐶𝐷𝑀 model
background expansion of the form

𝐻2(𝑧) = 𝐻2
0

[︁
Ω𝑚(1 + 𝑧)3 + (1 − Ω𝑚)(1 + 𝑧)3(1+𝑤)

]︁
⇒

𝐸2(𝑧) = 𝐻2(𝑧)
𝐻2

0
= Ω𝑚(1 + 𝑧)3 + (1 − Ω𝑚)(1 + 𝑧)3(1+𝑤) , (4.8)
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and 𝐺eff parametrized by Eq. (4.7) with 𝑛 = 𝑚 = 2. Using these parametrizations and initial conditions
corresponding to GR in the matter domination era (𝛿(𝑎) ∼ 𝑎) we can obtain the predicted evolution of
the observables 𝑓𝜎8 and 𝑓(𝑧) for various parameter values around the standard Planck/ΛCDM model
parameters (Ω𝑃

𝑚 = 0.31, 𝑤 = −1, 𝑔𝑎 = 0).
For each observable 𝑂(Ω𝑚, 𝑤, 𝑔𝑎) (e.g. 𝑂 =𝑓𝜎8(𝑧)) we consider the deviation1 with respect to each

cosmological parameter 𝑃 = (Ω𝑚, 𝑤, 𝑔𝑎). Thus for parameter 𝑃 = Ω𝑚 the deviation of 𝑂(Ω𝑚, 𝑤, 𝑔𝑎) is
defined as

Δ𝑂Ω𝑚
≡ 𝑂(Ω𝑚,−1, 0) −𝑂(Ω𝑃

𝑚,−1, 0) . (4.9)
Similar deviations Δ𝑂𝑤 and Δ𝑂𝑔𝑎

are defined for the other two parameters in the context of a given
observable 𝑂

Δ𝑂𝑤 ≡ 𝑂(Ω𝑃
𝑚, 𝑤, 0) −𝑂(Ω𝑃

𝑚,−1, 0) , (4.10)
Δ𝑂𝑔𝑎 ≡ 𝑂(Ω𝑃

𝑚,−1, 𝑔𝑎) −𝑂(Ω𝑃
𝑚,−1, 0) . (4.11)

In Fig. 4.1 we show the deviation Δ𝑓𝜎8𝑔𝑎
for 𝑔𝑎 in the range 𝑔𝑎 ∈ [−1.5, 1.5] superposed with a recent

compilation of the 𝑓𝜎8 data [67] shown in Table B.1 in the Appendix B (with early data published before
2015 in the left panel, recent data published after 2016 in the middle panel and full dataset in the right
panel). No fiducial model correction has been implemented for the datapoints shown, but the effects of
this correction are less than about 3% [67, 147].

The following three comments can be made on the results shown in Fig. 4.1.

• Early data favor weaker gravity (𝑔𝑎 < 0) for redshifts around 𝑧 ≃ 0.5 assuming a fixed
Planck/ΛCDM background. This trend is well known [147] and has been demonstrated and dis-
cussed extensively, e.g. in Refs. [146, 148, 507, 687, 688, 1196, 1310, 1816, 1817].

• The observable 𝑓𝜎8 has a blind spot with respect to the parameter 𝑔𝑎 at redshift 𝑧 ≃ 2.7. Such
a blind spot was also pointed out in Ref. [1307] with respect to a similar gravitational strength
parameter (where it was called “sweet spot" in that Ref. [1307] even though the term “blind spot"
should have been used).

• There is a redshift range around 𝑧 ≃ 0.5 of optimal sensitivity of the observable 𝑓𝜎8 with respect
to the parameter 𝑔𝑎. Despite of the existence of this optimal redshift range much of the recent 𝑓𝜎8
data appear at larger redshifts approaching the blind spot region. These datapoints have reduced
sensitivity in identifying deviations of 𝐺eff from its GR value 𝐺.

We may also quantify the existence of blind spots and optimal redshifts of an observable 𝑂 with
respect to a cosmological parameter 𝑃 using the definition of the ’sensitivity’ measure including the
effects of the survey volume 𝑉eff(𝑘, 𝑧). The effective survey volume probed for a particular 𝑘 mode with
the power spectrum 𝑝(𝑘, 𝑧) in a survey of sky area surveyed ΔΩ is given by [1818, 1819]

𝑉eff(𝑘, 𝑧) = ΔΩ
∫︁ 𝑧

0

[︂
𝑛(𝑧′)𝑝(𝑘, 𝑧′)

1 + 𝑛(𝑧′)𝑝(𝑘, 𝑧′)

]︂2
𝑑𝑉

𝑑𝑧′𝑑Ω𝑑𝑧
′ , (4.12)

where 𝑧 is the maximum redshift corresponding to the survey volume 𝑉eff and 𝑛(𝑧) is the number density
of galaxies that are detected, which is given as

𝑛(𝑧) =
∫︁ ∞

𝑀𝑙𝑖𝑚(𝑧)

𝑑𝑁

𝑑𝑉 𝑑𝑀
𝑑𝑀 . (4.13)

The function 𝑀𝑙𝑖𝑚(𝑧) is the limiting mass threshold which is detected for the given survey and 𝑑𝑉 is the
infinitesimal comoving volume element

𝑑𝑉 = 𝑟2(𝑧)
𝐻(𝑧)𝑑Ω 𝑑𝑧 , (4.14)

1In certain cases we consider the deviation around Ω𝑚 =0.3 instead of Ω𝑚 =Ω𝑃
𝑚.
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Figure 4.2: The sensitivity measure 𝑆 for the observable 𝑓𝜎8 (i.e. Δ𝑓𝜎8
Δ𝑃 𝑉

1/2
eff ) for 𝑃 = 𝑔𝛼 (left panel),

𝑃 = 𝑤 (middle panel), and 𝑃 = Ω𝑚 (right panel)

where
𝑟(𝑧) = 𝑐

𝐻0

∫︁ 𝑧

0

𝑑𝑧′

𝐸(𝑧′) , (4.15)

and 𝐸(𝑧′) is given by Eq. (4.8)
The constraining power of the observable 𝑂 depends on the survey volume 𝑉eff(𝑘, 𝑧), since the mean

square fluctuation 𝜎𝑝 on the measurement of the power spectrum 𝑝(𝑘, 𝑧) increases as the effective survey
volume 𝑉eff(𝑘, 𝑧) decreases (i.e. as less 𝑘 modes are measured by the survey) as [1818, 1820–1822](︂

𝜎𝑝

𝑝(𝑘, 𝑧)

)︂2
= 2

4𝜋𝑘3Δ(𝑙𝑜𝑔 𝑘)
(2𝜋)3

𝑉eff(𝑘, 𝑧)

[︂
1 + 𝑛(𝑧)𝑝(𝑘, 𝑧)
𝑛(𝑧)𝑝(𝑘, 𝑧)

]︂2
. (4.16)

Thus, since the the mean square fluctuation 𝜎𝑝 on the measurement of the power spectrum 𝑝(𝑘, 𝑧)
is inversely proportional to the square root of he survey volume 𝑉eff(𝑘, 𝑧), the ’sensitivity’ measure is
defined as

𝑆𝑂
𝑃 ≡ Δ𝑂(𝑃 )

Δ𝑃 · 𝑉eff(𝑘, 𝑧)1/2 , (4.17)

where Δ𝑂 is the deviation of the observable 𝑂 when a given parameter varies in a fixed small range
Δ𝑃 = 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 around a fiducial model value (e.g. Planck15/ΛCDM). Plots of the sensitivity
measure 𝑆 for the observable 𝑓𝜎8 for the three parameters 𝑔𝑎 (left panel), 𝑤 (middle panel) and Ω𝑚(right
panel) are shown in Fig. 4.2. The presence of blind spots is manifest as roots of the sensitivity measure,
while optimal redshifts appear as maxima of the magnitude of 𝑆. We have fixed 𝑘 such as that 𝑛𝑝 = 3
assuming sufficient signal to noise per pixel [1821]. We have also rescaled sensitivity measure statistic
so that it is unity at its maximum absolute value. The nonlinear modes may be excluded by setting a
minimum redshift which is of 𝑂(10−2) and are much smaller than the derived optimal redshifts and blind
spots identified in our analysis. Notice that the sensitivity measure indicates the existence of blind spots
for all three parameters. For 𝑤 the blind spot is close to 𝑧 ≃ 2 while for Ω𝑚 is close to 𝑧 ≃ 1. The
corresponding optimal redshifts are at 𝑧 ≃ 1.2 for 𝑔𝑎, at 𝑧 ≃ 0.8 for 𝑤 and at 𝑧 ≃ 0.5 for Ω𝑚. (Although
the region 𝑧 > 2 for 𝑤 and Ω𝑚 provides better sensitivity, there are currently almost no data available in
this redshift range). Notice also in Figs. 4.1 and 4.2 that when including the effects of the survey volume
the optimal redshifts shift to somewhat higher redshifts, while the blind spots remain unaffected.

As shown in Figs. 4.3 and 4.4 for both cases, recent data approach the blind spot regions in contrast
to early published data that efficiently probed the optimal redshift regions for both parameters 𝑤 and
Ω𝑚. Also, early data seem to favor weaker growth of perturbations which occurs for lower, 𝑔𝑎, and Ω𝑚

and higher 𝑤 [67, 147, 148]. If this trend is partly attributed to a lower value of 𝐺eff in the recent past,
then it is difficult to reconcile with the most generic modified gravity theories like 𝑓(𝑅) and ST theories
[148]. In particular 𝑓(𝑅) gravity theory generically predict stronger gravity at small 𝑧 compared to its
present time [1823].

We perform a similar analysis for the growth rate observable 𝑓(𝑧) which will be probed by the Euclid
mission [1806]. Mock Euclid data assuming a Planck/ΛCDM fiducial model are shown in Fig. 4.5 with
proper redshifts and error bars [1806] along with the deviation of the observable 𝑓(𝑧) with respect to Ω𝑚
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Figure 4.3: Δ𝑓𝜎8 as a function of redshift for 𝑤 in the range 𝑤 ∈ [−1.5,−0.5] superimposed with the
early growth data (left panel), late data (middle panel) and full growth data (right panel).
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early growth data (left panel), late data (middle panel) and full growth data (right panel).
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(left panel), 𝑤 (middle panel) and 𝑔𝑎 (right panel). Clearly, the predicted redshift range of the Euclid
data is optimal for the identification of new gravitational physics (right panel), but it is not optimized
for constraining the matter density parameter (left panel of Fig. 4.5) or the equation of state parameter
if 𝑤 < −1 (middle panel).

The observable 𝑓(𝑧) is considered due to the approach of Ref. [1806], where the Euclid team indicated
that the large number of galaxies of the Euclid survey combined with the depth of the survey will allow
a reliable estimate of the bias simultaneously with the growth rate 𝑓(𝑧) obtained through the redshift
distortion factor 𝛽. The redshift distortion factor 𝛽 is defined as

𝛽(𝑧) = Ω𝑚(𝑧)𝛾

𝑏(𝑧) = 𝑓(𝑧)
𝑏(𝑧) , (4.18)

where 𝑏(𝑧) is the linear bias factor between galaxy and matter density distributions defined as 𝑏 ≡ 𝛿𝑔

𝛿
(with 𝛿𝑔 the galaxy overdensity).

Thus, the survey will not only probe the bias-free combination 𝑓𝜎8, but also directly probe the growth
observable 𝑓(𝑧) which is modeled in Ref. [1806] with errorbars and is also considered separately in our
analysis. Of course, what is actually observable is the redshift distortion 𝛽 factor which is obtained
through the ratio between the monopoles of the correlation functions in real and in redshift space. Thus,
the derived blind spot and optimal redshift for the growth rate 𝑓(𝑧) are accurate under the assumption
that the bias 𝑏(𝑧) has a very weak dependence on the redshift.

4.3 Baryon Acoustic Oscillations: the Observables 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
,

𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

and 𝐷𝐴 × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠

4.3.1 BAO Observables and their Variation with Cosmological Parameters.
In this section, we use a variety of isotropic and anisotropic BAO observables given in the literature.

Waves induced by radiation pressure in the pre-recombination plasma inflict a characteristic BAO
scale on the late-time matter clustering at the radius of the sound horizon 𝑟𝑠 defined by Eq. (2.17).
This BAO scale appears as a peak in the correlation function or equivalently as damped oscillations in
the large scale structure power spectrum (see Subsection 2.2.2). In the context of standard matter and
radiation epochs, the Planck 2015 measurements of the matter and baryon densities Ω𝑚 and Ω𝑏 specify
the BAO scale to great accuracy (uncertainty less than 1%). An anisotropic BAO analysis measuring
the sound horizon scale along the line of sight and along the transverse direction can measure both 𝐻(𝑧)
and the comoving angular diameter distance 𝐷𝑀 (𝑧) related to the physical angular diameter distance
𝐷𝐴 defined by Eq. (1.57) in Subsection 1.2.8 in a flat universe as [358]

𝐷𝑀 (𝑧) = (1 + 𝑧)𝐷𝐴(𝑧) = 𝑐

∫︁ 𝑧

0

𝑑𝑧′

𝐻(𝑧′) . (4.19)

Deviation of cosmological parameters can change 𝑟𝑠, so BAO measurements actually constrain the com-
binations 𝐷𝑀 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
or equivalently 𝐷𝐴(𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
, 𝐻(𝑧) × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

where 𝑟𝑓𝑖𝑑
𝑠 is the sound horizon (BAO

scale) in the context of the fiducial cosmology assumed in the construction of the large-scale structure
correlation function.

An angle-averaged galaxy BAO measurement constrains the combination

𝐷𝑉 (𝑧) =
[︂
𝑐𝑧
𝐷2

𝑀 (𝑧)
𝐻(𝑧)

]︂1/3

. (4.20)

Taking into account the variation of cosmological parameters the constrained combination becomes
𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
. Statistical isotropy can be used to constrain the observable combination 𝐻(𝑧)𝐷𝑀 (𝑧)

using an anisotropic BAO analysis in the context of the Alcock-Paczynski test [1824].
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Figure 4.6: The deviation Δ𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
as a function of the redshift 𝑧 for different values of Ω𝑚 (left

panel) and 𝑤 (right panel).

The sound horizon 𝑟𝑠(𝑧𝑑) at the drag epoch 𝑧𝑑 that enters the BAO observables may be calculated in
the context of a given cosmological model, either numerically (e.g. with CAMB [1825]) or using a fitting
formula for 𝑧𝑑 [317] of the form

𝑧𝑑 = 1291(Ω𝑚ℎ
2)0.251

1 + 0.659(Ω𝑚ℎ2)0.828

[︀
1 + 𝑏1(Ω𝑏ℎ

2)𝑏2
]︀
, (4.21)

where

𝑏1 = 0.313(Ω𝑚ℎ
2)−0.419 [︀1 + 0.607(Ω𝑚ℎ

2)0.674]︀ , (4.22)
𝑏2 = 0.238(Ω𝑚ℎ

2)0.223 , (4.23)

and from Eq. (2.17)
𝑟𝑠(𝑧) = 𝑐√

3

∫︁ ∞

𝑧𝑑

𝑑𝑧

𝐻(𝑧)
√︁

1 + 3Ω𝑏

4Ω𝛾

1
1+𝑧

, (4.24)

where Ω𝛾 = 2.469 × 10−5ℎ−2 for 𝑇cmb = 2.725 K, and

𝐻(𝑧) = 𝐻0

[︁
Ω𝑚(1 + 𝑧)3 + Ω𝑟(1 + 𝑧)4 + ΩΛ(1 + 𝑧)3(1+𝑤)

]︁1/2
, (4.25)

with Ω𝑟 = Ω𝛾(1 + 0.2271𝑁eff) (𝑁eff ≃ 3 is the number of neutrino species) and

Ω𝑚 + Ω𝑟 + ΩΛ = 1 , (4.26)
in the context of a flat universe (𝐾 = 0). It has been shown [1826] that when the fitting formula is used
to obtain 𝑧𝑑 close to the Planck/ΛCDM parameter values, a correction factor of 154.66/150.82 should be
used on 𝑟𝑠 obtained from Eq. (4.24) to obtain agreement with the more accurate numerical estimate of
𝑟𝑠.

Using Eqs. (1.57), (4.20), (4.24) and a Planck/ΛCDM fiducial cosmology (ℎ = 0.676, Ω𝑏ℎ
2 = 0.0223,

Ω𝑚 = 0.31 and 𝑟𝑓𝑖𝑑
𝑠 = 147.49 Mpc), it is straightforward to construct the theoretically predicted redshift

dependence of the BAO observables 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
, 𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

and 𝐷𝐴 × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
for various values of the

parameters Ω𝑚 and 𝑤 and superpose this dependence with corresponding currently available data shown
in Table B.2 in the Appendix B.

The predicted evolution of the deviation of the observable 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
for various values of Ω𝑚 (left

panel) and of 𝑤 (right panel) is shown in Fig. 4.6. The deviation of the parameter Ω𝑚 (left panel) was
performed around the value Ω𝑚 = 0.3 while the deviation of the parameter 𝑤 was performed around the
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Figure 4.7: The deviation Δ𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

as a function of the redshift 𝑧 for different values of Ω𝑚 (left panel)
and 𝑤 (right panel)
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Figure 4.8: The deviation Δ𝐻(𝑧) as a function of redshift using the full compilation of Table B.4 in the
Appendix B, for various values of Ω𝑚 (left panel) and 𝑤 (right panel).
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Figure 4.9: The deviation Δ𝐷𝐴 × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
as a function of the redshift 𝑧 for different values of Ω𝑚 (left panel)

and 𝑤 (right panel)

ΛCDM value 𝑤 = −1 (see Eq. (4.9)). Notice the existence of a blind spot at 𝑧 ≃ 1.2 for the observable
𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
with respect to the parameter Ω𝑚, while the optimal redshift in the same plot is 𝑧 ≃ 0.6.

Even though the region 𝑧 > 2 also seems to be optimal, there are currently almost no data available in
this redshift range. In contrast, for the same observable with respect to the parameter 𝑤 there is no blind
spot, while the optimal redshift range is at 𝑧 > 1.2.

In Fig. 4.7 we show the predicted evolution of the deviation of the observable 𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

for various
values of Ω𝑚 (left panel) and of 𝑤 (right panel). For this observable there is no blind redshift spot,
while the sensitivity appears to increase monotonically with redshift for both observables. Notice the
asymmetry obtained for the equation of state parameter which is due to the fact that for 𝑤 < −1 at early
times the effects of dark energy are negligible for all values of 𝑤, leading to a degeneracy for this range
of parameters at high 𝑧. For comparison, in Fig. 4.8, we show the deviation of the observable Hubble
expansion rate for various values of Ω𝑚 (left panel) and of 𝑤 (right panel) along with corresponding
data obtained from the spectroscopic evolution of galaxies used as cosmic chronometers, shown in Table
B.4 in the Appendix B along with the corresponding citations (for previous compilations see also Refs.
[485, 1827, 1828]). Even though Figs. 4.7 and 4.8 are qualitatively similar, it is clear that the BAO
data are significantly more constraining compared to the cosmic chronometer data with respect to both
parameters Ω𝑚 and 𝑤, especially at low redshifts.

In Fig. 4.9 we show the predicted evolution of the deviation of the observable 𝐷𝐴 × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
for various

values of Ω𝑚 (left panel) and 𝑤 (right panel). The behavior of this observable is similar to that of
𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
even though the blind spot with respect to the parameter Ω𝑚 appears at a higher redshift

(𝑧 ≃ 2), while at higher redshifts the sensitivity of this observable with respect to the parameter Ω𝑚 is
significantly reduced compared to the sensitivity of 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
.

A comparison of the three BAO observable distances 𝐷𝑀 (𝑧)
𝑟𝑠

√
𝑧

, 𝐷𝑉 (𝑧)
𝑟𝑠

√
𝑧

and 𝑧𝐷𝐻 (𝑧)
𝑟𝑠

√
𝑧

[as 𝐷𝐻(𝑧) = 𝑐
𝐻(𝑧) ] for

the Planck/ΛCDM best fit parameter values along with the corresponding data from Table B.2 of the
Appendix B is shown in Fig. 4.10. This plot is in excellent agreement with the corresponding plot of Ref.
[48] (Fig. 14) even though here we superpose the Planck/ΛCDM prediction with a significantly larger
compilation of datapoints. As demonstrated in the next subsection the BAO data are in good agreement
with the Planck/ΛCDM parameter values.

4.3.2 Contour Shapes and Redshift Ranges
The presence of optimal and blind redshift ranges for the BAO observables with respect to cosmological
parameters has an effect on the form of maximum likelihood contours obtained from data at various
redshift ranges. In particular, the Figure of Merit (reciprocal of the area of confidence contours in
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Figure 4.10: The BAO observable distances for the Planck/ΛCDM best-fit parameter values along with
the corresponding data from Table B.2 in the Appendix B. The data appear to be in good agreement
with the Planck/ΛCDM predictions.

parameter space) tends to decrease for datasets with redshifts close to blind redshift spots and increase
for datasets with redshifts close to optimal redshift regions. In order to demonstrate this effect, we
construct the confidence contours for the parameters Ω𝑚 and 𝑤 using the BAO observables in different
redshift regions.

In order to construct 𝜒2 we first consider the vector

𝑉 𝑖
𝐵𝐴𝑂(𝑧𝑖,Ω𝑚, 𝑤) ≡ 𝐵𝐴𝑂𝑚

𝑖 −𝐵𝐴𝑂𝑚
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , (4.27)

where 𝑚 runs from 1 to 3 indicating the different types of BAO data of Table B.2 in the Appendix B
and the theoretical expressions for 𝐷𝐴 × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
, 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
and 𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

are given in Eqs. (1.57), (4.20)
and (4.25) respectively. 𝜒2 is obtained as

𝜒2 = 𝑉 𝑖𝐹𝑖𝑗𝑉
𝑗 , (4.28)

where 𝐹𝑖𝑗 is the Fisher matrix (inverse of the covariance matrix 𝐶𝑖𝑗).
The covariance matrix for the 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
data takes the form

𝐶BAO,total
𝑖𝑗,𝐷𝑉 ×(𝑟𝑓𝑖𝑑.

𝑠 /𝑟𝑠) =

⎛⎝𝜎2
1 0 0 · · ·

0 𝐶𝑊 𝑖𝑔𝑔𝑙𝑒𝑍
𝑖𝑗 0 · · ·

0 0 · · · 𝜎2
𝑁

⎞⎠ , (4.29)

where 𝑁 = 28 and [1829]

𝐶𝑊 𝑖𝑔𝑔𝑙𝑒𝑍
𝑖𝑗 = 𝐹−1

𝑖𝑗,WiggleZ = 104

⎛⎝ 2.18 −1.12 0.47
−1.12 1.71 −0.72
0.47 −0.72 1.65

⎞⎠−1

, (4.30)

whereas for both 𝐷𝐴 × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
and 𝐻 × 𝑟𝑠

𝑟𝑓𝑖𝑑
𝑠

we have assumed a diagonal covariance matrix

𝐶BAO,total
𝑖𝑗 =

⎛⎝𝜎2
1 0 0 · · ·

0 𝜎2
2 0 · · ·

0 0 · · · 𝜎2
𝑁

⎞⎠ , (4.31)

where 𝑁 is equal to the considered number of datapoints.
The forms of Eqs. (4.29) and (4.31) are clearly oversimplifications of the actual covariance matrices,

since these forms ignore possible correlations between the considered BAO data. However, to the best of
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Figure 4.11: The 1𝜎−3𝜎 contours in the Ω𝑚 −𝑤 parametric space. The contours describe the correspond-
ing confidence regions using the full compilation of 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
data (left panel), low redshift (𝑧 < 0.55)

data (middle panel) and high redshift (𝑧 > 0.55) data (right panel) from Table B.2 in the Appendix B.
The red and green dots describe the Planck/ΛCDM best fit and the best-fit values from the compilation
of 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑

𝑠

𝑟𝑠
data. Notice that at high 𝑧 close to the blind spot for Ω𝑚 and the optimum redshift for

𝑤, the thickness of the contours (uncertainty) increases along the Ω𝑚 axis and decreases along the 𝑤 axis
(the contours are rotated clockwise) as expected from Fig. 4.6.

our knowledge the non-diagonal terms of the 𝐷𝐴 and 𝐻 covariance matrices are not publicly available. In
order to estimate the magnitude of the effects of these terms we have performed Monte Carlo simulations
including random nondiagonal terms to the covariance matrices for 𝐷𝐴 and 𝐻 of relative magnitude
similar to the nondiagonal terms of the nondiagonal terms corresponding to 𝐷𝑉 setting the magnitude
of the matrix [67]

𝐶𝑖𝑗 = 1
2𝜎𝑖 · 𝜎𝑗 , (4.32)

where 𝜎𝑖 and 𝜎𝑗 are the errors of the published datapoints 𝑖 and 𝑗 respectively. These simulations
indicated that the likelihood contours and the best fit parameter values do not change more than 10%
when we include the nondiagonal terms in the covariance matrix. Thus, possible reasonable correlations
among datapoints are not expected to significantly affect our results [1830].

In the left panel of Fig. 4.11 we show the 1𝜎− 3𝜎 Ω𝑚 −𝑤 contour plots for the full 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
data

of Table B.2 in the Appendix B using Eqs. (4.27)-(4.29) and ignoring the possible correlations among the
datapoints. The best fit parameter values are within 1𝜎 from the corresponding best fit Planck/ΛCDM
values (red dot).

Furthermore we construct the same contour plots for low-redshift 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
data (middle panel

of Fig. 4.11), where 𝑧 < 0.55 (14 datapoints), and for high-redshift 𝐷𝑉 (𝑧) × 𝑟𝑓𝑖𝑑
𝑠

𝑟𝑠
data (right panel of

Fig. 4.11), where 𝑧 > 0.55 (14 datapoints). The low-redshift data correspond to optimal redshift for the
parameter Ω𝑚 (see Fig. 4.6) and thus the confidence contours are thinner in the direction of the Ω𝑚

axis while the contours are elongated in the 𝑤 direction. In contrast the high-redshift data are close to
the Ω𝑚 blind spot and thus the confidence contours are thicker in the Ω𝑚 direction (left panel), while
the contours are suppressed in the 𝑤 direction (as expected from Fig. 4.6) which indicates an optimal
high-redshift range for the parameter 𝑤.

4.4 Distance Moduli from SnIa and from Gravitational Waves
The luminosity distance defined by Eq. (1.55) is an important cosmological observable that is measured
using standard candles like SnIa or standard gravitational wave sirens, like merging binary neutron star
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Figure 4.12: The deviation of the distance modulus observable Δ𝜇 as a function of redshift for Ω𝑚 (left
panel), 𝑤 (middle panel) and 𝑔𝛼 (right panel) superimposed with the JLA data of Table B.3 in the
Appendix B.
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Figure 4.13: The sensitivity measure as a function of redshift 𝑧 for Ω𝑚 (left panel), 𝑔𝛼 (middle panel)
and 𝑤 (right panel).

systems observed via multi-messenger observations (see Subsections 2.2.1 and 2.2.4).
The distance modulus 𝜇 = 𝑚 − 𝑀 is the difference between the apparent magnitude 𝑚 and the

absolute magnitude 𝑀 of standard candle. Thus using Eq. (2.2) it is related to the luminosity distance
𝑑𝐿 in Mpc as

𝜇(𝑧; Ω𝑚, 𝑤) = 5 log10

[︂
𝑑𝐿(𝑧)
𝑀𝑝𝑐

]︂
+ 25 . (4.33)

In the context of a varying effective Newton’s constant 𝐺eff(𝑧) the absolute magnitude of SnIa is expected
to vary with redshift as [913, 914, 1831]

𝑀 −𝑀0 = 15
4 𝑙𝑜𝑔10

(︂
𝐺eff

𝐺

)︂
, (4.34)

where the subscript 0 refers to local value of 𝑀 . Thus, for SnIa 𝜇 also depends on the evolution of 𝐺eff(𝑧)
(or equivalently on the parameter 𝑔𝑎) as

𝜇(𝑧; Ω𝑚, 𝑤, 𝑔𝑎) = 5𝑙𝑜𝑔10(𝑑𝐿) + 15
4 𝑙𝑜𝑔10

(︂
𝐺eff(𝑧; 𝑔𝑎)

𝐺

)︂
+ 25 . (4.35)

In the case of gravitational wave luminosity distance, the corresponding gravitational wave distance
modulus obtained from standard sirens is of the form [1832]

𝜇𝑔𝑤(𝑧; Ω𝑚, 𝑤, 𝑔𝑎) = 5𝑙𝑜𝑔10

(︃
𝑑𝐿

√︂
𝐺eff

𝐺

)︃
+ 25 . (4.36)

In Fig. 4.12 we show the deviation Δ𝜇 as a function of redshift for Ω𝑚 (left panel), 𝑤 (middle panel)
and 𝑔𝛼 (right panel) superimposed with the JLA SnIa binned data of Table B.3 in the Appendix B.
The corresponding sensitivity measure is shown in Fig. 4.13. Notice that even though the deviation
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Figure 4.14: The deviation of the gravitational wave distance modulus with the parameter 𝑔𝑎. The only
existing datapoint does not lead to any useful constraints.

Δ𝜇𝑔𝑤 appears to be increasing with redshift for all the parameters considered, the absolute value of the
sensitivity measure with respect to the parameter 𝑔𝑎 has a maximum for redshifts in the range 𝑧 ∈ [4, 5],
indicating the presence of an optimal redshift range.

The deviations Δ𝜇𝑔𝑤(𝑧) with respect to the parameters Ω𝑚 and 𝑤 is identical to the corresponding
deviations Δ𝜇(𝑧), since for 𝑔𝑎 = 0 we have Δ𝜇(𝑧) = Δ𝜇𝑔𝑤(𝑧). The deviation Δ𝜇𝑔𝑤(𝑧) with respect to
the parameter 𝑔𝑎 is shown in Fig. 4.14 along with the single available datapoint from the standard siren
GW170817 [18, 1833]. Clearly even though standard siren data can in principle be used to constrain
the evolution of 𝐺eff , a dramatic improvement is required before such probes become competitive with
growth and SnIa data.

4.5 Conclusions
In this Chapter we have demonstrated that the constraining power (sensitivity) of a wide range of cos-
mological observables on cosmological parameters is a rapidly varying function of the redshift where the
observable is measured. In fact, this sensitivity in many cases does not vary monotonically with redshift
but has degeneracy points (redshift blind spots) and maxima (optimal redshift ranges) which are rela-
tively close in redshift space. The identification of such regions can contribute to the optimal design and
redshift range selection of cosmological probes aimed at constraining specific cosmological parameters
through measurement of cosmological observables.

In addition, we have shown that many of the recent 𝑓𝜎8 RSD data, which tend to be at higher redshifts
(𝑧 > 0.8) are close to blind spots of the observable 𝑓𝜎8 with respect to all three cosmological parameters
considered (Ω𝑚, 𝑤 and 𝑔𝑎). A similar trend for probing higher redshifts also exists for upcoming surveys
as demonstrated in Table 4.1. A more efficient strategy for this observable would be an improvement of
the measurements at lower redshifts instead of focusing on higher redshifts. Such a strategy would lead
to improved constraints on all three parameters considered.

Even though our analysis has revealed the generic existence of optimal redshifts and blind spots of
observables with respect to specific cosmological parameters, it still has not taken into account all relevant
effects that play a role in determining the exact location of these points in redshift space. For example,
we have not explicitly taken into account the number of linear modes available to a survey in redshift
space as well as the dependence of the effective volume 𝑉eff on the number of tracers and their selection.
We anticipate that these effects could mildly shift the location of the derived blind spots and optimal
redshifts determined by our analysis.

The results of our analysis may be helpful in the proper design of upcoming missions aimed at
measuring cosmological observables in specific redshift ranges.



Chapter 5

Modified Model for Gravity through Dimen-
sional Reduction

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [2].

In this chapter using a dark matter density profile we reconstruct an effective field theory model for
gravity at large distances from a central object by demanding that the vacuum solution has the same
gravitational properties as the density profile has in the context of GR.

Modified theories of gravity include more degrees of freedom and parameters which are strongly
constrained by a wide range of experiments and astrophysical/cosmological observations to be very close
to the values predicted by GR (see e.g. [73–76]). Despite of its successes and simplicity, GR requires
additional undetected matter/energy components to explain observations on galactic scales or larger. In
particular, the existence of dark matter [87–90, 476, 1834, 1835] is required for the description of observed
dynamics and structure formation on galactic scales or larger while dark energy with negative pressure
or a fine tuned cosmological constant (see Ref. [81] for a review) is required for the consistency of GR
with the observed accelerating cosmic expansion [118, 119, 1836]. Even on solar system scales or sub-mm
scales there have been hints of possible inconsistency of the theory with particular observations (e.g.
Pioneer anomaly [1837–1841]) or short range gravity experiments (peculiar oscillating signals in some
datasets [1842]). In addition, the theory predicts the existence of unphysical singularities in a wide range
of its solutions which should describe physical phenomena.

Any observed inconsistency between the geometric left hand side (LHS) of the Einstein equation and
the matter-energy right hand side (RHS) is thus usually addressed by modifying the RHS through the
conservative assumption of some yet undetected form of matter-energy chosen in such a way as to restore
the equality of the geometric and matter parts of the Einstein equation. A more fundamental approach
is to modify the geometric LHS of the Einstein which is equivalent to modifying the fundamental action
of the gravitational theory. There is a wide range of modified gravity models aiming at the explanation
of the accelerating expansion of the universe [135, 1843, 1844]. Such theories include scalar tensor
theories [587, 1845–1847] including the most general class of Horndeski models [100, 1848], 𝑓(𝑅) theories
[96, 111, 112, 584, 1849, 1850] which generalize the Ricci scalar 𝑅 of the action to a general function
𝑓(𝑅), generalized teleparallel gravity 𝑓(𝑇 ) theories [114, 115, 1851, 1852] which generalize the torsion
scalar 𝑇 of the action to a general function of it, non-local gravity theories [1853–1855] which introduce
nonlocal operators in the gravitational action which involve effectively an infinite sum of derivatives etc.
On the other hand, modified gravity models (see Ref. [1856] for a review) aiming at the explanation
of the dynamics of matter at galactic and cluster scales without dark matter are much more limited
[1857, 1858]. This is due to the very diverse nature of matter dynamical behaviors that need to be
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explained which appears to require a large number of parameters for the fundamental theory that would
attempt to explain it without dark matter. The main representative of this class of theories is the modified
Newtonian Dynamics (MOND) theory [1859–1861] based on the existence of a fundamental acceleration
scale which has been recently shown however to be highly unlikely to exist [1862].

5.1 Introduction
An alternative approach towards a geometric fundamental description of the dynamics of matter on
galactic and cluster scales without dark matter has been proposed by Grumiller [1863, 1864]. Assuming
spherical symmetry of the metric and implementing dimensional reduction of the Einstein Hilbert action
to two space-time dimensions (𝑡−𝑟) it was shown that the emerging 2-dimensional ST effective field theory
action with a constant potential can be generalized to include a non-trivial potential. The simplest form of
this potential with no infrared curvature singularities, leads to a generic Rindler constant acceleration term
in the vacuum spherically symmetric metric of the new theory [1863]. It has been shown recently [1865]
that such a term in the background metric can give rise to a new type of metastable topological defects
(spherical domain walls). It was also argued that such a term can give rise to the observed velocity rotation
curves of galaxies without incorporating dark matter [1866]. It was later shown [1867, 1868] however that
the Rindler term is only able to provide acceptable fits to a relatively small number of observed velocity
rotation curves which is limited to those rotation curves where the velocity continues to increase with
distance through the halo. Such a behavior is not typical for most rotation curves which are either flat
[87–89] or in fact tend to decrease with distance at large distances from the galactic core [1869]. Thus,
the Rindler acceleration even though it is appealing due to its possible fundamental geometric origin,
does not provide enough degrees of freedom to describe the data in contrast to the commonly used dark
matter density profiles (Navarro-Frenk-White [1639, 1640] and Burkert [1870]) which provide excellent
fits to the rotation curve data. Thus, the following questions arise:

• Is it possible to generalize the fundamental 2-dimensional geometric effective action (and its scalar
field potential emerging from dimensional reduction) such that the corresponding vacuum spherically
symmetric metric reproduces the observed velocity rotation curves equally well as the standard dark
matter density profiles?

• If yes, what is the form of the required geometric scalar field potential and how is it related to the
simple Rindler potential of Refs. [1863, 1864]

• Can an arbitrary vacuum spherically symmetric metric be reproduced by a properly selected geometric
scalar field potential?

The goal of the our analysis is to address these questions using both theoretical reconstruction of the
fundamental action and direct comparison with specific velocity rotation data.

The structure of this Chapter is the following: In the next Section 5.2 we consider a class of simple
spherically symmetric metrics in 3 + 1 dimensions and identify the profiles and properties of the perfect
fluids that can give rise to such metrics. In Section 5.3 we assume spherical symmetry and use it
to dimensionally reduce the 3 + 1 dimensional Einstein-Hilbert action to an effective two dimensional
scalar-tensor action with a constant potential. We generalize this geometric potential thus modifying the
gravitational action to an arbitrary form and derive the corresponding generalized vacuum spherically
symmetric metric in terms of the geometric potential. In Section 5.4 we consider special forms of the
geometric potential and of the background fluid and derive the corresponding metric. Thus the case of a
constant potential (GR) we derive the Schwarzschild vacuum metric while for a simple quadratic potential
we obtain the Rindler acceleration and cosmological constant terms in agreement with Ref. [1863]. We
also reconstruct the geometric potential that leads to a vacuum metric that is identical with the metric
derived assuming a given dark matter fluid density profile in the context of GR. In the context of a
particular example we assume a Navarro-Frenk-White (NFW) [1639, 1640] density profile and derive the
corresponding geometric potential and vacuum metric. We show that this metric generalizes the Rindler
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term of the Grumiller metric and show fits of the velocity profiles it generates on typical galactic velocity
rotation data. Finally in Section 5.5 we conclude and discuss the implications and possible extensions of
our analysis. In what follows we assume a metric signature + − −−.

5.2 Spherically Symmetric Metrics in GR and Perfect Fluids
Consider the spherically symmetric metric in 4-dimensions of the form

𝑑𝑠2 = 𝑓(𝑟)𝑑𝑡2 − 𝑓(𝑟)−1𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2) . (5.1)

What is the most general form of perfect fluid energy momentum tensor that is consistent with this metric
in the context of GR?

In order to address this question we set

𝑓(𝑟) = 1 − 𝑔(𝑟) , (5.2)

and obtain the Einstein tensor corresponding to this metric as

𝐺𝜈
𝜇 =

⎡⎢⎢⎣
𝑒1(𝑟) 0 0 0

0 𝑒1(𝑟) 0 0
0 0 𝑒2(𝑟) 0
0 0 0 𝑒2(𝑟)

⎤⎥⎥⎦ , (5.3)

with

𝑒1(𝑟) = 𝑔(𝑟)
𝑟2 + 𝑔′(𝑟)

𝑟
, (5.4)

𝑒2(𝑟) = 𝑔′(𝑟)
𝑟

+ 𝑔′′(𝑟)
2 . (5.5)

Using Eqs. (5.4), (5.5) and the Einstein equations 𝐺𝜇
𝜈 = 𝜅𝑇𝜇

𝜈 we find

𝜌(𝑟) = −𝑝𝑟(𝑟) = 1
𝜅𝑟

[𝑔(𝑟)
𝑟

+ 𝑔′(𝑟)] , (5.6)

𝑝𝜃(𝑟) = 𝑝𝜑(𝑟) = − 1
2𝜅𝑟 [2𝑔′(𝑟) + 𝑟𝑔′′(𝑟)] , (5.7)

where 𝜅 = 8𝜋𝐺 and the energy momentum tensor of the perfect fluid is

𝑇 𝜈
𝜇 = 𝑑𝑖𝑎𝑔 [𝜌(𝑟),−𝑝𝑟(𝑟),−𝑝𝜃(𝑟),−𝑝𝜑(𝑟)] . (5.8)

Expanding 𝑔(𝑟) as a power series

𝑓(𝑟) = 1 −
𝑁∑︁

𝑛=−𝑁

𝑎𝑛𝑟
𝑛 , (5.9)

the Einstein tensor may be expressed as [1865]

𝐺𝜇
𝜈 =

𝑁∑︁
𝑛=−𝑁

⎡⎢⎢⎣
𝑎𝑛(𝑛+ 1)𝑟𝑛−2 0 0 0

0 𝑎𝑛(𝑛+ 1)𝑟𝑛−2 0 0
0 0 1

2𝑎𝑛𝑛(𝑛+ 1)𝑟𝑛−2 0
0 0 0 1

2𝑎𝑛𝑛(𝑛+ 1)𝑟𝑛−2

⎤⎥⎥⎦ . (5.10)
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Therefore, the energy - momentum tensor supporting the metric function Eq. (5.9) is

𝑇 0
0 = 1

𝜅

𝑁∑︁
𝑛=−𝑁

𝑎𝑛(1 + 𝑛)𝑟𝑛−2 = 𝜌 , (5.11)

𝑇 𝑟
𝑟 = 𝑇 0

0 = −𝑝𝑟 , (5.12)

𝑇 𝜃
𝜃 = 1

2𝜅

𝑁∑︁
𝑛=−𝑁

𝑎𝑛𝑛(1 + 𝑛)𝑟𝑛−2 = −𝑝𝜃 , (5.13)

𝑇𝜑
𝜑 = 𝑇 𝜃

𝜃 = −𝑝𝜑 . (5.14)

As expected the term 𝑛 = −1 (Schwarzschild metric) corresponds to the vacuum solution (𝜌 = 𝑝 = 0)
while for 𝑛 = 2 we have the cosmological constant term (constant energy density-pressure). The Rindler
constant acceleration term 𝑛 = 1 is generated by a perfect fluid with

𝜌 = 2𝑎1

𝜅𝑟
= −𝑝𝑟 = −2𝑝𝜃 = −2𝑝𝜑 . (5.15)

For 𝑛 = 0 (constant term in the metric function) we have the case of a global monopole (zero angular
pressure components and energy density ∼ 𝑟−2 [1871–1875]). Thus any power law term of the spherically
symmetric metric function 𝑔(𝑟) can be generated by a corresponding power law term of the energy
momentum tensor of a perfect fluid provided that its radial pressure equation of state parameter 𝑤𝑟 is
−1 and there is equality between the angular pressure components.

The question we address in the next section is the following: Can the spherically symmetric metric Eq.
(5.1) also emerge as a vacuum solution in a modified gravity theory? In other words, given a spherically
symmetric fluid and its corresponding metric in the context of GR, what is the spherically symmetric
modified gravity theory that leads to the same metric as its vacuum solution?

5.3 Modifying Spherically Symmetric GR through Dimensional
Reduction

Consider the generalization of the spherically symmetric metric Eq. (5.1) to a 𝑑-dimensional form

𝑑𝑠2 = 𝑓(𝑟)𝑑𝑡2 − 𝑓(𝑟)−1𝑑𝑟2 − Φ(𝑟)2𝑑Ω , (5.16)

where Φ(𝑟) denotes the the surface radius and 𝑑Ω is the solid angle in 𝑑 − 2 dimensions. The Einstein-
Hilbert gravitational action describing the dynamics of the metric Eq. (5.16) in the context of GR is of
the form

𝑆 = 1
2𝜅𝑑

∫︁
𝑑𝑑𝑥
√︀

−𝑔(𝑑)𝑅(𝑑) +
∫︁
𝑑𝑑𝑥
√︀

−𝑔(𝑑)ℒ(𝑑)
𝑀 , (5.17)

where 𝑅(𝑑) is the Ricci scalar in 𝑑 dimensions and ℒ(𝑑)
𝑀 is the matter Lagrangian density assumed to

describe a spherically symmetric perfect fluid. It is straightforward to show using the metric Eq. (5.16)
that the 𝑑−dimensional Ricci scalar can be expressed in terms of the corresponding 2-dimensional (𝑡− 𝑟)
scalar as [1876]

𝑅(𝑑) = 𝑅(2) − (𝑑− 2)(𝑑− 3)
Φ2

[︀
1 + (𝜕Φ)2]︀− 2(𝑑− 2)

Φ ∇𝑏𝜕𝑏Φ , (5.18)

while for the 𝑑-dimensional spherically symmetric metric determinant we have√︀
−𝑔(𝑑) = Φ𝑑−2

√︀
−𝑔(2) . (5.19)
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Using Eqs. (5.18) and (5.19) in (5.17) we may integrate trivially over the angular coordinates and
dimensionally reduce this action to a 2-dimensional (𝑡− 𝑟) scalar-tensor action of the form

𝑆 = 𝑉𝑑−2

2𝜅𝑑

∫︁
𝑑2𝑥
√︀

−𝑔(2)
[︁
Φ𝑑−2𝑅(2) + (𝑑− 2)(𝑑− 3)Φ𝑑−4(𝜕Φ)2 − (𝑑− 2)(𝑑− 3)Φ𝑑−4

]︁
+𝑉𝑑−2

∫︁
𝑑2𝑥
√︀

−𝑔(2)ℒ(2)
𝑀 ,

(5.20)
where 𝑉𝑑−2 is the 𝑑 − 2 dimensional angular volume which is equal to 4𝜋 for 𝑑 = 4. For 𝑑 = 4 the

2-dimensional action takes the form

𝑆 = 1
4𝐺

∫︁
𝑑2𝑥
√︀

−𝑔(2)
[︁
Φ2𝑅(2) + 2(𝜕Φ)2 − 2

]︁
+ 𝑆

(2)
𝑀 . (5.21)

A modification of spherically symmetric GR can be implemented at this stage by generalizing the effective
dimensionally reduced GR action Eq. (5.21) to a general ST action [1877, 1878] of the form

𝑆 = 1
4𝐺

∫︁
𝑑2𝑥
√︀

−𝑔(2)
[︁
𝐹 (Φ)𝑅(2) − 𝑍(Φ)(𝜕Φ)2 − 2𝑉 (Φ)

]︁
+ 𝑆

(2)
𝑀 , (5.22)

where 𝐹 (Φ), 𝑍(Φ), 𝑉 (Φ) are arbitrary functions of the field Φ1

The origin of this generalized ST action Eq. (5.22) could either come from physics at the effective
2-dimensional (𝑡− 𝑟) level or could emerge through dimensional reduction of a spherically symmetric ST
theory.

In particular consider the 𝑑-dimensional scalar-tensor action

𝑆 = 1
2𝜅𝑑

∫︁
𝑑𝑑𝑥
√︀

−𝑔(𝑑)
[︁
𝜒(Φ)𝑅(𝑑) − 𝜁(Φ)(𝜕Φ)2 − 𝑈(Φ)

]︁
+ 𝑆

(𝑑)
𝑀 , (5.23)

which for 𝜒(Φ) = 1 , 𝜁(Φ) = 0 and 𝑈(Φ) = 0 reduces to the Einstein - Hilbert action Eq. (5.17).
It is straightforward to show that the action Eq. (5.23) can be dimensionally reduced using spherical
symmetry and the metric Eq. (5.16) to the 2-dimensional action

𝑆 = 𝑉𝑑−2
2𝜅𝑑

∫︀
𝑑2𝑥
√︀

−𝑔(2){𝜒(Φ)Φ𝑑−2𝑅(2) + [(𝑑− 2)(𝑑− 3)𝜒(Φ)Φ𝑑−4 + 2(𝑑− 2)𝜒′(Φ)Φ𝑑−3

−𝜁(Φ)Φ𝑑−2](𝜕Φ)2 − (𝑑− 2)(𝑑− 3)𝜒(Φ)Φ𝑑−4 − Φ𝑑−2𝑈(Φ)} + 𝑆
(2)
𝑀 ,

(5.24)

where the prime (′) denotes derivative with respect to the surface radius field Φ. Clearly for 𝑑 = 4 the
action Eq. (5.24) reduces to Eq. (5.22) by setting

𝐹 (Φ) = 𝜒(Φ)Φ2 , (5.25)

𝑍(Φ) = −2𝜒(Φ) − 4𝜒′(Φ)Φ + 𝜁(Φ)Φ2 , (5.26)

𝑉 (Φ) = 𝜒(Φ) + Φ2

2 𝑈(Φ) . (5.27)

In what follows we set 𝑑 = 4. Variation of the action Eq. (5.22) with respect to Φ leads to the equation
of motion (EOM)

𝐹 ′(Φ)𝑅(2) + 𝑍 ′(Φ)(𝜕Φ)2 + 2𝑍(Φ)∇𝑏𝜕𝑏Φ − 2𝑉 ′(Φ) = −2𝐺𝛿ℒ
(2)
𝑀

𝛿Φ , (5.28)

1Note that for the dimensionally reduced metric Φ(𝑟) can be considered as a scalar field (up to a dimensionful parameter)
in correspondence with e.g. the radion field which is an effective scalar field in 4-dimensions describing the dynamics of
extra dimensions in a cosmological setup [1762] in the context of an effective ST theory in 4-dimensions.
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and variation with respect to 𝑔𝜇𝜈 leads to the EOM

[∇𝜇𝜕𝜈 − 𝑔𝜇𝜈∇𝑎𝜕𝑎]𝐹 (Φ) + 𝑍(Φ)
[︂
𝜕𝜇Φ𝜕𝜈Φ − 1

2𝑔𝜇𝜈(𝜕Φ)2
]︂

= 𝑔𝜇𝜈𝑉 (Φ) − 2𝐺𝑇 (2)
𝜇𝜈 . (5.29)

Using the 2-dimensional metric

𝑑𝑠2 = 𝑓(𝑟)𝑑𝑡2 − 𝑓(𝑟)−1𝑑𝑟2 , (5.30)

it is straightforward to show that the 2-dimensional Ricci scalar is of the form

𝑅(2) = 𝑑2𝑓

𝑑𝑟2 . (5.31)

Using ℒ(2)
𝑀 = 𝑇 = 𝜌(2) − 𝑝

(2)
𝑟 [1879], Eq. (5.31) and the ansatz Φ = 𝑟 in Eq. (5.28) we obtain the EOM

𝑓 ′′𝐹 ′ − 2𝑍𝑓 ′ − 𝑍 ′𝑓 − 2𝑉 ′ = −2𝐺(𝜌′(2) − 𝑝′(2)
𝑟 ) , (5.32)

where 𝜌(2) and 𝑝
(2)
𝑟 are the 2-dimensional density and pressure respectively and the prime (′) denotes

derivative with respect to 𝑟.
Also for 𝜇 = 𝜈 = 0 in Eq. (5.29) we obtain (with the same ansatz for Φ)

𝑓 ′𝐹 ′ + 2𝑓𝐹 ′′ + 𝑍𝑓 − 2𝑉 = −4𝐺𝜌(2) . (5.33)

Similarly for 𝜇 = 𝜈 = 1 Eq. (5.29) gives

𝑓 ′𝐹 ′ − 𝑍𝑓 − 2𝑉 = 4𝐺𝑝(2)
𝑟 . (5.34)

The system Eqs. (5.32)-(5.34) is overdetermined since there is only one unknown function 𝑓(𝑟). Thus for
a solution to exist Eqs. (5.32)-(5.34) must be equivalent to each other (up to a constant of integration).
It may be shown that this consistency requires that

𝑍 = −𝐹 ′′ , 𝜌(2) = −𝑝(2)
𝑟 . (5.35)

Indeed using Eqs. (5.35), the system Eqs. (5.32)-(5.34) is equivalent to a single equation

𝑓 ′𝐹 ′ + 𝑓𝐹 ′′ − 2𝑉 = −4𝐺𝜌(2) = 4𝐺𝑝(2)
𝑟 . (5.36)

The general equation Eq. (5.36) connects the metric function 𝑓 with the geometric potential 𝑉
emerging from dimensional reduction and the nonminimal coupling 𝐹 in the presence of a static spherically
symmetric perfect fluid whose equation of state parameter is −1. Thus, any spherically symmetric metric
of the form Eq. (5.1) can emerge either due to an appropriate perfect fluid or as a vacuum solution of
dimensionally reduced modified gravity with properly selected nonminimal coupling 𝐹 and/or potential
𝑉 .

In what follows we focus on modifications of GR due to the geometric potential 𝑉 and fix 𝐹 to the
GR form 𝐹 = Φ2 implying 𝑍 = −2 (from Eq. (5.35)). Then Eq. (5.36) becomes

𝑟𝑓 ′ + 𝑓 − 𝑉 = −2𝐺𝜌(2) = 2𝐺𝑝(2)
𝑟 . (5.37)

In order to quantify deviations from GR we set

𝑓(𝑟) = 1 − 𝑔(𝑟) , (5.38)
𝑉 (Φ) = 1 + 𝑉1(Φ) , (5.39)

and expressing the dimensionally reduced density 𝜌(2) in terms of its 4-dimensional counterpart 𝜌 as

𝜌(2)(𝑟) = 4𝜋Φ2𝜌(𝑟) , (5.40)
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in Eq. (5.37), we obtain

𝜌𝑡𝑜𝑡(𝑟) = 𝜌𝑚(𝑟) + 𝜌𝑉 (𝑟) = 1
𝜅𝑟

[︂
𝑔(𝑟)
𝑟

+ 𝑔′(𝑟)
]︂
, (5.41)

where the geometric effective energy density is defined as

𝜌𝑉 (𝑟) ≡ −𝑉1(Φ)
𝜅𝑟2 . (5.42)

Therefore the generalization of the scalar-tensor potential leads to an effective energy density of geometric
origin which generates the same spherically symmetric metric as a corresponding spherically symmetric
perfect fluid with equation of state parameter 𝑤 = −1 and energy density 𝜌𝑚(𝑟) = 𝜌𝑉 (𝑟). This derived
equivalence between geometric and matter energy density allows the reconstruction of the geometric
potential by demanding that its gravitational effects in the vacuum should be identical with the grav-
itational effects of a given matter fluid in the context of GR. This reconstruction from a realistic dark
matter profile will be the main focus of the next section.

5.4 Special Cases - Reconstruction of Gravitational Action

5.4.1 Vacuum GR and Grumiller’s gravity model
A special case of the geometric potential introduced in the previous section has been considered by
Grumiller [1863, 1864]. In particular, the following dimensionally reduced action was investigated

𝑆 = 1
4𝐺

∫︁
𝑑2𝑥
√︀

−𝑔(2)[Φ2𝑅(2) + 2(𝜕Φ)2 + 6ΛΦ2 − 8𝛼Φ − 2] . (5.43)

This is a special case of the general action Eq. (5.22) with the GR coupling 𝐹 = Φ2, 𝑍 = −2 and a
geometric potential of the form

𝑉 (Φ) = 1 + 4𝛼Φ − 3ΛΦ2 . (5.44)

The ansatz Φ = 𝑟 and our general reconstruction equation Eq. (5.41) leads to the Schwarzschild-Rindler-
deSitter metric function as a vacuum solution (𝜌𝑚 = 0)

𝑓(𝑟) = 1 − 2𝐺𝑀/𝑟 + 2𝛼𝑟 − Λ𝑟2 , (5.45)

in agreement with Grumiller’s metric [1863].
The main advantages of the Grumiller potential Eq. (5.44) include its simplicity and its generic

nature as it involves terms that dominate at large distances while at the same time it does not lead to
any curvature singularities at infinity where the Ricci scalar Eq. (5.31) remains finite. On the other hand
the metric function Eq. (5.45) has been used to reconstruct the velocity profiles of galaxies without dark
matter with mixed results [1866–1868]. Even though it was found that the constant acceleration Rindler
term can provide satisfactory fits to the observed velocity rotation curves of some galaxies in regions
where these curves are rising with distance it became clear that for universal fits more parameters are
needed in the potential. Such parameters however should be introduced in a way that is most efficient
phenomenologically i.e. inspired from observed dark matter density profiles while at the same time they
preserve the advantages of the Grumiller potential (simplicity and lack of large scale singularities). Using
these principles in the next subsection we generalize the Grumiller geometric potential by demanding
that the new potential reproduces in the vacuum the gravitational effects of a well known dark matter
density profile parametrization: the Navarro-Frenk-White density profile [1639, 1640].
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5.4.2 Reconstruction of Geometric Potential
The Navarro-Frenk-White (NFW) profile [1639, 1640] can give good fits to a wide range of observed
rotation curves of galaxies in the context of general relativity (GR). It is of the form

𝜌𝑁𝐹 𝑊 (𝑟) = 𝜌𝑜
𝑟

𝑅𝑠
(1 + 𝑟

𝑅𝑠
)2 , (5.46)

where the scale radius 𝑅𝑠 and 𝜌𝑜 are parameters which vary from halo to halo.
The GR gravitational effects of this profile can be reproduced in the vacuum of a modified gravity

model with a geometric potential reconstructed using Eq. (5.42) as

𝜌𝑉 (𝑟) ≡ −𝑉1(Φ)
𝜅𝑟2 = 𝜌𝑁𝐹 𝑊 (𝑟) , (5.47)

which leads to a potential of the form

𝑉 (Φ) = 1 + 4𝛼Φ
(1 + 𝛽Φ)2 , (5.48)

with 𝛽 = 1
𝑅𝑠

and 𝛼 = 2𝜋𝐺𝜌𝑜𝑅𝑠. This potential reduces to the Rindler-Grumiller potential [1863] for
𝛽 = 0. The new parameter 𝛽 introduces no large scale curvature singularities while it is designed to
maximize the efficiency of fits to the observed rotation curves to the extend that such fit is obtained by
the NFW density profile in the context of GR. Also the above potential reconstruction method can be
easily generalized for any other density profile.

Solving Eq. (5.41) in the vacuum (𝜌𝑚 = 0) with the geometric density 𝜌𝑉 obtained from the recon-
structed potential Eq. (5.48) we obtain the term 𝑔(𝑟) of the metric function

𝑔(𝑟) = 𝐶

𝑟
−

4𝛼[ 1
1+𝛽𝑟 + 𝑙𝑛(1 + 𝛽𝑟)]

𝛽2𝑟
, (5.49)

where 𝐶 is a constant of integration. Expansion of 𝑔(𝑟) of Eq. (5.49) as a power series demonstrates that
this metric function is a generalization of the Rindler-Grumiller metric function Eq. (5.45) for Λ = 0

𝑔(𝑟) =
𝐶 − 4𝛼

𝛽2

𝑟
− 2𝛼𝑟 + 8

3𝛼𝛽𝑟
2 +𝑂(𝑟)3 , (5.50)

which after a redefinition of the integration constant 𝐶 clearly reduces to the Rindler-Grumiller metric
function for 𝛽𝑟 ≪ 1. Setting 𝐶 = 2𝐺𝑀 + 4𝛼

𝛽2 and using Eq. (5.38), the metric function 𝑓(𝑟) becomes

𝑓(𝑟) = 1 − 2𝐺𝑀
𝑟

− 4𝛼
1 − 1

1+𝛽𝑟 − 𝑙𝑛(1 + 𝛽𝑟)
𝛽2𝑟

, (5.51)

which generalizes the Grumiller metric Eq. (5.45) with one additional parameter (𝛽) and is based on the
geometric potential reconstructed from the NFW density profile. In the next subsection we check the
efficiency of this metric in fitting two representative observed velocity rotation curves. The quality of fit
will also be compared with the corresponding fit of of the Rindler-Grumiller metric [1863].

5.4.3 Fitting Velocity Rotation Curves
It is straightforward to show that the radial timelike geodesics in a background metric of the form Eq.
(5.1) may be written as

1
2

(︂
𝑑𝑟

𝑑𝜏

)︂2
+ 𝑉 eff = 𝑘2

2 , (5.52)
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Figure 5.1: The effective potential Eq. (5.55) that determines the velocity rotation curves for parameter
values 𝑙 = 10, 𝑀 = 2. The GR prediction (continous blue line) is obtained for 𝛼 = 0 while the upper
and lower red short-dashed lines correspond to the Rindler metric (𝛽 = 0) with 𝛼 > 0 and 𝛼 < 0
respectively. The upper and lower pink long-dashed lines correspond to the metric of the reconstructed
potential (𝛽 > 0) for 𝛼 > 0 and 𝛼 < 0 respectively. In the later cases the GR prediction is obtained for
large enough values of 𝑟.

where 𝑘 is a constant,

𝑉 eff = 𝑓(𝑟)
2

(︂
1 + 𝑙2

𝑟2

)︂
, (5.53)

is the effective potential and 𝑙 is the constant angular momentum per unit mass.
In the special case of the vacuum Schwarzschild-Rindler-deSitter metric function Eq. (5.45) the

effective potential reads

𝑉 eff = −𝐺𝑀

𝑟
+ 𝑙2

2𝑟2 − 𝐺𝑀𝑙2

𝑟3 − Λ𝑟2

2 + 𝛼𝑟

(︂
1 + 𝑙2

𝑟2

)︂
. (5.54)

In what follows we set Λ = 0 since the effects of the cosmological constant can be ignored on galactic
scales. For the metric function Eq. (5.51) emerging from the NFW reconstructed potential Eq. (5.48)
we have

𝑉 eff = −𝐺𝑀

𝑟
+ 𝑙2

2𝑟2 − 𝐺𝑀𝑙2

𝑟3 − 2𝛼
𝛽2𝑟

[︂
1 − 1

1 + 𝛽𝑟
− 𝑙𝑛(1 + 𝛽𝑟)

]︂(︂
1 + 𝑙2

𝑟2

)︂
, (5.55)

where we have dropped the constant terms on the RHS of Eqs. (5.54) and (5.55). A plot of this
effective potential for various values of parameters is shown in Fig. 5.1. The predicted rotation velocities
of test particles may be approximated as

𝜐2(𝑟) ≃ 𝑟

⃒⃒⃒⃒
𝜕𝑉 eff

𝜕𝑟

⃒⃒⃒⃒
𝑙=0

, (5.56)
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Rindler vs Reconstructed Potential Fit on S: 702916
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Figure 5.2: The best fit forms of the velocity profiles Eq. (5.57) (red dashed curve) and Eq. (5.58) (green
continuous curve) on the observed halo profiles (thick dots) of two typical galaxies (S:610359 left panel
and S:702916 right panel). The blue continuous shows the fit of GR without dark matter which is clearly
poor.

where we have set 𝑙 = 0 to avoid double counting of the angular momentum [1868]. Thus for the
Schwarzschild-Rindler metric in the dark matter halo we have [1863, 1880]2

𝜐2(𝑟) = 𝐺𝑀

𝑟
+ 𝛼𝑟 , (5.57)

where 𝑀 is the luminous mass in the galactic core. For the velocity profile corresponding to the NFW
reconstructed potential Eq. (5.55) we have

𝜐2(𝑟) = 𝐺𝑀

𝑟
+ 2𝛼
𝛽2𝑟

[︂
1 + 𝛽𝑟 − 1

1 + 𝛽𝑟
− 𝛽𝑟

(1 + 𝛽𝑟)2 − 𝑙𝑛(1 + 𝛽𝑟)
]︂
. (5.58)

The predicted rotation velocities Eqs. (5.57) and (5.58) can also be derived from the effective potentials
Eqs. (5.54) and (5.55) assuming circular motion. Setting

𝑑𝑉 eff

𝑑𝑟
= 0 , (5.59)

solving Eq. (5.59) for the angular momentum 𝑙 = 𝜐𝑟 and ignoring higher order terms. For example for
the Grumiller effective potential Eq. (5.54) we obtain

𝜐2(𝑟) ≃ 𝐺𝑀

𝑟
+ 𝛼𝑟 + 2𝐺𝑀𝛼+ 3𝐺2𝑀2

𝑟2 − 𝛼2𝑟2 , (5.60)

which reduces to Eq. (5.57) if we ignore higher order terms in 𝑀 and 𝛼.
The rotation curve is the sum of the following three terms expressed by

𝜐2(𝑟) = 𝜐2
𝐺(𝑟) + 𝜐2

𝑆(𝑟) + 𝜐2
𝐺𝑀 (𝑟) , (5.61)

where 𝜐2
𝐺(𝑟), 𝜐2

𝑆(𝑟) and 𝜐2
𝐺𝑀 (𝑟) are the different contributions in velocity of gas, stars and gravitational

model (Rindler-Grumiller or reconstructed potential) respectively. The term 𝜐2
𝐺𝑀 (𝑟) gives rise to the

velocity rotation curves of galaxies without incorporating dark matter halo. We assume that the density
(of gas and stars) drops to zero at 𝑟𝑚𝑖𝑛. Thus, in our analysis, we use data in the range 𝑟𝑚𝑖𝑛 < 𝑟 < 𝑟𝑚𝑎𝑥

and for a total mass 𝑀 we obtain the best fit forms of the velocity profiles corresponding the Rindler-
Grumiller and reconstructed geometric potential.

2For further developments of this velocity profile see Refs. [1881, 1882]
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Table 5.1: The best fit values of parameters and the corresponding value of the adjusted 𝑅2 of the velocity
profiles Eqs. (5.57) and (5.58) on the observed halo profiles of two typical galaxies S:610359 and S:702916
(rotation curve data obtained from Ref. [59]).

Grumiller-Rindler Potential Reconstructed Potential

Galaxy 𝛼 𝑀 𝑅2 𝛼 𝛽 𝑀 𝑅2

[×10−11 𝑚
𝑠2 ] [×1010𝑀⊙] [×10−9 𝑚

𝑠2 ] [×10−20𝑚−1] [×1010𝑀⊙]

𝑆 : 610359 7.90 ± 0.36 0.01 ± 0.02 0.959 −4.10 ± 0.16 3.17 ± 0.13 0.32 ± 0.02 0.983

𝑆 : 702916 4.64 ± 0.55 4.11 ± 0.47 0.923 −4.78 ± 0.38 1.79 ± 0.12 3.72 ± 0.27 0.998

In Fig. 5.2 we show the best fit forms of the velocity profiles Eqs. (5.57) (red dashed curve) and (5.58)
(green continuous curve) on the observed halo profiles (thick dots) of two typical galaxies (S:610359 left
panel and S:702916 right panel). Velocity rotation data were obtained from the ’S-sample’ of Ref. [59].
The S:610359 [1883] (also known as UGC 10359) has a typical rising velocity profile and is a SB(s)cdpec3

galaxy from Gassendi HAlpha survey of SPirals (GHASP) [1885]. The spiral galaxy S:702916 [1883] (also
known as UGS 2916) has a flat and slowly droping velocity profile and is a Sab4 galaxy from early type
galaxies survey [1886].

Clearly the velocity profile corresponding to the reconstructed geometric potential provides a much
better fit to the data for both observed velocity profiles and especially for the flat velocity profile. This
is demonstrated quantitatively by the adjusted 𝑅2 statistic [1887–1889] which measures the quality of
fit of a parametrization to a given set of data penalizing also for increased number of parameters. As
shown in Table 5.1, the value of the adjusted 𝑅2 is much closer to its optimal value 1 in the case of the
velocity profile corresponding the reconstructed geometric potential than the Grumiller Rindler potential
or the simple Newtonian potential without dark matter. In Table 5.1 we also show the best fit values
of parameters for each fitted velocity profile which in the case of Rindler potential agrees with previous
studies [1864, 1868, 1890, 1891]. Notice that the best fir value of 𝛼 for the reconstructed potential is
𝛼 < 0 with is consistent with Eq. (5.47) and the fact that 𝜌𝑁𝐹 𝑊 > 0.

5.5 Conclusions
In this Chapter we have used dimensional reduction of spherically symmetric gravity to construct a
modified gravity model whose vacuum spherically symmetric metric has the same gravitational effects as
the NFW dark matter density profile in GR. The model is a generalization of the Grumiller model whose
vacuum spherically symmetric metric includes a Rindler term in addition to the standard Schwarzschild
and cosmological constant terms. We have also shown that for any spherically symmetric perfect fluid
with proper equation of state (𝑤 = −1) there is a modified gravity model, defined by a geometric potential,

3A late-type barred peculiar spiral galaxy. It have well-developed, open, and knotty spiral arms with little or no bulge
and without rings structures (see Ref. [1884] for morphology types of galaxies)

4An intermediate-type unbarred spiral galaxy with tightly-wrapped spiral arms and a significant bulge (see Ref. [1884])
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whose spherically symmetric vacuum metric is the same as the GR metric in the presence of the given
fluid.

In particular we have shown that in order to reproduce the GR gravitational effects of the NFW
density profile in the vacuum, the reconstructed dimensionally reduced geometric potential is of the
form 𝑉 (Φ) = 1 + 4𝛼Φ/(1 + 𝛽Φ)2 − 3ΛΦ2 where 𝛼, 𝛽 are parameters and Φ(𝑟) is a field emerging from
dimensional reduction. In the limit 𝛽 → 0 this geometric potential reduces to the Grumiller potential
Eq. (5.44) [1863, 1864].

The reconstructed potential has the following interesting features:

• It leads to a vacuum metric that provides significantly better fits to the velocity rotation profiles
than the Grumiller linear potential term that leads to Rindler term in the vacuum metric.

• It leads to a vacuum metric that reduces to the GR vacuum on scales much larger than the 𝛽−1

or the galactic scales. Thus on cosmological scales it is consistent with ΛCDM . In contrast, the
Grumiller-Rindler term is comparable to the cosmological constant on cosmological scales thus
spoiling homogeneity and diverging from the standard ΛCDM cosmic accelerating expansion.

• Due to its non-polynomial form, it involves no IR curvature singularities while being distinct from
the Grumiller potential thus demonstrating that this potential is not the only potential free from
IR singularities.

The cosmological effects of the model considered could be examined under the assumption of the exis-
tence of a large number of homogeneously distributed isotropic centers leading to large scale homogeneity
in addition to isotropy around a single center (spherical symmetry). In such a physical setup, the geomet-
ric fluid density 𝜌𝑉 defined in Eq. (5.47) could be extended on cosmological scales as a homogeneous and
isotropic fluid by replacing 𝑟 with the scale factor 𝑎 over the Hubble parameter 𝐻0. Thus, on dimensional
grounds the corresponding homogeneous geometric fluid would have an energy density scaling as

𝜌𝑉 (𝑎) = − 4𝛼𝐻0

𝜅𝑎(1 + 𝛽𝑎/𝐻0)2 , (5.62)

where the Hubble parameter 𝐻0 has been introduced on dimensional grounds. The derivation of Eq.
(5.62) has been heuristic and based mainly on dimensional analysis. A proper derivation would involve
the detailed superposition of homogeneously distributed centers of isotropy and is beyond the goals of our
analysis. Nevertheless, the following comments can be made on this predicted geometric homogeneous
dark matter

• For 𝛽 = 0 the geometric fluid energy density reduces to the Rindler fluid whose energy density scales
like 1/𝑟 or 1/𝑎 in a cosmological setup. This scaling is distinct from the matter density (∼ 1/𝑎3),
the effects of spatial curvature (∼ 1/𝑎2) and the cosmological constant (constant effective density).
Such a physically motivated and simple term can be efficiently constrained using cosmological data
probing the evolution of the Hubble parameter 𝐻(𝑎) even though a homogeneous component of
ordinary dark matter would be required for a proper fit in addition to the cosmological constant.

• For 𝛽 ≫ 𝐻0 which is expected for a value of 𝛽 reconstructed from galactic rotation curves, the
geometric fluid density Eq. (5.62) scales as 1/𝑎3 ie as ordinary homogeneous dark matter. Thus
such a geometric fluid would not only provide better fits of galactic rotation curves but could
also provide the homogeneous dark matter on cosmological scales. Such a geometric dark matter
would have a predicted scaling signature of the form Eq. (5.62) leading to constraints on 𝛽 from
both galactic rotation curve data and cosmological data probing the cosmic expansion rate. The
consistency of these constraints could provide an efficient test for this class of models.

Other interesting extensions of our analysis include the following
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• The reconstruction of the geometric potential obtained from other special cases of spherically sym-
metric vacua. Such metrics could have oscillating components leading to oscillating terms in New-
ton’s law at sub-mm scales which appear to be mildly favored by some short range gravity experi-
ment data [170, 171].

• The use of solar system data, short range gravity experiments data or other velocity profile data to
impose constraints on the parameters 𝛼 and 𝛽 of the reconstructed potential Eq. (5.48).

• The generalization of the dimensionally reduced modified gravity model Eq. (5.22) in different
directions including a more general form of the nonminimal coupling (beyond 𝐹 (Φ) = Φ2), the
consideration of 𝑓(𝑅(2)) extensions of the dimensionally reduced model or the generalization of the
ansatz Φ = 𝑟 used for the derivation of the spherically symmetric vacuum metric.

In conclusion, dimensional reduction in the context of spherical symmetry offers an interesting point of
view for the modification of GR and can lead to a wide range of testable physically motivated models for
gravity.



Chapter 6

Observational Constraints on the GUP Pa-
rameter with Maximum Length Quantum
Mechanics

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [3].

In this chapter, we derive the generalized form of the primordial power spectrum of cosmological
perturbations generated during inflation due to the quantum fluctuations of scalar and tensor degrees
of freedom in the context of a generalization of quantum mechanics involving a maximum measurable
length scale.

A central issue of fundamental research is the unification of Quantum Theory (QT) and general
relativity (GR) in the framework of Quantum Gravity (QG). A critical scale in the context of this
unification is the Planck scale defined as 𝑙𝑝𝑙 =

√︁
ℏ𝐺
𝑐3 = 10−35 m (see Ref. [1892], for a review) which has

been shown to be the minimum measurable scale if both QT and GR are applicable. Indeed it may be
shown [1893] that the high energies required to probe scales smaller than the Planck scale would lead
to the formation of a black hole through the gravitational disturbances of spacetime structure which
would prohibit any measurement on smaller scales. The existence of such a minimum measurable length
would lead to a modification of the Heisenberg Uncertainty Principle [1144, 1145] (HUP) to the so-called
Generalized (Gravitational) Uncertainty Principle (GUP) (see Ref. [1171], for a review)

Δ𝑥Δ𝑝 ≥ ℏ
2 (1 + 𝛽Δ𝑝2) , (6.1)

where 𝛽 is the GUP parameter defined as 𝛽 = 𝛽0/𝑀𝑝𝑙𝑐
2 = 𝛽0𝑙

2
𝑝𝑙/ℏ2, 𝑀𝑝𝑙𝑐

2 = 1019 GeV, 𝑙𝑝𝑙 is the 4-
dimensional fundamental Planck scale and 𝛽0 is a dimensionless parameter expected to be of order unity.
Such a GUP is closely related to the concept of noncommutative geometry [1894] and has been extensively
investigated in Refs. [1146–1156, 1158–1161, 1163–1166, 1168]. In particular interest in a minimum
measurable length or equivalently in a ultraviolet cutoff has been motivated by studies of string theory
[1895–1901], loop quantum gravity [1902–1908], quantum geometry [1909], Doubly Special Relativity
(DSR) [1910–1915] and by black hole physics [1148, 1157, 1162, 1169] or even Gedanken experiments
[1916] and thermodynamic properties of gravity [1917].

Several phenomenological implications of minimal length theories and quantum gravity phenomenol-
ogy were investigated and a number of researchers have studied phenomenological aspects of GUP effects
in several contexts (e.g. in Refs. [1918, 1919] atomic physics experiments such as Lamb’s shift and
Landau levels have been considered and constraints on the minimum length scale parameter 𝛽 have been
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estimated ). In Refs. [1920–1924] a model that is consistent with string theory, black hole physics and
DSR is presented and discussed. This model of GUP predicts both a minimal observable length and a
maximal momentum simultaneously [1921, 1925].

6.1 Introduction
The existence of a minimum measurable length is closely related to the existence of the black hole
horizon which tends to form if length scales below the Planck scale are probed. Correspondingly, there
is a maximum measurable length associated with the cosmological particle horizon [1926, 1927] which
provides due to causality a maximum measurable length scale in the Universe. The particle horizon
corresponds to the length scale of the boundary between the observable and the unobservable regions of
the universe. This scale at any time defines the size of the observable universe. The physical distance to
this maximum observable scale at the cosmic time 𝑡 is given by e.g. [79, 1928]

𝑙𝑚𝑎𝑥(𝑡) = 𝑎(𝑡)
∫︁ 𝑡

0

𝑐 𝑑𝑡

𝑎(𝑡) , (6.2)

where 𝑎(𝑡) is the cosmic scale factor. For the best fit ΛCDM cosmic background at the present time 𝑡0
we have

𝑙𝑚𝑎𝑥(𝑡0) ≃ 14 Gpc ≃ 1026 m . (6.3)

This existence of such a maximum measurable length would lead to modified version of the GUP of
the form 1 [55]

Δ𝑥Δ𝑝 ≥ ℏ
2

1
1 − 𝛼Δ𝑥2 . (6.4)

As shown in Fig. 6.1, this GUP indicates the existence of maximum position uncertainty [55]

𝑙𝑚𝑎𝑥 ≡ Δ𝑥𝑚𝑎𝑥 = 𝛼−1/2 , (6.5)

due to the divergence of the RHS of Eq. (6.4). As shown in Fig. 6.1 the existence of a maximum length
scale is associated with the presence of a minimum momentum scale Δ𝑝𝑚𝑖𝑛.

The GUP (6.4) originates from a commutation relation of the form

[𝑥, 𝑝] = 𝑖ℏ
1

1 − 𝛼𝑥2 . (6.6)

It is straightforward to show (see in Appendix C) that this commutation relation leads to the GUP
(6.4) using the general uncertainty principle for the pair of non-commuting observables 𝑥, 𝑝

Δ𝑥Δ𝑝 ≥ ℏ
2 | ⟨[𝑥̂, 𝑝]⟩ | , (6.7)

with
Δ𝑥 ≡

√︂⟨
(𝑥̂− ⟨𝑥̂⟩)2

⟩
, (6.8)

Δ𝑝 ≡
√︂⟨

(𝑝− ⟨𝑝⟩)2
⟩
, (6.9)

where 𝑥̂, 𝑝 are the operator representations of the observables 𝑥, 𝑝.
1A perturbative version of this GUP was introduced in Ref. [1929] as Δ𝑥Δ𝑝 ≥ 1 + 𝛼 Δ𝑥2

𝐿2
*

(where 𝛼 is a constant of order
unity and 𝐿* is the characteristic, large length scale) and called extended uncertainty principle (EUP) by many authors
[1917, 1929–1936]. Here we keep the notation ’GUP’ instead of ’EUP’ for consistency with Ref. [55].
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Figure 6.1: The deformation of the HUP in accordance with Eq. (6.4) after rescaling to dimensionless
form using a characteristic length scale of the quantum system (from Ref. [55]).

The commutation relation (6.6) may be represented as shown in Appendix C by position and momen-
tum operators of the form

𝑝= 1
1 − 𝛼𝑥2

0
𝑝0 = (1 + 𝛼𝑥2

0 + 𝛼2𝑥4
0 + ...)𝑝0 , (6.10)

𝑥= 𝑥0 , (6.11)

where 𝑥0 and 𝑝0 are the usual position and momentum operators satisfying the Heisenberg commutation
relation [𝑥0, 𝑝0] = 𝑖ℏ.

The representation Eqs. (6.10), (6.11) may be used to solve the Schrodinger equation for simple
quantum systems to find the dependence of the energy spectrum on the maximum measurable scale 𝑙𝑚𝑎𝑥.
Such an analysis has indicated [55] that the current cosmic particle horizon is too large to lead to any
observable effects in present day quantum systems. This however is not necessarily the case in the Early
Universe when the particle horizon scale is much smaller and could leave an observable signature in the
quantum generation of the primordial fluctuations during inflation. Thus, in our analysis we wish to
address the following questions

• What is the deformation of the scale invariant spectrum of perturbations produced during inflation
due to the Heisenberg algebra deformation Eq. (6.6) corresponding to the existence of a maximum
measurable scale?

• What constraints can be imposed on the fundamental parameter 𝛼 = 𝑙−2
𝑚𝑎𝑥 from the observed power

spectrum of primordial fluctuations?

The structure of this Chapter is the following: In the next Section 6.2 we consider a simple harmonic
oscillator in the presence of a large maximum measurable scale and find the variance of the position as
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a function of the parameter 𝛼 and the corresponding variance in the context of the HUP (𝛼 = 0). In
Section 6.3 we generalize this analysis to the case of systems with infinite degrees of freedom (fields)
and derive the spectrum and the spectral index of tensor and scalar perturbations generated during
inflation as a function of the parameter 𝛼 and of the corresponding spectrum obtained in the context of
the HUP. In Section 6.4 we use the derived theoretical expression for the (running) spectral index along
with the corresponding observationally allowed range of the index as a function of the scale 𝑘 to derive
constraints on the fundamental parameter 𝛼 of the GUP. Finally in Section 6.5 we conclude and discuss
the implications and possible extensions of our analysis.

6.2 Toy Model: The position variance of the Harmonic Oscilla-
tor under GUP

In order to quantize the simple harmonic oscillator under the assumption of the GUP (6.4) we need to
generalize the expressions of the creation and annihilation operators 𝑎̂† and 𝑎̂ in terms of 𝑥, 𝑝 so that the
commutation relation [1937]

[𝑎̂, 𝑎̂†] = 1 , (6.12)

is retained while at the same time the GUP commutation relation (6.6) is also respected. Thus, in order
to satisfy these conditions, we generalize the analysis of Refs. [1938, 1939] which applies to the GUP
(6.1) and define

𝑎̂= 1√
2ℏ𝜔

(𝜔 [𝑥+ 𝑓(𝛼, 𝑥)] + 𝑖𝑝) , (6.13)

𝑎̂† = 1√
2ℏ𝜔

(𝜔 [𝑥+ 𝑓(𝛼, 𝑥)] − 𝑖𝑝) , (6.14)

where 𝑓(𝛼, 𝑥) is a function chosen so that the commutation relations (6.12) and (6.6) are respected.
It is straightforward to show that the following function satisfies the aforementioned conditions si-

multaneously

𝑓(𝛼, 𝑥) =
∞∑︁

𝑛=1

(−𝛼)𝑛

2𝑛+ 1𝑥
2𝑛+1 , (6.15)

while it reduces to 0 in the limit 𝛼 → 0 as it should.
Thus, we can rewrite Eqs.(6.13) and (6.14) as

𝑎̂ = 1√
2ℏ𝜔

(︂
𝜔

1√
𝛼
𝑎𝑟𝑐𝑡𝑎𝑛(

√
𝛼𝑥) + 𝑖𝑝

)︂
, (6.16)

𝑎̂† = 1√
2ℏ𝜔

(︂
𝜔

1√
𝛼
𝑎𝑟𝑐𝑡𝑎𝑛(

√
𝛼𝑥) − 𝑖𝑝

)︂
, (6.17)

and the 𝑝 and 𝑥 operators are

𝑝 = −𝑖
√︂

ℏ𝜔
2
(︀
𝑎̂− 𝑎̂†)︀ , (6.18)

𝑥 = 1√
𝛼
𝑡𝑎𝑛

(︃√︂
ℏ𝛼
2𝜔 (𝑎̂+ 𝑎̂†)

)︃
. (6.19)

Using 𝑡𝑎𝑛𝑥 = 𝑥+ 𝑥3

3 + 2𝑥5

15 + ..., we have

𝑥 = 𝑥0 + 𝛼𝑥3
0

3 + 2𝛼2𝑥5
0

15 + ... , (6.20)
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where

𝑥0 =
√︂

ℏ
2𝜔 (𝑎̂+ 𝑎̂†) , (6.21)

is the position operator in the case of the HUP (𝛼 = 0). Keeping the lower order terms in 𝛼 (assuming
𝛼ℏ
6𝜔 ≪ 1) we obtain

𝑥 = 𝑥0 + 𝛼𝑥3
0

3 ⇒ 𝑥 =
√︂

ℏ
2𝜔 (𝑎̂+ 𝑎̂†)

[︂
1 + 𝛼ℏ

6𝜔 (𝑎̂+ 𝑎̂†)2
]︂
. (6.22)

For 𝛼 = 0 we have
𝑥0 = 𝜐(𝜔, 𝑡)𝑎̃+ 𝜐*(𝜔, 𝑡)𝑎̃† , (6.23)

where

𝜐(𝜔, 𝑡) =
√︂

ℏ
2𝜔𝑒

−𝑖𝜔𝑡 , (6.24)

is the properly normalized solution of the classical evolution equation of the harmonic oscillator 𝑑2𝜐
𝑑𝑡2 +

𝜔2𝜐 = 0. Therefore the position operator may be expressed as

𝑥 =
(︀
𝜐𝑎̃+ 𝜐*𝑎̃†)︀ [︁1 + 𝛼

3 (𝜐𝑎̃+ 𝜐*𝑎̃†)2
]︁
. (6.25)

Thus the variance of the position in the ground state takes the form

⟨|𝑥|2⟩ ≡ ⟨0|𝑥†𝑥|0⟩ ⇒ ⟨|𝑥|2⟩ = |𝜐(𝜔, 𝑡)|2
[︀
1 + 2𝛼|𝜐(𝜔, 𝑡)|2

]︀
, (6.26)

which reduces to the familiar result for 𝛼 = 0 (see e.g. Refs. [77, 1940]).
In the next section we generalize the above analysis to the case of quantum field fluctuations involving

infinite degrees of freedom aiming to derive the perturbation power spectrum generated during inflation
in the context of the GUP.

6.3 Primordial spectra of cosmological fluctuations with GUP
According to the decomposition theorem [1941] the perturbations of each type evolve independently
(at the linear level) and we can treat tensor (T) and scalar (S) perturbations of the metric separately.
Therefore for spatially flat Friedmann-Robertson-Walker (FRW) background plus the perturbations we
can write

𝑑𝑠2
𝑇 = 𝑎2 [︀−𝑑𝜏2 + (𝛿𝑖𝑗 +𝐻𝑖𝑗)𝑑𝑥𝑖𝑑𝑥𝑗

]︀
, (6.27)

and in conformal Newtonian gauge [1383]

𝑑𝑠2
𝑆 = 𝑎2 [︀−(1 + 2Ψ)𝑑𝜏2 + 𝛿𝑖𝑗(1 + 2Φ)𝑑𝑥𝑖𝑑𝑥𝑗

]︀
, (6.28)

where 𝑎 is the scale factor, 𝜏 is the conformal time, Ψ corresponds to the gravitational potential of the
perturbations, Φ is the perturbation of the spatial curvature2 and 𝐻𝑖𝑗 is the tensor perturbation which
has the form 3

[𝐻𝑖𝑗 ] =

⎡⎣ℎ+ ℎ× 0
ℎ× −ℎ+ 0
0 0 0

⎤⎦ . (6.29)

The classical evolution equations for the tensor mode perturbations ℎ𝑇 (where 𝑇 = +,× for two polariza-
tion states [1943]) of the FRW metric during inflation in conformal time are obtained from the linearized
Einstein equations and may be written as [1944]

ℎ′′
𝑇 + 2𝑎

′

𝑎
ℎ′

𝑇 + 𝑘2ℎ𝑇 = 0 , (6.30)

2In the absence of anisotropic stress (Π = 0) we have Ψ = −Φ [1942].
3It has this form in a coordinate system where wavevector k points along the z-axis.

118



Chapter 6. Observational Constraints on the GUP Parameter with Maximum Length Quantum
Mechanics

where primes denote derivatives with respect to 𝜏 . This becomes a simple harmonic oscillator equation
by defining

ℎ̃𝑇 ≡ 𝑎ℎ𝑇√
16𝜋𝐺

, (6.31)

and Eq. (6.30) takes the form
ℎ̃′′

𝑇 + 𝜔2ℎ̃𝑇 = 0 , (6.32)
where

𝜔2 = 𝑘2 − 𝑎′′

𝑎
. (6.33)

During slow roll inflation when the Hubble rate 𝐻 is nearly constant [1945], the conformal time is
[1940, 1946]

𝜏 ≃ −1
𝑎𝐻

. (6.34)

Thus we obtain
𝜔2 = 𝑘2 − 2

𝜏2 . (6.35)

We now quantize the tensor field fluctuations by promoting them to operators and imposing a generalized
field commutation (GFC) relation [1947, 1948] corresponding to Eq. (6.6). This GFC takes the form
(ℏ = 1)

[ℎ̃𝑇 (k), 𝜋ℎ̃𝑇
(k′)] = 𝑖𝛿(k − k′) 1

1 − 𝜇ℎ̃2
𝑇 (k)

, (6.36)

where 𝜋ℎ̃𝑇
is the conjugate momentum to ℎ̃𝑇 which is given by

𝜋ℎ̃𝑇
= ℎ̃′

𝑇 − 𝑎′

𝑎
ℎ̃𝑇 , (6.37)

and 𝜇 is a GFC parameter
𝜇 ≃ 𝛼2 = 𝑙−4

𝑚𝑎𝑥 , (6.38)
where 𝛼 is the parameter of the GUP (6.4). Thus we have an infinite number of decoupled harmonic
oscillators corresponding to Eq. (6.32) which may be quantized in accordance with the GFC (6.36). Using
the results of the previous section we connect the field normal modes with the creation and annihilation
operators which satisfy the commutation relation [𝑎̂k, 𝑎̂

†
k′ ] = 𝛿3(k − k′), as

ℎ̃𝑇 (k) = 1
√
𝜇
𝑡𝑎𝑛

(︂√︂
𝜇

2𝜔 (𝑎̂k + 𝑎̂†
k)
)︂
, (6.39)

𝜋ℎ̃𝑇
(k) = −𝑖

√︂
𝜔

2

(︁
𝑎̂k − 𝑎̂†

k

)︁
, (6.40)

and obtain the variance of the perturbations as

⟨ℎ†
𝑇 (k, 𝜏)ℎ𝑇 (k′, 𝜏)⟩ = 16𝜋𝐺

𝑎2 |𝜐(k, 𝜏)|2
[︀
1 + 2𝜇̄|𝜐(k, 𝜏)|2

]︀
(2𝜋)3𝛿3(k − k′) ≡ (2𝜋)3𝑃ℎ(𝑘)𝛿3(k − k′) , (6.41)

where 𝑃ℎ is the power spectrum of the primordial tensor perturbations of the metric, the Dirac delta
function enforces the independence of the different modes (ℎ(k, 𝜏) is uncorrelated with ℎ(k′, 𝜏) if k ̸= k′)
and

𝜇̄ = 𝜇𝑉* . (6.42)
Here the volume scale 𝑉* = 𝛿3(0) ≃ 𝑙3𝑚𝑎𝑥 is an infrared regulator [1949] while 𝜐 satisfies the Mukhanov-
Sasaki equation [1950–1952]

𝜐′′(𝑘, 𝜏) + (𝑘2 − 𝑎′′

𝑎
)𝜐(𝑘, 𝜏) = 0 . (6.43)
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During slow-roll inflation with initial condition 𝜐(𝑘, 𝜏) = 1√
2𝑘
𝑒−𝑖𝑘𝜏 and by virtue of Eq. (6.34) (as in

spatially flat de Sitter background) we obtain the Bunch-Davies solution of Eq. (6.43) [1940, 1953–1955]

𝜐(𝑘, 𝜏) = 𝑒−𝑖𝑘𝜏

√
2𝑘

(︂
1 − 𝑖

𝑘𝜏

)︂
. (6.44)

Using Eq. (6.41) we can write the primordial power spectrum for tensor modes as

𝑃ℎ(𝑘) = 𝑃
(0)
ℎ (𝑘)

[︂
1 + 𝜇̄𝑎2

8𝜋𝐺𝑃
(0)
ℎ (𝑘)

]︂
, (6.45)

where
𝑃

(0)
ℎ (𝑘) = 16𝜋𝐺

𝑎2 |𝜐(𝑘, 𝜏)|2 . (6.46)

Once 𝑘|𝜏 | < 1 , the mode leaves the horizon, after which ℎ remains constant. Thus, using Eqs. (6.44)
and (6.46) we obtain

𝑃
(0)
ℎ (𝑘) = 16𝜋𝐺

𝑎2
1

2𝑘3𝜏2 = 8𝜋𝐺𝐻2

𝑘3 , (6.47)

where the equality on the second line holds because we have assumed that 𝐻 is constant and 𝜏 = − 1
𝑎𝐻

4.
In a similar manner we may investigate scalar perturbations induced by quantum fluctuations of the

inflaton scalar field 𝜑 [1940, 1956, 1957] of the form

𝜑(x, 𝑡) = 𝜑(0)(𝑡) + 𝛿𝜑(x, 𝑡) , (6.48)

where 𝜑(0) is the zero-order part and 𝛿𝜑 is the first-order perturbation.
The fluctuations 𝛿𝜑 of the scalar field driving inflation evolve in conformal time 𝜏 according to the

equation e.g. [1928]

𝛿𝜑′′ + 2𝑎
′

𝑎
𝛿𝜑′ + 𝑘2𝛿𝜑 = 0 . (6.49)

Using the definition
𝜙 = 𝑎𝛿𝜑 , (6.50)

Eq. (6.49) becomes
𝜙′′ + 𝜔2𝜙 = 0 , (6.51)

with 𝜔2 = 𝑘2 − 𝑎′′

𝑎 .
In the context of the maximal measurable length GUP as applied to the case of the inflaton fluctua-

tions, the field commutation relation gets generalized as

[𝜙(k), 𝜋𝜙(k′)] = 𝑖𝛿(k − k′) 1
1 − 𝜇𝜙2(k) , (6.52)

where 𝜋𝜙 is the conjugate momentum to 𝜙 which is given by

𝜋𝜙 = 𝜙′ − 𝑎′

𝑎
𝜙 . (6.53)

Since Eq. (6.49) is identical to Eq. (6.30) we can use the result of Eq. (6.45) without the factor 16𝜋𝐺
in order to turn the dimensionless ℎ into a field 𝛿𝜑 with dimensions of mass

𝑃𝛿𝜑(𝑘) = 𝑃
(0)
𝛿𝜑 (𝑘)

[︁
1 + 2𝜇̄𝑎2𝑃

(0)
𝛿𝜑 (𝑘)

]︁
, (6.54)

where
𝑃

(0)
𝛿𝜑 (𝑘) = 𝐻2

2𝑘3 . (6.55)

4We evaluate 𝐻 at the time when the mode leaves the horizon.
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In the case 𝜇̄ = 0 Eqs. (6.45) and (6.54) reduce to the familiar results of HUP [1383].
The perturbation from the scalar field driving inflation 𝛿𝜑 gets transferred to the gravitational po-

tential Φ. The post inflation power spectrum of Φ is related to the horizon-crossing power spectrum of
𝛿𝜑 via [77]

𝑃Φ = 16𝜋𝐺
9𝜖 𝑃𝛿𝜑 , (6.56)

where 𝜖 is the Hubble slow-roll parameter, defined as

𝜖 ≡ 𝑑

𝑑𝑡

(︂
1
𝐻

)︂
. (6.57)

We note that the Hubble slow-roll parameter 𝜖 is equal to the first potential slow-roll parameter 𝜖𝑉 , to
leading order in the slow-roll approximation [1940, 1946, 1958–1960]

𝜖 ≃ 𝜖𝑉 ≡ 1
16𝜋𝐺 (𝑉

′

𝑉
)2 , (6.58)

where 𝑉 ′ is defined as the derivative of the potential 𝑉 with respect to the field 𝜑(0).
In the case of single-field slow-roll models of inflation for modes which are outside the horizon (𝑘|𝜏 | ≪

1) at the end of inflation, the primordial spectra of scalar and tensor perturbations do not depend on
time5 and it is conventional to write [1946]

𝑃𝑆(𝑘) ≡ 𝑘3𝑃Φ(𝑘) ≡ 𝐴𝑆𝑘
𝑛𝑠−1 , (6.59)

𝑃𝑇 (𝑘) ≡ 𝑘3𝑃ℎ(𝑘) ≡ 𝐴𝑇 𝑘
𝑛𝑇 , (6.60)

where 𝐴𝑆(𝐴𝑇 ) is the scalar (tensor) amplitude and 𝑛𝑠(𝑛𝑇 ) is the scalar (tensor) spectral index. The
special case with 𝑛𝑠 = 1 (𝑛𝑇 = 0) results in the scale-invariant spectrum.

From Eqs. (6.45) and (6.60) we obtain

𝑃𝑇 (𝑘) = 𝑃
(0)
𝑇 (𝑘)

[︂
1 + 𝜇̄𝑎2

8𝜋𝐺𝑘3𝑃
(0)
𝑇 (𝑘)

]︂
, (6.61)

where (for 𝑘|𝜏 | ≪ 1 )
𝑃

(0)
𝑇 (𝑘) = 8𝜋𝐺

𝑎2𝜏2 = 8𝜋𝐺𝐻2 . (6.62)

It is straightforward to show at the horizon crossing time (𝑘 = 𝑎𝐻)

𝑃𝑇 (𝑘) = 𝑃
(0)
𝑇 (𝑘)

(︂
1 + 𝜇̄

𝑘

)︂
. (6.63)

In Eq. (6.60) the tensor spectral index is defined as

𝑛𝑇 ≡ 𝑑 ln𝑃𝑇

𝑑 ln 𝑘 . (6.64)

Also by virtue of Eq. (6.57) we have that the logarithmic derivative of Hubble rate at horizon crossing is

𝑑 ln𝐻
𝑑 ln 𝑘 = −𝜖 . (6.65)

Therefore using Eqs. (6.62), (6.63) and (6.64) we obtain that the tensor spectral index runs as

𝑛𝑇 = −2𝜖− 𝜇̄

𝑘
. (6.66)

5We assume that non-adiabatic pressure terms are negligible.
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Similarly, from Eq. (6.54) and using 𝑃𝑆 = 𝑘3 16𝜋𝐺
9𝜖 𝑃𝛿𝜑 we obtain at horizon crossing time (𝑘 = 𝑎𝐻)

𝑃𝑆(𝑘) = 𝑃
(0)
𝑆 (𝑘)

[︂
1 + 9𝜇̄𝜖

8𝜋𝐺𝐻2𝑘
𝑃

(0)
𝑆 (𝑘)

]︂
, (6.67)

where
𝑃

(0)
𝑆 (𝑘) = 8𝜋𝐺𝐻2

9𝜖 . (6.68)

It is straightforward to show that the

𝑃𝑆(𝑘) = 𝑃
(0)
𝑆 (𝑘)

(︂
1 + 𝜇̄

𝑘

)︂
. (6.69)

Notice that Eqs. (6.67) and (6.68) have a generic form which could have been guessed even on the basis of
dimensional analysis. However, here we have demonstrated in detail that these equations are not simply
well motivated parametrizations based on dimensional analysis. Instead they constitute the unique and
generic prediction of the inflationary power spectrum of fluctuations generated in the context of the GUP
Eq. (6.52) as derived in the context of our analysis. Thus there is no room to modify Eq. (6.67) without
violating the physical principle corresponding to the GUP (6.52).

In Eq. (6.59) the scalar spectral index is defined as

𝑛𝑠 − 1 ≡ 𝑑 ln𝑃Φ

𝑑 ln 𝑘 . (6.70)

Now using the Eq. (6.58) and the Hubble slow-roll parameter [1960]

𝛿 ≡ 1
𝐻

𝑑2𝜑(0)/𝑑𝑡2

𝑑𝜑(0)/𝑑𝑡
, (6.71)

we have that the logarithmic derivative of the slow-roll parameter 𝜖 is

𝑑 ln 𝜖
𝑑 ln 𝑘 = 2(𝜖+ 𝛿) . (6.72)

Therefore using Eqs. (6.68), (6.69) and (6.70) we obtain that the scalar spectral index runs as

𝑛𝑠 = 1 − 4𝜖− 2𝛿 − 𝜇̄

𝑘
. (6.73)

Alternatively using the the second potential slow-roll parameter 𝜂 ≡ 1
8𝜋𝐺

𝑉 ′′

𝑉 and the relation 𝛿 = 𝜖−𝜂6

[1946], we obtain

𝑛𝑠 = 1 − 6𝜖+ 2𝜂 − 𝜇̄

𝑘
. (6.74)

In the next subsection we use observational scalar spectral index data to obtain bounds on 𝜇̄.

6.4 Observational Constraints
The predicted form of the running spectral index Eq. (6.74) reduces to the standard form [1945, 1946] for
the HUP (𝜇̄ = 0) and may be used along with observational constraints of the spectral index to impose
constraints on the GFC parameter 𝜇̄.

The parameters that can lead to deviations from scale invariance of the spectral index are the GFC
parameter 𝜇 and the slow-roll parameter 𝜆 defined as

6The second slow-roll parameter 𝛿 and the second potential slow-roll parameter 𝜂 are sometimes defined as 𝜂 and 𝜂𝑉

respectively, so that the relation has the form 𝜂 = 𝜖𝑉 − 𝜂𝑉 .
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HUP vs GUP best fit on the observed data
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Figure 6.2: The best fit forms of the scalar spectral index Eq. (6.76) (blue curve for HUP and red
curve for GFC Eq. (6.52)) on the observed data (thick dots). The green and brown continuous curves
correspond to −1𝜎 and +1𝜎 deviation of the parameter 𝜇̄ respectively. The light green and the orange
dashed curves correspond to observationally allowed range for the spectral index 𝑛𝑆 at approximately 2𝜎
level.

𝜆 = 6𝜖− 2𝜂 . (6.75)

Thus using Eq. (6.74), the scalar spectral index takes the form

𝑛𝑠 = 1 − 𝜆− 𝜇̄

𝑘
. (6.76)

In order to impose constraints on the parameters 𝜆, 𝜇̄ we use constraints on the scalar spectral index
of Ref. [60] which are based on the angular power spectrum data of the 5 year Wilkinson Microwave
Anisotropy Probe (WMAP5) Cosmic Microwave Background (CMB) temperature and polarization, the
Large Scale Structure (LSS) data of the Sloan Digital Sky Survey (SDSS) data release 7 (DR7) Luminous
Red Galaxy (LRG) power spectrum, and the Lyman-alpha forest (Lya) power spectrum constraints. The
allowed range on 𝑛𝑠 is shown in Fig. 6.2.

Expressing this range as a set of 𝑁 = 60 datapoints leads to constraints on the parameters 𝜆, 𝜇̄
through the maximum likelihood method [1961]. As a first step for the construction of 𝜒2, we consider
the vector [1962]

𝑉 𝑖(𝑘𝑖, 𝜆, 𝜇̄) ≡ 𝑛𝑜𝑏𝑠
𝑠,𝑖 (𝑘𝑖) − 𝑛𝑡ℎ

𝑠,𝑖(𝑘𝑖, 𝜆, 𝜇̄) , (6.77)

where 𝑛𝑜𝑏𝑠
𝑠,𝑖 (𝑘𝑖) and 𝑛𝑡ℎ

𝑠,𝑖(𝑘𝑖, 𝜆, 𝜇̄) are the observational and the theoretical spectral index at wavenumber
𝑘𝑖 respectively ( 𝑖 = 1, ..., 𝑁 with 𝑁 corresponds to the number of datapoints). Then we obtain 𝜒2 as

𝜒2 = 𝑉 𝑖𝐹𝑖𝑗𝑉
𝑗 , (6.78)

where 𝐹𝑖𝑗 is the Fisher matrix [1963] (the inverse of the covariance matrix 𝐶𝑖𝑗 of the data).
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Best fit for full data
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Best fit for small scales (k>0.015 h/Mpc)
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Figure 6.3: The 1𝜎−3𝜎 contours in the (𝜆, 𝜇̄) parametric space. The contours describe the corresponding
confidence regions obtained from the full data set (left panel), large scales (𝑘 < 0.015 ℎ/Mpc) data (middle
panel), and small scales (𝑘 > 0.015 ℎ/Mpc) data (right panel). The red and green points correspond to
the HUP and GUP best fits respectively.

The 𝑁 ×𝑁 covariance matrix is assumed to be of the form

[𝐶𝑖𝑗 ] =

⎡⎣𝜎2
1 0 0 · · ·

0 𝜎2
2 0 · · ·

0 0 · · · 𝜎2
𝑁

⎤⎦ , (6.79)

where 𝜎𝑖 denotes the 1𝜎 error of data point 𝑖.
The 68.3% (1𝜎), 95.4% (2𝜎) and 99.7% (3𝜎) confidence contours in the 𝜆 and 𝜇̄ parametric space are

shown in Fig. 6.3. The contours correspond to confidence regions obtained from the full data set (left
panel), the large scales (𝑘 < 0.015 ℎ/Mpc) data (middle panel), and the small scales (𝑘 > 0.015 ℎ/Mpc)
data (right panel). The 1𝜎-3𝜎 contours for parameters 𝜆 and 𝜇̄ correspond to the curves 𝜒2(𝜆, 𝜇̄) =
𝜒2

𝑚𝑖𝑛 + 2.3, 𝜒2(𝜆, 𝜇̄) = 𝜒2
𝑚𝑖𝑛 + 6.17 and 𝜒2(𝜆, 𝜇̄) = 𝜒2

𝑚𝑖𝑛 + 9.21 respectively. Notice (in Fig. 6.3) that the
large scales are most efficient in constraining the GFC parameter 𝜇̄. The largest scales that correspond
to small 𝑘 give the largest value for the correction 𝜇̄/𝑘 of the power spectrum and the spectral index
Eq. (6.76). Thus it is these scales that are more sensitive to the correction and lead to the strongest
constraints as shown in Fig. 6.3.

In Table 6.1 we show the best fit values of parameters 𝜆 and 𝜇̄ with the corresponding 1𝜎 standard
deviations. In the case of HUP (𝜇̄ = 0) the result agrees with the current best fit values of the scalar
spectral index from Planck which indicate that 𝜆 ≃ 0.04 [14] .

Using Eq. (6.38) and the 1𝜎 constraint on the GFC parameter 𝜇̄ ≲ 10−5ℎ/Mpc we can obtain the single
GUP free parameter as

𝛼 = 𝜇̄2 ≲ 10−54 m−2 , (6.80)
and the corresponding maximum measurable scale as

𝑙𝑚𝑎𝑥 = 𝜇̄−1 ≳ 1027 m . (6.81)

This result is one order of magnitude larger than the present day particle horizon (𝑙𝑚𝑎𝑥(𝑡0) ≃ 1026 m)
given in Eq. (6.3). However, at about 2𝜎 level the physically anticipated maximum measurable scale
(the particle horizon scale) is included in the observationally allowed range of the maximum measurable
scales. Thus, the emergence of the parameter 𝜇 in Eqs. (6.36) and (6.52) as a consequence of a maximum
measurable length associated with the cosmological particle horizon remains an observationally viable
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Table 6.1: The best fit values of parameters 𝜆 and 𝜇̄ with the corresponding 1𝜎 standard deviations for the fitted
spectral index on the observed data [60].

GFC

Parameter Full Large Scales Small Scales
Data (1𝜎) Data (1𝜎) Data (1𝜎)

𝜇̄ 0.9 ± 7.6 2.1 ± 8.1 −149 ± 535
[×10−6ℎ/Mpc] [×10−6ℎ/Mpc] [×10−6ℎ/Mpc]

𝜆 0.042 ± 0.0067 0.039 ± 0.0095 0.048 ± 0.0146

hypothesis. The parameter 𝜇̄ is a fundamental parameter connected to the GUP (6.52) and it is not
necessarily connected with the detailed physics of inflation. Thus our analysis can not directly impose
constraints on models of inflation even though there may be an indirect connection of the present day
value of 𝑙𝑚𝑎𝑥 with the scale of inflation. Such a connection would require a time dependent form to 𝑙𝑚𝑎𝑥

and is beyond the scope of the present analysis.

6.5 Conclusions
In this Chapter we have derived the generalized form of the primordial power spectrum of cosmological
perturbations generated during inflation due to the quantum fluctuations of scalar and tensor degrees of
freedom in the context of a generalization of quantum mechanics involving a maximum measurable length
scale. The existence of such a scale is motivated by the existence of the particle horizon in cosmology and
would lead to a generalization of the uncertainty principle (GUP) to the form Δ𝑥Δ𝑝 ≥ ℏ

2
1

1−𝛼Δ𝑥2 , which
implies the existence of a maximum position and a minimum momentum uncertainty (infrared cutoff) [55].
The GUP implies a generalization of the commutation relation between conjugate operators including
fields and their conjugate momenta. For example we showed that the generalized field commutation
(GFC) relation between a scalar field and its conjugate momentum [𝜙(k), 𝜋𝜙(k′)] = 𝑖𝛿(k − k′) 1

1−𝜇𝜙2(k)
which is implied by the GUP leads to a modified primordial spectrum of scalar perturbation are 𝑃𝑆(𝑘) =
𝑃

(0)
𝑆 (𝑘)

(︀
1 + 𝜇̄

𝑘

)︀
with a running spectral index of the form 𝑛𝑠 = 1 − 𝜆− 𝜇̄

𝑘 with 𝜆 = 6𝜖− 2𝜂.
Using cosmological constraints of the scalar perturbations spectral index as a function of the

scale 𝑘 [1962] we imposed constraints on the parameter of the GFC 𝜇̄ ≃ 𝑙−1
𝑚𝑎𝑥. We found that

𝜇̄ = (0.9 ± 7.6) · 10−6ℎ/Mpc at the 1𝜎 level which corresponds to an upper bound scale 𝑙𝑚𝑎𝑥 larger than
the present horizon scale. At 2𝜎 level we find that the observationally allowed range of 𝑙𝑚𝑎𝑥 includes the
current cosmological horizon scale 𝑙𝑚𝑎𝑥 ≃ 1026 m. Thus at 2𝜎 level, the derived observational constraints
on 𝑙𝑚𝑎𝑥 are consistent with the physically anticipated maximum measurable scale which is the current
cosmological particle horizon and are much more powerful than the corresponding constraints obtained
using laboratory data measuring the energy spectrum of simple quantum systems obtained in Ref. [55].



Chapter 7

Tensions and Constraints on Modified Grav-
ity Parameters from the 𝐸𝐺 statistic and RSD
data and Implications for Weakening Gravity

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [4].

In this chapter, we present phenomenologically motivated parametrizations for the effective
Newton’s constant parameter and the light deflection parameter and describe how we use them in
order to probe possible deviations from GR on cosmological scales using compilations of 𝑓𝜎8 and 𝐸𝐺 data.

A observational puzzle for ΛCDM involves persisting indications from observational probes measuring
the growth of matter perturbations that the observed growth is weaker than the growth predicted by the
standard Planck/ΛCDM parameter values (see Section 3.1). Modified gravity (MG) models constitute a
prime theoretical candidate to explain this tension. The combination of cosmological observational probes
is a powerful tool for the identification of signatures of MG [144, 1964–1969]. Such observational probes
may be divided in two classes: geometric and dynamical (or structure formation) probes [1850, 1970–
1972]. Geometric observations measure cosmological distances using standard candles (e.g. Type Ia
supernovae) and standard rulers (e.g. the horizon at the time of recombination probed through Baryon
Acoustic Oscillations) and thus probe directly the cosmic metric, independent of the underlying theory
of gravity (see Section 2.2). Dynamical observations probe the growth rate of cosmological perturbations
and thus the gravitational laws and the consistency of GR with data provided the background geometry
is known.

Dynamical probes include cluster counts (CC) [1190, 1191, 1972, 1973], weak lensing (WL) [144,
550, 1791–1793, 1797, 1974, 1975] and redshift-space distortions (RSD) [67, 147, 148, 1976, 1977] (see
Subsection 3.1.1). These probes are consistent with each other pointing either to a lower value of the
matter density parameter Ω0𝑚 in the context of GR or to weaker gravitational growth power than the
growth indicated by GR in the context of a Planck18/ΛCDM background geometry at about 2 − 3𝜎 level
[67, 147, 148]. Such weak growth may be quantified by the parameter 𝜎8 which is the matter density
rms fluctuations within spheres of radius 8ℎ−1𝑀𝑝𝑐 and is determined by the amplitude of the primordial
fluctuations power spectrum and by the growth rate of cosmological fluctuation.

Various possible mechanisms have been proposed to slow down growth at low redshifts and thus
reduce the above tension (see e.g. Ref. [1978] and Subsection 3.1.2). Such mechanisms may be divided in
two categories: non-gravitational and gravitational. The former includes the effects of interacting dark
energy models [792, 837, 839, 1979], dynamical dark energy models [1358, 1360], running vacuum models
[687, 688] and the effects of massive neutrinos [1369]. The latter includes the effects of MG theories with
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Table 7.1: Planck18/ΛCDM parameters values [14] based on TT,TE,EE+lowE+lensing likelihoods.

Parameter Planck18/ΛCDM

Ω𝑏ℎ
2 0.02237 ± 0.00015

Ω𝑐ℎ
2 0.1200 ± 0.0012

𝑛𝑆 0.9649 ± 0.0042
𝐻0 [𝑘𝑚𝑠−1𝑀𝑝𝑐−1] 67.36 ± 0.54

Ω0𝑚 0.3153 ± 0.0073
𝑤 −1
𝜎8 0.8111 ± 0.0060

a reduced (compared to GR) evolving effective Newton’s constant 𝐺eff at low redshifts [67, 148].
The effects of MG [65, 111, 1305, 1849, 1856, 1980–1984] models are indistinguishable from GR at the

geometric cosmological background level [926, 1970, 1985]. Signatures of MG can only be obtained by
investigating the dynamics of cosmological perturbations [1339, 1986] using specific statistics obtained
through dynamical probe observables such as the two-point correlation and power spectrum of the
galaxy distribution, the RSD and WL.

7.1 Introduction
A useful bias free statistic is the 𝑓𝜎8 product of the rate of growth of matter density perturbations 𝑓
times 𝜎8 discussed in more detail in what follows. An alternative observable statistic is the 𝐸𝐺 which was
constructed to be independent of both the clustering bias factor 𝑏 and the parameter 𝜎8 on linear scales.
This statistic was proposed in 2007 [1987] and thereafter has been used several times to test MG theories
[1988, 1989]. The expectation value of 𝐸𝐺 is equal to the ratio of the Laplacian of the sum of the Bardeen
potentials [1382] Ψ (the Newtonian potential) and Φ (the spatial curvature potential) ∇2(Ψ + Φ) over
the peculiar velocity divergence 𝜃 ≡ ∇ · 𝜐⃗

𝐻(𝑧) (where 𝜐⃗ is the peculiar velocity and 𝐻(𝑧) is the Hubble
parameter in terms of the redshift 𝑧).

The 𝐸𝐺 statistic has been proposed as a model independent test of any MG theory [1990] and is
constructed from three different probes of large scale structure (LSS): the galaxy-galaxy lensing (GGL),
the galaxy clustering and the galaxy velocity field which leads to galaxy redshift distortions. Alternatively,
𝐸𝐺 may be constructed from galaxy-CMB lensing [1520] instead of galaxy-galaxy lensing as a more robust
tracer of the lensing field at higher redshifts [1991, 1992].

The first probe, the GGL (a special type of WL), is the slight distortion of shapes of source galaxies
in the background of a lens galaxy, which arises from the gravitational deflection of light due to the
gravitational potential of the lens galaxy along the line of sight (see for example [1226, 1227, 1993, 1994]).
This WL probe is sensitive to ∇2(Ψ + Φ), since relativistic particles collect equal contributions from the
two Bardeen potentials which appear in the scalar perturbed FLRW metric in the Newtonian gauge Eq.
(3.9 ) [582, 1383, 1384].

The second probe, the galaxy clustering arises from the gravitational attraction of matter and is
sensitive only to the potential Ψ. Similarly, the third probe, the galaxy velocity field, is quantified by
measuring RSD [355, 1297, 1299, 1810] (an illusory anisotropy that distorts the distribution of galaxies
in redshift space generated by their peculiar motions falling towards overdense regions). This important
probe of LSS is sensitive to the rate of growth of matter density perturbations 𝑓 which depends on the
theory of gravity and provides measurements of 𝑓𝜎8 that depends on the potential Ψ.

In most MG theories the potentials Φ and Ψ obey generalized Poisson equations like the GR Newto-
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nian potential where the MG effects are encoded in generalized space-time dependent effective Newton
constants. These generalized Newton constants for the potential Ψ and for the lensing combination Ψ+Φ
are usually described by two parameters: the effective Newton’s constant parameter 𝜇𝐺 and the light
deflection parameter Σ𝐺. In the modified Poisson equations [1995] the 𝜇𝐺 and Σ𝐺 are connected with
the potentials Ψ and Ψ + Φ respectively. In GR the value of 𝜇𝐺 and Σ𝐺 coincides with unity while in a
MG model 𝜇𝐺 and Σ𝐺 can be in general functions of both time and scale [1964, 1996]. Using 𝑓𝜎8 and 𝐸𝐺

datasets constraints can be imposed on the parameters 𝜇𝐺 and Σ𝐺 [76, 1968, 1997–2001]). Such analyses
have revealed various levels of tension of the best fit forms of 𝜇𝐺 and Σ𝐺 with the GR prediction of unity
showing hints that these parameters may be less than unity implying weaker growth of perturbations
than that predicted in GR. The goal of our analysis is to extend these studies and use an updated data
compilation for both the 𝑓𝜎8 and 𝐸𝐺 statistics to identify the current level of tension with GR implied
by these data compilations.

In particular, we address the following questions:

• What are efficient phenomenological redshift dependent parametrizations of the generalized normal-
ized Newton constants 𝜇𝐺(𝑧) and Σ𝐺(𝑧) that are consistent with solar system and nucleosynthesis
constraints that indicate that GR is restored at high 𝑧 and at the present time in the solar system?

• What are the constraints imposed by the 𝐸𝐺 and 𝑓𝜎8 updated data compilations on the parameters
of the above parametrizations and do these constraints amplify the hints for weakening gravity at
low 𝑧 implied by the 𝑓𝜎8 data alone as indicated by previous studies?

The plan of this Chapter is the following: In the next Section 7.2 we present a brief review of the
theoretical expression for 𝐸𝐺. We also present phenomenologically motivated parametrizations for 𝜇𝐺

and Σ𝐺 and describe how we use them in order to probe possible deviations from GR on cosmological
scales. In Section 7.3 we use compilations of 𝑓𝜎8 and 𝐸𝐺 data along with the theoretical expressions
for 𝑓𝜎8 and 𝐸𝐺 which involve 𝜇𝐺 and Σ𝐺 to derive constraints on these parameters and to identify
the tension level between the Planck/ΛCDM parameter values favoured by Planck 2018 [14] shown in
Table 7.1 and the corresponding parameter values favored by the two datasets. Finally in Section 7.4 we
conclude and discuss the implications and possible extensions of our analysis.

7.2 Theoretical background

7.2.1 𝐸𝐺 statistic
The 𝐸𝐺 statistic [1987, 1990] is designed as a probe of the ratio of the Bardeen potentials of the perturbed
FLRW metric in such a way as to be independent of the effects of galaxy bias at linear order. It is defined
as the ratio of the cross correlation power spectrum 𝑃𝑔∇2(Φ+Ψ) between lensing maps (cosmic shear or
CMB) and galaxy positions, over the the cross-correlation power spectrum 𝑃𝑔𝜃 between galaxies and
velocity divergence field 𝜃

𝐸𝐺 ≡
𝑃𝑔∇2(Φ+Ψ)

𝑃𝑔𝜃
. (7.1)

In Fourier space the 𝐸𝐺 statistic may also be expressed as [1987]

𝐸𝐺(𝑙,Δ𝑙) = 𝐶𝜅𝑔(𝑙,Δ𝑙)
3𝐻2

0𝑎
−1∑︀

𝛼 𝑞𝛼(𝑙,Δ𝑙)𝑃𝛼
𝑣𝑔

, (7.2)

where 𝐻0 is the Hubble parameter today, 𝑙 is the magnitude of two-dimensional wavenumber of the on-sky
Fourier space, 𝐶𝜅𝑔(𝑙,Δ𝑙) is the galaxy-galaxy lensing cross correlation power spectrum in bins of Δ𝑙, 𝑃𝛼

𝑣𝑔

is the galaxy-velocity cross correlations power spectrum between 𝑘𝛼 and 𝑘𝛼+1 (where 𝑘 three-dimensional
wavenumber of the on-sky Fourier transform with 𝑘1 < 𝑘2 < ... < 𝑘𝛼 < ...) and 𝑞𝛼(𝑙,Δ𝑙) is the weighting
function defined accordingly.
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The corresponding expectation value of 𝐸𝐺, averaged over 𝑙 is the the ratio of the Laplacian of the
gravitational scalar potentials Ψ and Φ which appear in the scalar perturbed FLRW metric Eq. (3.9)
over the peculiar velocity divergence [1988]

⟨𝐸𝐺⟩ =
[︂

∇2(Ψ + Φ)
3𝐻2

0𝑎
−1𝜃

]︂
𝑘=𝑙/𝜒̄,𝑧

, (7.3)

where 𝜒̄ is the comoving mean distance corresponding to the mean redshift 𝑧.
In ΛCDM cosmology and assuming that the velocity field is generated under linear perturbation

theory, the peculiar velocity divergence is connected to the growth rate 𝑓 as 𝜃 = 𝑓𝛿 [121] where 𝛿 ≡
𝛿𝜌
𝜌 is the matter overdensity field (with 𝜌 the matter density of the background and 𝛿𝜌 its first order

perturbation), 𝑓(𝑎) ≡ 𝑑 ln 𝐷(𝑎)
𝑑 ln 𝑎 is the linear growth rate of structure and 𝐷(𝑎) ≡ 𝛿(𝑎)

𝛿(𝑎=1) the growth factor
(see also Subsection 3.1.1).

In the case of GR and in the absence of any anisotropic stress the Bardeen potentials are equal
(Ψ = Φ) and the gravitational field equations reduce to Poisson equations of the form

∇2Φ = ∇2Ψ = 4𝜋𝐺𝑎2𝜌𝛿 = 3
2𝐻

2
0 Ω0𝑚𝑎

−1𝛿 , (7.4)

where Ω0𝑚 = Ω𝑚(𝑧 = 0) is the matter density parameter today and the second equality is straightfor-
wardly derived assuming non-relativistic matter species and using the equations 𝐻2

0 = 8𝜋𝐺𝜌𝑐,0
3 , 𝜌 = 𝜌0𝑎

−3

and Ω0𝑚 = 𝜌0
𝜌𝑐,0

(with 𝜌0 the matter density today and 𝜌𝑐,0 the critical density today).
Therefore within GR Eq. (7.4), the Eq. (7.3) reduce to

𝐸𝐺 = Ω0𝑚

𝑓(𝑧) , (7.5)

where 𝑓 is well approximated as 𝑓(𝑧) ≃ Ω𝛾
𝑚(𝑧) with the growth index 𝛾 in a narrow range near 0.55, for

a wide variety of dark-energy models in GR [320, 1300–1303, 1308, 2002–2004]. Note that 𝐸𝐺 in GR is
scale independent (see Eq. (7.5)). This is not necessarily the case in the context of MG theories where
the growth rate 𝑓 may be strongly scale dependent even on subhorizon scales.

7.2.2 The effective Newton’s constant parameter 𝜇𝐺 and the light deflection
parameter Σ𝐺

The gravitational slip parameter 𝜂 which is defined by Eq. (3.12) describes the possible inequality
[931, 1385] of the two Bardeen potentials that may occur in MG theories. Clearly an observation of 𝜂 ̸= 1
would indicate physics beyond GR. In this case the gravitational field equations at linear level take the
form of Poisson equations that generalize Eqs. (7.4). At linear level, in MG models, using the perturbed
metric Eq. (3.9) and the gravitational field equations the phenomenological equations (3.10) and (3.11)
emerge [330, 1977, 1996, 2005–2009] for the scalar perturbation potentials Ψ and Φ.

They are in general functions of time and scale encoding the possible modifications of General Rela-
tivity defined as1 (see also Subsection 3.1.2)

𝜇𝐺(𝑎, 𝑘) ≡ 𝐺eff(𝑎, 𝑘)
𝐺

, (7.6)

and
Σ𝐺(𝑎, 𝑘) ≡ 𝐺𝐿(𝑎, 𝑘)

𝐺
, (7.7)

with 𝐺 is the Newton’s constant as measured by local experiments, 𝐺eff is the effective Newton’s con-
stant which is related to the growth of matter perturbation and 𝐺𝐿 is related to the lensing of light (the

1Note that, in the literature 𝜇𝐺 and Σ𝐺 are also referred to as 𝐺𝑀 and 𝐺𝐿 (e.g. in Refs. [148, 2008]) or as 𝐺matter and
𝐺light (e.g. in Refs. [1977, 2006]).
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propagation of relativistic particles, such as photons when they traverse equal regions of space and time
along null geodesics experiencing gravitational lensing collecting equal contributions from two gravita-
tional potentials Ψ and Φ). Using the gravitational slip Eq. (3.12) and the ratios of the Poisson equations
(3.10) ans (3.11) defined above the two LSS functions 𝜇𝐺 and Σ𝐺 are related via

Σ𝐺(𝑎, 𝑘) = 1
2𝜇𝐺(𝑎, 𝑘) [1 + 𝜂(𝑎, 𝑘)] . (7.8)

In GR which predicts a constant homogeneous 𝐺eff = 𝐺, we obtain 𝜇𝐺 = 1, 𝜂 = 1 and Σ𝐺 = 1.
Notice that Eqs. (3.10) and (3.11) indicate that a possible observation of reduced gravitational growth

of the Bardeen potentials may be interpreted either as reduced strength of gravitational interaction
(reduced 𝜇𝐺 and/or Σ𝐺) or due to reduced matter density 𝜌 (or Ω0𝑚). In the context of a fixed value of
matter density determined by geometric probes of the cosmological background, the reduced gravitational
growth could be either interpreted as a tension within the ΛCDM parameter value for the matter density
or as a hint for weakening gravity. Indeed, such hints of weaker than expected gravitational growth of
the Bardeen potentials has been observed at low redshifts by a wide range of dynamical probes including
RSD observations [67, 147, 148, 1977], WL [144, 550, 1792, 1793, 1797, 1975] and CC data [1190, 1191,
1972, 1973]. In most cases this weak growth has been interpreted as a tension for the parameters 𝜎8 and
Ω0𝑚 which are found by dynamical probes to be smaller than the values indicated by geometric probes
in the context of ΛCDM .

The observables 𝑓𝜎8(𝑎, 𝑘) and 𝐸𝐺(𝑎, 𝑘) can probe directly the gravitational strength functions 𝜇𝐺(𝑎, 𝑘)
and Σ𝐺(𝑎, 𝑘). In particular 𝑓𝜎8 is easily expressed in terms of the amplitude 𝜎8 and the matter overdensity
𝛿 using the matter overdensity evolution equation (4.1) (see e.g. Ref. [582]). In terms of redshift Eq.
(4.1) takes the form [148, 582]

𝛿′′(𝑧) +
(︂

(𝐻(𝑧)2)′

2 𝐻(𝑧)2 − 1
1 + 𝑧

)︂
𝛿′(𝑧) − 3

2
(1 + 𝑧) Ω0𝑚 𝜇𝐺(𝑧, 𝑘)

𝐻(𝑧)2/𝐻2
0

𝛿(𝑧) = 0 , (7.9)

where primes denote differentiation with respect to the redshift.
While in terms of the scale factor we have [1305, 1308, 1817]

𝛿′′(𝑎) +
(︂

3
𝑎

+ 𝐻 ′(𝑎)
𝐻(𝑎)

)︂
𝛿′(𝑎) − 3

2
Ω0𝑚𝜇𝐺(𝑎, 𝑘)
𝑎5𝐻(𝑎)2/𝐻2

0
𝛿(𝑎) = 0 , (7.10)

here primes denote differentiation with respect to the scale factor.
In Eqs. (7.9) and (7.10) possible deviations from GR are expressed by allowing for a scale and redshift-

dependent 𝜇𝐺 = 𝜇𝐺(𝑧, 𝑘). In the present Section and in Section 7.3.1 we ignore scale dependence due
to the lack of good quality scale dependent 𝑓𝜎8 and 𝐸𝐺 data. However, in Section 7.3.2 we discuss the
scale dependence of 𝐸𝐺 data.

For a given parametrization of 𝜇𝐺(𝑎) and initial conditions deep in the matter era where GR is
assumed to be valid leading to 𝛿 ∼ 𝑎 equations (7.9) and (7.10) may be easily solved numerically leading
to a predicted form of 𝛿(𝑎) for a given Ω0𝑚 and background expansion 𝐻(𝑧). In the context of the present
analysis we assume a ΛCDM background 𝐻(𝑧)

𝐻2(𝑧) = 𝐻2
0
[︀
Ω0𝑚(1 + 𝑧)3 + (1 − Ω0𝑚)

]︀
. (7.11)

Once the evolution of 𝛿 is known, the observable product 𝑓𝜎8(𝑎) ≡ 𝑓(𝑎) · 𝜎(𝑎) can be obtained using the
definitions 𝑓(𝑎) of Eq. (3.3) and 𝜎(𝑎) of Eq. (3.5) (see also Subsection 3.1.1). Thus, we have

f 𝜎8(𝑎, 𝜎8,Ω0𝑚, 𝜇𝐺) = 𝜎8

𝛿(𝑎 = 1) 𝑎 𝛿
′(𝑎,Ω0𝑚, 𝜇𝐺) . (7.12)

This theoretical prediction may now be used to compare with the observed 𝑓𝜎8 data and obtain fits for
the parameters Ω0𝑚, 𝜎8 and 𝜇𝐺(𝑧) (assuming a specific parametrization of 𝜇𝐺(𝑧)).

The lensing gravity parameter Σ𝐺(𝑧) can be fit in the context of specific parametrizations using its
connection with the 𝐸𝐺(𝑎) observable as [524, 2010, 2011]
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𝐸𝐺(𝑎,Ω0𝑚, 𝜇𝐺,Σ𝐺) = Ω0𝑚Σ𝐺(𝑎)
𝑓(𝑎,Ω0𝑚, 𝜇𝐺) . (7.13)

This equation assumes that the redshift of the lens galaxies can be approximated by a single value while
𝐸𝐺 corresponds to average value along the line of sight [524]. In the context of Eq. (7.13) and assuming
a specific parametrization for 𝜇𝐺 and Σ𝐺, the theoretical prediction for 𝐸𝐺 may be used to compare with
the observed 𝐸𝐺 datapoints and lead to constraints on Ω0𝑚, 𝜇𝐺,Σ𝐺. These constraints may be considered
either separately from those of the 𝑓𝜎8 data or jointly by combining the 𝐸𝐺 and 𝑓𝜎8 datasets. The allowed
range of these parameters may then be compared with the standard Planck/ΛCDM parameter values
𝜇𝐺 = 1, Σ𝐺 = 1, Ω0𝑚 = 0.315 ± 0.0073, 𝜎8 = 0.811 ± 0.006 to identify the likelihood of Planck/ΛCDM
in the context of the dynamical probe data 𝐸𝐺 and 𝑓𝜎8 . This plan is implemented in what follows in
the context of specific parametrizations describing the possible evolution of 𝜇𝐺 and Σ𝐺.

On scales much smaller than the Hubble scale for most modified gravity models the scale dependence
of 𝜇𝐺 and Σ𝐺 is weak. For example in ST model (for 𝑘 ≫ 𝑎𝐻) 𝜇𝐺 is independent of the scale [2012].
Thus, we start by considering scale independent parametrizations for 𝜇𝐺 and Σ𝐺 which reduce to the
GR value at early times and at the present time as indicated by solar system (ignoring possible screening
effects) and BBN constraints (𝜇𝐺 = 1 and 𝜇′

𝐺 = 0 for 𝑎 = 1 and 𝜇𝐺 = 1 for 𝑎 ≪ 1) [1386, 1388, 2013].
Such parametrizations are the Eqs. (3.15) and (3.16) with 𝑛 ≥ 2 and 𝑚 ≥ 2 which we set equal to 2 in
our analysis [67, 148, 1389]

𝜇𝐺 = 1 + 𝑔𝑎(1 − 𝑎)2 − 𝑔𝑎(1 − 𝑎)4 = 1 + 𝑔𝑎( 𝑧

1 + 𝑧
)2 − 𝑔𝑎( 𝑧

1 + 𝑧
)4 , (7.14)

Σ𝐺 = 1 + 𝑔𝑏(1 − 𝑎)2 − 𝑔𝑏(1 − 𝑎)4 = 1 + 𝑔𝑏( 𝑧

1 + 𝑧
)2 − 𝑔𝑏( 𝑧

1 + 𝑧
)4 , (7.15)

where 𝑔𝑎 and 𝑔𝑏 are parameters to be fit.

7.3 Observational Constraints

7.3.1 Scale Independent Analysis
The 𝑓𝜎8(𝑧) and 𝐸𝐺(𝑧) updated data compilations used in our analysis are shown in Tables D.3 and
D.4 of the Appendix D along with the references where each datapoint was originally published. The
datapoints are also shown in Figs. 7.1 and 7.2 along with curves corresponding to the Planck/ΛCDM
prediction and the best fit parameter values. As it can be seen the datapoints from the various surveys
are consistent with each other at any given redshift and at 1𝜎 level. Clearly, in both cases the data appear
to favor lower values of 𝑓𝜎8 and 𝐸𝐺 than the values corresponding to the Planck/ΛCDM parameters.
This trend combined with the indications for a Planck/ΛCDM background from geometric probes may be
interpreted as a need for a new degree of freedom which in our approach is coming from MG. In addition,
we see that there is no tension between different 𝑓𝜎8 datapoints. Instead, there is a combined trend of the
datapoints to be in tension with the Planck/ΛCDM prediction. This tension disappears when we keep
the same ΛCDM background but allow for a MG evolution of the effective Newton’s constant. In fact,
this trend may be shown to be translated into a trend for lower values for the gravitational parameters
𝜇𝐺 and Σ𝐺 and is quantified through a detailed maximum likelihood analysis.

Each 𝑓𝜎8(𝑧) and 𝐸𝐺(𝑧) datapoint of the compilations of Tables D.3 and D.4 has been published
separately in the context of independent analyses of distinct galaxy samples and lensing data. However,
the correlations among the datapoints considered due to overlap of the analyzed galaxy samples may
lead to an amplification of the existing trends indicated by the data and an amplification of the existing
tension of the best fit parameters with Planck/ΛCDM . Despite of this fact we have chosen to keep the
relatively large number of distinct published datapoints in order to maximize the information encoded
in the compilations considered keeping in mind that this may lead to an artificial amplification of the
trends that already exist in the data.
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Figure 7.1: The 𝑓𝜎8(𝑧) data compilation from Table D.3 used in the present analysis. The subset of
the data with less correlation is indicated with dark red. The red curve shows the Planck18/ΛCDM
prediction (parameter values Ω0𝑚 = 0.315, 𝑔𝑎 = 0, 𝜎8 = 0.811), the blue curve shows the best fit of
the 𝑓𝜎8(𝑧) in the context of parametrizations Eq. (7.14) with a ΛCDM background (parameter values
Ω0𝑚 = 0.272, 𝑔𝑎 = −1.306, 𝜎8 = 0.886) and the shaded regions correspond to 1𝜎 confidence level around
the best fit (see also Table 7.2).
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Figure 7.2: The 𝐸𝐺(𝑧) data compilation from Table D.4 (scales 3 < 𝑅 < 150ℎ−1𝑀𝑝𝑐) used in the present
analysis. The subset of the data with less correlation is indicated with dark red. The red curve shows
the theoretical prediction based on the Planck18/ΛCDM parameter values (Ω0𝑚 = 0.315, 𝜎8 = 0.811,
𝜇𝐺 = 1, Σ𝐺 = 1), the blue curve shows the best fit theoretical prediction based on the parametrizations
(7.14) and (7.15) with parameter values (Ω0𝑚 = 0.313, 𝑔𝑎 = −0.129, 𝑔𝑏 = −2.308). Notice that the best
fit is significantly below the Planck/ΛCDM theoretical prediction and implies weaker gravity (𝜇𝐺 < 1
and Σ𝐺 < 1) at the 4.6𝜎 level (see also Table 7.2).
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Figure 7.3: The three 1𝜎 - 7𝜎 confidence contours in 2D projected parameter spaces of the parameter
space (Ω0𝑚, 𝜎8, 𝑔𝑎) in the context of parametrization Eq. (7.14) with 𝑛 = 2 including the fiducial
correction factor Eq. (7.17). The RSD data 𝑓𝜎8(𝑧) from Table D.3 of the Appendix D was used. The
third parameter in each contour was fixed to the best fit value. The red and green dots describe the
Planck18/ΛCDM best fit and the best-fit values from data.

An additional motivation for keeping the full set of published datapoints is that it is not always
clear which one of the correlated points is more suitable to keep. Ignoring one of the correlated points
arbitrarily or simply based on time of publication criteria could lead to loss of useful information or
selection bias.

Keeping the full set of points does not significantly change the results and the level of tension
between the growth data best fit parameter values corresponding to MG and Planck/ΛCDM best fit
in the context of GR. In order to demonstrate the validity of the above reasons we have repeated our
analysis for a subset of the 𝑓𝜎8 and 𝐸𝐺 data where we have removed most earlier data that were
subject to correlations with more recent data as indicated with bold font in the index of the Tables
D.3 and D.4 and as shown in Figs. 7.1 and 7.2 with dark red. The result was a data compilation of
about half the 𝑓𝜎8 and 𝐸𝐺 datapoints with significantly less correlation. The results of the statistical
analysis of this dataset are presented in Appendix D and indicate a minor reduction of the overall tension.

For the construction of the likelihood contours of the model parameters in the context of the 𝑓𝜎8 and
𝐸𝐺 datasets we construct 𝜒2

𝑓𝜎8
and 𝜒2

𝐸𝐺
For the construction of 𝜒2

𝑓𝜎8
we use the vector [67]

𝑉 𝑖
𝑓𝜎8

(𝑧𝑖, 𝑝) ≡ 𝑓𝜎𝑜𝑏𝑠
8,𝑖 − 𝑓𝜎𝑡ℎ

8 (𝑧𝑖, 𝑝)
𝑞(𝑧𝑖,Ω0𝑚,Ω𝑓𝑖𝑑

0𝑚)
, (7.16)

where 𝑓𝜎𝑜𝑏𝑠
8,𝑖 is the the value of the 𝑖th datapoint, with 𝑖 = 1, ..., 𝑁𝑓𝜎8 (where 𝑁𝑓𝜎8 = 66 corresponds

to the total number of datapoints of Table D.3) and 𝑓𝜎𝑡ℎ
8 (𝑧𝑖, 𝑝) is the theoretical prediction, both at

redshift 𝑧𝑖. The parameter vector 𝑝 corresponds to the parameters 𝜎8,Ω0𝑚, 𝑔𝑎 of Eq. (7.12) with the
parametrization (7.14). The fiducial Alcock-Paczynski correction factor 𝑞 [67, 147, 148] is defined as

𝑞(𝑧𝑖,Ω0𝑚,Ω𝑓𝑖𝑑
0𝑚) = 𝐻(𝑧𝑖)𝑑𝐴(𝑧𝑖)

𝐻𝑓𝑖𝑑(𝑧𝑖)𝑑𝑓𝑖𝑑
𝐴 (𝑧𝑖)

, (7.17)

where 𝐻(𝑧), 𝑑𝐴(𝑧) correspond to the Hubble parameter and the angular diameter distance of the true
cosmology and the superscript "𝑓𝑖𝑑" indicates the fiducial cosmology used in each survey to convert angles
and redshift to distances for evaluating the correlation function. As shown in Table 7.2, the effects of
this correction factor are less than about 10% in the derived best fit parameter values. Thus we obtain
𝜒2

𝑓𝜎8
as

𝜒2
𝑓𝜎8

(Ω0𝑚, 𝜎8, 𝑔𝑎) = 𝑉 𝑖
𝑓𝜎8

𝐹𝑓𝜎8,𝑖𝑗𝑉
𝑗

𝑓𝜎8
, (7.18)

133



Chapter 7. Tensions and Constraints on Modified Gravity Parameters from the 𝐸𝐺 statistic and RSD
data and Implications for Weakening Gravity

Best fit

EG (z) data

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5
-6

-4

-2

0

2

Ω0m

g
a

Best fit

EG (z) data

Planck ΛCDM

-4 -2 0 2 4
-8

-6

-4

-2

0

2

4

ga

g
b

Best fit

EG (z) data

Planck ΛCDM

0.0 0.2 0.4 0.6 0.8
-8

-6

-4

-2

0

2

4

6

Ω0m

g
b

Figure 7.4: The three 1𝜎 - 5𝜎 confidence contours in 2D projected parameter spaces of the parameter
space (Ω0𝑚, 𝑔𝑎, 𝑔𝑏) in the context of parametrizations Eqs. (7.14) and (7.15) with 𝑛 = 2,𝑚 = 2. The data
𝐸𝐺(𝑧) from Table D.4 of the Appendix D were used. The third parameter in each contour was fixed to
the best fit value. The red and green dots describe the Planck18/ΛCDM best fit and the best-fit values
from data.
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Figure 7.5: The six 1𝜎 - 7𝜎 confidence contours in 2D projected parameter spaces of the parameter space
(Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏) in the context of parametrizations Eqs. (7.14)and (7.15) with 𝑛 = 2 and 𝑚 = 2 including
the fiducial correction factor Eq. (7.17). The data 𝐸𝐺(𝑧) and 𝑓𝜎8(𝑧) from Tables D.4 and D.3 of the
Appendix D was used. The third and the forth parameter in each contour were fixed to the best fit
values. The red and green dots describe the Planck18/ΛCDM best fit and the best-fit values from data.

134



Chapter 7. Tensions and Constraints on Modified Gravity Parameters from the 𝐸𝐺 statistic and RSD
data and Implications for Weakening Gravity

Figure 7.6: Left: The 1𝜎 - 2𝜎 confidence contour of the parameter space (Ω0𝑚, 𝜎8, 𝑔𝑎) in the context of
parametrization Eq.(7.14) with 𝑛 = 2 including the fiducial correction factor Eq. (7.17). The RSD data
𝑓𝜎8(𝑧) from Table D.3 of the Appendix D was used. The red and green dots describe the Planck18/ΛCDM
best fit and the best-fit values from data. Right: The 1𝜎 - 2𝜎 confidence contour of the parameter space
(Ω0𝑚, 𝑔𝑎, 𝑔𝑏) in the context of parametrizations Eqs. (7.14) and (7.15) with 𝑛 = 2. The data 𝐸𝐺(𝑧)
from Table D.4 of the Appendix D was used. The red and green dots describe the Planck18/ΛCDM
best fit and the best-fit values from data. The 3D contours include only the surfaces in 3D while the
intermediate space is not filled. Thus, the white gaps that appear in the right figure between the surfaces,
simply correspond to the white background seen from behind.
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Table 7.2: Planck18/ΛCDM based on TT,TE,EE+lowE+ lensing likelihoods best fit [14] and the best-fit values
from data.

Param. Planck18/ΛCDM Dataset Dataset Dataset Datasets Datasets
𝑓𝜎8(𝑧). 𝑓𝜎8(𝑧) 𝐸𝐺(𝑧) 𝑓𝜎8(𝑧) + 𝐸𝐺(𝑧) 𝑓𝜎8(𝑧) + 𝐸𝐺(𝑧)

corr. no corr. corr. no corr.

Ω0𝑚 0.3153 ± 0.0073 0.272 ± 0.019 0.263 ± 0.015 0.313 ± 0.024 0.275 ± 0.015 0.264 ± 0.012
𝜎8 0.8111 ± 0.0060 0.886 ± 0.015 0.90 ± 0.016 0.848 ± 0.015 0.879 ± 0.015
𝑔𝑎 0 −1.306 ± 0.140 −1.331 ± 0.138 −0.129 ± 0.490 −0.957 ± 0.144 −1.115 ± 0.137
𝑔𝑏 0 −2.308 ± 0.423 −2.448 ± 0.414 −2.422 ± 0.416

where 𝐹𝑓𝜎8,𝑖𝑗 is the Fisher matrix (the inverse of the covariance matrix 𝐶𝑓𝜎8,𝑖𝑗 of the data) which is
assumed to be diagonal with the exception of the 3 × 3 WiggleZ subspace (see Ref. [67] for more details
on this compilation).

Similarly, for the construction of 𝜒2
𝐸𝐺

, we consider the vector

𝑉 𝑖
𝐸𝐺

(𝑧𝑖, 𝑝) ≡ 𝐸𝑜𝑏𝑠
𝐺,𝑖 − 𝐸𝑡ℎ

𝐺 (𝑧𝑖, 𝑝) , (7.19)

where 𝐸𝑜𝑏𝑠
𝐺,𝑖 is the the value of the 𝑖th datapoint, with 𝑖 = 1, ..., 𝑁𝐸𝐺

(where 𝑁𝐸𝐺
= 16 corresponds to

the total number of datapoints of Table D.4), while 𝐸𝑡ℎ
𝐺 (𝑧𝑖, 𝑝) is the theoretical prediction (Eq. (7.13)),

both at redshift 𝑧𝑖. The parameter vector 𝑝 corresponds to the parameters of Eq. (7.13) with the
parametrization (7.14) namely Ω0𝑚, 𝑔𝑎, 𝑔𝑏.

Thus we obtain 𝜒2
𝐸𝐺

as
𝜒2

𝐸𝐺
(Ω0𝑚, 𝑔𝑎, 𝑔𝑏) = 𝑉 𝑖

𝐸𝐺
𝐹𝐸𝐺,𝑖𝑗𝑉

𝑗
𝐸𝐺

, (7.20)

where 𝐹𝐸𝐺,𝑖𝑗 is the Fisher matrix also assumed to be diagonal.
By minimizing 𝜒2

𝑓𝜎8
, 𝜒2

𝐸𝐺
separately and combined as 𝜒2

𝑡𝑜𝑡 ≡ 𝜒2
𝑓𝜎8

+ 𝜒2
𝐸𝐺

we obtain the constraints
on the parameters Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏 shown in Figs. 7.3, 7.4 and 7.5 respectively. Each one of these
Figures corresponds to a 2D projection that goes through the best fit parameter point in parameter
space of the full three or four dimensional contour plot in each case. The full number of parameters
(three or four) was assumed when constructing the contour 2D projections. Previous studies [67, 148]
have considered similar 2D projections that go through the Planck/ΛCDM best fit parameter point
in the higher dimensional parameter space. This later choice tends to change somewhat (in most
projections it is increased) the apparent tension between the best fit MG parameter values and the best
fit Planck/ΛCDM parameters in the 2D projection parameter subspaces. This 2D tension may be in
some cases misleading due to projection effects and thus in Table 7.3 we stress the tension in the full 3D
or 4D parameter space.

The tension level between the best fit MG parameter values and the Planck/ΛCDM best fit parameter
values is significant in both the 2D projection parameter spaces shown in Figs. 7.3, 7.4 and 7.5 and
in the higher 3D parameter space likelihood surfaces shown in Fig. 7.6. The best fit parameter values
obtained in the context of the datasets considered and the tension levels in both the 2D projections and
in the full 3D-4D parameter spaces are shown in Tables 7.2 and 7.3 respectively. In these Tables we also
show the cases corresponding to fits without including the correction factor Eq. (7.17) in the 𝑓𝜎8 data
demonstrating that there is a small change in the best fit parameter values.
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Table 7.3: Sigma differences of the best fit contours from Planck18/ΛCDM.

Space 2D Projected Space
Dataset (Ω0𝑚, 𝜎8, 𝑔𝑎)(Ω0𝑚, 𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝜎8)(Ω0𝑚, 𝑔𝑎)(𝜎8, 𝑔𝑎)(𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝑔𝑏)(𝜎8, 𝑔𝑏)

𝑓𝜎8(𝑧) corr. 3.70𝜎 3.00𝜎 ∼ 8𝜎 2.08𝜎
𝑓𝜎8(𝑧) no corr. 4.15𝜎 2.75𝜎 ∼ 8𝜎 1.13𝜎

𝐸𝐺(𝑧) 4.57 0.002𝜎 4.45𝜎 4.94𝜎
𝐸𝐺(𝑧)+𝑓𝜎8(𝑧) corr. 6.03 1.47𝜎 6.39𝜎 2.59𝜎 5.74𝜎 7.74𝜎 5.58𝜎
𝐸𝐺(𝑧)+𝑓𝜎8(𝑧)no corr. 6.33 2.17𝜎 ∼ 8𝜎 2.16𝜎 7.53𝜎 ∼ 8𝜎 6.74𝜎
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Figure 7.7: Evolution of 𝜇𝐺 and Σ𝐺 as functions of the scale factor 𝑎 considering the best fit values for
𝑔𝑎 and 𝑔𝑏 in the context of parametrizations Eqs. (7.14) and (7.15) with 𝑛 = 2,𝑚 = 2. The data 𝐸𝐺(𝑧)
and 𝑓𝜎8(𝑧) from Tables D.4 and D.3 of the Appendix D was used. The dashed curves correspond to 1𝜎
deviations of the parameters 𝜇𝐺 and Σ𝐺. The red lines correspond to the GR-ΛCDM model.

The following comments can be made on the results shown in Figs. 7.3, 7.4 and 7.5 and Tables 7.2
and 7.3:

• The left part of Table 7.3 shows the tension level in the full 3D or 4D parameter space. The
tension level between Planck/ΛCDM and best fit MG model parametrizations (7.14) and (7.15) in
the context of the 𝑓𝜎8 data is significant (about 3.5𝜎) but is is less than the corresponding tension
obtained using the 𝐸𝐺 statistic data (more than 4𝜎). In fact for the combined 𝑓𝜎8 + 𝐸𝑔 dataset
the tension level increases to close to 6𝜎! This significant tension level comes independently from
both the 𝑓𝜎8 and 𝐸𝐺 data and hints towards weaker gravity (𝜇𝐺 and Σ𝐺 lower than 1) compared
to the predictions of GR at low 𝑧. We stress however that this extreme level of tension is partly
due to correlations among the considered datapoints which necessarily exist in our compilations.

• The weaker than expected gravitational growth indicated by the data is expressed as both a lower
best fit Ω0𝑚 than expected from ΛCDM and as negative best fit values for the gravitational strength
evolution parameters 𝑔𝑎 and 𝑔𝑏 (see e.g. Fig. 7.5).

• Ignoring the fiducial model correction factor of Eq. (7.17) in most cases tends to slightly increase
the tension level (compare e.g. the last two lines of Table 7.3). Thus the consideration of this
correction in our analysis is a conservative approach.

The trend for weaker gravity at low redshifts is also evident in Fig. 7.7 which shows the best fit form
of 𝜇𝐺(𝑎) and Σ𝐺(𝑎) in the context of each dataset.

Also, the likelihood contours in the 𝜎8-Ω𝑚 parameter space obtained using the growth data in the
presence of the MG parameter 𝑔𝑎 and in the context of GR (𝑔𝑎 = 0) are shown in Fig. 7.8. We have
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Figure 7.8: The confidence contours of the parameter space (𝜎8-Ω𝑚) in the context of GR (left panel)
and in the presence of the MG parameter 𝑔𝑎 (fixing 𝑤 = −1) in the context of parametrization Eq.
(7.14) with 𝑛 = 2. We have considered both the case of a marginalized MG parameter value (right
panel) and the case of setting 𝑔𝑎 to its best fit value (middle panel). The red and green dots describe the
Planck18/ΛCDM best fit and the best-fit values from data. The 𝑓𝜎8(𝑧) data compilations of datapoints
with less correlation from Table D.3 of the Appendix D was used. Notice the reduction of tension between
the growth data best fit and the Planck/ΛCDM parameter values when the MG degree of freedom is
introduced.

considered both the case of a marginalized MG parameter value and the case of setting 𝑔𝑎 to its best
fit value. Clearly the tension level between the best fit parameter values and Planck/ΛCDM decreases
significantly in the presence of the MG parameter 𝑔𝑎.

The introduction of additional parameters of any type would in general widen the likelihood contours
and thus reduce the tension between growth data and geometric/CMB data. In general a faster expansion
rate (𝑤 < −1) would tend to reduce the growth rate of perturbations in agreement with dynamical
observables. However, geometric observables (SnIa, BAO etc.) do not allow significant deviations of the
expansion rate from ΛCDM. Thus the most efficient way to produce a weaker growth of perturbations
is the introduction of evolution of the MG parameters 𝜇𝐺 and Σ𝐺. In Fig. 7.9 we have demonstrated
this effect by fixing 𝑔𝑎 = 0, 𝑔𝑏 = 0 and constructing the 𝜎8-Ω𝑚 contours with 𝑤 = −1 and 𝑤 free to vary
in a range ([−1.5,−0.5]) consistent with geometric probes. The reduction of the tension in this case is
significantly smaller compared to the introduction of MG degrees of freedom.

7.3.2 Scale Dependent Data Compilations
Scale dependent parametrizations for 𝜇𝐺 and 𝜂 can describe a large class of MG models [330, 1996]. For
example a scale dependent class of parametrizations predicted by scalar-tensor theories for 𝜇𝐺 and 𝜂 is
of the form [862, 1524]

𝜇𝐺(𝑎, 𝑘) = 1 + 𝑓1(𝑎)1 + 𝑐1(𝜆𝐻/𝑘)2

1 + (𝜆𝐻/𝑘)2 , (7.21)

𝜂(𝑎, 𝑘) = 1 + 𝑓2(𝑎)1 + 𝑐2(𝜆𝐻/𝑘)2

1 + (𝜆𝐻/𝑘)2 , (7.22)

where 𝑓1 and 𝑓2 are properly chosen functions that depend on the scale factor. Thus a physically
motivated scale dependent generalization of the parametrizations (7.14) and (7.15) for 𝜇𝐺 and Σ𝐺 may
be written as

𝜇𝐺(𝑅, 𝑧) = 1 +
[︂
𝑔𝑎( 𝑧

1 + 𝑧
)𝑛 − 𝑔𝑎( 𝑧

1 + 𝑧
)2𝑛

]︂
1 + 𝑠𝑎(𝜆𝐻𝑅)2

1 + (𝜆𝐻𝑅)2 , (7.23)

138



Chapter 7. Tensions and Constraints on Modified Gravity Parameters from the 𝐸𝐺 statistic and RSD
data and Implications for Weakening Gravity

Best fit

fσ8 data

w=-1

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Best fit

fσ8 data

w to best fit value

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Best fit

fσ8 data

marginalization over w

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Best fit

fσ8 - Eg data

w=-1

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Best fit

fσ8 - Eg data

w to best fit value

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Best fit

fσ8-Eg data

marginalization over w

Planck ΛCDM

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.6

0.7

0.8

0.9

1.0

1.1

Ω0m

σ 8

Figure 7.9: The confidence contours of the parameter space (𝜎8-Ω𝑚) in the context of GR (left panels)
and in the presence of the 𝑤 parameter (fixing 𝑔𝑎 = 0 and 𝑔𝑏 = 0). We have considered both the case of a
marginalized 𝑤 ([−1.5,−0.5]) parameter value (right panels) and the case of setting 𝑤 to its best fit value
(−0.94 and −1.29 from 𝑓𝜎8(𝑧) and 𝑓𝜎8(𝑧)+𝐸𝐺(𝑧) data respectively) (middle panels). The red and green
dots describe the Planck18/ΛCDM best fit and the best-fit values from data. The 𝐸𝐺(𝑧) and 𝑓𝜎8(𝑧)
data compilations of datapoints with less correlation from Tables D.4 and D.3 of the Appendix D was
used. Notice that the reduction of tension between the best fit parameter values and Planck/ΛCDM is
less efficient when the 𝑤 degree of freedom (modified background expansion rate) is introduced compared
to the MG degree of freedom 𝑔𝑎 shown in Fig. 7.8.
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Figure 7.10: Measurements of 𝐸𝐺 as a function of scale 𝑅 in the range 0.15 < 𝑧 < 0.43 (left panel) and
0.43 < 𝑧 < 1.2 (right panel). The data 𝐸𝐺(𝑅) from Tables D.5 and D.6 of the Appendix D was used.
The dashed black line shows the Planck18/ΛCDM prediction at 𝑧 = 0.3, the dotted black line shows the
Planck18/ΛCDM prediction at 𝑧 = 0.7, while the dotdashed black line and the large dashed black line
shows the best fit of the 𝐸𝐺 in the context of parametrizations Eqs. (7.14) and (7.15) at 𝑧 = 0.3 and at
𝑧 = 0.7 respectively.

Σ𝐺(𝑅, 𝑧) = 1 +
[︂
𝑔𝑏( 𝑧

1 + 𝑧
)𝑚 − 𝑔𝑏( 𝑧

1 + 𝑧
)2𝑚

]︂
1 + 𝑠𝑏(𝜆𝐻𝑅)2

1 + (𝜆𝐻𝑅)2 , (7.24)

where 𝑠𝑎, 𝑠𝑏 and 𝜆 are parameters to be determined from a proper scale dependent dataset. Such a
scale dependent data compilation for the statistic 𝐸𝐺 in two redshift ranges is shown in Fig. 7.10 and in
Tables D.5 and D.6 for low and high 𝑧 respectively in the Appendix D. The analysis of this compilation
may be performed in the context of the scale dependent parametrizations (7.23) and (7.24). Clearly as
shown in Fig. 7.10, for both low and high 𝑧 the scale independent MG parametrizations of Eqs. (7.14)
and (7.15) at 𝑧 = 0.3 and at 𝑧 = 0.7, lead to a best fit value of 𝐸𝐺 that is lower compared to the
Planck/ΛCDM prediction. The full scale dependent analysis leads to similar levels of tension as those
indicated in Table 7.3 for the scale independent case and will be presented in detail elsewhere.

7.4 Conclusions
In this Chapter we have used up to date compilations of 𝐸𝐺 and 𝑓𝜎8 data (Tables D.3 and D.4) based on
WL and RSD observations to obtain updated estimates of the tension between the Planck/ΛCDM best
fit parameter values and the best fit parameter values obtained in the context of an effective MG gravity
model allowing for properly parametrized evolution of the growth and lensing gravitational constants
𝜇𝐺 and Σ𝐺. The scale independent parametrizations (Eqs.(7.14) and (7.15)) of 𝜇𝐺 and Σ𝐺 depend on
the parameters 𝑔𝑎 and 𝑔𝑏 respectively and are by construction consistent with GR at early times and at
present as indicated by nucleosynthesis and solar system constraints assuming no screening is present.
We have assumed a flat ΛCDM expansion background and we thus fit the parameters (Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏).

We find that the 𝐸𝐺 data amplify the previously well known indications for low Ω0𝑚 and/or weaker
gravity (𝜇𝐺 < 1) at low 𝑧 and favor weaker gravity for both the growth and the lensing gravita-
tional constants (𝜇𝐺 < 1 and Σ𝐺 < 1). The tension level between the Planck/ΛCDM parameter
values (Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏) = (0.31, 0.81, 0, 0) and the best fit parameter values obtained using the com-
bined 𝐸𝐺 + 𝑓𝜎8 dataset (Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏) = (0.28, 0.85,−0.96,−2.45) is 6𝜎 which is significantly larger
compared to the tension obtained when only the 𝑓𝜎8 dataset is used (3.7𝜎 as shown in Table 7.3). Even
though the absolute magnitude of the derived tension is overestimated due to the correlations among the
datapoints the amplified trend for weaker gravity at low 𝑧 is clearly indicated by both the 𝑓𝜎8 and 𝐸𝐺

data compilations and appears to be stronger for the case of the 𝐸𝐺 data.
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If this trend has some physical origin and is not due only to data systematics or physical effects in
the context of GR, there are significant implications for theoretical models. In particular 𝑓(𝑅) theories
generically predict stronger gravity at low 𝑧 compared to its present time [1823] (thus the prediction is
𝜇𝐺(𝑧) > 1, 𝑔𝑎 > 0) and therefore if the identified tension has physical origin this can not be attributed to
an 𝑓(𝑅) MG gravity theory for any expansion background. Similarly minimal ST theories [1197, 1823],
Horndeski theories [1406, 2014] and beyond Horndeski Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories
[1199] can only produce weaker gravity at low 𝑧 under very specific and in some cases unnatural conditions
[1305]. For example minimal scalar-tensor theories would require the existence of a phantom comsological
background expansion (equation of state parameter 𝑤 < −1) [1197, 1823]. In fact, a very large class of
MG models, the scalar-tensor Horndeski models, are not consistent with the observational indications of
weakening gravity. In fact as stated in Ref. [2015] (p. 12), 𝜇𝐺 for stable Horndeski models is always
larger than, or equal to, 1 so that matter perturbations in viable Horndeski models always grow faster
than the corresponding GR models with the same backgrounds. Thus these MG models (which include
𝑓(𝑅) gravity theories) are unable to account for the weakening and would provide a worse fit than GR to
the 𝑓𝜎8/𝐸𝐺 data. The search for MG models that can account for the observed indications for weakening
gravity is thus an interesting extension of our analysis.

A partial cause of the 𝐸𝐺 data tension with Planck/ΛCDM is lensing magnification. As shown in
Refs. [2016, 2017] the effects of lensing magnification modify the galaxy-galaxy lensing correlations as
well as galaxy-galaxy correlations and as a consequence introduce systematic errors in the estimate of
𝐸𝐺 while making it bias dependent. The effect is small for redshifts smaller than 1 (about 5 − 10%)
but it can become as large as 20 − 40% for redshifts 𝑧 ≃ 1.5. Thus, this systematic contribution can be
relevant already for DES [1796, 1797, 2018–2020] and certainly for higher redshift surveys. However,
the magnitude of lensing contribution at the redshifts of the data compilation we are using (𝑧 < 1) is
not large enough to significantly reduce the identified tension which exists even at the level of the RSD
data alone. The systematic effect discussed in Refs. [2016, 2017] is important especially for upcoming
surveys like Euclid [1806] which probe higher redshifts even though even in that case it may not be large
enough to be the only source the observed tension. An interesting feature of our compilation is the scale
dependence the 𝐸𝐺(𝑅, 𝑧) data. This may be used to probe the parameters of scale dependent MG 𝜇𝐺

and Σ𝐺 parametrizations which are well motivated physically. A key question to address is whether the
addition of scale dependence in the parametrizations can improve significantly the overall fit. No such
indications are currently known [862] but this may well change using more extensive and accurate scale
dependent 𝐸𝐺 and 𝑓𝜎8 data.



Chapter 8

Scalar Tachyonic Instabilities in Gravita-
tional Backgrounds: Existence and Growth
Rate

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [5].

In this chapter, we study the tachyonic instabilities in the dynamic evolution of a free massive scalar
field Φ with potential equation of the form 𝑉 (𝜑) = 𝑚2𝜑2. We focus on the existence of instabilities
and their growth rate in the following non flat (curved) gravitational backgrounds: Reissner-Nordstrom-
deSitter (RN-dS) background, Shwarzschild-deSitter (SdS) background, pure deSitter background, pure
Schwarzschild background.

Scalar fields are used to describe a wide range of degrees of freedom in a diverse set of physical
systems in particle physics (e.g. the Higgs field and other symmetry breaking scalar fields [2021]),
cosmology (e.g. the inflaton [2022] and the quintessence field [577]), gravitational theories (e.g. scalar
field hair on black holes [2023]) or modified gravity scalar degrees of freedom like 𝑓(𝑅) theories
[110–113, 584, 1849, 1850, 2024–2028] or Scalar Tensor (ST) theories [587]), condensed matter (e.g. the
Bose-Eistein scalar field condensate [2029]) etc. A stabilizing effect of multiple horizons on tachyonic
instabilities can provide various interesting implications. For example tachyonic instabilities of 𝑓(𝑅) and
ST theories can get significantly delayed in backgrounds involving cosmological horizons with possible
implications for the development of preheating after inflation [2030–2033].

8.1 Introduction
The dynamical evolution of a scalar field in a classical system is determined by three main factors

• The form of its Lagrangian density and especially the scalar field potential 𝑉 (𝜑) which may be
e.g. of the form 𝑉 (𝜑) = 𝑚2𝜑2 for a simple massive scalar field or of a symmetry breaking form
𝑉 (𝜑) = 𝜆

4 (𝜑2 − 𝜂2)2 where 𝜂 is the scale of symmetry breaking.

• The form of the background spacetime which may be for example flat Minkowski, cosmological
Friedmann-Robertson-Walker (FRW), Schwarzschild etc.

• The boundary/initial conditions used for the solution of the resulting dynamical scalar field equation
emerging from the above two factors.
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The simplest Lagrangian density describing the evolution of a scalar field is that corresponding to a free
massive scalar which is of the form

ℒ = 1
2𝜕𝜇Φ𝜕𝜇Φ −𝑚2Φ2 , (8.1)

leading to the Klein-Gordon equation [2034]

□Φ +𝑚2Φ = 0 . (8.2)

In flat Minkowski space this equation may be written as

Φ̈ − ∇2Φ = −𝑚2Φ . (8.3)

Its solutions are propagating waves of the form

Φ(𝑟⃗, 𝑡) = 𝐴(𝑘⃗)𝑒𝑖(𝜔𝑡−𝑘⃗𝑟⃗) +𝐵(𝑘⃗)𝑒−𝑖(𝜔𝑡−𝑘⃗𝑟⃗) , (8.4)

with dispersion relation
𝜔2 = 𝑘2 +𝑚2 . (8.5)

For 𝑚2 > 0 we have well behaved propagating waves. However, for 𝑚2 < 0 we have

𝜔 = ±
√︀
𝑘2 − |𝑚|2 , (8.6)

and exponentially growing tachyonic instabilities develop on large scales (𝑘 < |𝑚|) where 𝐼𝑚(𝜔) ̸= 0
[2031]. In the context of a spontaneous symmetry breaking potential, these instabilities usually imply
the presence of a broken symmetry and the transition of the scalar field to a new stable (or metastable)
vacuum. However, in the context of a potential that is unbounded from below they may also imply that
the theory is unphysical and should be ruled out. This argument has lead to disfavor of a wide range of
theories which involve scalar fields with negative 𝑚2 including a wide range of massive Brans-Dicke (BD)
theories and 𝑓(𝑅) theories where such tachyonic instabilities are also known as Dolgov-Kawasaki-Faraoni
(DKF) instabilities [2035, 2036] (see also Refs. [2037–2042]). For example a massive BD scalar field has
an action of the form1 [1845, 2043–2046]

𝑆 = 1
16𝜋𝐺

∫︁
𝑑4𝑥

√
−𝑔
[︁
Φ𝑅− 𝜔

Φ𝑔
𝜇𝜈𝜕𝜇Φ𝜕𝜈Φ −𝑚2(Φ − Φ0)2

]︁
. (8.7)

In this theory (using finite boundary conditions at infinity) a small point mass 𝑀 located at the origin
creates a scalar field and metric configurations of the form

Φ = Φ0 + 𝜙 , (8.8)

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , (8.9)

where
𝜙 = 2𝐺𝑀

(2𝜔 + 3)𝑟 𝑒
−𝑚̄(𝜔)𝑟 , (8.10)

ℎ00 = 2𝐺𝑀
Φ0𝑟

(︂
1 + 1

2𝜔 + 3𝑒
−𝑚̄(𝜔)𝑟

)︂
, (8.11)

ℎ𝑖𝑗 = 2𝐺𝑀
Φ0𝑟

𝛿𝑖𝑗

(︂
1 − 1

2𝜔 + 3𝑒
−𝑚̄(𝜔)𝑟

)︂
, (8.12)

with 𝑚̄(𝜔) =
√︁

2Φ0𝑚2

2𝜔+3 (Φ0 is dimensionless) [2044].

1The BD parameter 𝜔 should not be confused with angular frequency 𝜔 used above.
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This ℎ00 metric perturbation corresponds to an effective Newton’s constant that has a Yukawa cor-
rection of the form

𝐺eff = 𝐺

Φ0

(︂
1 + 1

2𝜔 + 3𝑒
−𝑚̄(𝜔)𝑟

)︂
. (8.13)

This Yukawa correction is decaying exponentially for 𝑚2 > 0 and is observationally/experimentally viable
either for large values of 𝜔 > 40000 [2047] (so that the amplitude of the Newtonian correction is small)
or for large values of the scalar field mass 𝑚 (so that the Newtonian correction decays fast) [2044].

For 𝑚2 < 0 it is easy to show that the corresponding 𝐺eff is spatially oscillating with wavelength
𝜆 ≃ 2𝜋

𝑚̄

𝐺eff = 𝐺

Φ0

(︂
1 + 1

2𝜔 + 3𝑐𝑜𝑠 (𝑚̄(𝜔)𝑟 + 𝜃)
)︂
, (8.14)

where 𝜃 is an arbitrary constant. For spatial oscillations of 𝐺eff with wavelength less that sub-mm
scales (𝑚 ≳ 10−3 eV (𝜆 ≲ 1 mm) [73, 170]) these spatial oscillations of 𝐺eff would have hardly any
observational/experimental effects with current experiments/observations despite of the fact that there
is no Newtonian limit as 𝑚2 → 0− [170, 2048]. This is due to the local spatial cancellation of the
spatially oscillating force correction. However, the main problem with 𝑚2 < 0 are tachyonic instabilities
[2049–2052].

It is easy to show that perturbations of the BD scalar Eq. (8.10) obey in flat space a KG equation of
the form

𝛿𝜙− ∇2𝛿𝜙+𝑚2𝛿𝜙 = 0 , (8.15)

which for 𝑚2 < 0 implies the presence of exponentially growing with time tachyonic instabilities for
large scales [170]. Thus, this theory with 𝑚2 < 0 is only viable if the unstable scales are pushed
beyond the cosmological horizon ∼ 𝐻−1

0 which corresponds to scalar field mass |𝑚| < 10−33 eV similar
to a quintessence scalar field mass. Such spatially oscillating modes have a cosmological horizon scale
wavelength and have no observable effects on small scale gravity experiments.

In the case of 𝑓(𝑅) theories which may be shown to be equivalent to BD theories with no kinetic term
(𝜔 = 0) [2053–2057] a similar instability occurs. For example the 𝑓(𝑅) theory of the form (Starobinsky
model [2058])

𝑓(𝑅) = 𝑅+ 1
6𝑚2𝑅

2 , (8.16)

is easily shown to be equivalent to the BD theory with action [170, 2056, 2059–2063]

𝑆𝐵𝐷 = 1
16𝜋𝐺

∫︁
𝑑4𝑥

√
−𝑔
[︂
Φ𝑅− 3

2𝑚
2(Φ − 1)2

]︂
+ 𝑆matter , (8.17)

and therefore has the same tachyonic instabilities as the above mentioned massive BD theory (DKF
instability).

The parameter value |𝑚| ≃ 10−3 eV with 𝑚2 < 0 leads to an oscillating Newton’s constant with
wavelength about 1 mm. In this case the lifetime of the unstable tachyonic modes in Minkowski spacetime
would be about 10−11 sec. Thus, even though the mass range |𝑚| > 10−3 eV with 𝑚2 < 0 leads to
oscillating modifications of Newton’s constant that are consistent with observations/experiments, in the
context of 𝑓(𝑅) and BD theories and in a flat space background, this mass range is ruled out due to the
predicted tachyonic instabilities. This inconsistency is undesirable in view of recent studies2 [170, 171,
1197] that pointed out the existence of oscillating force signals in short range gravity experiments. It
is therefore interesting to investigate if there are physical conditions that can eliminate these tachyonic
instabilities or at least drastically change their lifetime.

A crucial assumption used in the derivation of the above tachyonic instability is the existence of a
Minkowski background. The following questions therefore emerge:

• Do scalar tachyonic instabilities for 𝑚2 < 0 persist in the presence of a non-flat background?
2For viable theoretical models with spatially oscillating 𝐺eff see Refs. [1770, 2064, 2065].
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• How do the instability lifetime and growth rate change in a curved background?

• What are the parameter values of a background metric required to significantly increase the insta-
bility lifetime compared to its value in a Minkowski spacetime?

The main goal of our analysis is to address these questions. In particular we solve the KG equation
in a Reissner-Nordström-deSitter (RN-dS) background metric [2066, 2067] with charge 𝑄, mass 𝑀 and
cosmological constant Λ, in the region between the event horizon and the cosmological horizon with
boundary conditions corresponding to a finite scalar field Φ with exponential tachyonic instabilities. Using
tortoise coordinates that shift these horizons to ±∞, the KG equation is reduced to a Schrodinger-like
Regge-Wheeler equation whose bound states correspond to instability modes. We find the critical value
of 𝑚2 (𝑚2

𝑐𝑟) such that for 𝑚2 < 𝑚2
𝑐𝑟 bound states (instability modes) exist. For the tachyonic unstable

modes (𝑚2 < 𝑚2
𝑐𝑟) we also find the growth rate of the instabilities (ground state eigenvalues of Regge-

Wheeler equation) and compare with the corresponding growth rate in a flat Minkowski background. We
also consider special cases of the RN-dS metric including the Schwarzschild metric [2068], the deSitter
(dS) metric [2069–2073], the Schwarzschild-deSitter (SdS) metric [2074, 2075] and the Reissner-Nordström
(RN) metric [2076–2078].

In our analysis we focus on the existence of tachyonic exponentially growing solutions and do not
consider propagating waves on the boundary horizons which would lead to calculation of Quasinormal
Modes3 (QNMs) [2092, 2093] (see Refs. [2094–2098], for reviews on QNMs of black holes). Such investi-
gation of QNMs has been performed in previous studies in Schwarzschild black hole [2099–2101], in SdS
background for 𝑚 = 0 [2102–2105], for 𝑚2 > 0 in RN-dS background [2106–2109] and in Kerr-deSitter
background [2110–2115] where a different type of instability was observed in the context of scalar field
wave scattering. This instability is connected with the phenomenon of superradiance [2116–2125] in which
a reflected wave has larger amplitude than the corresponding incident wave. Superradiant instabilities
occur in rotating and in charged black holes embedded in a deSitter space and are based on the extrac-
tion of mass and/or rotational or electromagnetic energy from the black hole. This energy is then carried
away from the black hole during a scattering process through the propagation of a reflected scalar field
wave with amplitude increased compared to the incident scalar field wave. Superradiance would lead to
a decrease in black hole energy and increase of the energy of the scalar field causing further enhancement
of the instability. Thus, the endpoints of such instability could be the evacuation of matter from the
black hole and/or the formation of a novel scalar field configuration around the black hole leading to a
phenomenon called ’scalarization’ and violation of the no-hair theorem, which states that black holes are
fully characterized by their mass, charge and angular momentum. A crucial property of spacetimes with
superradiant instabilities is the combination of an event horizon with a cosmological deSitter horizon in
four or higher dimensions [2126, 2127]. In this context one of the goals of our analysis is the identification
of the role of this combination of horizons on tachyonic instabilities and the discussion of their possible
connection with superradiant instabilities which involve boundary conditions of propagating wave modes.

The structure of this Chapter is the following: In the next Section 8.2 we use spherical tortoise
coordinates 𝑟* in the context of an instability ansatz, to transform the KG equation to a Schrodinger-
like Regge-Wheeler equation for the radial function 𝑢𝑙(𝑟*) with potential that depends on the angular
scale 𝑙, the dimesionless parameters 𝜉 ≡ 9𝑀2Λ and 𝑞 ≡ 𝑄/𝑀 defined above as well as the scalar field
mass 𝑚2. The existence of unstable modes that are finite at the two horizons, is equivalent with the
existence of bound states of this Regge-Wheeler equation. In Section 8.3, we solve the Regge-Wheeler
equation numerically and identify the range 𝑚2(𝑞, 𝜉) for which bound states (unstable modes) exist. In
the parameter range that remains unstable (𝑚2 < 𝑚2

𝑐𝑟(𝑞, 𝜉)) we find the growth rate Ω of the instabilities.
In Section 8.4 we discuss the scalar tachyonic instabilities in the limiting cases of pure deSitter and pure
Schwarzschild backgrounds. Finally, in Section 8.5 we conclude and discuss the physical implications of
our results. We also discuss possible extensions of this analysis.

In what follows we use Planck units (𝐺 = 𝑐 = ℏ = 1) and a metric signature (+ − −−).
3A semi-analytical method for calculations of QNMs based on the Wentzel-Kramers-Brillouin (WKB) approximation

[2079, 2080]. This method was used in a wide range of spacetimes and in a lot of studies (see e.g. Refs. [2081–2091]).
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8.2 KG equation in SdS/RN-dS spacetimes

8.2.1 Schwarzschild-deSitter background
Consider a SdS background spacetime defined by the metric [2074]

𝑑𝑠2 = 𝑓(𝑟)𝑑𝑡2 − 1
𝑓(𝑟)𝑑𝑟

2 − 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) , (8.18)

where
𝑓(𝑟) = 1 − 2𝑀

𝑟
− Λ

3 𝑟
2 . (8.19)

In such a background the KG equation (8.2) takes the form

1
𝑓(𝑟)

𝜕2Φ
𝜕𝑡2

− 𝜕

𝜕𝑟
𝑓(𝑟)𝜕Φ

𝜕𝑟
− 2𝑓(𝑟)

𝑟

𝜕Φ
𝜕𝑟

− Δ𝜃𝜑Φ
𝑟2 +𝑚2Φ = 0 , (8.20)

with
Δ𝜃𝜑 = 1

sin 𝜃
𝜕

𝜕𝜃
sin 𝜃 𝜕

𝜕𝜃
+ 1

sin2 𝜃

𝜕2

𝜕𝜑2 . (8.21)

Using now the ansatz
Φ(𝑡, 𝑟, 𝜃, 𝜑) =

∑︁
𝑙𝑚

Ψ𝑙(𝑡, 𝑟)
𝑟

ϒ𝑙𝑚(𝜃, 𝜑) , (8.22)

the eigenvalue equation
Δ𝜃𝜑ϒ𝑙𝑚(𝜃, 𝜑) = −𝑙(𝑙 + 1)ϒ𝑙𝑚(𝜃, 𝜑) , (8.23)

and transforming to tortoise coordinates defined as e.g. [2128–2130]

𝑑𝑟* ≡ 𝑑𝑟

𝑓(𝑟) , (8.24)

the KG equation reduces to (︂
𝜕2

𝜕𝑡2
− 𝜕2

𝜕𝑟2
*

+ 𝑉𝑙(𝑟)
)︂

Ψ𝑙(𝑡, 𝑟*) = 0 , (8.25)

where 𝑉𝑙(𝑟) is a Regge-Wheeler type potential which when expressed in the original radial coordinate is
of the form

𝑉𝑙(𝑟) = 𝑓(𝑟)
(︂
𝑙(𝑙 + 1)
𝑟2 + 𝑓 ′(𝑟)

𝑟
(1 − 𝑠) +𝑚2

)︂
, (8.26)

with 𝑠 = 0 (spin of the considered field) for the case of a scalar field. This type of effective potential was
first derived for “axial” (vector type) perturbations in the Schwarzschild background by Regge-Wheeler
[2131]. For “polar”(scalar type) gravitational perturbations the effective potential was first derived by
Zerilli [2132, 2133]. As discussed in Ref. [2134], the Regge-Wheeler-Zerilli formalism is based on the
assumption of spherical symmetry.

For the solution of Eq. (8.25) we need to express the Regge-Wheeler potential 𝑉𝑙(𝑟) in tortoise
coordinates 𝑉*𝑙(𝑟*) ≡ 𝑉𝑙(𝑟(𝑟*)). Thus we need to evaluate the integral

𝑟* ≡
∫︁

𝑑𝑟

𝑓(𝑟) =
∫︁

𝑑𝑟√︁
1 − 2𝑀

𝑟 − Λ
3 𝑟

2
, (8.27)

To evaluate the integral (8.27) we follow Ref. [2135] (see also Ref. [2136]) and factorize 𝑓(𝑟). Let

𝜉 = 9𝑀2Λ . (8.28)
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For 𝜉 < 1 there are three real solutions of 𝑓(𝑟) = 0. Two of them correspond to the event and cosmological
horizons (𝑟𝐻 and 𝑟𝐶) while the third is negative (𝑟𝑁 ) and does not correspond to a physical horizon.
The three horizon radii are [2129, 2130, 2135–2140]

𝑟𝐻 = 2√
Λ

cos
[︂

1
3 cos−1(3𝑀

√
Λ) + 𝜋

3

]︂
, (8.29)

𝑟𝐶 = 2√
Λ

cos
[︂

1
3 cos−1(3𝑀

√
Λ) − 𝜋

3

]︂
, (8.30)

𝑟𝑁 = −(𝑟𝐻 + 𝑟𝐶) . (8.31)

For 𝜉 = 1 which corresponds to the Nariai solution [2141, 2142]) we have an extremal SdS spacetime
[2128, 2137, 2143, 2144]

𝑟𝐻 = 𝑟𝐶 = 2√
Λ

cos 𝜋3 = 1√
Λ

≃ 1026 m , (8.32)

where in the last equality we have assumed the observed value of Λ = 3𝐻2
0 ΩΛ. The surface gravity of the

SdS metric at a coordinate radius 𝑟0 is defined as [2104, 2128, 2129, 2145]

𝜅0 ≡ 1
2
𝑑𝑓

𝑑𝑟
|𝑟=𝑟0 = 𝑀

𝑟2
0

− 1
3Λ𝑟0 , (8.33)

and describes the gravitational acceleration of a test particle at position 𝑟0. Using Eqs. (8.29), (8.30)
and (8.31) to factorize 𝑓(𝑟) in Eq. (8.27) and the definition (8.33) we may obtain 𝑟*(𝑟) as [2104, 2135]

𝑟* =
∫︁

𝑑𝑟√︁
1 − 2𝑀

𝑟 − Λ
3 𝑟

2
= 1

2𝜅𝐻
ln
(︂
𝑟

𝑟𝐻
− 1
)︂

+ 1
2𝜅𝐶

ln
(︂

1 − 𝑟

𝑟𝐶

)︂
+ + 1

2𝜅𝑁
ln
(︂

1 − 𝑟

𝑟𝑁

)︂
, (8.34)

where we note that 𝜅𝐶 is negative.
Using now Eqs. (8.26) and (8.34) it is easy to make a parametric plot of 𝑉*𝑙(𝑟*) by plotting pairs of

(𝑟*(𝑟), 𝑉𝑙(𝑟)) for 𝑟 ∈ [𝑟𝐻 , 𝑟𝐶 ].
From Eq. (8.34) it is clear that the tortoise coordinates map the event and cosmological horizons to

±∞

𝑟 → 𝑟𝐻 =⇒ 𝑟* → −∞ ,

𝑟 → 𝑟𝐶 =⇒ 𝑟* → +∞ .
(8.35)

The Regge-Wheeler potential 𝑉*𝑙(𝑟*) of Eq. (8.26) has the important property that it vanishes at both
infinities (±∞). This is easy to see since

𝑉 (𝑟𝐻) = 𝑉 (𝑟𝐶) = 0 =⇒
𝑉*(𝑟* → −∞) = 𝑉*(𝑟* → +∞) = 0 .

(8.36)

As shown below, this property leads to a simple asymptotic solution of Eq. (8.25).
At this point we introduce a rescaling of the radial and time coordinates by 𝑀 (𝑟/𝑀 → 𝑟, 𝑡/𝑀 → 𝑡)

and use the dimensionless parameters 𝜉 (defined in Eq. (8.28)) and

𝑚 𝑀 ≡ 𝐺𝑀𝑚

ℏ𝑐
. (8.37)

In order to search for scalar field instabilities we also use the following ansatz in Eq. (8.25)

Ψ𝑙(𝑡, 𝑟*) =
(︀
𝐶1𝑒

Ω𝑡 + 𝐶2𝑒
−Ω𝑡
)︀
𝑢𝑙(𝑟*) . (8.38)

This ansatz along with the above rescaling transforms Eq. (8.25) to a Schrodinger-like Regge-Wheeler
equation of the form

𝑑𝑢2
𝑙

𝑑𝑟2
*

−𝑀2 (︀Ω2 + 𝑉*𝑙(𝑟*)
)︀
𝑢𝑙(𝑟*) = 0 , (8.39)
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Figure 8.1: The critical values 𝜉𝐻,𝐶(𝑞2) (with 0 < 𝑞2 < 9/8) and 𝜉−,𝐻(𝑞2) (with 1 < 𝑞2 < 9/8) as a
function of 𝑞2 at which 𝑟𝐻 = 𝑟𝐶 and 𝑟− = 𝑟𝐻 respectively (left panel). The colored shaded regions
correspond to the physical corresponding regions of Fig. 8.6 discussed below. The metric function 𝑓(𝑟)
as a function of 𝑟 in the case of the RN-dS/SdS/RN spacetimes for critical value 𝜉𝐻,𝐶 (when event and
cosmological horizons coincide) and 𝜉−,𝐻 (when inner Cauchy and outer event horizons coincide) (right
panel). The blue, green and red solid curves correspond to RN-dS spacetime while the purple and orange
dashed curves correspond to RN and SdS spacetime respectively.

where 𝑟* ∈ (−∞,+∞) and

𝑀2 𝑉*0(𝑟(𝑟*)) =
(︂

1 − 2
𝑟(𝑟*) − 1

27𝜉𝑟(𝑟*)2
)︂(︂

2
𝑟(𝑟*)3 − 2

27𝜉 +𝑚2𝑀2
)︂
. (8.40)

In Eqs. (8.39) and (8.40) we have omitted the bar of the rescaled coordinates and in Eq. (8.40) we
have fixed 𝑙 = 0. Since 𝑉*𝑙(𝑟) > 𝑉*𝑙=0, the most unstable scales are the large angular scales 𝑙 = 0. This
behavior is similar to the case of the Minkowski spacetime discussed in the introduction where the scale
corresponding to 𝑘 = 0 was the most unstable scale (largest growth rate, smallest lifetime). Thus in what
follows we focus on the 𝑙 = 0 modes. If these modes are stable then all scales (𝑙 > 0) are also stable.

8.2.2 Reissner-Nordström-deSitter background
We now generalize the metric of the previous section by including charge in the black hole metric. The
RN-dS spacetime is defined by the metric function [2144, 2146]

𝑓(𝑟) = 1 − 2𝑀
𝑟

+ 𝑄2

𝑟2 − Λ
3 𝑟

2 = 1 − 2
𝑟

+ 𝑞2

𝑟2 − 𝜉

27𝑟
2 , (8.41)

where 𝜉 is defined in Eq. (8.28), 𝑞 ≡ 𝑄
𝑀 (where 𝑄 is the black hole electric charge) and in the second

equality we have used the rescaling 𝑟/𝑀 → 𝑟.
The horizons are obtained by solving the equation 𝑓(𝑟) = 0. For 𝜉 < 2 and 𝑞2 < 9/8 there are four

real solutions [2144]. Two of them correspond to the inner (Cauchy) and outer (event) horizons of a RN
black hole 𝑟− and 𝑟+ = 𝑟𝐻 (with 0 < 𝑟− < 𝑟𝐻) respectively. The third corresponds to the cosmological
horizon 𝑟𝐶 (with 𝑟𝐶 > 𝑟𝐻) while the fourth 𝑟𝑁 (with 𝑟𝑁 = −(𝑟− + 𝑟𝐻 + 𝑟𝐶)) is negative and does not
correspond to a physical horizon.

The three horizons coincide at [2144]

𝑟− = 𝑟𝐻 = 𝑟𝐶 = 3√
2𝜉

, (8.42)

when 𝜉 = 2 and 𝑞2 = 9/8.
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By demanding that two of the physical horizons coincide we set the discriminant of the quartic
equation 𝑓(𝑟) = 0 to zero and obtain the equation [2144, 2147])

1 − 𝑞2 − 𝜉 + 4
3𝜉𝑞

2 − 8
27𝜉𝑞

4 − 16
729𝜉

2𝑞6 = 0 , (8.43)

which has real solutions for 𝜉 when 0 < 𝑞2 < 9
8 . The critical value 𝜉𝐻,𝐶 at which 𝑟𝐻 = 𝑟𝐶 and the

corresponding value 𝜉−,𝐻 at which 𝑟− = 𝑟𝐻 may be obtained in terms of 𝑞2 by solving Eq. (8.43) as

𝜉𝐻,𝐶 = −22.7813𝑞−6 + 30.375𝑞−4 − 6.75𝑞−2 + 19.0919𝑞−6(1.125 − 𝑞2) 3
2 , (8.44)

𝜉−,𝐻 = −22.7813𝑞−6 + 30.375𝑞−4 − 6.75𝑞−2 − 19.0919𝑞−6(1.125 − 𝑞2) 3
2 . (8.45)

The first case corresponds to the charged Nariai solution [2147]. The critical values 𝜉𝐻,𝐶(𝑞2) and
𝜉−,𝐻(𝑞2) as a function of 𝑞2 are shown in Fig. 8.1 (left panel). The critical value 𝜉𝐻,𝐶(𝑞2) that leads
to a coincidence between the event and cosmological horizons (blue line) varies between 1 (SdS limit,
𝑞 = 0) and 2 (triple horizon coincidence limit, 𝑞2 = 9/8). The corresponding form of the function 𝑓(𝑟)
in these (and in other) limits is shown in Fig. 8.1 (right panel). The orange line corresponds to the
coincidence of the event with the cosmological horizon 𝑟𝐻 = 𝑟𝐶 in the SdS limit while the blue line shows
the coincidence of the same roots of 𝑓(𝑟) (𝑟𝐻 = 𝑟𝐶) in the general RN-dS case with 𝑞2 = 1.02. In both
cases the local maximum of 𝑓(𝑟) occures at 𝑓(𝑟) = 0.

In the case of RN-dS, we study tachyonic instabilities of the neutral massive scalar field perturbations
in the event-cosmological horizon region, defined as 𝑟+ = 𝑟𝐻 < 𝑟 < 𝑟𝐶 using tortoise coordinates 𝑟*(𝑟)
defined as

𝑟* =
∫︁

𝑑𝑟√︁
1 − 2𝑀

𝑟 + 𝑄2

𝑟2 − Λ
3 𝑟

2
=

= 1
2𝜅−

ln
(︂
𝑟

𝑟−
− 1
)︂

+ 1
2𝜅𝐻

ln
(︂
𝑟

𝑟𝐻
− 1
)︂

+ 1
2𝜅𝐶

ln
(︂

1 − 𝑟

𝑟𝐶

)︂
+ 1

2𝜅𝑁
ln
(︂

1 − 𝑟

𝑟𝑁

)︂
, (8.46)

with 𝜅𝑖 (𝑖 = −, 𝐻,𝐶) the surface gravity for the horizon 𝑟 = 𝑟𝑖

𝜅𝑖 ≡ 1
2
𝑑𝑓

𝑑𝑟
|𝑟=𝑟𝑖

= 𝑀

𝑟2
𝑖

− 𝑄2

𝑟3
𝑖

− 1
3Λ𝑟𝑖 , (8.47)

where we note that 𝜅− < 0 and 𝜅𝐶 < 0. It is easy to see that the tortoise coordinates 𝑟*(𝑟) shift the
horizons 𝑟𝐻 and 𝑟𝐶 to ±∞.

The values of the inner (Cauchy) and outer (event) horizon in the case of RN background (Λ = 0) for
𝑄 < 𝑀 are e.g. [1943]

𝑟± = 𝑀 ±
√︀
𝑀2 −𝑄2 . (8.48)

In the case of RN-dS spacetime a rescaling of the radial and time coordinates by 𝑀 (𝑟/𝑀 → 𝑟, 𝑡/𝑀 → 𝑡)
and the introduction of the dimensionless parameters 𝜉 (defined in Eq. (8.28)), 𝑞 = 𝑄/𝑀 and 𝑚𝑀 (de-
fined in Eq. (8.37)) lead to the Schrodinger-like equation (8.39) with maximum scale (𝑙 = 0) generalized
Regge-Wheeler potential of the form

𝑀2 𝑉*0(𝑟(𝑟*)) =
(︂

1 − 2
𝑟(𝑟*) + 𝑞2

𝑟(𝑟*)2 − 1
27𝜉𝑟(𝑟*)2

)︂(︂
2

𝑟(𝑟*)3 − 2𝑞2

𝑟(𝑟*)4 − 2
27𝜉 +𝑚2𝑀2

)︂
, (8.49)

with 𝑟* ∈ (−∞,+∞).
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Figure 8.2: The 𝑚2𝑀2 dependent Regge-Wheeler dimensionless potentials 𝑉𝑀2 (left panel) and 𝑉*𝑀
2

(middle panel) as a function of 𝑟/𝑀 and 𝑟*/𝑀 respectively in the cases of the SdS (𝑄 = 0) (red curves)
and RN-dS (𝑄/𝑀 = 0.9) (blue curves) spacetimes for angular scale 𝑙 = 0 and dimensionless parameter
fixed to 𝜉 = 0.5. The solid curves correspond to the critical value of the scalar field mass 𝑚2

𝑐𝑟𝑀
2 = 0.

The right panel demonstrates the process for identifying the zero eigenvalue eigenstate i.e. setting Ω = 0
in Eq. (8.39) and increasing the dimensionless parameter 𝑚2𝑀2 until the solution 𝑢0(𝑟*/𝑀) satisfies
both end boundary conditions (8.56)-(8.59) for Ω = 0. This value of 𝑚2𝑀2 is the critical value for the
considered value of 𝜉. The potential gets deeper and more accepting to bound states (instabilities) as the
𝑚2𝑀2 gets lower.
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Figure 8.3: The 𝜉 dependent Regge-Wheeler dimensionless potentials 𝑉𝑀2 (left panel) and 𝑉*𝑀
2 (middle

panel) as a function of 𝑟/𝑀 and 𝑟*/𝑀 respectively in the case of the SdS (solid curves) and RN-dS (dashed
curves) spacetimes for angular scale 𝑙 = 0 and critical value for 𝑚2 = 𝑚2

𝑐𝑟 = 0. The radial function
𝑢0(𝑟*/𝑀) (right panel) which is the radial zero mode solution of Schrodinger like equation (8.39) with
Ω = 0 and boundary conditions (8.56) and (8.57) at large negative 𝑟*. For critical value of the scalar
field mass 𝑚2

𝑐𝑟𝑀
2 = 0 the boundary conditions (8.58) and (8.59) at large positive 𝑟* are satisfied. The

brown and purple dotted curves correspond to the pure Schwarzschild (𝑄 = 0, 𝜉 = 0) and RN (𝑄 ̸= 0,
𝜉 = 0) backgrounds respectively. The potential gets deeper as 𝜉 decreases and 𝑄/𝑀 increases. However,
since the local maximum of the potential also increases as the potential gets deeper, the critical value
𝑚𝑐𝑟𝑀 for the existence of bound states remains the same and equal to zero in all cases.
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8.3 Numerical solution: Parameter region for instability,
Growth rate.

The questions we want to address in this section are the following:

• What is the critical value 𝑚𝑐𝑟(𝑞, 𝜉)2 such that for 𝑚2 > 𝑚2
𝑐𝑟 Eq. (8.39) with a real Ω2 has no

bound state solutions (no instabilities) respecting the physically acceptable boundary conditions that
correspond to finite field values at the two horizons (𝑟* → ±∞)?

• What is the growth rate Ω(𝑞, 𝜉,𝑚2𝑀2) of tachyonic instabilities (𝑚2 < 𝑚2
𝑐𝑟) and how does this

growth rate compare with the corresponding growth rate in a flat Minkowski spacetime?

We thus solve the Schrodinger-like Regge-Wheeler equation (8.39) and for fixed values of 𝑞 and 𝜉 we start
from a low negative 𝑚2 and identify the ground state solution. Then we increase the value of 𝑚2 until
there are no bound states (instability modes) with physically acceptable boundary conditions. At the
critical value 𝑚2 = 𝑚2

𝑐𝑟 there will only be a zero mode solution with eigenvalue Ω = 0 (infinite lifetime
mode). Such a mode may be interpreted as a scalar hair zero mode. As discussed in the ’Introduction’,
in Minkowski space (𝑀 = Λ = 𝑄 = 0), we have 𝑚𝑐𝑟 = 0. Does this value of 𝑚𝑐𝑟 change in RN-dS or in
SdS spacetimes?

To address this question we must first find the required ‘physical boundary conditions’. We demand
that the physically acceptable solution should be finite on the two horizons i.e.

𝑢0(𝑟* → ∞) < +∞ ,

𝑢0(𝑟* → −∞) < +∞ .
(8.50)

Since 𝑉*0(𝑟*) goes exponentially fast to 0 for 𝑟* → ±∞, we conclude that the general asymptotic solution
of Eq. (8.39) is

𝑢0(𝑟* → ±∞) = 𝐴𝑒Ω𝑟* +𝐵𝑒−Ω𝑟* . (8.51)

For finiteness we demand

𝑢0(𝑟* → +∞) =𝐵𝑒−Ω𝑟* , (8.52)
𝑢0(𝑟* → −∞) =𝐴𝑒Ω𝑟* . (8.53)

These imply

𝑢′
0(𝑟* → +∞) = −Ω𝐵𝑒−Ω𝑟* , (8.54)
𝑢′

0(𝑟* → −∞) = Ω𝐴𝑒Ω𝑟* , (8.55)

where we can rescale 𝑢0(𝑟*) such that 𝐴 = 1. These boundary conditions leading to instability may
be associated with bound states (Ω2 > 0, Ω ∈ R) of the Schrodinger-like equation (8.39) with effective
Regge-Wheeler potential 𝑉*0(𝑟*) (see Eq. (8.40) for SdS spacetime and Eq. (8.49) for RN-dS spacetime).
Our search for scalar instabilities (Ω2 > 0) should be contrasted with the search for the values of QNMs
which involves propagating boundary conditions at the horizons. These studies have also indicated the
presence of scalar instabilities in a different physical setup (charged massive scalar field in Kerr-Newman
black holes with positive 𝑚2 [2148]).

The Regge-Wheeler potential 𝑉*0(𝑟*) is mostly accepting bound states for lower values of 𝑚2𝑀2 and
for higher values of 𝑄/𝑀 . This is demonstrated in Fig. 8.2 where we show the form of 𝑉*0(𝑟*) for various
values of the dimesionless parameter 𝑚2𝑀2 in the cases of the SdS (𝑄 = 0) and RN-dS (𝑄/𝑀 = 0.9)
spacetimes for angular scale 𝑙 = 0 and 𝜉 = 0.5 indicating that as 𝑚2𝑀2 gets lower and as 𝑄/𝑀 gets
higher, the minimum of the Regge-Wheeler potential gets deeper and thus it becomes more accepting to
the existence of bound states (instabilities). The critical value 𝑚𝑐𝑟(𝑞, 𝜉)2 is such that for 𝑚2 > 𝑚2

𝑐𝑟 there
are no bound states (instabilities) respecting the boundary conditions (8.52), (8.53), (8.54) and (8.55).
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Figure 8.4: The critical value of the scalar field mass 𝑚2
𝑐𝑟𝑀

2 is zero and independent of the dimensionless
parameter 𝜉 (with 𝜉 ∈ [0, 𝜉𝐻,𝐶(𝑞)]) in the case of the SdS and RN-dS spacetime (blue straight line) for
𝑙 = 0. The solid curves show the form of 𝑚𝑐𝑟(𝑞, 𝜉)2𝑀2 that saturates the Sufficient for Instability
Criterion (SIC) Eq. (8.60) while the corresponding dashed curves shows the forms of 𝑚𝑐𝑟(𝑞, 𝜉)2𝑀2 that
saturate the Sufficient for Stability Criterion (SSC) Eq. (8.61) for three values of 𝑄/𝑀 . As expected,
the exact value of 𝑚𝑐𝑟𝑀 = 0 is between the SIC lines (lower lines) and SSC lines (upper lines) so that
none of the criteria is violated (SSC or SIC).

Figure 8.5: The dimensionless growth rate of the instability Ω𝑀 as a function of the dimensionless
parameters 𝜉 and 𝑞2 = 𝑄2/𝑀2 for scalar field mass 𝑚2𝑀2 = −0.05 (cyan surface) and 𝑚2𝑀2 = −0.2
(yellow surface).
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The critical value 𝑚𝑐𝑟(𝑞, 𝜉)2 is obtained by solving Eq. (8.39) with boundary conditions (8.52), (8.53),
(8.54) and (8.55) for a zero eigenvalue Ω = 0 corresponding to a borderline unstable mode (zero mode)
with infinite lifetime and zero growth rate. For such a zero mode, the boundary conditions (8.52), (8.53),
(8.54) and (8.55) become

𝑢0(𝑟* → −∞) = 1 , (8.56)
𝑢′

0(𝑟* → −∞) = 0 , (8.57)
𝑢0(𝑟* → +∞) =𝐵 , (8.58)
𝑢′

0(𝑟* → +∞) = 0 , (8.59)

where we have set 𝐴 = 1.
In practice we use the shooting method in solving Eq. (8.39) with Ω = 0, fixed 𝜉, 𝑞, boundary

conditions (8.56), (8.57) at large negative 𝑟* and adjust 𝑚2𝑀2 until the boundary conditions (8.58) and
(8.59) are satisfied (see Fig. 8.2 right panel). By repeating this process for several values of 𝑞2 ∈ [0, 9

8 ]
and 𝜉 ∈ [0, 𝜉𝐻,𝐶(𝑞)] we have found 𝑚𝑐𝑟(𝜉, 𝑞)2 = 0 i.e. the zero mode appears at 𝑚2 = 0 for all parameter
values 𝜉, 𝑞 where there is a finite distance between the event and the cosmological horizons.

In Fig. 8.3 we show the form of the Regge-Wheeler potentials 𝑉0(𝑟/𝑀) and 𝑉*0(𝑟*/𝑀) as well as the
radial zero mode solution 𝑢0(𝑟*/𝑀) for the critical value 𝑚𝑐𝑟(𝑞, 𝜉) = 0 for 𝜉 = 0.1, 0.5, 0.9 in the case of
the SdS spacetime (𝑞 = 0) and in the case of RN-dS spacetime (𝑞 = 0.9). Notice that in the absence of a
cosmological horizon (𝜉 = 0, pure Schwarzschild and Reissner-Nordström spacetimes) the Regge-Wheeler
potential 𝑉* is positive everywhere for 𝑚 = 0 and the absence of bound states is obvious. However,
this is not the case for 𝜉 > 0 which requires numerical solution of the Schrodinger-like equation for the
determination of 𝑚𝑐𝑟.

There is a simple semi-analytical way to derive sufficient conditions for instability and for stability
and thus test the validity of the numerically obtained form of 𝑚2

𝑐𝑟 = 0 for various values of the parameters
𝜉 and 𝑞. It is well known that a sufficient condition for the existence of bound states in a Schrodinger
equation potential 𝑉*0(𝑟*) is the following Sufficient for Instability Criterion (SIC) [2149–2151]

𝐼𝑆𝐼𝐶 =
∫︁ +∞

−∞
𝑉*0(𝑟*)𝑑𝑟* < 0 =⇒∫︁ 𝑟𝐶

𝑟𝐻

𝑉0(𝑟)
𝑓(𝑟) 𝑑𝑟 =

∫︁ 𝑟𝐶

𝑟𝐻

(︂
𝑙(𝑙 + 1)
𝑟2 + 𝑓 ′(𝑟)

𝑟
+𝑚2

)︂
𝑙=0

𝑑𝑟 =∫︁ 𝑟𝐶

𝑟𝐻

(︂
𝑙(𝑙 + 1)
𝑟2 + 2

𝑟3 − 2𝑞2

𝑟4 − 2
27𝜉 +𝑚2𝑀2

)︂
𝑙=0

𝑑𝑟 < 0 ,

(8.60)

where we have used Eqs. (8.26) and (8.49) for the form of 𝑉0(𝑟) and the dimensionless parameters 𝜉 and
𝑞. In addition, a positive definite potential can not have bound states (negative eigenvalues corresponding
to Ω2 > 0) and thus in such a potential we would only have stable oscillating modes (Ω2 < 0). Thus
a Sufficient for Stability Criterion (SSC) is that the minimum of the Schrodinger potential should be
positive i.e.

𝑉0𝑚𝑖𝑛(𝑟𝑚𝑖𝑛) > 0 . (8.61)
Using the SIC and the SSC we have constructed the upper and lower curves in Fig. 8.4 which correspond
to the values of 𝑚(𝜉)2𝑀2 that saturate the SSC (upper curves) and SIC (lower curves). Also, using
the SSC we find an analytical expression 𝑚2(𝜉)𝑀2 for 𝑄 = 0 (upper curve in Fig. 8.4 see Appendix
E). Thus, by construction all parameter values below the lower curves satisfy the SIC Eq. (8.60) and
must correspond to tachyonic instabilities while all parameter values above the upper curves of Fig.
8.4 satisfy the SSC Eq. (8.61) and have no instabilities. As expected the precise numerically obtained
values of 𝑚𝑐𝑟(𝜉)2 = 0 are between the SIC and SSC curves so that none of the two sufficient (but not
necessary) conditions is violated. Even though the value 𝑚𝑐𝑟(𝑞, 𝜉) = 0 for the emergence of tachyonic
instabilities is independent of the metric parameters and remains the same in the RN-dS spacetime as
in the flat Minkowski spacetime, the growth rate Ω(𝑞, 𝜉,𝑚) of tachyonic instabilities (𝑚2 < 0) does have
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Figure 8.6: The 𝜉 dependent relative growth rate of the instability Ω/Ω𝐹 (with Ω𝐹 the growth rate of
the instability in flat spacetime) as a function of the dimensionless parameter 𝑞2 = 𝑄2/𝑀2 for the scalar
field mass 𝑚2𝑀2 = −0.05 (left panel) and 𝑚2𝑀2 = −0.2 (right panel). The curves for a given parameter
value 𝜉 (with 𝜉 < 1) turn out to be straight lines. The range of values of 𝜉 and 𝑞 is determined by the
physically interesting parameter region between the green and blue lines of Fig. 8.1.The parameter region
corresponding to linear behavior of Ω(𝑞2) (yellow region) is also shown in Fig. 8.1.

a dependence on the metric parameters. In order to identify this dependence we consider an unstable
mode with fixed 𝑚2 < 𝑚𝑐𝑟(𝑞, 𝜉)2 = 0 and given 𝜉 and 𝑞, we find the growth rate Ω of the instability
by finding the ground state eigenvalue4 Ω2 and eigenfunction 𝑢0(𝑟*) of the Schrodinger-like equation
(8.39) which has no nodes and obeys the boundary conditions (8.53)-(8.55), (8.52) and (8.54). We thus
construct Fig. 8.5 which shows the dimensionless growth rate of the instability Ω𝑀 as a function of the
dimensionless parameters 𝜉 and 𝑞2 = 𝑄2/𝑀2 for scalar field mass 𝑚2𝑀2 = −0.05 and 𝑚2𝑀2 = −0.2.
Clearly, when 𝜉 increases and/or 𝑞 decreases towards 0, the growth rate of the instability Ω𝑀 decreases
and as 𝑚2𝑀2 → 0 we have Ω𝑀 → 0 (the zero mode is reached). In addition to this interesting monotonic
behavior of the instability growth rate Ω with respect to the metric parameters, Ω also remains smaller
than its flat space value Ω𝐹 = |𝑚|. This is demonstrated in Fig. 8.6 where we show the dependence of

Ω
Ω𝐹

on 𝑞2 for various values of 𝜉 for 𝑚2𝑀2 = −0.05 (left panel) and 𝑚2𝑀2 = −0.2 (right panel). We have
considered parameter values between the green and blue lines of Fig. 8.1 where three distinct horizon
exist in the RN-dS metric. The following observations can be made based on Figs. 8.5 and 8.6

• The relative growth rate of the tachyonic instabilities Ω
Ω𝐹

is a monotonically increasing function of
𝑞2 and a monotonically decreasing function of 𝜉.

• Ω
Ω𝐹

is significantly smaller than unity. This reduction implies that background curvature and espe-
cially the combination of an event horizon with a cosmological horizon tend to delay the evolution
of instabilities.

• There is a linear relation between Ω
Ω𝐹

and 𝑞2 for fixed 𝜉 < 1. This is evident in both Fig. 8.6 and in
Fig. 8.5. For example the straight blue lines of Fig. 8.5 correspond to the dependence of Ω 𝑀 on

4Possible excited states would correspond to lower values of Ω and thus lower growth rate. We thus find the maximum
possible growth rate of instabilities for a given set of parameters.

154



Chapter 8. Scalar Tachyonic Instabilities in Gravitational Backgrounds: Existence and Growth Rate

SdS spacetime (Q=0), l=0

Minkowski spacetime
ξ=0.1

ξ=0.2

ξ=0.3

ξ=0.4

ξ=0.5

ξ=0.6

ξ=0.7

ξ=0.8

ξ=0.9

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0

0.2

0.4

0.6

0.8

m2 M2

Ω
Μ

RN- dS spacetime l=0 , Q2M2=0.3

Minkowski spacetimeξ=0.1

ξ=0.2

ξ=0.3

ξ=0.4

ξ=0.5

ξ=0.6

ξ=0.7

ξ=0.8

ξ=0.9

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.0

0.2

0.4

0.6

0.8

m2 M2
Ω
Μ

Figure 8.7: The 𝜉 dependent dimensionless growth rate of the instability Ω𝑀 as a function of the scalar
field mass 𝑚2𝑀2 (with 𝑚(𝜉)2 < 𝑚𝑐𝑟(𝜉)2 = 0) for dimensionless parameters 𝑄2/𝑀2 = 0 (SdS spacetime)
(left panel) and 𝑄2/𝑀2 = 0.3 (RN-dS spacetime) (right panel). The green dashed curves correspond to
Ω𝑀(𝑚2𝑀2) in the case of the Minkowski spacetime. Clearly, for a given field mass, the growth rate is
more suppressed in the absence of charge and for higher values of 𝜉.

𝑞2 for fixed 𝜉 which are equivalent to the straight lines of Fig. 8.6. Notice that this linear relation
is violated for 𝜉 > 1 (see shaded regions in Figs. 8.1 and 8.6) .

• The growth rate Ω is a decreasing function of |𝑚|2 which goes to zero as 𝑚2 → 𝑚2
𝑐𝑟 = 0 where the

zero mode develops. This is illustrated in more detail in Fig. 8.7.

The crucial feature of the RN-dS metric that has lead to the above described trend for delay of instability
growth of the tachyonic modes is the combination of the cosmological horizon with an event horizon. This
combination, limits the range of negative values of the Regge-Wheeler potential in tortoise coordinates for
𝑚2 < 0 and thus makes it less accepting to bound states and instabilities. In the absence of a cosmological
horizon the Regge-Wheeler potential in tortoise coordinates would remain negative out to 𝑟* → ∞. This
is illustrated in the next section.

8.4 Limiting cases with a single horizon: pure desitter and pure
Schwarzschild spacetimes

We now consider separately the two single horizon limiting cases: pure deSitter and pure Schwarzschild
spacetimes in order to isolate the effects of the cosmological and event horizons.

8.4.1 Pure deSitter background
In the pure deSitter case (𝑀 = 0, 𝑄 = 0), the potential 𝑉*0(𝑟*) is shown in Fig. 8.8 for various values of
𝑚2/Λ and may be obtained analytically as [2152]

𝑉*0(𝑟*) =
𝑚2 − 2

3 Λ
cosh2 𝑟*√

3
Λ

≃0<𝑟*≪
√

3
Λ

(︂
𝑚2 − 2

3Λ
)︂

+ Λ
9
(︀
2Λ − 3𝑚2)︀ 𝑟2

* + 𝒪(𝑟4
*) . (8.62)
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After a rescaling 𝑟*
√

Λ → 𝑟*, 𝑚2/Λ → 𝑚2 which practically amounts to setting Λ = 1 it is obvious that
the SSC is satisfied for 𝑚2 > 2

3 which guarantees no instabilities for this range of 𝑚2. Since there is only
cosmological horizon in this case, the range of the tortoise coordinate is 𝑟* ∈ [0,+∞]. For Ω = 0 the
Schrodinger-like equation to solve in this case takes the form

𝑑𝑢2
0

𝑑𝑟2
*

− 1
Λ𝑉*(𝑟*)𝑢0(𝑟*) = 0 . (8.63)

Since the potential vanishes at +∞ due to the cosmological horizon, the physically interesting (finite)
boundary condition at 𝑟* −→ +∞ is

𝑢0(𝑟* → +∞) = 𝐶 , (8.64)
𝑢′

0(𝑟* → +∞) = 0 . (8.65)
At the other boundary 𝑟* → 0 we have

𝑑𝑟*

𝑑𝑟
= 1 =⇒ 𝑟* = 𝑟 , (8.66)

and due to Eqs. (8.22) and (8.38) for a finite scalar field at 𝑟 = 0 we must have

Ψ0(𝑟 → 0) = 0 =⇒ 𝑢0(𝑟 → 0) = 𝑢0(𝑟* → 0) = 0 . (8.67)
Thus using Eqs. (8.62) and (8.63) it is straightforward to show that

𝑢0(𝑟* → 0) = 𝑟* , (8.68)

where we have used the normalization freedom to set the slope of the linear function to unity. Thus in
this case, the physical boundary conditions are

𝑢′
0(𝑟* → 0) = 1 , (8.69)
𝑢0(𝑟* → 0) = 0 , (8.70)

𝑢0(𝑟* → +∞) =𝐶 , (8.71)
𝑢′

0(𝑟* → +∞) = 0 . (8.72)

Solving Eq. (8.63) corresponding to Ω = 0 from 𝑟* = 0 with the boundary conditions (8.69) and (8.70),
we obtain (8.71) and (8.72) only for 𝑚𝑐𝑟 = 0. Thus, despite of the negative effective Regge-Wheeler
potential in the deSitter background, the tachyonic instabilities develop for the same range of 𝑚2 as in
the Minkowski space (𝑚2 < 0). It is straightforward to find the ground state eigenvalue and show that
Ω(𝑚2/Λ) < |𝑚| as in the case of other specetimes where a cosmological horizon is present (see Fig. 8.9).

8.4.2 Pure Schwarzschild background
In the pure Schwarzschild background (Λ = 0) we have [2153, 2154]

𝑓(𝑟) = 1 − 2𝑀
𝑟

, (8.73)

𝑉 (𝑟) =
(︂

1 − 2𝑀
𝑟

)︂(︂
𝑙(𝑙 + 1)
𝑟2 + 2𝑀

𝑟3 +𝑚2
)︂
, (8.74)

𝑟*(𝑟) = 𝑟 + 2𝑀 ln
(︁ 𝑟

2𝑀 − 1
)︁
. (8.75)

It is easy to see that in both the tortoise and the Schwarzschild coordinates the Regge-Wheeler potential
𝑉*0 does not vanish asymptotically at +∞. Instead we have (see also Fig. 8.10)

lim
𝑟*→+∞

𝑉*0 = 𝑚2 . (8.76)
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Figure 8.8: The 𝑚2/Λ dependent Regge-Wheeler dimensionless potential 𝑉*/Λ as a function of 𝑟*
√

Λ
in the case of the deSitter spacetime (𝑀 = 0, 𝜉 = 0) for angular scale 𝑙 = 0 . The green solid curve
corresponds to the critical value of the scalar field mass 𝑚2

𝑐𝑟/Λ = 0. The dotted (𝑚2/Λ > 0) and dashed
(𝑚2/Λ < 0) curves correspond to non-existence of bound states (stabilities) and existence of bound states
(instabilities) respectively.
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deSitter spacetime , l=0

Minkowski spacetime
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Figure 8.9: The dimensionless growth rate of the instability Ω/
√

Λ as a function of the scalar field mass
𝑚2/Λ (with 𝑚 < 𝑚𝑐𝑟 = 0) in the case of deSitter spacetime. Clearly Ω(𝑚2/Λ) < |𝑚| as in the other
cases where a cosmological horizon is present.
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Figure 8.10: The 𝑚2𝑀2 dependent Regge-Wheeler dimensionless potentials 𝑉𝑀2 (left panel) and 𝑉*𝑀
2

(right panel) as a function of 𝑟/𝑀 and 𝑟*/𝑀 respectively in the case of the Schwarzschild spacetime
(Λ = 0, 𝜉 = 0) for angular scale 𝑙 = 0 . The blue solid curves correspond to the critical value of the
scalar field mass 𝑚2

𝑐𝑟𝑀
2 = 0. The dotted (𝑚2𝑀2 > 0) and dashed (𝑚2𝑀2 < 0) curves correspond to

non-existence of bound states (stabilities) and existence of bound states (instabilities) respectively.
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This implies that for 𝑚2 < 0 the SIC implies instability since∫︁ ∞

−∞
𝑉 (𝑟*)𝑑𝑟* =

∫︁ ∞

𝑟𝐻

𝑉 (𝑟)𝑑𝑟 =
∫︁ ∞

𝑟𝐻

(︂
1 − 2𝑀

𝑟

)︂(︂
𝑙(𝑙 + 1)
𝑟2 + 2𝑀

𝑟3 +𝑚2
)︂
𝑑𝑟 = −∞ < 0 . (8.77)

Therefore for 𝑚2 < 0 we have tachyonic instability just as in the Minkowski space. Similarly for 𝑚2 > 0 we
have 𝑉 (𝑟) > 0 and 𝑉*0(𝑟*) > 0 which is the SSC (see also Fig. 8.10) which secures that we have stability.
Thus in the Schwarzchild backround, tachyonic instabilities develop for the same mass parameter range
as for the Minkowski background.

In this case, for 𝑚2 < 0, the boundary conditions (8.52)-(8.53) become

𝑢0(𝑟* → +∞) =𝐵𝑒−𝑖
√

|𝑚|2−Ω2𝑟* , (8.78)
𝑢0(𝑟* → −∞) =𝐴𝑒Ω𝑟* , (8.79)

i.e. there are propagating waves towards +∞ even for 𝑚2 < 0. There are non-zero solutions satisfying
these boundary conditions only for Ω ≤ |𝑚|. This implies that the maximum growth rate of tachyonic
istabilities in this case is the same as in flat space Ω = |𝑚|. This is due to the absence of a cosmological
horizon.

8.5 Conclusions
In this Chapter we have shown that tachyonic scalar instabilities of the KG equation have a slower
growth rate in RN-dS/ SdS metric background compared to flat Minkowski space for all values of metric
parameters where a cosmological horizons exists. We have also identified the critical value of scalar
field mass 𝑚2

𝑐𝑟 that for 𝑚2 < 𝑚2
𝑐𝑟 tachyonic instabilities develop and confirmed that 𝑚𝑐𝑟 = 0 as in flat

Minkowski spacetime.
The crucial property of the SdS spacetime that allows for this delayed growth of instabilities appears

to be the presence of a cosmological horizon that forces the effective Regge-Wheeler potential to vanish
at +∞ in tortoise coordinates even for negative scalar field mass 𝑚2. Thus the 𝑟* range where the
Regge-Wheeler potential is negative is limited favoring increased eigenvalues and lower growth rate of
instabilities.

This stabilizing effect of multiple horizons on tachyonic instabilities may have various interesting
implications which include the following

• Symmetry breaking phase transitions in field theory is based on the existence of tachyonic insta-
bilities in a scalar field potential which lead the system towards a new vacuum state with less
symmetry. In the context of a RN-dS background the delay of such tachyonic instabilities could
have interesting effects in the evolution of phase transitions in the Early Universe with possible
interesting observable effects related e.g. to the efficiency of the formation of topological defects
[2155, 2156].

• The backreaction effects of the tachyonic instabilities on the gravitational background may lead
to superradiance and scalarization effects [2123, 2157] in RN-dS spacetime in the same way that
scattering processes lead to similar effects in these spacetimes.

• The consideration of scalar field potentials supporting topological or semilocal defects (e.g. elec-
troweak strings [2158]) may lead to interesting new stabilization mechanisms induced by a multi-
horizon gravitational background.

These implications open up a wide range of extensions of our analysis. For example interesting
extensions include the following:
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• Consideration of more general background metrics to investigate the existence and growth rate
of tachyonic instability modes. Such backgrounds may include Kerr-Newman-deSitter spacetime
[2157, 2159–2166] or corresponding higher dimension spacetimes Gödel-like spacetime [2167, 2168]
etc.

• Investigate the effects of such delay of instabilities in the Early Universe and in particular during
inflation and cosmological phase transitions [2169–2172] in the context of more general scalar field
potentials beyond the KG equation.

• Investigate different types of perturbations (Dirac and gravitational) in multihorizon backgrounds
and in the presence of tachyonic modes.

• Consider different types of boundary conditions corresponding to scattering processes (propagating
waves at infinity) leading to evaluation of QNMs and scattering amplitudes (superradiance).

• Investigate the stability of semilocal and electroweak strings in strongly curved backgrounds includ-
ing multihorizon metrics.

In conclusion, the interesting non-trivial effects of the gravitational background on the tachyonic scalar
instabilities pointed out in our analysis open up a wide range of new directions in the understanding of
the dynamics of scalar fields in curved spacetimes.



Chapter 9

Constraints on Horndeski Modified Gravity -
Weak Gravity on a ΛCDM Background

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Radouane Gannouji, Prof. Leandros Perivolaropoulos and Prof. David Polarski and has been published
in Physical Review D [6].

In this chapter we study Horndeski modified gravity models obeying stability, velocity of gravitational
waves 𝑐𝑇 equals 𝑐 and Quasi-Static Approximation (QSA) on subhorizon scales. We assume further a
ΛCDM background expansion and a monotonic evolution on the cosmic background of the 𝛼 functions.
We take into account compilations of the 𝑓𝜎8 and 𝐸𝐺 data in order to derive constraints on 𝜇𝐺 and Σ𝐺

parameters.

As mentioned in Chapter 3 the growth tension, if not due to statistical or systematic errors, may
indicate the need for additional degrees of freedom extending ΛCDM. A generic physically motivated
origin of such degrees of freedom is the extension of GR to Modified Gravity (MG) models. A great
variety of MG models have been proposed so far to account for the growth tension. A wide class of such
MG theories is provided by Horndeski gravity. Horndeski gravity models [100, 101] (see Refs. [102, 103],
for a comprehensive review) is the most general ST theory involving a scalar degree of freedom in
four dimensions with second order equations of motion therefore avoiding the Ostrogradsky instability
[2173, 2174]. It provides a general framework to construct models of dark energy as well as inflation.
It includes dark energy models inside GR such as quintessence as well as a wide variety of MG models,
such as 𝑓(𝑅) gravity [112], BD theories [1845, 2175], galileons etc.

9.1 Introduction
The recent detection of gravitational waves emitted by binary systems has imposed stringent constraints
on their speed 𝑐𝑇 constraining the latter to be extremely close to the speed of light 𝑐 (𝑐𝑇 /𝑐 = 1 ±
10−15) [2176, 2177]. We know that 𝑐𝑇 = 𝑐 is a fundamental prediction of GR. This constraint has
significantly restricted the observationally allowed subclasses of Horndeski models. Notice that a way
to get around this constraint is to assume ab initio that 𝑐𝑇 depends on its wavelength [2178]. The
gravitational properties of Horndeski theories can be elegantly expressed by means of four free independent
functions of time namely the 𝛼-basis 𝛼𝑖(𝑡) (𝑖 = 𝑀,𝐾,𝐵, 𝑇 ) [2179], describing the linear perturbations,
while the background expansion is given by the Hubble parameter 𝐻(𝑎) where 𝑎 is the scale factor. These
four time dependent phenomenological functions describe any departure from GR and also characterize
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specific physical properties of the Horndeski models. GR is recovered when all 𝛼𝑖 are set to zero.
For specific choices of the 𝛼𝑖 the resulting theory may be unstable on a given background 𝐻(𝑎). Thus

two types of instabilities may occur:

• Ghost instabilities [2180] which arise when the kinetic term of the background perturbations has
the wrong sign giving negative energy modes. In this case the high energy vacuum is unstable with
respect to the spontaneous production of particles.

• Gradient instabilities which arise when the background 𝐻(𝑎) evolves in a region where the sound
speed of the perturbations becomes imaginary (𝑐2

𝑠 < 0). This leads to the appearance of exponen-
tially growing modes of the form 𝑒𝑐𝑠𝑘𝑡 at small scales.

The functions 𝛼𝑖 of a physically acceptable Horndeski model should avoid such instabilities. As discussed
below, this requirement restricts further the allowed Horndeski models [2181].

As we have mentioned above, the gravitational properties of Horndeski theories and the corresponding
observable quantities are uniquely specified by the four independent 𝛼𝑖(𝑎) functions [2179, 2182, 2183])
and the background expansion rate 𝐻(𝑎). These quantities in turn are determined by the form of the
Horndeski Lagrangian density as discussed in the next section and may be used to reconstruct them. The
𝛼𝑖 functions are connected not only with the fundamental Horndeski Lagrangian density but also with
gravitational observables like the (dimensionless, reduced) gravitational coupling entering the growth
of perturbations 𝜇𝐺(𝑎) ≡ 𝐺growth(𝑎)/𝐺 (by 𝐺 we mean here the usual numerical value of Newton’s
constant) and lensing properties Σ𝐺(𝑎) ≡ 𝐺lensing(𝑎)/𝐺 where 𝐺growth, resp. 𝐺lensing, is the effective
gravitational coupling for the growth of cosmological perturbations, resp. for lensing (8𝜋𝐺 ≡ 1/𝑀2

𝑝

where 𝑀𝑝 is the (reduced) Planck mass). The numerical value of 𝐺 is obtained from local experiments
(solar system, Eotvos type). Of course, depending on the models, these gravitational couplings can have
a broader physical meaning. For example, in massless scalar-tensor models 𝐺growth was called 𝐺eff , the
effective coupling for Newton’s gravitational attraction law in a laboratory experiment [582, 587]. An
efficient way to explore the physical content of Horndeski models as well as observational constraints on
these theories it to parametrize the 𝛼𝑖 functions [2184, 2185]. Such parametrizations usually assume the
validity of GR at early times (𝛼𝑖(𝑎 ≃ 0) = 0) while they allow for a deviation from GR at late times
in accordance with the observed accelerating expansion. Using such parametrizations, the gravitational
strength observables 𝜇𝐺 and Σ𝐺 may be derived and compared with cosmological observations leading to
constraints on the parameters involved in the evolution of the 𝛼𝑖 functions. However in view of what was
mentioned above, a physically interesting parameter region should satisfy additional requirements beyond
consistency with cosmological observations as it should correspond to viable Horndeski models. In this
work we investigate stable Horndeski models and we assume an early time behavior consistent with GR,
𝑐𝑇 = 𝑐, scale independence of the 𝛼 functions on subhorizon scales in the QSA, and finally a background
expansion 𝐻(𝑎) mimicking ΛCDM. We assume further a specific dependence of the 𝛼 functions on 𝑎, viz.
𝛼𝑖 = 𝛼𝑖0𝑎

𝑠, 𝑖 = 𝑀,𝐵, where 𝛼𝑖0 are arbitrary parameters and 𝑠 is some positive exponent.
With these assumptions, the goal of our analysis is to address the following questions:

• What is the allowed parameter space for our parametrization of the 𝛼 functions?

• Which behavior for 𝜇𝐺(𝑎) and Σ𝐺(𝑎) is obtained especially at recent times 𝑎 ≃ 1 and is it consistent
with observational constraints?

• How does the growth index 𝛾 behave in the parameter space defining the functions 𝛼𝑖?

The structure of this Chapter is the following: In the next Section 9.2 we present a brief review of the
Horndeski models. In the context of the 𝛼 parametrization and the above assumptions, we derive the
allowed parameter regions for various values of the exponent 𝑠. We also obtain the allowed forms of 𝜇𝐺

and Σ𝐺, comparing our results with previous studies. In Section 9.3 we use compilations of 𝑓𝜎8 and 𝐸𝐺

data along with the theoretical expressions for 𝑓𝜎8 and 𝐸𝐺 statistics data in order to derive constraints on
𝜇 and Σ𝐺 and to obtain the allowed range of the functions 𝛼𝑀 (𝑎) and 𝛼𝐵(𝑎). In Section 9.4 we consider
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the growth index 𝛾(𝑧) and identify the (𝛼𝑀0, 𝛼𝐵0, 𝑠) parameter region that corresponds to specific signs
of 𝛾0 − 𝛾Λ𝐶𝐷𝑀

0 , and 𝛾1 − 𝛾Λ𝐶𝐷𝑀
1 . Finally in Section 9.5 we conclude and discuss the implications of our

analysis.

9.2 Stability and generic forms of 𝜇𝐺 and Σ𝐺 for viable Horn-
deski theories

The Horndeski action, first written down in Ref. [100] and then rediscovered as a generalisation of
galileons in Refs. [101, 2186], is given by

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔

[︃ 5∑︁
𝑖=2

ℒ𝑖 [𝑔𝜇𝜈 , 𝜑] + ℒ𝑚 [𝑔𝜇𝜈 , 𝜓𝑚]
]︃
, (9.1)

where the Lagrangian density, ℒ𝑚, for all matter fields 𝜓𝑚 is universally coupled to the metric 𝑔𝜇𝜈 and
does not have direct coupling with the scalar field, 𝜑. The ℒ𝑖 are the scalar-tensor Lagrangians which
depend on the new degree of freedom 𝜑, viz.

ℒ2 = 𝐾(𝜑,𝑋) ,
ℒ3 = −𝐺3(𝜑,𝑋)□𝜑 ,

ℒ4 = 𝐺4(𝜑,𝑋)𝑅+𝐺4𝑋(𝜑,𝑋)
[︁
(□𝜑)2 − ∇𝜇∇𝜈𝜑∇𝜇∇𝜈𝜑

]︁
,

ℒ5 = 𝐺5(𝜑,𝑋)𝐺𝜇𝜈∇𝜇∇𝜈𝜑− 1
6𝐺5𝑋(𝜑,𝑋)

[︁
(□𝜑)3

− 3 (∇𝜇∇𝜈𝜑) (∇𝜇∇𝜈𝜑)□𝜑

+ 2 (∇𝜇∇𝜈𝜑)
(︀
∇𝜈∇𝛽𝜑

)︀
(∇𝛽∇𝜇𝜑)

]︁
, (9.2)

where 𝐾(𝜑,𝑋) ≡ 𝐺2(𝜑,𝑋) is the K-essence term, 𝐺𝑖(𝜑,𝑋) (𝑖 = 3, 4, 5) are three coupling functions of
the scalar field 𝜑 and its canonical kinetic energy 𝑋 ≡ − 1

2 ∇𝜇𝜑∇𝜇𝜑, 𝑅 is the Ricci scalar, 𝐺𝜇𝜈 is the
Einstein tensor, 𝐺𝑖𝑋 ≡ 𝜕𝐺𝑖/𝜕𝑋 and 𝐺𝑖𝜑 ≡ 𝜕𝐺𝑖/𝜕𝜑. In principle the functions 𝐺𝑖(𝜑,𝑋) can be chosen
freely and determine a particular Horndeski model.

As mentioned above Horndeski models are characterized by means of four functions of time, 𝛼𝑖(𝑡)
(𝑖 = 𝑀,𝐾,𝐵, 𝑇 ) [2179] in addition to the background evolution encoded in the Hubble parameter 𝐻(𝑎).
Thus using these functions which fully specify the linear evolution of perturbations allows us to disentangle
the background expansion from the evolution of the perturbations. The functions 𝛼𝐾 , 𝛼𝐵 , 𝛼𝑇 are
connected to the Lagrangian terms as follows [2179]

𝐻2𝑀2
*𝛼𝐾 = 2𝑋(𝐾𝑋 + 2𝑋𝐾𝑋𝑋 − 2𝐺3𝜑 − 2𝑋𝐺3𝜑𝑋)+

+ 12𝜑̇𝑋𝐻(𝐺3𝑋 +𝑋𝐺3𝑋𝑋 − 3𝐺4𝜑𝑋 − 2𝑋𝐺4𝜑𝑋𝑋)+
+ 12𝑋𝐻2(𝐺4𝑋 + 8𝑋𝐺4𝑋𝑋 + 4𝑋2𝐺4𝑋𝑋𝑋)−
− 12𝑋𝐻2(𝐺5𝜑 + 5𝑋𝐺5𝜑𝑋 + 2𝑋2𝐺5𝜑𝑋𝑋)+
+ 4𝜑̇𝑋𝐻3(3𝐺5𝑋 + 7𝑋𝐺5𝑋𝑋 + 2𝑋2𝐺5𝑋𝑋𝑋) , (9.3)

𝐻𝑀2
*𝛼𝐵 = 2𝜑̇(𝑋𝐺3𝑋 −𝐺4𝜑 − 2𝑋𝐺4𝜑𝑋)+

+ 8𝑋𝐻(𝐺4𝑋 + 2𝑋𝐺4𝑋𝑋 −𝐺5𝜑 −𝑋𝐺5𝜑𝑋)+
+ 2𝜑̇𝑋𝐻2(3𝐺5𝑋 + 2𝑋𝐺5𝑋𝑋) , (9.4)

𝑀2
*𝛼𝑇 = 2𝑋(2𝐺4𝑋 − 2𝐺5𝜑 − (𝜑− 𝜑̇𝐻)𝑋𝐺5𝑋) . (9.5)
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Note that we use the definition 𝛼𝐵 of Refs. [2179, 2187]. The quantities 𝜑, 𝑋 and 𝐻 are evaluated on
their background solution to give the particular time-dependence of the 𝛼𝑖 functions for that solution.
Also 𝑀−2

* is proportional to the gravitational coupling entering the cosmological background evolution.
Like in many MG models, it can depend on time and is given by [2179]

𝑀2
* ≡ 2(𝐺4 − 2𝑋𝐺4𝑋 +𝑋𝐺5𝜑 − 𝜑̇𝐻𝑋𝐺5𝑋) , (9.6)

where 𝜑 is the homogeneous value of the scalar field on the cosmic background and a dot denotes
differentiation with respect to cosmic time 𝑡.

Each function 𝛼𝑖(𝑡) is linked with a specific physical property and describes particular classes of
models In particular, the braiding function 𝛼𝐵 describes the mixing of the kinetic terms of the scalar and
metric, the kineticity 𝛼𝐾 parametrizes the kinetic energy of the scalar perturbations, the tensor speed
excess 𝛼𝑇 quantifies how much the gravitational waves (tensor perturbations) speed 𝑐𝑇 deviates from
that of light, finally 𝛼𝑀 describes the evolution of 𝑀2

* as follows [2179, 2188]

𝛼𝑀 ≡ 𝐻−1 𝑑 ln𝑀2
*

𝑑𝑡
. (9.7)

The ΛCDM model, and more generally GR, corresponds to the particular case 𝑀2
* = 𝑀2

𝑝 and 𝛼𝑀 =
𝛼𝐵 = 𝛼𝐾 = 𝛼𝑇 = 0.

In Horndeski theories, we obtain the Friedmann equations replacing 𝑀𝑝 with the effective Planck
mass 𝑀*, so the Friedmann equations take the form [2179, 2187]

3𝐻2 = 1
𝑀2

*
(𝜌𝑚 + ℰ𝐷𝐸) , (9.8)

2𝐻̇ + 3𝐻2 = − 1
𝑀2

*
(𝑝𝑚 + 𝒫𝐷𝐸) , (9.9)

where ℰ𝐷𝐸 and 𝒫𝐷𝐸 are the energy density and pressure associated to the additional degree of freedom
(the full expressions are provided in the Appendix F). They are related to the energy density 𝜌𝐷𝐸 and
pressure 𝑃𝐷𝐸 of the effective dark energy component as,

𝜌𝐷𝐸 = ℰ𝐷𝐸 − 3(𝑀2
* −𝑀2

𝑝 )𝐻2 , (9.10)

𝑃𝐷𝐸 =
𝑀2

𝑝

𝑀2
*

𝒫𝐷𝐸 , (9.11)

where in the last expression we have put 𝑝𝑚 = 0 as we consider here dust-like matter. With these
definitions the modified Friedmann equations are recast into an Einsteinian form, viz.

3𝐻2 = 1
𝑀2

𝑝

(𝜌𝑚 + 𝜌𝐷𝐸) , (9.12)

2𝐻̇ + 3𝐻2 = − 1
𝑀2

𝑝

𝑃𝐷𝐸 . (9.13)

The stability conditions to be imposed on the functions 𝛼𝑖(𝑎) are the following [2179, 2181]

𝛼𝐾 + 3
2𝛼

2
𝐵 ≥ 0 , (9.14)

𝑐2
𝑠 > 0 , (9.15)

where 𝑐𝑠 is the speed of sound which is connected to the 𝛼𝑖’s as follows [2179, 2188](︂
𝛼𝐾 + 3

2𝛼
2
𝐵

)︂
𝑐2

𝑠 = 𝛼̇𝐵

𝐻
− 𝜌𝑚

𝐻2𝑀2
*

− (2 − 𝛼𝐵)
[︁ 𝐻̇
𝐻2 + 𝛼𝑇 − 𝛼𝑀 − 𝛼𝐵

2 (1 + 𝛼𝑇 )

]︁
. (9.16)
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The gravitational waves travel at the speed (with 𝑐 = 1)

𝑐2
𝑇 = 1 + 𝛼𝑇 . (9.17)

Recent multimessenger constraints on gravitational waves using the neutron star inspiral GW170817
detected through both the emitted gravitational waves and 𝛾-rays GRB 170817A [2176, 2177, 2189, 2190],
imply that 𝑐𝑇 is extremely close to the speed of light i.e. 𝑐𝑇 = 1 ± 10−15. This constraint effectively
eliminates all Horndeski theories with 𝛼𝑇,0 ≡ 𝛼𝑇 (𝑎 = 1) ̸= 0 (we take 𝑎0 = 1). We consider in this
analysis only those models satisfying 𝛼𝑇 = 0.

The 𝛼𝑖 functions are independent of each other, i.e. they can be parametrized independently. However,
for simplicity and in accordance with previous studies [1405, 2181], we assume that all the functions 𝛼𝑖

have the same power law dependence on the scale factor 𝑎, viz.

𝛼𝑖 = 𝛼𝑖0 𝑎
𝑠 with 𝑠 > 0 , (9.18)

where the constants 𝛼𝑖0 are their current values. The exponent 𝑠 determines the time evolution for the
considered modified gravity model. One of the main goals of this analysis is to impose constraints on
these parameters using cosmological observations and the assumptions mentioned earlier. From Eq. (9.7)
we have for the quantity 𝑀*

𝑀* = 𝑀𝑝𝑒

∫︀ 𝑎

0
𝛼𝑀

𝑑𝑎′
2𝑎′ = 𝑀𝑝𝑒

𝛼𝑀0
𝑎𝑠

2𝑠 , (9.19)

in accordance with our assumption 𝑀*(𝑎 = 0) = 𝑀𝑝. We obtain also

𝑀*(𝑎 = 1) = 𝑀𝑝𝑒
𝛼𝑀0

2𝑠 . (9.20)

We have therefore 𝑀*(𝑎 = 1) ≈ 𝑀𝑝 for 𝛼𝑀0 ≪ 2𝑠. Otherwise, the local value of the scalar field 𝜑 must
differ from its value on cosmic scales. We recover 𝑀̇*

𝑀*
= 𝛼𝑀

2 𝐻 in accordance with Eq. (9.7), and in
particular

𝑀̇*

𝑀*
(𝑎 = 1) = 𝛼𝑀0

2 𝐻0 . (9.21)

On subhorizon scales, the QSA applies to scales below the sound horizon of the scalar field (𝑘 ≫ 𝑎𝐻/𝑐𝑠

or 𝜆 ≪ 𝜆𝐽 where 𝜆𝐽 is the Jeans length) [587, 1305, 2182] and the time-derivatives of the metric and
of the scalar field perturbations are neglected compared to their spatial gradients. In the conformal
Newtonian gauge, the perturbed FLRW metric takes the form of Eq. (3.9). This leads to the Eqs.
(3.10) and (3.11) for the Bardeen potentials Ψ and Φ in Fourier space defining our functions Σ𝐺(𝑎, 𝑘)
and 𝜇𝐺(𝑎, 𝑘). The functions Σ𝐺(𝑎, 𝑘) and 𝜇𝐺(𝑎, 𝑘) are generically time and scale dependent encoding the
possible modifications of GR defined as1

𝜇𝐺(𝑎, 𝑘) ≡ 𝐺growth(𝑎, 𝑘)
𝐺

, (9.22)

Σ𝐺(𝑎, 𝑘) ≡ 𝐺lensing(𝑎, 𝑘)
𝐺

, (9.23)

where 𝐺 is Newton’s constant as measured by local experiments, 𝐺growth is the effective gravitational
coupling which is related to the growth of matter perturbation and 𝐺𝑙𝑒𝑛𝑠𝑖𝑛𝑔 is the effective gravitational
coupling associated with lensing. Anisotropic stress between the gravitational potentials Ψ and Φ is
produced from the Planck mass run rate 𝛼𝑀 and the tensor speed excess 𝛼𝑇 [2191].

Using the gravitational slip parameter 𝜂 (or anisotropic parameter) defined by Eq. (3.12) and the
ratio of the Poisson equations (3.10) and (3.11), the two functions 𝜇𝐺 and Σ𝐺 are related by Eq. (3.13).
In GR we have 𝜇𝐺 = 1, 𝜂 = 1 and Σ𝐺 = 1. The deviations from GR are expressed by allowing for a scale
and time dependent 𝜇𝐺 and Σ𝐺 but in the present analysis we ignore scale dependence in the context of
the QSA and also due to the lack of good quality scale dependent data.

1Note that the precise definitions of Σ𝐺 and 𝜇𝐺 may vary in the literature (e.g. see in Ref. [2187]).
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In the case of Horndeski modified gravity, in the quasistatic limit and fixing 𝛼𝑇 = 0 at all times, the
functions 𝜇𝐺(𝑎) and Σ𝐺(𝑎) take the form [2187]

𝜇𝐺(𝑎) =
𝑀2

𝑝

𝑀2
*

[︃
1 +

2
(︀
𝛼𝑀 + 1

2𝛼𝐵

)︀2

𝑐2
𝑠

(︀
𝛼𝐾 + 3

2𝛼
2
𝐵

)︀ ]︃ , (9.24)

Σ𝐺(𝑎) =
𝑀2

𝑝

𝑀2
*

[︃
1 +

(︀
𝛼𝑀 + 1

2𝛼𝐵

)︀
(𝛼𝑀 + 𝛼𝐵)

𝑐2
𝑠

(︀
𝛼𝐾 + 3

2𝛼
2
𝐵

)︀ ]︃
. (9.25)

Thus for theories with 𝛼𝑀 = 0 or 𝛼𝐵 = −2𝛼𝑀 , 𝜇𝐺 is equivalent to Σ𝐺. Notice also that for 𝛼𝑀 = 0,
we obtain 𝜇𝐺 > 1 and Σ𝐺 > 1. The case 𝛼𝐵 = −2𝛼𝑀 is a special case also known as No slip Gravity
[1406] for which 𝜂 = 1 and we have then

𝜇𝐺(𝑎) = Σ𝐺(𝑎) =
𝑀2

𝑝

𝑀2
*
. (9.26)

Notice also that all expressions depend on the coefficient 𝑐2
𝑠

(︀
𝛼𝐾 + 3

2𝛼
2
𝐵

)︀
which from Eq. (9.16) shows

that 𝜇𝐺 and Σ𝐺 are actually independent of 𝛼𝐾 . This parameter has minimal effect on subhorizon scales
(i.e. 𝑘/𝑎𝐻 ≫ 1) [2179, 2181], while being uncorrelated with all other functions 𝛼𝑖 [2192]. It is only
independently constrained by stability considerations through Eq. (9.14). In addition, as we set 𝛼𝑇 = 0
at all times, the only functions that can be constrained with observations by the quantities 𝜇𝐺 and Σ𝐺

are the functions 𝛼𝑀 (𝑎) and 𝛼𝐵(𝑎). Finally, assuming the stability conditions (9.14) and (9.15), we have
𝜇𝐺 > 𝑀2

𝑝/𝑀
2
* as noticed in Ref. [2015] but Σ𝐺 remains unconstrained.

For any 𝑤𝐷𝐸(𝑎 = ∞) = 𝑤∞ finite, we can consider two cases, depending on the sign of 𝛼𝑀0.
In the asymptotic future, the Hubble function evolves as 𝐻 ∝ 𝑎−3(1+𝑤∞)/2 and therefore 𝐻̇/𝐻2 →
−3(1 +𝑤∞)/2. Also 𝛼̇𝐵/𝐻 = 𝑠 𝛼𝐵 where we have assumed Eq. (9.18). It is therefore easy to show that
for large scale factor, we have

(𝛼𝐾 + 3
2𝛼

2
𝐵)𝑐2

𝑠 → 𝑠𝛼𝐵 − 3
2(1 + 𝑤∞)𝛼𝐵 − 𝜌𝑚

𝐻2𝑀2
*

− 𝛼𝐵(𝛼𝑀 + 𝛼𝐵

2 ) . (9.27)

The first two terms are always negligible compared to the last term, except for No Slip Gravity for which
the last term is absent.

If 𝛼𝑀0 < 0, the coefficient −𝜌𝑚/𝐻
2𝑀2

* = −𝜌𝑚𝑒
−𝛼𝑀0𝑠𝑠/𝑠/𝐻2𝑀2

𝑝 is dominant because of the expo-
nential behavior and hence 𝑐2

𝑠 is always negative for 𝑎 → ∞,

(𝛼𝐾 + 3
2𝛼

2
𝐵)𝑐2

𝑠 ∝ −𝜌𝑚/𝐻
2𝑀2

* < 0 , (9.28)

and these models are excluded. On the other hand if 𝛼𝑀0 > 0, the matter component −𝜌𝑚/𝐻
2𝑀2

* =
−𝜌𝑚𝑒

−𝛼𝑀0𝑎𝑠/𝑠/𝐻2𝑀2
𝑝 is negligible, we have for 𝑎 → ∞

(𝛼𝐾 + 3
2𝛼

2
𝐵)𝑐2

𝑠 ≃ −𝑎2𝑠

2 𝛼𝐵0(𝛼𝐵0 + 2𝛼𝑀0) , (9.29)

from which we obtain the condition
𝛼𝐵0(𝛼𝐵0 + 2𝛼𝑀0) ≤ 0 . (9.30)

Therefore, we conclude that the only possible viable sector satisfies

𝛼𝐵0 ≤ 0 and 𝛼𝑀0 ≥ −𝛼𝐵0/2 . (9.31)

Considering these restrictions we have at any time

𝜇𝐺(𝑎) ≥ Σ𝐺(𝑎) . (9.32)

166



Chapter 9. Constraints on Horndeski Modified Gravity - Weak Gravity on a ΛCDM Background

In the case of No Slip Gravity, we have in the asymptotic future

(𝛼𝐾 + 3
2𝛼

2
𝐵)𝑐2

𝑠 →
[︁
𝑠− 3

2(1 + 𝑤∞)
]︁
𝛼𝐵 − 𝜌𝑚

𝐻2𝑀2
*
. (9.33)

As previously, 𝛼𝑀0 < 0 is excluded because of the matter sector which produces a negative contribution.
If 𝛼𝑀0 > 0, we need to impose the condition 𝑠− 3

2 (1+𝑤∞) ≥ 0, which is irrelevant only if the asymptotic
future is phantom 𝑤∞ < −1, or if 𝑤∞ = −1 which reduces to 𝑠 ≥ 0. Notice also that if 𝛼𝐵0 < 0 and
assuming 𝑐𝑇 = 1, we have from Eq. (9.4) 2𝜑̇(𝑋𝐺3𝑋 − 𝐺4𝜑) < 0. This condition reduces to 𝑑𝐹/𝑑𝑡 > 0
for scalar-tensor theories for which 𝐺4 = 𝐹 (𝜑) and 𝐺3 = 0.

9.3 Reconstruction of the 𝛼𝑀 , 𝛼𝐵 functions from observational
constraints on 𝜇𝐺, Σ𝐺

In the spirit of this formalism disentangling the background from the perturbations, our background will
be fixed. We assume the most conservative and realistic background, ΛCDM. Therefore, observational
constraints come only from perturbations. We focus on the linear growth of matter perturbations

𝛿𝑚 + 2𝐻𝛿̇𝑚 − 4𝜋𝐺 𝜇𝐺(𝑎) 𝜌𝑚𝛿𝑚 = 0 . (9.34)

In terms of redshift, Eq. (9.34) takes the following form [148, 587, 1388]

𝛿′′
𝑚 +

[︁ (𝐻2)′

2 𝐻2 − 1
1 + 𝑧

]︁
𝛿′

𝑚 − 3
2

(1 + 𝑧) Ω𝑚,0 𝜇𝐺(𝑧)
𝐻2/𝐻2

0
𝛿𝑚 = 0 , (9.35)

where a prime denotes differentiation with respect to the redshift.
Note that we have defined Ω𝑚 = 𝜌𝑚

3𝑀2
𝑝 𝐻2 . This definition assumes that general relativity is recovered

at small scales. Therefore we presume a sufficient viable screening mechanism. It is important to notice
that even if we have defined a power law dependence of the parameters (see Eq. 9.18), the Lagrangian is
not totally fixed, principally because of an unconstrained 𝛼𝑘. The reconstruction of the Lagrangian from
(𝛼𝐵 , 𝛼𝑀 ) is incomplete and therefore, the Lagrangian is left partially undefined. This freedom can be
used to have additional non-linear operators in order to have a viable Vainstein mechanism. Notice that
in the static and spherically symmetric case, non-linear operators can be sufficient to eliminate the fifth
force and recover general relativity at small scales as shown in [2193] but in a generic shift-symmetric
k-mouflage model, the authors of [2194] (see also [2195], for explicit models) have shown that even if the
fifth force is suppressed, a time dependence of the scalar field inside the Vainshtein radius remains and
therefore at small scales 𝐺growth = 1/8𝜋𝑀2

* (𝜑(𝑡)) where 𝜑(𝑡) is the cosmological time evolution of the
scalar field2. Nevertheless, considering a non spherical problem, general relativity is recovered at small
scales [2197]. In conclusion, the screening mechanism could be sufficient to recover general relativity at
smaller scales. But it remains a delicate point and should be studied more extensively in the future.

It is usually convenient to introduce the growth function (3.3) from which it is straightforward to
construct the growth index 𝛾 defined by

𝑓 = Ω𝛾
𝑚 . (9.36)

We will constrain the parameters through the growth data 𝑓𝜎8 obtained from Redshift Space distortions
(RSD) [4, 67, 146–148, 681, 820, 1199, 1977, 1978] and the combination of the growth rate - weak lensing
data expressed through the quantity 𝐸𝐺 statistics [4, 144, 1988, 2198]. For a parametrization of 𝜇𝐺 and
initial conditions deep in the matter era where GR is assumed to hold with 𝛿𝑚 ∼ 𝑎, equation (9.35)

2In this case, we would have a very strong constraint on the model. Because |𝐺̇growth/𝐺growth| = |𝛼𝑀 |𝐻 and considering
the Lunar Laser Ranging experiments constrain [2196] |𝐺̇/𝐺| < 0.02 𝐻0, we would have |𝛼𝑀0| < 0.02 because at small scales
𝐺growth should be identified with the gravitational constant 𝐺. But this result does not apply when the shift symmetry is
broken like e.g. in the presence of a mass term.
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may be easily solved numerically leading to a predicted form of 𝛿𝑚(𝑧) for a given Ω𝑚,0 and background
expansion 𝐻(𝑧). Once this evolution of 𝛿𝑚 is known, the observable product

𝑓𝜎8(𝑧) ≡ 𝑓(𝑧) · 𝜎8(𝑧) = 𝑓(𝑧) · 𝜎8
𝛿𝑚(𝑧)
𝛿𝑚,0

, (9.37)

can be obtained, where 𝜎8(𝑧) is the redshift dependent rms fluctuations of the linear density field within
spheres of (comoving) radius 𝑅 = 8ℎ−1𝑀𝑝𝑐 while 𝜎8 is its value today. We obtain finally

f 𝜎8 = −(1 + 𝑧)𝜎8
𝛿′

𝑚(𝑧)
𝛿𝑚,0

. (9.38)

This theoretical prediction may now be used to compare with the observed 𝑓𝜎8 data.
For given parametrizations of our models, we can constrain the function Σ𝐺 (associated to lensing)

using 𝐸𝐺(𝑎) data where the observable 𝐸𝐺(𝑎) is defined as [524, 2010, 2011]

𝐸𝐺 = Ω𝑚,0 Σ𝐺

𝑓(𝑧) . (9.39)

This equation assumes that the redshift of the lens galaxies can be approximated by a single value
while 𝐸𝐺 corresponds to the average value along the line of sight [524]. Using Eq. (9.39) and assuming
a specific parametrization for 𝛼𝐵 and 𝛼𝑀 , and a given background expansion, we can compare the
theoretical prediction for 𝐸𝐺 with the observed 𝐸𝐺 datapoints in order to constrain our parameters
(𝛼𝐵0, 𝛼𝑀0). The 𝑓𝜎8(𝑧) and 𝐸𝐺(𝑧) updated data compilations used in our analysis are shown in Tables
F.1 and F.2 of the Appendix F along with the references where each datapoint was originally published.

We construct 𝜒2
𝑓𝜎8

and 𝜒2
𝐸𝐺

as usual [2199] for the 𝑓𝜎8 and 𝐸𝐺 datasets. For the construction of 𝜒2
𝑓𝜎8

we use the vector [67]

𝑉 𝑖
𝑓𝜎8

(𝑧𝑖, 𝑝) ≡ 𝑓𝜎𝑜𝑏𝑠
8,𝑖 − 𝑓𝜎𝑡ℎ

8 (𝑧𝑖, 𝑝)
𝑞(𝑧𝑖,Ω𝑚,0,Ω𝑓𝑖𝑑

𝑚,0)
, (9.40)

where 𝑓𝜎𝑜𝑏𝑠
8,𝑖 is the the value of the 𝑖th datapoint, with 𝑖 = 1, ..., 𝑁𝑓𝜎8 (𝑁𝑓𝜎8 = 35 corresponds to the total

number of datapoints of Table D.3) and 𝑓𝜎𝑡ℎ
8 (𝑧𝑖, 𝑝) is the theoretical prediction, both at redshift 𝑧𝑖. The

parameter vector 𝑝 corresponds to the free parameters 𝜎8,Ω𝑚,0, 𝛼𝐵0, 𝛼𝑀0, 𝑠 that we want to determine
from the data.

The fiducial Alcock-Paczynsk correction factor 𝑞 [67, 147, 148] is defined as

𝑞(𝑧𝑖,Ω𝑚,0,Ω𝑓𝑖𝑑
𝑚,0) = 𝐻(𝑧𝑖)𝑑𝐴(𝑧𝑖)

𝐻𝑓𝑖𝑑(𝑧𝑖)𝑑𝑓𝑖𝑑
𝐴 (𝑧𝑖)

, (9.41)

where 𝐻(𝑧), 𝑑𝐴(𝑧) correspond to the Hubble parameter and the angular diameter distance of the true
cosmology and the superscript 𝑓𝑖𝑑 indicates the fiducial cosmology used in each survey to convert angles
and redshifts to distances when evaluating the correlation function. Thus we obtain 𝜒2

𝑓𝜎8
as

𝜒2
𝑓𝜎8

(Ω𝑚,0, 𝛼𝐵0, 𝛼𝑀0, 𝑠, 𝜎8) = 𝑉 𝑖
𝑓𝜎8

𝐹𝑓𝜎8,𝑖𝑗𝑉
𝑗

𝑓𝜎8
, (9.42)

where 𝐹𝑓𝜎8,𝑖𝑗 is the Fisher matrix (the inverse of the covariance matrix 𝐶𝑓𝜎8,𝑖𝑗 of the data) which is
assumed to be diagonal with the exception of the 3 × 3 WiggleZ subspace (see Ref. [67] for more details
on this compilation).

Similarly, for the construction of 𝜒2
𝐸𝐺

, we consider the vector

𝑉 𝑖
𝐸𝐺

(𝑧𝑖, 𝑝) ≡ 𝐸𝑜𝑏𝑠
𝐺,𝑖 − 𝐸𝑡ℎ

𝐺 (𝑧𝑖, 𝑝) , (9.43)

where 𝐸𝑜𝑏𝑠
𝐺,𝑖 is the value of the 𝑖th datapoint, with 𝑖 = 1, ..., 𝑁𝐸𝐺

(𝑁𝐸𝐺
= 8 corresponds to the total

number of datapoints of Table D.4), while 𝐸𝑡ℎ
𝐺 (𝑧𝑖, 𝑝) is the theoretical prediction (Eq. (9.39)), both at

redshift 𝑧𝑖. Thus we obtain 𝜒2
𝐸𝐺

as

𝜒2
𝐸𝐺

(Ω𝑚,0, 𝛼𝐵0, 𝛼𝑀0, 𝑠) = 𝑉 𝑖
𝐸𝐺
𝐹𝐸𝐺,𝑖𝑗𝑉

𝑗
𝐸𝐺

, (9.44)
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where 𝐹𝐸𝐺,𝑖𝑗 is the Fisher matrix also assumed to be diagonal.
By minimizing 𝜒2

𝑓𝜎8
and 𝜒2

𝐸𝐺
separately and combined as 𝜒2

𝑡𝑜𝑡 = 𝜒2
𝑓𝜎8

+𝜒2
𝐸𝐺

we obtain the constraints
on the parameters 𝛼𝐵0 and 𝛼𝑀0. In this work, we fix Ω𝑚,0 = 0.315 and 𝜎8 = 0.811 to the Planck/ΛCDM
parameter values favoured by Planck 2018 [14] and other geometric probes [48, 51]. These values are
mainly determined by geometric probes which are independent of the underlying gravitational theory.
Specifically, we explore our parameter space (𝑝) for 𝑠 = 0.5, 1, 1.5, 2, 2.5, 3.

9.4 Flat ΛCDM background
In what follows, in agreement with the constraints of most geometric probes [14, 48, 51], we assume a
background Hubble expansion corresponding to a flat ΛCDM cosmology with 𝐻(𝑧) given by

𝐻2(𝑧) = 𝐻2
0
[︀
Ω𝑚,0(1 + 𝑧)3 + (1 − Ω𝑚,0)

]︀
, (9.45)

where Ω𝑚,0 is the fractional energy density of dust-like matter today.
Using the stability equation (9.15) (assumed valid for all values of the scale factor 𝑎) along with the

parametrization (9.18) for various values of 𝑠, we show in Fig. 9.1 the stability region (defined by the
positivity at all times of the quantity 𝜇𝐺 and of the sound speed 𝑐2

𝑠) in the 𝛼𝑀0 − 𝛼𝐵0 parameter space.
A ΛCDM background is assumed with a value of Ω𝑚,0 = 0.315 in accordance with the best fit values of
CMB/Planck18 [14], BAO [48] and SNe Ia Pantheon [51] data.

For each region, we show in Fig. 9.1 the strong gravity regime today

𝜇𝐺(𝑧 = 0) > 1 , (9.46)

and weak gravity regime today
𝜇𝐺(𝑧 = 0) < 1 . (9.47)

We can see that for small values of (𝛼𝐵0, 𝛼𝑀0) and for small 𝑠, we have 𝜇𝐺 < 1 while for larger 𝑠 gravity
is stronger. Gravity is weak today for 𝑠 < 2 and strong if 𝑠 > 2 for most of the parameters in the range
−3 ≤ 𝛼𝐵0 ≤ 0 and 0 ≤ 𝛼𝑀0 ≤ 3.

The growth rate of perturbations evolves according to the equation

𝑑𝑓

𝑑𝑥
+ 𝑓2 + 1

2

(︂
1 − 𝑑 ln Ω𝑚

𝑑𝑥

)︂
𝑓 = 3

2
𝐺𝑔𝑟𝑜𝑤𝑡ℎ

𝐺
Ω𝑚 , (9.48)

where 𝑥 ≡ ln 𝑎. From Eq. (3.3) we have that the density perturbation 𝛿𝑚 is connected to the growth
rate 𝑓 as

𝛿𝑚(𝑎) = 𝛿𝑖 exp
[︂∫︁ 𝑥

𝑥𝑖

𝑓(𝑥′)𝑑𝑥′
]︂
. (9.49)

In the special case where the growing mode satisfies 𝛿𝑚 ∝ 𝑎𝑝, we have 𝑓 = 𝑝 and thus 𝑓 → 1 in ΛCDM
for large 𝑧 as long as the decaying mode is negligible [2200]. In a ΛCDM universe we have

𝑓 = Ω𝛾(𝑧)
𝑚 , (9.50)

with 𝛾0 ≡ 𝛾(𝑧 = 0) ≈ 6
11 , the latter corresponds to the exact value deep in the matter era and 𝛾0 is

only slightly higher. In ΛCDM, 𝛾 is monotonically increasing with the expansion [2200]. In general,
the growth index is thus redshift dependent, a strictly constant 𝛾 being excluded inside GR though it
is often quasi-constant on redshifts between today till deep in the matter era [2004]. Using the above
definitions, we have represented in the same figure, the values of the growth index today 𝛾0 and its
derivative 𝛾1 ≡ 𝛾′(𝑧 = 0), where 𝛾0, 𝛾1 are parameters to be fit to data.

The 𝛾0, 𝛾1 values are complementary to the 𝜇𝐺 values and add information about the perturbations
dynamics in the past. On Fig. 9.1, 𝑠 = 2, it is seen that the curve 𝜇𝐺 = 1 crosses the curve 𝛾0 = 𝛾Λ𝐶𝐷𝑀

0 .
As we have a fixed ΛCDM background, it follows from the evolution equation for 𝛾 that we must have
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Figure 9.1: The stability (no ghost) region in the 𝛼𝑀0-𝛼𝐵0 parameter space is shown and divided into
a weak gravity regime today, 𝜇𝐺,0 ≡ 𝜇𝐺(𝑧 = 0) < 1 (green area), and a strong gravity regime today,
𝜇𝐺,0 > 1 (blue area). This is obtained by demanding 𝑐2

𝑠(𝑧) > 0 at all times and assuming a flat ΛCDM
background together with the parametrization Eq. (9.18) used here for the values 𝑠 = 0.5, 1, 1.5, 2, 2.5, 3.
The dark blue and dark green regions indicate 𝛾0 > 𝛾Λ𝐶𝐷𝑀

0 , while the light blue and light green regions
correspond to 𝛾0 < 𝛾Λ𝐶𝐷𝑀

0 . Finally, the red curve determines the regions where either 𝛾1 > 𝛾Λ𝐶𝐷𝑀
1 or

𝛾1 < 𝛾Λ𝐶𝐷𝑀
1 . We see in particular that for 𝑠 ≤ 2, essentially the weak gravity regime today is selected.

In the light green region, 𝜇𝐺 crosses 1 downwards with expansion, while it crosses upwards in the dark
blue region.
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Figure 9.2: The best fit values of 𝛼𝐵0 and 𝛼𝑀0 are shown for 𝑠 = 0.5, 1, 1.5, 2 using the combined
constraints from the 𝑓𝜎8 and 𝐸𝐺 data, 1𝜎 and 2𝜎 confidence regions are drawned (red curves). As in
Fig. 9.1, the green area corresponds to weak gravity today while the blue area represents strong gravity
today. Observations give the constraint 𝛾0 > 𝛾Λ𝐶𝐷𝑀

0 for 𝑠 < 2, marginally allowing 𝛾0 < 𝛾Λ𝐶𝐷𝑀
0 for

𝑠 = 2. Note that for higher values of 𝑠, the best fit moves outside the colored region and is therefore
ruled out.

there 𝛾1 = 𝛾Λ𝐶𝐷𝑀
1 which is nicely exhibited on our Figure. Furthermore, for that specific point, the

value of 𝜇𝐺 in the recent past satisfies 𝜇𝐺 ≈ 1 on those redshifts for which 𝛾 ≈ 𝛾Λ𝐶𝐷𝑀
0 + 𝛾Λ𝐶𝐷𝑀

1 (1 − 𝑎).
Notice that when 𝛾0 = 𝛾Λ𝐶𝐷𝑀

0 , we are in the weak gravity regime for 𝛾1 < 𝛾Λ𝐶𝐷𝑀
1 and in the strong

gravity regime for 𝛾1 > 𝛾Λ𝐶𝐷𝑀
1 . Also if we consider 𝛾1 = 𝛾Λ𝐶𝐷𝑀

1 , we have 𝛾0 < 𝛾Λ𝐶𝐷𝑀
0 for strong

gravity and 𝛾0 > 𝛾Λ𝐶𝐷𝑀
0 for weak gravity today. These results obtained for our parametrized Horndeski

models are in accordance with the results obtained earlier (see Fig. 7 in Ref. [2201]) in a gravity model
independent way.

Using the observational constraints from 𝑓𝜎8 and 𝐸𝐺 data, we find that for larger values of 𝑠 (𝑠 ≳ 2)
the best fit selects an area violating the stability conditions, and therefore these values of 𝑠 should be
ignored. Therefore, assuming a ΛCDM background and these data, we find that 𝑠 ≤ 2 is allowed. This
implies that our data select essentially a weak gravity regime today as we have noted earlier, see Fig. 9.1.
Also, because we have Σ𝐺 ≤ 𝜇𝐺 from Eq. (9.32), we obtain Σ𝐺,0 ≤ 1, a result which we have confirmed
numerically. Even for 𝑠 = 2 where a small regime of strong gravity remains, we still have always Σ𝐺,0 ≤ 1.
Fig. 9.2 exhibits these results with the 1𝜎 and 2𝜎 contour plots for the combined data.

9.5 Conclusions
Weak gravity is a difficult regime to be reached within viable modified gravity theories. We have shown
that assuming a perfectly viable background solution, ΛCDM, we were able to constrain Horndeski models
by using 𝑓𝜎8 and 𝐸𝐺 data. Assuming only a power law parametrization for the parameters (𝛼𝐵 , 𝛼𝑀 ),
we found that viable models should verify the condition

𝛼𝐵,0 < 0 and 𝛼𝑀,0 > −𝛼𝐵,0/2 , (9.51)

which constrain 𝐺lensing to be always smaller than 𝐺growth.
Considering the ΛCDM background, we found that for 𝑠 < 2, most of the parameters (𝛼𝐵0, 𝛼𝑀0)

produce weak gravity today while for 𝑠 > 2, we found 𝜇𝐺,0 > 1 for most of the parameters. The
consideration of cosmological growth data favors 𝑠 ≤ 2, namely a mild evolution of the 𝛼𝑖 parameters in
the late universe, which in turn implies a weak gravity regime today and Σ𝐺,0 ≤ 1. We also found that
for 𝑠 < 2, 𝛾0 > 𝛾Λ𝐶𝐷𝑀

0 , while for 𝑠 > 2 we obtain 𝛾0 < 𝛾Λ𝐶𝐷𝑀
0 . Therefore, data also select essentially

𝛾0 > 𝛾Λ𝐶𝐷𝑀
0 except for 𝑠 = 2 for which 𝛾0 < 𝛾Λ𝐶𝐷𝑀

0 is marginally allowed. Note that for 𝑠 = 2, in
the region with 𝜇𝐺,0 < 1 and 𝛾0 < 𝛾Λ𝐶𝐷𝑀

0 (light green on Fig. 9.1), gravity was strong in the near
past (𝑧 ≲ 1), while in the region 𝜇𝐺,0 > 1 and 𝛾0 > 𝛾Λ𝐶𝐷𝑀

0 (dark blue on Fig. 9.1), gravity was weak
in the recent past. In some sense, the value of 𝛾0 indicates that gravity was either weak (𝛾0 > 𝛾Λ𝐶𝐷𝑀

0

171



and 𝜇𝐺,0 > 1) or strong (𝛾0 < 𝛾Λ𝐶𝐷𝑀
0 and 𝜇𝐺,0 < 1) when we average over the recent past, while 𝜇𝐺,0

determines the strength of gravity today. For example, in the light green region where 𝜇𝐺,0 < 1, the
average of 𝜇𝐺(𝑧) over redshift (0, 1) is larger than 1. We encountered the same behavior in the dark blue
region where gravity is strong today and weak on average for most part of the region. Therefore, the
pairs (𝛾0, 𝛾1) add information on the past dynamics of 𝜇𝐺.

For models with 𝛾1 = 𝛾Λ𝐶𝐷𝑀
1 , we have 𝛾0 < 𝛾Λ𝐶𝐷𝑀

0 when gravity is strong today and 𝛾0 > 𝛾Λ𝐶𝐷𝑀
0

when gravity is weak today. Also when 𝛾0 = 𝛾Λ𝐶𝐷𝑀
0 , we have weak gravity when 𝛾1 > 𝛾Λ𝐶𝐷𝑀

1 while we
have strong gravity when 𝛾1 < 𝛾Λ𝐶𝐷𝑀

1 .
In summary, we have proved that under mild assumptions, we could have a consistent and viable

weak gravity regime today. It is thus interesting to know how generic this result is. It is interesting that
the model we have assumed is observationally incompatible at more than 2𝜎 with 𝑀* = 𝑀𝑝 today (at
least for 𝑠 ≳ 0.5). Hence the local value of 𝑀* must be necessarily different from its assumed value on
cosmic scales today, Eq. (9.20), and some screening mechanism must be at work in order to make the
model viable. As we have mentioned earlier, this is a delicate issue. Even in the absence of screening,
our results leave open the possibility to have viable models with 𝑠 < 0.5 satisfying 𝛼𝑀0 ≪ 2𝑠. Of course,
in that case, 𝑀* would be (very) weakly varying at all times.

We can investigate in a future work the relevance, regarding the obtained results, of the two main
assumptions made in this work, namely the power-law parametrization of the free functions 𝛼𝑖 and the
ΛCDM background expansion (for an alternative approach see e.g. Ref. [2202]). For example, in the case
of minimal scalar-tensor theories, it has been shown that values of 𝑤 < −1 can indeed lead to 𝜇𝐺 < 1
[1823, 1978], while it is otherwise impossible to realize. Despite strong restrictions on Horndeski models
coming from the gravitational waves speed, viable models could still provide interesting cosmological
scenarios with varying gravitational couplings.



Chapter 10

Transition Model in light of Cepheid SnIa
Calibrator data: Alleviating the Hubble Ten-
sion

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and has been published in Physical Review D [8].

In this Chapter 10 we use Cepheid SnIa calibrator data to investigate the effects of variation of
the Cepheid calibration empirical parameters 𝑅𝑊 (Cepheid Wesenheit color-luminosity parameter) and
𝑀𝑊

𝐻 (Cepheid Wesenheit H-band absolute magnitude). We consider various cases (models) allowing
for different types of empirical parameter variation and use criteria which penalize models with large
numbers of parameters for model selection and model comparison. We investigate the impact of the
allowed types of parameter variation on the SnIa absolute magnitude 𝑀𝐵 and on the corresponding
derived value of Hubble constant 𝐻0.

The most intriguing large scale tension is the Hubble crisis as we discussed in Chapter 2. Using
a distance ladder approach (see Subsection 2.2.1), the local (late or low redshift) measurements of the
Hubble constant 𝐻0 lead to values that are significantly higher than those inferred using the angular scale
of fluctuations of the CMB in the context of the ΛCDM model. Local direct measurements of 𝐻0 are in
more than 5𝜎 tension with CMB indirect measurements of 𝐻0 (see Refs. [7, 127, 185], for a review).

The local (late or low redshift) determination of the Hubble constant 𝐻0 using a distance ladder
method depends on a chain of distance measurements. In the cosmic distance ladder method each rung
of the distance ladder uses the known intrinsic luminosity of a standard candle source to determine
the absolute luminosity of a more luminous standard candle residing in the same galaxy. Thus highly
luminous standard candles are calibrated for the next rung in order to reach out to greater distances. If
one of these distance measures is subject to systematics or new physics all the subsequent steps of the
cosmic distance ladder are off.

The distance ladder approach is based on a method pioneered by Henrietta Swan Leavitt. She
realized that a type of pulsating stars known as Cepheid variable has a period of pulsation that depends
on its luminosity. This period–luminosity (PL) relation is called the Leavitt law [217, 218]. Knowing
the luminosity of a Cepheid means that its luminosity distance can be determined just by observing
its brightness which has been dimmed by that distance. Therefore the Cepheids whose luminosities
are correlated with their periods of variability can be the first standard candles in the cosmic distance
ladder [2203–2210]. Trigonometric parallax methods (geometric anchors) may be used to calibrate the
Cepheid variable star standard candles at the local Universe (primary distance indicators). Then using
the measured luminosity distances of the calibrated Cepheid stars, the intrinsic luminosity of nearby
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(𝐷 ≈ 20−40𝑀𝑝𝑐) incredibly bright type Ia supernova (SnIa) residing in the same galaxies as the Cepheids
is obtained. This calibration of the new type of standard candle SnIa fixes its absolute magnitude 𝑀𝐵

and is then used for SnIa at more distant galaxies (in the Hubble flow) to measure 𝐻0 (𝑧 ∈ [0.01, 0.1]) and
𝐻(𝑧) (𝑧 ∈ [0.01, 2.3]) via the measurement of their luminosity distances. The angular diameter distance
of standard rulers can also be used for the estimation of 𝐻(𝑧) (see Subsection 2.2.2). The values of 𝐻0
determined in the late Universe with a calibration based on the Cepheid distance scale and the derived
values of𝐻0 from analysis of the CMB anisotropy spectrum data are shown in Fig. 2.10. The uncertainties
in these values have been decreasing for both methods and the recent measurements disagree beyond 5𝜎.
The Hubble constant 𝐻0 values at 68% CL through direct and indirect measurements obtained by the
different methods are illustrated in Fig. 2.8, from which is evident that the SnIa distance scale calibrated
by Cepheid variables is in tension with the CMB sound horizon scale.

If the Hubble tension is not due to systematic errors [185, 292, 299, 438, 880, 2211, 2212], it could
be an indication of incorrect estimate of the sound horizon scale due e.g. to early dark energy [293] or
to late phantom dark energy [50]. Theoretical models (see Subsection 2.3) addressing this discrepancy
utilize either a recalibration of the ΛCDM standard ruler (the sound horizon) assuming new physics
before the time of recombination [181–183, 1042] or a deformation of the Hubble expansion rate 𝐻(𝑧) at
late times [50, 184, 712] or an abrupt transition of the SnIa absolute luminosity due to late time new
physics [52] (see Refs. [7, 127, 185], for a review).

10.1 Introduction
As discussed in Subsection 2.3.4 the 𝐻0 crisis may be viewed as a mismatch between the SnIa absolute
magnitude 𝑀<

𝐵 = −19.244±0.037 mag calibrated by Cepheids at 𝑧 < 0.01 [269, 289] and the SnIa absolute
magnitude 𝑀>

𝐵 = −19.401 ± 0.027 mag [290] obtained using the parametric free inverse distance ladder
calibrating SnIa absolute magnitude using the sound horizon scale.. Since the two measurements are
obtained at different redshifts they may indicate a transition in the absolute magnitude with amplitude
Δ𝑀𝐵 = 𝑀>

𝐵 − 𝑀<
𝐵 ≃ −0.2 mag at a transition redshift 𝑧𝑡 ≲ 0.01 (roughly 100-150 million years ago)

[52, 593]. Note that hints of a possible weak evolution of the absolute magnitude 𝑀𝐵 have been recently
pointed out in Refs. [12, 281]. Such a transition may occur due to a transition of the strength of the
gravitational interactions 𝐺eff which modifies the SnIa intrinsic luminosity 𝐿 by changing the value of the
Chandrasekhar mass 𝑀𝐶ℎ as 𝐿 ∼ 𝑀𝐶ℎ ∼ 𝐺

−3/2
eff [914, 2213] even though corrections may be required to

the above simplistic approach [915]. Using the normalized effective Newton constant 𝜇𝐺 ≡ 𝐺eff/𝐺 (where
𝐺 is the locally measured Newton’s constant and 𝜇𝐺 = 1 for 𝑧 < 𝑧𝑡 ≲ 0.01) the absolute magnitude of
SnIa 𝑀𝐵 is expected to change as [1, 914, 1831, 2214]

Δ𝑀𝐵 = 15
4 log10(Δ𝜇𝐺 − 1) . (10.1)

Thus for Δ𝑀𝐵 ≃ −0.2𝑚𝑎𝑔 it is straightforward to show that the change of 𝜇𝐺 [52]

Δ𝜇𝐺 ≡ 𝜇>
𝐺 − 𝜇<

𝐺 ≃ −0.12 , (10.2)

where 𝜇>
𝐺 corresponds to 𝑧 > 𝑧𝑡 and 𝜇<

𝐺 corresponds to 𝑧 < 𝑧𝑡 in the context of a ΛCDM background
𝐻(𝑧).

This connection indicates that a 10% smaller 𝐺eff for 𝑧 > 𝑧𝑡 could potentially provide the required
decrease of the absolute magnitude (increase of luminosity) at early times for the resolution of the
Hubble tension. In fact such a decrease would also lower the growth rate of cosmological perturbations
thus helping in the resolution of the growth tension [52, 1213]. Thus, the smaller 𝐺eff (𝐺eff < 1) for
𝑧 > 𝑧𝑡 hints towards weaker gravity as indicated by studies discussing the growth tension [4, 6, 67, 148,
1197, 1823, 2215].

A recent analysis [56], has analyzed the color-luminosity relation of Cepheids in anchor galaxies
and SnIa host galaxies by identifying the color-luminosity relation for each individual galaxy instead of
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enforcing a universal color-luminosity relation to correct the NIR Cepheid magnitudes. This analysis
finds a systematic brightening of Cepheids at distances larger than about 20 Mpc (see Fig. 4 in Ref.
[56]). As pointed out in Ref. [56] this brightening could be enough to resolve the Hubble tension. The
authors attribute it to variation of dust properties but there is currently a debate on the actual cause of
this brightening.

In our study we reproduce and extend the analysis of Ref. [56] by considering a varying among
individual galaxies color-luminosity relation and (in a separate analysis) allowing the Cepheid absolute
magnitude 𝑀𝑊

𝐻 to vary among individual galaxies instead of enforcing a universal absolute magnitude.
We also explore the possibility that there are two universal absolute magnitudes: one applicable for low
distance 𝐷 Cepheids (𝑀𝑊,<

𝐻 for 𝐷 < 𝐷𝑐) and a second, applicable for high distance 𝐷 Cepheids (𝑀𝑊,>
𝐻

for 𝐷 > 𝐷𝑐). We then test the consistency among the two absolute magnitudes searching for hints of a
physics transition at some critical distance (time) 𝐷𝑐 (𝐷𝑐/𝑐).

We thus address the following questions:

• Are there indications for variation of the color-luminosity relation and of the Cepheid absolute
magnitude among individual galaxies?

• Is the color-luminosity relation and/or absolute magnitude of nearby Cepheids consistent with the
corresponding properties of Cepheids in more distant galaxies?

• Are there indications for a Cepheid luminosity transition similar to the one required for the resolu-
tion of the Hubble tension?

In order to address these questions we use the same data and similar method as those used in Ref. [56]
but in addition we extend the types of parameter variations allowed while implementing model selection
criteria in order to compare the different allowed types of parameter variations (models) with the Base
model which assumes universal Cepheid empirical parameter values. The data are obtained from Refs.
[17, 39, 40] and displayed in the Appendix G. Our generalized approach is based on two extensions

• We break the assumption of universality not only on the color-luminosity relation but also on the
absolute magnitude of Cepheids.

• In addition to fitting the Cepheid color-luminosity relation (or the absolute magnitude) for each
galaxy separately, we also consider the case of two universality classes one for nearby and one
for more distant galaxies thus introducing only one new parameter in each case compared to the
standard universal approach.

The structure of this Chapter is the following: In the next Section 10.2 we present a brief review of the
theoretical background and we describe the method used in our analysis as well as the data considered.
In Section 10.3 we present our results focusing on the consistency of nearby and more distant samples
with each other. We also compare with a Monte Carlo uniformized dataset in order to verify that any
observed peculiar signal disappears in a Monte Carlo constructed homogeneous dataset. In Section 10.4
we consider various cases (models) allowing for different types of empirical parameter variation and use
criteria for model selection and model comparison. In Section 10.5 we investigate the impact of the
allowed types of parameter variation on the SnIa absolute magnitude 𝑀𝐵 and on the corresponding
derived value of 𝐻0. Finally in Section 10.6 we conclude and discuss possible extensions of our analysis.
We also compare our results with previous analyses searching for similar transition effects in different
datasets.

10.2 Theoretical background - Method - Data
In this section, we present a brief review of the theoretical expressions and describe the method and the
dataset used.
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10.2.1 Standard candles
In an expanding flat Universe, where the energy is not conserved due to the increase of the photon
wavelength and period with time, the luminosity distance can be expressed by Eq. (1.55) [77, 78]. The
luminosity distance is an important cosmological observable that is measured using standardizable candles
like SnIa (𝑧 < 2.3) [51, 68, 118, 119] and gamma-ray bursts (GRBs) (0.1 < 𝑧 ≲ 9) [187–210].

As mentioned in Subsection 2.2.1 surveys can indicate the distance-redshift relation of SnIa by mea-
suring their peak luminosity that is tightly correlated with the shape of their characteristic light curves
(luminosity as a function of time after the explosion) [211] and the redshifts of host galaxies.

The use of SnIa in the measurement of 𝐻0 and 𝐻(𝑧) relies on a basic assumption that they are
standardizable and after proper calibration they have a fixed absolute magnitude independent of redshift
in the redshift range 𝑧 ∈ [0.01, 2.3] [211]. This assumption has been tested in Refs. [12, 277, 279–
285, 1978]. The possibility for intrinsic luminosity evolution of SnIa with redshift was first highlighted
by Ref. [271]. Also, the assumption that the luminosity of SnIa is independent of host galaxy properties
(e.g. host age, host morphology, host mass) and local star formation rate has been discussed in Refs.
[272–276].

The apparent magnitude 𝑚𝐵 of SnIa at redshift 𝑧 in the context of a specified form of 𝐻(𝑧) is given
by

𝑚𝐵(𝑧) = 𝑀𝐵 + 5 log10

[︂
𝑑𝐿(𝑧)
𝑀𝑝𝑐

]︂
+ 25 , (10.3)

where 𝑀𝐵 is the absolute magnitude, 𝑑𝐿(𝑧) is the luminosity distance in 𝑀𝑝𝑐.
Using now the dimensionless Hubble free luminosity distance 𝐷𝐿(𝑧) (see Eq. (2.3) in Subsection 2.2.1)

the apparent magnitude can be written as

𝑚𝐵(𝑧) = 𝑀𝐵 + 5 log10 [𝐷𝐿(𝑧)] + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 . (10.4)

Using the degenerate combination

ℳ = 𝑀𝐵 + 5 log10

[︂
𝑐/𝐻0

𝑀𝑝𝑐

]︂
+ 25 , (10.5)

into Eq. (10.4) we obtain
𝑚𝐵(𝑧) = ℳ + 5 log10 [𝐷𝐿(𝑧)] . (10.6)

The use of Eq. (10.4) to measure 𝐻0 using the measured apparent magnitudes of SnIa requires knowledge
of the value of the SnIa absolute magnitude 𝑀𝐵 . This can be obtained using calibrators of local SnIa at
𝑧 < 0.01 in the context of a distance ladder method (see e.g. Ref. [216]). Calibrators like Cepheid stars
which are bright, variable supergiants are used in this context.

10.2.2 Cepheid calibration
As discussed in Subsection 2.2.1 for Cepheids in the distance anchor galaxies (MW, LMC and NGC 4258)
there are three different approaches of geometric distance calibration of their luminosities: parallaxes in
the MW [38, 40, 219–224], detached eclipsing binary stars (DEBs) in the LMC [225] and water masers1

in NGC 4258 [227]. The DEBs method relies on surface-brightness relations and is one-step distance
determination to nearby galaxies independent from Cepheids [228]. The Andromeda galaxy (M31) could
serve as an anchor in the cosmic distance ladder but the uncertainty in its distance measurements is
difficult to reduce [2216].

1Very long baseline interferometric (VLBI) observations of water megamasers which are found in the accretion disks
around supermassive black holes (SMBHs) in active galactic nuclei (AGN) have been demonstrated to be powerful one-step
geometric probes for measuring extragalactic distances [455, 456].
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The empirically-determined period-magnitude relationship of a Cepheid can be expressed as (see e.g.
Ref. [292])

𝑚𝐻 −𝑅𝐻𝐸(𝑉 − 𝐼) = 𝜇+𝑀𝐻 + 𝑏𝐻 [𝑃 ] + 𝑍𝐻 [𝑀/𝐻] , (10.7)
where 𝑚𝐻 is the observed apparent magnitude in the near-infrared 𝐻 (F160W) band which is centered at
𝜆𝐻 ∼ 1.63𝜇m, 𝑉 (F555W) and 𝐼 (F814W) are the optical mean apparent magnitudes which are centered
at 𝜆𝑉 ∼ 0.555𝜇m and 𝜆𝐼 ∼ 0.79𝜇m respectively, in the HST system2, 𝐸(𝑉 − 𝐼) is the color excess, 𝑅𝐻

is the total to selective extinction parameter at H band3, 𝜇 ≡ 5 log10 [𝑑𝐿(𝑧)/Mpc] + 25 is the inferred
distance modulus to the Cepheid, 𝑀𝐻 is the absolute magnitude of a period 𝑃 = 10 d Cepheid (d for
days), 𝑏𝐻 and 𝑍𝐻 are the slope parameters that represent the dependence of magnitude on both period
and metallicity.

The [𝑀/𝐻] is a measure of the metallicity of the Cepheid. The usual bracket shorthand notation for
the metallicity [𝑀/𝐻] represents the Cepheid metal abundance compared to that of the Sun

[𝑀/𝐻] ≡ log(𝑀/𝐻) − log(𝑀/𝐻)⊙ = Δ log(𝑀/𝐻) , (10.8)

where M and H is the number of metal (any element other than hydrogen or helium) and hydrogen atoms
per unit of volume respectively. The unit often used for metallicity is the dex (decimal exponent) defined
as 𝑛 dex = 10𝑛.

Also, the bracket shorthand notation for the period [𝑃 ] is used as (𝑃 in units of days)

[𝑃 ] ≡ log𝑃 − 1 . (10.9)

The color excess characterizes the amount of reddening associated with interstellar extinction, a
combined effect of absorption and scattering of blue more than red light by dust and other matter
[2217, 2218]. The color excess depends on the properties of dust and is defined as

𝐸(𝑉 − 𝐼) ≡ 𝐴𝑉 −𝐴𝐼 = (𝑉 − 𝐼) − (𝑉 − 𝐼)0 , (10.10)

where 𝑉 − 𝐼 and (𝑉 − 𝐼)0 are the observed and the intrinsic (normal) Cepheid color respectively. The
latter is the hypothetical true Cepheid color which would be observed if there was no extinction.

Following the same formulation used by the SH0ES team [17, 39] in order to minimize the impact of
extinction correction uncertainties for distance measurements and determination of the Hubble constant
𝐻0, we use the replacement 𝐸(𝑉 − 𝐼) → 𝑉 − 𝐼 in Eq. (10.7), the Hubble Space Telescope (HST) NIR
H-band and the reddening-free "Wesenheit" magnitudes [2219]

𝑚𝑊
𝐻 ≡ 𝑚𝐻 −𝑅𝑊 (𝑉 − 𝐼) = 𝜇+𝑀𝑊

𝐻 + 𝑏𝑊 [𝑃 ] + 𝑍𝑊 [𝑀/𝐻] , (10.11)

where the empirical parameter 𝑅𝑊 is the reddening-free "Wesenheit" color ratio and is different from
𝑅𝐻 which can be derived from a dust law (e.g. the Fitzpatrick law [2220]). The parameter 𝑅𝑊 corrects
for both dust and intrinsic variations applied to observed blackbody colors 𝑉 − 𝐼. Eq. (10.11) can be
derived from Eq. (10.7) using Eq. (10.10) with a constant fixed parameter 𝑅𝑊 under the important
assumption that the intrinsic Cepheid color (𝑉 − 𝐼)0 can be assumed to have the same distribution for
all galaxies. This allows the absorption of the term 𝑅𝐻(𝑉 − 𝐼)0 by the Cepheid absolute magnitude
𝑀𝐻 thus defining the Cepheid Wesenheit H-band absolute magnitude 𝑀𝑊

𝐻 in Eq. (10.11). An additional
logarithmic dependence of the intrinsic color on the Cepheid period is also allowed and would be absorbed
by the parameter 𝑏𝐻 leading to the parameter 𝑏𝑊 . Thus, if there was a transition in the intrinsic Cepheid
color (𝑉 − 𝐼)0 at a given galactic distance, this transition would manifest itself as a shift of any or all of
the parameters 𝑀𝑊

𝐻 , 𝑏𝑊 and/or 𝑅𝑊 at the same distance.
For distances based on NIR (1 < 𝜆 < 2.5𝜇m) measurements, both the impact of extinction by dust

(gauged using the observed color 𝑉 − 𝐼) and the impact of metallicity on the luminosities and colors
2HST uses the same three-band photometric system with the Wide Field Camera 3 (WFC3) with two optical filters

(F555W and F814W) and one near-infrared filter (F160W).
3The total to selective extinction parameter at H band 𝑅𝐻 is defined as 𝑅𝐻 ≡ 𝐴𝐻/(𝐴𝑉 − 𝐴𝐼) = 𝐴𝐻/𝐸(𝑉 − 𝐼) (where

𝐴𝐻 is the extinction due to dust along the line of sight).
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of Cepheids, are less significant compared to the corresponding optical measurements [2203, 2221–2223]
(for the metallicity effects which are still largely debated, see Refs. [2224–2228]). However the NIR
measurements of Cepheids still suffer from crowding and blending (photometric contamination) from
redder Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) disk stars, particularly as the
distance increases [302, 2229, 2230].

Wesenheit magnitudes have the advantage of smaller dispersion in the PL relation caused by dif-
ferential extinction and the nonzero temperature width of the Cepheid instability strip4 (see e.g. Ref.
[2234]).

Following Ref. [17] and breaking the slope of the Leavitt law at a period of 10 days (𝑃 = 10 d) we
include two different slopes 𝑏𝑠

𝑊 and 𝑏𝑙
𝑊 parameters in Eq. (10.11) for short and long period Cepheids

with 𝑃 < 10 d and 𝑃 > 10 d respectively (for a discussion about the presence of a broken PL slope at
𝑃 = 10 d, see Refs. [2235–2240]).

Ref. [17] considers a universal reddening law in all galaxies and thus assume a global fixed value
𝑅𝑊 = 0.386. This value is derived from the reddening law of Ref. [2220] using a ratio of total to selective
extinction at the B and V bands5 of the Johnson-Morgan or UBV (Ultraviolet, Blue, Visual) photometric
system [2241] 𝑅𝑉 = 3.3 to parameterize the shape of the extinction curve. In the literature the parameter
𝑅𝑊 ranges from 0.3 to 0.5 at H band (e.g. 𝑅𝑊 = 0.41 in Ref. [37]) and the universal parameter 𝑅𝑉

ranges from 1 to 6 (the average value for the MW is 𝑅𝑉 = 3.1) [2242–2252] depending on the reddening
law [2253–2255].

As noted recently by Ref. [56] a global fixed value for parameter 𝑅𝑊 could result in a systematic error
in distance measurements and the determination of the Hubble constant 𝐻0. Refs. [56, 943] motivated
by the observed variation in dust properties allowing for the parameter 𝑅𝑊 to vary between galaxies.
However these studies make no attempt to search for possible transitions within the low z galaxy data.
In the present analysis we search for transition effects in Cepheid data at 𝑧 ≲ 0.01 (≲ 40 Mpc).

10.2.3 Datasets
We use a sample of 1630 Cepheids in the anchor galaxies and in the SnIa host galaxies. For 74 MW
Cepheids including GAIA parallax measurements we use the dataset from Table 1 in Ref. [40] and for 70
LMC Cepheids we use the dataset from Table 2 in Ref. [39]. These data are shown in Tables G.1 and G.2
of the Appendix G. Fitting the distance ladder with the system of equations for the 70 LMC Cepheids
an intrinsic scatter of 0.08 mag is added to the error estimates given in Table 2 of Ref. [39] (note that
Ref. [39] include a intrinsic LMC dispersion of 0.07 mag) which is necessary in order to obtain a reduced
chi-square of unity 𝜒2

𝑟𝑒𝑑 = 𝜒2
𝑚𝑖𝑛/𝑑𝑜𝑓 = 1 [2256].

We obtain data for 1486 Cepheids in the anchor galaxy NGC 4258, in the M31 galaxy and in the 19
SnIa host galaxies from Table 4 in Ref [17] (for details, see Ref. [2257]). This data are shown in Table
G.3 of the Appendix G.

We consider the revised distance modulus to NGC 4258 of 𝜇𝑁4258 = 29.397 ± 0.032 mag (7.576 ±
0.112 Mpc) reported by Ref. [227] using water masers data. Also we consider the distance modulus to
the LMC of 𝜇𝐿𝑀𝐶 = 18.477 ± 0.0263 mag derived by Ref. [225] with 1% precision based on enhanced
samples of late-type DEBs. This distance modulus is increased from that in Ref. [17] by 0.5%.

Finally for SnIa B-band magnitudes we adopt the data from Table 5 in Ref. [17], derived from the
version 2.4 of SALT26 modeling of SnIa light curves by Ref. [68]. These data are shown in Table G.4 of
the Appendix G.

Following Ref. [39] for all LMC Cepheids we adopt the mean metallicity of −0.33 dex from Ref.
[2263] and −0.27 dex from Ref. [2264], [𝐹𝑒/𝐻] = −0.30 dex which is slightly different than the value of

4The instability strip refers to a narrow, almost vertical temperature (spectral type) region on the Hertzsprung-Russell
(H-R) diagram which contains several types of pulsating variable stars including Cepheid variables (see e.g. Refs. [2231–
2233]). The Classical Cepheids (Population I Cepheids) are F6-K2 type supergiants (∼ 4 − 20 𝑀⊙) with a period of 1 to
70 days with an amplitude variation of 0.1 to 2.0 magnitudes.

5The total to selective extinction at B and V bands 𝑅𝑉 is defined as 𝑅𝑉 ≡ 𝐴𝑉 /𝐸(𝐵 − 𝑉 )
6Spectral Adaptive Light Curve Template (SALT) is an empirical spectro-photometric model that is used in SnIa light

curve fitting [2258–2260] (for SALT tests with simulations, see [2261]). SALT is publicly available at [2262].
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Figure 10.1: Fitting individual 𝑅𝑊 to Cepheid data as derived from our work (red points) and from Ref.
[56] (blue points). For illustration purposes, the 𝐷𝐿 axis has been shifted slightly for our values so that
the error bars do not overlap. The red and blue dotted lines correspond to 𝑅𝑊 = 0.366 and 𝑅𝑊 = 0.369
respectively. These 𝑅𝑊 values are taken using the derived individual parameters of anchor galaxies and
M31 (due to its proximity) 𝑅𝑊,𝑘.

−0.25 dex adopted by Ref. [17]. Also following Ref. [39] we adopt [𝑂/𝐻] = [𝐹𝑒/𝐻] (where O and Fe is
the number of oxygen and iron atoms per unit of volume respectively) and we measure the metallicity in
units of 𝑍 = 12 + log(𝑂/𝐻) (with Solar metallicity in these units 𝑍⊙ = 12 + log(𝑂/𝐻)⊙ = 8.824 [943]).

Note that since we use the datasets from Refs. [17, 39, 40] with the same filters we do not need to
apply further corrections. The full datasets are available in [70].

10.3 Search for transition
Our analysis is closely related to the results of study by Ref. [56]. Using the same datasets that were
used by Ref. [56] we first reproduce their results and then we search for a transition signal of the best fit
parameter values 𝑅𝑊 and 𝑀𝑊

𝐻 between data subsamples at low and high distances.
From Eq. (10.11) using the Wesenheit magnitude of the 𝑗𝑡ℎ Cepheid in the 𝑖𝑡ℎ galaxy, including the

host and the anchor galaxies, here MW, NGC 4258 and the LMC, separating PL relations for short and
long period Cepheids we have

𝑚𝑊
𝐻,𝑖,𝑗 ≡ 𝑚𝐻,𝑖,𝑗 −𝑅𝑊,𝑖(𝑉 − 𝐼)𝑖,𝑗 = 𝜇𝑖 +𝑀𝑊

𝐻,𝑖 + 𝑏𝑠
𝑊 [𝑃 ]𝑠𝑖,𝑗 + 𝑏𝑙

𝑊 [𝑃 ]𝑙𝑖,𝑗 + 𝑍𝑊 [𝑀/𝐻]𝑖,𝑗 , (10.12)

where [𝑃 ]𝑠𝑖,𝑗 = 0 for Cepheids with 𝑃 > 10 d and [𝑃 ]𝑙𝑖,𝑗 = 0 for Cepheids with 𝑃 < 10 d.
In the case where 𝑖𝑡ℎ galaxy is the MW the distance modulus for the 𝑗𝑡ℎ Cepheid is estimated using

parallaxes in units of mas (mas for milliarcsec)

𝜋𝑗 + 𝑧𝑝 = 10−0.2(𝜇𝑗−10) , (10.13)

where 𝑧𝑝 is a residual parallax calibration offset.

179



Chapter 10. Transition Model in light of Cepheid SnIa Calibrator data: Alleviating the Hubble Tension

Thus
𝜇𝑗 = 10 − 5

ln 10

[︂
ln 𝜋𝑗 + ln

(︂
1 + 𝑧𝑝

𝜋𝑗

)︂]︂
≃ 10 − 5

ln 10

[︂
ln 𝜋𝑗 + 𝑧𝑝

𝜋𝑗

]︂
, (10.14)

where higher order terms 𝒪(𝑧𝑝/𝜋𝑗)2 are negligible. Using Eq. (10.14) into Eq. (10.12) in the case of
MW Cepheids we obtain

𝑚𝑊
𝜋,𝑗 = 𝑚𝜋,𝑗 −𝑅𝑊 (𝑉 − 𝐼)𝑗 = 𝑀𝑊

𝐻 + 𝑏𝑠
𝑊 [𝑃 ]𝑠𝑗 + 𝑏𝑙

𝑊 [𝑃 ]𝑙𝑗 + 𝑍𝑊 [𝑀/𝐻]𝑗 + 5
ln 10

𝑧𝑝

𝜋𝑗
, (10.15)

where we use
𝑚𝑊

𝜋,𝑗 = 𝑚𝑊
𝐻,𝑗 − 10 + 5

ln 10 ln 𝜋𝑗 , (10.16)

and
𝑚𝜋,𝑗 = 𝑚𝐻,𝑗 − 10 + 5

ln 10 ln 𝜋𝑗 , (10.17)

Also in order to combine the measurements of SnIa and Cepheids we use the calibrated SnIa B-band
peak magnitude in the 𝑖𝑡ℎ host

𝑚𝐵,𝑖 = 𝜇𝑖 +𝑀𝐵 . (10.18)

Using the data (see Section 10.2.3) for observed Cepheid magnitudes 𝑚𝐻 , colors 𝑉 − 𝐼, periods [𝑃 ],
metallicities [𝑀/𝐻], MW Cepheid parallaxes 𝜋, anchor distances 𝜇𝑘 together with the SnIa magnitudes
𝑚𝐵 , we can fit simultaneously for 𝑅𝑊 , 𝑏𝑠

𝑊 , 𝑏𝑙
𝑊 , 𝑍𝑊 , the host and the anchor galaxy distances 𝜇𝑖, the

parallax offset 𝑧𝑝, the Cepheid absolute magnitude 𝑀𝑊
𝐻 and the SnIa absolute magnitude 𝑀𝐵 .

Combining the equations for apparent magnitudes for Cepheids, Eqs. (10.12), (10.15), and for SnIa,
Eq. (10.18), we relate data and parameters through the matrix equation

Y = AX , (10.19)

with Y the matrix of measurements, X the matrix of parameters and A the equation (or design) matrix.
Using these matrices with the measurement error matrix C we fit the data by minimizing the chi squared
𝜒2 statistic expressed as

𝜒2 = (Y − AX)TC−1(Y − AX) . (10.20)

Note that we can solve the following expression for the maximum likelihood parameters X analytically:

Xbest = (ATC−1A)−1ATC−1Y . (10.21)

The standard errors for the parameters in Xbest are given by the covariance matrix

Σ = (ATC−1A)−1 . (10.22)

In the Appendix G we present the schematic form of the C, Y, X and A matrices. We adopt 2D
fit including errors in the error matrix C in both Y and X "axes". In particular we do not neglect to
include in the error matrix C the errors in the colors V and I. These errors for MW and LMC Cepheids as
provided by the SH0ES team (see in Table 1 of Ref. [40] and in Table 2 of Ref. [39]) are shown in Table
G.1 and in Table G.2 of the Appendix G respectively. For Cepheids in galaxies (other than MW and
LMC) where the SH0ES team does not provide separate color errors we use total statistical uncertainties
where the color errors are included. These total statistical uncertainties derived by the SH0ES team (see
in column 8 of the Table 4 of Ref. [17]) are shown in Table G.3 of the Appendix G).

In the following subsections we study three cases where the questions mentioned in Introduction 10.1
will be addressed.
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Figure 10.2: The best fit 𝑅𝑊,𝑏𝑓 for various Σ1 and Σ2 datasets as a function of the critical dividing
distance 𝐷𝑐 ∈ [0.01, 37] Mpc as derived using the individual 𝑅𝑊 (red points in Fig. 10.1). The dark
red points correspond to the dataset with galaxies that have distance below 𝐷𝑐, whereas the red points
regard galaxies with distances above 𝐷𝑐.

10.3.1 Case I: Fitting individual 𝑅𝑊 and global 𝑀𝑊
𝐻

We first allow, as done in Ref. [56], the parameter 𝑅𝑊 to vary between galaxies and we consider a
global value of the Cepheid absolute magnitude 𝑀𝑊

𝐻 . Despite slight differences in the analysis method,
the results are in very good agreement with the results in Ref. [56] as illustrated in Fig. 10.1. Fitting
individual parameters of galaxies 𝑅𝑊,𝑖 to Cepheid data as derived from our work and from Ref. [56]
correspond to red and blue points respectively. The inferred best fit value of the Cepheid absolute
magnitude is 𝑀𝑊

𝐻 = −5.958 ± 0.028 mag. The red and blue dotted lines correspond to 𝑅𝑊 = 0.365 and
𝑅𝑊 = 0.369. These 𝑅𝑊 values are taken using the derived individual parameters of anchor galaxies
(here MW, NGC 4258, and LMC) and M31 (due to its proximity) 𝑅𝑊,𝑘 and minimizing the 𝜒2(𝑅𝑊 )
with respect to the 𝑅𝑊

𝜒2(𝑅𝑊 ) =
𝑁∑︁

𝑘=1

(𝑅𝑊,𝑘 −𝑅𝑊 )2

𝜎2
𝑅𝑊,𝑘

+ 𝜎2
𝑠

, (10.23)

where 𝑁 = 4. We fix the scatter to 𝜎𝑠 = 0.08 obtained by demanding that 𝜒2
𝑚𝑖𝑛/𝑁 = 1 (where 𝜒2

𝑚𝑖𝑛 is
the minimized value of 𝜒2).

Using the obtained best fit individual values for all galaxies 𝑅𝑊,𝑖 (see red points in Fig. 10.1) we
focus on a particular type of evolution, sharp transition of these best fit values at low and high distances.
We thus use the Distance Split Sample (DSS) method which consists of the following steps:

• We consider a critical dividing distance 𝐷𝑐 ∈ [0.01, 37] Mpc and split the sample of galaxies in two
subsamples Σ1 and Σ2 with distances 𝐷 < 𝐷𝑐 and 𝐷 > 𝐷𝑐 respectively.

• For each subsample we use the maximum likelihood method to find the best fit parameters 𝑅𝑊,𝑏𝑓

(𝑅<
𝑊 and 𝑅>

𝑊 ) by minimizing 𝜒2
1(𝑅<

𝑊 ) and 𝜒2
2(𝑅>

𝑊 ) using a similar equation as Eq. (10.23). The
best fit values 𝑅𝑊,𝑏𝑓 for various Σ1 and Σ2 datasets as a function of the critical distances 𝐷𝑐 are
shown in Fig. 10.2.
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Figure 10.3: The 𝜎-distances between the various Σ1 and Σ2 datasets as a function of the critical dividing
distance 𝐷𝑐 as derived using the individual values of 𝑅𝑊 . The red and blue lines correspond to the red
(our results) and blue (the results in Ref. [56]) points of Fig. 10.2 respectively. A transition of the
𝜎-distance at 𝐷𝑐 ≃ 22 Mpc is apparent.

• We evaluate the Δ𝜒2
12(𝐷𝑐) of the best fit of each subsample Σ1 with respect to the likelihood of

the other subsample Σ2 and vice versa
Δ𝜒2

12(𝐷𝑐) ≡ 𝜒2
2(𝑅<

𝑊 )(𝐷𝑐) − 𝜒2
2,𝑚𝑖𝑛(𝑅>

𝑊 )(𝐷𝑐) , (10.24)

Δ𝜒2
21(𝐷𝑐) ≡ 𝜒2

1(𝑅>
𝑊 )(𝐷𝑐) − 𝜒2

1,𝑚𝑖𝑛(𝑅<
𝑊 )(𝐷𝑐) . (10.25)

• Using these values we evaluate the distances 𝑑𝜎,12(𝐷𝑐) and 𝑑𝜎,21(𝐷𝑐) as a solution of the equation

Δ𝜒2
𝑖𝑗 = 2𝑄−1

[︂
𝑀

2 , 1 − 𝐸𝑟𝑓

(︂
𝑑𝜎,𝑖𝑗√

2

)︂]︂
, (10.26)

where 𝑖𝑗 = 12, 21, 𝑀 is the number of parameters to fit i.e 𝑀 = 1, 𝑄−1 is the inverse regularized
incomplete Gamma function and 𝐸𝑟𝑓 is the error function.

• We then define the 𝜎−distance 𝑑𝜎(𝐷𝑐) as the minimum of the distances 𝑑𝜎,12(𝐷𝑐) and 𝑑𝜎,21(𝐷𝑐)
i.e.

𝑑𝜎(𝐷𝑐) ≡ 𝑀𝑖𝑛 [𝑑𝜎,12(𝐷𝑐), 𝑑𝜎,21(𝐷𝑐)] . (10.27)
The anticipated value of 𝑑𝜎 is in the range of 1 − 2 in the context of a homogeneous sample as
verified below using Monte Carlo simulations. We thus address the question: ’Does the real Cepheid
sample have this property?’

Fig. 10.3 shows the 𝜎−distance 𝑑𝜎(𝐷𝑐) between the various Σ1 and Σ2 datasets as a function of the
critical distances 𝐷𝑐 as derived using the individual values of 𝑅𝑊 . The red and blue lines correspond to
the red (our results) and blue (the results in Ref. [56]) points of Fig. 10.2 respectively.

Clearly, the Cepheid best fit 𝑅𝑊,𝑏𝑓 parameter indicates the presence of a transition at a critical
distance 𝐷𝑐 in the range between 8 Mpc and 18 Mpc or at a time between 25 Myrs and 55 Myrs ago.
For this range of 𝐷𝑐 the best fit value of 𝑅<

𝑊 = 0.388 ± 0.042 differs from the best fit value of 𝑅>
𝑊 =

0.206 ± 0.033 at a level more that 4𝜎 with Δ𝑅𝑊 ≡ 𝑅>
𝑊 −𝑅<

𝑊 = −0.182 ± 0.056.
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Figure 10.4: Fitting individual 𝑀𝑊
𝐻 to Cepheid data for global 𝑅𝑊 with a fixed value 0.386. Anchor

galaxies are denoted with dark red points and SnIa host galaxies with green points. The dotted line
corresponds to 𝑀𝑊

𝐻 = −5.98 mag as derived using the individual values of anchor galaxies and M31 (due
to its proximity) 𝑀𝑊

𝐻,𝑘.
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Σ1: D < Dc

Σ2: D > Dc

Figure 10.5: The best fit 𝑀𝑊
𝐻,𝑏𝑓 for various Σ1 and Σ2 datasets as a function of the critical distances 𝐷𝑐

as derived using the individual values of 𝑀𝑊
𝐻 (points in Fig. 10.4). The dark green points correspond

to the dataset with galaxies that have distance below 𝐷𝑐, whereas the green points regard galaxies with
distances above 𝐷𝑐.
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10.3.2 Case II: Fitting individual 𝑀𝑊
𝐻 with fixed global 𝑅𝑊

In this case we allow the value of the Cepheid absolute magnitude 𝑀𝑊
𝐻 to vary between galaxies and we

consider a global fixed parameter 𝑅𝑊 = 0.386 in agreement with Refs. [17, 39, 40].
The results of fitting individual 𝑀𝑊

𝐻 to Cepheid data are illustrated in Fig. 10.4. Anchor galaxies are
denoted with dark red points and SnIa host galaxies with green points. We see that Cepheids in nearby
galaxies are fainter. The dotted line corresponds to 𝑀𝑊

𝐻 = −5.98 mag as derived using the individual
parameters of anchor galaxies (here MW, NGC 4258, and LMC) and M31 (due to its proximity) 𝑀𝑊

𝐻,𝑘

and minimizing 𝜒2(𝑀𝑊
𝐻 ) with respect to the 𝑀𝑊

𝐻

𝜒2(𝑀𝑊
𝐻 ) =

𝑁∑︁
𝑘=1

(𝑀𝑊
𝐻,𝑘 −𝑀𝑊

𝐻 )2

𝜎2
𝑀𝑊

𝐻,𝑘

+ 𝜎2
𝑠

, (10.28)

where 𝑁 = 4. We fix the scatter to 𝜎𝑠 = 0.08 obtained by demanding that 𝜒2
𝑚𝑖𝑛/𝑁 = 1.

Using the obtained best fit individual values for all galaxies 𝑀𝑊
𝐻,𝑖 (see Fig. 10.4) we focus on a

particular type of evolution, sharp transition of these best fit values at low and high distances. We follow
the same DSS method as in the previous subsection. Thus

• First we consider a critical dividing distance 𝐷𝑐 ∈ [0.01, 37] Mpc and split the sample of galaxies in
two subsamples Σ1 and Σ2 with distances 𝐷 < 𝐷𝑐 and 𝐷 > 𝐷𝑐 respectively.

• For each subsample we use the maximum likelihood method to find the best fit parameters 𝑀𝑊
𝐻,𝑏𝑓

(𝑀𝑊,<
𝐻 and 𝑀𝑊,>

𝐻 ) by minimizing 𝜒2
1(𝑀𝑊,<

𝐻 ) and 𝜒2
2(𝑀𝑊,>

𝐻 ). The best fit values of the 𝑀𝑊
𝐻,𝑏𝑓 for

various Σ1 and Σ2 datasets as a function of the critical distances 𝐷𝑐 are shown in Fig. 10.5.

• We consider the Δ𝜒2
12(𝐷𝑐) of the best fit of each subsample Σ1 with respect to the likelihood of

the other subsample Σ2 and vice versa

Δ𝜒2
12(𝐷𝑐) ≡ 𝜒2

2(𝑀𝑊,<
𝐻 )(𝐷𝑐) − 𝜒2

2,𝑚𝑖𝑛(𝑀𝑊,>
𝐻 )(𝐷𝑐) , (10.29)

Δ𝜒2
21(𝐷𝑐) ≡ 𝜒2

1(𝑀𝑊,>
𝐻 )(𝐷𝑐) − 𝜒2

1,𝑚𝑖𝑛(𝑀𝑊,<
𝐻 )(𝐷𝑐) . (10.30)

• We evaluate the distances 𝑑𝜎,12(𝐷𝑐) and 𝑑𝜎,21(𝐷𝑐) as a solution of the corresponding Eq. (10.26).

• We then find the 𝜎−distances 𝑑𝜎(𝐷𝑐) as the minimum of the distances 𝑑𝜎,12(𝐷𝑐) and 𝑑𝜎,21(𝐷𝑐).

In Fig. 10.6 with the green line we show the 𝜎−distances 𝑑𝜎(𝐷𝑐) between the various Σ1 and Σ2 datasets
as a function of the critical distances 𝐷𝑐 as derived using the individual values of 𝑀𝑊

𝐻 . As in the
previous case we see that the Cepheid best fit 𝑀𝑊

𝐻,𝑏𝑓 parameter indicates the presence of a transition at
a critical distance 𝐷𝑐 in the range between 8 Mpc and 18 Mpc. For this range of 𝐷𝑐 the best fit value
of 𝑀𝑊,<

𝐻 = −5.974 ± 0.042 mag differs from the best fit value of 𝑀𝑊,>
𝐻 = −6.126 ± 0.036 mag at a level

more that 3𝜎 with Δ𝑀𝑊
𝐻 ≡ 𝑀𝑊,>

𝐻 −𝑀𝑊,<
𝐻 = −0.152 ± 0.055 mag.

In order to secure the robustness of our approach we use a Monte Carlo simulation allowing the galactic
distances to vary randomly using their error bars. In particular, the simulations have been performed for
randomly varying galaxy distance values with a Gaussian probability distribution (normal distribution)
with mean equal to the measured distance and standard deviation equal to the corresponding 1𝜎 error.
In Fig. 10.7 we show the 𝜎-distances as a function of the critical distances 𝐷𝑐 for 100 sample datasets
with random distance values, normally distributed inside their individual 1-𝜎 range as derived using the
individual values of 𝑀𝑊

𝐻 . Clearly, the random variation of the galactic distances does not change the
transition effect. The 68% (one standard deviation) range of the 𝜎-distances as a function of the critical
distances 𝐷𝑐 produced by the Monte Carlo simulation of 100 sample datasets is shown in Fig. 10.8 with
the green lines. Evidently, the Monte Carlo simulation demonstrates the robustness of the identified
transition with respect to variation of galactic distances.
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Figure 10.6: The green line represents the 𝜎-distances between the various Σ1 and Σ2 datasets as a
function of the critical distances 𝐷𝑐 as derived using the individual values of 𝑀𝑊

𝐻 . In contrast the
yellow lines correspond to 68% (one standard deviation) range of the 𝜎-distances as a function of the
critical distances 𝐷𝑐 produced by a Monte Carlo simulation of 100 sample datasets assuming artificial
homogeneity of the 𝑀𝑊

𝐻 data. The simulations have been performed for randomly varying 𝑀𝑊
𝐻 values

with a Gaussian probability distribution with mean 𝑀𝑊
𝐻 = −6 mag provided by the full 𝑀𝑊

𝐻 datapoints
and standard deviation equal to the corresponding 1𝜎 error.
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Figure 10.7: The 𝜎-distances as a function of the critical distances𝐷𝑐 for 100 sample datasets with random
distance values, normally distributed inside their individual 1-𝜎 range as derived using the individual
values of 𝑀𝑊

𝐻 . A transition of the 𝜎-distance at 𝐷𝑐 ≃ 22 Mpc remains present for practically all of the
Monte Carlo samples.
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Figure 10.8: The green lines represent the 68% range of the 𝜎-distances as a function of the critical
distances 𝐷𝑐 produced by a Monte Carlo simulation of 100 sample datasets. The simulations have been
performed for randomly varying galaxy distance values with a Gaussian probability distribution with
mean equal to the measured distance and standard deviation equal to the corresponding 1𝜎 error. In
contrast the pink region correspond to a Monte Carlo simulation of 100 sample datasets assuming artificial
homogeneity of the 𝑀𝑊

𝐻 data. In addition to this homogeneity the simulations have been performed for
randomly varying galaxy distance values with a Gaussian probability distribution.
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Figure 10.9: Fitting individual 𝑀𝑊
𝐻 to Cepheid data with a free global 𝑅𝑊 . Anchor galaxies are denoted

with cyan points and SnIa host galaxies with magenta points. The dotted line corresponds to 𝑀𝑊
𝐻 =

−5.90 mag as derived using the individual values of anchor galaxies and M31 (due to its proximity) 𝑀𝑊
𝐻,𝑘.
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Figure 10.10: The one dimensional relative probability density values of the color luminosity parameter
and the Cepheid absolute magnitude as derived using the DSS method for the cases I, II, and III. All
measurements are shown as normalized Gaussian distributions. Notice that the best fit values one for
galaxies at distances 𝐷 < 𝐷𝑐 and one for galaxies at 𝐷 > 𝐷𝑐 are inconsistent with each other at a level
larger than 3𝜎.

We now test if the effect would disappear in the context of homogenized Monte-Carlo Cepheid datasets.
In Fig. 10.6, we examine if this obvious transition of this case could be due to a systematic uncertainty
of the Cepheid absolute magnitude value. Thus, the yellow region corresponds to the 68% range of
the 𝜎-distances as a function of the critical distances 𝐷𝑐 produced by a Monte Carlo simulation of 100
sample datasets assuming artificial homogeneity of the 𝑀𝑊

𝐻 data. The simulations have been performed
by randomly varying the 𝑀𝑊

𝐻 values with a Gaussian probability distribution with mean 𝑀𝑊
𝐻 = −6 mag

as obtained by the full dataset with a universal 𝑀𝑊
𝐻 and standard deviation of each global universal

fit which is equal to the corresponding 1𝜎 error. For this Monte Carlo uniformized data there is no
transition. This demonstrates that the observed transition is due to the actual Cepheid data and not to
the method we used. As expected the same result persists if in addition to homogenizing the sample with
respect to 𝑀𝑊

𝐻 we also randomly vary the galactic distances as described above assuming a Gaussian
distribution (pink region in Fig. 10.8). Thus the observed transition effect as illustrated in Figs. 10.6
and 10.8 is robust with respect to random variation of the galactic distances and disappears only if we
artificially homogenize the data in the context of Monte Carlo simulations.

10.3.3 Case III: Fitted individual 𝑀𝑊
𝐻 and a global 𝑅𝑊

In this case we assume a free to fit global parameter 𝑅𝑊 and allow the value of the Cepheid absolute
magnitude 𝑀𝑊

𝐻 to vary between galaxies. The results of fitting individual 𝑀𝑊
𝐻 to Cepheid data are

illustrated in Fig. 10.9. The dotted line corresponds to 𝑀𝑊
𝐻 = −5.90 mag as derived using the individual

parameters of anchor galaxies and M31 (due to its proximity) 𝑀𝑊
𝐻,𝑘 and minimizing 𝜒2(𝑀𝑊

𝐻 ) in Eq.
(10.28) with respect to the 𝑀𝑊

𝐻 .
In this case we obtain the best fit value of the parameter 𝑅𝑊 = 0.310 ± 0.021 which is smaller than

the global fixed value 𝑅𝑊 = 0.386 used by Refs. [17, 39, 40]. We attribute this difference to the fact that
we have used the full Cepheid sample for its determination and not just the anchor galaxies and we have
not used a global value of the absolute magnitude 𝑀𝑊

𝐻 common for all Cepheids.
Using the same DSS method as in the two previous cases we find the best fit values of the 𝑀𝑊

𝐻,𝑏𝑓 (𝑀𝑊,<
𝐻

and 𝑀𝑊,>
𝐻 ) for various Σ1 and Σ2 datasets as a function of the critical distances 𝐷𝑐. As the previous cases

the presence of a transition at a critical distance 𝐷𝑐 in the range between 8 Mpc and 18 Mpc is obvious.
For this range of 𝐷𝑐 the best fit value of 𝑀𝑊,<

𝐻 = −5.904 ± 0.042 mag differs from the best fit value of
𝑀𝑊,>

𝐻 = −6.092±0.035 mag at a level more that 4𝜎 with Δ𝑀𝑊
𝐻 ≡ 𝑀𝑊,>

𝐻 −𝑀𝑊,<
𝐻 = −0.188±0.055 mag.

In this case, we do not plot here the result since it is very similar to that plotted in the figures of
previews cases but are available in our publicly available numerical analysis files [70].
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Figure 10.11: The best fit values of the parameter 𝑅𝑊 for base/base-SH0ES, I and IV models as derived
using Cepheid data. Note that in terms of the AIC and BIC, fitting for two universal values of 𝑅𝑊 with
global 𝑀𝑊

𝐻 is the preferred model (case IV, green region).
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Figure 10.12: The best fit values of the parameter 𝑀𝑊
𝐻 for base/base-SH0ES, III and V models as derived

using the Cepheid data. Note that in terms of the AIC and BIC, fitting for two universal values of 𝑀𝑊
𝐻

with global 𝑅𝑊 is the preferred model among the models shown (case V, cyan region).
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Figure 10.13: The ΔAIC and ΔBIC of models with different free parameter set compared to base
(subindex 1) and base-SH0ES (subindex 2) models. Clearly, the case IV (two universal 𝑅𝑊 and a
global 𝑀𝑊

𝐻 ) is the best model and on the other hand, the case II (a global 𝑅𝑊 and individual 𝑀𝑊
𝐻 ) is

the worst one.

Table 10.1: Fitting results and model comparison tests for different models. For the ΔAIC and ΔBIC
the comparisons are made respect to base (base-SH0ES) models. The value of 𝐻0 derived using the Eq.
(10.37) (black font) and the Eq. (10.39) (green font). The best fit parameters of SnIa absolute magnitude
𝑀𝐵 and the value of 𝐻0 in the parentheses correspond to intrinsic scatter of LMC Cepheids 𝜎𝐿𝑀𝐶 = 0.

Model Best Fit Parameters (with 1𝜎 ranges) Model SelectionIntrinsic scatter of LMC Cepheids
𝜎𝐿𝑀𝐶 = 0.08 (𝜎𝐿𝑀𝐶 = 0 ) Criteria 𝜎𝐿𝑀𝐶 = 0 𝜎𝐿𝑀𝐶 = 0.08

Base-SH0ES 𝑅𝑊 = 0.386 (fixed) 𝜒2
𝑚𝑖𝑛 1767.48 1644.79

Global 𝑅𝑊 𝑀𝑊
𝐻 = −5.958 ± 0.028 𝜒2

𝑟𝑒𝑑 1.089 1.014
Global 𝑀𝑊

𝐻 MB = −19.251 ± 0.057 𝐴𝐼𝐶 1823.48 1700.79
𝑁 = 1650 ( 𝑀𝐵 = −19.261 ± 0.057 ) Δ𝐴𝐼𝐶 7.65 (0) 17.97 (0)
𝑀 = 28 H0 = 72.86 ± 1.95, H0 = 73.50 ± 1.96 𝐵𝐼𝐶 1974.92 1852.23

𝑑𝑜𝑓 = 1622 ( 𝐻0 = 72.53 ± 1.93, 𝐻0 = 73.17 ± 1.94 ) Δ𝐵𝐼𝐶 2.25 (0) 12.57 (0)
Base 𝑅𝑊 = 0.309 ± 0.021 𝜒2

𝑚𝑖𝑛 1759.47 1624.82
Global 𝑅𝑊 𝑀𝑊

𝐻 = −5.862 ± 0.028 𝜒2
𝑟𝑒𝑑 1.084 1.002

Global 𝑀𝑊
𝐻 MB = −19.225 ± 0.057 𝐴𝐼𝐶 1815.83 1682.82

𝑁 = 1650 ( 𝑀𝐵 = −19.246 ± 0.054 ) Δ𝐴𝐼𝐶 0 (-7.65) 0 (-17.97)
𝑀 = 29 H0 = 73.73 ± 1.96, H0 = 74.38 ± 1.97 𝐵𝐼𝐶 1972.67 1839.66

𝑑𝑜𝑓 = 1621 ( 𝐻0 = 73.03 ± 1.86, 𝐻0 = 73.67 ± 1.86 ) Δ𝐵𝐼𝐶 0 (-2.25) 0 (-12.57)
𝑅𝑊,𝑖 red points in Fig. 10.1

I 𝑅<
𝑊 = 0.388 ± 0.045 (using DSS) 𝜒2

𝑚𝑖𝑛 1676.76 1564.06
Individual 𝑅𝑊 𝑅>

𝑊 = 0.206 ± 0.033 (using DSS) 𝜒2
𝑟𝑒𝑑 1.049 0.978

Global 𝑀𝑊
𝐻 𝑀𝑊

𝐻 = −5.958 ± 0.028 𝐴𝐼𝐶 1778.76 1666.06
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𝑁 = 1650 MB = −19.43 ± 0.056 Δ𝐴𝐼𝐶 -37.07 (-44.72) -16.76 (-34.73)
𝑀 = 51 ( 𝑀𝐵 = −19.491 ± 0.056 ) 𝐵𝐼𝐶 2054.59 1941.9

𝑑𝑜𝑓 = 1599 H0 = 67.11 ± 1.76, H0 = 67.69 ± 1.77 Δ𝐵𝐼𝐶 81.92 (79.67) 102.24 (89.74)
( 𝐻0 = 65.24 ± 1.71, 𝐻0 = 65.81 ± 1.72 )

𝑅𝑊 = 0.386 (fixed)
II 𝑀𝑊

𝐻,𝑖 points in Fig. 10.4 𝜒2
𝑚𝑖𝑛 1732.05 1611.04

Global 𝑅𝑊 𝑀𝑊,<
𝐻 = −5.974 ± 0.042 (using DSS) 𝜒2

𝑟𝑒𝑑 1.083 1.007
Individual 𝑀𝑊

𝐻 𝑀𝑊,>
𝐻 = −6.126 ± 0.036 (using DSS) 𝐴𝐼𝐶 1832.05 1711.04

𝑁 = 1650 MB = −19.394 ± 0.057 Δ𝐴𝐼𝐶 16.22 (8.57) 28.22 (10.25)
𝑀 = 50 ( 𝑀𝐵 = −19.404 ± 0.055 ) 𝐵𝐼𝐶 2102.48 1981.47

𝑑𝑜𝑓 = 1600 H0 = 68.22 ± 1.82, H0 = 68.82 ± 1.83 Δ𝐵𝐼𝐶 129.81 (127.56) 141.81 (129.24)
( 𝐻0 = 67.90 ± 1.75, 𝐻0 = 68.50 ± 1.76 )

𝑅𝑊 = 0.310 ± 0.021
III 𝑀𝑊

𝐻,𝑖 points in Fig. 10.9 𝜒2
𝑚𝑖𝑛 1726.7 1592.09

Global 𝑅𝑊 𝑀𝑊,<
𝐻 = −5.904 ± 0.042 (using DSS) 𝜒2

𝑟𝑒𝑑 1.079 0.996
Individual 𝑀𝑊

𝐻 𝑀𝑊,<
𝐻 = −6.092 ± 0.035 (using DSS) 𝐴𝐼𝐶 1828.7 1694.09

𝑁 = 1650 MB = −19.428 ± 0.057 Δ𝐴𝐼𝐶 12.87 (5.22) 11.27 (-6.7)
𝑀 = 51 ( 𝑀𝐵 = −19.424 ± 0.056 ) 𝐵𝐼𝐶 2104.53 1969.93

𝑑𝑜𝑓 = 1599 H0 = 67.17 ± 1.79, H0 = 67.76 ± 1.80 Δ𝐵𝐼𝐶 131.86 (129.61) 130.27 (117.7)
( 𝐻0 = 67.28 ± 1.75, 𝐻0 = 67.87 ± 1.76 )

IV 𝑅<
𝑊 = 0.325 ± 0.018 𝜒2

𝑚𝑖𝑛 1744.19 1611.65
Two universal 𝑅𝑊 𝑅>

𝑊 = 0.155 ± 0.054 𝜒2
𝑟𝑒𝑑 1.077 0.995

Global 𝑀𝑊
𝐻 𝑀𝑊

𝐻 = −5.885 ± 0.028 𝐴𝐼𝐶 1804.19 1671.46
𝑁 = 1650 MB = −19.399 ± 0.057 Δ𝐴𝐼𝐶 -13.34 (-18.99) -11.36 (-29.33)
𝑀 = 30 ( 𝑀𝐵 = −19.447 ± 0.054 ) 𝐵𝐼𝐶 1966.44 1833.91

𝑑𝑜𝑓 = 1620 H0 = 68.06 ± 1.80, H0 = 68.66 ± 1.81 Δ𝐵𝐼𝐶 -6.23 (-8.48) -5.75 (-18.32)
( 𝐻0 = 66.59 ± 1.66, 𝐻0 = 67.17 ± 1.67 )

V 𝑅𝑊 = 0.308 ± 0.021 𝜒2
𝑚𝑖𝑛 1757.15 1621.98

Global 𝑅𝑊 𝑀𝑊,<
𝐻 = −5.863 ± 0.024 𝜒2

𝑟𝑒𝑑 1.085 1.001
Two universal 𝑀𝑊

𝐻 𝑀𝑊,<
𝐻 = −6.024 ± 0.062 𝐴𝐼𝐶 1817.15 1681.98

𝑁 = 1650 MB = −19.361 ± 0.057 Δ𝐴𝐼𝐶 1.32 (-6.33) -0.84 (-18.81)
𝑀 = 30 ( 𝑀𝐵 = −19.399 ± 0.057 ) 𝐵𝐼𝐶 1979.41 1844.23

𝑑𝑜𝑓 = 1620 H0 = 69.27 ± 1.82, H0 = 69.88 ± 1.83 Δ𝐵𝐼𝐶 6.74 (4.49) 4.57 (-8.0)
( 𝐻0 = 68.06 ± 1.81, 𝐻0 = 68.65 ± 1.82 )

𝑅<
𝑊 = 0.329 ± 0.018

VI 𝑅>
𝑊 = 0.151 ± 0.053 𝜒2

𝑚𝑖𝑛 1743.26 1612.09
Two universal 𝑅𝑊 𝑀𝑊,<

𝐻 = −5.891 ± 0.024 𝜒2
𝑟𝑒𝑑 1.077 0.996

Two universal 𝑀𝑊
𝐻 𝑀𝑊,>

𝐻 = −5.900 ± 0.063 𝐴𝐼𝐶 1805.26 1674.09
𝑁 = 1650 MB = −19.413 ± 0.052 Δ𝐴𝐼𝐶 -10.57 (-18.22) -8.73 (-26.7)
𝑀 = 31 ( 𝑀𝐵 = −19.379 ± 0.056 ) 𝐵𝐼𝐶 1972.93 1841.75

𝑑𝑜𝑓 = 1619 H0 = 67.62 ± 1.64, H0 = 68.22 ± 1.65 Δ𝐵𝐼𝐶 0.26 (-1.99) 2.09 (-10.48)
( 𝐻0 = 68.70 ± 1.81, 𝐻0 = 69.30 ± 1.81 )

10.4 Model Selection
As pointed out in the previous subsections where we study three cases (I, II, and III) both the Cepheid
best fit absolute magnitude and color luminosity parameters indicate the presence of a transition effect
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Table 10.2: The interpretation of differences Δ𝐴𝐼𝐶 and Δ𝐵𝐼𝐶 according to the calibrated Jeffreys’ scale
[61] (see also Refs. [62–66]). However, it should be noted that the Jeffreys’ scale has to be interpreted
with care [63] because has been shown to lead to different qualitative conclusions.

Δ𝐴𝐼𝐶 Δ𝐵𝐼𝐶

Level of empirical support for the model with the smaller 𝐴𝐼𝐶Evidence against the model with the larger 𝐵𝐼𝐶

0-2 4-7 > 10 0-2 2-6 6-10 > 10
Substantial Strong Very strong Weak Positive Strong Very strong

Table 10.3: Ranking of models according to 𝐴𝐼𝐶 and 𝐵𝐼𝐶 criteria. We see that in terms of the AIC and
BIC fitting for two universal values of 𝑅𝑊 with global 𝑀𝑊

𝐻 is the preferred model (case IV).

Ranking 𝐴𝐼𝐶 𝐵𝐼𝐶
𝜎𝐿𝑀𝐶 = 0 𝜎𝐿𝑀𝐶 = 0.08 𝜎𝐿𝑀𝐶 = 0 𝜎𝐿𝑀𝐶 = 0.08

1 I I IV IV
2 IV IV Base Base
3 VI VI VI VI
4 Base V Base-SH0ES V
5 V Base V Base-SH0ES
6 Base-SH0ES III I I
7 III Base-SH0ES II III
8 II II III II

at a critical distance 𝐷𝑐 in the range between 8 Mpc and 18 Mpc (see Fig. 10.10). This transition
however becomes apparent when additional parameters are introduced (the individual 𝑅𝑊 or 𝑀𝑊

𝐻 for
each galaxy). Thus the questions we address in this section is the following:

• Is the introduction of additional parameters favored by model selection criteria like the Akaike
Information Criterion (AIC) [2265] and the Bayesian Information Criterion (BIC) [595]?

• Could the introduction of a smaller number of parameters lead to more favored phenomenological
models?

In order to address these questions we use model selection tests for eight cases with different number
of free parameters. The additional five considered cases are the following7:

• Base-SH0ES: Like previous studies of SH0ES team we consider universality on the color-luminosity
relation with a global fixed parameter 𝑅𝑊 = 0.386 [17, 39, 40] and universality on the absolute
magnitude of Cepheids SnIa calibrators with a global 𝑀𝑊

𝐻 to be fit by the Cepheid data. Thus in
this case we use the base, commonly used parameter set in the field.

7Note that for all cases we fit other 27 additional parameters (see the schematic form of the matrix of parameters X in
Appendix G)
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Figure 10.14: The one dimensional relative probability density value of SnIa absolute magnitude 𝑀𝐵 for
all cases studied in this analysis compared to that obtained using CMB calibration. All measurements
are shown as normalized Gaussian distributions. Clearly, for all cases where we do not consider the
universality of parameters 𝑅𝑊 and 𝑀𝑊

𝐻 (i.e. I, II, III, IV, V, VI) the 𝑀𝐵 is consistent with the CMB
determination value.

• Base: We consider universality on the color-luminosity relation with a global parameter 𝑅𝑊 to
be fit by data and universality on the absolute magnitude of Cepheids SnIa calibrators with global
𝑀𝑊

𝐻 .

• IV: We consider a global 𝑀𝑊
𝐻 and two universal 𝑅𝑊 (𝑅<

𝑊 for galaxies at distances 𝐷 < 16 Mpc
and 𝑅>

𝑊 for galaxies at distances 𝐷 > 16 Mpc).

• V: We consider a global 𝑅𝑊 and two universal 𝑀𝑊
𝐻 (𝑀𝑊,<

𝐻 for galaxies at distances 𝐷 < 16 Mpc
and 𝑀𝑊,>

𝐻 for galaxies at distances 𝐷 > 16 Mpc).

• VI: We consider two universal 𝑅𝑊 (𝑅<
𝑊 for galaxies at distances 𝐷 < 16𝑀𝑝𝑐 and 𝑅>

𝑊 for galaxies
at distances 𝐷 > 16 Mpc) and two universal 𝑀𝑊

𝐻 (𝑀𝑊,<
𝐻 for galaxies at distances 𝐷 < 16𝑀𝑝𝑐 and

𝑀𝑊,>
𝐻 for galaxies at distances 𝐷 > 16 Mpc).

In order to compare the models we construct Table 10.1 with the fitting parameters for all cases. The
best fit values of the parameter 𝑅𝑊 for base/base-SH0ES, I and IV models are shown in Fig. 10.11
and the best fit values of the parameter 𝑀𝑊

𝐻 for base/base-SH0ES, III and V models are shown in Fig.
10.12. Various methods for model selection have been developed and model comparison techniques used
[62, 601–603]. In table 10.1 we show the value of the minimum 𝜒2 (𝜒2

𝑚𝑖𝑛) for all cases and the reduced
chi-squared which is a very popular method for model comparison. This is defined by

𝜒2
𝑟𝑒𝑑 = 𝜒2

𝑚𝑖𝑛

𝑑𝑜𝑓
, (10.31)

where 𝑑𝑜𝑓 = 𝑁 −𝑀 is typically the number of degrees of freedom (with 𝑁 is the number of datapoints
used in the fit and 𝑀 is the number of free parameters) for each model.
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Figure 10.15: The one dimensional relative probability density value of 𝐻0 as derived using the Eq.
(10.37) (solid lines) and the Eq. (10.39) (dashed lines) for all cases studied in this analysis compared
to that from the Planck CMB measurement (grey line). All measurements are shown as normalized
Gaussian distributions. It is evident that for all cases where we break the assumption of universality of
the parameters 𝑅𝑊 and 𝑀𝑊

𝐻 (i.e. I, II, III, IV, V, VI) the derived values of 𝐻0 are consistent with the
corresponding predicted Planck CMB best fit value.

We also use the model selection methods like Akaike Information Criterion (AIC) [2265] and the
Bayesian Information Criterion (BIC) [595] that penalize models with additional parameters. For a
model with 𝑀 parameters and a dataset with 𝑁 total observations these are defined through the relations
[62, 601, 602]

𝐴𝐼𝐶 = −2𝑙𝑛ℒ𝑚𝑎𝑥 + 2𝑀 = 𝜒2
𝑚𝑖𝑛 + 2𝑀 , (10.32)

𝐵𝐼𝐶 = −2𝑙𝑛ℒ𝑚𝑎𝑥 +𝑀𝑙𝑛𝑁 = 𝜒2
𝑚𝑖𝑛 +𝑀𝑙𝑛𝑁 , (10.33)

where ℒ𝑚𝑎𝑥 ≡ 𝑒−𝜒2
𝑚𝑖𝑛/2 (e.g. [63, 2266]) is the maximum likelihood of the model under consideration.

Note that a version of the AIC corrected for small sample sizes is important [2267, 2268]. This version is
given by [2269] (see also Refs. [601, 1817])

𝐴𝐼𝐶𝑐𝑜𝑟 = 𝐴𝐼𝐶 + 2𝑀(𝑀 + 1)
𝑁 −𝑀 − 1 . (10.34)

For large samples as in our case (𝑁 ≫ 𝑀) the correction term disappears but for small samples gives a
more accurate answer.

The results for each candidate model are shown in Table 10.1 and the "preferred model" is the one
which minimizes AIC and BIC. The absolute values of the AIC and BIC are not informative. Only the
relative values between different competing models are relevant. Hence when comparing one model versus
the base/base-SH0ES we can use the model differences ΔAIC and ΔBIC.

The differences ΔAIC and ΔBIC with respect to the base/base-SH0ES model defined as

Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶𝑖 −𝐴𝐼𝐶𝑠 = Δ𝜒2
𝑚𝑖𝑛 + 2Δ𝑀 , (10.35)

Δ𝐵𝐼𝐶 = 𝐵𝐼𝐶𝑖 −𝐵𝐼𝐶𝑠 = Δ𝜒2
𝑚𝑖𝑛 + Δ𝑀(𝑙𝑛𝑁) , (10.36)
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where the subindex i refers to value of AIC (BIC) for the model i and 𝐴𝐼𝐶𝑠 (𝐵𝐼𝐶𝑠) is the value of AIC
(BIC) for the base/base-SH0ES model. The resulting ΔAIC and ΔBIC are shown in Table 10.1 and in
Fig. 10.13. Note that a positive value of ΔAIC or ΔAIC means a preference for base/base-SH0ES model.

According to the calibrated Jeffreys’ scales [61] showed in the Table 10.2 (see also Refs. [62–66]) a
range 0 < |Δ𝐴𝐼𝐶| < 2 means that the two comparable models have about the same support from the
data, a range 4 < |Δ𝐴𝐼𝐶| < 7 means this support is considerably less for the model with the larger
𝐴𝐼𝐶 while for |Δ𝐴𝐼𝐶| > 10 the model with the larger 𝐴𝐼𝐶 have no support i.e. the model is practically
irrelevant. Similarly, for two competing models a range 0 < |Δ𝐵𝐼𝐶| < 2 is regarded as weak evidence,
a range 2 < |Δ𝐵𝐼𝐶| < 6 is regarded as positive evidence, while for |Δ𝐵𝐼𝐶| > 6 the evidence is strong
against the model with the larger value.

Ranking of the models considered according to AIC and BIC criteria are presented in Table 10.3.
Clearly, in terms of the AIC and BIC, fitting for two universal values of 𝑅𝑊 with global 𝑀𝑊

𝐻 is the
preferred model (case IV). Base/base-SH0ES model is considerable less supported by data with respect
to the IV model (ΔAIC) and there is a positive/very strong evidence against it (ΔBIC). We attribute
the difference between ΔAIC and ΔBIC for the models considered to the fact that the BIC penalizes
additional parameters more strongly than the AIC as inferred by the Eqs. (10.32) and (10.33) for the
used dataset with 𝑙𝑛𝑁 > 2 (see Refs. [62, 602, 2270]).

10.5 Transition as a possible solution of Hubble tension
In this section, we investigate whether the existence of transition of the Cepheid parameters can impact
on the inferred value of Hubble constant 𝐻0 and its corresponding uncertainties. Using the best fit values
of SnIa absolute magnitude 𝑀𝐵 the Hubble constant is given by

𝐻0 = 100.2𝑀𝐵+𝛼𝐵+5 , (10.37)

where the term 𝛼𝐵 is the intercept of the SnIa magnitude-redshift relation defined as [17]

𝛼𝐵 = log
[︂
𝑐𝑧

(︂
1 + 1

2(1 − 𝑞0)𝑧 − 1
6(1 − 𝑞0 − 3𝑞2

0 + 𝑗0)𝑧2 + 𝒪(𝑧3)
)︂]︂

− 0.2𝑚𝐵 , (10.38)

where 𝑞0 ≡ − 1
𝐻2

0

𝑑2𝑎(𝑡)
𝑑𝑡2

⃒⃒⃒
𝑡=𝑡0

and 𝑗0 ≡ 1
𝐻3

0

𝑑3𝑎(𝑡)
𝑑𝑡3

⃒⃒⃒
𝑡=𝑡0

are the deceleration and jerk parameters respectively.
The intercept 𝛼𝐵 using 217 observed SnIa at redshifts 0.023 < 𝑧 < 0.15 with the deceleration and

jerk parameters set to 𝑞0 = −0.55 and 𝑗0 = 1 is determined to be 𝛼𝐵 = 0.71273 ± 0.00176 by Ref. [17].
Alternatively, using the the best fit value of degenerate combination ℳ = 23.803 ± 0.007 as derived

by Ref. [12] for full Pantheon dataset in Eq. (10.5) the Hubble constant can be estimated

𝐻0 = 𝑐 100.2(𝑀𝐵−ℳ)+5 . (10.39)

In Table 10.1 we show the best fit value of SnIa absolute magnitude 𝑀𝐵 and the corresponding Hubble
constant 𝐻0 as derived using the Eq. (10.37) and the Eq. (10.39) (the values in the parentheses) for all
cases studied in this analysis. Also the one dimensional relative probability density values of 𝑀𝐵 and
𝐻0 as derived using the Eq. (10.37) and the Eq. (10.39) (the values in the parentheses of table 10.1)
compared to that from the Planck CMB measurement assuming flat ΛCDM are shown in Fig. 10.14 and
Fig. 10.15 respectively.

Clearly, for all cases which break the assumption of universality of the parameters 𝑅𝑊 and 𝑀𝑊
𝐻 (i.e.

I, II, III, IV, V, VI) the best fit value of SnIa absolute magnitude 𝑀𝐵 and the derived values of 𝐻0
decrease and become consistent with the corresponding predicted CMB best fit values. For the preferred
model (case IV) we obtain 𝐻0 = 68.06 ± 1.80 km s−1Mpc−1 with Planck tension < 1𝜎. Therefore the
transition in the Cepheid calibrator parameters at 𝐷𝑐 ≃ 16 Mpc can provide a resolution of the Hubble
tension.
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10.6 Conclusions
In this Chapter we have used Cepheid SnIa calibrator data to investigate the effects of variation of the
Cepheid calibration empirical parameters. We have shown that models where such a variation is allowed
are favored on the basis of model selection criteria AIC and BIC. The models that are consistently
favored by both AIC and BIC involve a transition in either the color-luminosity parameter 𝑅𝑊 or the
Cepheid absolute magnitude 𝑀𝑊

𝐻 , at a distance in the range between 10 and 20 Mpc. In the context
of a homogeneous Universe where the cosmological principle is respected this would be a transition in
time between about 25 Myrs and 70 Myrs ago. Models involving a transition in 𝑅𝑊 are slightly favored
over models where there is a transition in 𝑀𝑊

𝐻 . Both classes of models, lead to values of 𝐻0 that are
consistent with the CMB inferred values thus eliminating the Hubble tension.

Such a transition of Cepheid parameters could be induced by a fundamental physics transition. The
magnitude of the transition is consistent with the magnitude required for the resolution of the Hubble
tension in the context of a fundamental gravitational transition occurring by a sudden increase of the
strength of the gravitational interactions 𝐺eff by about 10% [52] at a redshift 𝑧𝑡 ≲ 0.01 (≲ 150 million
years). Such a transition would abruptly increase the SnIa absolute magnitude by Δ𝑀𝐵 ≃ 0.2 [52, 593]
(from 𝑀𝐵 = −19.401±0.027 mag for 𝑧 > 𝑧𝑡 [290] to 𝑀𝐵 = −19.244±0.037 mag for 𝑧 < 𝑧𝑡 [269, 289]) (see
Subsection 2.3.4 for details). The distance range/timescale corresponding to this transition is consistent
with a recent analysis indicating a similar transition in the context of the Tully-Fisher data [477] and
with low redshift galaxy surveys data [952]. Such a transition is also consistent with the solar system
history data [944] which indicate an increase of the rate of impactors on the Moon and Earth surfaces by
about a factor of 2-3 during the past 100Myrs which correspond to 𝑧 < 0.008 [946, 949, 951].

An alternative origin of the observed effect is based on a scenario where the parameter 𝑅𝑊 could vary
across different sightlines and different galaxy distances, morphologies, environments and properties. Dust
extinction differences between galaxies could be the origin for a systematic ”mass step” (at ∼ 1010 𝑀⊙)
in the data [2271, 2272]: after standardization, SnIa in a high-mass galaxy appear brighter than those in
a low-mass galaxy [51, 2273–2277]. Such an alternative scenario is testable using the methods presented
here and it could also lead to a resolution of the Hubble tension. Such an extension is beyond the goals
of our analysis.

Other interesting extensions of our analysis include the following:

• The search for transition in other parameters that can be constrained using the Cepheid data (for
example the SnIa absolute magnitude 𝑀𝐵 and its effect on the estimation of 𝐻0).

• It would be interesting to search for a similar transition in the other SnIa calibrator such as the
Tip (a sharp discontinuity) of the Red Giant Branch (TRGB) in the Hertzsprung-Russell diagram
[229]. The Red Giant stars have nearly exhausted the hydrogen in their cores and have just began
helium burning by the triple-a process (helium flash phase). The brightness of TRGB stars can
be standardized using DEBs combined with parallax calibration. They can serve as excellent
alternative standard candles [2278] visible in the local Universe for the subsequent calibration of
SnIa [2279–2282] and thereby provide an independent determination of the Hubble constant 𝐻0
[230, 301].

The indicated transition at a distance of about 10 − 20𝑀𝑝𝑐 could be interpreted as violating the
cosmological principle according to which the distance of any galaxy from us should not impact its
properties. The cosmological principle however is not necessarily violated in the transition models because
a spatial transition can not be observationally distinguished from a temporal transition. If the transition
is temporal and occurred at a specific time then there is no violation of the cosmological principle.

Even if the transition is spatial it could be interpreted as a result of a first order phase transition
occurring very recently due to a decay of the false vacuum [2283]. Then we could live in 20𝑀𝑝𝑐 true
vacuum bubble where a first order scalar-tensor physics transition has occurred. If the bubble was created
at recent cosmological times (e.g. last 100 Myrs) in the context of a decay of a false vacuum (see e.g. Ref.
[2283]) then we would not have been able to see the other true vacuum bubbles since light from them
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may not have reached us yet. Thus even in that case there would be no apparent large-scale violation
of the cosmological principle. The phenomenology of such recent false vacuum decay in the context of
scalar-tensor theories is another interesting extension of our analysis. In this context it may be shown
that for a transition energy scale similar to the present Hubble constant the typical scale of the true
vacuum bubbles produced would be 15 − 20 Mpc. Fine tuning questions also arise in the context of
the indicated transition: ’What is special about the scale of 15 − 20 Mpc where the transition signal
appears to exist?’. In the context of a false vacuum decay bubble there is no more fine tuning than in the
ΛCDM . If we accept the scale of the cosmological constant and the fact that there is a first order phase
transition to another vacuum of a similar energy scale (∼ 0.002 eV) then the predicted spatial scale of
the produced bubbles is theoretically predicted to be about 15 Mpc. If we allow for some true vacuum
bubble growth (they expand with the speed of light) it could increase to the scale of 20 Mpc. This generic
result may be demonstrated as follows [2283–2286]: For a very recent false vacuum decay with vacuum
energy comparable to the cosmological constant the scale of the produced bubbles is

𝑅𝑏 = 𝛿/𝐻0 , (10.40)

where 𝛿 depends logarithmically on the ratio of the Planck mass 𝑀𝑝𝑙 to the transition temperature energy
scale 𝑇𝑐 = 2.7∘𝐾 ≃ 2 × 10−4 eV as [2284]

𝛿 ≃ [4𝐵1 ln (𝑀𝑝𝑙/𝑇𝑐)]−1
, (10.41)

where 𝐵1 is a constant of 𝑂(1). Using Eqs. (10.40) and (10.41) with 𝐻0 = 70 km s−1 Mpc−1 we obtain
𝑅𝑏 ≃ 15 Mpc which is clearly within the range of transition scales favored by the Cepheid data by the
present analysis and by the Tully-Fisher data as indicated by Ref. [2283, 2285, 2286].

In conclusion the revolutionary improvement in the quality and quantity of data from existing and
upcoming missions/experiments raises the expectation of determining the origin of the existing transition
effect shown in our analysis. One possible origin would be the presence of systematic errors affecting
the adopted calibration method. Alternatively, if the source of the demonstrated transition is physical
it could lead to new cosmological physics beyond the standard model which may include a very recent
false vacuum decay.



Chapter 11

Gravitational Transitions via the Explicitly
Broken Symmetron Screening Mechanism

The analysis presented in this chapter is based on the work which was done in collaboration with Prof.
Leandros Perivolaropoulos and it is currently under review in Physical Review D [9].

In this Chapter we present the asymmetron model which offers an interesting novel approach for
the modification of GR in distinct spatial sectors. We generalize the symmetron screening mechanism
by allowing for an explicit symmetry breaking of the symmetron 𝜑4 potential by the inclusion of a
cubic term 𝜀𝜑3. Due to the explicit symmetry breaking induced by the cubic term we call this field
the ’asymmetron’. In such a screening scalar field (asymmetron) the two local potentials in low density
areas are not symmetric (𝜑+ ̸= −𝜑−). Therefore there is a false vacuum and a single true vacuum. This
is expected to result in an unstable asymmetron domain wall network that includes a transition to the
value of the effective gravitational constant 𝐺eff as the asymmetron wall is crossed.

As mentioned in Subsection 2.3.4 and previous Chapter 10 a fundamental physics phase transition
taking place at a redshift 𝑧𝑡 ≲ 0.01 and leading to a sudden increase of the type Ia supernovae (SnIa)
absolute magnitude 𝑀 by about Δ𝑀 ≃ 0.2 for 𝑧 < 𝑧𝑡 [52, 593] can lead to a resolution of the Hubble
tension [140] between the Planck estimate [14] and the SH0ES collaboration measurements [23] which
is currently at the 5𝜎 level (see Refs. [7, 10, 127, 185] for recent reviews). Under simple assumptions
about the connection of the SnIa absolute magnitude with the effective gravitational constant 𝐺eff [914,
915, 2213] , this transition could be induced by a gravitational transition increasing the value of the
gravitational constant up to about 10% for 𝑧 < 𝑧𝑡. If such a transition were to imply weaker gravity
[914, 2213] in the past it could also play an important role in the resolution of another tension of the
standard ΛCDM model known as the 𝜎8 or ’growth’ tension [4, 67, 141, 144, 147, 148, 278, 281, 1188, 1197].

In view of the effectiveness of such a transition in the resolution of the Hubble and growth tensions,
the following questions emerge

• Is such a transition consistent with current observational and experimental constraints on the
evolution of 𝐺eff?

• Are there any hints in observational data for such a transition?

• Are there theoretical models [6, 1199, 1823] that can generically predict such a transition at the
spatial or temporal level at 𝑧𝑡 ≲ 0.01?

The answer to the first question is positive. In fact current constraints on the evolution of 𝐺eff strongly
constrain its time derivative at present and at specific times and distances in the past. However a abrupt
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shift of 𝐺eff is weakly constrained and the current bounds allow an abrupt change of 𝐺eff by up to about
5 − 10% at some cosmological time in the past between the present time and the time of nucleosynthesis.

The answer to the second question is also positive. Hints for such a transition in the values of
dynamical parameters connected to the gravitational constant have recently been pointed out in Cepheid
SnIa calibrator data [8, 56], in Tully-Fisher data [477] and in solar system history data [944] which indicate
an increase of the rate of impactors on the Moon and Earth surfaces by about a factor of 2-3 during the
past 100Myrs which correspond to 𝑧 < 0.008 [946, 949, 951]. Such a transition is also consistent with low
redshift galaxy surveys data [952].

The answer to the third question may be approached at both the temporal and the spatial level. In
the context of a temporal transition a nonminimal scalar field could be initially trapped either due to
cosmic friction or due to a local minimum of a time-dependent potential and globally shift to a new
minimum of the effective potential at 𝑧𝑡 via a classical evolution of the potential which may be coupled
to the matter density or via the reduction of the cosmic friction. An alternative scenario leading to a
gravitational transition could include a pressure non-crushing cosmological singularity in the recent past
[942].

In the context of a tunneling first order phase transition of spatial character we, as observers, may
be located in a true or false vacuum bubble with scale of about 20 − 40 Mpc corresponding to 𝑧 < 0.01
where the value of 𝐺eff is up to about 10% higher than the value of 𝐺eff of the other vacuum of a
non-minimally coupled scalar field.

11.1 Introduction
A mechanism involving a transition with spatial character by a purely classical evolution may be realized
in the context of a symmetron field used as a screening mechanism of modified gravity theories. Based in
part on earlier work [2287, 2288] the authors of Ref. [940] proposed the symmetron screening mechanism
with a specific form of the scalar-gravity coupling where the coupling strength is the density-dependent
quantity. The scalar field is decoupled from matter and screened when the matter density is sufficiently
high, while in regions of low density the scalar field is coupled to matter with a long-range mediated force
of gravitational strength [940, 941] (see also Refs. [2289–2295] and the Section 11.2 for details).

At early times when the mean density of the universe is 𝜌 > 𝜌* (where 𝜌* is a critical density), the
minimum of the effective potential everywhere is at 𝜑 = 0 and GR is applicable. As the mean density
drops below 𝜌* the symmetry is spontaneously broken and the symmetron field relaxes at one of the
minima, the potential develops in low density regions while in regions where density perturbations have
grown to densities above 𝜌* the field remains at the symmetric vacuum 𝜑 = 0. Low density regions
where the field has relaxed in different vacua are separated by symmetron domain walls1 where the field
by continuity goes through the local maximum of the potential 𝜑 = 0. Due to the Z2 symmetry of the
potential 𝜑2 is the same at the two vacua and the corresponding effective gravitational constant 𝐺eff
in the Jordan frame, is the same on the two sides of the symmetron wall. Thus in the context of the
symmetron domain wall no transition of 𝐺eff is expected as the symmetron domain wall is crossed.

This is not the case if the bare potential includes an explicit Z2 symmetry breaking term 𝜀𝜑3. In this
case the two local minima of the potential in low density regions are not symmetric (𝜑+ ̸= −𝜑−) and
this implies a transition in the value of the Jordan frame gravitational constant as the wall is crossed.
In addition the coexistence of a true with a false vacuum implies that the wall network dynamics will
involve instabilities and will thus be different from the wall network appearing in the context of symmetric
equivalent vacua.

This work focuses on a symmetron mechanism that involves explicit symmetry breaking. For defi-
niteness we call this type of generalized symmetron field the asymmetron.

1A domain wall is a type of two dimensional (sheet-like) topological defect (solitonic configurations of field) in three
spatial dimensions that occurs whenever a discrete symmetry of the potential is spontaneously broken [1865, 2169, 2296–
2304]. It separates neighboring spatially domains where the field is in different vacua.
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There are at least three main mechanisms that can lead to a gravitational transition observed in the
recent cosmological lookback time:

• Evolving scalar field (extended quintessence) in a scalar tensor sharply varying scalar-tensor poten-
tial.

• False vacuum decay (first order phase transition) in the context of a scalar-tensor theory.

• A network of symmetron domain walls with explicitly broken 𝑍2 symmetry of the effective potential
(asymmetron wall network).

Our analysis focuses on the third mechanism and aims to provide a better understanding of the scalar
field dynamics involved in such a mechanism. The main questions addressed in this context are the
following:

• How can a gravitational transition be realized in the context of an asymmetron wall network?

• What are the properties and evolution of an asymmetron field domain wall in the presence of a
spherical matter shell overdensity?

• Are there cosmological observations that could be interpreted as results on an existing asymmetron
domain wall network?

The Chapter is structured as follows. Section 11.2 introduces the necessary background and notation
of symmetron screening. In Section 11.3 we introduce the asymmetron field and the explicit 𝑍2 symmetry
breaking associated with it. We also present the energetics and dynamics of spherical symmetron and
asymmetron domain walls. Static stable wall solutions in the presence of matter are derived in Section
11.4. We also point out that recent cluster profile data may be interpreted as revealing spatial cosmological
sectors where distinct properties of gravity are present. We discuss the possible connection of such an
effect with the existence of asymmetron domain walls. Finally in Section 11.5 we conclude, summarise
and discuss possible extensions of our analysis.

In what follows we assume a metric signature (−,+,+,+).

11.2 Review of the symmetron screening
In the context of the symmetron mechanism2, screening is achieved via Z2 symmetry restoration in regions
with matter density larger than a critical density.

The symmetron model is a special case of a general scalar-tensor theory, thus its action in the Einstein
frame (where the scalar field couples non-minimally to matter components and minimally to gravity) is
described by the general scalar-tensor action [940, 941, 2289–2292]

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔
[︂

𝑅

16𝜋𝐺 − 1
2∇𝜇𝜑∇𝜇𝜑− 𝑉 (𝜑)

]︂
+ 𝑆𝑚 [𝜓𝑖, 𝑔𝜇𝜈 ] , (11.1)

where 𝐺 is Newton’s constant as measured locally e.g. in Eotvos-type experiments, 𝑔 is the determinant
of the Einstein frame metric 𝑔𝜇𝜈 , 𝑅 is the Ricci scalar, 𝜑 is a scalar field with self-interactions given by
the potential 𝑉 (𝜑), 𝑆𝑚 is the action for the various matter fields and 𝜓𝑖 represent these matter fields
which are minimally coupled in the Jordan frame metric 𝑔𝜇𝜈

3. This is connected to the Einstein frame
metric 𝑔𝜇𝜈 via a conformal rescaling [940, 941, 2289–2292]

𝑔𝜇𝜈 = 𝐴2(𝜑)𝑔𝜇𝜈 (11.2)
2For reviews of modified gravity theories with screening mechanisms, such as the Vainshtein [917–919] and the chameleon

[887, 888, 892, 920–926] models see in Refs. [927–938].
3In the rest of this analysis, quantities associated to the Jordan frame metric 𝑔𝜇𝜈 will be distinguished by a tilde.

199



Chapter 11. Gravitational Transitions via the Explicitly Broken Symmetron Screening Mechanism

The non-minimal coupling to matter is described by the coupling function 𝐴(𝜑) and leads to deviations
from GR. The scalar field couples to the trace of the energy-momentum tensor and its equation of motion,
obtained using standard variational methods, is [940, 941]

□𝜑 = 𝑑𝑉 (𝜑)
𝑑𝜑

− 𝑑𝐴(𝜑)
𝑑𝜑

𝐴(𝜑)3𝑇 , (11.3)

where 𝑇 is the trace 𝑇 = 𝑔𝜇𝜈𝑇
𝜇𝜈 of the Jordan frame energy-momentum tensor

𝑇𝜇𝜈 ≡ −2√
−𝑔

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
= 𝐴(𝜑)−6𝑇𝜇𝜈 , (11.4)

which is covariantly conserved ∇̃𝜇𝑇
𝜇𝜈 = 0.

For non-relativistic matter the trace of the Einstein energy-momentum tensor4 is 𝑇 = −𝜌 ≈
−𝐴(𝜑)3𝜌 = −𝐴(𝜑)3𝑇 , and the scalar field equation of motion (11.3) takes the form

□𝜑 = 𝑑𝑉 (𝜑)
𝑑𝜑

+ 𝛽(𝜑)𝜌
𝑀𝑝𝑙

= 𝑑𝑉eff

𝑑𝜑
, (11.5)

where 𝑀𝑝𝑙 = (8𝜋𝐺)−1/2 is the reduced Planck mass, 𝑉eff is the effective potential5 [940, 941]

𝑉eff(𝜑) = 𝑉 (𝜑) + 𝜌𝐴(𝜑) , (11.6)

and the 𝛽 is the coupling between the scalar field and matter

𝛽(𝜑) = 𝑀𝑝𝑙
𝑑𝐴(𝜑)
𝑑𝜑

. (11.7)

This coupling characterises the strength of the scalar fifth force which, in the nonrelativistic limit, is
given by [2289, 2305, 2307]

𝐹𝜑 = 𝛽(𝜑)
𝑀𝑝𝑙

∇⃗𝜑 . (11.8)

This scalar fifth force is an additional contribution to the (Newtonian) gravitational force 𝐹𝑁 .
The interaction potential and the coupling function are chosen to be of the spontaneous symmetry

breaking form [940, 941, 2289]
𝑉 (𝜑) = 𝜆

4 (𝜑2 − 𝜂2)2 , (11.9)

𝐴(𝜑) = 1 + 𝜑2

2𝑀2 + 𝒪( 𝜑
4

𝑀4 ) , (11.10)

where 𝑀 is the mass scale of symmetron field coupling to the matter density. It gives the strength of the
interaction with the matter fields. The parameter 𝜆 is a positive dimensionless coupling securing that
the energy of the 𝜑4 model [2308, 2309] is bounded from below [2303]). Also 𝜂 = 𝜑0 = 𝜑(𝜌 = 0) is the
expectation value of the scalar field at zero matter density. For the field range ( 𝜑

𝑀 )2 ≪ 1 the higher order
correction terms of the coupling function can be consistently neglected [941, 2289].

The effective potential is

𝑉eff(𝜑) = −1
2𝜇

2
(︂

1 − 𝜌

𝜇2𝑀2

)︂
𝜑2 + 𝜆

4𝜑
4 + 𝜆𝜂4

4 , (11.11)

4Note that in the Einstein frame the density 𝜌 is not conserved but the ’density’ 𝐴(𝜑)3𝜌 is conserved [940, 2305] and
𝜑-independent [941]. However the coupling function is assumed to be a weak function of 𝜑 (𝐴(𝜑) ≈ 1), so that the two
densities do not differ from each other significantly (𝜌 ≈ 𝐴(𝜑)3𝜌).

5Note that in the literature the effective potential is often defined as 𝑉eff(𝜑) = 𝑉 (𝜑) + 𝜌[𝐴(𝜑) − 1] [930, 2290, 2291, 2306]
or 𝑉eff(𝜑) = 𝑉 (𝜑) + 𝜌 ln 𝐴(𝜑) [928].
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where 𝜇2 ≡ 𝜆𝜂2.
The effective potential is invariant with respect to the Z2 symmetry (reflection symmetry) transfor-

mation 𝜑 → −𝜑 (as are 𝑉 (𝜑) and 𝐴(𝜑) individually). The coefficient of the quadratic term (effective
mass) changes sign at a critical density

𝜌* ≡ 𝜇2𝑀2 . (11.12)
For density smaller than the critical density (𝜌 < 𝜌*) the effective mass is negative, the Z2 symmetry is
spontaneously broken and the effective potential has two nonzero degenerate minima located at

𝜑± = ±𝜂
√︂

1 − 𝜌

𝜌*
, (11.13)

leading to two degenerate vacua. Note that if 𝜌 ≪ 𝜌* then the vacua correspond to 𝜑± ≈ ±𝜂 = ± 𝜇√
𝜆

.
For background density larger than the critical density (𝜌 > 𝜌*) the symmetry gets restored (sym-

metric phase) and the effective potential has a unique global minimum at the origin (𝜑 = 0) about which
it is symmetric.

From Eqs. (11.7) and (11.10) the coupling to matter at the minima of the effective potential is given
by

𝛽(𝜑±) = 𝑀𝑝𝑙𝜑±

𝑀2 =
{︃

0 𝜌 > 𝜌* ,

±𝛽0
√︁

1 − 𝜌
𝜌*

𝜌 < 𝜌* ,
(11.14)

where 𝛽0 ≡ 𝑀𝑝𝑙𝜂
𝑀2 is the coupling at zero matter density (vacuum). Clearly, the strength of the coupling

to matter depends on the background density. Thus in high density regions the field does not couple to
matter and the fifth force in Eq. (11.8) is suppressed while in regions of low density the field couples to
matter and mediates a force.

Using Eq. (11.11) we have for the effective mass of the symmetron field

𝑚2
eff ≡ 𝑑2𝑉eff

𝑑𝜑2

⃒⃒⃒⃒
𝑚𝑖𝑛

=
(︂
𝜌

𝜌*
− 1
)︂
𝜇2 + 3𝜆𝜑2

± ⇒

𝑚2
eff = 2𝜇2

(︂
1 − 𝜌

𝜌*

)︂
, (11.15)

and the range (Compton wavelength) of the field in density regions with 𝜌 < 𝜌* is

𝑙𝜑 = 1
𝑚eff

= 1√
2𝜇

(︂
1 − 𝜌

𝜌*

)︂−1/2
. (11.16)

The spontaneous symmetry breaking phase can lead to the formation of a domain wall network via
the Kibble mechanism. These walls are attracted to high density regions (see in Refs. [2292, 2310, 2311]
for numerical studies of properties and dynamics of domain walls in the symmetron model). The physical
origin of this interaction is described in the next section. The profile of such a static domain wall with
boundary conditions 𝜑(𝑥 → ±∞) = 𝜑±, is obtained by solving Eq. (11.5) and is of the form

𝜑(𝑥) = 𝜂

√︂
1 − 𝜌

𝜌*
tanh

[︃√︂
𝜆

2 𝜂
√︂

1 − 𝜌

𝜌*
𝑥

]︃
. (11.17)

Its width is

𝛿 = 1
𝜇

(︂
1 − 𝜌

𝜌*

)︂−1/2
=

√
2𝑙𝜑 . (11.18)

A slowly evolving wall network may be interpreted as a fluid with equation of state parameter [2302]

𝑤𝑤 = 𝑝𝑤

𝜌𝑤
= −2

3 , (11.19)
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and density parameter [2292]
Ω𝑤 ≡ 𝜌𝑤

𝜌𝑐
= 𝜎

3𝐻2𝑀2
𝑝𝑙𝑎 𝑑

, (11.20)

where 𝑎 is the scale factor and 𝑑 is the comoving distance between the walls6, 𝜎 ≡ 𝜌𝑤 𝑎 𝑑 is the surface
energy density (energy per unit area or tension) of the wall (with 𝜎 = 4

3

√︁
𝜆
2 𝜂

3 for 𝜌 = 0 [2302]), 𝜌𝑐 is the
critical density of the universe and 𝐻 = 𝑎̇/𝑎 is the Hubble parameter.

In theories where the phase transition takes place in the recent past (around the onset of cosmic
acceleration) the scale factor at the time of the symmetry breaking is given by [2289]

𝑎3
* = 𝜌0

𝜌*
=

3Ω0𝑚𝐻
2
0𝑀

2
𝑝𝑙

𝜇2𝑀2 , (11.21)

where 𝜌0 = 𝜌(𝑎 = 1) and Ω0𝑚 = Ω𝑚(𝑎 = 1) are the matter density and the corresponding density
parameter in the universe today respectively while 𝐻0 is the Hubble constant. This equation fixes 𝜇 in
terms of 𝑀 and hence combining with the Eq. (11.16) we obtain for redshifts 𝑧 < 𝑧* (with 𝑧* = 1

𝑎*
− 1)

in low density regions (𝜌 ≪ 𝜌*)

𝑙2𝜑 ≃ 𝑀2

6 Ω0𝑚𝑀2
𝑝𝑙𝐻

2
0

1
(1 + 𝑧*)3 . (11.22)

As shown in Eq. (11.16), in density regions with 𝜌 < 𝜌* there is a dependence of the symmetron range on
the background matter density and hence the redshift. The range decreases as the redshift at the time
of symmetry breaking increases. For a range 𝑀 ≲ 10−3𝑀𝑝𝑙, the range of the scalar field force becomes
𝑙𝜑 ≲ 1𝑀𝑝𝑐 [927, 2289, 2312]. The value 1𝑀𝑝𝑐 corresponds intergalactic distance in clusters and therefore
dynamical observational cosmological effects are anticipated for this range.

The background cosmology, the evolution of perturbations and large-scale structure in the context of
the symmetron model have been investigated in [941, 2289, 2313–2316]. Before the time of the symmetry
breaking (𝑡 < 𝑡*) we have 𝜑 ≈ 0 and the effective gravitational constant 𝐺eff = 𝐺. While after the
symmetry breaking (𝑡 > 𝑡*) the field approaches the minima 𝜑± = ±𝜂 in low density regions and the
effective gravitational constant is (see in Ref. [2289] for details)

𝐺eff =
{︃
𝐺 𝑎/𝑘 ≫ 𝑙𝜑 ,

𝐺
(︀
1 + 2𝛽2

0
)︀

𝑎/𝑘 ≪ 𝑙𝜑 .
(11.23)

The implementation of N-body simulations constitutes a useful tool for cosmological studies and for
observational predictions of the symmetron screening mechanism [2289, 2290, 2307, 2317–2321].

11.3 Asymmetron Domain Walls
In this Section we generalize the symmetron mechanism by allowing for an explicit symmetry 𝑍2 breaking
of the symmetron potential (11.9). The explicit symmetry breaking is induced by the inclusion of a cubic
term 𝜀𝜑3 in the potential. In this case the two local minima of the effective potential in low density
regions are not symmetric (𝜑+ ̸= −𝜑−). We call this generalized symmetron field the asymmetron.

The explicit symmetry breaking can create domain walls which interpolate between spatial regions
with the vacuum values 𝜑+ and 𝜑−. Also the coexistence of a true with a false vacuum implies that the
wall network dynamics will involve instabilities in contrast to the wall network appearing in the case of
symmetron model equivalent vacua 𝜑+ = |𝜑−|. In addition it can lead to a transition in the value of
gravitational constant 𝐺 as the wall is crossed. Before the time of the symmetry breaking (𝑡 < 𝑡*) we
have 𝜑 ≈ 0 and the effective gravitational constant is 𝐺eff = 𝐺 as in the case of symmetron field. After

6Assuming parallel domain walls separated by physical distance 𝑎 𝑑 which grows in proportion with the scale factor.

202



Chapter 11. Gravitational Transitions via the Explicitly Broken Symmetron Screening Mechanism

the symmetry breaking (𝑡 > 𝑡*) the field approaches different minima 𝜑+ = 𝜂1 and 𝜑− = 𝜂2 in different
domains. The effective gravitational constant is

𝐺eff =
{︃
𝐺 𝑎/𝑘 ≫ 𝑙𝜑 ,

𝐺
(︀
1 + 2𝛽2

0𝑖

)︀
𝑎/𝑘 ≪ 𝑙𝜑 ,

(11.24)

where 𝛽0𝑖 ≡ 𝑀𝑝𝑙𝜂𝑖

𝑀2 (with 𝑖 = 1, 2) are the coupling at the true and false vacua. Thus, low density regions
in different domains would have different values of gravitational constant and thus different expansion
rates since 𝐻2 ∼ 𝐺eff .

11.3.1 Dynamical equations and energetics of spherical asymmetron config-
urations

The action describing the dynamics of the symmetron scalar field may be written as7

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔 [𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑− 𝑉 (𝜑)] . (11.25)

The dynamical equation for a spherically symmetric field configuration in flat space is

𝑟2𝜑− 𝜕

𝜕𝑟
𝑟2 𝜕𝜑

𝜕𝑟
= −1

2
𝑑𝑉

𝑑𝜑
𝑟2 , (11.26)

where the dot denotes differentiation with respect to cosmic time 𝑡.
The corresponding energy is

𝐸 = 4𝜋
∫︁ ∞

0
𝑟2

[︃(︂
𝑑𝜑

𝑑𝑟

)︂2
+ 𝑉 (𝜑)

]︃
𝑑𝑟 . (11.27)

We now assume a 𝜑4 potential which includes an explicit Z2 symmetry breaking term 𝜀𝜑3

𝑉 (𝜑) = 𝜆

2 (𝜑2 − 𝜂2)2 + 2𝜀𝜑3 , (11.28)

with a coupling to matter

𝐴(𝜑) = 1 + 𝜑2

𝑀2 , (11.29)

such that the effective potential is

𝑉eff(𝜑) = −𝜇2(1 − 𝜌

𝜇2𝑀2 )𝜑2 + 𝜆

2𝜑
4 + 2𝜀𝜑3 + 𝜆

2 𝜂
4 , (11.30)

where 𝜀 is a parameter.
By defining the effective rescaled potential 𝑉eff(𝜑) ≡ 𝑉eff(𝜑)/𝜆𝜂4 we obtain

𝑉eff(𝜑) = − (1 − 𝜌)𝜑2 + 1
2𝜑

4 + 1
2 + 2𝜀𝜑3 , (11.31)

where the rescaled dimensionless quantities are

𝜑 ≡ 𝜑

𝜂
, 𝜌 ≡ 𝜌

𝜆𝜂2𝑀2 ≡ 𝜌

𝑚2𝑀2 , 𝜀 ≡ 𝜀

𝜆𝜂
. (11.32)

We set also
𝑟 ≡ 𝑟

√
𝜆𝜂 , 𝐸̄ ≡ 𝐸

√
𝜆

4𝜋𝜂 , (11.33)

7We have multiplied by a factor of 2 the usual form of the action to avoid the factor of 1
2 in the kinetic term.
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Figure 11.1: Schematic plots of the asymmetron effective potential Eq. (11.31) in vacuum (purple) and
in high density (green) cosmological regions. Notice the asymmetric form of the effective potential in
which the degeneracy of the vacua is slightly broken. However in the presence of sufficiently high density,
a single minimum at 𝜑 = 0 restores GR as in the symmetron case.
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Figure 11.2: The geometry of the spherical domain wall in the presence of spherical matter shell.

and by taking into account the above redefinitions, we can rewrite the dynamical equation (11.26) as

𝑟2 ¨̄𝜑− 𝜕

𝜕𝑟
𝑟2 𝜕𝜑

𝜕𝑟
= −1

2
𝑑𝑉eff

𝑑𝜑
(𝜑)𝑟2 , (11.34)

and the corresponding energy Eq. (11.27) as

𝐸̄ =
∫︁ ∞

0
𝑟2

[︃(︂
𝑑𝜑

𝑑𝑟

)︂2

+ 𝑉eff(𝜑)
]︃
𝑑𝑟 . (11.35)

We omit bar from now on and work with dimensionless quantities.
The two vacuum values (true and false) of 𝜑, given by the equation

𝑑𝑉eff

𝑑𝜑

⃒⃒⃒⃒
𝜑±

= 0 , (11.36)

read 𝜑±

𝜑± = 1
2

(︁
−3𝜀±

√
Δ
)︁
, (11.37)

where
Δ = 4 + 9𝜀2 − 4𝜌 . (11.38)

In the case of explicit symmetry breaking (asymmetron wall formation) the symmetry gets restored, for
a background density larger than the critical density corresponding to the symmetron field. For the
asymmetron case we have 𝜌 > 𝜌*,𝑎𝑠 = 1 + 9

4𝜀
2 which is larger than the critical density (𝜌* = 1) in the

symmetron case.
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The form of the asymmetron effective potential in vacuum and in high density cosmological regions
is shown in Fig. 11.1. Clearly, in the case of asymmetron model the two local minima of the potential
depend on the matter density as in the symmetron case. In the presence of sufficiently high density, the
symmetry is restored along with GR since the coupling 𝐴(𝜑) ≈ 1. Thus a screened fifth force is associated
with the asymmetron field. However, as indicated in Eqs. (11.37), (11.38) and in Fig. 11.1 in the case
of asymmetron model the two local minima of the potential in low density regions are not symmetric
𝜑+ ̸= |𝜑−| and non-degenerate. Thus, since the degeneracy of the vacua is broken, this double-well
potential has a false vacuum and a true vacuum due to the explicit symmetry breaking induced by the
cubic term. The difference between the false and true vacuum energies increases with 𝜀 as

𝑉eff(𝜑+) − 𝑉eff(𝜑−) =
[︂
2𝜀(1 − 𝜌) + 9

2𝜀
3
]︂√

Δ . (11.39)

Clearly, the energy difference between the vacua increases linearly with 𝜀 for small 𝜀.

11.3.2 Spherical wall interaction with a matter shell: A toy model
We consider a finite thickness spherical domain wall in the presence of spherical matter shell as a simple
toy model (see Fig. 11.2). Although this model is too simple it enables us to draw useful conclusions.

The scalar field energy of the system if the wall and the matter shells are separate is approximated
as8

𝐸𝑠 = 𝑉 (0)𝑤𝑚𝑅
2
𝑚 + 𝑉 (0)𝑤𝑤𝑅

2
𝑤 , (11.40)

where 𝑤𝑤 (𝑅𝑤) and 𝑤𝑚 (𝑅𝑚) are the widths (radii) of the domain wall and the matter shells respectively.
In the matter shell region the field is at the minimum of the effective potential (𝜑 = 0) with energy density
𝜌𝜑 ≃ 𝑉 (0) while at the domain wall radius the field is trapped at the local maximum of the effective
potential (𝜑 = 0) with the same energy density 𝜌𝜑 ≃ 𝑉 (0).

The energy of the system if the wall and the matter shells overlap is

𝐸𝑜 = 𝑉 (0)𝑤𝑤𝑅
2
𝑤 , (11.41)

where we assumed without loss of generality that 𝑤𝑤 > 𝑤𝑚. Therefore, the energy difference of the two
configurations is

Δ𝐸 = 𝐸𝑜 − 𝐸𝑠 = −𝑉 (0)𝑤𝑚𝑅
2
𝑚 < 0 . (11.42)

Thus 𝐸𝑜 < 𝐸𝑠 and it is energetically favored for the wall to overlap with the matter shell. In contrast to
the conventional domain walls, the symmetron and asymmetron walls tend to stay in regions where the
matter density is high. This is confirmed numerically in what follows.

11.4 Static stable spherical wall configurations in the presence
of matter

11.4.1 Analytic considerations
A spherical domain wall is a field configuration that interpolates between the two minima 𝜑± of the
effective potential as the surface of the wall sphere in physical space is crossed. The wall is characterized
by the surface energy density 𝜎 [2302] which depends not only on the configuration of 𝜑 but also on
the matter density 𝜌. The corresponding to tension force per unit area is 𝑝𝜎 ∼ 𝜎/𝑅(𝑡) (with 𝑅(𝑡) the
curvature scale). In addition a pressure difference 𝑝 (with 𝑝 ∼ 𝜀𝜂3 for 𝜌 ≪ 𝜌* [2302]) pushes the wall
toward the vacuum with the lowest energy (true vacuum). The dynamics of the spherical asymmetron
wall surrounding a true vacuum region is determined by three factors:

8For simplicity, here we ignore the gradient energy which if included further enhances the attraction of the wall by the
matter shell.
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Figure 11.3: The scalar field 𝜑 as a function of the distance 𝑟 corresponds to the solution in the case
of monotonic matter density increasing towards the center (with 𝑅𝑚 = 1). In this resulting minimum
energy field configuration we see a collapse of the wall due to tension. The energy minimization was
performed numerically using 𝑁 = 150 lattice points.

• The tension term that favors contraction of the spherical wall with contribution to the energy
𝐸𝜎 ∼ 𝜂3𝑅(𝑡)2. This energy term increases with the wall radius.

• The vacuum energy difference term that favors expansion of the true vacuum domain with contri-
bution to the energy (relative to the exterior false vacuum domain) 𝐸𝑣𝑎𝑐 ∼ −𝜀𝜂3𝑅(𝑡)3 for small
𝜀. This negative energy term decreases with wall radius 𝑅(𝑡) and favors expansion. If the wall
surrounds a false instead of a true vacuum region, then the sign of 𝐸𝑣𝑎𝑐 will be positive and the
fate of the wall radius in the absence of the coupling to matter is contraction and collapse due to
both tension and false vacuum energy.

• The term due to the coupling to matter 𝐸𝑚𝑎𝑡 ∼ −𝑤𝑚𝑅
2
𝑚𝜂

4𝛿(𝑅(𝑡) −𝑅𝑚) which dominates over the
effect of tension as shown in Eq. (11.42) when the wall overlaps with the matter density shell. The
𝛿 function should be replaced by a smooth function leading to an attractive force, in thick-smooth
realistic density profiles as those discussed in the next section.

The first two terms can at best lead to an unstable spherical domain wall as it can easily be verified
that they lead to a static configuration at an energy maximum (instability) with respect to R. These
configurations would tend to contract if the initial spherical wall radius is less than a critical value and
would tend to expand if the initial radius is larger than this value. This could have been anticipated also
due to Derrick’s theorem [2322]. Stability can only be achieved due to the last term which is due to the
external coupling to the matter density shell which violates the assumptions of Derrick’s theorem and
allows for a stable static spherical wall configuration as demonstrated numerically in what follows. A
similar stabilization mechanism has been recently considered using external gravitational fields instead
of a coupling to matter density [1865].

11.4.2 Numerical energy minimization
The evolution of the spherical domain wall is described by the action (11.25) and the corresponding
dynamical equation (11.34). The energy of the spherical wall, assumed initially static is given by Eq.
(11.35).
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Figure 11.4: The scalar field 𝜑 as a function of the distance 𝑟 corresponds to the solution obtained from
the energy minimization method in the case of increasing matter density. This field configuration appears
to be stabilized by the combined effects of the wall tension and the attraction of the increased matter
density as 𝑟 increases.

We search for a stable static wall configuration by minimizing the discretized integral of the field
energy Eq. (11.35) starting from an initial guess that interpolates between the two vacua 𝜑+, 𝜑− at a
radius 𝑅𝑤

𝜑(𝑟) = 𝜑+ − 𝜑−

2 tanh(𝑟 −𝑅𝑤

𝑤𝑤
) + 𝜑+ + 𝜑−

2 . (11.43)

We have verified that the precise form of the initial guess does not affect the final field configuration that
minimizes the energy.

The boundary conditions may be set such that the spatial 𝑟 derivative of the scalar field is 0 at the
two boundaries of 𝑟 (𝑟 = 0 and 𝑟 = 𝑟𝑚𝑎𝑥). Alternatively the boundary condition can fix the field at
the corresponding vacua at the two boundaries. Both types of boundary conditions lead to the same
minimum energy static field configuration in the cases studied.

Therefore, a simple way to derive numerically the basic features of the evolution of the wall initial
configuration Eq. (11.43) is to explicitly minimise the energy functional Eq. (11.35) with fixed boundary
conditions. We thus use the Energy Minimization (EM) method which consists of the following steps:

1. We discretize the energy functional Eq. (11.35) as a sum over 𝑁 lattice points as

𝐸 = 𝑑𝑥

𝑁∑︁
𝑖=1

[︃
𝑟2

𝑖

(︂
𝜑𝑖 − 𝜑𝑖−1

𝑑𝑥

)︂2
+ 𝑟2

𝑖 𝑉 (𝜑𝑖)
]︃
, (11.44)

where 𝑟𝑖 = 𝑖𝑑𝑥, 𝑑𝑥 = 𝑟𝑚𝑎𝑥/𝑁 and 𝜑𝑖 ≡ 𝜑(𝑟𝑖).

2. We numerically minimize the sum (11.44) with respect to the N lattice values of the field 𝜑𝑖 (one
value at each lattice point) keeping fixed the boundary conditions.

In particular, we consider the following cases:

I. Spherical Symmetron Walls

208



Chapter 11. Gravitational Transitions via the Explicitly Broken Symmetron Screening Mechanism

ρ=
3

1 + 
r - Rm

4

6

0 5 10 15 20 25 30
0

1

2

3

4

r

ρ

ε=0, ρ=
3

1 + 
r - Rm

4

6

- Initial

- Final

0 5 10 15 20 25 30

-3

-2

-1

0

1

r

ϕ

ε=0.2, ρ=
3

1 + 
r - Rm

4

6

- Initial

- Final

0 5 10 15 20 25 30

-3

-2

-1

0

1

r

ϕ

Figure 11.5: Left panel: The matter density of the spherical matter shell of the form (11.49) with radius
𝑅𝑚 = 15. Middle panel: The scalar field 𝜑 in symmetron case (𝜀 = 0) as a function of the distance 𝑟
corresponds to the solution obtained from the energy minimization method in the case of matter density
of the spherical matter shell of the form (11.49) with radius 𝑅𝑚 = 15. The final minimum energy
configuration is independent of the initial guess shown here in blue. Right panel: The scalar field 𝜑 in
asymmetron case (𝜀 = 0.2) as a function of the distance 𝑟 corresponds to the solution obtained from
the energy minimization method in the case of matter density of the spherical matter shell of the form
(11.49) with radius 𝑅𝑚 = 15.
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Figure 11.6: The form of the asymmetron (with 𝜀 = 0.2) effective potential for the case 𝜌 = 0 (vacuum)
and 𝜌 = 3 (high density) (see Figs. 11.1 and 11.5). The red points represent the value of the field and
show how the asymmetron field changes as the wall is crossed by increasing 𝑟.
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Figure 11.7: Simulation of time evolution of the perturbed scalar field corresponding to a perturbed
spherical asymmetron domain wall. The wall gets trapped at the matter shell as expected (collapse is
avoided).

We first allow only spontaneous symmetry breaking and set 𝜀 = 0. We consider the following matter
density profiles:

• Monotonic matter density increasing towards the center of the form:

𝜌(𝑟) =
(︂

𝑟

𝑅𝑚

)︂−2
, (11.45)

with 𝑅𝑚 = 1.
We fix the boundary conditions such that the field remains at the corresponding vacuum on each
boundary (we choose 𝜑+ at the outer boundary where the matter density is low).

𝜑(𝑟 = 0) = 0, 𝜑(𝑟 = 𝑟𝑚𝑎𝑥) = 𝜑+ . (11.46)

According to the above analytic arguments we anticipate an attractive force of the wall towards
the center where the matter density is maximum in addition to the tension force which further
amplifies this trend for collapse. In Fig. 11.3 we show the initial guess wall configuration and
the final configuration emerging after the EM method. The minimization of the energy leads to a
collapse of the wall due to tension as expected.

• Increasing outward matter density of the form:

𝜌(𝑟) =
(︂

𝑟

𝑅𝑚

)︂6
, (11.47)

with 𝑅𝑚 = 5 and the following two boundary conditions

𝜑′(𝑟 = 0) = 0, 𝜑′(𝑟 = 𝑟𝑚𝑎𝑥) = 0 . (11.48)

Unlike the result of the previous case, here we anticipate an outward force driving the wall radius
to larger values where the density is larger. This trend is expected to compete with the wall
tension. Indeed, here the field configuration emerging after EM method appears to be stabilized
by the combined effects of the wall tension and the attraction of the increased matter density as 𝑟
increases. This resulting field configuration is shown in Fig. 11.4.
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• Shell-like matter density of the form (see in left panel of Fig. 11.5)

𝜌(𝑟) = 3
1 +

(︀
𝑟−𝑅𝑚

4
)︀6 , (11.49)

with 𝑅𝑚 = 15 and boundary conditions:

𝜑′(𝑟 = 0) = 0, 𝜑′(𝑟 = 𝑟𝑚𝑎𝑥) = 0 . (11.50)

As expected from the analytic arguments of Eq. (11.42) in this case the minimum energy field
configuration corresponds to a wall radius overlapping with the matter shell radius (see in middle
panel of Fig. 11.5).

II. Stable Spherical Asymmetron Walls

In the presence of an explicit symmetry breaking leading to the asymmetron field, the above results
remain qualitatively unaffected. In this case we set 𝜀 = 0.2 and assume a shell-like spherical matter
density of the form (11.49) (see in left panel of Fig. 11.5) and boundary conditions (11.50).

The resulting asymmetron field configuration after energy minimization is shown in right panel of
Fig. 11.5. The form of the corresponding asymmetron effective potential and the field values as the
distance from the center of the spherical matter overdensity increases is shown in Fig. 11.6. Snapshots
of the potential and the corresponding field values are shown for matter density 𝜌 = 0 (vacuum inside
and outside the matter shell) and 𝜌 = 3 (on the matter shell). The red points represent the position of
the field and show how the field changes as the distance 𝑟 from the center increases.

In order to further confirm the stability of the derived minimum energy configurations 𝜑𝑠(𝑟) we have
perturbed them and implemented numerical dynamical evolution using a explicit Runge–Kutta algorithm
[2323]. In particular, we solve numerically Eq. (11.34) with initial conditions

𝜑(0, 𝑟) = 𝜑𝑠(𝑟 − 𝛿𝑟), 𝜑̇(0, 𝑟) = 0 , (11.51)

with boundary conditions
𝜑(𝑡, 0) = 𝜑𝑠(0), 𝜑̇(𝑡, 0) = 0 , (11.52)

𝜑′(𝑡, 𝑟𝑚𝑎𝑥) = 0, 𝜑̇(𝑡, 𝑟𝑚𝑎𝑥) = 0 , (11.53)
where the dot denotes differentiation with respect to the cosmic time 𝑡 and prime denotes differentiation
with respect to the distance 𝑟.

The imposed perturbations on the minimum energy configuration of the right panel of Fig. 11.5
correspond to an initial shift by 𝛿𝑟 < 1 of the wall radius 𝑟.

The evolved scalar field configuration corresponds to a spherical wall with a radius that appears to
be oscillating around the radius of the matter shell, effectively being trapped by it as shown in Fig. 11.7.
This behavior is consistent with the stability of the spherical wall implied by both the analytic arguments
of Subsection 11.4.1 and by the energy minimization procedure discussed above.

11.4.3 Observational considerations
If asymmetron walls exist in Nature there could be cosmological regions bounded by surface-like matter
overdensities where the strength of gravity would be different from other regions. Thus, the expansion
rate within these regions would be different as would be the growth rate of cosmological perturbations
and formation of structure. This inhomogeneity of the expansion rate could be detectable as anisotropies
of the SnIa luminosity distances at a given redshift and could also be related with some of the observed
cosmic dipoles (alpha dipole, quasar dipole etc). These observations could be used to impose bounds on
the explicit symmetry breaking parameter 𝜀.

The variation of the growth rate of cosmological perturbations among different domains could manifest
itself as variation of the cluster properties including the cluster pressure and density profiles [1256, 1257]
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Figure 11.8: Mollweide projection view of 12 cluster locations of Ref. [57] in galactic coordinates (see
Table H.1). The colour of the points on the plot corresponds to their 𝜎 significance for a deviation
from the GR, which is indicated in the horizontal colour bar. Four clusters (in shaded green regions-
bubbles) have large negative value for Ξ1 parameter, significantly (> 3𝜎) different from the GR (Ξ1 = 0)
expectation. The size of the points 𝑅𝑝𝑜𝑖𝑛𝑡 was designed according to the size of the clusters 𝑅500 and
their distance 𝐷.

(see for a review in Refs. [1258, 1259]). Such variation in cluster properties which could be associated with
properties of gravity has recently been identified in Ref. [57]. In what follows we explore the possible
relevance of the results of Ref. [57] with the existence of asymmetron walls and their corresponding
prediction for the existence of spatial cosmological domains with distinct properties of gravity.

Galaxy clusters are the largest gravitationally bound structures of the Cosmic Web. Thanks to the
various surveys using dynamical, kinematic and weak lensing tracers, galaxy clusters can be used as a
powerful cosmological probe of gravitational theories [57, 2324–2326] and screening mechanisms [2327–
2329].

The cluster pressure and density profiles can be inferred using the Sunyaev-Zeldovich effect, the inter
galactic gas, the so called Intra Cluster medium (ICM), the temperature from their X-ray emission and
the velocities of the individual cluster members. These profiles can be used to search for possible changes
of properties of gravity in different domains of cosmological space.

Recently the authors of Ref. [57] have used cluster profile properties to test and constrain the param-
eters of the Degenerate Higher-Order Scalar-Tensor (DHOST) theory [2330] (see also Refs. [2331–2337]
for recent related studies and Refs. [103, 2338] for relevant reviews).

The modified gravitational potential for the DHOST theory in the galaxy cluster as a static spherically
symmetric object is [2339–2343]

𝑑Φ(𝑟)
𝑑𝑟

= 𝐺eff𝑀(< 𝑟)
𝑟2 + Ξ1𝐺eff

𝑑2𝑀(< 𝑟)
𝑑𝑟2 , (11.54)

where 𝑀(< 𝑟) =
∫︀ 𝑟

0 4𝜋𝑟′2𝜌(𝑟′)𝑑𝑟′ is the total mass (dark matter, gas, and galaxies) within the radial
distance r, 𝐺eff = 𝛾𝐺 is the effective Newton’s constant and Ξ1 is a dimensionless parameter which
depends on the noniminal coupling of the DHOST theory. The modified gravity parameters 𝛾 and Ξ1
can be recognized as quantifying the deviation of the DHOST theory from GR, which is recovered for
𝛾 = 1 and Ξ1 = 0.
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Ref. [57] uses cluster data profiles of the XMM-Cluster Outskirts Project (X-COP) [2344] to place
constraints on the DHOST parameters defining the deviation from GR. This very large programme uses
a joint analysis of XMM-Newton and Planck data and targets the outer regions (𝑅 > 𝑅500

9) of a sample
of 13 massive (1014𝑀 ≲ 𝑀500 ≲ 1015𝑀) local galaxy clusters in the redshift range 0.04 < 𝑧 < 0.1 at
uniform depth.

The constraints on the DHOST parameter 𝛾 = 𝛾 × 𝑀500/𝑀
𝐺𝑅
500 and Ξ1 as obtained for each of the

clusters by Ref. [57] and the corresponding 𝜎 significance for deviation from GR expectation are shown
in Table H.1 of the Appendix H. As illustrated in Fig. 11.8 4 clusters (A644, A1644, A2319 and A2255)
have large negative value for Ξ1 parameter, significantly (> 3𝜎) different from the GR. Also for these
4 clusters we have 𝛾 < 1 (𝐺eff < 𝐺) with ∼ 2𝜎 significance for a deviation from GR. These cluster
constraints may be either interpreted as upper bounds on deviations of the DHOST parameters from
their GR values or in a less conservative approach as possible hinds for modification of gravity. On the
contrary, the constraints on 𝛾 and Ξ1 for the other 8 clusters are fully consistent with GR.

In Fig. 11.8 we show the green ellipses that surround observed regions-bubbles in space (∼ 50 Mpc)
where clusters with hints of weaker effective gravitational constant were found in Ref. [57]. These spatial
sectors where the properties of gravity may be distinct from other regions may be consistent with the
existence of asymmetron walls separating these sectors from other spatial sectors with slightly different
properties of gravity.

11.5 Conclusions
In this Chapter we have generalized the symmetron screening mechanism by allowing for an explicit
symmetry breaking of the symmetron 𝜑4 potential by the cubic term 𝜀𝜑3. In such a screening scalar field
(the asymmetron) the two local minima of the potential in low density regions are neither degenerate nor
symmetric (𝜑+ ̸= −𝜑−). Thus the asymmetron domain wall network that may form includes a transition
in the value of the Jordan frame effective gravitational constant as the asymmetron wall is crossed.

We have implemented numerical energy minimization and simulation of evolution of spherical sym-
metron and asymmetron domain walls in the presence of a matter shell. We have thus demonstrated
that the walls get trapped by matter overdensity shells as expected preventing the collapse of spherical
symmetron and asymmetron walls and leading to stable spherical wall configurations. We have used a
simple analytical energetic argument to describe this stabilization mechanism. The relevance of these
asymmetron wall configurations with recent cluster profile data which may be interpreted as hinting
towards distinct gravitational properties of certain clusters has also been discussed.

The possible existence of an asymmeron wall network pinned on matter overdensities separating
regions with distinct gravitational properties could constitute a physical mechanism for the realization
of gravitational transitions in redshift space that could help in the resolution of the Hubble and growth
tensions as described in the Introduction. In this context, a wide range of possible extensions of the
present analysis could be considered. Such extensions include the following:

• The search for anisotropies of the Hubble expansion rate in certain cosmological regions surrounded
by matter overdensities which can not be explained by the observed sign and level of matter under-
densities. If such local modifications of the Hubble expansion rate can not be explained by matter
underdensities, they could be attributed to local modifications of the Friedmann equation due to
local modifications of the properties of gravity.

• The comparison of the growth rate of cosmological perturbations in different cosmological spatial
sectors using for example weak lensing, cluster count and/or redshift space distortion data.

9For a given overdensity Δ, the radius 𝑅Δ is determined as the distance from the halo centre within which the mean
density is Δ times the critical density, 𝜌𝑐(𝑧) = 3𝐻2(𝑧)/(8𝜋𝐺), at the halo redshift. Thus Δ𝜌𝑐(𝑧) = 𝑀Δ/(4/3𝜋𝑅3

Δ), where
𝑀Δ is the halo mass i.e. the mass enclosed in 𝑅Δ.
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• The implementation of N-body simulations is order to identify signatures of asymmetron walls on
the large scale structure power spectrum and on the ISW effect.

• The construction of other physically motivated mechanisms that could lead to spatial gravitational
transitions at low redshifts e.g. in the context of scalar tensor theories false vacuum decay.

In conclusion, the asymmetron model offers an interesting alternative modification of GR in distinct
spatial sectors. The predicted gravitational transition in redshift space could lead to the resolution of
the important cosmological tensions of the standard ΛCDM cosmology [7, 10, 127, 185]. Observable
new effects and new physics beyond the standard model could also be realized in the context of the
asymmetron domain wall network and corresponding constraints on the explicit symmetry breaking
parameter can be imposed.



Chapter 12

Summary-Conclusions-Outlook

In this last chapter, we present the summary and the conclusions of this dissertation and the possible
extensions. Existing and upcoming missions/experiments are presented which are expected to improve
the quality and quantity of data. The analysis of these data may provide answers to the interesting open
cosmological questions examined in this dissertation.

12.1 Summary and Conclusions
In Chapter 1, we reviewed the basic principles of the GR, the Cosmology and the ΛCDM cosmological
model. In the Chapters 2 and 3, we discussed in a unified manner many existing curiosities in cosmological
and astrophysical data that appear to be in some tension (2𝜎 or larger) with the standard ΛCDM model
as specified by the Planck18 parameter values. The Hubble tension is the most significant observational
indication that the current standard model ΛCDM may need to be modified after more than 20 years since
its establishment. In addition to the well known tensions (𝐻0 tension, 𝑆8 tension and 𝐴𝐿 anomaly), we
provided a list of the non-standard cosmological signals in cosmological data. We presented the current
status of these signals and their level of significance and also referred to recent resources where more
details can be found for each signal. These signals have a lower statistical significance level than the 𝐻0
tension but may also constitute hints towards new physics. We also briefly discussed possible theoretical
approaches that have been considered in order to explain the non-standard nature of these signals. We
also discussed the possible generic extensions of ΛCDM model. Generic extensions of ΛCDM may allow
for a redshift dependence of the parameters 𝑤, 𝜇𝐺, Σ𝐺 and 𝛼 as well as a possible large scale spatial
dependence of these parameters which could violate the cosmological principle. Varying fundamental
constants can potentially address the Hubble tension, the fine structure constant 𝛼 dipole, the lithium
problem, the growth tension, the curious SnIa 𝑀 signals (variation of the SnIa absolute magnitude ℳ),
quasar signals and the ISW CMB signal. In view of the above discussion of Chapters 2 and 3, the strategic
approach required for the identification of new physics may include the following three steps:

• Tune current missions towards verification or rejection of non-standard signals.

• Identify favored parametrizations of 𝐻(𝑧, 𝑤(𝑧), 𝑟), 𝜇𝐺(𝑧, 𝑟), Σ𝐺(𝑧, 𝑟), 𝛼(𝑧, 𝑟) assuming that at least
some of the non-standard signals are physical.

• Identify theoretical models (field Lagrangians) that are consistent with these parametrizations that
can address simultaneously more than one of these tensions. Interestingly, for example only a
small subset of modified gravity models is consistent with the weak gravity + ΛCDM background
[6, 1823, 2345, 2346] suggested in the context of the 𝑆8 tension.

In Chapter 4, we determined the optimum and the blind redshift ranges of basic cosmological ob-
servables with respect to three cosmological parameters: the matter density parameter Ω𝑚, the equation
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of state parameter 𝑤 (assumed constant), and a modified gravity parameter 𝑔𝑎 which parametrizes a
possible evolution of the effective Newton’s constant as 𝐺eff(𝑧) = 𝐺 (1 + 𝑔𝑎(1 − 𝑎)2 − 𝑔𝑎(1 − 𝑎)4). We
considered the following observables: the growth rate of matter density perturbations expressed through
𝑓(𝑧) and 𝑓𝜎8(𝑧), the distance modulus 𝜇(𝑧), baryon acoustic oscillation observables, 𝐻(𝑧) measurements
and the gravitational wave luminosity distance. We introduced a new statistic 𝑆𝑂

𝑃 (𝑧) ≡ Δ𝑂
Δ𝑃 (𝑧) · 𝑉 1/2

eff
including the effective survey volume 𝑉eff , as a measure of the constraining power of a given observable 𝑂
with respect to a cosmological parameter 𝑃 as a function of redshift 𝑧. We found blind redshift spots 𝑧𝑏

(𝑆𝑂
𝑃 (𝑧𝑏) ≃ 0) and optimal redshift spots 𝑧𝑠 (𝑆𝑂

𝑃 (𝑧𝑠) ≃ 𝑚𝑎𝑥) for the above observables with respect to the
parameters Ω𝑚, 𝑤 and 𝑔𝑎. We found that probing high redshifts may in some cases be less effective than
probing lower redshifts with higher accuracy. An interesting extension of our analysis could involve the
consideration of other observables and additional cosmological parameters (e.g. an equation of state pa-
rameter that evolves with redshift). The existence of blind spots could be avoided by considering various
functions and/or combinations of cosmic observables designed in such a way as to optimize sensitivity
for given cosmological parameters in a given redshift range. The investigation of the efficiency of such
combinations is also an interesting extension of our analysis.

In Chapter 5, we considerd a class of simple spherically symmetric metrics in 3 + 1 dimensions and
identified the profiles and properties of the perfect fluids that can give rise to such metrics. We assumed
spherical symmetry and used it to dimensionally reduce the 3+1 dimensional Einstein-Hilbert action to an
effective two dimensional scalar-tensor action with a constant potential. We generalized this geometric
potential thus modifying the gravitational action to an arbitrary form and derived the corresponding
generalized vacuum spherically symmetric metric in terms of the geometric potential. The generalization
of the scalar-tensor potential leads to an effective energy density of geometric origin which generates the
same spherically symmetric metric as a corresponding spherically symmetric perfect fluid with equation of
state parameter 𝑤 = −1 and energy density 𝜌𝑚(𝑟) = 𝜌𝑉 (𝑟). This derived equivalence between geometric
and matter energy density allows the reconstruction of the geometric potential by demanding that its
gravitational effects in the vacuum should be identical with the gravitational effects of a given matter
fluid in the context of GR. We considered special forms of the geometric potential and of the background
fluid and derived the corresponding metric. Thus the case of a constant potential (GR) we derived the
Schwarzschild vacuum metric while for a simple quadratic potential we obtained the Rindler acceleration
and cosmological constant terms. We also reconstructed the geometric potential that leads to a vacuum
metric that is identical with the metric derived assuming a given dark matter fluid density profile in the
context of GR. In the context of a particular example we assumed a NFW density profile and derived
the corresponding geometric potential and vacuum metric. We showed that this metric generalizes the
Rindler term of the Grumiller metric and showed fits of the velocity profiles it generates on typical galactic
velocity rotation data. Generally, the dimensional reduction in the context of spherical symmetry can
provide an interesting point of view for the modification of GR and can lead to a wide range of modified
gravity models.

The existence of the cosmological particle horizon as the maximum measurable length 𝑙𝑚𝑎𝑥 in the
universe leads to a generalization of the quantum uncertainty principle (GUP) to the form Δ𝑥Δ𝑝 ≥
ℏ
2

1
1−𝛼Δ𝑥2 , where 𝛼 ≡ 𝑙−2

𝑚𝑎𝑥. The implication of this GUP and the corresponding generalized commutation
relation [𝑥, 𝑝] = 𝑖ℏ 1

1−𝛼𝑥2 on simple quantum mechanical systems has been discussed recently [55] and
shown to have extremely small (beyond current measurements) effects of the energy spectra of these
systems due to the extremely large scale of the current particle horizon. This may not the case in
the Early Universe during the quantum generation of the inflationary primordial fluctuation spectrum.
In Chapter 6, we estimated the effects of such GUP on the primordial fluctuation spectrum and on
the corresponding spectral index. In particular motivated by the above GUP we generalized the field
commutation (GFC) relation to [𝜙(k), 𝜋𝜙(k′)] = 𝑖𝛿(k − k′) 1

1−𝜇𝜙2(k) , where 𝜇 ≃ 𝛼2 ≡ 𝑙−4
𝑚𝑎𝑥 is a GFC

parameter, 𝜙 denotes a scalar field and 𝜋𝜙 denotes its canonical conjugate momentum. In the context of
this GFC we used standard methods to obtain the primordial scalar perturbations spectrum and showed
that it is of the form 𝑃𝑆(𝑘) = 𝑃

(0)
𝑆 (𝑘)

(︀
1 + 𝜇̄

𝑘

)︀
where 𝜇̄ ≡ 𝜇𝑉* ≃

√
𝛼 = 𝑙−1

𝑚𝑎𝑥 (here 𝑉* ≃ 𝑙3𝑚𝑎𝑥 is the volume
corresponding to the maximum measurable scale 𝑙𝑚𝑎𝑥) and 𝑃 (0)

𝑆 (𝑘) is the standard primordial spectrum
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obtained in the context of the Heisenberg uncertainty principle (HUP 𝜇 = 0). We showed that the scalar
spectral index predicted by the model, defined from 𝑃𝑆(𝑘) = 𝐴𝑆𝑘

𝑛𝑠−1 is running and may be written
as 𝑛𝑠 = 1 − 𝜆 − 𝜇̄

𝑘 with 𝜆 = 6𝜖 − 2𝜂 (where 𝜖 and 𝜂 are the slow-roll parameters). Using observational
constraints on the scale dependence of the spectral index 𝑛𝑠 a cosmological constraint may be imposed
on 𝜇̄ as 𝜇̄ = (0.9 ± 7.6) · 10−6ℎ/Mpc. Using this result we estimated the GUP parameter 𝛼 ≲ 10−54 m−2

at 1𝜎 and 𝛼 ≲ 10−52 m−2 at 2𝜎. The 2𝜎 range of 𝛼 corresponds to 𝑙𝑚𝑎𝑥 ≳ 1026 m which is of the same
order as the current particle horizon. Thus the assumption that a maximum measurable length could
emerge as a result of presence of the cosmological particle horizon remains a viable assumption at the 2𝜎
level. An interesting extension of this analysis would be the consideration of other types of GUP (e.g.
the UV cutoff GUP of Eq. (6.1)) and the derivation of constraints on the corresponding fundamental
parameters using cosmological data and constraints on the power spectrum index.

An alternative approach in deriving the effects of a GUP on the primordial perturbation spectrum
involves the generalization of the position and momentum operators as described in the Section 6.1, but
with an ultraviolet rather than infrared cutoff, while keeping the field theoretical commutation relations
unchanged [2347, 2348]. According to [2347, 2348], this approach would also lead to a modification of
the evolution of the field perturbation modes Eq. (6.49) even though this equation is derived before
quantization at the classical level. This approach is questionable as it is implemented at the classical
level. Nevertheless, it would be of interest to extend our analysis to include such effects of modification of
the classical evolution of field perturbations due to a generalization of position and momentum operators.

In Chapter 7, we constructed an up to date compilation of 𝐸𝐺 statistic data including both redshift
and scale dependence. The 𝐸𝐺 statistic c has been proposed as a model independent test of any MG
theory. It is a powerful probe for detecting deviations from GR by combining weak lensing (WL), real-
space clustering and redshift space distortion (RSD) measurements thus probing both the lensing and
the growth effective Newton constants (𝐺𝐿 and 𝐺eff). We combined the 𝐸𝐺 data compilation with an up
to date compilation of 𝑓𝜎8 data from RSD observations to identify the current level of tension between
the Planck/ΛCDM standard model based on general relativity and a general model independent redshift
evolution parametrization of 𝐺𝐿 and 𝐺eff . Each 𝑓𝜎8 datapoint considered has been published separately
in the context of independent analyses of distinct galaxy samples. However, there are correlations among
the datapoints considered due to overlap of the analyzed galaxy samples. Due to these correlations the
derived levels of tension of the best fit parameters with Planck/ΛCDM are somewhat overestimated but
this is the price to pay for maximizing the information encoded in the compilation considered. We find
that the level of tension increases from about 3.5𝜎 for the 𝑓𝜎8 data compilation alone to about 6𝜎 when
the 𝐸𝐺 data are also included in the analysis. The direction of the tension is the same as implied by the
𝑓𝜎8 RSD growth data alone (lower Ω𝑚 and/or weaker effective Newton constant at low redshifts for both
the lensing and the growth effective Newton constants (𝐺𝐿 and 𝐺eff )). These results further amplify the
hints for weakening modified gravity discussed in other recent analyses [67, 148, 1197, 1978].

The introduction of the MG parameters 𝜇𝐺(𝑎, 𝑘) ≡ 𝐺eff(𝑎,𝑘)
𝐺 and Σ𝐺(𝑎, 𝑘) ≡ 𝐺𝐿(𝑎,𝑘)

𝐺 along with the
variation of the matter density parameter Ω𝑚 and the rms matter density fluctuations within spheres of
radius 8ℎ−1𝑀𝑝𝑐 𝜎8 leads to a model (MG-ΛCDM) that is a much better fit to the growth 𝑓𝜎8 and 𝐸𝐺 data
than the Planck/ΛCDM model in the context of GR. We have called this effect a ’tension’ between the
new best fit parameter values (MG-ΛCDM) and the GR-Planck/ΛCDM parameter values (from Planck18
fit) which are 5−6𝜎 away from the new best fit parameter values. On the other hand, the MG parameters
do not seem to change significantly the fit of the Planck data as indicated in Ref. [1978] and in Planck18
[14] which indicate that pure CMB data appear to favor GR. Thus, the particular parametrization we
have used does not seem to significantly reduce the tension between CMB and growth/weak lensing data
since MG gravity appears to be favored by growth/weak lensing but not by the CMB. This is an issue
we plan to investigate in more detail in the future by considering e.g. different MG parametrizations for
the evolution of the 𝜇𝐺 and Σ𝐺 parameters that will not only improve the fit to the 𝑓𝜎8 /𝐸𝐺 data but
also improve the fit to the CMB data where some tensions are already evident (e.g. the lensing anomaly
discussed in Planck18 [14]).

It is well known that the Klein Gordon (KG) equation □Φ +𝑚2Φ = 0 has tachyonic unstable modes
on large scales (𝑘2 < |𝑚|2) for 𝑚2 < 𝑚2

𝑐𝑟 = 0 in a flat Minkowski spacetime with maximum growth
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rate Ω𝐹 (𝑚) = |𝑚| achieved at 𝑘 = 0. In Chapter 8 we investigated these instabilities in a Reissner-
Nordström-deSitter (RN-dS) background spacetime with mass 𝑀 , charge 𝑄, cosmological constant Λ > 0
and multiple horizons. By solving the KG equation in the range between the event and cosmological
horizons, using tortoise coordinates 𝑟*, we identified the bound states of the emerging Schrodinger-like
Regge-Wheeler equation corresponding to instabilities. We found that the critical value 𝑚𝑐𝑟 such that
for 𝑚2 < 𝑚2

𝑐𝑟 bound states and instabilities appear, remains equal to the flat space value 𝑚𝑐𝑟 = 0 for all
values of background metric parameters despite the locally negative nature of the Regge-Wheeler potential
for 𝑚 = 0. However, the growth rate Ω of tachyonic instabilities for 𝑚2 < 0 gets significantly reduced
compared to the flat case for all parameter values of the background metric (Ω(𝑄/𝑀,𝑀2Λ,𝑚𝑀) < |𝑚|).
This increased lifetime of tachyonic instabilities is maximal in the case of a near extreme Schwarzschild-
deSitter (SdS) black hole where 𝑄 = 0 and the cosmological horizon is nearly equal to the event horizon
(𝜉 ≡ 9𝑀2Λ ≃ 1). The physical reason for this delay of instability growth appears to be the existence of a
cosmological horizon that tends to narrow the negative range of the Regge-Wheeler potential in tortoise
coordinates.

In Chapter 9 we considered Horndeski modified gravity models obeying stability, velocity of gravita-
tional waves 𝑐𝑇 equals 𝑐 and quasistatic approximation (QSA) on subhorizon scales. We assume further
a ΛCDM background expansion and a monotonic evolution on the cosmic background of the 𝛼 functions
as 𝛼𝑖 = 𝛼𝑖0 𝑎

𝑠 where 𝑖 = 𝑀,𝐵, 𝑎 is the scale factor and 𝛼𝑖0 (𝛼𝑀0, 𝛼𝐵0), 𝑠 are arbitrary parameters. We
showed that the growth and lensing reduced (dimensionless) gravitational couplings 𝜇𝐺 ≡ 𝐺growth/𝐺,
Σ𝐺 ≡ 𝐺lensing/𝐺 exhibit the following generic properties today: Σ𝐺,0 < 1 for all viable parameters,
𝜇𝐺,0 < 1 (weak gravity today) is favored for small 𝑠 while 𝜇𝐺,0 > 1 is favored for large 𝑠. We established
also the relation 𝜇𝐺 ≥ Σ𝐺 at all times. Taking into account the 𝑓𝜎8 and 𝐸𝐺 data constrained the param-
eter 𝑠 to satisfy 𝑠 ≲ 2. Hence these data selected essentially the weak gravity regime today (𝜇𝐺,0 < 1)
when 𝑠 < 2, while 𝜇𝐺,0 > 1 subsists only marginally for 𝑠 ≈ 2. At least the interval 0.5 ≲ 𝑠 ≲ 2 would
be ruled out in the absence of screening. We considered further the growth index 𝛾(𝑧) and identified
the (𝛼𝑀0, 𝛼𝐵0, 𝑠) parameter region that corresponds to specific signs of the differences 𝛾0 − 𝛾Λ𝐶𝐷𝑀

0 , and
𝛾1 − 𝛾Λ𝐶𝐷𝑀

1 , where 𝛾0 ≡ 𝛾
⃒⃒
𝑧=0 and 𝛾1 ≡ d𝛾

dz
⃒⃒
𝑧=0. In this way important information is gained on the

past evolution of 𝜇𝐺. We obtained in particular the signature 𝛾0 > 𝛾Λ𝐶𝐷𝑀
0 for 𝑠 < 2 in the selected weak

gravity region.
In Chapter 10 we re-analyzed the Cepheid data used to infer the value of the Hubble constant 𝐻0 by

calibrating Type Ia supernovae. We did not enforce a universal value of the empirical Cepheid calibration
parameters 𝑅𝑊 (Cepheid Wesenheit color-luminosity parameter) and 𝑀𝑊

𝐻 (Cepheid Wesenheit H-band
absolute magnitude). Instead we allowed for variation of either of these parameters for each individual
galaxy. We also considered the case where these parameters have two universal values: one for low
galactic distances 𝐷 < 𝐷𝑐 and one for high galactic distances 𝐷 > 𝐷𝑐 where 𝐷𝑐 is a critical transition
distance. We found hints for a 3𝜎 level mismatch between the low and high galactic distance parameter
values. We then used model selection criteria (AIC and BIC) which penalize models with large numbers
of parameters, to compare and rank the following types of 𝑅𝑊 and 𝑀𝑊

𝐻 parameter variations: Base
models: Universal values for 𝑅𝑊 and 𝑀𝑊

𝐻 (no parameter variation), I: Individual fitted galactic 𝑅𝑊

with one universal fitted 𝑀𝑊
𝐻 , II: One universal fixed 𝑅𝑊 with individual fitted galactic 𝑀𝑊

𝐻 , III: One
universal fitted 𝑅𝑊 with individual fitted galactic 𝑀𝑊

𝐻 , IV: Two universal fitted 𝑅𝑊 (near and far) with
one universal fitted 𝑀𝑊

𝐻 , V: One universal fitted 𝑅𝑊 with two universal fitted 𝑀𝑊
𝐻 (near and far), VI:

Two universal fitted 𝑅𝑊 (near and far) with two universal fitted 𝑀𝑊
𝐻 (near and far). We found that the

AIC and BIC model selection criteria consistently favor model IV instead of the commonly used Base
model where no variation is allowed for the Cepheid empirical parameters. The best fit value of the
SnIa absolute magnitude 𝑀𝐵 and of 𝐻0 implied by the favored model IV is consistent with the inverse
distance ladder calibration based on the CMB sound horizon 𝐻0 = 67.4 ± 0.5 km s−1 Mpc−1. Thus in the
context of the favored model IV the Hubble crisis is not present. This model may imply the presence of
a fundamental physics transition taking place at a time more recent than 100 Myrs ago.

In Chapter 11, we generalized the symmetron screening mechanism by allowing for an explicit sym-
metry breaking of the symmetron 𝜑4 potential. A coupling to matter of the form 𝐴(𝜑) = 1 + 𝜑2

𝑀2 leads to
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Table 12.1: Some existing and upcoming large-scale structure missions/experiments.

Experiments Type Probes Redshift Wavelengths Operator Duration Refs.

Euclid Space WL, BAO 𝑧 ≲ 6 550 nm − 2𝜇m ESA > 2023 [2349]
Vera C. Rubin Ground WL, BAO 𝑧 ≲ 7.5 320 − 1060𝑛𝑚 LSST > 2022 [2350]

Gaia Space Astrometry 𝑧 ≃ 0 320 − 1000 nm ESA > 2013 [1705]
JWST Space WL 𝑧 ≲ 15 0.6 − 28.3𝜇m NASA-ESA-CSA > 2021 [2351]
GAUSS Space WL 3 × 2pt 𝑧 ≲ 5 0.5 − 5 nm > 2035 [2352]

Table 12.2: Some existing and upcoming CMB missions/experiments.

Experim. Type Detectors Frequencies1 Resolution2 Sensitivity3 Sky Duration Refs.
(GHz) (arcmin) (𝜇K arcmin) Cover

Planck Space 74 25 − 1000 5 − 33 ∼ 30 All 2009-2013 [908]
CMB S4 Ground 500 · 103 30 − 270 0.8 − 11 ∼ 1 70% > 2027 [2353]
SO LAT Ground 30 · 103 27 − 280 0.1 ∼ 6 40% > 2021 [2354]
SO SATs Ground 30 · 103 90 − 280 0.5 ∼ 2 10% > 2021 [2354]
SPT-3G Ground 16 · 103 90 − 280 1 ∼ 3.5, 6 10% > 2017 [2355]

an explicitly broken symmetry with effective potential 𝑉eff(𝜑) = −𝜇2(1 − 𝜌
𝜇2𝑀2 )𝜑2 + 𝜆

2𝜑
4 + 2𝜀𝜑3 + 𝜆

2 𝜂
4.

Due to the explicit symmetry breaking induced by the cubic term we called this field the ’asymmetron’.
For large matter density 𝜌 > 𝜌* ≡ 𝜇2𝑀2 + 9

4𝜀𝜂𝑀
2 the effective potential has a single minimum at 𝜑 = 0

leading to restoration of GR as in the usual symmetron screening mechanism. For low matter density
however, there is a false vacuum and a single true vacuum due to the explicit symmetry breaking. We
presented the energetics and dynamics of spherical symmetron and asymmetron domain walls. We
implemented numerical energy minimization and simulation of evolution of spherical symmetron and
asymmetron domain walls in the presence of a matter shell. Thus we demonstrated that the walls
get trapped by matter overdensity shells as expected preventing the collapse of spherical symmetron
and asymmetron walls and leading to stable spherical wall configurations. We also pointed out that
recent cluster profile data may be interpreted as revealing spatial cosmological sectors where distinct
properties of gravity are present. This may be a interesting observational gravitational and expansion
rate transition in redshift space. Such a transition has been recently proposed for the resolution of the
Hubble and growth tensions.
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Table 12.3: Some existing and upcoming GW experiments/observatories

Experiments. Type/Detectors Arms Frequencies4 Location Duration Refs.
(Hz)

Adv. LIGO Ground/Laser interf. 2 × 4 km 10 − 103 Hanford, USA > 2015 [439]
Adv. LIGO Ground/Laser interf. 2 × 4 km 10 − 103 Livingston, USA > 2015 [439]
Adv. Virgo Ground/Laser interf. 2 × 3 km 10 − 103 Pisa, Italy > 2016 [440]

KAGRA Undergr./Laser interf. 2 × 3 km 10 − 103 Kamioka, Japan > 2020 [2365]
CE Ground/Laser interf. 2 × 40 km 5 − 4 · 103 USA > 2030 [2366]

LISA Space/Laser interf. 3 × 2.5 Gm 10−4 − 10−1 Heliocentric orbit > 2034 [2367]
Taiji Space/Laser interf. 3 × 2𝐺𝑚 10−4 − 10−1 Heliocentric orbit > 2033 [2368]

TianQin Space/Laser interf. 3 × 0.1 Gm 10−4 − 1 Geocentric orbit > 2035 [2369]
DECIGO Space/Laser interf. 4 × 3 × 1 Mm 1 − 10 Heliocentric orbit > 2027 [2370]

ET Undergr./Laser interf. 3 × 2 × 10 km 1 − 104 > 2035 [2371]

12.2 Existing and Upcoming missions/experiments
In the next decades new observational data from existing and upcoming missions/experiments (see Tables
12.1, 12.2 and 12.3) will improve measurements and open up a wide range of new directions in the
explanation of the curiosities of ΛCDM cosmology and understanding of cosmological physics. Here we
provide an incomplete list of these missions:

• Euclid: The European Space Agency (ESA) Euclid mission [2349] is planned for launch in 2023.
The goals of Euclid are to investigate the nature of dark matter, dark energy and gravity and thus to
provide a better knowledge of the origin of the accelerated expansion of the Universe [2349, 2372–
2375]. The optical and near-infrared (NIR) Euclid survey using the cosmological WL and BAO
probes will detect a high number of galaxy clusters up to redshift 𝑧 ∼ 2 (and possibly higher) in a
redshift range that is sensitive to dark energy [2376] and will provide consistent growth rate data
in both the low-z and high-z regimes. Therefore, Euclid will improve significantly the constraints
on cosmological parameters such as 𝜎8 and the mass density parameter Ω0𝑚 with a precision of
∼ 10−3 for ΛCDM [2374]. The Euclid survey will also measure the equation of state parameter of
dark energy 𝑤𝐷𝐸 with higher precision (∼ 1%) than precursor surveys. Stochastic inhomogeneities
are expected to lead to an intrinsic uncertainty in the values of cosmological parameters obtained
with such high redshift surveys. The corresponding cosmic variance in the context of Euclid for
the measurement of 𝐻0 has been shown to be limited to about 0.1% [2377]. Thus Euclid and
other deep surveys (𝑧 ≳ 0.15) will provide an estimation of the 𝐻0 which will be more precise than
the low redshift surveys (𝑧 ≲ 0.15). Such improved constraints from Euclid in combination with
contemporary surveys will allow the verification or rejection of many of the non-standard signals
discussed in this review and will also help distinguish among the favored theoretical models that
have been proposed for the explanation of these signals.

• Vera C. Rubin Observatory Legacy Survey of Space and Time: The Large Synoptic Survey
Telescope (LSST), recently renamed the Vera C. Rubin Observatory LSST [2350, 2378] is a future
survey of the southern sky planned for the beginning in 2022. The Vera C. Rubin Observatory based
in Chile with an 8.4𝑚 (6.5𝑚 effective) telescope in six bands, targeting at least 18, 000 𝑑𝑒𝑔2 of high
galactic latitude sky, will provide databases including 25 billion galaxies with ≳ 0.2 arcsecond pixel
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sampling [2379]. The main cosmological goals of the Vera C. Rubin Observatory ground-based
project are to investigate the nature of dark matter and the dynamical behavior of dark energy by
measuring WL and BAO [2379]. Vera C. Rubin observatory will detect enormous number of galaxies
and in combination with the Euclid BAO survey will probe an unprecedented range of redshifts.
These surveys can determine 𝑤𝐷𝐸(𝑧) in bins of redshift and their dark energy constraining power
could be orders of magnitude greater than that of precursor surveys [2380]. The provided improved
constraints on cosmological parameters allow to address potential systematics and to ensure that
any measured tension is robust. In addition, the Vera C. Rubin project would be a useful tool in
testing the models which have been used to explain these tensions.

• CMB-S4: The fourth generation5 (Stage-4) ground-based CMB experiment (CMB-S4) [2353, 2381,
2382], is planned to start observations in 2027. It is anticipated to be the definitive CMB polarization
experiment. The goals of CMB-S4 are to detect the signature of primordial gravitational waves in
order to shed light on models of inflation, to search for previously undiscovered light relic particles
in order to study the dark Universe, to map normal and dark matter in the cosmos separately and
to explore the time-variable millimeter-wave sky [2353]. The CMB-S4 survey in combination with
external cluster surveys which are sensitive to different redshift ranges such as the Vera C. Rubin
will provide detailed cluster data [2353]. These data will be used to study the growth of cluster
scale perturbations, to improve constraints on cosmological parameters and to test the alternative
models or extensions of ΛCDM which can be used to clarify the origin of many of the tensions and
non-standard signals referred in the present review. The CMB-S4 will also contribute to neutrino
cosmology providing compelling sensitivity in the constraint of the effective number of relativistic
species, 𝑁eff and of the sum of the neutrino masses

∑︀
𝑚𝜈 . This project has also the potential

to constrain Δ𝑁eff ≡ 𝑁eff − 𝑁SM
eff ≃ 0.060 at 95% confidence level [2381]. Planck has provided

a constraint Δ𝑁eff ≃ 0.126 at 95% confidence level using temperature and polarization TT, TE,
EE + lowE data [14]. The improved constraints on 𝑁eff will enable us to test the scenarios with
modifications of ΛCDM model in the light relic sector.

• Gaia: The Gaia satellite was launched at the end of 2013 [1704, 1705]. This European Space
Agency (ESA) mission Gaia provides data that allow us to determine with high accuracy positions,
parallaxes and proper motions for more than 1 billion sources. There have been two data releases
GDR1 [2383] and GDR2 [296] of Gaia results. Using quasars Ref. [2384] founds that the GDR2
suffer from the parallax zero point (ZP) error. Ref. [40] refers to this additional error as parallax
offset because it is not a single value but depends on the color or/and magnitude of the source and
its position on the sky. Ref. [224] founds that the parallax offset can be measured directly from the
Cepheids, but with a reduced precision of the distance scale from GDR2. This reduction leads to
a increased uncertainty of the determination of 𝐻0 value by a factor of 2.5.
Recently the Gaia team presented the Gaia Early Data Release 3 (EDR3) (the full Gaia DR3 release
is expected in 2022) [180] with improved parallaxes since GDR2. Using the EDR3 parallaxes and
Cepheid PL relation the latest analysis of the SH0ES Team [40] achieved a precision of 1.0% in
the geometric calibration of Cepheid luminosities. The precision of the geometric calibration of
Cepheids will approach 0.5% by Gaia DR4 [40]. This higher precision will be sufficient to confirm
the present 𝐻0 tension.

• James Webb Space Telescope: The James Webb Space Telescope (JWST or ’Webb’) [2351,
2385] is a joint NASA-ESA-CSA (National Aeronautics and Space Administration -European Space
Agency-Canadian Space Agency) large, cold (under 50 K), infrared optimized (0.6 < 𝜆 < 28.3.0𝜇m),
space telescope and its launch is currently planned for 31 October 2021. JWST is a scientific
successor to HST and will extend its discoveries to higher redshifts. It is nearly twice as big as HST
with 6.6 m gold-plated primary mirror much larger than 2.4 m of HST.

5Planck was the third generation space mission which mapped the anisotropies of CMB.
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The two main goals of this upcoming, next-generation telescope are to look much closer to the
Big Bang and to investigate the light from the first stars and galaxies that formed in the Universe
(see Ref. [2351], for other goals). The observational data of this mission will essentially enhance
our understanding of the formation and evolution of galaxies, stars, and planetary systems. The
JWST will detect galaxies out to a redshift of 𝑧 ≥ 15. It will probably be able to detect Pop III
stars (see Subsection 3.7) in the high-redshift galaxies [2386, 2387] in a mass range 140−260𝑀⊙ as
pair-instability supernovae [2388, 2389]. Various projects using the JWST observations will provide
stronger nucleosynthesis constraints inside the first supernova [1695] and constraints on the nature
of dark matter [2390, 2391]. These constraints and other unprecedented information from JWST
could potentially help address the lithium problem, explain small-scale curiosities and improve
constraints on the age of Universe.

• Simons Observatory: The Simons Observatory (SO) [2354, 2392, 2393] is a next generation CMB
ground-based experiment. SO consists of one 6 m Large Aperture Telescope (LAT) and three 0.42 m
Small Aperture Telescopes (SATs) at the Atacama Desert, Chile. It will provide more accurate
measurements of the primary CMB temperature and polarization signals. The main targets of SO
as described by [2354] are: primordial perturbations, effective number of relativistic species, neutrino
mass, deviations from ΛCDM, galaxy evolution (feedback efficiency and non-thermal pressure in
massive halos) and reionization (measurement of duration). Also a goal of SO survey is to provide
a catalog of 16.000 galaxy clusters and more than 20.000 extragalactic sources. The sky region
from SO survey overlaps with many surveys such as LSST, DES, DESI and Euclid at different
wavelengths [2354]. This overlap is extremely beneficial as it will allow data cross correlation tests
(see Ref. [2394], for a detailed discussion). Like CMB-S4, SO will provide improved constraints
on the effective number of relativistic species 𝑁eff , the sum of the neutrino masses

∑︀
𝑚𝜈 and the

dark energy equation of state 𝑤𝐷𝐸 (see Ref. [2354], for the forecast constraints on cosmological
parameters). Also the SO and CMB-S4 experiments will measure the primordial tensor-to-scalar
ratio 𝑟 to a target sensitivity of 𝜎𝑟 ∼ 0.002 (for an 𝑟 = 0 model). This will be an improvement
by a factor of approximately 5 compared to Planck sensitivity. In addition the uncertainty of the
determinations of 𝐻0 from SO will be two and five times better than that inferred from Planck and
local direct measurement respectively. Therefore, the SO data will enable us to improve constraints
on extensions of ΛCDM which alleviate its tensions and curiosities. In addition the improved quality
of lensing data from SO as well as CMB-S4 will improve our understanding of the CMB anisotropy
anomalies.

• SPT-3G: This is a third generation CMB experiment [337, 2355]. It uses the third survey camera
SPT-3G which was installed on the South Pole Telescope (SPT) in 2017. The SPT-3G with the 10-
meter diameter telescope targets at least 1, 500 deg2 region of low-foreground sky in three spectral
bands centered at 95, 150, and 220 GHz with ∼ 16, 000 detectors (10 times more than its predecessor
SPTpol [1785, 2395]).
Its scientific goals aim to constrain the physics of the cosmic inflation, to explore the neutrino
sector, and to constrain the relativistic energy density of the Universe [337, 2355]. The SPT-3G
survey in combination with the deep and wide optical survey DES, will provide detailed data on
∼ 200 Mpc scales which may be used to test General Relativity. The SPT-3G will also provide
stringent and improved constraints on the effective number of relativistic species, 𝑁eff and on the
sum of the neutrino masses

∑︀
𝑚𝜈 by synergy with Planck.

• GAUSS: This space mission concept combines the WL and galaxy clustering probes using three
two-point correlation functions (3 × 2pt analysis) of gravitational lensing and galaxy positions: the
cosmic shear, the galaxy clustering and galaxy-galaxy lensing. GAUSS aims to fully map the cosmic
web up to redshift 𝑧 ∼ 5 and to provide a catalog with the spectroscopic redshifts and the shapes
of 10 billions of galaxies [2352] increased by a factor of approximately 103 compared to DESI which
measures the spectra of 35 million galaxies and quasars [451]. The very large sky coverage and the
high galaxy density provided by the GAUSS will facilitate the construction of the 3D matter power
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spectrum of all scales (large and small) in detail. The 3 × 2pt correlation functions in combination
with 3D matter power spectrum will provide stronger constraints and break parameter degeneracies
[2352]. The constraining power of the GAUSS will be an order of magnitude larger than that of
any currently planned projects such as Euclid and Vera C. Rubin Observatory.

• Laser Interferometer Gravitational-Wave Observatory: The Laser Interferometer
Gravitational-Wave Observatory (LIGO) proposed by Ref. [2396] is a large-scale experiment that
uses ground-based laser interferometers with 𝐿 = 𝐿𝑥 = 𝐿𝑦 = 4 km long orthogonal arms to detect
GWs6.
There are two identical LIGO instruments, one in Hanford (LHO) and one in Livingston (LLO)
separated by roughly 3000 km. The principle of operation of laser interferometers [2412, 2413] is
similar to that of a simple interferometer, such as that used by Michelson and Morley. Detection of
GWs with strain amplitude ℎ ∼ 10−21 by a ground detector with arms of length 𝐿 = 4 km requires
length change measurement [2412]

Δ𝐿 = 𝛿𝐿𝑥 − 𝛿𝐿𝑦 ∼ ℎ𝐿 ∼ 4 · 10−18 m . (12.1)

For the period between 2002 and 2010, the two LIGO observatories were unable to detect GWs.
The detectors were later replaced by much improved Advanced LIGO versions [439, 2414]. The
improved detectors that officially went into operation in 2015 have about ten times the sensitivity to
detect GWs in the frequency range around ∼ 100 Hz compared to the initial LIGO interferometers
[439]. In addition Advanced LIGO extends the low frequency end from 40𝐻𝑧 down to 10 Hz.
Much of the research and development work for LIGO/Advanced LIGO projects was based on
the groundbreaking work of the GEO 600 detector [2415, 2416] which is a 600 m interferometer in
Hanover, Germany.
On February 11, 2016 the LIGO Scientific Collaboration [2417] and the Virgo Collaboration [2418,
2419] announced the first directly observed GWs from a signal detected on September 14, 2015
by the Advanced LIGO devices (the Virgo was not working at the time due to an upgrade). The
detected signal was named GW150914 and its source was the merger of two stellar-mass BHs [2420].
The Advanced Virgo [440] with 3 𝑘𝑚 arm length interferometer contributes to the reliability of
Advanced LIGO experimental device detections allowing for greater accuracy in locating the source
in the sky (triangulation i.e 3-detector localization) [2421] and more accurate reconstruction of the
signal waveform (see Refs. [2422–2426], for the relevant method). For example, in the case of the
event GW170814 the three detectors improved the sky localization of the source, reducing the area
of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all
three LIGO/Virgo detectors and reduced the luminosity distance uncertainty from 570+300

−230 Mpc to
540+130

−210 Mpc [2427].
In 2019 the Advanced LIGO [439], the Advanced Virgo [440] and the Japanese successor of the
Tama300 [2428, 2429], Kamioka Gravitational (KAGRA) wave detector [2365, 2430, 2431] (previ-
ously called LCGT [2432]) signed collaboration agreement to begin joint observation. The LIGO,
Virgo and KAGRA collaboration will be probably complemented by other interferometers like the
planned Indian LIGO by the Indian Initiative in Gravitational Wave Observations (IndIGO) consor-
tium [2433]. In addition a future third-generation ground-based detector the Cosmic Explorer (CE)
[2366, 2434, 2435] is envisioned to begin operation in the 2030s in the USA. It will contribute to
the GW Astronomy beyond LIGO. CE with ten times longer arms (40 km) than Advanced LIGO’s
will amplify the amplitude of the observed signals [2436, 2437] and will significantly increase the
sensitivity of the observations [2434, 2435].

6Another class of GW detectors are the resonant mass antennas [2397–2400] in the frequency range from 15 Hz to few
kHz. The principle of operation of mass resonance detectors is related to the periodic dimensional changes caused by the
ripple effect of GWs on solid bodies. The Weber bar [2401] is a first generation resonant mass detector, the ALLEGRO
[2402], NAUTILUS [2403–2405], EXPLORER [2406], AURIGA [2407], NIOBE [2408, 2409] are the second generation and
Mario Schenberg [2410], MiniGRAIL [2411] are the third generation.
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Many events (∼ 50 compact binary coalescences) were observed by the Advanced LIGO/Virgo
interferometers during three observing run periods (O1, O2 and O3)7. The full three-detector
network provided data which enabled the standard siren measurement of the Hubble constant 𝐻0
(see Subsections 2.2.4). These data are not yet sufficiently constraining the Hubble constant but in
the future they are expected to improve significantly.

• Laser Interferometer Space Antenna: The Laser Interferometer Space Antenna (LISA) [2367,
2440] is a large-scale space mission proposed by ESA, planned for launch in 2034. It will consist of
three spacecrafts placed in an equilateral triangle with arms 2.5 million kilometers long which will
be placed near the Earth in a heliocentric orbit. In order to pave the way for the LISA mission
ESA launched LISA Pathfinder in 2015 and it was operational from 2016 to 2017 [2441, 2442].
The results from scientific research show that LISA Pathfinder works exactly five times better than
required, with a successful demonstration of the basic technologies for a large gravitational wave
observatory.
LISA is designed to detect GWs in the frequency range from 0.1 mHz to 10−1 Hz [2443, 2444]
targeting very different source populations from ground-based detectors such as LIGO, Virgo and
KAGRA which operate in the frequency range8 from 10 Hz to 103 Hz [2445].
There are many different sources of GWs (see Refs. [2446–2448], for a review of GW physics).
LIGO and Virgo can detect the merger events of binaries with masses ≲ 100𝑀⊙ while LISA will be
able to detect the merger of massive BHs (105 − 107𝑀⊙) with higher signal-to-noise ratio (SNR)
and thus to perform precision tests in the strong gravity regime of ΛCDM model. LISA will detect
events lasting weeks, months or years allowing us to observe a much larger volume of the Universe.
It may improve our understanding of the early Universe. In addition the LISA mission will be able
to detect sources like primordial BHs (∼ 10−12𝑀⊙) which correspond to the mHz frequency [2449–
2451]. This possibility can help to test primordial BH dark matter scenario. Finally, LISA and
the Big Bang Observer (BBO) [2452, 2453], which is a proposed LISA’s successor will detect many
other known or currently unknown exotic sources. Thus it will enable us to explore alternative
gravity theories and to address the problems of the ΛCDM cosmology.

• Taiji: Taiji [2368, 2454] meaning ‘supreme ultimate’ is a Chinese large-scale space mission, planned
for launch in 2033. Like LISA, Taiji is a laser interferometric GW detector which will consist of
three spacecraft placed in an equilateral triangle with arms 2 million kilometers long in orbit around
the Sun. Taiji will detect GWs in the frequency range from 0.1𝑚𝐻𝑧 to 10−1 Hz. Like LISA, Taiji
can detect many possible GW sources such as a stochastic GW background generated in the early
Universe and the merger of two super massive BHs.
A potential LISA-Taiji network was explored by [2455, 2456]. This network with a separation
distance of about 0.7 AU can accurately localize the sky position of a GW source and may completely
identify the host galaxy.

• TianQin : TianQin [2369, 2457] is a Chinese large-scale space mission. It aims to launch a laser
interferometric GW detector around 2035. Like other space-base observatories, TianQin observa-
tory consist of three spacecrafts placed in an equilateral triangle with arms ∼ 0.1 Gm long but in
geocentric orbit with an orbital radius of about 105 km [2369, 2457]. TianQin aims to detect GWs
in the frequency range from 10−4 Hz to 1 Hz (overlapping with that of LISA near 10−4 Hz and with
that of DECIGO near 1 Hz). It will search for GW signals from various cosmological sources such
as the inspiral of supermassive BBH [2458], stellar-mass BBH [2459], the merger of massive BBHs
[2460] and stochastic GW background originating from primordial BHs [2461] and/or cosmic strings
[2462]. As a precursor mission of TianQin, TianQin-1 experimental satellite has been launched on

7For the first Gravitational Wave Transient Catalog (GWTC-1) during O1 and O2, see in [2438] and for second Gravi-
tational Wave Transient Catalog (GWTC-2) from the first part of the third observing run (O3a), see in [2439].

8The frequency range from 0.1 mHz to 10−1 Hz is unobservable by any proposed ground based detectors, due to seismic
noise.
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20 December 2019. The results from scientific research shows that TianQin-1 satellite has exceeded
all of its mission requirements.

• Deci-hertz Interferometer Gravitational wave Observatory: The DECi-hertz Interferometer
Gravitational wave Observatory (DECIGO) is a Japanese large-scale space mission [2370, 2463–
2465] which was proposed by Ref. [2466] and is planned for launch in 2027. DECIGO consists of
four clusters (with two of them at the same position) and each cluster consists of three spacecrafts
placed in an equilateral triangle with 1000 km arm lengths in heliocentric orbit [2467]. As a precursor
mission of DECIGO, B-DECIGO (smaller version of DECIGO) will be launched before 2030 with
100 km arm lengths orbiting around the earth at 2000 km altitude above the surface of the earth
[2467–2469].
DECIGO is designed to detect GWs in the frequency range from 0.1 Hz to 10 Hz which is located in
a gap between the frequency band of the LISA/Taiji and ground-based detectors such as advanced
LIGO, advanced Virgo, and KAGRA. It aims to observe the primordial gravitational waves i.e. the
beginning of the universe (10−36 − 10−34 sec right after the birth of the Universe), the formation of
giant black holes in the center of galaxies and the compact binaries, such as white dwarf binaries
[2470].

• Einstein Telescope: Einstein Telescope (ET) or Einstein Observatory is a European proposed
underground laser interferometric GW detector [2371]. It will be located underground at a depth
of about 100−300 m in order to reduce the seismic noises. ET will consist of three nested detectors
placed in an equilateral triangle, each in turn composed of two interferometers with arms 10 km long.
Using two arms in each side of the triangle will enable the determination of the polarisation of GWs.
As a third-generation observatory is targeting a sensitivity 10 times better than of current second-
generation laser-interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA
[2471]. ET will reduce thermal noise compared to the first and second generations of GW detectors
by operating the mirrors at cryogenic temperatures as low as 10𝐾 [2472]. It is planned to start
observations in 2035 with two candidate sites: north of Lula in Sardinia (Italy) and in Meuse-Rhine
Euroregion (the border area of Belgium, Germany, and the Netherlands) [2473]. ET will detect
GWs in the frequency range from ∼ 1 Hz to ∼ 10 kHz. This will allow the detection of BNS up to a
redshift of 𝑧 ∼ 2, stellar-mass BBH at 𝑧 ∼ 15, and intermediate-mass BBH (102 −104𝑀⊙) at 𝑧 ∼ 5.
The observations of these standard sirens will be useful to calibrate the cosmic distance ladder and
will improve the estimation of the Hubble constant.

Cosmology is entering an even more exciting era! The combination of the existing puzzling observa-
tional signals discussed in this study, along with the upcoming revolutionary improvement in the quality
and quantity of data creates anticipation for exciting new effects and new physics discoveries in the
coming two decades.
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Appendix A

List of Used Acronyms

In this appendix we present the list of used acronyms.

Table A.1: List of used acronyms.

Acronym Meaning Acronym Meaning

ACS Advanced Camera for Surveys LAT Large Aperture Telescope
ACT Atacama Cosmology Telescope LDE Late Dark Energy
ACTPol Atacama Cosmology Telescope Po-

larimeter
LHS Left Hand Side

AEDGE Atomic Experiments for Dark Matter
and Gravity Exploration

LIGO Laser Interferometer Gravitational-
Wave Observatory

AGB Asymptotic Giant Branch LISA Laser Interferometer Space Antenna
AGN Active Galactic Nucleus LiteBIRD Lite (Light) satellite for the studies of

B-mode polarization and Inflation from
cosmic background Radiation Detection

AIC Akaike Information Criterion LMC Large Magellanic Cloud
AO Adaptive Optics
AvERA Average Expansion Rate Approximation LOS Line-Of-Sight
BAO Baryon Accoustic Oscillations LSS Large Scale Structure
BBH Binary Black Holes LSST Large Synoptic Survey Telescope
BBN Big Bang Nucleosynthesis LwMPT Late 𝑤 −𝑀 Phantom Transition
BBO Big Bang Observer MCP Megamaser Cosmology Project
BD Brans-Dicke MCT Multi-Cycle Treasury
BH Black Hole MEDE Modified Emergent Dark Energy
BIC Bayesian Information Criterion MG Modified Gravity
BNS Binary Neutron Stars MGS Main Galaxy Sample
BOSS Baryon Oscillation Spectroscopic Sur-

vey
MM Many Multiplet

BTFR Baryonic Tully Fisher Relation MOND Modified Newtonian Dynamics
CC Cluster Counts MST Mass Sheet Transformation

Continued on next page
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Table A.1 – continued from previous page

Acronym Meaning Acronym Meaning

CCH Cosmic CHronometric MW Milky Way
CCHP Carnegie–Chicago Hubble Program NANOGrav North American Nanohertz Observatory

for Gravitational-waves
CDI Cold Dark matter Isocurvature NASA National Aeronautics and Space Admin-

istration
CDM Cold Dark Matter NEDE New Early Dark Energy
CE Cosmic Explorer NFW Navarro-Frenk-White
CFHTLenS Canada-France-Hawaii Telescope Lens-

ing
NIR Near InfraRed

CHP Carnegie Hubble Program NRAO National Radio Astronomy Observatory
CL Confidence Level NS Neutron Star
CMB Cosmic Microwave Background NVSS NRAO VLA Sky Survey
COBE Cosmic Background Explorer PEDE Phenomenologically Emergent Dark En-

ergy
COSMOGRAILCOSmological MOnitoring of GRAvIta-

tional Lenses
PL Period–Luminosity

CP Cosmological Principle PTAs Pulsar Timing Arrays
CPL Chevallier - Polarski - Linder QFT Quantum Field Theory
CSA Canadian Space Agency QNMs QuasiNormal Modes
CSP Carnegie Supernova Project QG Quantum Gravity
DE Dark Energy QSA Quasi-Static Approximation
DEBs Detached Eclipsing Binary stars QSO Quasi-Stellar Object (quasar)
DECIGO DECi-hertz Interferometer Gravita-

tional wave Observatory
RHS Right Hand Side

DES Dark Energy Survey RN-dS Reissner-Nordstrom-deSitter
DESI Dark Energy Spectroscopic Instrument ROSAT ROentgen SATellite
DHOST Degenerate Higher-Order Scalar-Tensor RSD Redshift Space Distortions
DIC Deviance Information Criterion RVM Running Vacuum Model
DKF Dolgov-Kawasaki-Faraoni SALT Spectral Adaptive Light curve Template
DM Dark Matter SATs Small Aperture Telescopes
DSR Doubly Special Relativity SBF Surface Brightness Fluctuations
EBL Extragalactic Background Light SdS Shwarzschild-deSitter
eBOSS Extended Baryon Oscillation Spectro-

scopic Survey
SDSS Sloan Digital Sky Survey

EDE Early Dark Energy SH0ES Supernovae 𝐻0 for the Equation of State
EDGES Experiment to Detect the Global Epoch

of Reionization Signature
SIC Sufficient for Instability Criterion

EDR Early Data Release SKA Square Kilometre Array
EDS Early Dark Sector SLACS Sloan Lens ACS Survey
EFTofLSS Effective Field Theory of Large-Scale

Structure
SM Standard Model

EM ElectroMagnetic SMBH SuperMassive Black Hole
EPTA European Pulsar Timing Array SnIa Supernova Type Ia
eROSITA extended ROentgen Survey with an

Imaging Telescope Array
SneII Supernovae Type II

Continued on next page
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Acronym Meaning Acronym Meaning

ESA European Space Agency SNR Signal-to-Noise Ratio
ET Einstein Telescope SO Simons Observatory
ETHOS Effective THeory Of Structure forma-

tion
SOLME Stanford Optically Levitated Micro-

sphere Experiment
FJ Faber–Jackson SPH Smooth Particle Hydrodynamics
FLRW Friedmann-Lemaß̂tre-Roberson-Walker SPT South Pole Telescope
FMOS Fiber Multi-Object Spectrograph SSC Sufficient for Stability Criterion
FP Fundamental Plane ST Scalar Tensor
GAMA Galaxy and Mass Assembly STRIDES STRong-lensing Insights into Dark En-

ergy Survey
GAUSS Gravitation And the Universe from large

Scale-Structures
TBTF Too Big To Fail

GDR Gaia Data Release TD Time-Delay
GEDE Generalised Emergent Dark Energy TDCOSMO Time-Delay COSMOgraphy
GEHR Giant Extragalactic HII Region TDE Transitional Dark Energy
GFC Generalized Field Commutation TFR Tully-Fisher Relation
GGL Galaxy-Galaxy Lensing TGSS TIFR GMRT Sky Survey
GLPV Gleyzes-Langlois-Piazza-Vernizzi TIFR Tata Institute of Fundamental Research
GMRT Giant Metrewave Radio Telescope TPCF Two-Point Correlation Functions
GP Gaussian Process TRGB Tip of the Red Giant Branch
GR General Relativity tSZ thermal Sunyaev-Zel’dovich
GRB Gamma-Ray Burst UV Ultraviolet
GUP Generalization of the Uncertainty Prin-

ciple
UVES Ultraviolet and Visual Echelle Spectro-

graph
GW Gravitational Waves VCDM Vacuum Cold Dark Matter
GWTC Gravitational Wave Transient Catalog VHE Very High Energy
HETDEX Hobby Eberly Telescope Dark Energy

Experiment
VIKING VISTA Kilo-Degree Infrared Galaxy

HMF Halo Mass Function VIMOS VIsible MultiObject Spectrograph
HSC Subaru Hyper Suprime-Cam lensing

survey
VIPERS VIMOS Public Extra-galactic Redshift

Survey
HST Hubble Space Telescope VISTA Visible and Infrared Survey Telescope

for Astronomy
HUP Heisenberg Uncertainty Principle VLT Very Large Telescope
H0LiCOW 𝐻0 Lenses in COSMOGRAIL’s Well-

spring
VM Vacuum Metamorphosis

ICM IntraCluster Medium VSF Violent Star Formation
IDE Interacting Dark Energy VVDS VIMOS-VLT Deep Survey
IGM InterGalactic Medium WFIRST Wide Field Infrared Survey Telescope
ISW Integrated Sachs–Wolfe WISE Wide-field Infrared Survey Explorer
JWST James Webb Space Telescope WKB Wentzel-Kramers-Brillouin
IndIGO Indian Initiative in Gravitational wave

Observations consortium
WL Weak Lensing

IPTA International Pulsar Timing Array WMAP Wilkinson Microwave Anisotropy Probe
JLA Joint Light-curve Analysis WtG Weighting the Giant

Continued on next page
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Acronym Meaning Acronym Meaning

KAGRA Kamioka Gravitational ZTF Zwicky Transient Facility
KG Klein Gordon 2dFGRS 2-degree Field Galaxy Redshift Survey
KiDS Kilo Degree Survey 2dFlenS 2-degree Field Lensing Survey

6dFGS 6-degree Field Galaxy Survey



Appendix B

Constraining Power of Cosmological Observ-
ables on Cosmological Parameters as a Func-
tion of Redshift

B.1 Data Used in the Analysis
In this appendix we present the data used in our analysis.

Table B.1: The compilation of RSD data used in our analysis (from Ref. [67]).

Index Dataset 𝑧 𝑓𝜎8(𝑧) Refs. Year Fiducial Cosmology
1 SDSS-LRG 0.35 0.440 ± 0.050 [2474] 2006 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.25, 0, 0.756)[340]
2 VVDS 0.77 0.490 ± 0.18 [2474] 2009 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.78)
3 2dFGRS 0.17 0.510 ± 0.060 [2474] 2009 (Ω𝑚,Ω𝐾) = (0.3, 0, 0.9)
4 2MRS 0.02 0.314 ± 0.048 [2475], [2476] 2010 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.266, 0, 0.65)
5 SnIa+IRAS 0.02 0.398 ± 0.065 [1549], [2476] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.3, 0, 0.814)
6 SDSS-LRG-200 0.25 0.3512 ± 0.0583 [1315] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.276, 0, 0.8)
7 SDSS-LRG-200 0.37 0.4602 ± 0.0378 [1315] 2011
8 SDSS-LRG-60 0.25 0.3665 ± 0.0601 [1315] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.276, 0, 0.8)
9 SDSS-LRG-60 0.37 0.4031 ± 0.0586 [1315] 2011
10 WiggleZ 0.44 0.413 ± 0.080 [351] 2012 (Ω𝑚, ℎ, 𝜎8) = (0.27, 0.71, 0.8)
11 WiggleZ 0.60 0.390 ± 0.063 [351] 2012
12 WiggleZ 0.73 0.437 ± 0.072 [351] 2012
13 6dFGS 0.067 0.423 ± 0.055 [355] 2012 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.27, 0, 0.76)
14 SDSS-BOSS 0.30 0.407 ± 0.055 [1317] 2012 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.804)
15 SDSS-BOSS 0.40 0.419 ± 0.041 [1317] 2012
16 SDSS-BOSS 0.50 0.427 ± 0.043 [1317] 2012
17 SDSS-BOSS 0.60 0.433 ± 0.067 [1317] 2012
18 Vipers 0.80 0.470 ± 0.080 [1327] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.82)
19 SDSS-DR7-LRG 0.35 0.429 ± 0.089 [2477] 2013 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.25, 0, 0.809)[45]
20 GAMA 0.18 0.360 ± 0.090 [2478] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.27, 0, 0.8)
21 GAMA 0.38 0.440 ± 0.060 [2478] 2013
22 BOSS-LOWZ 0.32 0.384 ± 0.095 [2479] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.274, 0, 0.8)
23 SDSS DR10+DR11 0.32 0.48 ± 0.10 [2479] 2013 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.274, 0, 0.8)[2480]
24 SDSS DR10+DR11 0.57 0.417 ± 0.045 [2479] 2013
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25 SDSS-MGS 0.15 0.490 ± 0.145 [1319] 2015 (Ω𝑚, ℎ, 𝜎8) = (0.31, 0.67, 0.83)
26 SDSS-veloc 0.10 0.370 ± 0.130 [2481] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.3, 0, 0.89)[2482]
27 FastSound 1.40 0.482 ± 0.116 [1326] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.27, 0, 0.82)[2483]
28 SDSS-CMASS 0.59 0.488 ± 0.060 [2484] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.307115, 0.6777, 0.8288)
29 BOSS DR12 0.38 0.497 ± 0.045 [48] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8)
30 BOSS DR12 0.51 0.458 ± 0.038 [48] 2016
31 BOSS DR12 0.61 0.436 ± 0.034 [48] 2016
32 BOSS DR12 0.38 0.477 ± 0.051 [2485] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.31, 0.676, 0.8)
33 BOSS DR12 0.51 0.453 ± 0.050 [2485] 2016
34 BOSS DR12 0.61 0.410 ± 0.044 [2485] 2016
35 Vipers v7 0.76 0.440 ± 0.040 [2486] 2016 (Ω𝑚, 𝜎8) = (0.308, 0.8149)
36 Vipers v7 1.05 0.280 ± 0.080 [2486] 2016
37 BOSS LOWZ 0.32 0.427 ± 0.056 [1325] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8475)
38 BOSS CMASS 0.57 0.426 ± 0.029 [1325] 2016
39 Vipers 0.727 0.296 ± 0.0765 [2487] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.7)
40 6dFGS+SnIa 0.02 0.428 ± 0.0465 [2488] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.3, 0.683, 0.8)
41 Vipers 0.6 0.48 ± 0.12 [1989] 2016 (Ω𝑚,Ω𝑏, 𝑛𝑠, 𝜎8)= (0.3, 0.045, 0.96, 0.831)[16]
42 Vipers 0.86 0.48 ± 0.10 [1989] 2016
43 Vipers PDR-2 0.60 0.550 ± 0.120 [1328] 2016 (Ω𝑚,Ω𝑏, 𝜎8) = (0.3, 0.045, 0.823)
44 Vipers PDR-2 0.86 0.400 ± 0.110 [1328] 2016
45 SDSS DR13 0.1 0.48 ± 0.16 [2489] 2016 (Ω𝑚, 𝜎8)= (0.25, 0.89)[2482]
46 2MTF 0.001 0.505 ± 0.085 [2490] 2017 (Ω𝑚, 𝜎8) = (0.3121, 0.815)
47 Vipers PDR-2 0.85 0.45 ± 0.11 [2491] 2017 (Ω𝑏,Ω𝑚, ℎ) = (0.045, 0.30, 0.8)
48 BOSS DR12 0.31 0.469 ± 0.098 [2492] 2017 (Ω𝑚, ℎ, 𝜎8) = (0.307, 0.6777, 0.8288)
49 BOSS DR12 0.36 0.474 ± 0.097 [2492] 2017
50 BOSS DR12 0.40 0.473 ± 0.086 [2492] 2017
51 BOSS DR12 0.44 0.481 ± 0.076 [2492] 2017
52 BOSS DR12 0.48 0.482 ± 0.067 [2492] 2017
53 BOSS DR12 0.52 0.488 ± 0.065 [2492] 2017
54 BOSS DR12 0.56 0.482 ± 0.067 [2492] 2017
55 BOSS DR12 0.59 0.481 ± 0.066 [2492] 2017
56 BOSS DR12 0.64 0.486 ± 0.070 [2492] 2017
57 SDSS DR7 0.1 0.376 ± 0.038 [2493] 2017 (Ω𝑚,Ω𝑏, 𝜎8) = (0.282, 0.046, 0.817)
58 SDSS-IV 1.52 0.420 ± 0.076 [2494] 2018 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.26479, 0.02258, 0.8)
59 SDSS-IV 1.52 0.396 ± 0.079 [2495] 2018 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.31, 0.022, 0.8225)
60 SDSS-IV 0.978 0.379 ± 0.176 [2496] 2018 (Ω𝑚, 𝜎8) = (0.31, 0.8)
61 SDSS-IV 1.23 0.385 ± 0.099 [2496] 2018
62 SDSS-IV 1.526 0.342 ± 0.070 [2496] 2018
63 SDSS-IV 1.944 0.364 ± 0.106 [2496] 2018

Table B.2: A compilation of BAO data that have been published from 2006 until 2018 in chronological
order

Index 𝑧𝑒𝑓𝑓 𝐷𝐴 ×
(︀
𝑟𝑓𝑖𝑑.

𝑠 /𝑟𝑠

)︀
𝐻(𝑧) ×

(︀
𝑟𝑠/𝑟

𝑓𝑖𝑑.
𝑠

)︀
𝐷𝑉 ×

(︀
𝑟𝑓𝑖𝑑.

𝑠 /𝑟𝑠

)︀
Year Ref.

(Mpc) (km/sec Mpc) (Mpc)
1 0.275 - - 1061.87 ± 29 2009 [2497]
2 0.106 - - 439.3 ± 19.6 2011 [354]
3 0.35 - - 1356 ± 25 2012 [2498]
4 0.44 - - 1716 ± 83 2014 [1829]
5 0.60 - - 2221 ± 100 2014 [1829]
6 0.73 - - 2516 ± 86 2014 [1829]
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7 0.15 - - 664 ± 25 2015 [363]
8 0.38 1100 ± 22 81.5 ± 2.6 1477 ± 16 2016 [48]
9 0.51 1309.3 ± 24.5 90.5 ± 2.7 1877 ± 19 2016 [48]
10 0.61 1418 ± 27.3 97.3 ± 2.9 2140 ± 22 2016 [48]
11 0.32 980.3 ± 15.9 78.4 ± 2.3 1270 ± 14 2016 [48]
12 0.57 1387.9 ± 22.3 96.6 ± 2.4 2033 ± 21 2016 [48]
13 0.31 931.42 ± 48 78.3 ± 4.7 1208.36 ± 33.81 2016 [2499]
14 0.36 1047.04 ± 44 77.2 ± 5.7 1388.36 ± 55 2016 [2499]
15 0.40 1131.34 ± 44 79.72 ± 4.9 1560.06 ± 40 2016 [2499]
16 0.44 1188.78 ± 32 80.29 ± 3.4 1679.88 ± 35 2016 [2499]
17 0.48 1271.43 ± 25.8 84.69 ± 3.4 1820.44 ± 39 2016 [2499]
18 0.52 1336.53 ± 39 91.97 ± 7.5 1913.54 ± 47 2016 [2499]
19 0.56 1385.47 ± 30.5 97.3 ± 7.9 2001.91 ± 51 2016 [2499]
20 0.59 1423.43 ± 44 97.07 ± 5.8 2100.43 ± 48 2016 [2499]
21 0.64 1448.81 ± 69 97.70 ± 4.8 2207.51 ± 55 2016 [2499]
22 2.33 1669.7 ± 96.1 224 ± 8 - 2017 [358]
23 1.52 - - 3843 ± 147 2017 [2500]
24 0.81 1586.7 ± 63.5 - - 2017 [916]
25 0.72 - - 2353 ± 63 2017 [2501]
26 1.52 1850 ± 110 162 ± 12 3985.2 ± 162.4 2018 [2494]
27 0.978 1586.18 ± 284.93 113.72 ± 14.63 2933.59 ± 327.71 2018 [2496]
28 1.230 1769.08 ± 159.67 131.44 ± 12.42 3522.04 ± 192.74 2018 [2496]
29 1.526 1768.77 ± 96.59 148.11 ± 12.75 3954.31 ± 141.71 2018 [2496]
30 1.944 1807.98 ± 146.46 172.63 ± 14.79 4575.17 ± 241.61 2018 [2496]

Table B.3: The JLA binned data used in our analysis (from Ref. [68]).

Index 𝑧 𝜇 𝜎𝜇

1 0.01 32.9539 0.145886
2 0.012 33.879 0.167796
3 0.014 33.8421 0.0784989
4 0.016 34.1186 0.0723539
5 0.019 34.5934 0.0854606
6 0.023 34.939 0.0561251
7 0.026 35.2521 0.0610683
8 0.031 35.7485 0.0567639
9 0.037 36.0698 0.0567956
10 0.043 36.4346 0.0751431
11 0.051 36.6511 0.0929013
12 0.06 37.158 0.0620892
13 0.07 37.4302 0.0658793
14 0.082 37.9566 0.0546505
15 0.097 38.2533 0.0599337
16 0.114 38.6129 0.0374341
17 0.134 39.0679 0.0386141
18 0.158 39.3414 0.0346886
19 0.186 39.7921 0.0321403
20 0.218 40.1565 0.0329616
21 0.257 40.565 0.0317198
22 0.302 40.9053 0.0392622
23 0.355 41.4214 0.0335758

233



24 0.418 41.7909 0.0415207
25 0.491 42.2315 0.0393713
26 0.578 42.617 0.0359453
27 0.679 43.0527 0.0627778
28 0.799 43.5042 0.0545914
29 0.94 43.9726 0.0668276
30 1.105 44.5141 0.154604
31 1.3 44.8219 0.138452

Table B.4: The 𝐻(𝑧) data compilation used in our analysis (from Ref. [69]).

Index 𝑧 𝐻(𝑧) (km/sec Mpc) 𝜎𝐻 Reference
1 0.070 69 19.6 [2502]
2 0.090 69 12 [2503]
3 0.120 68.6 26.2 [2502]
4 0.170 83 8 [2503]
5 0.179 75 4 [484]
6 0.199 75 5 [484]
7 0.200 72.9 29.6 [2502]
8 0.240 79.69 6.65 [2504]
9 0.270 77 14 [2503]
10 0.280 88.8 36.6 [2502]
11 0.300 81.7 6.22 [2505]
12 0.350 82.7 8.4 [2477]
13 0.352 83 14 [484]
14 0.3802 83 13.5 [485]
15 0.400 95 17 [2503]
16 0.4004 77 10.02 [485]
17 0.4247 87.1 11.2 [485]
18 0.430 86.45 3.68 [2504]
19 0.440 82.6 7.8 [351]
20 0.4497 92.8 12.9 [485]
21 0.4783 80.9 9 [485]
22 0.480 97 62 [2506]
23 0.570 92.900 7.855 [2507]
24 0.593 104 13 [484]
25 0.6 87.9 6.1 [351]
26 0.68 92 8 [484]
27 0.73 97.3 7.0 [351]
28 0.781 105 12 [484]
29 0.875 125 17 [484]
30 0.88 90 40 [2506]
31 0.9 117 23 [2503]
32 1.037 154 20 [484]
33 1.300 168 17 [2503]
34 1.363 160 22.6 [2508]
35 1.43 177 18 [2503]
36 1.53 140 14 [2503]
37 1.75 202 40 [2503]
38 1.965 186.5 50.4 [2508]
39 2.300 224 8 [2509]
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40 2.34 222 7 [356]
41 2.36 226 8 [359]



Appendix C

Observational Constraints on the GUP Pa-
rameter with Maximum Length Quantum
Mechanics

C.1 From generalized commutator to generalized uncertainty
We assume the commutation relation of the form

[𝑥, 𝑝] = 𝑖ℏ
1

1 − 𝛼𝑥2 ≃ 𝑖ℏ(1 + 𝛼𝑥2) (C.1)

where the last approximate equality is applicable under the condition 𝛼𝑥2 ≪ 1. The commutation relation
(C.1) may be represented by position and momentum operators of the form

𝑝= 1
1 − 𝛼𝑥2

0
𝑝0 = (1 + 𝛼𝑥2

0 + 𝛼2𝑥4
0 + ...)𝑝0 (C.2)

𝑥= 𝑥0 (C.3)

where 𝑥0 and 𝑝0 are the usual position and momentum operators satisfying the Heisenberg commutation
relation [𝑥0, 𝑝0] = 𝑖ℏ.

The proof that the commutation relation (C.1) may be represented by position and momentum op-
erators of the form (C.2) and (C.3) is

[𝑥, 𝑝] = [𝑥0, (1+𝛼𝑥2
0+𝛼2𝑥4

0+...)𝑝0] = [𝑥0, 𝑝0]+𝛼𝑥2
0[𝑥0, 𝑝0]+𝛼2𝑥4

0[𝑥0, 𝑝0]+... = [𝑥0, 𝑝0] 1
1 − 𝛼𝑥2

0
= 𝑖ℏ

1
1 − 𝛼𝑥2

(C.4)
Also, the proof that the commutation relation (C.1) leads to a GUP of the form (6.4) is

Δ𝑥Δ𝑝 ≥ ℏ
2 <

1
1−𝛼𝑥2 >= ℏ

2 (1 + 𝛼 < 𝑥2 > +𝛼2 < 𝑥4 > +...) ≥ ℏ
2 (1 + 𝛼 < 𝑥2 > +𝛼2 < 𝑥2 >2 +...) =

ℏ
2 (1 + 𝛼(Δ𝑥2+ < 𝑥 >2) + 𝛼2(Δ𝑥2+ < 𝑥 >2)2 + ...) = ℏ

2
1

1−𝛼(Δ𝑥2+<𝑥>2) ≥ ℏ
2

1
1−𝛼Δ𝑥2 ⇒

Δ𝑥Δ𝑝 ≥ ℏ
2

1
1−𝛼Δ𝑥2

(C.5)



Appendix D

Tensions and Constraints on Modified Grav-
ity Parameters from the 𝐸𝐺 statistic and RSD
data and Implications for Weakening Gravity

D.1 Analysis of subsets of datapoints with less correlation
In this Appendix we present the results of the statistical analysis of the 𝑓𝜎8(𝑧) and 𝐸𝐺(𝑧) data compi-
lations of datapoints with less correlation. These subsets of the data are indicated with bold font in the
index of the Tables D.3 and D.4. Using these subsets of the data and repeating our analysis we obtain
the best fit parameter values and the tension levels in both the 2D projections and in the full 3D-4D
parameter spaces as shown in Tables D.1 and D.2 respectively.

Table D.1: Planck18/ΛCDM based on TT,TE,EE+lowE+ lensing likelihoods best fit [14] and the best-fit values
from data compilation of datapoints with less correlation.

Param. Planck18/ΛCDM Dataset Dataset Dataset Datasets Datasets
𝑓𝜎8(𝑧). 𝑓𝜎8(𝑧) 𝐸𝐺(𝑧) 𝑓𝜎8(𝑧) + 𝐸𝐺(𝑧) 𝑓𝜎8(𝑧) + 𝐸𝐺(𝑧)

corr. no corr. corr. no corr.

Ω0𝑚 0.3153 ± 0.0073 0.289 ± 0.032 0.283 ± 0.028 0.285 ± 0.044 0.288 ± 0.026 0.282 ± 0.023
𝜎8 0.8111 ± 0.0060 0.807 ± 0.024 0.819 ± 0.025 0.795 ± 0.024 0.810 ± 0.024
𝑔𝑎 0 −0.767 ± 0.299 −0.826 ± 0.293 −0.621 ± 0.914 −0.627 ± 0.291 −0.723 ± 0.281
𝑔𝑏 0 −3.510 ± 0.605 −3.562 ± 0.601 −3.563 ± 0.601

These results indicate that even though the tension level for the combined (𝐸𝐺+𝑓𝜎8 ) reduces somewhat
(from 6𝜎 to about 5.5𝜎) it remains high enough to cause concerns for the self consistency of the
Planck/ΛCDM model and indications for the presence of weakening gravity.
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Table D.2: Sigma differences of the best fit contours from Planck18/ΛCDM. The 𝐸𝐺(𝑧) and 𝑓𝜎8(𝑧) data com-
pilations of datapoints with less correlation from Tables D.4 and D.3 was used.

Space 2D Projected Space
Dataset (Ω0𝑚, 𝜎8, 𝑔𝑎)(Ω0𝑚, 𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝜎8, 𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝜎8)(Ω0𝑚, 𝑔𝑎)(𝜎8, 𝑔𝑎)(𝑔𝑎, 𝑔𝑏)(Ω0𝑚, 𝑔𝑏)(𝜎8, 𝑔𝑏)

𝑓𝜎8(𝑧) corr. 2.39𝜎 0.22𝜎 2.19𝜎 1.79𝜎
𝑓𝜎8(𝑧) no corr. 2.55𝜎 0.19𝜎 2.19𝜎 1.48𝜎

𝐸𝐺(𝑧) 5.06 0.01𝜎 4.04𝜎 6.28𝜎
𝐸𝐺(𝑧)+𝑓𝜎8(𝑧) corr. 5.69 0.36𝜎 1.35𝜎 1.59𝜎 4.31𝜎 6.12𝜎 5.12𝜎
𝐸𝐺(𝑧)+𝑓𝜎8(𝑧)no corr. 5.78 0.31𝜎 2.21𝜎 1.33𝜎 4.54𝜎 6.38𝜎 5.29𝜎

D.2 Data used in the analysis
In this appendix we present the data used in our analysis.

Table D.3: The 𝑓𝜎8 updated data compilation of Ref. [67] used in our analysis. The subset of the
datapoints with less correlation is indicated with bold font in the index.

Index Dataset 𝑧 𝑓𝜎8(𝑧) Refs. Year Fiducial Cosmology
1 SDSS-LRG 0.35 0.440 ± 0.050 [2474] 2006 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.25, 0, 0.756)[340]
2 VVDS 0.77 0.490 ± 0.18 [2474] 2009 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.78)
3 2dFGRS 0.17 0.510 ± 0.060 [2474] 2009 (Ω𝑚,Ω𝐾) = (0.3, 0, 0.9)
4 2MRS 0.02 0.314 ± 0.048 [2475], [2476] 2010 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.266, 0, 0.65)
5 SnIa+IRAS 0.02 0.398 ± 0.065 [1549], [2476] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.3, 0, 0.814)
6 SDSS-LRG-200 0.25 0.3512 ± 0.0583 [1315] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.276, 0, 0.8)
7 SDSS-LRG-200 0.37 0.4602 ± 0.0378 [1315] 2011
8 SDSS-LRG-60 0.25 0.3665 ± 0.0601 [1315] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.276, 0, 0.8)
9 SDSS-LRG-60 0.37 0.4031 ± 0.0586 [1315] 2011

10 WiggleZ 0.44 0.413 ± 0.080 [351] 2012 (Ω𝑚, ℎ, 𝜎8) = (0.27, 0.71, 0.8)
11 WiggleZ 0.60 0.390 ± 0.063 [351] 2012
12 WiggleZ 0.73 0.437 ± 0.072 [351] 2012
13 6dFGS 0.067 0.423 ± 0.055 [355] 2012 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.27, 0, 0.76)
14 SDSS-BOSS 0.30 0.407 ± 0.055 [1317] 2012 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.804)
15 SDSS-BOSS 0.40 0.419 ± 0.041 [1317] 2012
16 SDSS-BOSS 0.50 0.427 ± 0.043 [1317] 2012
17 SDSS-BOSS 0.60 0.433 ± 0.067 [1317] 2012
18 VIPERS 0.80 0.470 ± 0.080 [1327] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.25, 0, 0.82)
19 SDSS-DR7-LRG 0.35 0.429 ± 0.089 [2477] 2013 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.25, 0, 0.809)[? ]
20 GAMA 0.18 0.360 ± 0.090 [2478] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.27, 0, 0.8)
21 GAMA 0.38 0.440 ± 0.060 [2478] 2013
22 BOSS-LOWZ 0.32 0.384 ± 0.095 [2479] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.274, 0, 0.8)
23 SDSS DR10+DR11 0.32 0.48 ± 0.10 [2479] 2013 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.274, 0, 0.8)[2480]
24 SDSS DR10+DR11 0.57 0.417 ± 0.045 [2479] 2013
25 SDSS-MGS 0.15 0.490 ± 0.145 [1319] 2015 (Ω𝑚, ℎ, 𝜎8) = (0.31, 0.67, 0.83)
26 SDSS-veloc 0.10 0.370 ± 0.130 [2481] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.3, 0, 0.89)[2482]
27 FastSound 1.40 0.482 ± 0.116 [1326] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.27, 0, 0.82)[2483]
28 SDSS-CMASS 0.59 0.488 ± 0.060 [2484] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.307115, 0.6777, 0.8288)
29 BOSS DR12 0.38 0.497 ± 0.045 [48] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8)
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30 BOSS DR12 0.51 0.458 ± 0.038 [48] 2016
31 BOSS DR12 0.61 0.436 ± 0.034 [48] 2016
32 BOSS DR12 0.38 0.477 ± 0.051 [2485] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.31, 0.676, 0.8)
33 BOSS DR12 0.51 0.453 ± 0.050 [2485] 2016
34 BOSS DR12 0.61 0.410 ± 0.044 [2485] 2016
35 VIPERS v7 0.76 0.440 ± 0.040 [2486] 2016 (Ω𝑚, 𝜎8) = (0.308, 0.8149)
36 VIPERS v7 1.05 0.280 ± 0.080 [2486] 2016
37 BOSS LOWZ 0.32 0.427 ± 0.056 [1325] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8475)
38 BOSS CMASS 0.57 0.426 ± 0.029 [1325] 2016
39 VIPERS 0.727 0.296 ± 0.0765 [2487] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.7)
40 6dFGS+SnIa 0.02 0.428 ± 0.0465 [2488] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.3, 0.683, 0.8)
41 VIPERS PDR2 0.60 0.550 ± 0.120 [1328] 2016 (Ω𝑚,Ω𝑏, 𝜎8) = (0.3, 0.045, 0.823)
42 VIPERS PDR2 0.86 0.400 ± 0.110 [1328] 2016
43 SDSS DR13 0.1 0.48 ± 0.16 [2489] 2016 (Ω𝑚, 𝜎8)= (0.25, 0.89)[2482]
44 2MTF 0.001 0.505 ± 0.085 [2490] 2017 (Ω𝑚, 𝜎8) = (0.3121, 0.815)
45 VIPERS PDR2 0.85 0.45 ± 0.11 [2491] 2017 (Ω𝑏,Ω𝑚, ℎ) = (0.045, 0.30, 0.8)
46 BOSS DR12 0.31 0.384 ± 0.083 [2492] 2017 (Ω𝑚, ℎ, 𝜎8) = (0.307, 0.6777, 0.8288)
47 BOSS DR12 0.36 0.409 ± 0.098 [2492] 2017
48 BOSS DR12 0.40 0.461 ± 0.086 [2492] 2017
49 BOSS DR12 0.44 0.426 ± 0.062 [2492] 2017
50 BOSS DR12 0.48 0.458 ± 0.063 [2492] 2017
51 BOSS DR12 0.52 0.483 ± 0.075 [2492] 2017
52 BOSS DR12 0.56 0.472 ± 0.063 [2492] 2017
53 BOSS DR12 0.59 0.452 ± 0.061 [2492] 2017
54 BOSS DR12 0.64 0.379 ± 0.054 [2492] 2017
55 SDSS DR7 0.1 0.376 ± 0.038 [2493] 2017 (Ω𝑚,Ω𝑏, 𝜎8) = (0.282, 0.046, 0.817)
56 SDSS-IV 1.52 0.420 ± 0.076 [2494] 2018 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.26479, 0.02258, 0.8)
57 SDSS-IV 1.52 0.396 ± 0.079 [2495] 2018 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.31, 0.022, 0.8225)
58 SDSS-IV 0.978 0.379 ± 0.176 [2496] 2018 (Ω𝑚, 𝜎8) = (0.31, 0.8)
59 SDSS-IV 1.23 0.385 ± 0.099 [2496] 2018
60 SDSS-IV 1.526 0.342 ± 0.070 [2496] 2018
61 SDSS-IV 1.944 0.364 ± 0.106 [2496] 2018
62 VIPERS PDR2 0.60 0.49 ± 0.12 [1329] 2018 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.045, 0.31, 0.7, 0.8)
63 VIPERS PDR2 0.86 0.46 ± 0.09 [1329] 2018
64 BOSS DR12 voids 0.57 0.501 ± 0.051 [2510] 2019 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.0482, 0.307, 0.6777, 0.8228)
65 2MTF 6dFGSv 0.03 0.404 ± 0.0815 [2511] 2019 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.0491, 0.3121, 0.6571, 0.815)
66 SDSS-IV 0.72 0.454 ± 0.139 [2512] 2019 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.31, 0.022, 0.8)

Table D.4: The 𝐸𝐺(𝑧) data compilation used in our analysis. The subset of the datapoints with less
correlation is indicated with bold font in the index.

Index Dataset 𝑧 𝐸𝐺(𝑧) 𝜎𝐸𝐺
Scale [Mpc/h] Reference

1 KiDS GAMA 0.267 0.43 0.13 5 < 𝑅 < 40 [2198]
2 SDSS BOSS LOWZ 0.27 0.40 0.05 25 < 𝑅 < 150 [2513]
3 CMB lens BOSS LOWZ 0.27 0.46 0.085 25 < 𝑅 < 150 [2513]
4 KiDS 2dFLenS BOSS LOWZ 2dFLOZ 0.305 0.27 0.08 5 < 𝑅 < 60 [2198]
5 RCSLenS CFHTLenS WiggleZ BOSS WGZLoZ LOWZ 0.32 0.40 0.09 𝑅 > 3 [2514]
6 RCSLenS CFHTLenS WiggleZ BOSS WGZLoZ LOWZ 0.32 0.48 0.10 𝑅 > 10 [2514]
7 SDSS 0.32 0.39 0.06 10 < 𝑅𝑝 < 50 [1990]
8 KiDS 2dFLenS BOSS CMASS 2dFHIZ 0.554 0.26 0.07 5 < 𝑅 < 60 [2198]
9 RCSLenS CFHTLenS WiggleZ BOSS WGZHiZ CMASS 0.57 0.31 0.06 𝑅 > 3 [2514]
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10 RCSLenS CFHTLenS WiggleZ BOSS WGZHiZ CMASS 0.57 0.30 0.07 𝑅 > 10 [2514]
11 SDSS-III BOSS CMB lens CMASS 0.57 0.24 0.06 𝑅 > 150 [1992]
12 CFHTLenS SDSS-III BOSS CMASS 0.57 0.42 0.056 5 < 𝑅 < 26 [2515]
13 CMB lens BOSS CMASS 0.57 0.39 0.05 25 < 𝑅 < 150 [2513]
14 CFHTLenS BOSS CMASS 0.57 0.43 0.10 10 < 𝑅 < 60 [2516]
15 CFHTLenS VIPERS 0.60 0.16 0.09 3 < 𝑅 < 20 [1989]
16 CFHTLenS VIPERS 0.86 0.09 0.07 3 < 𝑅 < 20 [1989]

Table D.5: The 𝐸𝐺(𝑅) data compilation in the range 0.15 < 𝑧 < 0.43 used in our analysis.

Index 𝑅[Mpc/h] 𝐸𝐺(𝑅) 𝜎𝐸𝐺
z Reference

1 3.61 0.37 0.10 0.27 [2513]
2 4.91 0.42 0.08 0.27 [2513]
3 6.60 0.50 0.07 0.27 [2513]
4 9.07 0.39 0.07 0.27 [2513]
5 12.20 0.37 0.06 0.27 [2513]
6 16.58 0.45 0.06 0.27 [2513]
7 22.54 0.32 0.04 0.27 [2513]
8 30.30 0.39 0.05 0.27 [2513]
9 41.19 0.44 0.06 0.27 [2513]
10 55.99 0.45 0.08 0.27 [2513]
11 76.98 0.34 0.10 0.27 [2513]
12 103.47 0.28 0.15 0.27 [2513]
13 2.45 0.28 0.23 0.32 [1990]
14 3.41 0.49 0.16 0.32 [1990]
15 4.64 0.50 0.12 0.32 [1990]
16 6.62 0.32 0.09 0.32 [1990]
17 9.85 0.34 0.07 0.32 [1990]
18 14.83 0.45 0.08 0.32 [1990]
19 22.10 0.43 0.09 0.32 [1990]
20 45.87 0.32 0.10 0.32 [1990]
21 1.76 0.74 0.21 0.15-0.43 [2514]
22 2.23 0.71 0.15 0.15-0.43 [2514]
23 2.85 0.35 0.14 0.15-0.43 [2514]
24 3.56 0.30 0.11 0.15-0.43 [2514]
25 4.45 0.35 0.11 0.15-0.43 [2514]
26 5.65 0.28 0.10 0.15-0.43 [2514]
27 7.059 0.43 0.11 0.15-0.43 [2514]
28 8.94 0.45 0.11 0.15-0.43 [2514]
29 11.33 0.47 0.12 0.15-0.43 [2514]
30 14.34 0.55 0.12 0.15-0.43 [2514]
31 17.98 0.40 0.12 0.15-0.43 [2514]
32 22.21 0.37 0.14 0.15-0.43 [2514]
33 28.88 0.39 0.18 0.15-0.43 [2514]
34 36.15 0.35 0.19 0.15-0.43 [2514]
35 45.26 0.30 0.30 0.15-0.43 [2514]
36 5.01 0.25 0.16 0.15-0.43 [2198]
37 5.37 0.39 0.16 0.15-0.43 [2198]
38 5.58 0.094 0.18 0.15-0.43 [2198]
39 8.15 0.30 0.14 0.15-0.43 [2198]
40 8.57 0.41 0.14 0.15-0.43 [2198]
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41 9.02 0.41 0.24 0.15-0.43 [2198]
42 13.23 0.49 0.16 0.15-0.43 [2198]
43 13.95 0.43 0.16 0.15-0.43 [2198]
44 14.76 0.15 0.17 0.15-0.43 [2198]
45 21.08 0.51 0.23 0.15-0.43 [2198]
46 22.75 0.33 0.23 0.15-0.43 [2198]
47 23.96 0.32 0.32 0.15-0.43 [2198]
48 35.52 0.33 0.29 0.15-0.43 [2198]
49 36.98 0.40 0.33 0.15-0.43 [2198]
50 39.00 0.32 0.38 0.15-0.43 [2198]
51 56.60 0.37 0.80 0.15-0.43 [2198]

Table D.6: The 𝐸𝐺(𝑅) data compilation in the range 0.43 < 𝑧 < 1.2 used in our analysis.

Index 𝑅[Mpc/h] 𝐸𝐺(𝑅) 𝜎𝐸𝐺
z Reference

1 5.13 0.23 0.14 0.43-0.7 [2198]
2 5.69 0.19 0.19 0.43-0.7 [2198]
3 8.28 0.32 0.12 0.43-0.7 [2198]
4 9.19 0.27 0.17 0.43-0.7 [2198]
5 13.69 0.21 0.12 0.43-0.7 [2198]
6 14.98 0.46 0.25 0.43-0.7 [2198]
7 24.43 0.95 0.47 0.43-0.7 [2198]
8 22.02 0.22 0.13 0.43-0.7 [2198]
9 36.28 0.48 0.18 0.43-0.7 [2198]
10 39.84 0.84 0.57 0.43-0.7 [2198]
11 59.78 0.54 0.45 0.43-0.7 [2198]
12 1.74 0.34 0.29 0.43-0.7 [2514]
13 2.25 0.31 0.17 0.43-0.7 [2514]
14 2.74 0.57 0.14 0.43-0.7 [2514]
15 3.46 0.43 0.11 0.43-0.7 [2514]
16 4.45 0.35 0.10 0.43-0.7 [2514]
17 5.56 0.30 0.09 0.43-0.7 [2514]
18 6.92 0.24 0.09 0.43-0.7 [2514]
19 8.84 0.28 0.08 0.43-0.7 [2514]
20 11.15 0.26 0.08 0.43-0.7 [2514]
21 13.90 0.29 0.07 0.43-0.7 [2514]
22 17.74 0.24 0.08 0.43-0.7 [2514]
23 21.96 0.25 0.09 0.43-0.7 [2514]
24 27.80 0.32 0.10 0.43-0.7 [2514]
25 34.81 0.41 0.14 0.43-0.7 [2514]
26 44.26 0.62 0.19 0.43-0.7 [2514]
27 2.17 0.38 0.15 0.57 [2515]
28 3.30 0.26 0.11 0.57 [2515]
29 4.99 0.46 0.09 0.57 [2515]
30 7.56 0.42 0.08 0.57 [2515]
31 11.38 0.35 0.08 0.57 [2515]
32 17.26 0.43 0.09 0.57 [2515]
33 25.99 0.43 0.11 0.57 [2515]
34 39.60 0.33 0.15 0.57 [2515]
35 2.56 0.48 0.08 0.57 [2513]
36 3.40 0.36 0.09 0.57 [2513]
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37 4.60 0.32 0.08 0.57 [2513]
38 6.12 0.40 0.08 0.57 [2513]
39 8.20 0.33 0.07 0.57 [2513]
40 11.00 0.43 0.09 0.57 [2513]
41 14.87 0.32 0.07 0.57 [2513]
42 19.75 0.34 0.12 0.57 [2513]
43 26.21 0.31 0.15 0.57 [2513]
44 35.44 0.22 0.18 0.57 [2513]
45 2.22 0.27 0.17 0.57 [2516]
46 3.56 0.13 0.23 0.57 [2516]
47 5.64 0.16 0.19 0.57 [2516]
48 8.86 0.49 0.28 0.57 [2516]
49 14.13 0.64 0.22 0.57 [2516]
50 22.54 0.29 0.14 0.57 [2516]
51 35.37 0.40 0.21 0.57 [2516]
52 2.64 0.31 0.14 0.5-0.7 [1989]
53 4.17 0.20 0.15 0.5-0.7 [1989]
54 6.63 0.22 0.17 0.5-0.7 [1989]
55 10.44 0.01 0.20 0.5-0.7 [1989]
56 16.37 0.09 0.26 0.5-0.7 [1989]
57 2.61 0.34 0.12 0.7-1.2 [1989]
58 4.15 0.06 0.12 0.7-1.2 [1989]
59 6.60 0.11 0.13 0.7-1.2 [1989]
60 10.42 0.01 0.16 0.7-1.2 [1989]
61 16.56 0.10 0.21 0.7-1.2 [1989]



Appendix E

Scalar Tachyonic Instabilities in Gravita-
tional Backgrounds

E.1 Analytical form of SSC curves
The Sufficient for Stability Criterion (SSC) is that the minimum of the Schrodinger potential should be
larger than 0 (see Eq. (8.61)). Thus by demanding that the minimum of the Schrodinger potential

𝑉0𝑚𝑖𝑛(𝑟𝑚𝑖𝑛) = 0 (E.1)

we can obtain the analytical form of SSC curves for various values of 𝑄 (see Fig. 8.4). The SSC curve
for 𝑄 = 0 as function of 𝜉 takes the following analytical form

𝑚2(𝜉)𝑀2 = 2 (𝑔(𝜉) − 1)
9𝑔(𝜉)3 (E.2)

where

𝑔(𝜉) = 1(︁√︀
𝜉4 − 𝜉3 − 𝜉2

)︁ 1
3

+

(︁√︀
𝜉4 − 𝜉3 − 𝜉2

)︁ 1
3

𝜉
(E.3)



Appendix F

Constraints on Horndeski Modified Gravity -
Weak Gravity on a ΛCDM Background

F.1 Definitions
The background quantities ℰ𝐷𝐸 and 𝒫𝐷𝐸 are defined as [2179]

ℰ𝐷𝐸 ≡ −𝐾 + 2𝑋 (𝐾𝑋 −𝐺3𝜑) + 6𝜑̇𝐻 (𝑋𝐺3𝑋 −𝐺4𝜑 − 2𝑋𝐺4𝜑𝑋) +
+ 12𝐻2𝑋 (𝐺4𝑋 + 2𝑋𝐺4𝑋𝑋 −𝐺5𝜑 −𝑋𝐺5𝜑𝑋) + 4𝜑̇𝐻3𝑋 (𝐺5𝑋 +𝑋𝐺5𝑋𝑋)

(F.1)

𝒫𝐷𝐸 ≡𝐾 − 2𝑋 (𝐺3𝜑 − 2𝐺4𝜑𝜑) + 4𝜑̇𝐻 (𝐺4𝜑 − 2𝑋𝐺4𝜑𝑋 +𝑋𝐺5𝜑𝜑) −

−𝑀2
*𝛼𝐵𝐻

𝜑

𝜑̇
− 4𝐻2𝑋2𝐺5𝜑𝑋 + 2𝜑̇𝐻3𝑋𝐺5𝑋

(F.2)

Note that in the literature there appear various definitions of the energy density associated to the
dark energy (see [2015]). However we use here the effective DE energy density 𝜌𝐷𝐸 and pressure 𝑃𝐷𝐸

based on an Einsteinian representation of modified gravity [587, 1388].

F.2 Data used in the analysis
In this appendix we present the data used in our analysis.

Table F.1: The 𝑓𝜎8 updated data compilation of Ref. [4] used in our analysis.

Index Dataset 𝑧 𝑓𝜎8(𝑧) Refs. Year Fiducial Cosmology
1 2MRS 0.02 0.314 ± 0.048 [2475], [2476] 2010 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.266, 0, 0.65)
2 SDSS-LRG-200 0.25 0.3512 ± 0.0583 [1315] 2011 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.276, 0, 0.8)
3 WiggleZ 0.44 0.413 ± 0.080 [351] 2012 (Ω𝑚, ℎ, 𝜎8) = (0.27, 0.71, 0.8)
4 WiggleZ 0.60 0.390 ± 0.063 [351] 2012
5 WiggleZ 0.73 0.437 ± 0.072 [351] 2012
6 GAMA 0.18 0.360 ± 0.090 [2478] 2013 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.27, 0, 0.8)
7 SDSS-MGS 0.15 0.490 ± 0.145 [1319] 2015 (Ω𝑚, ℎ, 𝜎8) = (0.31, 0.67, 0.83)
8 SDSS-veloc 0.10 0.370 ± 0.130 [2481] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.3, 0, 0.89)[2482]
9 FastSound 1.40 0.482 ± 0.116 [1326] 2015 (Ω𝑚,Ω𝐾 , 𝜎8)= (0.27, 0, 0.82)[2483]
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10 BOSS DR12 0.38 0.497 ± 0.045 [48] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8)
11 BOSS DR12 0.51 0.458 ± 0.038 [48] 2016
12 BOSS DR12 0.61 0.436 ± 0.034 [48] 2016
13 VIPERS v7 1.05 0.280 ± 0.080 [2486] 2016
14 BOSS LOWZ 0.32 0.427 ± 0.056 [1325] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.8475)
15 VIPERS 0.727 0.296 ± 0.0765 [2487] 2016 (Ω𝑚,Ω𝐾 , 𝜎8) = (0.31, 0, 0.7)
16 6dFGS+SnIa 0.02 0.428 ± 0.0465 [2488] 2016 (Ω𝑚, ℎ, 𝜎8) = (0.3, 0.683, 0.8)
17 2MTF 0.001 0.505 ± 0.085 [2490] 2017 (Ω𝑚, 𝜎8) = (0.3121, 0.815)
18 BOSS DR12 0.31 0.384 ± 0.083 [2492] 2017 (Ω𝑚, ℎ, 𝜎8) = (0.307, 0.6777, 0.8288)
19 BOSS DR12 0.36 0.409 ± 0.098 [2492] 2017
20 BOSS DR12 0.40 0.461 ± 0.086 [2492] 2017
21 BOSS DR12 0.44 0.426 ± 0.062 [2492] 2017
22 BOSS DR12 0.48 0.458 ± 0.063 [2492] 2017
23 BOSS DR12 0.52 0.483 ± 0.075 [2492] 2017
24 BOSS DR12 0.56 0.472 ± 0.063 [2492] 2017
25 BOSS DR12 0.59 0.452 ± 0.061 [2492] 2017
26 BOSS DR12 0.64 0.379 ± 0.054 [2492] 2017
27 SDSS-IV 0.978 0.379 ± 0.176 [2496] 2018 (Ω𝑚, 𝜎8) = (0.31, 0.8)
28 SDSS-IV 1.23 0.385 ± 0.099 [2496] 2018
29 SDSS-IV 1.526 0.342 ± 0.070 [2496] 2018
30 SDSS-IV 1.944 0.364 ± 0.106 [2496] 2018
31 VIPERS PDR2 0.60 0.49 ± 0.12 [1329] 2018 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.045, 0.31, 0.7, 0.8)
32 VIPERS PDR2 0.86 0.46 ± 0.09 [1329] 2018
33 BOSS DR12 voids 0.57 0.501 ± 0.051 [2510] 2019 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.0482, 0.307, 0.6777, 0.8228)
34 2MTF 6dFGSv 0.03 0.404 ± 0.0815 [2511] 2019 (Ω𝑏,Ω𝑚, ℎ, 𝜎8) = (0.0491, 0.3121, 0.6571, 0.815)
35 SDSS-IV 0.72 0.454 ± 0.139 [2512] 2019 (Ω𝑚,Ω𝑏ℎ

2, 𝜎8) = (0.31, 0.022, 0.8)

Table F.2: The 𝐸𝐺(𝑧) data compilation of Ref. [4] used in our analysis.

Index Dataset 𝑧 𝐸𝐺(𝑧) 𝜎𝐸𝐺
Scale [Mpc/h] Reference

1 KiDS GAMA 0.267 0.43 0.13 5 < 𝑅 < 40 [2198]
2 KiDS 2dFLenS BOSS LOWZ 2dFLOZ 0.305 0.27 0.08 5 < 𝑅 < 60 [2198]
3 RCSLenS CFHTLenS WiggleZ BOSS WGZLoZ LOWZ 0.32 0.40 0.09 𝑅 > 3 [2514]
4 KiDS 2dFLenS BOSS CMASS 2dFHIZ 0.554 0.26 0.07 5 < 𝑅 < 60 [2198]
5 RCSLenS CFHTLenS WiggleZ BOSS WGZHiZ CMASS 0.57 0.31 0.06 𝑅 > 3 [2514]
6 RCSLenS CFHTLenS WiggleZ BOSS WGZHiZ CMASS 0.57 0.30 0.07 𝑅 > 10 [2514]
7 CFHTLenS VIPERS 0.60 0.16 0.09 3 < 𝑅 < 20 [1989]
8 CFHTLenS VIPERS 0.86 0.09 0.07 3 < 𝑅 < 20 [1989]



Appendix G

Transition Model in light of Cepheid SnIa
Calibrator data: Alleviating the Hubble Ten-
sion

G.1 Matrices of system of equations
In this Appendix we present the schematic form of the error matrix C, the matrix of measurements Y,
the matrix of parameters X and the equation (or design) matrix A used in the system of equations of
our analysis (see Eqs. (10.19), (10.20), (10.21) and (10.22) in Section 10.3).

The schematic form of the error matrix C is

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜎2
𝑀𝑊,𝑗 0 . . . 0

0 𝜎2
𝑡𝑜𝑡,𝑗 0 . . .

...

0 0 𝜎2
𝐿𝑀𝐶,𝑗 0 . . .

...
... . . .

𝜎2 (𝜇𝑁4258)
𝜎2 (𝜇𝐿𝑀𝐶)

𝜎2 (𝑚𝐵,1)
. . .

0 𝜎2 (𝑚𝐵,19)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(G.1)

where 𝜎 (𝜇𝐿𝑀𝐶) = 0.0263 is the error of the distance modulus to the LMC reported by Ref. [225],
𝜎 (𝜇𝑁4258) = 0.032 is the error of the distance modulus to the NGC 4258 reported by Ref. [227] and
𝜎 (𝑚𝐵,𝑘) (𝑘 = 1, .., 19) are the errors of SnIa B-band magnitudes obtained from Table 5 in Ref. [17] (see
our Table G.4 of the Appendix G.2).

For MW 𝑗𝑡ℎ Cepheid we use a total statistical uncertainty arising from the quadrature sum of four
terms (higher order terms 𝒪(𝑧𝑝/𝜋𝑗)2 are negligible)

𝜎2
𝑀𝑊,𝑗 = 𝜎2 (𝑚𝐻,𝑗) +

(︂
5

ln 10
1
𝜋𝑗

)︂2
𝜎2(𝜋𝑗) +𝑅2

𝑊𝜎2(𝑉𝑗) +𝑅2
𝑊𝜎2(𝐼𝑗) (G.2)

and for LMC Cepheids we use a total statistical uncertainty arising from the quadrature sum of four
terms:

𝜎2
𝐿𝑀𝐶,𝑗 = 𝜎2 (𝑚𝐻,𝑗) + 𝜎2(𝜇) +𝑅2

𝑊𝜎2(𝑉𝑗) +𝑅2
𝑊𝜎2(𝐼𝑗) (G.3)
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We see that for the MW and LMC Cepheids where the color errors are provided by SH0ES team (see in
Table 1 of Ref. [40] and and in Table 2 of Ref. [39] or our Table G.1 and our Table G.2 of the Appendix
G.2 respectively) we have included them in the error matrix C in the proper 2D manner (i.e. 2D fit
including errors in both Y and X "axes").

For the 𝑗𝑡ℎ Cepheid in the 𝑖𝑡ℎ galaxy (other than MW and LMC) where SH0ES does not provide
separate color errors we use a total statistical uncertainty 𝜎𝑡𝑜𝑡 arising from the quadrature sum of four
terms: NIR photometric error, color error, intrinsic width and random-phase as derived by SH0ES team
and shown in column 8 of Table 4 of Ref. [17]

𝜎2
𝑡𝑜𝑡,𝑗 = 𝜎2

𝑠𝑘𝑦 + 𝜎2
𝑐𝑜𝑙 + 𝜎2

𝑖𝑛𝑡 + (𝑓𝑝𝑓𝜎𝑝ℎ)2 (G.4)

These total statistical uncertainties 𝜎𝑡𝑜𝑡 are shown in our Table G.3 of the Appendix G.2. Note that even
though the color errors are included implicitly in our fit, in order to make a full 2D fit we will need the
separate color errors which are not publicly available for these Cepheids by SH0ES team.

The schematic form of the matrix of measurements Y and the matrix of parameters X are

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚𝜋,𝑗

𝑚𝐻,1,𝑗

...
𝑚𝐻,19,𝑗

𝑚𝐻,𝑁4258,𝑗

𝑚𝐻,𝑀31,𝑗

𝑚𝐻,𝐿𝑀𝐶,𝑗

𝜇𝑁4258
𝜇𝐿𝑀𝐶

𝑚𝐵,1
...

𝑚𝐵,19

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =
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(G.5)
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The schematic form of the equation (or design) matrix A is

A
=
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G.2 Data used in the analysis
In this appendix we present the data used in our analysis.

Table G.1: Photometric data for MW Cepheids from Table 1 in Ref. [40].

Cepheid log P F 555W 𝜎 F 814W 𝜎 F 160W 𝜎 𝑚𝑊
𝐻 𝜎 [𝐹𝑒/𝐻] 𝜋 𝜎 𝜋𝐸𝐷𝑅3 𝜎

[mag] [mag] [mag] [mag] [mag] [mag] [mag] [mag] [mas] [mas] [mas] [mas]

AA-GEM 1.053 9.9130 0.029 8.542 0.025 7.348 0.017 6.860 0.023 -0.080 0.259 0.008 0.311 0.019
AD-PUP 1.133 10.015 0.028 8.675 0.023 7.488 0.020 7.011 0.024 -0.060 0.214 0.006 0.254 0.018
AQ-CAR 0.990 8.9836 0.020 7.854 0.009 6.766 0.007 6.373 0.011 0.013 0.354 0.010 0.361 0.017
AQ-PUP 1.479 8.8671 0.018 7.120 0.014 5.487 0.013 4.859 0.016 0.060 0.340 0.010 0.294 0.025
BK-AUR 0.903 9.5609 0.036 8.220 0.038 7.015 0.021 6.539 0.029 0.070 0.371 0.011 0.426 0.016
BN-PUP 1.136 10.051 0.033 8.505 0.017 7.198 0.015 6.642 0.021 0.030 0.251 0.007 0.301 0.016
CD-CYG 1.232 9.1207 0.011 7.468 0.012 5.900 0.012 5.307 0.014 0.120 0.398 0.011 0.394 0.018
CP-CEP 1.252 10.757 0.015 8.638 0.052 6.871 0.022 6.095 0.030 0.050 0.270 0.008 0.279 0.022
CR-CAR 0.989 11.750 0.019 9.973 0.018 8.384 0.014 7.736 0.017 -0.080 0.190 0.005 0.194 0.016
CY-AUR 1.141 12.052 0.012 9.953 0.020 8.106 0.025 7.334 0.027 -0.150 0.183 0.006 . . . . . .
DD-CAS 0.992 10.036 0.007 8.523 0.011 7.108 0.012 6.566 0.013 0.160 0.319 0.009 0.346 0.014
DL-CAS 0.903 9.1059 0.019 7.569 0.022 6.238 0.018 5.689 0.021 0.050 0.550 0.016 . . . . . .
DR-VEL 1.049 9.7083 0.034 7.770 0.020 6.183 0.021 5.479 0.026 0.024 0.488 0.015 0.520 0.015
GQ-ORI 0.935 8.7199 0.020 7.632 0.024 6.523 0.032 6.146 0.034 0.250 0.418 0.013 0.408 0.023
HW-CAR 0.964 9.2782 0.016 8.007 0.013 6.798 0.005 6.350 0.009 0.060 0.370 0.010 0.397 0.013
KK-CEN 1.086 11.598 0.017 9.862 0.021 8.292 0.015 7.660 0.018 0.210 0.167 0.005 0.152 0.017
KN-CEN 1.532 10.062 0.023 7.924 0.017 5.856 0.006 5.076 0.013 0.550 0.273 0.008 0.251 0.020
RW-CAM 1.215 8.8673 0.015 7.044 0.014 5.451 0.021 4.794 0.022 0.080 0.519 0.015 . . . . . .
RW-CAS 1.170 9.3719 0.021 7.863 0.016 6.483 0.022 5.944 0.024 0.280 0.322 0.010 0.334 0.021
RY-CAS 1.084 10.075 0.019 8.333 0.040 6.715 0.010 6.085 0.020 0.320 0.342 0.010 0.359 0.016
RY-SCO 1.308 8.2067 0.012 6.206 0.010 4.408 0.010 3.685 0.012 0.010 0.757 0.021 0.764 0.035
RY-VEL 1.449 8.5234 0.036 6.757 0.016 5.211 0.017 4.576 0.023 0.090 0.403 0.012 0.376 0.023
S-NOR 0.989 6.5779 0.011 5.410 0.012 4.391 0.012 3.990 0.014 0.100 1.054 0.030 1.099 0.024
S-VUL 1.839 9.1668 0.008 6.862 0.012 4.885 0.010 4.043 0.011 0.090 0.287 0.008 0.237 0.022

SS-CMA 1.092 10.121 0.012 8.444 0.008 6.894 0.011 6.289 0.012 0.012 0.315 0.009 0.308 0.014
SV-PER 1.046 9.2186 0.016 7.760 0.014 6.435 0.027 5.916 0.028 0.030 0.400 0.012 . . . . . .
SV-VEL 1.149 8.7316 0.026 7.302 0.009 6.024 0.010 5.517 0.015 0.090 0.411 0.012 0.434 0.019
SV-VUL 1.653 7.2675 0.047 5.648 0.033 4.214 0.027 3.639 0.035 0.110 0.457 0.015 0.402 0.023
SY-NOR 1.102 9.8284 0.023 7.925 0.038 6.214 0.013 5.523 0.022 0.230 0.435 0.013 . . . . . .
SZ-CYG 1.179 9.6209 0.013 7.756 0.017 6.004 0.008 5.329 0.012 0.150 0.426 0.012 0.445 0.014
T-MON 1.432 6.0680 0.023 4.828 0.016 3.725 0.021 3.298 0.024 0.040 0.749 0.022 0.745 0.057
U-CAR 1.589 6.3852 0.038 4.967 0.023 3.768 0.019 3.272 0.026 0.250 0.589 0.018 0.561 0.025

UU-MUS 1.066 9.9212 0.024 8.457 0.025 7.108 0.010 6.584 0.017 0.190 0.282 0.008 0.306 0.013
V-339-CEN 0.976 8.8402 0.024 7.321 0.016 5.990 0.024 5.448 0.026 -0.080 0.557 0.017 0.568 0.023
V-340-ARA 1.318 10.460 0.024 8.554 0.014 6.808 0.012 6.115 0.016 -0.080 0.245 0.007 0.239 0.022
VW-CEN 1.177 10.379 0.031 8.718 0.023 7.158 0.010 6.558 0.018 0.410 0.238 0.007 0.260 0.017
VX-PER 1.037 9.4589 0.008 7.906 0.006 6.470 0.009 5.914 0.010 0.030 0.407 0.011 0.392 0.019
VY-CAR 1.276 7.6162 0.014 6.253 0.007 4.991 0.004 4.513 0.007 0.080 0.539 0.015 0.565 0.018
VZ-PUP 1.365 9.7715 0.033 8.262 0.022 6.931 0.017 6.390 0.023 -0.010 0.200 0.006 0.220 0.016
WX-PUP 0.951 9.1909 0.030 7.944 0.012 6.807 0.010 6.368 0.016 -0.010 0.376 0.011 0.387 0.017
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WZ-SGR 1.339 8.2021 0.012 6.481 0.013 4.858 0.009 4.242 0.011 0.280 0.547 0.015 0.612 0.031
X-CYG 1.214 6.5295 0.020 5.230 0.049 4.080 0.033 3.629 0.039 0.160 0.883 0.029 0.910 0.022
X-PUP 1.414 8.6949 0.019 7.128 0.010 5.628 0.008 5.069 0.012 0.020 0.341 0.010 0.397 0.022

XX-CAR 1.196 9.4627 0.027 8.067 0.015 6.833 0.022 6.337 0.025 0.010 0.264 0.008 0.305 0.016
XY-CAR 1.095 9.4660 0.011 7.927 0.009 6.455 0.006 5.904 0.008 0.012 0.375 0.010 0.390 0.015
XZ-CAR 1.221 8.7725 0.017 7.217 0.006 5.770 0.007 5.215 0.010 0.026 0.425 0.012 0.473 0.020
YZ-CAR 1.259 8.8644 0.016 7.401 0.007 5.991 0.013 5.471 0.015 -0.030 0.359 0.010 0.358 0.020
YZ-SGR 0.980 7.4662 0.021 6.176 0.014 5.103 0.020 4.653 0.022 0.120 0.786 0.023 0.860 0.027
Z-LAC 1.037 8.5686 0.022 7.157 0.015 5.917 0.018 5.417 0.021 0.070 0.509 0.015 0.510 0.023

AG-CRU 0.584 8.3175 0.013 7.307 0.011 6.414 0.027 6.068 0.028 0.020 0.748 0.023 0.758 0.022
AP-PUP 0.706 7.4560 0.016 6.412 0.014 5.534 0.027 5.177 0.028 -0.020 0.941 0.029 0.924 0.022
AP-SGR 0.704 7.1056 0.028 6.036 0.013 5.094 0.027 4.729 0.030 0.160 1.145 0.035 1.217 0.026
BF-OPH 0.609 7.5091 0.018 6.347 0.010 5.374 0.027 4.972 0.028 0.110 1.184 0.036 1.189 0.026
BG-VEL 0.840 7.7827 0.010 6.299 0.009 5.054 0.019 4.529 0.020 0.040 1.033 0.030 1.045 0.019
ER-CAR 0.888 6.9095 0.011 5.916 0.012 5.078 0.027 4.742 0.028 0.120 0.867 0.026 0.869 0.016
R-CRU 0.765 6.8479 0.017 5.856 0.016 4.984 0.027 4.649 0.028 0.100 1.088 0.033 1.078 0.031
R-MUS 0.876 6.4568 0.009 5.447 0.008 4.609 0.019 4.268 0.020 -0.110 1.117 0.033 1.076 0.019
R-TRA 0.530 6.7236 0.013 5.794 0.014 5.025 0.019 4.714 0.020 0.160 1.497 0.044 1.560 0.018
RV-SCO 0.783 7.1616 0.010 5.871 0.007 4.773 0.019 4.323 0.020 0.080 1.234 0.036 1.257 0.023
RX-CAM 0.898 7.8310 0.016 6.215 0.013 4.791 0.028 4.216 0.029 0.080 1.090 0.034 . . . . . .
RY-CMA 0.670 8.2358 0.015 7.111 0.013 6.045 0.027 5.656 0.028 0.140 0.787 0.024 0.825 0.032
S-CRUe 0.671 6.6700 0.050 5.698 0.011 4.843 0.027 4.516 0.033 0.080 1.335 0.042 1.342 0.026
S-TRA 0.801 6.5171 0.013 5.553 0.012 4.752 0.027 4.429 0.028 0.010 1.150 0.035 1.120 0.024
SS-SCT 0.565 8.3122 0.010 7.073 0.005 6.034 0.019 5.600 0.019 0.110 0.948 0.028 0.934 0.025
T-VEL 0.667 8.1205 0.009 6.915 0.007 5.839 0.019 5.419 0.020 -0.160 0.904 0.026 0.940 0.018

TX-CYG 1.168 9.6108 0.024 7.083 0.015 4.789 0.027 3.862 0.029 0.260 0.844 0.026 0.829 0.020
U-AQL 0.847 6.5396 0.019 5.168 0.029 4.115 0.027 3.636 0.030 0.140 1.531 0.047 . . . . . .
U-SGR 0.829 6.8864 0.018 5.388 0.011 4.143 0.027 3.615 0.028 0.140 1.588 0.049 1.605 0.025
V-CAR 0.826 7.4753 0.009 6.403 0.008 5.463 0.019 5.096 0.020 0.080 0.810 0.024 0.797 0.015
V-VEL 0.641 7.5198 0.013 6.555 0.010 5.693 0.027 5.366 0.028 0.000 0.951 0.029 0.953 0.019

V0386-CYG 0.721 9.8126 0.015 7.748 0.014 5.944 0.027 5.192 0.028 0.170 0.901 0.028 0.894 0.014
V0482-SCO 0.656 8.0697 0.013 6.773 0.013 5.697 0.027 5.242 0.028 0.019 0.982 0.030 0.993 0.028
V0636-SCO 0.832 6.8167 0.009 5.618 0.008 4.568 0.020 4.154 0.021 0.070 1.239 0.036 1.180 0.037

W-GEM 0.898 7.0841 0.057 5.899 0.018 4.863 0.027 4.454 0.036 -0.010 0.984 0.032 1.006 0.031

Table G.2: Photometric data for LMC Cepheids from Table 2 in Ref. [39].

Cepheid RA DEC Geo log Period F 555W 𝜎 F 814W 𝜎 F 160W 𝜎 𝑚𝑊
𝐻 𝜎

[mag] [mag] [mag] [mag] [mag] [mag] [mag] [mag]

OGL0434 74.114583 -69.379611 0.028 1.482 13.131 0.028 12.208 0.011 11.321 0.018 10.966 0.021
OGL0501 74.462625 -69.958250 0.034 1.367 13.623 0.022 12.693 0.012 11.770 0.021 11.406 0.023
OGL0510 74.523208 -69.454333 0.027 1.566 13.457 0.037 12.299 0.021 11.232 0.042 10.787 0.045
OGL0512 74.545000 -69.949694 0.033 1.595 13.134 0.025 12.005 0.017 11.038 0.017 10.598 0.020
OGL0528 74.636583 -70.346028 0.038 1.553 13.175 0.052 12.156 0.021 11.226 0.020 10.824 0.029
OGL0545 74.696292 -70.061583 0.034 1.199 14.414 0.045 13.349 0.010 12.311 0.018 11.895 0.025
OGL0590 74.921417 -69.456111 0.025 1.502 13.470 0.025 12.382 0.014 11.311 0.038 10.895 0.039
OGL0594 74.937833 -69.493194 0.025 0.828 15.279 0.012 14.352 0.011 13.525 0.030 13.171 0.030
OGL0648 75.201500 -69.531861 0.025 1.134 14.740 0.012 13.675 0.009 12.714 0.028 12.308 0.029
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OGL0683 75.353917 -70.071750 0.031 1.166 14.446 0.009 13.350 0.009 12.481 0.020 12.056 0.021
OGL0712 75.477375 -68.904028 0.016 1.316 13.771 0.033 12.862 0.009 11.889 0.038 11.552 0.040
OGL0716 75.503958 -68.922833 0.016 1.085 14.958 0.012 13.895 0.011 12.938 0.023 12.541 0.024
OGL0727 75.542667 -69.539917 0.023 1.161 14.208 0.010 13.231 0.010 12.375 0.033 12.004 0.034
OGL0757 75.629333 -69.397056 0.021 0.924 15.153 0.012 14.214 0.012 13.364 0.023 13.010 0.024
OGL0770 75.714750 -68.784806 0.013 1.035 14.698 0.012 13.757 0.010 12.913 0.029 12.566 0.030
OGL0787 75.787750 -69.223333 0.018 1.243 14.243 0.009 13.186 0.009 12.281 0.042 11.884 0.042
OGL0798 75.848542 -69.000889 0.015 1.029 14.891 0.011 13.860 0.009 12.934 0.020 12.550 0.021
OGL0800 75.854417 -68.772500 0.012 1.101 14.541 0.018 13.584 0.011 12.712 0.043 12.359 0.044
OGL0812 75.908167 -69.063083 0.015 1.086 14.670 0.011 13.691 0.010 12.733 0.024 12.369 0.025
OGL0819 75.942333 -68.876778 0.013 1.348 14.162 0.014 13.013 0.010 11.987 0.029 11.560 0.030
OGL0821 75.956250 -68.934083 0.014 1.411 13.770 0.009 12.714 0.010 11.706 0.024 11.314 0.025
OGL0831 75.988583 -68.840056 0.012 0.987 14.761 0.012 13.827 0.010 12.969 0.023 12.625 0.024
OGL0844 76.064458 -69.026778 0.014 1.235 13.967 0.019 13.010 0.011 12.146 0.034 11.791 0.035
OGL0847 76.081833 -68.930306 0.013 1.314 14.437 0.009 13.317 0.011 12.320 0.030 11.904 0.031
OGL0848 76.087833 -68.728556 0.010 1.203 14.262 0.013 13.341 0.011 12.444 0.027 12.107 0.028
OGL0888 76.316875 -68.723472 0.009 0.971 14.889 0.010 13.960 0.010 13.135 0.022 12.796 0.022
OGL0915 76.424875 -68.851472 0.010 0.868 15.125 0.013 14.216 0.011 13.359 0.021 13.027 0.022
OGL0936 76.504708 -68.627361 0.007 0.920 15.046 0.015 14.101 0.012 13.260 0.023 12.917 0.024
OGL0949 76.570375 -68.676028 0.007 1.111 14.519 0.016 13.549 0.011 12.670 0.018 12.317 0.019
OGL0966 76.699875 -70.037056 0.024 1.676 12.944 0.026 11.861 0.014 10.896 0.023 10.483 0.025
OGL0969 76.720250 -68.723639 0.007 1.104 14.727 0.013 13.691 0.012 12.725 0.028 12.347 0.029
OGL0970 76.720708 -68.659889 0.006 1.242 14.369 0.014 13.249 0.011 12.260 0.031 11.850 0.032
OGL0975 76.742833 -68.611417 0.006 1.101 14.628 0.015 13.617 0.011 12.749 0.023 12.382 0.024
OGL0978 76.748792 -68.723972 0.007 1.022 14.855 0.011 13.817 0.010 12.908 0.021 12.529 0.022
OGL0986 76.782542 -68.888750 0.009 1.492 13.471 0.018 12.403 0.008 11.445 0.045 11.053 0.045
OGL0992 76.816583 -68.883500 0.009 1.723 12.305 0.016 11.297 0.011 10.436 0.073 10.067 0.073
OGL1001 76.840375 -68.338417 0.002 1.160 14.464 0.009 13.447 0.009 12.485 0.023 12.119 0.024
OGL1031 76.925542 -69.246694 0.013 1.266 14.455 0.011 13.348 0.009 12.284 0.021 11.873 0.022
OGL1058 77.076125 -68.779750 0.006 1.482 13.564 0.016 12.452 0.008 11.467 0.021 11.060 0.022
OGL1080 77.183292 -68.757778 0.005 1.270 14.135 0.014 13.061 0.011 12.097 0.025 11.706 0.026
OGL1109 77.316417 -68.741556 0.005 1.074 14.520 0.008 13.592 0.009 12.744 0.053 12.410 0.053
OGL1112 77.326458 -68.299556 -0.000 0.899 14.713 0.010 13.907 0.011 13.134 0.053 12.853 0.054
OGL1313 78.580750 -69.490056 0.008 0.834 15.128 0.012 14.278 0.012 13.529 0.026 13.222 0.027
OGL1374 78.857208 -69.340917 0.005 0.838 15.386 0.011 14.438 0.012 13.582 0.031 13.240 0.031
OGL1389 78.909875 -69.255500 0.004 0.862 14.965 0.011 14.139 0.012 13.382 0.019 13.088 0.020
OGL1411 78.991833 -69.712083 0.009 0.897 15.324 0.010 14.324 0.011 13.468 0.026 13.102 0.026
OGL1417 79.000917 -69.538167 0.007 0.938 14.879 0.009 13.954 0.010 13.138 0.031 12.803 0.031
OGL1424 79.016000 -69.247889 0.003 0.830 15.663 0.013 14.622 0.015 13.686 0.030 13.310 0.031
OGL1431 79.041083 -69.544306 0.007 1.010 14.829 0.010 13.841 0.009 13.028 0.027 12.669 0.027
OGL1463 79.228708 -69.330667 0.003 0.876 15.098 0.011 14.171 0.011 13.339 0.024 13.007 0.025
OGL1466 79.244417 -69.393889 0.004 0.789 15.581 0.012 14.607 0.013 13.719 0.031 13.368 0.032
OGL1490 79.353083 -69.349333 0.003 0.912 14.690 0.014 13.876 0.010 13.160 0.023 12.872 0.024
OGL1526 79.515792 -69.426639 0.003 0.828 15.147 0.012 14.287 0.011 13.475 0.025 13.169 0.026
OGL1539 79.592125 -69.363139 0.002 1.130 14.636 0.016 13.620 0.011 12.671 0.019 12.306 0.021
OGL1578 79.811667 -69.605028 0.005 1.123 14.329 0.017 13.379 0.010 12.590 0.023 12.248 0.024
OGL1587 79.865750 -69.508389 0.003 1.334 14.151 0.008 12.959 0.009 11.925 0.034 11.491 0.034
OGL1616 79.999708 -69.173722 -0.001 1.191 14.894 0.017 13.693 0.012 12.631 0.033 12.198 0.034
OGL1637 80.095833 -69.038194 -0.003 1.504 13.337 0.025 12.251 0.014 11.314 0.035 10.928 0.036
OGL1641 80.119292 -69.025500 -0.003 1.144 14.180 0.010 13.272 0.010 12.428 0.026 12.111 0.027
OGL1647 80.155792 -69.515722 0.002 0.939 14.833 0.019 13.957 0.015 13.157 0.028 12.846 0.030
OGL1677 80.301958 -69.052111 -0.004 1.372 13.717 0.013 12.716 0.017 11.816 0.020 11.463 0.022

251



OGL1862 81.056042 -69.500444 -0.001 1.118 14.868 0.013 13.763 0.010 12.753 0.028 12.357 0.028
OGL1939 81.370042 -69.912361 0.002 0.782 15.498 0.021 14.583 0.015 13.683 0.029 13.356 0.031
OGL1940 81.370625 -69.834194 0.001 0.972 16.659 0.022 15.055 0.017 13.509 0.026 12.917 0.028
OGL1941 81.372000 -69.920167 0.003 0.832 15.642 0.015 14.538 0.013 13.593 0.029 13.193 0.030
OGL1945 81.381000 -69.834361 0.001 0.885 16.166 0.020 14.832 0.016 13.610 0.023 13.123 0.025
OGL1994 81.594042 -69.602056 -0.002 0.889 14.779 0.022 13.946 0.011 13.229 0.019 12.939 0.022
OGL2012 81.708292 -69.764667 -0.000 0.872 15.061 0.011 14.136 0.010 13.327 0.025 13.000 0.025
OGL2019 81.732917 -69.980222 0.002 1.448 13.615 0.018 12.581 0.014 11.697 0.025 11.325 0.027
OGL2043 81.845667 -69.849444 0.000 0.867 15.246 0.011 14.320 0.012 13.495 0.038 13.167 0.039

Table G.3: WFC3-IR data for 1486 Cepheids in the anchor galaxy NGC 4258 and in the host galaxies
from Table 4 in Ref. [17]. An electronic version of the complete table is available at [70].

Galaxy Name 𝛼 𝛿 ID P 𝑉 − 𝐼 H 𝜎𝑡𝑜𝑡 Z1

[mag] [days] [mag] [mag] [mag] [dex]

N1309 50.513050 -15.412250 154632 38.10 1.08 25.46 0.22 8.582
N1309 50.514080 -15.405860 149317 39.31 1.34 25.31 0.42 8.722
N1309 50.537010 -15.412090 42756 39.42 1.14 25.28 0.24 8.793
N1309 50.536140 -15.385790 40303 39.50 1.00 25.19 0.24 8.758
N1309 50.534050 -15.388290 50270 39.83 1.22 25.56 0.26 8.866
N1309 50.520380 -15.397210 119907 40.84 1.40 24.57 0.55 8.974
N1309 50.516100 -15.386090 136479 41.02 1.15 25.07 0.18 8.646
N1309 50.531470 -15.406890 67093 41.77 1.23 24.45 0.45 9.037
N1309 50.528230 -15.408650 82654 41.94 1.05 24.24 0.50 8.987
N1309 50.540170 -15.394110 27150 42.11 1.03 24.49 0.28 8.860
N1309 50.533920 -15.386930 50545 44.14 1.11 25.34 0.57 8.825
N1309 50.534590 -15.392310 48826 44.32 1.65 24.54 0.34 8.975
N1309 50.522460 -15.384870 103930 44.60 0.89 24.95 0.22 8.739
N1309 50.520140 -15.408020 2099043 44.30 1.39 24.12 0.45 8.866
N1309 50.535980 -15.411540 47351 45.45 1.02 24.64 0.24 8.828
N1309 50.516850 -15.403490 2108877 47.59 1.34 24.78 0.53 8.841
N1309 50.513220 -15.403900 152242 47.82 0.95 24.76 0.33 8.715
N1309 50.514140 -15.404030 2117990 48.18 1.23 24.88 0.43 8.745
N1309 50.517600 -15.403870 134187 47.87 1.31 23.84 0.62 8.862
N1309 50.513500 -15.398810 150120 48.45 1.52 24.85 0.30 8.743
N1309 50.541640 -15.396450 22773 49.57 1.35 25.16 0.23 8.840
N1309 50.523070 -15.400960 105535 50.82 1.25 24.92 0.49 9.074
N1309 50.530380 -15.386750 66971 51.38 1.14 24.75 0.24 8.849
N1309 50.519300 -15.403510 126515 51.43 0.80 24.60 0.60 8.922
N1309 50.532360 -15.415870 65208 52.02 1.41 24.34 0.18 8.734
N1309 50.526790 -15.409480 89446 52.50 1.11 24.57 0.40 8.950
N1309 50.523400 -15.407320 105633 54.07 0.89 24.65 0.65 8.963
N1309 50.531490 -15.389480 62523 56.82 1.13 24.77 0.25 8.934
N1309 50.530220 -15.390540 68651 58.92 1.31 25.03 0.33 8.978
N1309 50.520230 -15.406500 122991 58.97 1.66 24.83 0.43 8.902
N1309 50.515030 -15.407650 145875 64.63 1.54 24.58 0.33 8.726

1𝑍 = 12 + log(𝑂/𝐻)
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N1309 50.520350 -15.400180 120871 64.84 1.32 23.75 0.54 8.983
N1309 50.528410 -15.417520 83989 64.20 1.32 24.32 0.19 8.688
N1309 50.540600 -15.394620 25808 67.70 1.18 24.61 0.19 8.854
N1309 50.528080 -15.409230 83493 57.92 1.40 24.53 0.35 8.967
N1309 50.536050 -15.412330 47225 69.33 1.11 24.57 0.22 8.804
N1309 50.537880 -15.406430 37762 69.30 1.09 24.31 0.21 8.914
N1309 50.535540 -15.414100 49918 71.48 1.08 24.12 0.23 8.758
N1309 50.527070 -15.408140 87828 73.62 0.97 24.31 0.30 8.996
N1309 50.519710 -15.404750 124934 75.76 1.50 24.21 0.40 8.918
N1309 50.518570 -15.394630 127649 84.54 1.07 24.27 0.50 8.885
N1309 50.526840 -15.407730 88762 84.89 1.27 23.90 0.40 9.007
N1309 50.540840 -15.390800 24251 90.59 1.31 24.01 0.18 8.781
N1309 50.526100 -15.405700 91743 90.91 1.06 24.08 0.36 9.061
N1365 53.428340 -36.168310 111818 15.90 0.71 25.07 0.63 8.814
N1365 53.468230 -36.154760 140975 16.45 1.27 25.25 0.32 8.420
N1365 53.435410 -36.169560 123989 16.72 0.88 24.53 0.40 8.715
N1365 53.448980 -36.163290 132389 17.00 1.07 25.29 0.33 8.613
N1365 53.444760 -36.149450 103384 17.01 0.91 25.82 0.44 8.796
N1365 53.440820 -36.157210 111940 19.69 0.67 24.86 0.40 8.784
N1365 53.465100 -36.152740 136735 25.70 0.89 24.48 0.18 8.480
N1365 53.426190 -36.165250 101154 26.08 0.99 23.98 0.70 8.878
N1365 53.445370 -36.136230 63449 26.96 1.36 24.16 0.36 8.858
N1365 53.462490 -36.157290 138773 26.98 1.01 24.40 0.19 8.481
N1365 53.443040 -36.160620 120972 27.45 1.04 24.41 0.24 8.720
N1365 53.446770 -36.135500 65336 27.94 0.87 24.82 0.32 8.839
N1365 53.438940 -36.166810 124631 29.33 1.02 24.11 0.24 8.705
N1365 53.458140 -36.153810 130859 29.37 0.98 24.48 0.23 8.571
N1365 53.460390 -36.153990 133465 29.45 1.35 24.29 0.23 8.538
N1365 53.431590 -36.162200 105797 30.34 1.29 24.07 0.48 8.851
N1365 53.427620 -36.166050 106470 30.39 0.91 23.83 0.42 8.851
N1365 53.438980 -36.153370 100027 31.37 0.67 24.33 0.30 8.845
N1365 53.431200 -36.158650 94995 32.42 1.02 24.35 0.45 8.897
N1365 53.449180 -36.155960 122163 34.10 1.21 24.19 0.19 8.680
N1365 53.449310 -36.140060 87703 35.11 1.21 23.54 0.26 8.786
N1365 53.427540 -36.151730 61628 37.01 1.61 24.27 0.38 9.018
N1365 53.433170 -36.155410 90510 39.06 1.06 24.04 0.41 8.905
N1365 53.437550 -36.170950 128912 40.73 1.14 23.47 0.20 8.673
N1365 53.440360 -36.153510 103704 40.85 1.43 24.26 0.23 8.825
N1365 53.432210 -36.161310 104907 42.90 1.10 23.44 0.36 8.854
N1365 53.431420 -36.172780 123489 43.00 0.97 23.96 0.32 8.720
N1365 53.437390 -36.155420 101731 47.24 0.91 23.03 0.22 8.848
N1365 53.435220 -36.154740 94055 51.45 1.33 23.91 0.25 8.884
N1365 53.438630 -36.170270 129336 57.13 0.95 23.42 0.16 8.668
N1365 53.432110 -36.155840 88821 63.17 1.32 23.35 0.26 8.915
N1365 53.427080 -36.156250 75575 68.46 1.25 22.90 0.32 8.976

Table G.4: Approximations for distance parameters from Table 5 in Ref. [17].

Host Galaxy SnIa 𝑚0
𝐵,𝑖 + 5𝛼𝐵 𝜎 𝜇𝑐𝑒𝑝ℎ 𝜎 𝑀0

𝐵,𝑖 𝜎

[mag] [mag] [mag] [mag] [mag] [mag]
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M101 2011fe 13.310 0.117 29.135 0.045 -19.389 0.125
N1015 2009ig 17.015 0.123 32.497 0.081 -19.047 0.147
N1309 2002fk 16.756 0.116 32.523 0.055 -19.331 0.128
N1365 2012fr 15.482 0.125 31.307 0.057 -19.390 0.137
N1448 2001el 15.765 0.116 31.311 0.045 -19.111 0.125
N2442 2015F 15.840 0.142 31.511 0.053 -19.236 0.152
N3021 1995al 16.527 0.117 32.498 0.090 -19.535 0.147
N3370 1994ae 16.476 0.115 32.072 0.049 -19.161 0.125
N3447 2012ht 16.265 0.124 31.908 0.043 -19.207 0.131
N3972 2011by 16.048 0.116 31.587 0.070 -19.103 0.136
N3982 1998aq 15.795 0.115 31.737 0.069 -19.507 0.134
N4038 2007sr 15.797 0.114 31.290 0.112 -19.058 0.160
N4424 2012cg 15.110 0.109 31.080 0.292 -19.534 0.311
N4536 1981B 15.177 0.124 30.906 0.053 -19.293 0.135
N4639 1990N 15.983 0.115 31.532 0.071 -19.113 0.135
N5584 2007af 16.265 0.115 31.786 0.046 -19.085 0.124
N5917 2005cf 16.572 0.115 32.263 0.102 -19.255 0.154
N7250 2013dy 15.867 0.115 31.499 0.078 -19.196 0.139
U9391 2003du 17.034 0.114 32.919 0.063 -19.449 0.130



Appendix H

Gravitational Transitions via the Explicitly
Broken Symmetron Screening Mechanism

H.1 Cluster collection
In this appendix we present the collection of 12 clusters.

Table H.1: The collection of 12 clusters. From left to right the columns correspond to: Abell names,
galactic coordinates (from NED), redshifts (from NED), luminosity distances (from NED), the halo radii
for overdensity of Δ = 500 with respect to the critical density of the universe at the cluster’s redshift, the
modified gravity parameters Ξ1 and 𝛾 which track the departure of DHOST theory from GR as derived
by Ref. [57] and the corresponding 𝜎 significances.

GR DHOST
Cluster RA DEC 𝑧 D 𝑅500 𝑅500 Ξ1 Sign. 𝛾 Sign.

[Deg] [Deg] [Mpc] [Mpc] [Mpc] 𝜎Ξ1 𝜎𝛾

A85 10.458750 -9.301944 0.05506 248 1.270+0.010
−0.015 1.292+0.017

−0.030 0.30+0.11
−0.27 1.100 1.05 ± 0.28 0.179

A644 124.352083 -7.512778 0.07040 332 1.175+0.020
−0.015 0.980+0.028

−0.030 −1.04+0.18
−0.19 5.470 0.58 ± 0.22 1.910

A1644 194.290417 -17.400278 0.04740 222 1.003+0.019
−0.017 0.844+0.020

−0.027 −0.837+0.119
−0.090 7.034 0.59 ± 0.16 2.562

A1795 207.220833 26.595556 0.06248 293 1.150+0.015
−0.010 1.101+0.032

−0.035 −0.169+0.111
−0.090 1.523 0.88 ± 0.25 0.480

A2029 227.729167 5.720000 0.07872 372 1.369+0.019
−0.015 1.352+0.089

−0.016 −0.04+0.19
−0.12 0.211 1.03 ± 0.48 0.063

A2142 239.585833 27.226944 0.09090 430 1.389+0.017
−0.017 1.326+0.040

−0.024 −0.203+0.101
−0.079 2.010 0.87 ± 0.38 0.342

A2255 258.129364 64.092572 0.08029 376 1.180+0.023
−0.021 0.953+0.046

−0.043 −1.1+0.26
−0.32 3.438 0.53 ± 0.28 1.679

A2319 290.286667 43.958333 0.05570 254 1.336+0.016
−0.006 1.151+0.020

−0.016 −0.827+0.108
−0.076 7.657 0.64 ± 0.15 2.400

A3158 55.724583 -53.635278 0.05917 273 1.119+0.016
−0.012 1.054+0.057

−0.029 −0.23+0.15
−0.18 1.278 0.83 ± 0.33 0.515

A3266 67.850417 -61.443889 0.05906 273 1.489+0.027
−0.030 1.455+0.045

−0.055 0.100+0.137
−0.079 0.730 0.93 ± 0.65 0.108

255



RXC1825 276.352917 30.441944 0.06500 299 1.108+0.013
−0.012 1.130+0.016

−0.018 0.17+0.17
−0.13 1.000 1.06 ± 0.19 0.316

ZW1215 184.419167 3.662500 0.07708 366 1.368+0.029
−0.029 1.331+0.041

−0.076 −0.21+0.27
−0.18 0.778 0.91 ± 0.64 0.141



Appendix I

Numerical Algorithms

In this appendix we provide the links of the github repositories which include the algorithms used for
the numerical analysis and for construction of the figures of this dissertation.

1. The algorithms used for the numerical analysis and for construction of the figures of Chapter 5 can
be found in the "Reconstructing a Model for Gravity at Large Distances from Dark Matter Density
Profiles" repository [2517], �.

2. The algorithms used for the numerical analysis and for construction of the figures of Chapter 6
can be found in the "Primordial Power Spectra of Cosmological Fluctuations with GUP" repository
[2518], �.

3. The algorithms used for the numerical analysis and for construction of the figures of Chapter 7 can
be found in the "Tension of the 𝐸𝐺 statistic and RSD data with the ΛCDM" repository [2519], �

4. The algorithms used for the numerical analysis and for construction of the figures of Chapter 8 can
be found in the "Scalar tachyonic instabilities in gravitational background" repository [2520], �.

5. The algorithms used for the numerical analysis and for construction of the figures of Chapter 10
can be found in the "Cepheid SnIa Calibrator Data Transition" repository [2521], �.

6. The algorithms used for the numerical analysis and for construction of the figures of Chapter 11 can
be found in the "Gravitational transitions via the explicitly broken symmetron screening mechanism"
repository [2522], �.

https://github.com/FOTEINISKARA/Reconstructing-a-Model-for-Gravity-at-Large-Distances-from-Dark-Matter-Density-Profiles
https://github.com/FOTEINISKARA/Primordial-Power-Spectra-of-Cosmological-Fluctuations-with-GUP
https://github.com/FOTEINISKARA/Tension-of-the-EG-statistic-and-RSD-data-with-the-LambdaCDM
https://github.com/FOTEINISKARA/Scalar-tachyonic-instabilities-in-gravitational-background
https://github.com/FOTEINISKARA/Cepheid_SnIa_Calibrator_Data_Transition
https://github.com/FOTEINISKARA/Gravitational_transitions_via_the_explicitly_broken_symmetron_screening_mechanism
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