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Sharp integral inequalities for the dyadic maximal

operator and applications

Anastasios D. Delis, Eleftherios N. Nikolidakis

Abstract

We prove a sharp integral inequality for the dyadic maximal function

of φ ∈ Lp. This inequality connects certain quantities related to integrals

of φ and the dyadic maximal function of φ, under the hypothesis that

the variables
∫
X
φ dµ = f,

∫
X
φq dµ = A, 1 < q < p, are given, where

0 < fq
≤ A. Additionally, it contains a parameter β > 0 which when it

attains a certain value depending only on f,A, q, the inequality becomes

sharp. Using this inequality we give an alternative proof of the evaluation

of the Bellman function related to the dyadic maximal operator of two

integral variables.

1 Introduction

It is well known that the dyadic maximal operator on Rn is a useful tool in
analysis and is defined by

Mdφ(x) = sup

{

1

|Q|

∫

Q

|φ(y)| dy : x ∈ Q, Q ⊆ Rn is a dyadic cube

}

, (1.1)

for every φ ∈ L1
loc(R

n), where the dyadic cubes are those formed by the grids
2−NZn, for N = 0, 1, 2, . . .. It is also well known that it satisfies the following
weak type (1,1) inequality

∣

∣

∣

{

x ∈ Rn : Mdφ(x) > λ
}

∣

∣

∣
≤

1

λ

∫

{Mdφ>λ}

|φ(y)| dy, (1.2)

for every φ ∈ L1(Rn) and every λ > 0, and which is easily proved to be best
possible. Further refinements of (1.2) can be seen in [9] and [10].

Then by using (1.2) and the well known Doob’s method it is not difficult to
prove that the following Lp inequality is also true

‖Mdφ‖p ≤
p

p− 1
‖φ‖p, (1.3)
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for every p > 1 and φ ∈ Lp(Rn). Inequality (1.3) turns out to be best possible
and its sharpness is proved in [16] (for general martingales see [1] and [2]).

One way to study inequalities satisfied by maximal operators is by using the
so called Bellman function technique. For example, in order to refine (1.3) we
can insert the L1-norm of φ as an independent variable in (1.3), and try to find
the best possible upper bound of ‖Mdφ‖p, when both the L1 and Lp norms of
φ are given, by evaluating the (Bellman) function of two variables

B(p)(f, F ) = sup

{

1

|Q|

∫

Q

(Mdφ)
p : φ ≥ 0,

1

|Q|

∫

Q

φ = f,
1

|Q|

∫

Q

φp = F

}

,

(1.4)
where Q is a fixed dyadic cube and f, F are such that 0 < fp ≤ F .

The approach of studying maximal operators by the introduction of the
corresponding Bellman function was first seen in the work of Nazarov and Treil,
[5], where the authors defined the function

Bp(f, F, L) =

sup

{

1

|Q|

∫

Q

(Mdφ)
p :

1

|Q|

∫

Q

φ = f,
1

|Q|

∫

Q

φp = F, sup
R:Q⊆R

1

|R|

∫

R

φ = L

}

,

(1.5)

with p > 1 (as an example they examine the case p = 2), Q is as above and φ is
non-negative in Lp(Q), R runs over all dyadic cubes containing Q and the vari-
ables F, f, L satisfy 0 ≤ f ≤ L, fp ≤ F. Exploiting a certain ”pseudoconcavity”
inequality it satisfies, they construct the function 4F − 4fL + 2L2 which has
the same properties as (1.5) and provides a good Lp bound for the operator Md

(see [5] for details).
Both of the above Bellman functions were explicitly computed for the first

time by Melas in [3]. In fact this was done in the much more general setting of
a non-atomic probability space (X,µ) equipped with a tree structure T , which
is similar to the structure of the dyadic subcubes of [0, 1]n (see the definition in
Section 2). Then the associated maximal operator is defined as

MT φ(x) = sup

{

1

µ(I)

∫

I

|φ| dµ : x ∈ I ∈ T

}

, (1.6)

for every φ ∈ L1(X,µ). Moreover (1.2) and (1.3) still hold in this setting and
remain sharp. Now if we wish to refine (1.3) for the general case of a tree T ,
we should introduce the Bellman function of two variables related to the above
maximal operator, which is given by

B
(p)
T (f, F ) = sup

{∫

X

(MT φ)p dµ : φ ≥ 0,

∫

X

φdµ = f,

∫

X

φp dµ = F

}

,

(1.7)
where 0 < fp ≤ F . This function of course generalizes (1.4). In [3] it is proved
that

B
(p)
T (f, F ) = F ωp

(

fp

F

)p

, (1.8)
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where ωp : [0, 1] →
[

1, p
p−1

]

, is defined by ωp(z) = H−1
p (z), and Hp(z) is given

by Hp(z) = −(p− 1)zp + pzp−1. As a consequence B
(p)
T (f, F ) does not depend

on the tree T . The technique for the evaluation of (1.7), that is used in [3], is
based on an effective linearization of the dyadic maximal operator that holds
on an adequate class of functions called T -good (see the definition in Section
2), which is enough to describe the problem as is settled in (1.7). Using this
result on suitable subsets of X and several calculus arguments, the author also
managed to precisely evaluate the corresponding to (1.5) Bellman function in
this context,

Bp
T (f, F, L) = sup

{∫

X

(max(MT φ, L)
p dµ : φ ≥ 0, φ ∈ Lp(X,µ),

∫

X

φdµ = f,

∫

X

φp dµ = F,

}

. (1.9)

Now (1.7) and (1.9) were computed in [8] in a different way that avoids the
calculus arguments involved in [3]. A crucial intermediate result the authors
obtain there, in this direction, is the following.

Theorem A. Let φ ∈ Lp(X,µ) be non-negative, with
∫

X
φdµ = f . Then the

following inequality is true

∫

X

(MT φ)p dµ ≤ −
1

p− 1
fp +

p

p− 1

∫

X

φ (MT φ)p−1 dµ. (1.10)

The motivation for our work here comes from our wish to refine (1.7) even
further by also considering the q-norm, 1 < q < p, of the function φ as fixed and
to compute the corresponding Bellman function. In particular, our goal was the
evaluation of

Bp,q
T (f,A, F ) = sup

{∫

X

(MT φ)
p dµ : φ ≥ 0, φ ∈ Lp(X,µ),

∫

X

φdµ = f,

∫

X

φq dµ = A

∫

X

φp dµ = F,

}

, (1.11)

where 1 < q < p, and for f,A, F we have f q < A < F
q
p . The new integral

variable makes the problem considerably more difficult.
In Sections 3 and 4 we prove our main result, stated in Theorem 1 below. It

is an inequality which we believe that it can be the corresponding to Theorem A
intermediate step in the present context, towards the evaluation of (1.11). Then
using this result and entangling a result from [3] we prove Corollary 1 below
which directly strengthens and generalizes Theorem A. This will be carried out
in Section 5. Finally, also in Section 5, we exploit these results to evaluate (1.7)
in a new way.

So our main result is the following.
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Theorem 1. Let q ∈ (1, p), f > 0 and φ ∈ Lp(X,µ) non-negative, with
∫

X φdµ = f. Then the inequality
∫

X

(MT φ)
p dµ ≤

p(β + 1)q

G(p, q, β)

∫

X

(MT φ)
p−qφq dµ+

(p− q)(β + 1)

G(p, q, β)
fp

+
p(q − 1)β

G(p, q, β)
fp−q

∫

X

(MT φ)
q dµ−

p(β + 1)q

G(p, q, β)
fp−q

∫

X

φq dµ,

(1.12)

where G(p, q, β) = p(q − 1)β + (p − q)(β + 1), is sharp for every β > 0. If
we also assume that

∫

X φq dµ = A, f q < A, then (1.12) is best possible for

β = ωq(
fq

A )− 1, where ωq is defined as above, with q in place of p.

Theorem 1, together with results from [3], will allow us to prove the following
generalization of Theorem A, which in turn will lead to the evaluation of (1.7)
in a new way.

Corollary 1. Let q ∈ (1, p), f > 0, and φ ∈ Lp(X,µ) non-negative, with
∫

X
φdµ = f. Then the inequality
∫

X

(MT φ)p dµ ≤ −
q(β + 1)

G(p, q, β)
fp +

p(β + 1)q

G(p, q, β)

∫

X

(MT φ)
p−qφq dµ, (1.13)

is sharp for every β > 0, where G(p, q, β) as above. If we also assume that
∫

X
φq dµ = A, f q < A, then (1.13) is best possible for β = ωq(

fq

A )− 1,

We remark here that there are several problems in Harmonic Analysis were
Bellman functions arise. Such problems (including the dyadic Carleson imbed-
ding theorem and weighted inequalities) are described in [7] (see also [5], [6])
and also connections to Stochastic Optimal Control are provided, from which
it follows that the corresponding Bellman functions satisfy certain nonlinear
second-order PDEs. The exact evaluation of a Bellman function is a difficult
task which is connected with the deeper structure of the corresponding Harmonic
Analysis problem. Until now several Bellman functions have been computed (see
[1], [3], [5], [12], [13], [14]). The exact computation of (1.7) has also been given
in [11] by L. Slavin, A. Stokolos and V. Vasyunin, which linked the computa-
tion of it to solving certain PDEs of the Monge-Ampère type, and in this way
they obtained an alternative proof of the results in [3] for the Bellman function
related to the dyadic maximal operator. Also in [15], using the Monge- Ampère
equation approach, a more general Bellman function than the one related to the
Carleson imbedding theorem has been precisely evaluated thus generalizing the
corresponding result in [3]. It would be an interesting problem to discover if
the Bellman function of three variables defined in (1.11) can be computed using
such PDE-based methods.

2 Preliminaries

In this section we present (without proofs) the background we need from [3],
that will be used in all that follows.
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Let (X,µ) be a non-atomic probability space. Two measurable subsets A,
B of X will be called almost disjoint if µ(A ∩B) = 0.

Definition 2.1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

(i) X ∈ T and for every I ∈ T we have µ(I) > 0.

(ii) For every I ∈ T there corresponds a finite or countable subset C(I) ⊆ T
containing at least two elements such that:

(a) the elements of C(I) are pairwise almost disjoint subsets of I,

(b) I =
⋃

C(I).

(iii) T =
⋃

m≥0 Tm where T(0) = {X} and T(m+1) =
⋃

I∈T(m)
C(I).

(iv) We have limm→∞ supI∈T(m)
µ(I) = 0.

(v) T differentiates L1(X,µ)

This last condition means exactly that the Lesbesgue differentiation theorem
holds in the space L1(X,µ), with respect to the tree T .

Now we define for any tree T its exceptional set E = E(T ) as follows:

E(T ) =
⋃

I∈T

⋃

J1,J2∈C(I)
J1 6=J2

(J1 ∩ J2). (2.1)

It is easy to see that E(T ) has measure 0.

By induction it can be seen that each family T(m) consists of pairwise al-
most disjoint sets whose union is X . Moreover if x ∈ X \ E(T ) then for each
m there exists exactly one Im(x) in T(m) containing x. For every m > 0
there is a J ∈ T(m−1) such that Im(x) ∈ C(J). Then, since x ∈ J, we
must have J = Im−1(x), because x does not belong to E(T ). Hence the
set A = {I ∈ T : x ∈ I} forms a chain I0(x) = X ! I1(x) ! . . . with
Im ∈ C(Im−1(x)) for every m > 0. From this remark it follows that if I, J ∈ T
and I ∩ J ∩ (X \E(T )) is nonempty, then I ⊆ J or J ⊆ I. In particular for any
I, J ∈ T , either µ(I ∩ J) = 0 or one of them is contained in the other.

Given any tree T we remind that the maximal operator associated to it is
defined as follows:

MT φ(x) = sup{
1

µ(I)

∫

I

|φ| dµ : x ∈ I ∈ T }, (2.2)

for every φ ∈ L1(X,µ).
Next we describe the linearization procedure for the operator MT . Let

φ ∈ L1(X,µ) be a nonnegative function and for any I ∈ T let

AvI(φ) =
1

µ(I)

∫

I

φdµ. (2.3)
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We will say that φ is T -good if the set

Λφ = {x ∈ X \ E(T ) : MT φ(x) > AvI(φ) for all I ∈ T such that x ∈ I}
(2.4)

has µ-measure zero.
For any such function and every x ∈ X \ (E(T ) ∪ Λφ) (i.e. for µ-almost

every x in X) we define Iφ(x) to be the largest element in the nonempty set
{I ∈ T : x ∈ I and MT φ(x) = AvI(φ)}.

Also given any I ∈ T let

A(φ, I) = {x ∈ X \ (E(T ) ∪ Λφ) : Iφ(x) = I} ⊆ I (2.5)

and
Sφ = {I ∈ T : µ(A(φ, I) > 0} ∪ {X}. (2.6)

It is clear that

MT φ =
∑

I∈Sφ

AvI(φ)χA(φ,I), almost everywhere, (2.7)

where χB denotes the characteristic function of B ⊂ X. Now we define the
correspondence I → I∗ with respect to Sφ for I 6= X in the following manner:
I∗ is the smallest element of {J ∈ Sφ : I ( J}.

It is clear that the sets AI = A(φ, I), I ∈ Sφ, are pairwise disjoint and since
µ(∪J /∈Sφ

AJ ) = 0 their union has full measure.
In the following Lemma we present several important properties of the sets

defined above. At this point we define two measurable sets A and B to be
almost equal if µ(A \B) = µ(B \A) = 0 and in this case we write A ≈ B

Lemma 2.1. (i) If I, J ∈ Sφ then either AJ ∩ I = ∅ or J ⊆ I.

(ii) If I ∈ Sφ then there exists J ∈ C(I) such that J /∈ Sφ

(iii) For every I ∈ Sφ we have I ≈
⋃

Sφ∋J⊆I AJ .

(iv) For every I ∈ Sφ we have AI ≈ I \
⋃

J∈Sφ: J∗=I J and so

µ(AI) = µ(I)−
∑

J∈Sφ: J∗=I

µ(J). (2.8)

From the above we get

AvI(φ) =
1

µ(I)

∑

J∈Sφ: J⊆I

∫

AJ

φdµ. (2.9)

Now we fix q > 1. Following [3] we set

xI = a
−1+ 1

q

I

∫

AI

φdµ (2.10)
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for every I ∈ Sφ where aI = µ(AI) (in case where µ(AX) = 0 we set xX = 0)
and from Hölder’s inequality and Lemma 2.1 we get

MT φ =
∑

I∈Sφ





1

µ(I)

∑

J∈Sφ: J⊆I

a
1/q́
J xJ



χAI
(2.11)

µ-almost everywhere, where q́ = q
q−1 is the dual exponent of q, and also

∫

X

φq dµ =
∑

I∈Sφ

∫

AI

φq dµ ≥
∑

I∈Sφ

xq
I . (2.12)

So we have

∫

X

(MT φ)
q dµ =

∑

I∈Sφ





1

µ(I)

∑

J∈Sφ: J⊆I

a
1/q́
J xJ





q

aI =
∑

I∈Sφ

aIy
q
I (2.13)

where

yI = AvI(φ) =
1

µ(I)

∑

J∈Sφ: J⊆I

a
1/q́
J xJ . (2.14)

3 Proof of (1.12)

We shall first prove (1.12) for the class of T -good functions. Let φ : (X,µ) →
R+ be T -good and such that

∫

X
φdµ = f and

∫

X
φq dµ = A. We use the

linearization technique mentioned in Section 2. From (2.11) and (2.14), if we
set

F ′ =

∫

X

(MT φ)p−qφq dµ,

we get

F ′ =

∫

X

∑

I∈S

yp−q
I χAI

φq dµ =
∑

I∈S

yp−q
I

∫

AI

φq dµ

=
∑

I∈S
I 6=X

yp−q
I

∫

AI

φq dµ+ yp−q
X A− yp−q

X

∑

I∈S
I∗=X

∫

I

φq dµ, (3.1)

where for the last equality in (3.1) we used Lemma ??(iv). Lemma ??(iii) and
the definition of the correspondence I → I∗ imply

∑

I∈S
I∗=X

∫

I

φq dµ =
∑

I∈S
I∗=X

∑

J∈S
J⊆I

∫

AJ

φq dµ =
∑

I∈S
I 6=X

∫

AI

φq dµ. (3.2)

Moreover, it is easy to see that

xq
I = aq−1

I (yIµ(I)−
∑

J∈S
J∗=I

yJµ(J))
q

7



and
∫

AI

φq dµ ≥ xq
I .

So using Hölder’s inequality in the form

(λ1 + λ2 + . . .+ λm)q

(σ1 + σ2 + . . .+ σm)q−1
≤

λq
1

σq−1
1

+
λq
2

σq−1
2

+ . . .+
λq
m

σq−1
m

, (3.3)

which holds for every λi ≥ 0, σi > 0, since q > 1, Lemma ??(iv) and the
properties of the correspondence I → I∗, (3.1) becomes

F ′ =
∑

I∈S
I 6=X

yp−q
I

∫

AI

φq dµ+ yp−q
X A− yp−q

X

∑

I∈S
I 6=X

∫

AI

φq dµ

=
∑

I∈S

(yp−q
I − yp−q

X )

∫

AI

φq dµ+ yp−q
X A

≥
∑

I∈S

(yp−q
I − yp−q

X )xq
I + yp−q

X A

=
∑

I∈S

(yp−q
I − yp−q

X )
(yIµ(I)−

∑

J∈S
J∗=I

yJµ(J))
q

(µ(I) −
∑

J∈S
J∗=I

µ(J))q−1
+ yp−q

X A

≥
∑

I∈S

(yp−q
I − yp−q

X )
( (yIµ(I))

q

(τIµ(I))q−1
−

∑

J∈S
J∗=I

(yJµ(J))
q

((β + 1)µ(J))q−1

)

+ yp−q
X A

= K −
∑

I∈S
I 6=X

(yp−q
I∗ − yp−q

X )
(yIµ(I))

q

((β + 1)µ(I))q−1

= K −
∑

I∈S
I 6=X

yp−q
I∗ yqI

µ(I)q

((β + 1)µ(I))q−1
+ yp−q

X

∑

I∈S
I 6=X

(yIµ(I))
q

((β + 1)µ(I))q−1
(3.4)

provided that the τI > 0 satisfy τIµ(I) − (β + 1)
∑

J∗=I µ(J)) = µ(I) −
∑

J∗=I µ(J), which in turn gives

τI = β + 1− βρI , (3.5)

with ρI = aI

µ(I) , and

K =
∑

I∈S

(yp−q
I − yp−q

X )
(yIµ(I))

q

(τIµ(I))q−1
+ yp−q

X A, (3.6)

We now use the following elementary inequality,

pxq ·yp−q ≤ qxp + (p− q)yp,
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which holds since 1 < q < p, for any x, y > 0, to get

F ′ ≥ K−
p− q

p

∑

I∈S
I 6=X

ypI∗

µ(I)

(β + 1)q−1
−
q

p

∑

I∈S
I 6=X

ypI
µ(I)

(β + 1)q−1
+yp−q

X

∑

I∈S
I 6=X

yqIµ(I)

(β + 1)q−1
.

(3.7)
From Lemma 2.1 (iv),

∑

I∈S
I 6=X

µ(I)ypI∗ =
∑

I∈S

∑

J∈S
J∗=I

µ(J)ypI =
∑

I∈S

(µ(I) − aI)y
p
I

= ypX +
∑

I∈S
I 6=X

µ(I)ypI −
∑

I∈S

aIy
p
I . (3.8)

So

F ′ ≥ K −
∑

I∈S
I 6=X

(yp−q
I − yp−q

X )
yqIµ(I)

(β + 1)q−1
−

(p− q)ypX
p(β + 1)q−1

+
p− q

p

∑

I∈S

aIy
p
I

(β + 1)q−1

=
∑

I∈S

(yp−q
I − yp−q

X )
1

ρI

(

1

(β + 1− βρI)q−1
−

1

(β + 1)q−1

)

aIy
q
I

−
p− q

p

ypX
(β + 1)q−1

+
p− q

p

∑

I∈S

aIy
p
I

(β + 1)q−1
+ yp−q

X A, (3.9)

after we have expanded K. Note now that

1

(β + 1− βx)q−1
−

1

(β + 1)q−1
≥

(q − 1)βx

(β + 1)q
,

by the mean value theorem on derivatives for all x ∈ [0, 1], so (3.9) becomes

F ′ ≥

(

(q − 1)β

(β + 1)q
+

p− q

p(β + 1)q−1

)∫

X

(MT φ)
p dµ

−
p− q

p

fp

(β + 1)q−1
− fp−q (q − 1)β

(β + 1)q

∫

X

(MT φ)
q dµ+ fp−qA (3.10)

for every β > 0. Rearranging the terms, we get (1.12) for T - good functions.
For the general φ ∈ Lp(X,µ) with

∫

X
φ = f and

∫

X
φq = A, f q < A,

1 < q < p, (1.12) is proved as follows. We consider the sequence {φm}, where
φm =

∑

I∈T(m)
AvI(φ)χI and we set

Φm =
∑

I∈T(m)

max{AvI(φ) : I ⊆ J ∈ T }χI = MT φm,

since AvJ (φ) = AvJ(φm) whenever I ⊆ J ∈ T . It is easy to see that
∫

X

φm dµ =

∫

X

φdµ = f,

∫

X

φq
m dµ ≤

∫

X

φq dµ (3.11)

9



for all m and that Φm converges monotonically almost everywhere to MT φ.
Since φm is easily seen to be T -good, from what we have just shown,

∫

X

Φp
m dµ ≤

p(β + 1)q

G(p, q, β)

∫

X

Φp−q
m φq

m dµ+
(p− q)(β + 1)

G(p, q, β)
fp

+
p(q − 1)β

G(p, q, β)
fp−q

∫

X

Φq
m dµ−

p(β + 1)q

G(p, q, β)
fp−q

∫

X

φq
m. (3.12)

Since T differentiates L1(X,µ) and by the definition of φm, if {Im(x)} is the
chain of elements of T which contain x ∈ X, then

lim
m→∞

φm(x) = lim
m→∞

AvIm(x)(φ) = φ(x) (3.13)

and φm ≤ Φm Taking limits using the monotone and dominated convergence
theorems and Fatou’s lemma, we obtain (1.12) for the general φ ∈ Lp(X,µ).

4 Proof of Theorem 1

We now move on to show that (1.12) is sharp. To do this we shall use a result
from [8] stated in Theorem 2 below. What makes it particularly useful in our
case is that it is valid for any functions G1, G2 satisfying the specific properties
mentioned. We remind here that the decreasing rearrangement φ∗ : (0,∞) →
[0,∞] of a measurable function φ : X → R, is defined as

φ∗(t) = inf{s : dφ(s) ≤ t},

with dφ the distribution function of φ.

Theorem 2. The following is true

sup
{

∫

K

G1(MT φ)G2(φ) dµ : φ∗ = g, K ⊆ X measurable, with µ(K) = k
}

=

∫ k

0

G1(
1

t

∫ t

0

g)G2(g(t)) dt, (4.1)

where Gi : [0,+∞] → [0,+∞], i = 1, 2, are increasing functions, g : (0, 1] → R

is non-increasing and φ∗ is the decreasing rearrangement of the function φ.

So, with X in place of K and from well known properties of the decreasing
rearrangement, it is now easy to see that

sup
{

∫

X

G1(MT φ)G2(φ) dµ : φ ≥ 0, measurable, with

∫

X

φ = f
}

= sup
{

∫ 1

0

G1(
1

t

∫ t

0

g)G2(g(t)) dt : g : (0, 1] → R, non-increasing,

∫ 1

0

g = f
}

.

(4.2)
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Let β > 0 and define g : (0, 1] → R by

g(t) =
f

β + 1
t−1+ 1

β+1 . (4.3)

It is easy to see that
∫ 1

0 g = f, for every β > 0, 1
t

∫ t

0 g = (β + 1)g(t) for every
t ∈ (0, 1] and, after straightforward calculations, that

∫ 1

0

(
1

t

∫ t

0

g)p dµ =
p(β + 1)q

G(p, q, β)

∫ 1

0

(
1

t

∫ t

0

g)p−qgq dµ+
(p− q)(β + 1)

G(p, q, β)
fp

+
p(q − 1)β

G(p, q, β)
fp−q

∫ 1

0

(
1

t

∫ t

0

g)q dµ−
p(β + 1)q

G(p, q, β)
fp−q

∫ 1

0

gq dµ. (4.4)

This, together with (4.2), proves the sharpness of (1.12) for the first case stated
in Theorem 1. Now, (4.2) is valid if we add

∫

X
φq = A in the brackets of the left

hand side of (4.2) and
∫ 1

0 gq = A to the right, that is if we consider the q-norms
of the corresponding functions as fixed. So in case

∫

X φq dµ = A, all we need to

do is choose β > 0 so, that
∫ 1

0
gq = A, with g as in (4.3). The appropriate value

is easily seen to be the one given in Theorem 1 and the proof is complete.

5 Applications

Proof of Corollary 1.
Since

∫

X φdµ = f , from (4.25) in [3], we know that

∫

X

(MT φ)
q dµ ≤

β + 1

β

(β + 1)q−1
∫

X φq dµ− f q

q − 1
(5.1)

for every β > 0, for φ a T -good function. Plugging this into (3.10) we get (1.13)
for T -good functions and defining φm and Φm as in Section 3, we get (1.13) for
the general φ ∈ Lp(X,µ), using the monotone convergence theorem. Sharpness
is proved for both cases in the same way it has been proved for (1.12). We only
need to observe that with g as in (4.3)

∫ 1

0

(
1

t

∫ t

0

g)p dµ = −
q(β + 1)

G(p, q, β)
fp +

p(β + 1)q

G(p, q, β)

∫ 1

0

(
1

t

∫ t

0

g)p−qgq dµ. (5.2)

Our final application is to derive the least upper bound for
∫

X (MT φ)
p
dµ,

when on φ we impose the conditions
∫

X
φdµ = f and

∫

X
φpdµ = F (where

f, F are fixed, satisfying 0 ≤ fp ≤ F ), by using the proof of inequality (1.13),
for an arbitrary q belonging to (1, p), and a suitable value of β, depending on
q, p, f and F . That is we find the main Bellman function of two variables, (1.7),
associated to the dyadic maximal operator. We proceed to this as follows.

Fix q ∈ (1, p). First of all it is easy to see that for the above f, F , there
exists β ∈ (0, 1

p−1 ), such that

11



hβ(β + 1)F =
q

p

1

(β + 1)q−1
fp, (5.3)

where hβ(y) is defined, for every y > 1, by hβ(y) = yp−q − Aβy
p and Aβ is

defined by

Aβ =
(q − 1)β

(β + 1)q
+

p− q

p

1

(β + 1)q−1
. (5.4)

For this existence, we just need to define the function

G(β) =
1

(β + 1)p−1[1− β(p− 1)]
,

of β ∈ (0, 1
p−1 ), and note that G(0+) = 1 and G( 1

p−1−) = +∞. Thus there

exists β ∈ (0, 1
p−1 ), such that G(β) = F

fp ≥ 1. If this last condition is true

we easily see, after some simple calculations, that hβ(β + 1)F = q
p

1
(β+1)q−1 f

p,

which is (5.3).
Now, because of (1.13), for any φ ∈ Lp(X,µ), and for this value of β, the

following inequality holds

∫

X

φq (MT φ)
p−q

dµ ≥ Aβ

∫

X

(MT φ)
p
dµ+

q

p

1

(β + 1)q−1
fp.

Applying Hölder’s inequality on the left side of the above inequality we obtain

F q/p
(

∫

X

(MT φ)p dµ
)(p−q)/p

≥ Aβ

∫

X

(MT φ)p dµ+
q

p

1

(β + 1)q−1
fp

or equivalently, by dividing both sides by F ,

I
(p−q)/p
φ ≥ AβIφ +

q

p

1

(β + 1)q−1

fp

F
,

where in the last inequality we denote Iφ =
∫
X
(MT φ)pdµ

F , which in turn means
that

hβ(I
1/p
φ ) ≥

q

p

1

(β + 1)q−1

fp

F
. (5.5)

Now for any β ∈ (0, 1
p−1 ), we prove that the function hβ, with domain

(1,+∞), is strictly decreasing. For this proof we proceed in the following way.
We have that d

dyhβ(y) = yp−1[(p − q)y−q − pAβ ] < yp−1[(p− q) − pAβ ], where
the inequality in the last relation is true due to the fact that y is greater than
1. Now we claim that Aβ > p−q

p , for any q ∈ [1, p] and β ∈ (0, 1
p−1 ). For this

reason, we consider Aβ as a function of β, in the above mentioned domain and
denote it as K(β). Then K(0) = p−q

p , so we just need to prove that K(β) is

strictly increasing. For this purpose we evaluate d
dβK(β), which as can be easily

12



seen by using (5.4) is equal to (q−1)q[1−β(p−1)]
p(β+1)q+1 , which is positive for any β as

above. By the above discussion we conclude that d
dyhβ(y) < 0, for any y > 1.

Thus from (5.5) we have as a consequence that I
1/p
φ ≤ h−1

β (L), where L =
q
p

1
(β+1)q−1

fp

F . This conclusion holds, if we suppose that Iφ > 1, which may be

assumed, since in the opposite case we have nothing to prove. We finally reach
the inequality

∫

X

(MT φ)
p
dµ ≤ F (h−1

β (L))p (5.6)

Having now in mind that (5.3) holds, we show that h−1
β (L) = ωp

(

fp

F

)

, where

ωp is defined in the Introduction. Indeed, by (5.3), we immediately conclude

that h−1
β (L) = β+1, so we just need to prove that β+1 = ωp

(

fp

F

)

. Equivalently

this means that Hp(β + 1) = fp

F . But by (5.3), we easily see that

p

q
(β + 1)q−1[(β + 1)p−q −Aβ(β + 1)p] =

fp

F
.

After simple calculations in the left side of the above equality, the real number
q is cancelled giving us the quantity

−(p− 1)(β + 1)p + p(β + 1)p−1,

which is exactly Hp(β + 1). In this way we derive that

B
(p)
T (f, F ) ≤ F ωp

(

fp

F

)p

.

This establishes the least upper bound we need to find for the quantity of interest
for the general φ ∈ Lp(X,µ). Note finally that the opposite inequality is also
true, as can be concluded immediately by the sharpness of inequality (1.13),
which is best possible for any fixed values of f and β. Thus we have equality in
the above inequality, and our evaluation of the Bellman function of two variables
for the dyadic maximal operator is completed.
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enhoupt weights, St. Petersburg Math. J., 15 (2004), no. 1, 49–75.

[14] V. Vasyunin, A. Volberg, The Bellman functions for a certain two weight
inequality: The case study, St. Petersburg Math. J., 18 (2007), No. 2, p
201–222.

[15] V. Vasyunin, A. Volberg, Monge-Ampère equation and Bellman optimiza-
tion of Carleson embedding theorems, Linear and complex analysis, 195–
238, Amer. Math. Soc. Transl. Ser.2, 226, Amer. Math. Soc., Providence,
RI, 2009.

[16] G. Wang, Sharp maximal inequalities for conditionally symmetric martin-
gales and Brownian motion, Proc. Amer. Math. Soc. 112 (1991), 579–586.

Anastasios D. Delis, Eleftherios N. Nikolidakis, National and Kapodistrian
University of Athens, Department of Mathematics, Panepistimioupolis, Zo-
grafou 157 84, Athens, Greece.

14


	1 Introduction
	2 Preliminaries
	3 Proof of (??)
	4 Proof of Theorem ??
	5 Applications

