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Abstract

We provide an alternative proof of the expression of the Bellman func-
tion of the dyadic maximal operator in connection with the Dyadic Car-
leson Imbedding Theorem, which appears in [10]. We also state and prove
a sharp integral inequality for this operator in connection with the above
Bellman function, and give an application.

1 Introduction

The dyadic maximal operator on Rn is a useful tool in analysis and is defined
by

Mdφ(x) = sup

{

1

|S|

∫

S

|φ(u)| du : x ∈ S, S ⊆ Rn is a dyadic cube

}

, (1.1)

for every φ ∈ L1
loc(R

n), where | · | denotes the Lebesgue measure on Rn, and the
dyadic cubes are those formed by the grids 2−NZn, for N = 0, 1, 2, . . ..
It is well known that it satisfies the following weak type (1,1) inequality

|{x ∈ Rn : Mdφ(x) > λ}| ≤
1

λ

∫

{Mdφ>λ}

|φ(u)| du, (1.2)

for every φ ∈ L1(Rn), and every λ > 0, from which it is easy to get the following
Lp-inequality

‖Mdφ‖p ≤
p

p− 1
‖φ‖p, (1.3)

for every p > 1, and every φ ∈ Lp(Rn). It is easy to see that the weak type
inequality (1.2) is the best possible. For refinements of this inequality consult
[15].

It has also been proved that (1.3) is best possible (see [2] and [3] for general
martingales and [36] for dyadic ones). An approach for studying the behaviour of
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this maximal operator in more depth is the introduction of the so-called Bellman
functions which play the role of generalized norms ofMd. Such functions related
to the Lp-inequality (1.3) have been precisely identified in [8], [10] and [20].
For the study of the Bellman functions of Md, we use the notation AvE(ψ) =
1
|E|

∫

E ψ, whenever E is a Lebesgue measurable subset of Rn of positive measure

and ψ is a real valued measurable function defined on E. We fix a dyadic cube Q
and define the localized maximal operator M′

dφ as in (1.1) but with the dyadic
cubes S being assumed to be contained in Q. Then for every p > 1 we let

Bp(f, F ) = sup

{

1

|Q|

∫

Q

(M′
dφ)

p : AvQ(φ) = f, AvQ(φ
p) = F

}

, (1.4)

where φ is nonnegative in Lp(Q) and the variables f, F satisfying 0 < fp ≤ F .
By a scaling argument it is easy to see that (1.4) is independent of the choice of
Q (so we may choose Q to be the unit cube [0, 1]n). In [10], the function (1.4)
has been precisely identified for the first time. The proof has been given in a
much more general setting of tree-like structures on probability spaces.

More precisely we consider a non-atomic probability space (X,µ) and let T
be a family of measurable subsets of X , that has a tree-like structure similar
to the one in the dyadic case (the exact definition will be given in Section 2).
Then we define the dyadic maximal operator associated to T , by

MT φ(x) = sup

{

1

µ(I)

∫

I

|φ| dµ : x ∈ I ∈ T

}

, (1.5)

for every φ ∈ L1(X,µ), x ∈ X .
This operator is related to the theory of martingales and satisfies essentially

the same inequalities as Md does. Now we define the corresponding Bellman
function of four variables of MT , by

BT
p (f, F, L, k) = sup

{∫

K

[max(MT φ, L)]
p
dµ : φ ≥ 0,

∫

X

φ dµ = f,

∫

X

φp dµ = F, K ⊆ X measurable with µ(K) = k

}

, (1.6)

the variables f, F, L, k satisfying 0 < fp ≤ F , L ≥ f , k ∈ (0, 1]. The exact eval-
uation of (1.6) is given in [10], for the cases where k = 1 or L = f . In the first
case the author (in [10]) precisely identifies the function BT

p (f, F, L, 1) by eval-
uating it in a first stage for the case where L = f . That is he precisely identifies
BT

p (f, F, f, 1) (in fact BT
p (f, F, f, 1) = Fωp(

fp

F )p, where ωp : [0, 1] → [1, p
p−1 ] is

the inverse function H−1
p , of Hp(z) = −(p− 1)zp + pzp−1). Then using several

calculus argument he provides the evaluation of BT
p (f, F, L, 1) for every L ≥ f .

Now in [20] the authors give a direct proof of the evaluation of BT
p (f, F, L, 1) by

using alternative methods. In fact they prove a sharp symmetrization principle
that holds for the dyadic maximal operator, which is stated as Theorem 2.1 (see
Section 2).
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In the second case, where L = f , the author (in [10]) uses the evaluation of
BT

p (f, F, f, 1) and provides a proof of the more general BT
p (f, F, f, k), k ∈ (0, 1].

We write from now on this function as BT
p (f, F, k). This function is related to

the Dyadic Carleson Imbedding Theorem and in fact, as is proved in [10], the
following is true

BT
p (f, F, k) = sup

{

∑

I∈T

λI(AvI(φ))
p, φ ≥ 0,

∫

X

φ dµ = f,

∫

X

φp dµ = F,

and the nonegative λI ’s satisfy
∑

J∈T :J⊆I

λJ ≤ µ(I) for every I ∈ T

and
∑

I∈T

λI = k

}

. (1.7)

As an immediate step for the evaluation of BT
p (f, F, k) in [10], it is pro-

vided an alternative expression for this function. This is stated in the following
theorem

Theorem 1.1. The following is true

BT
p (f, F, k) = sup







(

F −
(f −B)p

(1− k)p−1

)

ωp





Bp

kp−1
(

F − (f−B)p

(1−k)p−1

)



 :

for all B ∈ [0, f ] such that hk(B) ≤ F} , (1.8)

where hk is defined by hk(B) = (f−B)p

(1−k)p−1 + Bp

kp−1 .

After proving the above theorem, the author in [10], precisely evaluated
BT

p (f, F, k), by using a chain of calculus arguments. In Section 3 we provide an
alternative proof of Theorem 1.1. Now in view of the symmetrization principle
that appears in [20] (see Theorem 2.1 below) we conclude that

BT
p (f, F, k) = sup

{

∫ k

0

(

1

t

∫ t

0

g

)p

dt : where g : (0, 1] −→ R+ is

non-increasing,

∫ 1

0

g = f,

∫ 1

0

gp = F

}

. (1.9)

In Section 4 we prove the following

Theorem 1.2. There exists a function g = gk : (0, 1] −→ R+ non-increasing

and continuous, satisfying
∫ 1

0 g = f and
∫ 1

0 g
p = F , for which the supremum in

(1.9) is attained.
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In fact by using the methods that appear in [17], one can see that the function
gk that satisfies the statement of the above theorem should be unique. Moreover
we explicitly construct the function gk, mentioned above.

In Section 5 we provide a 3-parameter inequality for the operator that we
study, which is connected with the above two theorems. In fact in [10] is proved
a 1−parameter inequality which states that, for every φ ∈ Lp(X,µ) satisfying
∫

X φ dµ = f and
∫

X φp dµ = F , the inequality

F ≥
1

(β + 1)p−1
fp +

(p− 1)β

(β + 1)p

∫

X

(MT φ)
p dµ, (1.10)

is true for every value of the parameter β and sharp for one that depends on
f and F . This gives as a consequence the evaluation of BT

p (f, F, f, 1). In this
paper we prove an inequality that connects in a sharp way the Lp−integral of
φ on X and K, and also the Lp−integral of MT φ, on X and K, where K is an
arbitrary measurable subset of X . More precisely we prove the following

Theorem 1.3. Let β ≥ γ ≥ 0, and K an arbitrary measurable subset of X,
with measure k ∈ (0, 1]. Then for every φ ∈ Lp(X,µ) such that

∫

X φ dµ = f
and

∫

X
φp dµ = F the following inequality is true

F ≥

[

1−
1

(1 + γ)p−1

]∫

K

φp dµ+
(p− 1)β

(β + 1)p

∫

X

(MT φ)
p dµ

−
(p− 1)γ

(β + 1)p

∫

K

(MT φ)
p dµ+

fp

(β + 1)p−1
. (1.11)

Moreover (1.11) is sharp in the sense that for each k ∈ (0, 1] there exist
β, γ ≥ 0 such that β ≥ γ, a sequence of measurable (Kn)n∈N subsets of X with
limn µ(Kn) = k, and a sequence (φn)n∈N of non-negative functions in Lp(X,µ),
satisfying the above integral conditions, giving equality in (1.11) in the limit.

Note that if we set γ = 0 in (1.11) we get (1.10). We also get the same
conclusion if we let k tend to zero. In fact Theorem 1.3 gives, under the above
mentioned integral conditions for φ, the best possible connection of the quanti-
ties

∫

X(MT φ)
p dµ and

∫

K(MT φ)
p dµ, where µ(K) = k ∈ (0, 1] is given.

It is obvious that the inequality (1.11) connects in the best possible way the
quantities

∫

X
(MT φ)

p dµ and
∫

K
(MT φ)

p dµ (along with f, F ), and this is done
for an arbitrary K measurable subset of X .

We also need to mention that the extremizers for the standard Bellman
function BT

p (f, F, f, 1) has been studied in [16], and in [18] for the case 0 < p < 1.
We note also that further study of the dyadic maximal operator can be seen in
[19, 20] where symmetrization principles for this operator are presented, while
other approaches for the determination of certain Bellman functions are given
in [26, 27, 31, 32, 33] .

There are several problems in Harmonic Analysis where Bellman functions
naturally arise. Such problems (including the dyadic Carleson Imbedding The-
orem and weighted inequalities) are described in [14] (see also [12, 13]).

4



We should mention also that the exact computation of a Bellman function is
a difficult task which is connected with the deeper structure of the corresponding
Harmonic Analysis problem. Thus far several Bellman functions have been
computed (see [2, 9, 11, 25, 27, 31, 32, 33]). In [26] L. Slavin, A. Stokolos
and V. Vasyunin linked the Bellman function computation to solving certain
PDE’s of the Monge-Ampère type, and in this way they obtained an alternative
proof for the evaluation of the Bellman functions related to the dyadic maximal
operator.

Also in [33], using the Monge-Ampère equation approach, a more general
Bellman function than the one related to the dyadic Carleson Imbedding The-
orem has been precisely evaluated thus generalizing the corresponding result
in [10]. For more recent developments we refer to [1, 6, 7, 23, 24, 28, 29, 37].
Additional results can be found in [34, 35] while for the study of general theory
of maximal operators one can consult [4, 5] and [30]. Also in [22] one can find
other approaches for the study of the dyadic maximal operator.

In this paper, as in our previous ones we use Bellman functions as a mean
to get in deeper understanding of the corresponding maximal operators and
we are not using the standard techniques as Bellman dynamics and induc-
tion, corresponding PDE’s, obstacle conditions etc. Instead our methods being
different from the Bellman function technique, we rely on the combinational
structure of these operators. For such approaches, which enables us to study
and solve problems as the one which is described in this article one can see
[8, 9, 10, 11, 16, 17, 18, 19, 20, 21].

Acknowledgement: I would like to thank Anastasios D. Delis for the idea of
splitting the sets A′

Is. This was a motivation for me to state and prove Theorem
1.3.

2 Preliminaries

Let (X,µ) be a nonatomic probability space. We give the following

Definition 2.1. A set T of measurable subsets of X will be called a tree if the
following conditions are satisfied:

i) X ∈ T and for every I ∈ T we have that µ(I) > 0.

ii) For every I ∈ T there corresponds a finite or countable subset C(I) ⊆ T
containing at least two elements such that

a) the elements of C(I) are pairwise disjoint subsets of I.

b) I = ∪C(I).

iii) T = ∪m≥0T(m), where T(0) = {X} and T(m+1) = ∪I∈T(m)
C(I).

iv) We have limm→∞

(

supI∈T(m)
µ(I)

)

= 0
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v) The tree T differentiates L1(X,µ). That is for every φ ∈ L1(X,µ) it is true
that

lim
x∈I∈T
µ(I)→0

1

µ(I)

∫

I

φ dµ = φ(x),

for µ−almost every x ∈ X .

Then we define the dyadic maximal operator corresponding to T by

MT φ(x) = sup

{

1

µ(I)

∫

I

| φ | dµ : x ∈ I ∈ T

}

, (2.1)

for every φ ∈ L1(X,µ), x ∈ X .
We give the following which appears in [10].

Lemma 2.1. Let p > 1 be fixed. Then the function ωp : [0, 1] −→ [1, p
p−1 ],

defined as the inverse of Hp(z) = pzp−1 − (p− 1)zp, is strictly decreasing, and

if we define Up on (0, 1], by Up(x) =
ωp(x)

p

x , we have that Up is also strictly
decreasing.

Lemma 2.2. For every I ∈ T and every α such that 0 < a < 1 there exists a
subfamily F(I) ⊆ T consisting of pairwise disjoint subsets of I such that

µ





⋃

J∈F(I)

J



 =
∑

J∈F(I)

µ(J) = (1− α)µ(I).

Definition 2.2. Let φ : (X,µ) −→ R+. Then φ∗ : (0, 1] −→ R+ is defined as
the unique non-increasing, left continuous and equimeasurable to φ function on
(0, 1].

There are several formulas that express φ∗, in terms of φ. One of them is as
follows:

φ∗(t) = inf ({y > 0 : µ ({x ∈ X : φ(x) > y}) < t}) ,

for every t ∈ (0, 1]. An equivalent formulation of the non increasing rearrange-
ment can be given by

φ∗(t) = sup
e⊆X,µ(e)≥t

[

inf
x∈e

φ(x)

]

,

for any t ∈ (0, 1].
In [21] one can see the following symmetrization principle for the dyadic

maximal operator MT .

Theorem 2.1. Let g : (0, 1] −→ R+ be non-increasing and G1, G2 be non-
decreasing and non-negative functions defined on [0,+∞). Then the following
is true, for any k ∈ (0, 1]

sup

{∫

K

G1(MT φ)G2(φ) dµ : φ∗ = g and µ(K) = k

}

=

=

∫ k

0

G1

(

1

t

∫ t

0

g

)

G2 (g(t)) dt.

6



We also state the following, which is a standard fact in the theory of real
functions.

Lemma 2.3. Let g1, g2 : (0, 1] −→ R+ be non-increasing functions, such that

∫ 1

0

G (g1(t)) dt ≤

∫ 1

0

G (g2(t)) dt

for every G : [0,+∞) −→ [0,+∞) non-decreasing. Then the inequality g1(t) ≤
g2(t) holds almost everywhere on (0, 1]

We now state some facts that appear in [10]. Fix k ∈ (0, 1), p > 1 and
consider the function

hk(B) =
(f −B)p

(1− k)p−1
+

Bp

kp−1
, (2.2)

defined for B ∈ [0, f ].
We also define

Rk(B) =

(

F −
(f −B)p

(1− k)p−1

)

ωp





Bp

kp−1
(

F − (f−B)p

(1−k)p−1

)





p

, (2.3)

for B such that B ∈ [0, f ] and hk(B) ≤ F . Note that Rk(B) is defined for all
B ∈ [0, f ] for which hk(B) ≤ F or equivalently:

(f −B)p

(1 − k)p−1
+

Bp

kp−1
≤ F ⇐⇒ 0 ≤

Bp

kp−1
[

F − (f−B)p

(1−k)p−1

] ≤ 1

so that (2.3) makes sense in view of the definition of ωp.
Then as one can see in [10] the domain ofRk is an interval [p0(f, F, k), p1(f, F, k)].

We state the following from [10] (For completeness reasons we provide also the
first statement of the lemma that appears right below).

Lemma 2.4. i) For every θ ∈ [0, 1] the equation

σ(z) = −(p− 1)zp + (p− 1 + k)zp−1 − θ

[

1 + (1− k)

(

p− 1

z
− p

)]

= 0

has a unique solution in the interval
[

1, 1 + k
p−1

]

which is denoted by ωp,k(θ).

ii) The function Rk defined on [p0(f, F, k), p1(f, F, k)] attains its absolute

maximum at the unique interior point B0 ∈

(

kf,min

(

pk

p− 1 + k
, p1(f, F, k)

))

such that
f(1− k)

f −B0
= ωp,k

(

fp

F

)

. Moreover B0 satisfies

Hp

(

B0

k

1− k

f −B0

)

=
Bp

0

kp−1
[

F − (f−B0)p

(1−k)p−1

]

7



3 The Bellman function Bp(f, F, k)

Lemma 3.1. For any φ : (X,µ) → R+ integrable, the following inequality is
true

(MT φ)
⋆(t) ≤

1

t

∫ t

0

φ⋆(u) du, for every t ∈ (0, 1].

Proof. By Theorem 2.1 we have for any G : [0,+∞) −→ [0,+∞) non-decreasing

∫

X

G(MT φ) dµ ≤

∫ 1

0

G

(

1

t

∫ t

0

φ⋆(u) du

)

dt. (3.1)

Since G is non-decreasing we have that

[G(MT φ)]
⋆
(t) = G [(MT φ)

⋆] (t), for almost every t ∈ (0, 1].

Thus
∫ 1

0 G [(MT φ)
⋆] (t) dt =

∫ 1

0 [G(MT φ)]
⋆
(t) dt =

∫

X G(MT φ) dµ ≤
∫ 1

0 G
(

1
t

∫ t

0 φ
⋆(u) du

)

dt, by (3.1). Thus by Lemma 2.3 we immediately conclude

that

(MT φ)
⋆(t) ≤

1

t

∫ t

0

φ⋆(u) du, (3.2)

almost everywhere on (0, 1]. Since now (MT φ)
⋆(t) is left continuous, we conclude

that (3.2) should hold everywhere on (0, 1], and in this way we derive the proof
of our Lemma.

There is also a second, simpler proof of Lemma 3.1 which we present right
below

2nd proof of Lemma 3.1.
Suppose that we are given φ : (X,µ) → R+ integrable and t ∈ (0, 1] fixed. We

set A = 1
t

∫ t

0 φ
⋆(u) du. Then obviously A ≥

∫ 1

0 φ
⋆(u) du = f , by the fact that

φ⋆ is non-increasing on (0, 1]. We consider the set E = {MT φ > A} ⊆ X .
Then by the weak type inequality (1.2) for MT φ, we have that

µ(E) <
1

A

∫

E

|φ| dµ ⇒

A =
1

t

∫ t

0

φ⋆(u) dµ <
1

µ(E)

∫

E

φdµ ≤
1

µ(E)

∫ µ(E)

0

φ⋆(u) du, (3.3)

where the last inequality in (3.3) holds due to the definition of φ⋆. Since
φ⋆ is non-increasing we must have from (3.3), that µ(E) < t. But µ(E) =
|{(MT φ)

⋆(t) > A}| since (MT φ) and (MT φ)
⋆ are equimeasurable. But since

(MT φ)
⋆ is non-increasing and because of the fact that µ(E) < t we conclude

that {(MT φ)
⋆ > A} = (0, γ) for some γ < t. Thus t /∈ {(MT φ)

⋆ > A} ⇒

(MT φ)
⋆(t) ≤ A = 1

t

∫ t

0
φ⋆(u) du, which is the desired result.

We are now in position to state and prove
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Lemma 3.2. Let φ : (X,µ) → R+ be such that
∫

X
φdµ = f and

∫

X
φp dµ = F

where 0 < fp ≤ F . Suppose also that we are given a measurable subset K of X
such that µ(K) = k, where k is fixed such that k ∈ (0, 1]. Then the following
inequality is true:

∫

K

(MT φ)
p dµ ≤

∫ k

0

[φ⋆(u)]p du · ωp





(

∫ k

0
φ⋆(u) du

)p

kp−1
∫ k

0
[φ⋆(u)]p du





p

.

Proof. We obviously have that

∫

K

(MT φ)
p dµ ≤

∫ k

0

[(MT φ)
⋆]p(t) dt. (3.4)

We evaluate the right-hand side of (3.4). We have:

∫ k

0

[(MT φ)
⋆)]p dt ≤

∫ k

0

(

1

t

∫ t

0

φ⋆(u) du

)p

dt (3.5)

by using Lemma 3.1. Additionally

∫ k

0

(

1

t

∫ t

0

φ⋆(u) du

)p

dt =

∫ +∞

λ=0

pλp−1

∣

∣

∣

∣

{

t ∈ (0, k] :
1

t

∫ t

0

φ⋆ ≥ λ

}∣

∣

∣

∣

dλ =

∫ fk

λ=0

+

∫ +∞

λ=fk

pλp−1

∣

∣

∣

∣

{

t ∈ (0, k] :
1

t

∫ t

0

φ⋆ ≥ λ

}∣

∣

∣

∣

dλ, (3.6)

where the first equation is justified by a use of Fubini’s theorem and fk is defined

by fk = 1
k

∫ k

0
φ⋆(u) du > f =

∫ 1

0
φ⋆(u) du.

The first integral in (3.6) is obviously equal to k(fk)
p = 1

kp−1

(∫ k

0 φ
⋆
)p
. We

suppose now that λ > fk is fixed. Then there exists α(λ) ∈ (0, k] such that
1

α(λ)

∫ α(λ)

0
φ⋆(u) du = λ. Note that, without loss of generality, we assume that

φ⋆(0+) = +∞ (the case φ⋆(0+) < +∞ can be handled similarly). As a conse-

quence
{

t ∈ (0, k] : 1
t

∫ t

0
φ⋆(u) du ≥ λ

}

= (0, α(λ)], thus

∣

∣

∣

∣

∣

{

t ∈ (0, k] :
1

t

∫ k

0

φ⋆(u) du ≥ λ

}∣

∣

∣

∣

∣

= α(λ).

So the second integral in (3.6) equals

∫ +∞

λ=fk

pλp−1α(λ) dλ =

∫ +∞

λ=fk

pλp−1 1

λ

(∫ α(λ)

0

φ⋆(u)

)

dλ,

by the definition of α(λ). The last now integral, equals

∫ +∞

λ=fk

pλp−2

(∫

{t∈(0,k]: 1
t

∫
t

0
φ⋆≥λ}

φ⋆(u) du

)

dλ =

∫ k

t=0

p

p− 1
φ⋆(t)

[

λp−1
]

1
t

∫
t

0
φ⋆

fk
dt,

(3.7)
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by a use of Fubini’s theorem. As a consequence (3.6) gives

∫ k

0

(

1

t

∫ t

0

φ⋆(u) du

)p

dt = −
1

p− 1

1

kp−1

(

∫ k

0

φ⋆

)p

+

p

p− 1

∫ k

0

φ⋆(t)

(

1

t

∫ t

0

φ⋆
)p−1

dt. (3.8)

Then by Hölder’s inequality, applied in the second integral on the right side of
(3.8), we have that

∫ k

0

(

1

t

∫ t

0

φ⋆
)p

dt ≤ −
1

p− 1

1

kp−1

(

∫ k

0

φ⋆

)p

+

p

p− 1

(

∫ k

0

[φ⋆]p

)
1
p
[

∫ k

0

(

1

t

∫ t

0

φ⋆
)p

dt

]

(p−1)
p

. (3.9)

We set now

J(k) =

∫ k

0

(

1

t

∫ t

0

φ⋆
)p

dt, A(k) =

∫ k

0

[φ⋆]p and B(k) =

∫ k

0

φ⋆.

Then we conclude by (3.9) that

J(k) ≤ −
1

p− 1

1

kp−1
[B(k)]p +

p

p− 1
[A(k)]

1
p [J(k)]

(p−1)
p ⇒

J(k)

A(k)
≤ −

1

p− 1

(

[B(k)]p

kp−1A(k)

)

+
p

p− 1

[

J(k)

A(k)

]

(p−1)
p

. (3.10)

We set now in (3.10) Λ(k) =
[

J(k)
A(k)

]
1
p

, thus we get

Λ(k)p ≤ −
1

p− 1

(

[B(k)]p

kp−1[A(k)]

)

+
p

p− 1
Λ(k)p−1 ⇒

p[Λ(k)]p−1 − (p− 1)[Λ(k)]p ≥

(∫ k

0 φ
⋆
)p

kp−1
∫ k

0
[φ⋆]p

⇒

Hp(Λ(k)) ≥

(∫ k

0
φ⋆
)p

kp−1
∫ k

0 [φ
⋆]p

=⇒ Λ(k) ≤ ωp

(

(∫ k

0
φ⋆
)p

kp−1
∫ k

0 [φ
⋆]p

)

⇒

J(k) ≤

∫ k

0

[φ⋆]p ωp

(

(∫ k

0 φ
⋆
)p

kp−1
∫ k

0
[φ⋆]p

)p

. (3.11)

At last by (3.4), (3.5) and (3.11) we derive the proof of our Lemma.
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We fix now k ∈ (0, 1], and K ⊆ X measurable such that µ(K) = k. Then if
A = A(k), B = B(k) are defined as in the proof of Lemma 3.2 we conclude that

∫

K

(MT φ)
p dµ ≤ Aωp

(

Bp

kp−1A

)

. (3.12)

Note now that the A, B must satisfy the following conditions

i) Bp ≤ kp−1A, because of Hölder’s inequality for φ⋆ on the interval (0, k].

ii) A ≤ F and B ≤ f ,

iii) (f −B)p ≤ (1− k)p−1(F −A), because of Hölder’s inequality for φ⋆ on the
interval [k, 1].

From all the above we conclude the following

Corollary 3.1.

BT
p (f, F, k) ≤ sup

{

Aωp

(

Bp

kp−1A

)p

: A, B satisfy i), ii) and iii) above

}

.

For the next Lemma we fix 0 < k < 1 and we consider the function hk(B),
defined by (2.2), for 0 ≤ B ≤ f . Now by Lemma 2.1 and the condition iii) for
A, B we immediately conclude the following

Corollary 3.2.

BT
p (f, F, k) ≤ sup







(

F −
(f −B)p

(1− k)p−1

)

ωp

(

Bp

kp−1
(

F − (f−B)p

(1−k)p−1

)

)p

:

for all B ∈ [0, f ] such that hk(B) ≤ F







. (3.13)

We now prove that we have equality in 3.13. Fix k ∈ (0, 1] and a B which

satisfy the conditions stated in Corollary 3.2. We set A = F − (f−B)p

(1−k)p−1 and we

fix also a δ ∈ (0, 1).

We use now Lemma 2.2 to pick a family {I1, I2, . . .} of pairwise disjoint
elements of T such that

∑

j µ(Ij) = k and since Bp

kp−1 ≤ A, using the value of

BT
p (f, F, f, 1) which is evaluated in [20], for each j we choose a non-negative

φj ∈ Lp
(

Ij ,
1

µ(Ij)
µ
)

such that

∫

Ij

φp dµ =
A

k
µ(Ij),

∫

Ij

φdµ =
B

k
µ(Ij), (3.14)

and

∫

Ij

(

MT (Ij)(φj)
)p

dµ ≥ δ
A

k
ωp

(

Bp

kp−1A

)p

µ(Ij), (3.15)
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where T (Ij) is the subtree of T , defined by

T (Ij) = {I ∈ T : I ⊆ Ij}.

Next we choose ψ ∈ Lp(X \K,µ) such that
∫

X\K
ψp dµ = F − A > 0 and

∫

X\K ψ dµ = f − B > 0 which, in view of the value of A, must be in fact

constant and equal to f−B
1−k =

(

(F−A)
(1−k)

)
1
p

. Here K stands for K = ∪Ij ⊆ X .

Then we define φ = ψχX\K +
∑

j φjχIj , and we obviously have

∫

X

φp dµ = F and

∫

X

φdµ = f. (3.16)

Additionally we must have by (3.15) that

∫

K

(MT φ)
pdµ ≥ δ Aωp

(

Bp

kp−1A

)p

=

δ

(

F −
(f −B)p

(1 − k)p−1

)

ωp





Bp

kp−1
(

F − (f−B)p

(1−k)p−1

)





p

. (3.17)

Letting δ → 1− we obtain equality in 3.13, thus proving Theorem 1.1.

Corollary 3.3. In the statement of Corrolary 3.1 we have equality.

Proof. Immediate, since we have equality on (3.13), and the right side of (3.13)
is greater or equal than the right side of the inequality that is stated on Corrolary
3.1.

4 Construction of the function gk

We now proceed to prove Theorem 1.2.

Proof. As it has been proved in Corrolary 3.2, it is true that:

BT
p (f, F, k) = sup {Rk(B) : 0 ≤ B ≤ f, and hk(B) ≤ F}

where Rk(B), hk(B) are defined as in Section 2. By Lemma 2.4 ii), we see that
the value B0 satisfies the following equation

ωp(Z0) =
B0

k

1− k

f −B0
(4.1)

where Z0 is given by

Z0 =
Bp

0

kp−1
(

F − (f−B0)p

(1−k)p−1

) .
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We search for a function of the form

gk(t) =

{

A1 t
−1+ 1

a , t ∈ (0, k]

c, t ∈ (k, 1]
(4.2)

for some constants a, c, A1, which satisfies the properties

BT
p (f, F, k) =

∫ k

0

(

1

t

∫ t

0

gk

)p

dt, (4.3)

and

∫ 1

0

gk = f,

∫ 1

0

gpk = F (4.4)

Concerning the first equation in 4.4, we have

∫ 1

0

gk = f ⇔

∫ k

0

gk +

∫ 1

k

gk = f ⇔

⇔

∫ k

0

gk + c(1− k) = f.

(4.5)

We set c = f−B0

1−k , in order to ensure that

∫ k

0

gk = B0. (4.6)

Note that (4.6) is (in view of (4.2)) equivalent to

∫ k

0

A1 t
−1+ 1

a dt = B0 ⇔ A1 =
B0k

−1/a

a
, (4.7)

so that we found A1, in terms of a. We search now for a value of a such that
the second equation in (4.4) is true. Thus we should have

Ap
1

∫ k

0

t−p+ p

a dt = F −
(f −B0)

p

(1− k)p−1
⇔

Bp
0 k

−p/a

ap
1

1 + p
a − p

k1−p+p/a = F −
(f −B0)

p

(1− k)p−1
⇔

Bp
0

kp−1

1

p ap−1 − (p−1)ap
= F −

(f −B0)
p

(1− k)p−1
⇔

Bp
0

kp−1Hp(a)
= F −

(f −B0)
p

(1− k)p−1
⇔ Hp(a) =

Bp
0

kp−1
(

F − (f−B0)p

(1−k)p−1

) ⇔

Hp(a) = Z0 ⇔ a = ωp(Z0) ∈

[

1,
p

p− 1

]

(4.8)
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As a consequence, if A1, a are given by (4.7) and (4.8) respectively, equations
(4.4) are true. Note now that for every t ∈ (0, k] we have that

1

t

∫ t

0

gk = a gk(t), ∀t ∈ (0, k].

Thus

∫ k

0

(

1

t

∫ t

0

gk

)p

dt = ap
∫ k

0

gpk =

=

(

F −
(f −B0)

p

(1− k)p−1

)

ωp





Bp
0

kp−1
(

F − (f−B0)p

(1−k)p−1

)





p

. (4.9)

By Theorem 1.1 and Lemma 2.4 ii), the right side of (4.9) equals BT
p (f, F, k).

We need only to prove that gk is continuous on t0 = k. It is enough to show
that

f −B0

1− k
= A1k

−1+ 1
a ⇔ A1k

−1+ 1
a =

(

B0

k

1− k

f −B0

)−1
B0

k
(4.10)

By (4.1) and (4.8), a = ωp(Z0) = B0

k
1−k
f−B0

. Thus (4.10) is equivalent to

A1k
−1+ 1

a = a−1B0

k , which is just (4.7). Theorem 1.2 is now proved.

5 A multiparameter inequality for MT

We begin by describing a linearization of the dyadic maximal operator, as it
was introduced in [10]. First we give the notion of the T -good function. Let
φ ∈ L1(X,µ) be a non-negative function and for any I ∈ T , set AvI(φ) =
1

µ(I)

∫

I φdµ. We will say that φ is T -good, if the set

Aφ = {x ∈ X : MT φ(x) > AvI(φ) for all I ∈ T such that x ∈ I}

has µ-measure zero.
For example one can define, for any m ≥ 0, and λI ≥ 0 for each I ∈ T(m)

(the m-level of the tree T ), the following function

φ =
∑

I∈T(m)

λIχI ,

where χI denotes the characteristic function of I. It is an easy matter to show
that φ is T -good.

Suppose that we are given a T -good function φ. For any x ∈ X \ Aφ (that
is for µ-almost all x ∈ X), we denote by Iφ(x) the largest element in the non
empty set

{

I ∈ T : x ∈ I and MT φ(x) = AvI(φ)
}

.
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We also define for any I ∈ T

A(φ, I) =
{

x ∈ X \ Aφ : Iφ(x) = I
}

, and we set

Sφ =
{

I ∈ T : µ (A(φ, I)) > 0
}

∪
{

X
}

.

It is obvious that MT φ =
∑

I∈Sφ
AvI(φ)χA(φ,I), µ-almost everywhere.

We also define the following correspondence I → I⋆ with respect to Sφ: I
⋆

is the smallest element of {J ∈ Sφ : I ( J}. This is defined for every I ∈ Sφ

exceptX . It is clear that the family of sets {A(φ, I) : I ∈ Sφ} consists of pairwise
disjoint sets and it’s union has full measure on X , since µ

(

∪J /∈Sφ
A(φ, J)

)

= 0.
We give without proof a lemma (appearing in [10]) which describes the prop-

erties of the class Sφ, and those of the sets A(φ, I), I ∈ Sφ.

Lemma 5.1. i) If I, J ∈ Sφ then either A(φ, J) ∩ I = ∅ or J ⊆ I.

ii) If I ∈ Sφ, then there exists J ∈ C(I) such that J /∈ Sφ.

iii) For every I ∈ Sφ we have that

I ≈
⋃

Sφ∋J⊆I

A(φ, J).

iv) For every I ∈ Sφ we have that

A(φ, I) = I \
⋃

J∈Sφ:J
⋆=I

J, and thus

µ(A(φ, I)) = µ(I)−
∑

J∈Sφ:J
⋆=I

µ(J).

Here by writing A ≈ B, we mean that A,B are measurable subsets of X
such that µ(A \B) = µ(B \A) = 0.

From the above lemma we immediately get that

AvI(φ) =
1

µ(I)

∑

J∈Sφ:J⊆I

∫

A(φ,J)

φ dµ,

for any I ∈ Sφ. We are now in position to prove the first part of Theorem 1.3,
that is the validity of 1.11.

Proof. We begin by considering a T -good function φ, satisfying
∫

X
φ dµ = f

and
∫

X φp dµ = F . Let K be a measurable subset of X , with µ(K) = k ∈ (0, 1]
and β, γ such that β > γ > 0.

By Lemma 5.1 we get that F =
∫

X
φp dµ =

∑

I∈Sφ

∫

AI
φp, where we write

AI for the set A(φ, I), I ∈ Sφ. We split the set AI in two measurable subsets
BI ,ΓI for any I ∈ Sφ, where µ (BI) , µ (ΓI) > 0. The choice of BI ,ΓI will be
given in the sequel. Write µ(AI) = aI , for I ∈ Sφ. For any I ∈ Sφ we search
for a constant τI > 0 for which
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µ(I) τI − (β + 1)
∑

J∈Sφ

J⋆=I

µ(J)− (γ + 1)µ(BI) = µ(ΓI), (5.1)

Then (5.1) in view of Lemma 5.1 is equivalent to

µ(I) τI − (β + 1) (µ(I)− µ(AI))− (γ + 1)µ(BI) = µ(ΓI) ⇔

[τI − (β + 1)]µ(I) + (β + 1)µ(BI) + (β + 1)µ(ΓI)− (γ + 1)µ(BI) = µ(ΓI) ⇔

[τI − (β + 1)]µ(I) + βµ(ΓI) = (γ − β)µ(BI), (5.2)

We let µ(ΓI) = kI aI , for some kI ∈ (0, 1), so µ(BI) = (1 − kI)aI . Thus (5.2)
becomes

[τI − (β + 1)]µ(I) = (γ − β)(1 − kI)aI − βkI aI ⇔

[τI − (β + 1)]µ(I) = γ(1− kI)aI − βaI , (5.3)

We now set pI = aI

µ(I) , for any I ∈ Sφ. Thus (5.3) gives

τI − (β + 1) = γ(1− kI)pI − βpI ⇔

τI = ((β + 1)− βpI) + (1− kI)γpI , (5.4)

Note that this choice of τI , I ∈ Sφ, immediately gives τI > 0, since β > γ > 0
and 0 < pI ≤ 1 for any I ∈ Sφ.

We write now

F =
∑

I∈Sφ

∫

AI

φp dµ =
∑

I∈Sφ

∫

BI

φp dµ+
∑

I∈Sφ

∫

ΓI

φp dµ ≥

≥
∑

I∈Sφ

(

∫

BI
φ dµ

)p

µ(BI)p−1
+
∑

I∈Sφ

(

∫

ΓI
φ dµ

)p

µ(ΓI)p−1
, (5.5)

in view of Hölder’s inequality. We denote the first and the second sum on the
right of (5.5) by Σ1, Σ2 respectively. Then by (5.1) Lemma 5.1 iv) we have the
following

Σ2 =
∑

I∈Sφ

1

µ(ΓI)p−1









∫

I

φ dµ−
∑

J∈Sφ

J⋆=I

∫

J

φ dµ−

∫

BI

φ dµ









p

=

=
∑

I∈Sφ

(

µ(I)yI −
∑

J∈Sφ

J⋆=I

µ(J)yJ −
∫

BI
φ dµ

)p

(

τIµ(I)− (β + 1)
∑

J∈Sφ

J⋆=I

µ(J)− (γ + 1)µ(BI)

)p−1 , (5.6)
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where yI = AvI(φ), for every I ∈ Sφ. Now because of Hölder’s inequality in the
form

(λ1 + λ2 + ...+ λν)
p

(µ1 + µ2 + ....+ µν)
p−1 ≤

λp1
µp−1
1

+
λp2
µp−1
2

+ ...+
λpν

µp−1
ν

, (5.7)

where p > 1, µi > 0 and λi ≥ 0, for i = 1, 2, ..., ν, we have in view of (5.6) that:

Σ2 ≥
∑

I∈Sφ

(µ(I)yI)
p

(τIµ(I))
p−1 −

∑

I∈Sφ

∑

J∈Sφ

J⋆=I

(µ(J)yJ)
p

((β + 1)µ(J))
p−1−

−
∑

I∈Sφ

1

(γ + 1)p−1

(

∫

BI
φ dµ

)p

µ(BI)p−1
. (5.8)

By (5.8) we obtain

Σ1 +Σ2 ≥

(

1−
1

(1 + γ)p−1

)

Σ1 +
∑

I∈Sφ

µ(I)
ypI
τp−1
I

−
∑

I∈Sφ

I 6=X

µ(I)
ypI

(β + 1)p−1
=

=

(

1−
1

(1 + γ)p−1

)

Σ1 +
ypX
τp−1
X

+
∑

I∈Sφ

I 6=X

µ(I)ypI

(

1

τp−1
I

−
1

(β + 1)p−1

)

=

=

(

1−
1

(1 + γ)p−1

)

Σ1 +
fp

τp−1
X

+

+
∑

I∈Sφ

I 6=X

aI
pI

(

1

((β + 1− βpI) + (1− kI)γpI)
p−1 −

1

(β + 1)p−1

)

ypI . (5.9)

Note that in (5.9) we have used the properties of the correspondence I −→ I⋆,
on Sφ.

We denote now Σ3 the sum on the right of (5.9). Then

Σ3 ≥
∑

I∈Sφ

I 6=X

1

pI

[

βpI − (1− kI)γpI
(β + 1)p

(p− 1)

]

aIy
p
I , (5.10)

because of the inequality

1

((β + 1)− s)
p−1 −

1

(β + 1)p−1
≥

(p− 1)s

(β + 1)p
, (5.11)

which is true for any β > 0, and s ∈ [0, β], by the mean value theorem on
derivatives. Note that since β > γ > 0, we have that the quantity s = βpI −
(1− kI)γpI is positive and less than β so (5.11) applies in Σ3 , and gives (5.10).
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Thus

Σ3 ≥ (p− 1)
∑

I∈Sφ

I 6=X

β − γ

(β + 1)p
aIy

p
I + (p− 1)

∑

I∈Sφ

I 6=X

kIγ

(β + 1)p
aIy

p
I =

= (p− 1)
β − γ

(β + 1)p

∑

I∈Sφ

aIy
p
I − (p− 1)

β − γ

(β + 1)p
aXy

p
X+

+ (p− 1)
γ

(β + 1)p

∑

I∈Sφ

kIaIy
p
I −

(p− 1)γ

(β + 1)p
kXaXy

p
X =

= (p− 1)
β − γ

(β + 1)p

∫

X

(MT φ)
p
dµ+

+ (p− 1)
γ

(β + 1)p

∫

Γ

(MT φ)
p dµ−

(p− 1)

(β + 1)p
((β − γ)aX + γkXaX) fp, (5.12)

where we have set Γ =
⋃

I∈Sφ
ΓI .

By (5.9) and (5.12) we get

Σ1 +Σ2 ≥

(

1−
1

(1 + γ)p−1

)

Σ1 + (p− 1)
β − γ

(β + 1)p

∫

X

(MT φ)
p dµ+

+ (p− 1)
γ

(β + 1)p

∫

Γ

(MT φ)
p dµ+ λ4, (5.13)

where

λ4 =
fp

τp−1
X

−
(p− 1)

(β + 1)p
((β − γ)aX + γkXaX) fp. (5.14)

By definition of τX , (5.14) gives

λ4 = fp

[

1

((β + 1)− βpX + (1− kX)γpX)
p−1 − (p− 1)

(β − γ)aX + γaXkX
(β + 1)p

]

=

= fp

(

1

((β + 1)− δ)p−1 − (p− 1)
δ

(β + 1)p

)

, (5.15)

where δ = (β − γ)aX + γaXkX(note that we used that pX = aX).
Now because of the inequality (5.11) we have that

1

((β + 1)− s)
p−1 − (p− 1)

s

(β + 1)p
≥

1

(β + 1)p−1
, ∀s ∈ [0, β]

and note that δ ∈ (0, β), by the definition of δ.
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So (5.15) gives λ4 ≥ fp

(β+1)p−1 . Then, by (5.13) we have

Σ1 +Σ2 ≥

(

1−
1

(1 + γ)p−1

)

Σ1 + (p− 1)
β − γ

(β + 1)p

∫

X

(MT φ)
p
dµ+

+ (p− 1)
γ

(β + 1)p

∫

Γ

(MT φ)
p
dµ+

fp

(β + 1)p−1
=

=

(

1−
1

(1 + γ)p−1

)

Σ1+

+
(p− 1)

(β + 1)p

[

β

∫

X

(MT φ)
p
dµ− γ

∫

B

(MT φ)
p
dµ

]

+
fp

(β + 1)p−1
, (5.16)

where B =
⋃

I∈Sφ
BI = X \ Γ.

Now (5.16) gives

Σ2 +
1

(1 + γ)p−1
Σ1 ≥

≥
fp

(β + 1)p−1
+

(p− 1)

(β + 1)p

[

β

∫

X

(MT φ)
p
dµ− γ

∫

B

(MT φ)
p
dµ

]

⇒

1

(1 + γ)p−1
(Σ1 +Σ2) +

(

1−
1

(1 + γ)p−1

)

Σ2 ≥

≥
fp

(β + 1)p−1
+

(p− 1)

(β + 1)p

[

β

∫

X

(MT φ)
p
dµ− γ

∫

B

(MT φ)
p
dµ

]

. (5.17)

But F ≥ Σ1 +Σ2, and Σ2 ≤
∫

Γ
φp dµ, so that we conclude from (5.17) that

F

(1 + γ)p−1
+

(

1−
1

(1 + γ)p−1

)
∫

Γ

φp dµ ≥
fp

(β + 1)p−1
+

(p− 1)

(β + 1)p

[

β

∫

X

(MT φ)
p
dµ− γ

∫

B

(MT φ)
p
dµ

]

(5.18)

Now from (5.18) we immediately get

1

(1 + γ)p−1

∫

B

φp dµ+

∫

Γ

φp dµ ≥

≥
fp

(β + 1)p−1
+

(p− 1)

(β + 1)p

[

β

∫

X

(MT φ)
p dµ− γ

∫

B

(MT φ)
p dµ

]

. (5.19)

But the left side of (5.19) equals F −
(

1− 1
(1+γ)p−1

)

∫

B
φp dµ, so that (5.19)

becomes

F ≥

(

1−
1

(1 + γ)p−1

)∫

B

φp dµ+
fp

(β + 1)p−1
+

+
(p− 1)β

(β + 1)p

∫

X

(MT φ)
p
dµ−

(p− 1)γ

(β + 1)p

∫

B

(MT φ)
p
dµ. (5.20)

19



Inequality (5.20) is in fact true for every choice of B, since every measurable
subset B, of X can be written as B =

⋃

I∈Sφ
BI , where BI = B ∩ AI . Then

setting ΓI = AI \ BI and following the above proof, we obtain the validity of
(5.20). Theorem 1.3 is thus proved for any φ which is T -good function (replace
B by K). Note that in the above proof we have used the fact that µ(BI) > 0, for
every I ∈ Sφ, but this can be applied (by using the fact that (X,µ) is nonatomic)
to prove (5.20) even if µ(BI) = 0, for some I ∈ Sφ. Now if φ ∈ Lp(X,µ) is
arbitrary, we consider the sequence (φm)m, where φm =

∑

J∈T(m)
AvJ (φ)χJ ,

and we set Φm =
∑

J∈T(m)
max {AvI(φ) : J ⊆ I ∈ T }χI .

Then since AvJ (φ) = AvI(φm), for any J ∈ T for which J ⊆ I ∈ T(m), we
immediately see that Φm =MT φm.

Obviously
∫

X
φm dµ =

∫

X
φ dµ = f , and we can easily see that Fm =

∫

X
φpm dµ ≤

∫

X
φp dµ = F . That is φm ∈ Lp(X,µ), ∀m ∈ N.

Additionally Φm converges monotonically to MT φ. Now φm is T -good for
any m ∈ N, so that (5.20) is true, for φm , and for any B ⊆ X measurable.
Since MT φm increases to MT φ on X , we get

lim
m

∫

X

(MT φm)p dµ =

∫

X

(MT φ)
p dµ,

and

lim
m

∫

B

(MT φm)p dµ =

∫

B

(MT φ)
p dµ,

while by the construction of φm, and the fact that the tree T differentiates
L1(X,µ) we obtain that φm −→ φ, µ-a.e on X . Now since φm ≤MT φm ≤MT φ
and MT φ ∈ Lp(X,µ)(because φ ∈ Lp(X,µ)), we have, using the dominated
convergence theorem that limm

∫

X φpm = F and limm

∫

B φ
p
m =

∫

B φ
p dµ. From

all these facts we deduce the validity of (5.20) for general φ ∈ Lp(X,µ). For
β = γ > 0, (5.20) remains true by continuity reasons.

6 Sharpness of inequality (1.11) and applications

Let h : (0, 1] −→ R+ be an arbitrary non-increasing function such that
∫ 1

0 h = f

and
∫ 1

0
hp = F . Let k ∈ (0, 1] and fix a non atomic probability space (X,µ),

equipped with a tree structure T , such that T differentiates Lp(X,µ). By the
proof of Theorem 2.1 (see [20]), we can construct a family (φα)α∈(0,1], of non-
negative measurable functions defined on (X,µ), and a family (Kα)α∈(0,1] of
measurable subsets of X , such that the following hold: φ⋆α = h, ∀α ∈ (0, 1],

limα→0+
∫

Kα
(MT φα)

p
dµ =

∫ k

0

(

1
t

∫ t

0 h
)p

dt, limα→0+
∫

Kα
φpα dµ =

∫ k

0 h
p and

limα→0+ µ(Kα) = k. If we apply the inequality (1.11), for φα and Kα, for any
α ∈ (0, 1], we get:
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F ≥

(

1−
1

(1 + γ)p−1

)∫

Kα

φpα dµ+
fp

(β + 1)p−1
+

+
(p− 1)β

(β + 1)p

∫

X

(MT φα)
p
dµ−

(p− 1)γ

(β + 1)p

∫

Kα

(MT φα)
p
dµ, (6.1)

for any β ≥ γ > 0.
Obviously

∫

X φα dµ = f and
∫

X φpα dµ = F , since φ⋆α = h, ∀α ∈ (0, 1].
Letting α → 0+, we immediately see by (6.1) that

(p− 1)β

(β + 1)p

∫ 1

0

(

1

t

∫ t

0

h

)p

dt ≤
(p− 1)γ

(β + 1)p

∫ k

0

(

1

t

∫ t

0

h

)p

dt+F −
fp

(β + 1)p−1
+

+

(

1

(1 + γ)p−1
− 1

)∫ k

0

hp. (6.2)

Set now δ = δk =

( ∫
k

0 (
1
t

∫
t

0
h)

p
dt

∫
k

0
hp

)
1
p

. Obviously 1 ≤ δ < p
p−1 and δ = 1 ⇔ h

is constant on (0, k]. We assume that β > δ − 1. We wish, for any such β, to
minimize the right side of (6.2), with respect to γ ∈ (0, β). For this purpose we
define

Gβ(γ) =
(p− 1)γ

(β + 1)p

∫ k

0

(

1

t

∫ t

0

h

)p

dt+
1

(1 + γ)p−1

∫ k

0

hp,

for γ ∈ (0, β]. Note that

G′
β(γ) =

(p− 1)

(β + 1)p

∫ k

0

(

1

t

∫ t

0

h

)p

dt−
(p− 1)

(γ + 1)p

∫ k

0

hp.

Then G′
β(γ) = 0 ⇔ β+1

γ+1 = δ ⇔ γ = β+1
δ − 1. Since β > δ − 1, if

we set γ0 = β+1
δ − 1 we have that γ0 ∈ (0, β]. We easily get now that

min {Gβ(γ) : γ ∈ (0, β]} = Gβ(γ0). Replacing the value γ0 into (6.2) for any
β > δ − 1, and using the definition of δ we get

∫ 1

0

(

1

t

∫ t

0

h

)p

dt ≤
1

β

(

β + 1

δ
− 1

)

δp
∫ k

0

hp +
(β + 1)p

(p− 1)β
F −

(β + 1)

(p− 1)β
fp+

+
(β + 1)p

(p− 1)β

(

−1 +

(

δ

β + 1

)p−1
)

∫ k

0

hp, (6.3)

∀β > δ − 1.
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Now the right side of (6.3), equals

(β + 1)

β(p− 1)

(

pδp−1

∫ k

0

hp − fp

)

−

−

(

β + 1

β
− 1

)

δp
∫ k

0

hp +
(β + 1)p

(p− 1)β

(

F −

∫ k

0

hp

)

=

=
(β + 1)

β(p− 1)

(

pδp−1

∫ k

0

hp − (p− 1)δp
∫ k

0

hp − fp

)

+

+ δp
∫ k

0

hp +
(β + 1)p

(p− 1)β

∫ 1

k

hp =

=
(β + 1)

β(p− 1)

(

Hp(δ)

∫ k

0

hp − fp

)

+ δp
∫ k

0

hp +
(β + 1)p

(p− 1)β

∫ 1

k

hp =

=

∫ k

0

(

1

t

∫ t

0

h

)p

dt+ Λ(β)

where

Λ(β) =
(β + 1)p

(p− 1)β

∫ 1

k

hp +
(β + 1)

(p− 1)β

(

Hp(δ)

∫ k

0

hp − fp

)

(6.4)

Assume also that δ satisfies

δ ≤ ωp

(

fp

F

)

. (6.5)

We wish to find the minimum value of Λ(β), for β > δ − 1, when δ satisfies
(6.5).

It is a simple matter to show that

Λ′(β) = −
Hp(β + 1)

(p− 1)β2

∫ 1

k

hp −
1

(p− 1)β2

(

Hp(δ)

∫ k

0

hp − fp

)

.

We solve now the equation Λ′(β) = 0 ⇔

Hp(β + 1) =
fp −Hp(δ)

∫ k

0
hp

∫ 1

k h
p

. (6.6)

Note that the right side of (6.6) is less or equal than Hp(δ), that is

Hp(δ) ≥
fp −Hp(δ)

∫ k

0 h
p

∫ 1

k
hp

(6.7)

Indeed (6.7) is equivalent to Hp(δ)F ≥ fp ⇔ δ ≤ ωp

(

fp

F

)

, which is true in

view of the assumption that we made on δ.
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Now Hp, defined on [1,+∞) satisfies the following: Hp(1) = 1, Hp is strictly
decreasing, and limx→+∞Hp(x) = −∞.

Thus there exists a unique value β0 > δ − 1 for which, we have equality in
(6.6). That is

Hp(β0 + 1) =
fp −Hp(δ)

∫ k

0 h
p

∫ 1

k
hp

(6.8)

As is easily seen for this value of β0 we have that minδ−1<β<+∞ Λ(β) =
Λ(β0), thus (6.3) and (6.4) give in view of the above calculations that

∫ 1

k

(

1

t

∫ t

0

h

)p

dt ≤
(β0 + 1)p

(p− 1)β0

∫ 1

k

hp+
β0 + 1

(p− 1)β0

(

Hp(δ)

∫ k

0

hp − fp

)

. (6.9)

It is not difficult now to show, that the right side of (6.9) equals

∫ 1

k

hpωp

(

fp −Hp(δ)
∫ k

0 h
p

∫ 1

k
hp

)p

, where ωp : (−∞, 1] −→ [1,+∞)

is the inverse of Hp : H−1
p . Thus (6.9) states that for any h : (0, 1] −→ R+ non-

increasing, with
∫ 1

0
h = f,

∫ 1

0
hp = F and any k ∈ (0, 1] for which δk ≤ ωp

(

fp

F

)

,

we have:

∫ 1

k

(

1

t

∫ t

0

h

)p

dt ≤

∫ 1

k

hpωp

(

fp −Hp(δ)
∫ k

0
hp

∫ 1

k
hp

)p

. (6.10)

Note that (6.10) is sharp since if we consider the function h = g1 (that is
gk for k = 1 - see Section 4), we get by the properties that g1 satisfies, that
∫ 1

0
h = f,

∫ 1

0
hp = F and 1

t

∫ t

0
h = ωp

(

fp

F

)

h(t), ∀t ∈ (0, 1].

Thus for any k ∈ (0, 1] we have δk = ωp

(

fp

F

)

and then the right side of

(6.10) equals:

∫ 1

k

hpωp

(

fp −Hp(δ)
∫ k

0 h
p

∫ 1

k
hp

)p

=

∫ 1

k

hpωp

(

fp

F

F −
∫ k

0 h
p

∫ 1

k
hp

)p

=

=

∫ 1

k

hpωp

(

fp

F

)p

=

∫ 1

k

(

1

t

∫ t

0

h

)p

dt

so we have equality in (6.10) for this choice of h. Using Theorem 6.1, the
sharpness of (6.10), and the calculus arguments that are given right above we
conclude, by choosing β = δ − 1 and letting γ tend to zero, the sharpness of
inequality (1.11), for any k ∈ (0, 1].

In fact we have proved that the sharpness of inequality (1.11) is reduced to

the sharpness of (1.10), for β = ωp(
fp

F ) − 1. We gave the above proof in order
to reach the inequality (6.10) which importance is seen below.
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Let h : (0, 1] −→ R+ be a non-increasing function, satisfying
∫ 1

0 h = f and
∫ 1

0
hp = F , then the set of k’s belonging on (0, 1) for which δk ≤ ωp

(

fp

F

)

is a

non empty open subset of (0, 1]
This is obviously true for h = g1, while if h 6= g1 we have that

∫ 1

0

(

1

t

∫ t

0

h

)p

dt < Fωp

(

fp

F

)p

,

because g1 is the unique non-increasing function on (0, 1] for which we get
∫ 1

0 g1 = f ,
∫ 1

0 g
p
1 = F and

∫ 1

0

(

1
t

∫ t

0 g1

)p

dt = Fωp

(

fp

F

)p

, (see [17]).

Thus considering such a k ∈ (0, 1], we get by (6.10), that for any h : (0, 1] −→

R+ non-increasing with
∫ 1

0
h = f , the inequality

Hp(δ
′

k) ≥

(

fp −Hp(δ)
∫ k

0 h
p

∫ 1

k
hp

)

(6.11)

is true, where δ
′

k =

( ∫ 1
k (

1
t

∫
t

0
h)

p
dt

∫ 1
k
hp

)
1
p

, or that

Hp(δk)

∫ k

0

hp +Hp(δ
′

k)

∫ 1

k

hp ≥ fp, (6.12)

for any h and k ∈ (0, 1] as above.
Inequality (6.12) and its sharpness gives us even more information for the

geometric behaviour of MT because of the appearance of the free parameter

k ∈ (0, 1] which is invoked under the condition δk ≤ ωp

(

fp

F

)

. Note at last that

in view of Theorem 2.1, the validity and sharpness of inequality (6.12) for k = 1,
gives the results in [10], that is the determination of the Bellman function of
two variables for MT .
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