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Abstract. We study the existence, formation and dynamics of gray solitons for an

extended quintic nonlinear Schrödinger (NLS) equation. The considered model finds

applications to water waves, when the characteristic parameter kh – where k is the

wavenumber and h is the undistorted water’s depth – takes the critical value kh =
1.363. It is shown that this model admits approximate dark soliton solutions emerging

from an effective Korteweg-de Vries equation and that two types of gray solitons exist:

fast and slow, with the latter being almost stationary objects. Analytical results are

corroborated by direct numerical simulations.
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1. INTRODUCTION

It is well known that the one-dimensional (1D) defocusing nonlinear Schrödi-

nger (NLS) equation governing the complex field u= u(x,t), namely:

iut+p0uxx− q0|u|2u= 0, (1)

with p0,q0 ∈ R+, supplemented with nonvanishing boundary conditions at infinity,

i.e., |u|= u0 ∈R for |x| →∞, possesses dark soliton solutions [1]. These structures

are localized density depressions (“notches”) off of a stable continuous-wave (cw)

background, associated with a phase jump at the density minimum, and are called

“black” or “gray” depending on whether the density minimum is zero or non-zero,

respectively. There exists a vast amount of theoretical work and experimental ob-

servations of dark solitons in optical systems featuring a defocusing nonlinearity [2]

and Bose-Einstein condensates (BECs) with repulsive interatomic interactions [3–5]

(see also the review [6]). Nevertheless, dark solitons also arise in a variety of other

physical systems, such as discrete mechanical [7] and electrical [8] lattices, magnetic
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films [9], complex plasmas [10], nematic liquid crystals [11], and others.

Dark solitons are also known to exist in other versions of the NLS equation,

such as the one featuring competing cubic and quintic nonlinearities [12–15]; the

relevant, so-called cubic-quintic NLS (cqNLS) model is of the form:

iut+puxx− q|u|2u+ r|u|4u= 0, (2)

with p,q,r ∈ R+. This model appears naturally in the context of nonlinear optics as

an approximation of a saturable defocusing nonlinearity, through its Taylor expan-

sion up to second order in the normalized intensity I = |u|2 [2]. Furthermore, Eq. (2)

also finds applications in the context of atomic BECs, with the quintic term account-

ing for three-body interactions, provided that losses due to such interactions may be

neglected – see, e.g., Refs. [16, 17] and rigorous analysis in Ref. [18]. Additionally,

in the same context of atomic BECs, the quintic term may appear generically in the

case where weak deviations from one-dimensionality are taken into regard [19] (see

also Ref. [20] for the case of attractive BECs). It is also worth mentioning that a

defocusing, purely quintic NLS model [i.e., q = 0 and r < 0 in Eq. (2)] has also been

used as a mean-field model describing strongly interacting 1D Bose gases and, par-

ticularly, the so-called Tonks-Girardeau gas of impenetrable bosons [21]; for such

systems, dark solitons of the defocusing quintic NLS were found in an exact analyti-

cal form [22] and their dynamics in the trap was also investigated [23].

More recently, there has been an interest in dark solitons in the context of sur-

face gravity water waves: indeed, black [24] and gray [25] solitons were observed

on the surface of water in two seminal experiments performed in water wave tanks.

Key to this achievement was the conduction of the experiments in the regime where

kh < 1.363 (here, k is the wavenumber and h is the undistorted water depth): in-

deed, in this regime, the pertinent NLS equation governing weakly nonlinear water

waves [26], becomes of the defocusing type. In this case, the cw solution of the

NLS model is not subject to the Benjamin-Feir instability (also known as “modula-

tional instability” (MI) [27]) and can, thus, support nonlinear excitations, such as the

black and gray solitons observed in the experiments. Notice that in the opposite case,

where kh > 1.363, the NLS equation is of the focusing type, its cw solution is mod-

ulationally unstable, and this gives rise (instead of dark solitons) to other localized

structures observed in experiments, such as bright solitons [28] and rogue waves [29]

(see also the recent review [30]).

According to the above, it becomes clear that the value of kh is of paramount

importance, as it controls both the nature of the underlying NLS model (focus-

ing/defocusing) and the type of its soliton solutions. At the critical value, kh=1.363,

the coefficient of the cubic nonlinear term of the NLS vanishes and, at this order of

approximation, the model equation becomes a linear Schrödinger equation for a free

particle, featuring only dispersion. Then, a natural question is which types of local-
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ized water wave structures can be supported at kh=1.363. Obviously, to address this

problem, one should resort and analyze a model resulting at a higher-order of approx-

imation, thus incorporating higher-order corrections. Several such models have been

derived and studied in the literature [31–36]. All these models, are in fact special

cases of the following generic equation:

iut+ r1uxx+ r2|u|2u+ r3|u|4u+i
[

r4|u|2ux+ r5(|u|2)xu
]

= 0, (3)

with coefficients ri ∈ R (i ∈ {1,2, . . . ,5}), which has the following property. Equa-

tion (3) is uniformly valid, in the sense that it reduces to the classical NLS model

in the limit ri → 0 for i ≥ 3, and is valid in the case under consideration, i.e., at the

critical value kh= 1.363, where the coefficient of the cubic nonlinear term, |u|2u, is

r2 = 0. It is important to note that, as shown in Ref. [37], Eq. (3) can formally be de-

rived from any dispersive nonlinear system via the derivative expansion method [38].

Furthermore, apart from the context of water waves, such an extended quintic NLS

equation [see Eq. (3) for r2 = 0] finds still another physical application, as a model

for wave propagation in a discrete nonlinear transmission line [39].

Motivated by the above results, our aim is to study a variant of Eq. (3) for

r2 =0, namely an extended quintic NLS model, and show that it supports robust gray

solitons – provided that the model under consideration possesses a modulationally

stable cw. In fact, we will analyze, as a particular example, the model proposed

by Johnson [31], which – according to the specific values of the coefficients of the

model – indeed supports such a stable cw. Our methodology and main results, as well

as the organization of the presentation, are described as follows. In Section 2, we

present the model and reduce it to a form similar to that of Eq. (3); differences of the

relevant equation with that studied in Refs. [32–34,36], are also discussed. Then, the

model under consideration is asymptotically reduced to a Korteweg-de Vries (KdV)

equation via the reductive perturbation method [38]. The KdV soliton is then used to

find approximate gray soliton solutions. We show that there exist two types of such

solitons, slow and fast ones. The former feature a supersonic behavior – and, thus,

are not physically relevant. The latter, which are particular to the case of the extended

quintic NLS model under consideration, features a rapid velocity thus suggesting that

stationary objects may not occur in these conditions. In Section 3, we present results

of numerical simulations, which corroborate our analytical predictions. Finally, in

Section 4, we summarize our conclusions.
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2. THE MODEL AND ITS ANALYTICAL CONSIDERATION

2.1. THE EXTENDED QUINTIC NLS MODEL AND ITS CW SOLUTION

We start by presenting the model under consideration, derived by Johnson [31]:

iut−α1uxx−α2|u|2u+α3|u|4u+i
[

α4|u|2ux−α5(|u|2)xu
]

−α6uψt, ψx = |u|2.
(4)

Here, u(x,t) is the complex amplitude of the gravity wave, and the coefficients

αi ∈ R+ (i ∈ {1,2, . . . ,6}). For kh = 1.363, the coefficient of the cubic term |u|2u
becomes α2 = 0. In this case, introducing the transformations x →

√

α3/2α1x,

t→ α3t, and ψ→
√

2α1/α3ψ, we cast our model in the following form:

iut−
1

2
uxx+ |u|4u+i

[

β|u|2ux−γ(|u|2)xu
]

− δuψt = 0, ψx = |u|2, (5)

where the coefficients in Eq. (5) are given by:

β =
α4√
2α1α3

, γ =
α5√
2α1α3

, δ = α6

√

2α1

α3
, (6)

and are all positive real numbers.

Next, employing the transformation:

u(x,t) = v(x,t)exp[−iδψ(x,t)], (7)

we can reduce Eq. (5) to the more convenient local form:

ivt−
1

2
vxx+

(

1+
δ2

2
+βδ

)

|v|4v+i

[

(β+ δ)|v|2vx+
(

δ

2
−γ

)

(|v|2)xv
]

=0, (8)

which will be the model of our focus hereafter. Obviously, the original system is

now uncoupled∗ and ψx = |v|2. Here it should be noted that the model (8), having

the form of an extended quintic NLS, differs from other extended versions of the NLS

equation, relevant to water waves of finite depth (see, e.g., Refs. [40, 41], as well as

discussion in Refs. [33, 34, 36]), which were used to predict bright and dark solitons

on the surface of water [41]: indeed, the later models include also linear higher-

order terms (e.g., third-order dispersion), while Eqs. (4) only incorporate higher-

order nonlinear terms.

At this point, it is important to mention the following. In Ref. [32], as well as

in the later works [33, 34], an equation similar to Eq. (8) was derived, namely:

iut− q1uxx− q2|u|4u− i
[

q3|u|2ux+ q4(|u|2)xu
]

= 0, (9)

where coefficients qi ∈ R+ (i ∈ {1, . . . ,4}). Here, one should notice the difference

in the signs of the coefficients – and, most notably, the one of the quintic term –

∗The reduction of Eq. (4) to Eq. (8) was also discussed in Ref. [32], but in a more involved fashion.
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resulting in controversial results regarding the stability of the cw solution: in the

framework of Eq. (4) it is modulationally stable (see below), while in the case of

Eq. (9) it is subject to modulational instability [32–34]. This latter conclusion is

also in agreement with Refs. [35,36], which focused on the analysis of the canonical

form of Eq. (9), corresponding to q4 = 0. Nevertheless, as mentioned above, we

will analyze Eq. (8) as a generic example of the more general model (3), which can

support robust gray solitons.

Key to our analysis below is the fact that the cw solution of Eq. (8), namely:

v = ρ0 exp(−iω0t), ω0 =−
(

1+
δ2

2
+βδ

)

ρ40, (10)

where ρ0 is an arbitrary real constant, is modulationally stable (and thus gray solitons

on top of this cw can be supported). This can easily be confirmed via a standard MI

analysis (see, e.g., Ref. [2]), whereby the wavenumber k and frequency ω of a small

perturbation ∝ exp[i(kx−ωt)] satisfy the following dispersion relation:

ω =−1

2
k

[

ρ20(−2β+2γ−3δ)±
√

k2+αρ40

]

, (11)

where

α= 4γ2+5δ2+4(2+βδ−2γδ). (12)

As long as α > 0, ω ∈ R ∀k ∈ R, which means that the cw is modulationally

stable. As we see below, the availability of coefficients αi (i∈{1,2, . . . ,6}) of Eq. (4)

[31], which in turn provides the coefficients β, γ, and δ in Eq. (8), allows us to

deduce that this is indeed the case: the parameter α is always positive, and thus the

cw solution (10) is modulationally stable ∀k ∈ R.

2.2. REDUCTION TO THE KDV EQUATION AND SOLITON SOLUTIONS

Next, we apply the reductive perturbation method [38] to derive from Eq. (8)

an effective KdV equation; the soliton solution of the latter, will be then used to

derive approximate gray soliton solutions of Eq. (8). Notice that a similar approach

has been used in the past in the context of nonlinear optics, where KdV-like gray

solitons were obtained for NLS models perturbed by higher-order effects –see, e.g.,

Refs. [42,43] where the analytical approach is also detailed. We start by introducing

in Eq. (8) the Madelung transformation,

v(x,t) =
√

ρ(x,t)exp[iφ(x,t)], (13)

where the real functions ρ and φ denote, respectively, the density and phase of the

unknown field v.

Then, considering small-amplitude slowly-varying modulations of the cw (10),
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we look for solutions in the form of the following asymptotic expansions:

ρ= ρ0+

∞
∑

j=1

ǫjρj(X,T ), φ=−ω0t+

∞
∑

j=1

ǫj−1/2φj(X,T ). (14)

Here, 0< ǫ≪ 1 is a formal small parameter, and the unknown densities ρj and phases

φj are functions of the slow variables:

X = ǫ1/2(x− ct), T = ǫ3/2t, (15)

with c being the so-called “speed of sound” (to be determined), namely the speed

of the linear waves propagating on top of the cw background. Notice that the spe-

cific form of the asymptotic expansions (14) as well as the choice of the slow vari-

ables (15) are such that dispersive and nonlinear effects come into play at the same

order of approximation (see Ref. [38]).

At the lowest-order of the reductive perturbation technique, we arrive at a sys-

tem of two linear equations. The compatibility condition of these equations is the

algebraic equation:

c2− (2β−2γ+3δ)ρ0c+(δ2−2γδ−2βγ+βδ+β2−2)ρ20 = 0, (16)

from which we obtain the speed of sound:

c= c± =
1

2
ρ0

(

2β−2γ+3δ±
√
α
)

, (17)

where α is given in Eq. (12). We observe that the condition α> 0 ensuring that c∈R

is identical with the one concerning the stability of the cw solution. Nevertheless, as

mentioned above, α is positive, which dictates the existence of two speeds of sound,

a “fast” and a “slow” one, c+ and c−, respectively. In addition, at the same order of

approximation:

φ1X =∆ρ1, ∆=−(2βδ+ δ2+2)ρ0
c− (β+ δ)ρ0

, (18)

which connects the unknown phase φ1 with the density ρ1.

To the next order of approximation, we obtain two nonlinear equations. The

compatibility conditions of the later is again the algebraic equation (16) and the KdV

equation for the density ρ1:

Aρ1T +Bρ1ρ1X +Γρ1XXX = 0, (19)

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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where the coefficients A, B and Γ are given by:

A=
4ρ0[2c+(2γ−2β−3δ)ρ0]

c− (β+ δ)ρ0
, (20)

B =
4B̃

[c− (β+ δ)ρ0]2
, (21)

B̃ = 2c3− c2ρ0(3β−2γ+4δ)+2cρ20(2+2βδ+ δ2)

+ρ30[β
3+2γ(2−β2)− δ(6+ δ2)−β(4+3δ2)], (22)

Γ =−c− (β−2γ+2δ)ρ0
(2+2βδ+ δ2)ρ0

. (23)

The soliton solution of the KdV, Eq. (19), reads:

ρ1 =
12κ2Γ

B
sech2

[

κ

(

X− 4κ2Γ

A
T

)

−X0

]

, (24)

where κ is an arbitrary real constant of order O(1), and X0 denotes the initial soliton

position. Using Eq. (24), we can also determine the phase through Eq. (18), namely

φ1 =∆
∫

ρ1(X
′,T )dX ′. To this end, using these expressions, we can write the rele-

vant approximate solution of Eq. (8) in terms of the original variables as follows:

v(x,t)≈
√

ρ0+
12ǫκ2Γ

B
sech2(ξ)exp

[

−iω0t+
12iǫ1/2κΓ∆

B
tanh(ξ)

]

, (25)

ξ = ǫ1/2κ

[

x− c
(

1+
4ǫκ2Γ

cA

)

t−x0
]

. (26)

As we will see below, here we have BΓ< 0; this implies that the solution (25)

is characterized by a sech2-shaped density dip, and a tanh-shaped phase jump across

the density minimum, thus having the form of a genuine gray soliton. At this point,

it is important to point out that, since coefficients A, B, Γ, and ∆ are functions

of c, which in turn takes two distinct values, c± as per Eq. (17), the solution (25)

describes simultaneously two different types of gray solitons, namely fast and slow

ones, corresponding to c+ and c−, respectively.

3. NUMERICAL RESULTS

Next, we compare our analytical findings with results of direct numerical sim-

ulations for Eq. (8). We start by considering the values of the parameters, as well as

of the various coefficients involved in our analytical approach. First of all, we use

the values of parameters αj appearing in Eq. (4) from Ref. [31], corresponding to the

case kh= 1.363. These values, in turn, lead to the following ones for the coefficients

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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β, γ, and δ appearing in Eqs. (5) and (8):

β = 1.764, γ = 1.147, δ = 2.329.

Using the above, Eq. (12) dictates that parameter α takes the value: α= 62.558ρ40 >
0. Thus, the cw background is indeed not subject to MI, and undergoes a stable

evolution. This also suggests that there are two possible real solutions to Eq. (16),

namely:

c− = 0.156ρ0 and c+ = 8.065ρ0,

leading to two possible gray solitons, as mentioned above. It is clear that one of

them is almost stationary (the one corresponding to c−), while the second moves

substantially faster (the one corresponding to c+). This allows us to respectively

term these two solutions “slow” and “fast”.

Thanks to the nature of the KdV soliton (whereby amplitude, width and veloc-

ity are connected to each other through the parameter κ), there exist also differences

in the spatial profiles of the slow and fast gray solitons. To better illustrate these dif-

ferences, in Fig. 1 we plot the two solutions at t= 0. We choose ρ0 =1, ǫ= 0.01 and

κ = 2 for the slow solution while κ = 5 for the fast, so that the relative amplitudes

(dips) are comparable. As it is clearly seen, the slow solution is wider and deeper

than the fast one, and it is thus expected to propagate slower than the other, following

the KdV dynamics above.

Fig. 1 – (Color online) The initial spatial profile of the fast (orange) and slow (blue) gray solitons.

Evidently, the former is shallower and features a smaller width as compared to the latter. Parameter

values are ρ0 = 1, while κ= 2 for the slow solution and κ= 5 for the fast one.

We have also performed direct numerical simulations. In particular, employing

a fourth order Runge-Kutta method, we have numerically integrated Eq. (8) and used

initial conditions (at t = 0) taken from Eqs. (25)-(26). In Fig. 2, we show the evo-

lution of the fast and slow solitons, corresponding to the initial conditions of Fig. 1.

The numerical results agree with our analytical findings: indeed, both solutions fol-

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451



(c) 2019 RRPDark solitons for an extended quintic nonlinear Schrödinger equation: Application to . . . 9

low the predicted KdV dynamics, preserving their shapes, and traveling with constant

velocity C . In the simulations, we find that the latter is equal to:

C
(num)
fast = 8 and C

(num)
slow = 0.15,

for the fast and slow solitons, respectively. On the other hand, according to the

analytical prediction, namely C = c
[

1+4ǫκ2Γ/(cA)
]

(see Eq. (26)), the respective

velocities are found to be:

C
(an)
fast = 8.033 and C

(an)
slow = 0.161.

Obviously, the agreement between numerical and analytical results is excellent. Nev-

ertheless, it should be noticed that our analysis dictates the existence of a supersonic

gray soliton, with C
(an)
slow > c−, which can not occur in the realm of defocusing NLS

models [2, 3]. The fact that slow solitons were not only found to exist, but also to

be robust in the simulations, implies that our analytical prediction for the solitons’

velocities slightly overestimates Cslow.

Fig. 2 – (Color online) Results of direct numerical simulations showing the evolution of the fast (left

column) and slow (right column) gray solitons under the model Eq. (8). Shown are contour plots (top

panels) and 3D plots (bottom panels) depicting the evolution of the modulus |v(x,t)|. Parameter

values are, again, ρ0 = 1 and κ= 2 for the slow solution while κ= 5 for the fast one.

In any case, thanks to the significantly small value of the velocity c− (and hence

of Cslow), the slow gray soliton is almost stationary (at the reference system traveling

with the group velocity). This is a rather surprising result by itself for gray solitons,

which are known to be fast traveling objects [2, 3].

http://www.infim.ro/rrp submitted to Romanian Reports in Physics ISSN: 1221-1451
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4. CONCLUSIONS

In conclusion, we have studied the existence, formation, and dynamics of gray

solitons for an extended quintic NLS equation. The considered model was the one

proposed in Ref. [31] for surface water waves, when the parameter kh takes the crit-

ical value kh= 1.363. This model possesses a stable cw solution, which contradicts

later relevant results [32–36] dictating that the cw solution in this water wave prob-

lem (for kh= 1.363) is unstable. However, the considered model can be viewed as a

paradigmatic example of a general extended quintic NLS equation that can formally

be obtained from any nonlinear dispersive system [37]; such a model, under certain

conditions, can indeed support a stable cw solution, on top of which gray solitons

can occur.

Our analysis revealed that this is the case. Indeed, the model under considera-

tion was studied analytically by means of the reductive perturbation method, which

led to an effective KdV equation. The soliton solution of the latter, was then used

to derive two types of approximate gray soliton solutions of the original model: fast

and slow ones.

Direct numerical simulations have shown that both types are particularly robust

and evolve following closely the KdV dynamics. We have found that the velocity of

the slow soliton is quite small, such that this type of soliton can be deemed to be

almost stationary (in the reference frame moving with the group velocity), but with

velocity exceeding the speed of sound thus deeming these objects unphysical. This is

a particular feature of the extended quintic NLS equation under consideration, which,

to the best of our knowledge, has no analogue in other contexts where gray solitons

also appear – such as nonlinear optics [2] and Bose-Einstein condensates [3].
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