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Iterations of the projection body operator and a remark on Petty’s

conjectured projection inequality

C. Saroglou and A. Zvavitch∗
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Abstract

We prove that if a convex body has absolutely continuous surface area measure, whose density
is sufficiently close to the constant, then the sequence {ΠmK} of convex bodies converges to the
ball with respect to the Banach-Mazur distance, asm→ ∞. Here, Π denotes the projection body
operator. Our result allows us to show that the ellipsoid is a local solution to the conjectured
inequality of Petty and to improve a related inequality of Lutwak.

1 Introduction

As usual, we denote by 〈x, y〉 the inner product of two vectors x, y ∈ Rd and by |x| the length
of a vector x ∈ Rd. A body is a compact set with nonempty interior. For a body K which is
star-shaped with respect to the origin its radial function is defined by

ρK(u) = max{t ≥ 0 : tu ∈ K} for every u ∈ S
d−1.

A body K is called a star body if it is star-shaped at the origin and its radial function ρK is
positive and continuous. We say that a set K is symmetric if it is centrally symmetric with
center at the origin, i.e. for every x ∈ K we get −x ∈ K. We write |A| for the k-dimensional
Lebesgue measure (volume) of a measurable set A ⊂ Rd, where k = 1, . . . , d is the dimension
of the minimal flat containing A. We recall also the definition of the Banach-Mazur distance
between symmetric bodies K and L

dBM (K,L) = inf{t ≥ 1 : L ⊂ TK ⊂ tL, for some T ∈ GL(d)}.

The above distance turns out to be extremely useful when one would like to study questions
invariant under the linear transformation. For a convex body K, the support function hK(ξ) :
Sd−1 → R+ is defined as

hK(ξ) = max
x∈K

〈x, ξ〉.

We refer to [Ga, Gr, Ko, KoY, Sc2] for definitions and properties of star-shaped and convex
bodies and corresponding functionals.

The projection body of a convex body K in Rd is defined as the body with support function

hΠK(x) = |K|x⊥|, for all x ∈ S
d−1,
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where K|x⊥ denotes the orthogonal projection of K onto the subspace x⊥ = {y ∈ Rd : 〈x, y〉 =
0}. The direct application of Cauchy projection formula gives us

hΠK(x) =
1

2

∫

Sd−1

|〈x, y〉|dSK(y), x ∈ S
d−1,

where SK is the surface area measure of K, viewed as a measure on Sd−1. When SK is abso-
lutely continuous (with respect to the Lebesgue measure on the sphere), its density fK is called
curvature function of K.

It is very interesting to study the iterations of projection body operator. It is trivial to
see that the projection body of Euclidean ball Bd2 is again, up to a dilation, Bd2 , moreover the
same property is true for a unit cube Bd∞. Weil [W1] proved that if K is a polytope in Rd,
then Π2K is homothetic to K if and only if K is a linear image of cartesian products of planar
symmetric polygons or line segments. But no other description of fixed points of projection
body operator is known as well as no much known about possible convergence of the sequence
ΠmK. Clearly, Weil’s result tell us that one cannot expect in general that ΠmK → Bd2 , with
respect to the Banach-Mazur distance. It seems more plausible, however, that ΠmK → Bd2 , if
K has absolutely continuous surface area measure and d ≥ 3 (for d = 2, if K is symmetric, then
Π2K = 4K). We refer to [Ga, Sc2] for more information about this problem. We are going to
show the following:

Theorem 1.1. Let d ≥ 3. There exists an εd > 0 with the following property: For any convex
body K in Rd, with absolutely continuous surface area measure and the curvature function fK
satisfying ‖fTK − 1‖∞ < εd, for some T ∈ GL(d), we have ΠmK → Bd2 , in the sense of the
Banach-Mazur distance.

The idea of the above theorem follows from the study of the properties of intersection body
operator done in [FNRZ]. The intersection body IK of a star body K was defined by Lutwak
in [Lu1] using the radial function of the body IK:

ρIK(u) = |K ∩ u⊥|, for u ∈ S
d−1.

Again it is trivial to see that IBd2 is a dilate of Bd2 and I2K = 4K for symmetric K ⊂ R2, but
no much information is known about other fixed points of I (see [Lu4]). In [FNRZ] authors
shown that Bd2 is a local attractor:

Theorem A. Let d ≥ 3. There exists an εd > 0 with the following property: For any star body
K in Rd, which satisfies ‖ρTK − 1‖∞ < εd, for some T ∈ GL(d) (in other words, K is close,
in Banach-Mazur distance, to Bd2 ), we have ImK → Bd2 , in the sense of the Banach-Mazur
distance.

Another reason to consider Theorem 1.1 is that it can be applied to study of Petty’s conjec-
tured inequality. Indeed, it was shown by Petty [P1] that the quantity P (K) := |ΠK|/|K|d−1

is affine invariant. Petty [P2] also conjectured the following:

Conjecture 1.2. Let d ≥ 3. The affine invariant P (K) is minimal if and only if K is an
ellipsoid.

The restriction d ≥ 3 is because in the plane it is well known that |ΠK| ≥ 4|K|, with equality
if and only if K is symmetric (see, for example, [Sa]). Petty’s conjecture, if true, would be a
very strong inequality, as it would imply a number of important isoperimetric inequalities, such
as the classical isoperimetric inequality, the Petty projection inequality (see [Zh] for a functional
form) and the affine isoperimetric inequality.

Very little seem to be known about the conjecture of Petty. For instance, as shown in [Sa],
Steiner symmetrization fails for this problem. A useful fact, that will be used subsequently-
established by Schneider, is that

P (K) ≥ P (ΠK), (1)
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with equality if and only if K is homothetic to Π2K (see [Sch1] or [Sc2, pp 570]). In particular,
it follows that every solution to the Petty problem must be a zonoid (a body which is a limit of
Minkowski sum of segments).

Although bodies with minimal surface area significantly larger than the surface area of the
ball (of the same volume) satisfy the Petty conjecture (see e.g. [GP]), no natural class of convex
bodies was known to satisfy the Petty conjecture (natural class means that is connected with
respect to the Banach-Mazur distance and contains the ball). Below, we have a result towards
this direction.

Theorem 1.3. Let d ≥ 3. There exists an εd > 0 with the following property: For any non-
ellipsoidal convex body K in Rd, which has absolutely continuous surface area measure and
satisfies ‖fTK − 1‖∞ < εd, for some T ∈ GL(d), we have P (K) > P (Bd2 ).

Proof: Let K be a convex body that satisfies the assumptions of Theorem 1.3. The functional
P is continuous with respect to the Banach-Mazur distance (this follows immediately from
continuity of volume measure and the continuity of the projection body operation, see [Sc2]
for more details), so by Theorem 1.1, P (ΠmK) → P (Bd2 ). Also, the sequence P (ΠmK) is
non-increasing, thus

P (K) ≥ P (ΠK) ≥ lim
m→∞

P (ΠmK) = P (Bd2 ),

with equality in the first inequality if and only if K is homothetic to Π2K (see inequality (1)
from above). But if K is homothetic to Π2K, then trivially Π2mK → K, with respect to the
Banach-Mazur distance, which shows that K is an ellipsoid. This is a contradiction and our
assertion follows.

✷

One might hope that Theorem 1.1 can more generally show that for every convex body K,
which is sufficiently close to the ellipsoid with respect to the Banach-Mazur distance, we have
P (K) ≥ P (Bd2 ). The difficulty here is that even if we assume that K is smooth enough, the fact
that K is close to Bd2 does not guarantee that fK is close to fBd

2
. Indeed, the curvature function

fK can be written as a determinant involving second derivatives of hK . Thus to guarantee that
fK is close to fBn

2
we need to have a restriction on second derivatives of hK , which is an almost

equivalent statement to the fact that fK is close to fBd
2
. Unfortunately, we also do not see

how direct approximation methods may help. However, the next remark explains how one can
restate Theorem 1.3 involving the Banach-Mazur distance.

Remark 1.4. As we discussed above, it is enough to solve the conjecture of Petty in the class of
zonoids. Moreover, to prove the inequality, it is enough to consider only zonoids with absolutely
continuous surface area measure. This class corresponds to the class of centroid bodies of star
bodies. Therefore, Petty’s conjectured inequality (without equality cases) is equivalent to the
following statement: the affine invariant S(K) := |ΠΓK|/|ΓK|d−1 is minimal among all star
bodies K if K is an ellipsoid. Here, ΓK denotes the centroid body of K i.e. the convex body
whose support function is given by hΓK(x) =

∫
K |〈x, y〉|dy, x ∈ Rd. Theorem 1.3 says that if

the star body K is close enough (in the sense of the Banach-Mazur distance) to the ball, then
S(K) ≥ S(Bd2 ).

Denote by Wi the i-th quermassintegral functional in Rd, i = 0, 1, . . . , d − 1, which is the
mixed volume of d − i copies of a convex body K with i copies of Bd2 (see [Sc2] for exact
definitions and properties). Recall the Aleksandrov-Fenchel inequalities for quermassintegrals:

W d−i
i+1 (K) ≥ ωdW

d−i−1
i (K), i = 0, . . . , d− 2, (2)

where K is any convex body and ωd = |Bd2 | (see [Sc2]). Lutwak [Lu3] proved that if Petty’s
conjecture was proven to be true, then a family of inequalities that are stronger than (2) would
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have been established. These conjectured inequalities involve the notion of the i-th projection
body ΠiK of K, whose support function is given by:

hΠiK(u) =Wi|u⊥(K|u⊥), i = 0, . . . , d− 2,

where Wi|u⊥ stands for the i-th quermassintegral in u⊥. Note that ΠK = Π0K. Actually,
Lutwak in [Lu3] established a certain member of this family of inequalities:

Wd−2(Πd−2K) ≥ ω2
d−1Wd−2(K), (3)

where d ≥ 3, with equality if and only if K is a ball. To see that (3) is stronger than (2) (in
the sense that it interpolates (2)), for i = d− 1, note that since Wd−1(K) is proportional to the
mean width of K (see also [Lu3]), we get:

Wd−1(Πd−2K) = ωd−1Wd−2(K), (4)

Thus by (2) we obtain:
ωd
ω2
d−1

Wd−2(Πd−2K) ≤W 2
d−1(K),

with equality if and only if Πd−2K is a ball.
Theorem 1.3 allows us to prove a stronger version of Lutwak’s inequality:

Theorem 1.5. Let K be a convex body in Rd, d ≥ 3. Then,

Wd−2(Πd−2K) ≥
d(d− 2)ω2

d−1

(d− 1)2ωd
W 2
d−1(K) +

ω2
d−1

(d− 1)2
Wd−2(K).

This inequality is sharp for the ball. Moreover, if K is not centrally symmetric, then the in-
equality is strict.

As noted in [Lu3], since W0(K) = |K| and Π0K = ΠK, in the plane (3) becomes |ΠK| ≥
4|K|, which as mentioned earlier is known to hold and, also, the inequality is strict if K is not
centrally symmetric. Therefore, Theorem 1.5 is trivially true in dimension 2 as well.

The paper is organized as follows: in Section 2 we use the method of Spherical Harmonics
together with basic lemmata from [FNRZ] to present a proof of Theorem 1.1 and Section 3 is
dedicated to the proof of Theorem 1.5.

Acknowledgment: We are indebted to Fedor Nazarov who suggested to us the direct link
between Q transform and the Radon transform (equation (5) below) and Dmitry Ryabogin for
many valuable discussions.

2 Iterations of the projection body operator

The goal of this section is to establish Theorem 1.1. Let us first fix some notation. If f : Sd−1 →
R, denote by R(f) the normalized Radon transform of f (i.e. R(1) = 1). In other words,

R(f)(x) =
1

|Sd−2|

∫

Sd−1∩x⊥

fdy, x ∈ S
d−1.

Consider functions g1, . . . , gd−1 : Sd−1 → R and define the function Q(g1, . . . , gd−1) : S
d−1 7→ R

as :

Q(g1, . . . , gd−1)(x) = cd

∫

Sd−1∩x⊥

. . .

∫

Sd−1∩x⊥

det(x1, . . . , xd−1)
2g1(x1) . . . gd−1(xd−1)dx1 . . . dxd−1.
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We abbreviate Q(f) := Q(f, . . . , f) and

Q(g1[k], g2[d− 1− k]) = Q(g1, . . . , g1︸ ︷︷ ︸
k times

, g2, . . . , g2︸ ︷︷ ︸
d−1−k times

).

The constant cd is chosen so that Q(1) = 1.

Denote, also, by Hf
k the k-th spherical harmonic of f , k ∈ N. It is well known (see e.g. [Gr],

Lemma 3.4.7, page 103) that R(Hf
k ) = (−1)k/2vk,dH

f
k , if k is even and R(Hf

k ) = 0 if k is odd,
where

vk,d =
1 · 3 . . . (k − 1)

(d− 1)(d+ 1) . . . (d+ k − 3)
.

Note that Hf
0 = |Sd−1|−1

∫
Sd−1 fdx and that ‖f −Hf

0 ‖∞ ≤ 2‖f‖∞.
It will be essential for us to consider different actions of a linear operator T ∈ GL(d) on a

function f : Sd−1 → R. We define T̂ f = f(Tx/|Tx|)|Tx|−1 and Tf = f(Tx/|Tx|)|Tx|−(d+1).
Let K be a convex body with a curvature function fK it was proved by Lutwak [Lu2], that if

T ∈ SL(d), then fTK = T ∗fK . On the other hand, for t > 0, we have ftK = td−1fK . Therefore,
for T ∈ GL(d), since T/|detT |1/d ∈ SL(d), it follows easily that

fT∗K = |detT |(d−1)/dTfK .

Moreover, it was shown by Weil [W2] that projection body of K again has absolutely continuous
surface area measure and its density is proportional to Q(fK). For this section, it will be
convenient to normalize ΠK, so that Q(fK) = fΠK .

The proof of Theorem 1.1 will be done through a modification of the proof of Theorem A.
All constants that appear in this section will depend on the dimension d only. For a ≥ 0, the
following norm was introduced in [FNRZ]:

‖f‖Ua
=

inf{M > 0 : ‖f‖∞ < M and ∀n ∈ N, ∃ pn polynomial of degree n, s.t. ‖f − pn‖2 < Mn−a}.

If ‖f‖Ua
< ∞, we say that f belongs to the class Ua. It was shown in [FNRZ, proof of Lemma

6, Step 1] that there exist constants a, L, C > 0, with the following properties:

(i) If ϕ : Sd−1 → R is a function with ‖ϕ‖2 < ε, for some 0 < ε < 1 and ‖ϕ‖Ua
< 1/L, then

‖ϕ‖∞ < Cε
4

d+3 .

(ii) If f = 1 + ϕ and T ∈ GL(d) with T = I +Q, for some Q ∈ GL(d), then

T̂ f = 1− 〈Qx, x〉 + ϕ(x) + z(x),

where ‖z‖∞ = O(|Q|ε
2

d+3 + |Q|2),

where by |Q| we denote the operator norm of Q. Thus, since

|Tx|−d = 1− d〈Qx, x〉 +O(|Q|2),

we get

Tf(x) = 1− (d+ 1)〈Qx, x〉+ ϕ(x) + d〈Qx, x〉ϕ(x) +O(|Q|ε
2

d+3 + |Q|2)

= 1− (d+ 1)〈Qx, x〉+ ϕ(x) +O(|Q|ε
2

d+3 + |Q|2).

Choose Q such that −(d + 1)〈Qx, x〉 = Hϕ
2 (x). Then, ‖Hϕ

2 (x)‖2 ≤ ‖ϕ‖2 < ε. Write 〈Qx, x〉 =∑d
i,j=1 qijxixj . Then, since

∫
Sd−1 x1x2x3x4dx =

∫
Sd−1 x

2
1x2x3dx = 0, we have:

‖〈Qx, x〉‖22 =
∑

i6=j

q2ij‖xixj‖
2
2 +

d∑

i=1

q2ii‖x
2
i ‖

2
2 = l1

∑

i6=j

q2ij + l2

d∑

i=1

q2ii ≥ min{l1, l2}q
2
ij ,
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for all i, j, where l1, l2 are positive constants that depend only on the dimension. This easily

implies that |Q| = O(ε). Therefore, Tf = 1 + ψ, with ψ = ϕ −Hϕ
2 + O(ε

d+5
d+3 ). Thus, ‖ψ‖2 ≤

‖ϕ‖2 +O(ε
d+5
d+3 ) ≤ ε+C′ε

d+5
d+3 and ‖ψ‖∞ ≤ ‖ϕ‖∞ + ‖Hϕ

2 ‖∞ +O(ε
d+5
d+3 ) ≤ C′′ε

4
d+3 . Finally, since

ϕ −Hϕ
2 has no second degree spherical harmonic in its expansion, we have ‖Hψ

2 ‖2 ≤ C′′′ε
d+5
d+3 .

Therefore, we have the following:

Lemma 2.1. There exist constants a, L, C > 0, with the following property: Whenever a func-
tion ϕ : Sd−1 → R satisfies ‖ϕ‖2 < ε, for some 0 < ε < 1 and ‖ϕ‖Ua

< 1/L, then (i)

‖ϕ‖∞ < Cε
4

d+3 and (ii) there exists T ∈ GL(d), such that if we set f = 1+ϕ, then Tf = 1+ψ,

with ‖ψ‖2 ≤ ε+ Cε
d+5
d+3 , ‖ψ‖∞ ≤ Cε

4
d+3 and ‖Hψ

2 ‖2 ≤ Cε
d+5
d+3 .

We will also need two more lemmas from [FNRZ].

Lemma 2.2. (Lemma 3 in [FNRZ]) Let a ≥ 0.

i) If f, g ∈ Ua, then ‖fg‖Ua
≤ C′‖f‖Ua

‖g‖Ua
.

ii) Let T ∈ GL(d) with |T |, |T |−1 ≤ 2. Then, for every δ > 0 and for every f ∈ Ua, we have

‖T̂ f‖Ua−δ
≤ C′

δ‖f‖Ua
.

iii) If f ∈ Ua, then ‖Rf‖Ua+d−2
≤ C′‖f‖Ua

.

Lemma 2.3. (Lemma 5 in [FNRZ]) Let β > a. For every σ > 0, there exists a constant
C0 = Cσ,a,β > 0, such that ‖f‖Ua

≤ C0‖f‖∞ + σ‖f‖Uβ
.

From Lemma 2.2, we get the following:

Lemma 2.4. Let a ≥ 0 and f ∈ Ua. The following are true:

i) ‖Qf‖Ua+d−2
≤ C′′‖f‖d−1

Ua
.

ii) Let T ∈ GL(d), with |T |, |T |−1 ≤ 2. Then, for every δ > 0, we have ‖Tf‖Ua−δ
≤ Cδ‖f‖Ua

.

Proof: (i) We notice that

det(d−1)×(d−1)(x1, . . . , xd−1) = detd×d(x1, . . . , xd−1, ξ)

for any ξ ∈ Sd−1 and x1, . . . , xd−1 ∈ ξ⊥, thus

Q(g1, . . . , gd−1)(ξ) = cd

∫

Sd−1∩ξ⊥

. . .

∫

Sd−1∩ξ⊥

det(x1, . . . , xd−1)
2
d−1∏

k=1

gk(xk)dx1 . . . dxd−1

= cd

∫

Sd−1∩ξ⊥

. . .

∫

Sd−1∩ξ⊥

detd×d(x1, . . . , xd−1, ξ)
2
d−1∏

k=1

gk(xk)dx1 . . . dxd−1

= cd

∫

Sd−1∩ξ⊥

. . .

∫

Sd−1∩ξ⊥

(∑

σ∈Sd

sign(σ)ξσ(d)

d−1∏

k=1

xk,σ(k)

)2 d−1∏

k=1

gk(xk)dx1 . . . dxd−1,

where (xk,1, . . . xk,d) are the coordinates of the vector xk ∈ Rd, Sd is the set of permutations of
d elements and the last equality follows from the Leibniz formula for determinant. Thus,
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Q(g1, . . . , gd−1)(ξ)

= cd

∫

Sd−1∩ξ⊥

. . .

∫

Sd−1∩ξ⊥


 ∑

σ1,σ2∈Sd

sign(σ1)sign(σ2)ξσ1(d)ξσ2(d)

d−1∏

k=1

(xk,σ1(k)xk,σ2(k))



d−1∏

k=1

gk(xk)dx1 . . . dxd−1

= c̄d
∑

σ1,σ2∈Sd

sign(σ1)sign(σ2)ξσ1(d)ξσ2(d)

d−1∏

k=1

∫

Sd−1∩x⊥

xk,σ1(k)xk,σ2(k)gk(xk)dxk

= c̄d
∑

σ1,σ2∈Sd

sign(σ1)sign(σ2)ξσ1(d)ξσ2(d)

d−1∏

k=1

R
(
xk,σ1(k)xk,σ2(k)gk(xk)

)
(ξ).

Next we apply the triangular inequality to get that

‖Qf‖Ua+d−2
≤ c̄d

∑

σ1,σ2∈Sd−1

∥∥∥∥∥ξσ1(d)ξσ2(d)

d−1∏

k=1

R
(
xk,σ1(k)xk,σ2(k)gk(xk)

)
(ξ)

∥∥∥∥∥
Ua+d−2

.

We use Lemma 2.2 (i) together with the fact that ‖ξiξj‖a+d−2 ≤ c to get

‖Qf‖Ua+d−2
≤ C0

(
max

1≤i,j≤d
‖R(xixjf(x))‖Ua+d−2

)d−1

.

Now, by Lemma 2.2 (iii) we derive:

‖Qf‖Ua+d−2
≤ C0C

′d−1

(
max

1≤i,j≤d
‖xixjf(x)‖Ua

)d−1

and again by Lemma 2.2 (i), we conclude:

‖Qf‖Ua+d−2
≤ C0C

′d−1C′d−1

(
max

1≤i,j≤d
‖xixj‖Ua

)d−1

‖f‖d−1
Ua

= C′′‖f‖d−1
Ua

.

(ii) Fix δ > 0. By Lemma 2.2 (ii), we have ‖T̂ f‖Ua−δ
≤ ‖f‖Ua

, so Lemma 2.2 (i) implies:

‖Tf‖Ua−δ
≤ C′‖|Tx|−d‖Ua−δ

‖f‖Ua−δ
≤ C′C′

δ‖|Tx|
−d‖Ua−δ

‖f‖Ua
.

For f ≡ 1, we have T̂ f = |Tx|−1, thus again by Lemma 2.2 (i), (ii), we get:

‖|Tx|−d‖Ua−δ
≤ (C′)d‖|Tx|−1‖dUa−δ

≤ (C′)d(C′
δ)
d‖1‖dUa

= (C′)d(C′
δ)
d,

which finishes the proof.

✷

Lemma 2.5. Fix d > 2 and let a, L, C be the constants from Lemma 2.1. There exist 0 < λ < 1
and ǫ > 0, with the following property: If ε ∈ (0, ǫ) and f : Sd−1 → R is a function with
f = 1 + ϕ,

∫
Sd−1 ϕ = 0, ‖ϕ‖2 < ε and ‖ϕ‖Ua

< 1/L, then there exists T ∈ GL(d) and γ > 0,

such that the function f̃ = γQ(Tf) can be written as f̃ = 1 + ϕ̃, for some ϕ̃ with
∫
Sd−1 ϕ̃ = 0,

‖ϕ̃‖Ua
< 1/L and ‖ϕ̃‖2 < λε.

Proof: Use Lemma 2.1 to find T ∈ GL(d), such that Tf = 1 + ψ, ‖ψ‖2 ≤ ε + Cε
d+5
d+3 ,

‖ψ‖∞ ≤ Cε
4

d+3 and ‖Hψ
2 ‖2 ≤ Cε

d+5
d+3 .
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Using rotation invariance of Haar measure we get that

∫

Sd−1∩ξ⊥
. . .

∫

Sd−1∩ξ⊥
|det(x1 . . . , xd−2, x)|

2dx1 . . . dxd−2

is a constant for all x ∈ Sd−1 ∩ ξ⊥. Thus, it follows that for any function g, we have:

Q(g, 1[d− 2]) = R(g). (5)

One should also notice, that the constant in the above equality is exactly 1, by setting g = 1.
Therefore

Q(Tf) = Q(1 + ψ)

=

d−1∑

k=0

(
d− 1

k

)
Q(ψ[k], 1[d− 1− k])

= 1 + (d− 1)R(ψ) +

d−1∑

k=2

(
d− 1

k

)
Q(ψ[k], 1[d− 1− k]).

Let ν =
∑d−1

k=2

(
d−1
k

)
Q(ψ[k], 1[d− 1− k]). Then,

‖ν −Hν
0 ‖2 ≤ ‖ν‖2 ≤

d−1∑

k=2

(
d− 1

k

)
‖Q(|ψ| [k], 1[d− 1− k])‖2

≤

d−1∑

k=2

(
d− 1

k

)
‖ψ‖k−1

∞ ‖Q(|ψ|, 1[d− 2])‖2

=

d−1∑

k=2

(
d− 1

k

)
‖ψ‖k−1

∞ ‖R(|ψ|)‖2

≤
d−1∑

k=2

(
d− 1

k

)
‖ψ‖k−1

∞ ‖ψ‖2

≤ (d− 1)max
k

(
d− 1

k

)
(1 + C)dε

4
d+3Cε

= C1ε
d+7
d+3 . (6)

Similarly, we have:

‖ν −Hν
0 ‖∞ ≤ 2‖ν‖∞ ≤ 2

d−1∑

k=2

(
d− 1

k

)
‖Q(|ψ| [k], 1[d− 1− k])‖∞

≤ 2

d−1∑

k=2

(
d− 1

k

)
‖ψ‖k∞ ≤ C2ε

8
d+3 . (7)

Write

Q(Tf) = 1+(d−1)R(ψ)+ν = 1+(d−1)Hψ
0 +H

ν
0+(d−1)RHψ

2 +(d−1)R(ψ−Hψ
0 −H

ψ
2 )+(ν−Hν

0 )

and set ζ = (d− 1)Hψ
0 +Hν

0 . Since ζ is a constant, we have:

|ζ| ≤ (d− 1)|Hψ
0 |+ |Hν

0 | ≤ (d− 1)‖ψ‖2 + ‖ν‖2 ≤ C3ε.
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Also, (d− 1)‖RHψ
2 ‖2 ≤ (d− 1)‖Hψ

2 ‖2 ≤ Cε
d+5
d+3 and since decomposition of R(ψ) into spherical

harmonics does not contain spherical harmonics of odd degree, we have:

(d− 1)‖R(ψ −Hψ
0 −Hψ

2 )‖2 = (d− 1)

∞∑

k=4

vk,d‖H
ψ
k ‖2

≤ (d− 1)v4,d

∞∑

k=4

‖Hψ
k ‖2

=
3

d+ 1
‖ψ −Hψ

0 −Hψ
2 ‖2

≤
3

4
‖ψ‖2 ≤

3

4
(ε+ Cε

d+5
d+3 )

≤ C′ε, (8)

provided that ε is small enough. Take γ = (1 + ζ)−1 = O(ε) and set

ϕ̃ := γ
[
(d− 1)RHψ

2 + (d− 1)R(ψ −Hψ
0 −Hψ

2 ) + (ν −Hν
0 )
]
.

Then, by (6), (8) and the fact that (d− 1)‖RHψ
2 ‖2 ≤ Cε

d+5
d+3 , we immediately get:

‖ϕ̃‖2 ≤ (1 + C2ε)
(
Cε

d+5
d+3 + C′ε+ C1ε

d+7
d+3
)
≤ Cε,

provided that ε is sufficiently small. Moreover, by (7), we get:

‖ϕ̃‖∞ ≤ γ
(
(d− 1)‖R(ψ −Hψ

0 )‖∞ + ‖ν −Hν
0 ‖∞

)
≤ γ

(
(d− 1)2‖ψ‖∞ + C2ε

4
d+3 ) ≤ C4ε

4
d+3 .

Finally, to estimate ‖ϕ̃‖Ua
, note that |T |, |T |−1, ‖f‖Ua

< 2. Fix any 0 < δ < 1. Then, by Lemma
2.4 we get ‖Tf‖Ua−δ+d−2

≤ ‖Tf‖Ua−δ
≤ Cδ‖f‖Ua

< 2Cδ. Again, Lemma 2.4 implies

‖γQ(Tf)‖Ua−δ+d−2
≤ γ2CδC

′′‖f‖d−1
Ua

≤ γ2CδC
′′2d−1 =: C5.

Therefore,
‖ϕ̃‖Ua−δ+d−2

= ‖γQ(Tf)− 1‖Ua−δ+d−2
≤ C5 + 1 =: C6.

Now, one may use Lemma 2.3 with σ = 1/(2C6L), to conclude:

‖ϕ̃‖Ua
≤ Ca,a−δ+d−2‖ϕ̃‖∞ + σ‖ϕ̃‖Ua+δ+d−2

≤ C7ε
4

d+3 + C6/(2C6L) ≤ 1/L,

provided that ε is small enough.

✷

Proof of Theorem 1.1: Since the “iteration” Lemma 2.5 is established, the rest of the proof
of Theorem 1.1 is exactly the same as the proof of Theorem A. For the sake of completeness, we
will briefly repeat the argument. Let K be a convex body with absolutely continuous surface
area measure and ‖fK− 1‖∞ < ε, for some 0 < ε < 1. Then, ‖fK‖U0 < 1+ ε and by Lemma 2.4
we easily get ‖fΠmK‖Um(d−2)

< Cm(1 + ε)m. Choosing m such that a < m(d − 2) < 2a, where

a is the constant from Lemma 2.5, we conclude that ‖fΠmK‖Uβ
< C, where β = m(d− 2). On

the other hand, it is clear from the definition of Q(f) that since 1− ε ≤ fK ≤ 1 + ε, we have:

(1 − ε)(d−1)m ≤ fΠmK ≤ (1 + ε)(d−1)m .

So, fΠmK/(
∫
Sd−1 fΠmK) = 1 + ϕ, with

∫
Sd−1 ϕ = 0 and

‖ϕ‖Uβ
≤ 1 + ‖fΠmK‖Uβ

/(

∫

Sd−1

fΠmK) < C
′
.
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Clearly, ‖ϕ‖∞ ≤ C
′′
ε, so by Lemma 2.3, we get: ‖ϕ‖Ua

≤ Cσ,a,βC
′′
ε+σC

′
≤ 1/L, provided that

ε is small enough. Therefore, replacing K with ΠmK, we may assume that the assumptions
of Lemma 2.5 hold. Since the factor |detT |(d−1)/d can be eliminated by rescaling, Lemma 2.5
implies that for each m ∈ N, there exists Tm ∈ GL(d), such that ‖fTm(ΠmK) − 1‖2 → 0, as
m→ ∞ and ‖fTm(ΠmK)‖Ua

< 1/L. Now, Lemma 2.1 (i) implies that ‖fTm(ΠmK) − 1‖∞ → 0, as
required.✷

3 Proof of Theorem 1.5

In this section, some facts from the theory of mixed volumes and quermassintegrals of convex
bodies will be used. We refer to [Sc2] for an extensive discussion on this topic. Let m ∈ N,
t1, . . . , tm ∈ R and K1, . . . ,Km be convex bodies in Rd. Recall the classical Minkowski formula
about mixed volumes:

|t1K1 + . . . tmKm| =

m∑

i1,...,id=1

ti1 . . . tidV (Ki1 , . . . ,Kid). (9)

Note, also, that Wj(K) = V (K[d− j], Bd2 [j]) (K appears d− j times and Bd2 appears j times),
j = 0, . . . , d − 1. For instance, W0(K), W1(K) and Wd−1(K) are proportional to the volume,
the surface area and the mean width of K respectively.

We will establish an inequality of the form

Wd−2(Πd−2K) ≥ adW
2
d−1(K) + βdWd−2(K),

where ad and βd are positive constants that depend only on d and we will prove that there is
equality when K = Bd2 . The computation of the exact values of ad and βd is an elementary (but
rather tedious) task and it is left to the reader. In what follows, every constant that appears
will depend only on the dimension.

In order to prove Theorem 1.5, we would like to be able to claim that functions

t 7→ |Bd2 + tK| and t 7→ |Π(Bd2 + tK)|

well defined and twice differentiable at t = 0. Unfortunately, this cannot be expected to be true
for a general convex body K. To overcome this difficulty, we will first prove our theorem for
symmetric convex bodies K with smooth boundary. It is well known (see [W3] or again [Sc2])
that in this case K is a generalized zonoid, i.e. the support function of K is given by

hK(u) =
1

2

∫

Sd−1

|〈x, u〉|f(x)dx,

where f : Sd−1 → R is an even, continuous function.
Let δ = ( max

x∈Sd−1
|f(x)|)−1. For each t ∈ (−δ, δ) we define a convex body Mt via its support

function

hMt
(u) =

1

2

∫

Sd−1

|〈x, u〉|(1 + tf(x))dx, u ∈ S
d−1. (10)

Note that for t > 0, Mt = ΠBd2 + tK, while for t < 0 Minkowski addition is replaced with
Minkowski subtraction. Although Minkowski subtraction, when meaningful, does not always
have good behavior (see [Sc2]), the integral representation (10) (since 1 + tf ≥ 0 for |t| < δ),
allows us, by a result of Weil, to derive nice integral expressions for the volumes of Mt and
ΠMt (see [W1] or [Sc2] for |Mt| and [Sa] for |ΠMt|). Those formulas give us that the functions
|Mt| and |ΠMt| are polynomials in t, hence both twice differentiable in (−δ, δ). This simple
observation will be crucial for the proof of Theorem 1.5.
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Moreover, we also note that the curvature function fMt
is proportional to Q(1 + tf). Thus,

there exists δ′ > 0 such that fMt
is sufficiently close to 1 for |t| < δ′. Next, applying Theorem

1.3, we conclude that P (Mt) ≥ P (Bd2 ) for |t| < δ′. Thereby, it follows by an obvious rescaling
that the point t = 0 is a local minimizer for the function t 7→ P (Bd2 + tK). One can check that
if for two twice differentiable functions f, g : R → R+ with g(0), g′′(0) > 0, the function f/g
is attains a local minimum at 0, then f ′′(0)/g′′(0) ≥ f(0)/g(0) and there is equality if f/g is
constant. Therefore,

d2

dt2
|Π(Bd2 + tK)|

∣∣∣∣
t=0

≥
|ΠBd2 |

|Bd2 |
d−1

d2

dt2
(
|Bd2 + tK|d−1

)∣∣∣∣
t=0

=: Ad
d2

dt2
(
|Bd2 + tK|d−1

)∣∣∣∣
t=0

, (11)

with equality if K = Bd2 . By definition, the first and second derivative of the function t 7→
|Bd2+tK| at t = 0 are proportional toWd−1(K) andWd−2(K) respectively. Hence an elementary
calculation shows that

d2

dt2
(
|Bd2 + tK|d−1

)∣∣∣∣
t=0

= γdW
2
d−1(K) + δdWd−2(K).

Next, note that for u ∈ Sd−1, using (9), we have:

hΠ(Bd
2+tK)(u) = |(Bd2 + tK)|u⊥| = |t(K|u⊥) +Bd−1

2 |

= |Bd2 |u
⊥|+

d−2∑

i=1

ζi,dt
iWd−i−1(K|u⊥)

=

d−2∑

i=1

ζi,dt
ihΠd−i−1K(u) + hΠBd

2
(u), t ≥ 0,

where ζi,d are positive constants. Therefore, again by (9), we get:

|Π(Bd2 + tK)| =
∣∣∣
d−2∑

i=1

ζi,dt
iΠd−i−1K + ζ0,dB

d
2

∣∣∣

= t2
(
ηdWd−2(Πd−2K) + θdWd−1(Πd−3K)

)
+Θ(t) +O(t3)

= t2
(
ηdWd−2(Πd−2K) + λdWd−2(K)

)
+Θ(t) +O(t3), t ≥ 0,

where we used (4). Consequently,

d2

dt2
∣∣Π(Bd2 + tK)

∣∣
∣∣∣∣
t=0

= 2ηdWd−2(Πd−2K) + 2λdWd−2(K),

so (11) becomes:

Wd−2(Πd−2K) ≥
γd
2ηd

W 2
d−1(K) +

δd − 2λd
2ηd

Wd−2(K) =: adW
2
d−1(K) + βdWd−2(K).

Note that since (11) is sharp for the ball, the last inequality is also sharp. To conclude that
βd > 0, notice that if βd ≤ 0, then by the use of (2) and (4), for i = d− 2, we would get:

adW
2
d−1(K) ≤Wd−2(Πd−2K)+|βd|Wd−2(K) ≤ ωdW

2
d−1(Πd−2K)+|βd|ωdW

2
d−1(K) =: a′dW

2
d−1(K),

for all convex bodies K, with equality everywhere if K is a ball. This is a contradiction, thus
βd > 0.
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We have established our inequality for symmetric convex bodies with smooth boundary. This
extends easily to all symmetric convex bodies. Assume, now, that K is a general convex body.
Define the difference body DK = 1

2 (K −K). Since DK is symmetric, we have:

Wd−2(Πd−2DK) ≥ adW
2
d−1(DK) + βdWd−2(DK).

By the additivity of the mean width functional, we immediately conclude that Πd−2DK =
Πd−2K andWd−1(DK) =Wd−1(K). Hence, we only need to prove thatWd−2(DK) ≥Wd−2(K)
and the inequality is strict if K is not centrally symmetric. By the additivity of mixed volumes,
we easily get:

Wd−2(DK) =
1

2
V (K,K,Bd2 [d− 2]) +

1

2
V (K,−K,Bd2 [d− 2]).

Finally, use the general Aleksandrov-Fenchel inequality

V (K1, . . . ,Kd)
2 ≥ V (K1,K1,K3, . . . ,Kd)V (K2,K2,K3, . . . ,Kd),

to conclude that

V (K,−K,Bd2 , . . . , B
d
2 ) ≥ V (K,K,Bd2 , . . . , B

d
2 )

1
2V (−K,−K,Bd2 , . . . , B

d
2 )

1
2 =Wd−2(K).

It is well known (see [Sc2, Theorem 7.6.2]) that there is equality in the last inequality if and
only if K is centrally symmetric, which ends our proof. ✷

Before ending this note, we would like to remark that our method does not provide further
information about the equality cases for the inequality of Theorem 1.5. One may naturally
conjecture that there is equality if and only if K is a ball.
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