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SINGULAR REGULARIZATION OF OPERATOR EQUATIONS IN
L1 SPACES VIA FRACTIONAL DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS, IOANNIS K. PURNARAS

Abstract. An abstract causal operator equation y = Ay defined on a space of

the form L1([0, τ ], X), with X a Banach space, is regularized by the fractional
differential equation

ε(Dα0 yε)(t) = −yε(t) + (Ayε)(t), t ∈ [0, τ ],

where Dα0 denotes the (left) Riemann-Liouville derivative of order α ∈ (0, 1).
The main procedure lies on properties of the Mittag-Leffler function combined

with some facts from convolution theory. Our results complete relative ones
that have appeared in the literature; see, e.g. [5] in which regularization via

ordinary differential equations is used.

1. Introduction

Regularization employs several techniques in order to approximate solutions of
ill-posed problems such as

My = f, (1.1)

where M is an operator acting on a space X and taking values in another space Y .
Basically, the problem is characterized as an ill-posed problem, if either solutions
do not exist for some f , or uniqueness of solutions is not guaranteed, or continuous
dependence on data does not hold. The latter is equivalent to saying that there is
no continuous inverse of M . In order to solve an ill- posed problem (approximately),
we should regularize it, namely, replace this problem by a suitable family of well-
posed problems whose solutions approximate (in some sense) the solution of the
ill-posed problem which we look for.

However, it is not true that such a process may produce an approximation of the
solutions of the original equation for all situations. To see it, we borrow an example
from the literature (e.g., [17, 18]) adopted to our situation, as follows: Consider the
2× 2 matrix-operator M and the function f given by

M :=
[
d
dt −1
1 0

]
and f(t) :=

[
0
p(t)

]
,
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where p is a differentiable function on [0, 1], say. The exact solution of the operator
equation (1.1) in the space C1([0, 1],R)× C([0, 1],R) is given by

x(t) = p(t), y(t) = p′(t), t ∈ [0, 1].

Take a small number ε and let

fε(t) := f(t) +
[

0
ε sin(t/ε2)

]
be a small perturbation of f . Then we obtain the exact solution

xε(t) = p(t) + ε sin(t/ε2), yε(t) = p′(t) +
1
ε

cos(t/ε2).

Hence the quantity [
xε(t)
yε(t)

]
−
[
x(t)
y(t)

]
=
[
ε sin(t/ε2)
1
ε cos(t/ε2)

]
becomes large enough if the number ε tends to 0. This means that the solution
changes a lot after a small change in the right side of equation.

In case that M is a compact linear operator between two Hilbert spaces, a
regularizing form should consist of the equation

(M∗M + ε)xε = M∗f, (1.2)

where M∗ is the adjoint of M , see [10]. In [7] the regularization (1.2) has its right
side M∗fδ, where fδ is a (noisy) approximation of f . The works [21, 22] refer to
Tikhonov-regularization, i.e. regularization of minimazing problems. According to
such problems, an equation of the form∫ b

a

k(t, s)x(s)ds = f(t) (1.3)

is replaced by the equation∫ b

a

k(t, s)xε(s)ds+ εxε(t) = f(t),

or the equation ∫ b

a

k(t, s)xε(s)ds+ εxε(t) = fδ(t),

and then one looks for the convergence of the net xε. Here a noisy fδ replaces f ,
for small δ; see, e.g., the interesting survey presented in [16]. Approximation of the
kernel k of (1.3) is used by other authors, see, e.g., [19]. Approximation of both
the perturbation and the operator applies elsewhere, [9]. Some authors, as, e.g. [3],
dealing with the Volterra equation∫ t

0

k(t, s)x(s)ds = f(t) , (1.4)

apply the so called method of the simplified (or Lavrentiev) regularization, consist-
ing of an approximation of the perturbation f and the local regularization, realized
by an approximate equation of the form∫ t+ε

t

k(t+ ε, s)x(s)ds+
∫ t

0

k(t+ ε, s)x(s)ds = f(t+ ε),

where ε is a parameter tending to 0.
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In [27] another approach is applied to (1.3) by taking an approximation of both
the kernel k and the output f . For a more general setting see, also, [28].

Regularization of abstract equations of the form (1.1) can be realized by approx-
imating the output f , as, e.g. in [8] and for Fredholm integral equations, as, e.g., in
[30]. Regularization of the Hammerstein’s type equation x+BAx = f , is achieved,
(see, e.g., [26]) by replacing it with the equation xε+(B+εJ)(A+εJ)xε = fδ, where
ε, δ are positive reals tending to 0 and the functions f, fδ are such that ‖f−fδ‖ ≤ δ.
Here A and B are operators, and x, f are elements in a given Banach space X, with
x being the unknown element in X.

In case that the operator M has the form My = Ay − y + f , the problem (1.1)
leads to the fixed point problem

y = Ay. (1.5)

It is known (see, e.g., [5, p. 89]) that a continuous compact operator A (in the
sense of Krasnoselskii) defined on a locally convex Hausdorff space has a fixed point.
Regularization theory of such an equation (especially), when A is a monotone or
a non-expansive operator defined in a Hilbert or (even in a) Banach space, forms
a large field, and most of the authors make use of variation techniques, see, e.g.
[1, 2, 4, 14, 29] and the references therein.

In case (1.5) refers to a space of functions y : [0, 1]→ R, say, namely we have

y(t) = (Ay)(t), t ∈ [0, 1], (1.6)

regularization is achieved by a differential equation of the form

ε
d

dt
y(t) + y(t)− (Ay)(t) = 0. (1.7)

This is done elsewhere (see, e.g., the book [5, p. 140], and the references therein),
when y has to be a continuous function, say, y ∈ C([0, T ],R). Similar things occur
for a neutral differential equation discussed in [11]. An immediate consequence of
this approach is that, in this case, a solution of (1.6) is approximated by a sequence
(yεn) of real-valued functions having continuous first order derivatives.

For fractional differential equations a few results, analogous to above, are known.
We should refer to the problem

Dα
0 (x− x(0)− ε) = f(t, x) + ε, x(0) = x0 + ε,

discussed in [15], where conditions are given so that, as ε tends to 0, the maximal
solution η(t; ε) tends to the maximal solution η(t) of the problem

Dα
0 (x− x(0)) = f(t, x), x(0) = x0,

uniformly on any compact interval [0, t1] of the domain of η. In this work we assume
that A is defined on an L1-space of X-valued functions, where X is a Banach
space, and we regularize (1.6) by an equation involving continuous functions with
Lebesgue-integrable first order derivatives. To succeed in such an approach we work
in L1-spaces and use the fractional equation

ε(Dα
0 yε)(t) = −yε(t) + (Ayε)(t), a.a. t ∈ [0, τ ] := Iτ , (1.8)

for ε tending to 0. Here, Dα
0 yε is the (left) Riemann-Liouville derivative of f of

order α.
A central role to our approach is played by some facts from convolution theory,

as well as the Mittag-Leffler function. It is known that the relation of the latter
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with the fractional calculus, is analogous of that of the exponential function with
standard calculus. See, for instance, [12, subsection 3.2].

We investigate when, for some τ ∈ (0, T ], there is a sequence of solutions of the
fractional differential equation (1.8) converging in the sense of L1-norm on [0, τ ] to
solutions of equation (1.6), when the parameter ε approaches 0.

2. Preliminaries

2.1. Fractional calculus. Throughout this paper we shall work on a real Banach
space X endowed with a norm ‖ · ‖X , and on the space LT1 := L1([0, T ], X), for
some T > 0 fixed, with norm

‖y‖τ1 :=
∫ τ

0

‖y(s)‖Xds.

Several books in the literature present surveys on the classical fractional calculus.
Two exhaustive such books are the ones by Podlubny [24] and Miller and Ross [20].
We recall some basic definitions and results adopted for our purposes, namely we
consider the meaning of fractional derivative and integral on an X-valued function
defined on the interval [0, T ].

Let Γ be the Euler Gamma function. It is well known (see, e.g., [31]) that
on the positive real axis the function Γ admits a local minimum 0.885603... at
xmin = 1.461632144... and it is increasing for x > xmin. Later on we shall use the
monotonicity of Γ on the interval [2,+∞).

For u ∈ LT1 and α ∈ (0, 1), the (left) fractional Riemann-Liouville derivative of
f of order α, is defined by

(Dα
0 u)(t) =

1
Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s)ds,

where the integral is in the Bohner sense.
As in [24], [pp. 59-73, and relation (2.122)], we can see that the first composition

formula with integer order n derivative holds1:

Dα
0 (u(n))(t) = Dα+n

0 u(t)−
n−1∑
j=0

u(j)(0)tj

Γ(j + 1)
. (2.1)

Now consider the problem

(Dα
0 u)(t) = f(t), a.a. t ∈ [0, T ], (Dα−1

0 u)(t)
∣∣∣
t=0

= b, (2.2)

where b ∈ X.
Although the following result can be implied from arguments borrowed from the

literature (see, e.g., [24] Theorem 3.1, p. 122 and relation (3.7) in p. 123), we shall
give our proof for two reasons: First we want this work to be complete. Second,
the functions used here take values in the abstract Banach space X and not in R,
as it is used elsewhere (and in [24, Theorem 3.1]).

Let B be the (real) Betta function, namely the function defined for ρ, σ > 0 by

B(ρ, σ) =
∫ 1

0

(1− θ)ρ−1θσ−1dθ

1The relation holds even for α < 0.
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This is connected with the Gamma function by the relation

B(ρ, σ) =
Γ(ρ)Γ(σ)
Γ(ρ+ σ)

.

Lemma 2.1. The function y defined by

y(t) =
tα−1

Γ(α)
b+

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, a.a. t ∈ [0, T ],

is the only solution of the problem (2.2).

Proof. We show that y satisfies the problem (2.2). We have

(Dα
0 y)(t) =

1
Γ(α)Γ(1− α)

d

dt

∫ t

0

(t− s)−αsα−1dsb

+
1

Γ(α)Γ(1− α)
d

dt

∫ t

0

(t− s)−α
∫ s

0

(s− r)α−1f(r) dr ds

=
1

Γ(α)Γ(1− α)
d

dt
B(1− α, α)b

+
1

Γ(α)Γ(1− α)
d

dt

∫ t

0

(t− s)−α
∫ t

r

(s− r)α−1f(r)dsdr

=
1

Γ(α)Γ(1− α)
d

dt

∫ t

0

f(r)drB(1− α, α)

=
d

dt

∫ t

0

f(r)dr = f(t), a.e.,

(2.3)

where, in the integration, we used the substitution s =: (1 − θ)r + θt, θ ∈ [0, 1].
Similarly we obtain

(Dα−1
0 y)(t)

∣∣∣
t=0

=
d

dt
(t)
∣∣∣
t=0

b+
d

dt

∫ t

0

(t− r)f(r)dr
∣∣∣
t=0

= b.

The inverse is implied by an application [24, Theorem 3.1, p.122]. �

2.2. The Mittag-Leffler function. The Mittag-Leffler function of order α(> 0)
is defined on the complex plane by

Eα(z) :=
∞∑
0

zj

Γ(ja+ 1)
.

From a result of Feller referred by Pollard [25], we know that there is a nondecreasing
and bounded function Fα such that

Eα(−x) =
∫ +∞

0

e−xsdFα(s), x ≥ 0. (2.4)

It follows that this function is positive, non-increasing, it tends to 0 as x → +∞
and since Eα(0) = 1, the quantity Eα(−x) is not greater than 1. More properties
of this function and of some generalizations of it can be found in [24].
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3. Main results

Let A : LT1 → LT1 be a causal operator, namely, it satisfies (Ax)(t) = (Ay)(t),
whenever x(s) = y(s), for a.a. s ∈ [0, t], (for the continuous case see, e.g., [13], [23]
and the references therein). This characteristic guarantees that, for any τ ∈ (0, T ],
the operator A maps the ball

Brτ := {y ∈ Lτ1 : ‖y‖τ1 < r},

into the space Lτ1 . Suppose, also, that A is continuous and compact in the sense
that, it maps bounded sets into relatively compact sets. Hence, in case that for
some τ > 0 it holds

A(Brτ ) ⊆ Brτ ,
the following Schauder’s fixed point theorem applies and ensures the existence of a
fixed point of A in Brτ .

Theorem 3.1 ([5, p. 89]). Let E be a real Banach space and K ⊂ E a closed,
bounded and convex set. If C : K → K is a continuous compact operator, then C
has at least one fixed point.

Now, for any fixed ε > 0 and small enough, say ε < 1, consider the fractional
differential equation

ε(Dα
0 y)(t) = −y(t) + (Ay)(t), a.a. t ∈ [0, T ], (3.1)

where the derivative Dα
0 y is in the sense of Riemann-Liouville and α ∈ (0, 1).

Let b be a (nonzero) real number and consider the initial value problem

(Dα
0 y)(t) = −1

ε
y(t) +

1
ε

(Ay)(t), (Dα−1
0 y)(t)

∣∣∣
t=0

= b.

According to Lemma 2.1, a function y is a solution of the problem, if and only if it
satisfies the equation

y(t) =
b

Γ(α)
tα−1− 1

εΓ(α)

∫ t

0

(t−s)α−1y(s)ds+
1

εΓ(α)

∫ t

0

(t−s)α−1(Ay)(s)ds. (3.2)

Our main result in this work is given in the following theorem:

Theorem 3.2. If A is a causal, compact and continuous operator on LT1 , then,
there exists a certain τ ∈ (0, T ], such that, for any sequence (εn) converging to 0,
there is a sequence of solutions (yn) of equation (3.2) converging in the Lτ1-sense
to a solution y of equation

y(t) = (Ay)(t), a.a t ∈ [0, τ ].

The proof of the above theorem will be given in the last section. It is noteworthy
that the theorem has several interesting consequences, as the following one.

Corollary 3.3. Let k be a positive integer, W a continuous and causal operator
defined on the Ck([0, T ], X)-space and let α ∈ (0, 1). Then, there exists a certain
τ ∈ (0, T ] such that, for any sequence (εn) converging to 0, there is a sequence of
solutions (xn) of the problem

ε(Dk+α
0 x)(t) = −x(k)(t) + (Wx)(t), a.a. t ∈ [0, τ ], (3.3)

x(j)(0) = 0, j = 0, 1, . . . , k − 1, (Dk+α−1
0 x)(t)

∣∣∣
t=0

= b,
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converging, in the sup-norm ‖ · ‖τ∞ sense, to a solution of the problem

x(k)(t) = (Wx)(t)

x(j)(0) = 0, j = 0, 1, . . . , k − 1.

Proof. Set y = x(k). Then, due to (2.1), we have

(Dα
0 y)(t) = (Dk+α

0 x)(t) and (Dα−1
0 y)(t)

∣∣
t=0

= (Dk+α−1
0 x)(t)

∣∣∣
t=0

= b

and, moreover,

x(t) =
∫ t

0

(t− s)k−1

(k − 1)!
y(s)ds =: (Uy)(t).

Thus problem (3.3) is transformed into problem (1.6), where Au := W ◦U(u), with
A continuous, compact and, obviously, causal.

Take any sequence (εn) converging to 0. Then applying the results above, we ob-
tain the existence of a sequence of solutions yn of (3.1) satisfying (Dα−1

0 yn)(t)
∣∣
t=0

=
b and converging in the Lτ1 -sense to a solution of equation y = Ay. We set

xn := Uyn and x := Uy.

Then, evidently, xn satisfies the problem (3.3) and

x(k)(t) = y(t) = (Ay)(t) = W (Uy)(t) = Wx(t),

for a.a. t ∈ [0, τ ] and x(j)(0) = 0, j = 0, 1, . . . , k − 1. Finally, we observe that

‖xn − x‖τ∞ = sup
t∈[0,τ ]

∥∥∫ t

0

(t− s)k−1

(k − 1)!
[yn(s)− y(s)]ds

∥∥
X
≤ τk−1

(k − 1)!
‖yn − y‖τ1 .

The right-hand side tends to zero. The proof is complete. �

4. Auxiliary Lemmas

Before giving the proof of Theorem 3.2, we need some auxiliary facts concerning
the series

∞∑
j=1

(−1)j−1sjα−1

εjΓ(jα)
, s > 0. (4.1)

Lemma 4.1. The series (4.1) converges absolutely and uniformly on compact sub-
sets of [0,+∞) to a function k(s; ε), s > 0, which is continuous and positive.

Proof. Define the sets

Q1 := {j ∈ Z : α ≤ jα < 1}, Qk := {j ∈ Z : k ≤ jα < k + 1}, k = 2, 3, . . .

Obviously, for k ≥ 2 the set Qk has at most µ := [ 1
α ] + 1 elements. Absolutely, the

series can be written as
∞∑
j=1

sjα−1

εjΓ(jα)
= Λ(s) +

∞∑
k=3

∑
j∈Qk

sjα−1

εjΓ(jα)
,

where

Λ(s) :=
2∑
k=1

∑
j∈Qk

sjα−1

εjΓ(jα)
, s > 0

is an LT1 function, for any T > 0.
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Now, by using the fact that (s+1)α > 1 > ε and the monotonicity of the function
Γ on the interval [2,+∞), we obtain

∞∑
j=1

(s+ 1)jα−1

εjΓ(jα)
≤ Λ(s) +

∞∑
k=3

∑
j∈Qk

1
s+ 1

( (s+1)α

ε )j

Γ(k)

≤ Λ(s) +
∞∑
k=3

∑
j∈Qk

1
s+ 1

( (s+1)α

ε )
k+1
α

Γ(k)

= Λ(s) +
∞∑
k=3

∑
j∈Qk

ε
1
α

( (s+1)
ε1/α

)k

Γ(k)

≤ Λ(s) + µ

∞∑
k=3

ε
1
α

( (s+1)
ε1/α

)k

(k − 1)!

= Λ(s) + µ(s+ 1)
∞∑
k=3

( (s+1)
ε1/α

)k−1

(k − 1)!

= Λ(s)− µ(s+ 1)(1 +
(s+ 1)
ε1/α

) + µ(s+ 1) exp(
(s+ 1)
ε1/α

).

The right-hand side defines an LT1 function, for any T > 0. Obviously, this proves
the first part of the lemma.

It remains to show that the function k(·; ε) is positive. Indeed, by the previous
arguments, we can apply the Lebesgue Dominated Convergence Theorem and get,
for fixed θ ∈ [0, t], that∫ t

t−θ
k(s; ε)ds =

∫ θ

0

k(t− s; ε)ds =
∫ θ

0

∞∑
j=1

(−1)j−1(t− s)jα−1

εjΓ(jα)
ds

=
∞∑
j=1

(−1)j(t− θ)jα

εjΓ(jα+ 1)
−
∞∑
j=1

(−1)jtjα

εjΓ(jα+ 1)

=
∞∑
j=0

(−1)j(t− θ)jα

εjΓ(jα+ 1)
−
∞∑
j=0

(−1)jtjα

εjΓ(jα+ 1)

= Eα(
−(t− θ)α

ε
)− Eα(

−tα

ε
).

(4.2)

By using (2.4), relation (4.2) gives∫ θ

0

∞∑
j=1

(−1)j−1(t− s)jα−1

εjΓ(jα)
ds =

∫ +∞

0

(e−(t−θ)s − e−ts)dFα(s) ≥ 0.

From the properties of Eα which we mentioned in Subsection 2.2, it follows that
the quantity Eα(−t

α

ε ) is positive and less than 1 and it tends to zero monotonically
when t tends to +∞. The latter implies that

lim
x→+∞

Eα(−x) = 0, (4.3)

namely,

0 < Eα(
−tα

ε
) ≤ 1, (4.4)



EJDE-2016/01 FRACTIONAL REGULARIZATION OF OPERATOR EQUATIONS 9

lim
t→+∞

Eα(
−tα

ε
) = 0. (4.5)

Obviously, (4.4) implies that

0 ≤
∫ t

0

k(s; ε)ds < 1.

Finally, since the function

t→
∫ t

0

k(s; ε)ds = 1− Eα(
−tα

ε
), t ≥ 0 (4.6)

is increasing, its derivative, namely the function k(t; ε), is positive. �

Lemma 4.2. The following properties2 hold:

lim
ε→0

∫ t

0

k(s; ε)ds = 1, (4.7)

uniformly for t in intervals of the form [r, T ], for all r ∈ (0, T ] and

lim
ε→0

∫ t

δ

k(s; ε)ds = 0, (4.8)

for all t ∈ (0, T ] and δ ∈ (0, t). For each u ∈ LT1 it holds

lim
ε→0

∫ t

0

k(t− s; ε)u(s)ds = u(t). (4.9)

Proof. Property (4.7) is easily implied from (4.3) and (4.2), while (4.8) follows from
(4.2) and the fact that

∫ t
δ
k(s; ε)ds = Eα(−δ

α

ε )− Eα(−t
α

ε ).
Next, let u ∈ LT1 and η > 0. Extend u from [0, T ] to R by setting ū(s) = 0, if

s /∈ [0, τ ] and ū(s) = u(s), s ∈ [0, T ]. Then ū is an element of L1(R, X) and, so
it satisfies lims→0 ‖ū(· − s) − ū(·)‖T1 = 0, (see. e.g. [6, Thm 1.4.2 p. 298]). This
means that there is an s0 > 0 such that

‖ū(· − s)− ū(·)‖T1 ≤ η, 0 ≤ s ≤ s0.

Take any δ ∈ (0, s0]. By (4.7), there is some εδ > 0, such that for all ε ∈ (0, εδ] it
holds ∣∣ ∫ t

0

k(t− s; ε)ds− 1
∣∣ < η, t ∈ [δ, T ].

Hence, we have∥∥ ∫ t

0

k(t− s; ε)u(t)ds− u(t)
∥∥
X
≤ η‖u(t)‖X , t ∈ [δ, T ],

or ∥∥∫ t

0

[
k(s; ε)u(s)− 1

t
u(t)

]
ds
∥∥
X
≤ η‖u(t)‖X , t ∈ [δ, T ]. (4.10)

2These properties are enough to characterize the function k as an approximate identity of the
convolution, which resembles to the well known Dirac sequences in the convolutions theory.
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Taking into account Lemma 4.1 (i.e. that k is positive), we observe that∫ T

δ

∥∥∫ t

0

[
k(t− s; ε)u(s)ds− u(t)

]∥∥
X
dt

=
∫ T

δ

∥∥∫ t

0

[
k(s; ε)ū(t− s)− 1

t
ū(t)

]
ds
∥∥
X
dt

≤
∫ T

δ

∥∥∫ t

0

[
k(s; ε)ū(t− s)ds−

∫ t

0

k(s; ε)ū(t)ds
]∥∥
X
dt

+
∫ T

δ

∥∥ ∫ t

0

(
k(s; ε)ū(t)− 1

t
ū(t)

)
ds
∥∥
X
dt

≤
∫ T

δ

∥∥∫ t

0

k(s; ε)[ū(t− s)− ū(t)]ds
∥∥
X
dt+ η

∫ T

δ

‖ū(t)‖Xdt

≤
∫ T

δ

∫ δ

0

k(s; ε)‖ū(t− s)− ū(t)‖X ds dt

+
∫ T

δ

∫ t

δ

k(s; ε)‖ū(t− s)− ū(t)‖X ds dt+ η‖u‖T1 .

(4.11)

We estimate the right-hand side of relation (4.11). We have∫ T

δ

∫ δ

0

k(s; ε)‖ū(t− s)− ū(t)‖X ds dt

=
∫ δ

0

k(s; ε)
∫ T

δ

‖ū(t− s)− ū(t)‖X dt ds

≤
∫ δ

0

k(s; ε)‖ū(· − s)− ū(·)‖T1 ds

≤ η
∫ δ

0

k(s; ε)ds.

Also ∫ T

δ

∫ t

δ

k(s; ε)‖ū(t− s)− ū(t)‖X ds dt

=
∫ T

δ

k(s; ε)
∫ T

s

‖ū(t− s)− ū(t)‖X dt ds

≤
∫ T

δ

∫ T

0

(
k(s; ε)(‖ū(t− s)‖X + ‖ū(t)‖X

)
dt ds

≤ 2‖u‖T1
∫ T

δ

k(s; ε)ds.

Hence, (4.6) becomes∫ T

δ

∥∥∫ t

0

[
k(t− s; ε)u(s)− 1

t
u(t)

]
ds
∥∥
X
dt

≤ η
∫ δ

0

k(s; ε)ds+ 2‖u‖T1
∫ T

δ

k(s; ε)ds+ η‖u‖T1 .
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Now, in view of (4.7) and (4.8) as ε tends to 0, the right-hand side tends to η(1 +
‖u‖T1 ). Since δ is arbitrary and small, we obtain∫ T

0

∥∥∫ t

0

[
k(t− s; ε)u(s)− 1

t
u(t)

]
ds
∥∥
X
dt ≤ η(1 + ‖u‖T1 ).

The fact that η is arbitrary completes the proof of relation (4.9). �

5. Proof of theorem 3.2

To simplify notation, we set

φ(t) :=
tα−1

Γ(α)
b, t ∈ (0, T ]

and observe that φ is an element of LT1 , for all T > 0. Also, consider the operator

(Lεu)(t) :=
1

εΓ(α)

∫ t

0

(t− s)α−1u(s)ds, u ∈ LT1 .

Then relation (3.2) takes the form

y(t) = φ(t)− (Lεy)(t) + (LεAy)(t)

which, by iteration, for each n = 1, 2, . . . , gives

y(t) =
n−1∑
j=0

(−1)j(L(j)
ε φ)(t) + (−1)n(Lnε y)(t) +

n∑
j=1

(−1)j−1(L(j)
ε Ay)(t). (5.1)

Let u ∈ LT1 . We observe that

(L(2)
ε u)(t) =

1
ε2Γ(2α)

∫ t

0

(t− s)2α−1u(s)ds.

By induction we obtain

(L(j)
ε u)(t) =

1
εjΓ(jα)

∫ t

0

(t− s)jα−1u(s)ds, j = 1, 2, . . . .

Then we have

‖L(j)
ε u‖T1 =

∫ T

0

∥∥ 1
εjΓ(jα)

∫ t

0

(t− s)jα−1u(s)ds
∥∥
X
dt

≤
∫ T

0

1
εjΓ(jα)

∫ t

s

(t− s)jα−1‖u(s)‖X dt ds

≤ T jα

εjΓ(jα+ 1)
‖u‖T1 .

Since by definition
+∞∑
0

T jα

εjΓ(jα+ 1)
= Eα(

Tα

ε
),

where Eα is the Mittag-Leffler function, it follows that both series in (5.1) converge,
yet

lim
j
L(j)
ε u = 0.
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So the right side of (5.1) converges to
∞∑
j=0

(−1)j(L(j)
ε φ)(t) +

∞∑
j=1

(−1)j−1(L(j)
ε Au)(t) =: Su(t)

and, therefore, we obtain

Su(t)− φ(t) =
∞∑
j=1

(−1)j−1
(
L(j)
ε (Au− φ)

)
(t)dt

=
∞∑
j=1

(−1)j−1 1
εjΓ(jα)

∫ t

0

(t− s)jα−1(Au(s)− φ(s))ds

=
∫ t

0

∞∑
j=1

(−1)j−1(t− s)jα−1

εjΓ(jα)
(Au(s)− φ(s))ds

=
∫ t

0

k(t− s; ε)(Au(s)− φ(s))ds,

(5.2)

where

k(s; ε) :=
∞∑
j=1

(−1)j−1sjα−1

εjΓ(jα)
.

The interchange of integration and summation is permitted because of Lemma 4.1.
From (5.2) and the fact that k is positive, we obtain

‖Su− φ‖T1 =
∫ T

0

‖Su(t)− φ(t)‖Xdt

≤
∫ T

0

∫ t

0

k(t− s; ε)‖Au(s)− φ(s)‖X ds dt

=
∫ T

0

∫ T

s

k(t− s; ε)‖Au(s)− φ(s)‖X dt ds

=
∫ T

0

[
1− Eα

(−(T − s)α

ε

)]
‖Au(s)− φ(s)‖Xds

≤ ‖Au− φ‖T1 .

(5.3)

We claim that, for any R > 0, there exists τ ∈ (0, T ], such that in the space Lτ1 ,
it holds

S(B(φ,R)) ⊆ B(φ,R).

By (5.3), to show this fact, it is sufficient to prove that there is a τ ∈ (0, T ], such
that in the space Lτ1 , it holds

A(B(φ,R)) ⊆ B(φ,R). (5.4)

Let B(φ,R) be the closed ball {u ∈ Lτ1 : ‖u − φ‖T1 ≤ R}. Fix any ζ ∈ (0, R2 ].
Since the set A(B(φ,R)) has compact closure, there is a finite ζ-dense subset of it,
say, Au1, Au2, . . . , Auk ∈ A(B(φ,R)). Also, we can find τ ∈ (0, T ] such that

‖Auj − φ‖τ1 =
∫ τ

0

‖(Auj)(t)− φ(t)‖Xdt ≤ ζ, j = 1, 2, . . . , k.
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Take any u ∈ B(φ,R). Then Au ∈ A(B(φ,R)) and, thus, ‖Au − Auj‖τ1 ≤ ζ, for
some j. Hence,

‖Au− φ‖τ1 ≤ ‖Au−Auj‖τ1 + ‖Auj − φ‖τ1 ≤ 2ζ ≤ R.
Therefore (5.4) is true.

Because of the previous facts, the fixed point Theorem 3.1 applies and we con-
clude that there is yε ∈ B([0, τ ], R), such that

yε(t) = (Syε)(t) =
∞∑
j=0

(−1)j(L(j)
ε φ)(t) +

∞∑
j=1

(−1)j−1(L(j)
ε Ayε)(t), t ∈ [0, τ ],

or, by (5.2),

yε(t)− φ(t) =
∫ t

0

k(t− s; ε)(Ayε(s)− φ(s))ds, t ∈ [0, τ ].

Next, we take any sequence εn tending to 0, and denote by yn the solution yεn .
Hence we have

yn(t)− φ(t) =
∫ t

0

k(t− s; εn)(Ayn(s)− φ(s))ds, t ∈ [0, τ ]. (5.5)

By the relative compactness of the set A((B(φ,R)), we can assume that the se-
quence (Ayn) converges to some y ∈ Lτ1 . Then, for almost all t ∈ [0, τ ], from (5.5)
we obtain

yn(t)− y(t) =
∫ t

0

k(t− s; εn)(Ayn(s)− φ(s))ds− (y(t)− φ(t))

and, therefore, it follows that

‖yn − y‖τ1 =
∫ τ

0

∥∥(∫ t

0

k(t− s; εn)
[
Ayn(s)− φ(s)

]
ds
)
− (y(t)− φ(t))

∥∥
X
dt

≤
∫ τ

0

∫ t

0

k(t− s; εn)‖Ayn(s)− y(s)‖X ds dt

+
∫ τ

0

∥∥ ∫ t

0

k(t− s; εn)(y(s)− φ(s))ds− (y(t)− φ(t))
∥∥
X
dt.

For the first integral on the right side we have∫ τ

0

∫ t

0

k(s; εn)
∥∥(Ayn)(t− s)− y(t− s)

∥∥
X
ds dt

=
∫ τ

0

∫ τ

s

k(s; εn)
∥∥(Ayn)(t− s)− y(t− s)

∥∥
X
dt ds

≤
∫ τ

0

k(s; εn)
∫ τ

s

∥∥(Ayn)(t− s)− y(t− s)
∥∥
X
dt ds

=
∫ τ

0

k(s; εn)
∫ τ−s

0

∥∥(Ayn)(ξ)− y(ξ)
∥∥
X
dξds

≤
∫ τ

0

k(s; εn)ds‖Ayn − y‖τ1 ,

which tends to 0. Also, the sequence∫ τ

0

∥∥∫ t

0

k(t− s; εn)(y(s)− φ(s))ds− (y(t)− φ(t))
∥∥
X
dt
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tends to 0, because of (4.9). Hence, we have lim yn = y and, by the continuity of
A, it follows that y = limAyn = Ay. The proof is complete.
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