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Abstract

This dissertation provides a survey and review of the major models that help us analyse

volatility, stochastic volatility, long memory stochastic volatility and fractional differencing.We

also make a review on AR, MA, ARMA, ARIMA and ARFIMA models and other tools such as

spectrum density that are needed to analyse the above. In section 4 we will show how the frac-

tional differencing is connected with parameter d and long-term memory. Section 5 presents

the empirical analysis, which shows whether long memory appears in the U.S.A. market and

in particular in the S& P500, Dow Jones, Nasdaq and Russel 2000 indices. Furthermore, we

see the volatility which was created by the Dot-com bubble and the financial crisis that have

occurred in America and affected these four indices.

Keywords:Volatility; Stochastic volatility; Long memory stochastic volatility; Fractional

differencing; ARFIMA; Spectrum density
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1 Introduction

In this dissertation we analyse the long memory of stochastic volatility.Volatility is a rate at

which the price of a security increases or decreases for a given set of returns. It is measured

by calculating the standard deviation of the annualized returns over a given period of time. It

shows the range to which the price of a security may increase or decrease. Volatility measures

the risk of a security. It is used in option pricing formula to gauge the fluctuations in the

returns of the underlying assets. Volatility indicates the pricing behaviour of the security and

helps estimate the fluctuations that may happen in a short period of time.

We will focus on long memory in stochastic volatility. The financial variables that were

used are serially uncorrelated and can be modelled by means of a GARCH class such as the

one Engle (1982) proposed, and hypothesized that the conditional variance of the observations

is an exact function of the squares of the previous ones. So, in the first section we analyse the

definitions of volatility and stochastic volatility and at the second the long memory stochastic

volatility models .

In the third section we will see the AR (auto-regressive) and MA (moving average) models

and how these could lead us to an ARMA (auto-regressive moving average) model and then

to an ARIMA and in the end how an ARIMA (auto-regressive-integrated moving average)

model can be come an ARFIMA (autoregressive fractional-integrated moving average) using

the fractional differencing. We will analyse the spectrum density and how this is connected

with the ARFIMA models and the Hurst exponent that we analysed in the previous chapter.

The forth section is about fractional differencing. We will show the connection with the

parameter d and the long-term memory as represented by Hosking (1981) and how the d

parameter connected with ARFIMA models and FIGARCH models. In the fifth section we

present the empirical analysis using figures and tables in the U.S.A. market for the S&P500,

Dow Jones, Nasdaq and Russel 2000 indices, whether they present long memory and how

the crisis affected them. And in the sixth section, we will sum up with a review of everything

presenting above.
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2 Stochastic Volatility

In this section we will see the long memory in stochastic volatility. We will determine what

volatility is and what a stochastic volatility model is.

2.1 Volatility and Stochastic volatility model

There are many definitions according to which we can define volatility.

The first proposed that volatility is a statistical measure of the dispersion of returns for a

given security. It is often measured as either standard deviation or variance between returns

from the same security or market index.

The second said that volatility is a rate which the price of security increases for a given set

of returns. It is measured by calculating the standard deviation of the annualized returns over

a given period of time. It is shows the range to which the price of a security may increase or

decrease.

If we want to be more descriptive, volatility express the pricing behaviour of the security

and helps estimate the fluctuations that may happen in a short period of time. Stochastic

volatility models are those in which the variance of a stochastic process is itself randomly

distributed.They are used in the field of mathematical finance to evaluate derivative securities.

To model serial correlation in volatility we often use GARCH models. Another way that

Harvey mention is to consider the logarithm of σ2 created by a linear stochastic process such

as AR(1).

σ2
t = σ2exp(ht) (1)

where

ht+1 = φht + ηt, η ∼ NID(0, σ2), 0 ≤ φ ≤ 1 (2)

So, σ2 is a scale factor, φ is a parameter and η is a disturbance term. This stochastic volatility

model has two advantages, as Harvey(2007) noted. Firstly, the natural discrete time analogue

of the continuous time model used in works on option pricing. Secondly, the statistical

properties of a SV (stochastic volatility) model are easy to determine. The only disadvantage is

that the maximum likelihood can be carried out by a computer intensive technique.
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3 Long memory stochastic volatility model (LMSV)

In this section we will see what a long memory stochastic volatility model is and the dynamic

properties of a LMSV (long memory stochastic volatility).

F. Jay Breidt , Nuno Crato and Pedro de Lima (1998) supported that the LMSV model

constructed by ARFIMA process in a standard stochastic volatility scheme and the parameters

can be estimated by a frequency domain likelihood estimator. In a LMSV model the Ut is a

stationary long memory process, Yt is covariance and it is stationary and because Yt acquired

from the properties of lognormal distribution is a white noise sequence. One characteristic of

this model is the excess kurtosis of yt. They defined the stochastic volatility model as:

yt = σtξt, σt = (ut/2) (3)

where ut is independent of ξt, ξt is i.i.d. and utis an ARMA model. Also E[yt] = 0,

Var(yt) = exp{γ(0)/2}σ2
(4)

and Cov(yt, yt+h) = 0, f or h , 0 y2
t is also covariance and stationary and also follows the

properties of lognormal distribution.

E[y2
t ] = exp{γ(0)/2}σ2

(5)

Var(yt2) = σ4[{1 + Var(ξ2
t ){2γ(0)} − exp{γ(0)}] (6)

Cov(y2
t , y

2
t+h) = σ4

{γ(0) − γ(h)} − exp{γ(0)}], f orh , 0 (7)

When the series transformed to the stationary process with Et i.i.d., mean zero and variance σ2

xt = log y2
t = log σ2 + E[log ξ2

t ] + ut + (log ξ2
t − E[log ξ2

t ]) = µ + ut + εt (8)

A long-memory model for ut is a fractionally integrated Gaussian noise which is defined by :

γx(h) = Cov(xt, xt+h) = γ(h) + σ2
εIh=o (9)

The spectral density , the ACVF (auto-covariance function) and the ACF (auto-correlation

function) of ut are given by the equations :

f (λ) =
σ2
η

2π
|1 − e−iλ

|
−2d
, −π ≤ λ ≤ π (10)
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γ(0) = σ2
ηΓ(1 − 2d)/I−2(1 − d) (11)

ρ(h) =
Γ(h + d)Γ(1 − d)
Γ(h − d + 1)Γ(d)

, h = 1, 2, . . . (12)

And as an ARFIMA (p,d,q) the ut can be modelled like:

(1 − B)dφ(B)ut = θ(B)ηt, {η − t}i.i.d,N(0.σ2
η) (13)

There are two dynamic properties of a long-memory stochastic volatility model. According to

Harvey(2007) an auto-regressive stochastic volatility model yt is a martingale difference and

the stationarity of entail stationarity to yt and follows the properties of lognormal distribution.
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4 ARFIMA Process

In this section we will see some very important processes, the White Noise , the Moving

Average (MA) in first and qth order, the Auto-regressive (AR) in first and pth order. Then we will

see the mixed Autoregressive Moving Average (ARMA) processes and we will make a report in

the auto-regressive-generating function. Afterwards,we will analyze the population spectrum

and the power spectral density, we will see what they are and describe their properties.What

follows is a brief description of Autoregressive-integrated moving average (ARIMA) processes

and then an extensive description of autoregressive fractionally integrated moving average

(ARFIMA) processes.

4.1 White Noise

chronological series is white noise if it has virtually no distinct shape or pattern. We can

symbolized with εt . It is white noise if it has stable mean and usually equal to zero, stable

variance and its values are uncorrelated.

E(εt) = 0 ∀ t γ0 = [E(εt)]2 = [σt]2
∀ t γκ = E(εtεt−κ) = 0 ∀ t and κ , 0 (14)

The white noise process is stationary. A basic characteristic is that the auto-covariance and

the auto-correlation coefficients are equals to zero.

4.2 Moving Average (MA)

The moving average process of order q has the following form:

Yt = µ + εt + θ1εt−1 + θ2εt−2ε + . . . + θqεt−q (15)

With µ and θ as constants and Et as white noise. Yt : is the weighted average of the random

errors of q previous periods and it’s called moving average model of q orders and we can

symbolize it as MA(q). The mean of the above equation could be given by:

E(Yt) = µ + E(εt)ζ + θ1E(εt−1) + θ2E(εt−2) + . . . + θqE(εt−q) (16)

And the variance of MA(q) is :

γ0 = E(Yt − µ)2 = E(εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q)2
(17)

8



If we had a first order moving average process or MA(q), the Yt is written:

Yt = µ + εt + θεt−1 (18)

The mean of Yt:

E(Yt) = E(µ + εt + θεt−1) = µ + E(εt) + (εt−1) = µ (19)

The variance:

E(Yt − µ)2 = E(εt + θεt−1)2

= E(ε2
t + 2θεtεt−1 + θ2ε2

t−1)

= σ2 + 0 + θ2σ2

= (1 + θ2)σ2
(20)

Because the white noise has stable variance and its values don’t autocorrelation and the

variance of Yt is finite and independent of time t, the MA(1) presents stability of mean and

variance.

The first auto-covariance :

E(Yt − µ)(Yt−1 − µ) = E(εt + θεt−1)(εt−1 + θεt−2)

= E(εtεt−1 + θε2
t−1 + θεtεt−2 + θ2εt−1εt−2)

= 0 + θσ2 + 0 + 0 (21)

And the higher are all equal to zero. The auto-correlation function for a MA(1) has the form:

ρ1 = θσ2/[(1 + θ2)σ2] (22)

Higher auto-correlations are equal to zero.

4.3 Autoregressive Process (AR)

The general form of an Auto-regressive (AR) model pth order is:

Yt = c + φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + εt (23)

Where εt is the white noise, φ and c are constants and Yt−1, . . . are independent of orders.
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The roots 1 − φ1z − φ2z2
− . . . − φpzp are equal to zero so a covariance-stationary has the

follow form:

Yt = µ + ψ(L)εt (24)

Where

ψ(L) = (1 − φ1L − φ2L2
− . . . − φpLp)−1

(25)

And
∑
∞

j=0 |ψ j|

The mean is:

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + . . . + φp(Yt−p − µ) + εt (26)

The auto-covariances are:

γ j =


φ1γ j−1 + φ2γ j−2 + . . . + φpγ j−p f or j = 1, 2, . . .

φ1γ1 + φ2γ2 + . . . + φpγp + σ2 f or j = 0
(27)

Using the Yule-Walker equations the auto-correlations are:

ρ j = φ1ρ j−1 + φ2ρ j−2 + . . . + φpρ j−p f or j = 1, 2, . . . (28)

The first order auto-regressive process (AR(1)) given by the equation:

Yt = c + φYt−1 + εt (29)

When the |φ| < 1, exist a covariance- stationary process and the Yt could be written:

Yt = (c + εt) + φ(c + εt−1) + φ2(c + εt−2) + . . .

= [c/(1 − φ)] + εt + φεt−1 + φ2εt−2 + . . . (30)

Shows that a stationary AR could be written as equation of current error. This capacity

of an AR(1) model to convert in a MA(∞) called invertibility and applied for all stationary AR

models.
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The mean for an AR(1) is written as :

µ = c/(1 − φ) (31)

The variance is:

γ0 = E(Yt − µ)2

= E(εt + φεt−1 + φ2εt−2 + . . .)2

= (1 + φ2 + φ4 + . . .)σ2

= σ2/(1 − φ2) (32)

The auto-covariance is:

γ j = E(Yt − µ)(Yt− j − µ)

= E[εt + φεt − 1 + φ2εt−2 + . . . + φ jεt− j + φ j+1εt− j−1 + φ j+2εt− j−2][εt− j + φεt− j−1 + φ2εt− j−2 + . . .]

= [φ j + φ j+2 + φ j+4 + . . .]σ2

= φ j[1 + φ2 + φ4 + . . .]σ2

= [φ j/(1 − φ2)]σ2
(33)

The auto-correlation function is:

ρ j = γ j/γ0 = φ j
(34)

So, the ρ j for stationary |φ| < 1 AR(1) start for the unit and decreases geometrically and tending

to zero as j grows.

4.4 Autoregressive Moving Average Processes (ARMA)

Auto-regressive Moving Average Processes (ARMA) interpret a large number of real data. They

are based on the idea of a strong correlation between different series in economics, natural

sciences and other scientific fields. The general form is:

Yt = c + φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (35)

C is a constant, φ1 . . . , φp coefficients of AR, θ1, . . . , θq coefficients of MA and εt is the white

noise. It is a regressive model with Yt as dependent variable and interpretive the lags of
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p-order of Yt and a number of previous errors (lags q-order of Et), and that’s why it is called

ARMA(p,q).

4.5 The Autocovariance-Generating Function

This is a function that is necessary in order to analyse the population spectrum. It is a sum of

the jth auto-covariance multiplied by a number z raised in jth power as we can see below:

gY(z) =

∞∑
j=−∞

γ jz j
(36)

The number z given from the below equation :

z = cos(ω) − i sin(ω) = e−iω
(37)

Where i =
√
−1 and the ω is the radian angle.

If z = e−iω and divide the auto-covariance-generating function by 2π, the result gives the

population spectrum that we will discuss in the next subsection.

4.6 Population Spectrum and the Power spectral density

As we have seen, the form of population spectrum of Yt is given if the auto-covariance-

generating function, when z = e−iω ,divided with 2π.

SY(ω) =
1

2π
gY(e−iω) =

1
2π

∞∑
j=−∞

γ je−iω j
(38)

Using the De Moivre’s theorem we can write the e−i as:

e−iω j = cos (ω j) − i sin (ω j) (39)

So we can rewrite the first equation like:

SY(ω) =
1

2π

∞∑
−∞

γ j[cos (ω j) − i sin (ω j)] (40)

As we now the covariance- stationary process γ j = γ− j, so the SY() is equal :

SY(ω) =
1

2π
γ0[cos(0)−i sin(0)]+

1
2π

∞∑
j=1

γ j[cos (ω j)+cos (−ω j)−i sin (ω j)−i sin (−ω j)] (41)
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From the trigonometry is known that:

cos(0) = 1

sin(0) = 0

sin (−θ) = − sin (θ)

cos−(θ) = cos (θ)

Using all of the above the SY(ω) is written :

SY(ω) =
1

2π
γ0 + 2

∞∑
j=1

γ j cos (ω j) (42)

The calculation of the population spectrum for various processes such as:

SY(ω) = (2π)−1σ2ψ(e−iω)ψ(eiω) (43)

For the MA(1) model if the white noise process ψ(z) = 1 + θz, the population spectrum is:

SY(ω) = (2π)−1σ2[1 + θ2 + 2θ cos (ω) (44)

For an AR(1), the white noise is ψ(z) = 1/(1 − φz) with |φ| < 1 the population spectrum is:

SY(ω) =
1

2π
σ2

(1 − φe−iω)(1 − φeiω)

=
1

2π
σ2

(1 − φe−iω − φeiω + φ2)

=
1

2π
σ2

[1 + φ2 − 2φ cos (ω)]

(45)

For an ARMA(p,q) The population spectrum is defined as :

SY(ω) =
σ2 ∏q

j=1[1 + η2
j − 2η cos (ω)]

2π
∏P

j=1[1 + λ2
j − 2λ j cos (ω)]

(46)
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With the population spectrum we can calculate the auto-covariances. James D.Hamilton(1994)

has a proposition in which {γ j}
∞

j=−∞ be an absolutely summable sequence of auto-covariances,

and define SY(ω) Then

∫ π

−π

SY(ω)eiωk dω = γk (47)

or

∫ π

−π

SY(ω) cos (ωk) dω = γk (48)

The power spectral density is used, for example, for stationary processes. The power spectral

density describes how the power of time series is divided over frequency. It is given by the

function:

Sxx(ω) = lim
T→∞

E[|x̂(ω)|2] (49)

Where E is the expected value and x(ω) is the signal or a time series. The auto-correlation

function is :

Rxx(τ) = 〈X(t)X(t + τ)〉 = E[X(t)X(t + τ)] (50)

Where X(t) is the complex-valued. And the spectral density can be written:

Sxx(ω) =

∫
∞

−∞

Rxx(τ)e−iωτ dω = R̂xx(ω) (51)

4.7 Autoregressive-integrated moving average (ARIMA) processes

The ARIMA model has three parameters :

Φ(B)(1 − B)dyt = µ + Θ(B)εt (52)

The first, is the parameter of p which is for the auto-regressive terms of lags: Φ(B) =

1 + ρ1B + ρ2B2
− . . . − ρpBp The second, is the parameter of q , for the moving-average terms

of lag Θ(B) = 1 +θ1B +θ2B2 + . . .+θqBq The third is the parameter d which express the order

of differencing.

4.8 Hurst Exponent

The Hurst exponent according to Bo Qian and Khaled Rasheed (2005) is a statistical measure

used to classify time series of financial data in different periods. The estimation of Hurst

exponent requires the reset of the rescaled range in the time span of a time series.If the
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parameter H is equal to 0.5 then we have a random series and if the H is more than 0.5 then

we have a reinforcing series. The rescaled range is a method that is used to define the Hurst

exponent.

E[
R(n)
S(n)

]n −→ ∞ = CnH (53)

E(.) is the value of observations ,R(n) is the width of the first n values,S(n) standard deviation

and C is the constant.

4.9 Autoregressive Fractionally Integrated Moving Average (ARFIMA) processes.

The ARFIMA model estimates the fractional differencing parameter by Maximum Likelihood.

An ARFIMA model is the generalization of an ARIMA and ARMA model as described by Kai Liu,

Yang Quan Chen and Xi Zhang (2017). It can capture short-range and long-range dependence

but it gives better results in LRD (long-range dependence). The LRD is based on Hurst’s

analysis as we see above and in ARFIMA and FIGARCH models which were created to analyze

this process. It is also could be defined by the autocorrelation function analysis or ACF :

When x(t); t ∈ (−∞,∞)

ρk =
Cov(x(t), x(t − k))

Var(x(t))
(54)

An AR and a MA models can be written as:

(1 −
p∑

i=1

φiBi)(1 − B)d(x(t) − µ) = (1 +

q∑
i=1

θiBi)εt (55)

(1 − B)d is the difference operator ∇d

(1 − B)d =

∞∑
k=o

(
d
k

)
(−B)k =

∞∑
k=o

Γ(d + 1)
Γ(k + 1)Γ(d + 1 − k)

(−B)k
(56)

The ARFIMA (p,d,q) could be defined as:

Φ(B)(1 − B)dx(t) = Θ(B)εt , d ∈ (−0, 5, 0, 5)

where p denotes the auto-regressive order, q denotes the moving average order and d defined

as the differencing parameter Jin Xin and Yao Jin (2007) proposed three steps to create an

ARFIMA model. Firstly, the long-term memory in a time series must be analyzed and the

fractional differencing parameter d must be defined. Secondly, the fractional difference of
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the series is found and an ARMA process with a mean that equals to zero is used. Lastly,

parameters p and q are determined.
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5 Fractional Differencing

In this section we will see what is the fractional differencing when we use it and the connection

with ARFIMA and FIGARCH models.

Fractional derivative offers the knowledge for description of memory and hereditary

properties of various material and processes including natural and physical phenomena. The

theory of fractional derivatives used in fractal theory, theory of control of dynamic systems,

diffusion processes and many others. Richard Pierse argued that the fractionally integrated

models could be stationary or non-stationary. The fractional integrated process can lead from

an ARMA to an ARFIMA model and conditional volatility models to fractionally integrated

GARCH models and fractionally integrated stochastic volatility models. The fractionally

integrated models have the following form:

4
d
t = (1 − B)dyt = ut

The meaning of fractional values d is been given by the Binomial Theorem. It is that the

(1 − B)d could be explained as an infinite series for d > −1.

4
d = (1 − B)d =

∑
∞

k=0 d(−d)k

Where
(d

k

)
= d(d−1)(d−2)...(d−k+1)

k!

k! = 123 · · · (k − 1)k with 0! = 1

So, (1 − B)d = 1 − dB + d(d−1)
2! B2

−
d(d−1)(d−2)

3! B3 + . . .

According to Hosking (1981) the fractionally differenced processes demonstrate long -term

persistence and anti-persistence and also shows the connection between parameter d and

long term memory.

To continue, we analyse the derivation of fractionally differenced which is given by the

Brownian motion, a continuous time stochastic process B(t) with independent Gaussian steps

and spectral density equal toω−2 The derivative of this stochastic process is the continuous-time

white noise process and with constant spectral density . This has three basic properties:

1. The parameter H (0<H<1) in fractional Brownian motion is (
1
2 -H)th derivate

2. The spectral density is ω−2H−1

3. The covariance function is |k|2H−2

Hosking (1981) proves that an ARIMA (0,d,0) process with d, 0<d<
1
2 , is a long-memory

stationary process. When d is a real value and be in an interval [− 1
2 ,

1
2 ] is stationary and

invertible, but if d is equal to ±
1
2 then can’t be both. To modelled the ARIMA (0,d,0),combine

the fractional differencing with the family of Box-Jenkins models and that shows the effect on
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the d parameter which is that the distant observations decays when the lag increases and the

parameters φ and θ decay exponentially.

To estimate the d parameter we can estimate it as part of maximum likelihood estimation

of the parameters of the ARFIMA model.

log L(y; d;φ;θ; Σ) = −
T
2

log 2π −
1
2

log |Σ| −
1
2

y′Σ−1y (57)

In the long memory models we use the FIGARCH model to analyse better the variance of

the financial data series as Richard Pierse proposed.

The GARCH (1,1) model

σ2 = α0 + α1u2
t−1 + β1σ

2
t−1 (58)

The GARCH(1,1) can be expressed as an ARMA process in

u2
t = α0 + (α1 + β1)u2

t−1 + εt − β1εt−1

(59)

where

εt = u2
t − σ

2
t (60)

The FIGARCH (1,d,1) model is defined as follows

∆du2
t = α0 + (α1 + β1)∆du2

t−1 + εt − β1εt−1 (61)

or can be written as:

σ2
t = α0 + (1 − ∆d)u2

t − (β1 − α1 + β1)∆d)u2
t−1 + β1σ

2
t (62)

where α0 > 0 , α1 + d ≥ 0 and 1 − 2(α1 + β1) ≥ 0.
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6 Empirical Results

In this section I estimate the ARFIMA(p,d,q) model for the indicators SP500, Dow Jones,

Nasdaq and Russel 2000. I use daily data from 31 December 1992 to 31 December 2018

(6547 observations). The data are derived from Yahoo Finance.

First of all, I describe the history of the four indicators which are in the market of the

United States of America. In the United States of America there are two known crises that

affected these indicators. The first, is the Dot-com bubble or else known as the internet

bubble and it was a rapid rise of U.S technology stock equity valuations fuelled by investments

in internet-based companies in the 1990s. The value of equity markets grew very fast. The

second, is the financial crisis in 2007-2008. It began in 2007 with a crisis in subprime

mortage market in the U.S.A. and it caused as a result the international banking crisis with the

breakdown of Lehman Brothers on September 15 2008.

The first indicator is the S&P500 which is the abbreviation of Standard Poor’s 500 index,

which is the biggest index for the biggest (valuable)American corporations for the markets NYSE

and NASDAQ. The index includes 500 corporations and captures about 80% of the available

market capitalization. It includes Apple, Microsoft and Exxon as the biggest corporations.

The second index is Dow Jones, which is the most well known and important index.Its full

name is Dow Jones Industrial Average (DJIA). The owner is the Dow Jones corporation and

created by Charles Dow. Important contributions had been made by the statitian Edward

Jones. Both indices, track the stock prices of the thirty companies which are selected by the

editors of the Wall Street Journal and include some of the world’s most prominent companies.

For example, Apple, Nike, Microsoft, Disney, Coca-Cola and American Express. The Dow

Jones index, differentiates the weight of each stock in the index, according to its nominal

value, which means that companies that have not split in their stock, have bigger impact on

the index. This index, first calculated in May 1896 and has been referenced in the financial

markets and a point of reference the political economy around the world. The third index is

Nasdaq or NASDAQ Composite and is one of the most well-known stock market indices in

the U.S.A. stock markets. Because of its composite it is heavily weighted towards information

technology companies. Furthermore, Nasdaq was affected by the Dot-com bubble. In March

10 2000 it peaked at 5,132.52 but after April 17 of the same year it fell and continued to fall

for thirty more months over 78% from its peak in March. Moreover, it was affected by the

financial crisis of 2007-2008 where it dropped in September 2008 almost 200 points, since

the tech bubble burst, losing 9.14%. Finally, the fourth index is Russell 2000. It measures the

performance of 2000 smallest- cap American companies. It is a market-cap weighted index. It
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was created in 1984 by Frank Russsell Company. Investors compare small- cap mutual fund

performance with the Russell 2000 index because it reflects the return opportunity presented

by the entire sub-section of that market rather than the opportunities offered by narrower

indices, which may contain biases or more stock-specific risk that distort a fund manager’s

performance.

In table 1 we can see the descriptive statistics of returns. The number of observations are

6547. The standard deviation shows how deviations deviate from the mean. In the results the

standard deviations are low so, they show low volatile. Furthermore, we observe that they

have negative skewness and from the kurtosis, that they are platykurtic. Using the Jarque Bera

test we can see that we do not have normal distribution. Finally, the variables are statistically

significant, at the significance level of 1%.

Figure 1: Stock Prices of SP500, Dow Jones, Nasdaq and Russel 2000

Table 1: Descriptive Statistics of Returns

In table 2 we can see the descriptive statistics of squared returns. In this table the number

of observations are the same, 6547. The standard deviation is very small. That means that the

variables have low volatile. The skewness in this table is positive and the kurtosis is leptokurtic.

From the Jarque Bera test we see that we do not have normal distribution. And finally, the

variables are statistically significant, at the significance level of 1%.
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Table 2: Descriptive Statistics of squared Returns

Table 3: ARFIMA (p,d,q) Estimation of SP500, Dow Jones, Nasdaq and Russel 2000
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Figure 2: Actual and fitted Values, ACF and PACF and Spectral Density of SP500
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Figure 3: Actual and fitted Values, ACF and PACF and Spectral Density of DowJones
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Figure 4: Actual and fitted Values, ACF and PACF and Spectral Density of Nasdaq
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Figure 5: Actual and fitted Values, ACF and PACF and Spectral Density of Russel 2000
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In table 3 we can see the results of the estimation of the ARFIMA(p,d,q) for each index.

1)For the S&P500 we use an ARFIMA(1,d,1)

2)For the DowJones we use an ARFIMA(1,d,0)

3)For the Nasdaq we use an ARFIMA(1,d,0)

4)For the Russel2000 we use an ARFIMA(1,d,0)

For persistent, d, is between (0 , 0,5) in the space that is specified by long memory. The

parameter d and the AR(1) and MA(1) in each index are statistically significant, at the significance

level of 1%. The specialization was made by the information criterion, AIC. We use low lags

because all the empirical analysis in the bibliography use models like these. In figures 2,3,4

and 5 we see the actual and fitted values which show the volatility of the values of S&P500,

Dow Jones, Nasdaq and Russel 2000. They show the volatility that happened in periods

1999-2000 and 2007-2008 which corresponds to the two big crisis the Dot-com bubble and

the Financial crisis in the U.S.A. that we analyse above. Finally in the same figures we can see

the spectral density. As we can see, the frequencies that were generated correspond to the

volatility which was created by the values in the above diagrams. In figures 1,2 and 3 the high

frequencies are at 0,4 but in the last figure they are at 0,4 and 0,6 .
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7 Conclusion

In this dissertation we analysed what is volatility and stochastic volatility and more specifically

the long memory stochastic volatility models. We make a review on AR, MA, ARMA, ARIMA

and ARFIMA models as well as other tools needed to analyse the above. Fractional differencing

was also analysed to determine the parameter d. We then examined whether long memory

appears in the US market and in particular in the indices S&P500, Dow Jones, Nasdaq and

Russel 2000.The empirical analysis was performed where the four indices, S&P500, Dow

Jones, Nasdaq and Russel 2000, exhibited long memory as the parameter d was within the

necessary limits. Also in the US market, where these four indices belong, we see the volatility

which was created by the two major crises, the Dot-com bubble and the financial crisis that

have occurred in America and affected them.
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