
Development and Evaluation of a Transactional
Benchmark Driver for a Scalable SQL Database

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Michail Sotiriou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

July 2019

Examining Committee:

• Apostolos Zarras, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)

• Panos Vassiliadis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Kostas Magoutis, Associate Professor, Department of Computer Science, Uni-
versity of Crete

ACKNOWLEDGEMENTS

I would like to thank my advisor Associate Professor Apostolos Zarras for sharing his
knowledge on the thesis scientific field with me. Through his lectures and guidance,
I was given the opportunity to insist on the broader concepts of NoSQL DBs and
model-driven applications across them. Moreover, I would like to thank Associate
Professor Panos Vassiliadis and Associate Professor Kostas Magoutis for accepting to
participate in my examination committee and for their comments on my thesis draft.
I would also like to thank the whole community of the Department of Computer
Science and Engineering, University of Ioannina for providing all scientific work and
infrastructure.

TABLE OF CONTENTS

List of Figures iii

Abstract v

List of Tables v

Εκτεταμένη Περίληψη vi

1 Introduction 1
1.1 Objectives . 3
1.2 Structure . 3

2 Background 4
2.1 NoSQL Database Systems . 4

2.1.1 NoSQL DB Categories . 5
2.1.2 ACID Transactions . 8
2.1.3 CAP Theorem . 9

2.2 Benchmarks . 10
2.2.1 TPC-C Benchmark . 11
2.2.2 YCSB Benchmark . 14
2.2.3 PyTPCC Benchmark . 17

2.3 Cockroach DB . 17
2.3.1 From SQL to NewSQL . 19
2.3.2 CockroachDB Architecture . 20

3 Implementation 26
3.1 Cockroachdbdriver Implementation . 26

3.1.1 Study of existing Py-TPCC drivers 28

i

3.1.2 Psycopg2 and SQLite driver . 29
3.1.3 SQL compatibility . 29
3.1.4 CockroachDB Port . 30
3.1.5 Commit() . 30
3.1.6 Function loadConfig() . 31
3.1.7 Batch_size . 31

3.2 Cockroach DB and Prerequisites . 32

4 Evaluation 34
4.1 Py-TPCC vs Native TPC-C CLI differences 34
4.2 Py-TPCC vs Native TPC-C performance differences 39

4.2.1 Filling-in tables . 40
4.2.2 Experiment Execution . 41

5 Conclusion and Future Work 45
5.1 Conclusions . 45
5.2 Future work . 46

Bibliography 47

ii

LIST OF FIGURES

2.1 NoSQL databases categorised according to the supported data model . 5
2.2 Key-value store [1] . 6
2.3 Document store [2] . 6
2.4 Wide-Column store [3] . 7
2.5 Graph store [4] . 8
2.6 NoSQL Data Models . 9
2.7 ACID Transactions [5] . 10
2.8 CAP Theorem [6] . 11
2.9 Native TPC-C Database Schema [7] . 12
2.10 Native TPC-C Workload . 14
2.12 YCSB Architecture [8] . 16
2.13 YCSB Workloads . 17
2.14 Difference between RDBMS, NoSQL and CockroachDB [9] 19
2.15 CockroachDB Glossary [10] . 20
2.16 Architectural Overview [9] . 21
2.17 Layered Architecture Diagram [11] . 24

3.1 Function loadTuples() . 30
3.2 CockroachDB Ports . 30
3.3 Size Commit Error . 31
3.4 Function loadConfig() . 32
3.5 CockroachDB Installation . 32
3.6 CockroachDB Web UI . 33
3.7 CockroachDB Tables . 33

4.1 Py-TPCC Transaction process . 37
4.2 Native TPC-C Transaction process . 38

iii

4.3 Native TPC-C vs Py-TPCC . 39
4.4 Queries during filling tables . 40
4.5 99th Percentile during filling tables . 41
4.6 CPU Consumption during filling tables 41
4.7 Memory Usage during filling tables . 42
4.8 Total Transactions . 42
4.9 Latency for 1 worker/client . 43
4.10 Latency for 10 workers/clients . 43
4.11 Latency for 100 workers/clients . 43
4.12 CPU Consumption for 1 worker/client 43
4.13 CPU Consumption for 10 workers/clients 43
4.14 CPU Consumption for 100 workers/clients 44

iv

ABSTRACT

Michail Sotiriou, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, July 2019.
Development and Evaluation of a Transactional Benchmark Driver for a Scalable SQL
Database.
Advisor: Apostolos Zarras, Associate Professor.

The process of benchmarking transactional database systems has a long history and
provides important insight into the efficiency and scalability of such systems. Recent
advances in scalable transactional databases have motivated the adaptation of tradi-
tional transactional benchmarks, such as TPC-C, to a variety of new database archi-
tectures. However, a challenge with the proliferation of database architectures today
is the need to develop and evaluate new database drivers (ports of the benchmark-
database interface to a new database architecture) for a wide range of systems. In this
thesis, we develop and evaluate a driver for the Py-TPCC benchmark targeting the
CockroachDB scalable SQL database. The driver lowers complexity by leveraging the
psycopg2 PostgreSQL adapter for the Python programming language. We evaluate the
Py-TPCC benchmark for CockroachDB and compare to an existing TPC-C benchmark
implementation for CockroachDB written in Go, using the pq PostgreSQL adapter.
Our results indicate that the use of a SQL interface (when offered by the scalable
database) simplifies the development of TPC-C benchmark drivers. Despite similar-
ities in the two implementations of the TPC-C benchmark, we observe performance
differences that can be attributed to the variable efficiencies of use of CockroachDB
resources across implementations of the PostgreSQL adapter.

v

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Μιχαήλ Σωτηρίου, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2019.
Ανάπτυξη και Αξιολόγηση ενός Transactional Benchmark Driver για Scalable SQL
Database.
Επιβλέπων: Απόστολος Ζάρρας, Αναπληρωτής Καθηγητής.

Η διαδικασία benchmarking δοσοληπτικών συστημάτων βάσεων δεδομένων έχει μα-
κρά ιστορία και παρέχει σημαντική εικόνα για την αποτελεσματικότητα και την
επεκτασιμότητα τέτοιων συστημάτων. Οι πρόσφατες εξελίξεις στις κλιμακούμενες
δοσοληπτικές βάσεις δεδομένων έχουν παρακινήσει την προσαρμογή των παραδο-
σιακών benchmarks, όπως το native TPC-C, σε μια ποικιλία νέων αρχιτεκτονικών
βάσεων δεδομένων. Ωστόσο, μία πρόκληση με τον πολλαπλασιασμό των αρχιτεκτο-
νικών βάσεων δεδομένων σήμερα, είναι η ανάγκη να αναπτυχθούν και να αξιολογη-
θούν νέα προγράμματα οδήγησης βάσεων δεδομένων (φορητότητα των benchmark-
database διεπαφών σε μια νέα αρχιτεκτονική βάσεων δεδομένων) για ένα ευρύ φά-
σμα συστημάτων. Σε αυτή τη διατριβή, διατυπώνουμε το επιστημονικό υπόβαθρο
που σχετίζεται με δοσοληπτικές βάσεις δεδομένων και τα benchmarks που χρησι-
μοποιούν. Πιο συγκεκριμένα, αναπτύσσουμε και αξιολογούμε ένα πρόγραμμα οδή-
γησης για το Py-TPCC benchmark που στοχεύει στην κλιμακώσιμη βάση δεδομένων
SQL της CockroachDB. Το πρόγραμα οδήγησης μειώνει την πολυπλοκότητα αξιο-
ποιώντας τον psycopg2 PostgreSQL προσαρμογέα για τη γλώσσα προγραμματισμού
Python. Θέτουμε το πλαίσιο πάνω στο οποίο κινηθήκαμε προκειμένου να φτάσουμε
στην υλοποίηση του προγράμματος οδήγησης. Καταγράφουμε όλες τις παραμέτρους
και απαιτήσεις που έπρεπε να λάβουμε υπόψη, ώστε να ορίσουμε τις διαδικασίες
που απαιτούνται. Μέσω της πειραματικής διαδικασίας, αξιολογούμε το PY-TPCC
benchmark για την CockroachDB και συγκρίνουμε με την υπάρχουσα υλοποίηση του
native TPC-C benchmark για την CockroachDB γραμμένο σε γλώσσα προγραμμα-

vi

τισμού Go, χρησιμοποιώντας τον pq PostgreSQL προσαρμογέα. Παρουσιάζουμε τα
αποτελέσματα αυτής της σύγκρισης, σημειώνοντας διαφορές τόσο σε ποιοτικά χαρα-
κτηριστικά, όσο και σε επίπεδο αρχιτεκτονικής κώδικα. Τέλος, οδηγούμενοι από τα
αποτελέσματα, συμπεραίνουμε ότι τα σημεία στα οποία υπερτερεί το native TPC-C
benchmark είναι η καλύτερη απόδοση του συστήματος σε επίπεδο δοσοληψιών, ενώ
από την άλλη, το Py-TPCC benchmark υστερεί σε θέματα απόδοσης και κλιμάκω-
σης, ωστόσο ευνοεί την εύκολη υλοποίηση ενός νέου προγράμματος οδήγησης από
τον προγραμματιστή.

vii

CHAPTER 1

INTRODUCTION

1.1 Objectives

1.2 Structure

Despite the fact that traditional relational database management systems (RDBMSs)
provide powerful mechanisms to store and query structured data under strong consis-
tency and transaction guarantees and have reached an unmatched level of reliability,
stability and support through decades of development, the rapid and continuous evo-
lution of computing systems and applications, as well as the exponential increase in
the amount of useful data with its interdependence and complexity, which is gen-
erated and consumed at unprecedented scale, has become so vast that it cannot be
stored or processed by traditional database solutions. Therefore, there was the need
to manage Big Data, using novel data storage systems that could be able to deal
with these requirements and respond to the needs of the time. It is about NoSQL
databases, many of which offer horizontal scalability and higher availability than re-
lational databases by sacrificing querying capabilities and consistency guarantees, like
BigTable [12], Cassandra [13], MongoDB [14]. These trade-offs are pivotal for service-
oriented computing and as-a-service models, since any stateful service can only be as
scalable and fault-tolerant as its underlying data store. Nowadays, there are plenty of
NoSQL database systems and it is hard to keep track of where they excel, where they
fail or even where they differ, as implementation details change quickly and feature
sets evolve over time [15].

1

From the other hand, modern web applications have evolved greatly in relation
to previous years. The data they manage is larger and more complex. This results the
algorithms required for data management as well as queries on them become more
complex and the processing and response time of the system increases dramatically.
The strictly relational schema usually constitutes a barrier to network applications,
which consist of many different types of attributes. Text, comments, photos, videos,
source code and other information should be stored in multiple tables. Since these
web applications are very flexible, the underlying databases must be flexible enough to
be able to support them. NoSQL DB systems have the ability to store and classify large
datasets, while at the same time allow users requests. Cloud services make resources
accessible from Internet to users presenting them through virtualization as a service
(Infrastructure as a Service, IaaS), supply software platforms on virtualized infras-
tructure (Platform as a Service, PaaS) and software services can be executed on these
distributed platforms (Software as a Service, SaaS). Some systems are offered only as
cloud services, either directly in the case of Amazon SimpleDB and Microsoft Azure
SQL Services, or as part of a programming environment like Google’s AppEngine or
Yahoo!’s YQL. Still other systems are used only within a particular company, such as
Yahoo!’s PNUTS, Google’s BigTable and Amazon’s Dynamo [16]. The large variety
has made it difficult for developers to choose the appropriate system. The most ob-
vious differences are between the various data models. Comparing the performance
of various systems is a harder problem. Some systems have made the decision to
optimize for writes by using on-disk structures that can be maintained using sequen-
tial I/O, while others have optimized for random reads by using a more traditional
buffer-pool architecture. Moreover, decisions about data partitioning and placement,
replication, transactional consistency and so on all have an impact on performance.

Understanding the performance implications of these decisions for a given type of
application is challenging. Developers of various systems report performance numbers
for the ”sweet spot” workloads for their system, which may not match the workload of
a target application. Moreover, an apples-to-apples comparison is hard, given numbers
for different systems based on different workloads. Thus, developers often have to
download and manually evaluate multiple systems. This process is time-consuming
and expensive.

2

1.1 Objectives

In this thesis, we aim to develope and evaluate a transactional benchmark driver for
a scalable SQL database and and define the specifications and actions required for
the whole process:

• Qualitative and quantitative correlation between the software implementations
of native TPC-C and Py-TPCC benchmarks

• Comparative experimental evaluation

1.2 Structure

The rest of this thesis is composed of the following chapters: In Chapter 2, we pro-
vide the scientific background on which this thesis is based. Describe precisely the
relevant structures and their characteristics and make reference to similar systems,
emphasizing what we are interested most. In Chapter 3, we clearly declare the sys-
tem’s prerequisites and analyze in detail all those steps that have been taken to achieve
the implementation. We quote all the procedures followed step by step. In Chapter
4, we present particularly the experimental process with the relevant charts through
which we validate the result of our research. Finally, in Chapter 5, we conclude and
leave open for study further issues and future work.

3

CHAPTER 2

BACKGROUND

2.1 NoSQL Database Systems

2.2 Benchmarks

2.3 Cockroach DB

In this chapter, we make an extensive reference at NoSQL Database systems, their
categories and their characteristics in Section 2.1. We quote in detail the different types
of NoSQL DBs, considering the requirements of performance, scaling and availability.
After that, in Section 2.2, we introduce the terms of transactions and benchmarking
serving systems that are connected with NoSQL DBs, as well as their evolution.
Finally, in Section 2.3, we introduce CockroachDB, a key-value datastore, on which
is based this thesis, referring to its features, characteristics, capabilities and analyzing
its architecture .

2.1 NoSQL Database Systems

NoSQL databases provide the performance, scale, and flexibility required of mod-
ern applications. NoSQL are distributed systems, which are scalable, durable, adapt-
able, easily manageable, efficient, with high availability and allow parallel processing.
The biggest worldwide IT companies such as Google, Amazon, Facebook, Twitter,
Linkedin, etc. have turned their attention to NoSQL systems technology.

4

Figure 2.1: NoSQL databases categorised according to the supported data model

2.1.1 NoSQL DB Categories

NoSQL systems are distributed, non-relational bases, designed for large scale data
storage and parallel processing data shared on a large number of servers. NoSQL
databases focus on analyzing large data set (bigdata), offering increased scalability
and high performance. They are very flexible in improving their performance, which
is is due to their implementation, which is often done in cloud infrastructures or
virtualized environments, in contrast with traditional RDBMS systems. The most
commonly employed distinction between NoSQL databases is the way they store and
allow access to data, as we can see in Figure 2.1. The only thing most NoSQL databases
have in common is that they do not follow a relational data model. NoSQL databases
typically fall into one of four categories:

• Key-value stores: A key-value store consists of a set of key-value pairs with
unique keys, as shown in Figure 2.2. Due to this simple structure, it only sup-
ports get and put operations. As the nature of the stored value is transparent
to the database, pure key-value stores do not support operations beyond sim-
ple CRUD (Create, Read, Update, Delete) [15]. Key-value stores are therefore
often referred to as schemaless: any assumptions about the structure of stored
data are implicitly encoded in the application logic and not explicitly defined
through a data definition language. The obvious advantages of this data model
lie in its simplicity. The very simple abstraction makes it easy to partition and
query the data, so that the database system can achieve low latency as well
as high throughput. However, if an application demands more complex opera-
tions, e.g. range queries, this data model is not powerful enough. Since queries
more complex than simple lookups are not supported, data has to be analyzed
inefficiently in application code to extract information.

• Document stores: Follow the logic of key-value stores. The data in this case

5

(collections from key-value pairs) is organized, more naturally and logically,
without any restrictions of any schema. A document store is a key-value store
that restricts values to semi-structured formats such as JSON documents (Figure
2.3). This restriction in comparison to key-value stores brings great flexibility
in accessing the data. It is not only possible to fetch an entire document by its
ID, but also to retrieve only parts of a document, e.g. the age of a customer, and
to execute queries like aggregation, query-by-example or even full-text search.

• Wide-column stores: Wide-column stores inherit their name from the image
that is often used to explain the underlying data model: a relational table with

Figure 2.2: Key-value store [1]

Figure 2.3: Document store [2]

6

many sparse columns. Technically, however, a wide-column store is closer to
a distributed multi-level sorted map: the first-level keys identify rows which
themselves consist of key-value pairs. The first-level keys are called row keys,
the second-level keys are called column keys (Figure 2.4). This storage scheme
makes tables with arbitrarily many columns feasible, because there is no column
key without a corresponding value. Hence, null values can be stored without
any space overhead. The set of all columns is partitioned into so-called column
families to co-locate columns on disk that are usually accessed together. On disk,
wide-column stores do not co-locate all data from each row, but instead values
of the same column family and from the same row. Hence, an entity (a row)
cannot be retrieved by one single lookup as in a document store, but has to be
joined together from the columns of all column families. However, this storage
layout usually enables highly efficient data compression and makes retrieving
only a portion of an entity very efficient. The data are stored in lexicographic
order of their keys, so that data that are accessed together are physically co-
located, given a careful key design. As all rows are distributed into contiguous
ranges (so-called tablets) among different tablet servers, row scans only involve
few servers and thus are very efficient.

Figure 2.4: Wide-Column store [3]

• Graph: Graph database are designed for data whose relations are well repre-
sented as a graph consisting of elements interconnected with a finite number
of relations between them. They use graph structures and is based on nodes,

7

relationships between these nodes and their properties. Instead of columns and
rows, here is a flexible graphical model (graphmodel) that can be used and de-
ployed in parallel to many machines (servers - nodes), as shown in Figure 2.5.
The type of data could be social relations, public transport links, road maps,
network topologies, etc.

Figure 2.5: Graph store [4]

In Figure 2.6, we can see a distinction of some NoSQL DBs according to their quali-
tative characteristics.

2.1.2 ACID Transactions

A transaction symbolizes a unit of work performed within a database management
system against a database and treated in a coherent and reliable way independent
of other transactions. A transaction generally represents any change in a database. A
transaction is a single unit of logic or work, sometimes made up of multiple opera-
tions. Any logical calculation done in a consistent mode in a database is known as a
transaction. In order to ensure the integrity of the data, NoSQL database systems are
based on transactions. This ensures cohesion of data during management [17]. The
total of properties that guarantee that transactions on the database work reliably are
known by acronym ACID (Atomicity, Consistency, Isolation, Durability), Figure 2.7:

• Atomicity: requires the modification to be made on the base to keeps the rule
all or nothing. Every transaction that is individual is so called because if a part

8

Figure 2.6: NoSQL Data Models

of it fails, the whole transaction fails and the base stays the same was before
the transaction was executed; you can never see ”half a change”

• Consistency: the change can only happen if the new state of the system will be
valid; any attempt to commit an invalid change will fail, leaving the system in
its previous valid state

• Isolation: refers to the requirement that all actions do not can access or view
data that is modified this moment from a transaction that has not yet been
completed. Every transaction should not know if there are other transactions
that are executed simultaneously, but to await the completion of a transaction
to see / modify the data, which the other transaction needs; no-one else sees
any part of the transaction until it’s committed

• Durability: guarantees the user that if a transaction is successful then its results
will not be lost. Changes made by transaction will not be lost even if it crashes
the system and all the integrity requirements apply so that the system will not
have to cancel this transaction. Once the change has happened - if the system
says the transaction has been committed, the client doesn’t need to worry about
”flushing” the system to make the change ”stick”

2.1.3 CAP Theorem

However, distortion from systems having ACID properties has been shown to cause
various kinds of problems. Conflicts arise between the various aspects of high avail-
ability in distributed systems, which are not fully resolvable. Some databases are built
to guarantee strong consistency and serializability, while others favour availability.
This trade-off is inherent to every distributed database system. This situation de-
scribes the CAP theorem (Figure 2.8). In 2000, Eric A. Brewer [18] argued that each

9

Figure 2.7: ACID Transactions [5]

partitioned system can guarantee at most two of the following three basic properties
at the same time:

• Consistency (C): Reads and writes are always executed atomically and are strictly
consistent. Put differently, all clients have the same view on the data at all times.

• Availability (A): Every non-failing node in the system can always accept read
and write requests by clients and will eventually return with a meaningful
response, i.e. not with an error message.

• Partition-tolerance (P): The system upholds the previously displayed consis-
tency guarantees and availability in the presence of message loss between the
nodes or partial system failure.

2.2 Benchmarks

The continuous proliferation of Big Data systems, and in particular NoSQL databases,
coupled with the lack of apples-to-apples performance comparisons, makes it diffi-
cult to understand the tradeoffs between the systems and the workloads for which
they are appropriate. It has become increasingly difficult to compare and choose the
optimal combination of NoSQL storage technology and benchmarking system. Thus,

10

Figure 2.8: CAP Theorem [6]

there are benchmarks that need to be expanded, depending on the various data mod-
els, such as the column-group oriented BigTable model used in Cassandra and HBase
versus the strongly-consistent key-value store CockroachDB, the performance of var-
ious systems, such as systems optimized for writes or reads, and the decisions about
data partitioning and placement, replication, transactional consistency, and so on.

2.2.1 TPC‐C Benchmark

TPC-C was developed and published by the Transaction Processing Performance
Council (TPC). TPC-C benchmark is a descendant of TPC-A, measures the perfor-
mance of Online Transaction Processing Systems (OLTP) and is based on a com-
plex database and a number of different transaction types either executed on-line
or queued for deferred execution. TPC-C is not only a hardware-independent but
also a software-independent benchmark and defines a set of functional requirements
that can be run on any transaction processing system, either ”proprietary” or ”open”
systems. This is a property that allows the user not to be limited to specific machines
that run on just one operating system or benchmarks that execute the same set of
software instructions. An additional differentiation of the TPC-C with the rest of the
benchmarks is that its modeling is done under actual production applications and
environments rather than stand-alone computer tests in order not to evaluate per-
formance factors like user interface, communications, disk I/Os, data storage, backup

11

Figure 2.9: Native TPC-C Database Schema [7]

and recovery [19]. From now on and in the context of this thesis, we will refer to
TPC-C benchmark as native TPC-C.

Native TPC-C simulates an environment in which the operator performs various
transactions against a database. The benchmark describes the typical transactions
of a wholesale company concerning order entries, including entering and delivering
orders, recording payments, checking the status of orders and monitoring the level
of stock at the warehouses. The simulated company operates out of a number of
warehouses and their allocated districts. Native TPC-C is designed in such a way that
the size of the company (i.e. the number of its warehouses) may vary and is able
to scale both the number of terminals and the size of the database, as the company
expands and new warehouses are created. As we can see in Figure 2.9, set parameters
are the 100,000 items as well as ten sales districts per warehouse and 3,000 customers
per district. Every operator can at any time implement one of five transactions on
the company’s goods ordering system. Both the transactions and their frequency are
based on realistic scenarios.

12

The most frequent transaction is the new order, which on average comprises 10
different items. Each warehouse attemptsto maintain stock for the 100,000 items in
the Company’s catalog and fill orders from that stock. However, one warehouse will
probably not have all the parts required to fill every order. Therefore, Native TPC-C
requires that close to 10% of all cases is effected via the company’s other warehouses.
Another frequent transaction is the recording of a payment, received from a customer.
Order status queries, the processing of delivery orders and checking of local stock
levels for possible bottlenecks are less frequent. The entire business activity is modeled
on the basis of these five transactions. The performance metric reported by native
TPC-C measures the number of orders that can be fully processed per minute and is
expressed in tpm-C.

The database consists of nine variously structured tables and so also nine types of
data records. The size and number of the data records vary depending on the table.
A mix of five concurrent transactions of varying type and complexity is executed on
the database - largely online or queued for deferred batch processing. Due to their
competing for the limited system resources many system components are stressed and
data changes are executed in a variety of ways. The way in which data are entered by
operators in native TPC-C is based on the most basic characteristics of reallife data-
input situations. For example, it is possible for invalid item numbers to be entered,
which then results in the cancellation of the transaction. In order to model as realistic
a scenario as possible, the artificial simplifications used in many other benchmarks
were largely omitted. Thus, for example, it must always be possible for all terminal
input to be entered by real-life operators. To this end, all entry screens must include
specified field definitions as well as labeled input and output fields and also have the
common cursor motion and field correction mechanisms.

The throughput of native TPC-C is a result of the whole of activities at the termi-
nals. Each warehouse has 10 terminals and all 5 transactions can be executed at each
terminal. A remote terminal emulator (RTE) is used to simulate the terminal activi-
ties and to maintain the required combination of transactions while the performance
is measured. The transaction combination represents the complete business process-
ing of an order from its entry through its delivery. More specifically, the required
combination is defined to produce an equal number of new order and payment trans-
actions and one delivery transaction, one order-status transaction and one stock-level
transaction for every 10 new-order transactions.

13

Figure 2.10: Native TPC-C Workload

The RTE is also used to measure transaction response time and to simulate keying
and think times of the operator. Keying time is the time required to enter the data at
the terminal. Think time is defined as the time an operator needs to read and evaluate
the results of a transaction, before requesting another transaction. Each transaction
has a minimum keying time and a minimum think time. In addition, the response
times of each transaction must be below a defined threshold. For 90% of transactions
this threshold is less than 5 seconds and less than 20 seconds for the stock-level
transaction.

All possible performance-relevant database design techniques, e.g. partitioning
or replication, are permitted in native TPC-C. Large performance advantages are
not to be expected because of the way in which the use of data records through
the transactions is defined. The performance, which measures the throughput of the
system, is an approximation of the true cost of the system to the end-user and includes
the cost of all hardware and software components, maintenance costs over 5 years
and the storage capacity to hold the data generated over a period of 180 eight-hour
days of operation at the reported throughput [20].

2.2.2 YCSB Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source framework for eval-
uating and comparing maintenance capabilities of multiple types of data-serving sys-
tems. YCSB focus in testing the strength of key value operations. It is often used
to compare relative performance of NoSQL database management systems, such as
Apache HBase, Apache Cassandra, Redis, MongoDB and Voldemort. The original
benchmark was developed by workers in the research division of Yahoo! who re-

14

(a) Structure of the native TPC-C database (b) Native TPC-C transactions and required

distribution

leased it in 2010 [21] in order to facilitate performance comparisons for transaction-
processing workloads of cloud data serving systems.

Firstly, YCSB was contrasted with the TPC-H benchmark from the Transaction
Processing Performance Council, with YCSB being called a big data benchmark while
TPC-H [22] is a decision support system benchmark. The goal of the YCSB project
was to create a standard benchmark and benchmarking framework to assist in the
evaluation of different cloud systems, focused on serving systems, which are systems
that provide online read/write access to data. Usually a web user is waiting for a web
page to load and reads and writes are carried out to the database as part of the page
construction and delivery [23]. It consists of two parts:

• The YCSB Client: is a Java program for generating the data to be loaded to the
database and generating the operations which make up the workload. The ba-
sic operation is that the workload executor drives multiple client threads. Each
thread executes a sequential series of operations by making calls to the database
interface layer, both to load the database (the load phase) and to execute the
workload (the transaction phase). The threads throttle the rate at which they
generate requests, so that we may directly control the offered load against the
database. The threads also measure the latency and achieved throughput of
their operations and report these measurements to the statistics module. There-
fore, the most important aspect of the YCSB framework is its extensibility: the
workload generator makes it easy to define new workload types and it is also
straightforward to adapt the client to benchmark new data serving systems.

• The core workloads, a set of workload scenarios to be executed by the generator.
The core workloads provide a picture of a system’s performance and the client is

15

Figure 2.12: YCSB Architecture [8]

extensible so that can be defined additional workloads to examine system aspects
or application scenarios not covered by the core workload. The client can also be
extended to benchmark different databases by an interface layer(Figure 2.12).

YCSB has 6 core workloads, as shown in Figure 2.13. There are 6 steps to running
a workload:

• Set up the database system to test

• Create the table and load data into it, either using YCSB or manually

• Choose the appropriate workload

• Choose the appropriate runtime parameters (number of client threads, target
throughput, etc.)

• Load the data

• Execute the workload

16

Figure 2.13: YCSB Workloads

2.2.3 PyTPCC Benchmark

This project is a Python-based framework of the native TPC-C OLTP benchmark for
NoSQL systems [24]. This code was originally written by Brown University students
for a graduate seminar course on NoSQL Systems. The framework is designed to be
modular to allow for new drivers to be written for different systems.

• Command-line Usage

• Implementing a Driver

The framework requires either Python 2.7 or Python 2.6 with the argparse package
installed. Each driver may also require additional packages.

From now on, and in the context of this thesis, we will refer to the Python version
of native TPC-C benchmark as Py-TPCC.

2.3 Cockroach DB

Cockroach Labs is a computer software company that develops commercial database
management systems. It is best known for CockroachDB, which has been compared

17

to Google Spanner, and more precisely has been built using a Google whitepaper
on Spanner as an open-source database. Cockroach Labs was founded in 2015 by
ex-Google employees Spencer Kimball, Peter Mattis, and Ben Darnell. CockroachDB
is a project that is designed to store copies of data in multiple locations in order to
deliver speed access. It is described as a scalable, consistently-replicated, transactional
datastore. The database is scalable in that a single instance can scale from a single
laptop to thousands of servers. CockroachDB is designed to run in the cloud and be
resilient to failures. The result is a database that is described as ”almost impossible”
to take down. Even if multiple servers or an entire datacenter were to go offline,
CockroachDB would keep services online, ensuring applications are always available
and correct, obtaining database automatically scales, rebalances and repairs itself,
simplifing operations with orchestration tools like Kubernetes and Mesosphere DC/OS.
With CockroachDB’s distributed SQL engine and ACID transactions is possible the
creation of the most IT flexibility work with a database that allows building across
on-premise, cloud, hybrid cloud and multi cloud environments without sacrificing
performance, SQL or scale and without ever manually sharding [25].

CockroachDB have been benchmarked on different parameters against PostgreSQL [26].
It is a distributed SQL database build on transactional and strongly-consistent key-
value store. It can scale horizontally, survive hardware (disk, rack, machine and data
center) failures without manual interference with interruption of minimum latency. It
supports strongly consistent ACID transactions and provides a user-friendly SQL API
to perform any function on the data. CockroachDB follows a standard of availability
in which groups of symmetric nodes are used intelligently to agree on write requests.
Once consensus is done, writes are available for read operation from any node in the
cluster. Read / Write traffic is sent to any node because of their symmetric behaviour
serving as client gateways. Load get balanced dynamically towards healthy nodes, no
need to use any prone-to-error failover setups. That’s how consistent replication with
greater data redundancy and availability is achieved across the nodes. CockroachDB
minimizes the operational overhead with self-organizing nodes that support built-in
scaling, failover, replication and repair. Enterprise-grade infrastructure is maintained
with zero downtime rolling upgrades. Cluster’s health and performance can be man-
aged and observed through the admin UI. Moreover, it can run on any cloud or
on-premise. CockroachDB is only suitable for global, scalable cloud services. It’s not
suitable for low-latency use cases, unstructured data and Non-SQL analytics.

18

Figure 2.14: Difference between RDBMS, NoSQL and CockroachDB [9]

2.3.1 From SQL to NewSQL

NewSQL is a class of modern relational database management systems that seek
to provide the same scalable performance of NoSQL systems for online transaction
processing (OLTP) read-write workloads while still maintaining the ACID guarantees
of a traditional database system. Many enterprise systems that handle high-profile
data (e.g., financial and order processing systems) are too large for conventional
relational databases. NewSQL combines availability and requirements of specific data
models, which NoSQL databases offer, as well as transparent ACID transactions with
primary, secondary indexes and industrial standards, that traditional SQL systems
support [27]. NewSQL has the following characteristics:

• provides full ACID transactional support

• minimizes application complexity.

• increases consistency

• doesn’t require new tool or language to learn

• provides clustering like NoSQL but in a traditional environment.

19

Figure 2.15: CockroachDB Glossary [10]

2.3.2 CockroachDB Architecture

CockroachDB has a layered architecture, designed to create an open-source database.
Below, we provide an analysis of these layers CockroachDB can start running on
machines with just two commands:

• cockroach start command with a -join flag for all the initial nodes in the cluster
(to let the process know about other nodes it can communicate)

• cockroach init command to initialize the cluster for one time.

While cockroach process starts running, we can interact with CockroachDB through
SQL API, which is modelled on PostgreSQL. All nodes of the cluster follow symmetri-
cal behaviour, so that we can send request to any of them. This makes CockroachDB
able to integrate with load balancers easily. CockroachDB converts SQL RPCs into op-
erations that work with distributed key-value store. It starts data distribution across
nodes by dividing the data into 64MiB chunks (ranges). Each range get replicated
synchronously to at least 3 nodes (ensures survivability of DB). This way of handling
the read / write request enables CockroachDB to make it highly available [28].

A node cannot serve any request directly. It finds the node that can handle it and
communicates with it. Therefore, user doesn’t need to know about locality of data,
because CockroachDB is smart enough to track it for the user and enable symmetric
behaviour for each node. CockroachDB ensures isolation to provide consistent reads,
regardless of which node user is communicating with, through consensus algorithm.
Finally, the data is written to or read from the disk using an efficient storage engine
which keeps track of data’s timestamp. User can find historical data for a specific
period of time using SQL standard ”AS OF SYSTEM TIME” term. This high-level
overview explains what CockroachDB does.

20

Figure 2.16: Architectural Overview [9]

At the highest level, CockroachDB converts clients’ SQL statements into key-value
data, which are distributed among nodes and written to disk by the architectural
process, which is deployed in different layers communicating with each other as a
service. The explanation of functions which are performed by each layer in the given
order

• SQL Layer: Displays its SQL API to developers. After deployment, CockroachDB
requires only a connection string to the cluster in order to start querying the
data using SQL statements. As all nodes of the CockroachDB are symmetric,
developers can send request to any node, ignoring locality. It’s CockroachDB’s
job to handle load balancers, which is being done in very efficient manner.
”Whichever node receives the request acts as the ”gateway node”, as other layers
process the request”. Every request arrives to the cluster as a SQL statement,
but data is eventually written to and read from the storage layer as key-value
pairs. To manipulate this, the SQL layer converts SQL statements into a plan of
key-value operations, which it passes to the Transaction Layer.

• Transaction Layer: Implements support for ACID transactions by managing
concurrent operations. CockroachDB encounters consistency of the database
as the most important feature, avoiding potentially subtle and hard time to
detect anomalies. However, all statements are handled as transactions, including

21

single statements. The Transaction Layer receives key-value operations from
planNodes of the SQL Layer. The TxnCoordSender sends its key-value requests
to DistSender in the Distribution Layer.

• Distribution Layer: Provides a unified view of cluster’s data. CockroachDB
stores cluster’s data in a monolithic sorted map of key-value pairs to make
all data in a cluster to be accessible from any node. This keyspace is divided
into ’ranges’ i.e. contiguous chunks of the keyspace to make every key acces-
sible from a single range. Moreover, it describes data and its location in the
cluster. This sorted map of key-value pairs enables:

– Simple lookups: Qqueries are able to quickly locate where to find the re-
quired data, because of the identification of nodes, which are responsible
for certain portions of the data.

– Efficient Scans: It’s getting easy to find data within a particular range
during a scan, because of the definition of the order of data.

The Distribution Layer’s DistSender receives BatchRequests from its own node’s
TxnCoordSender, keeped in the Transaction Layer. The Distribution Layer routes
BatchRequests to nodes containing ranges of data, which is eventually routed
to the Raft group leader or Leaseholder, which are handled in the Replication
Layer.

• Replication Layer: Provides the replication of the data. It takes care of the
data copying between nodes and ensures consistency between these copies by
implementing consensus algorithm. As CockroachDB is highly available and
distributed across nodes, it provides consistent service to the application even if
some node goes offline. CockroachDB achieves this by replicating data between
nodes to ensure that it remains accessible from any node. Ensuring such consis-
tency when nodes go offline is a trivial task and many databases have failed in
achieving this. CockroachDB solves this problem by using consensus algorithm
(RAFT) to require that a quorum of replicas agrees on any changes to a range
before COMMIT.
At this point, we make a short reference to the RAFT protocol: A typical con-
sensus algorithm accepts operations from a client, and puts them in an
ordered log (which in turn is kept on each of the replicas), acknowledg-

22

ing an operation as successful to the client once it is known that the
operation has been persisted in a majority of the replicas’ logs. Each of
the replicas in turn execute operations from that log in order, advancing
their state. This means that at a fixed point in time, the replicas may
not be identical, but they are advancing through the same log (mean-
ing that if you give them time to all catch up, they will be in the same
state).
CockroachDB high availability, which is also known as Multi-Active-Availability,
requires 3 nodes in a cluster because 3 is the smallest number, which can achieve
quorum (i.e. 2 out of 3). The number of failures that can be tolerated are cal-
culated by following formula:

Sn = (Replicationfactor − 1)/2. (2.1)

For example, if the cluster contains three nodes, it can afford failure of one
node and if it contains 5 nodes, it can afford failures of two nodes and so on.
CockroachDB automatically realizes nodes have stopped responding because of
failure and works to redistribute data to maintain high availability along with
survivable behaviour. also, this process works the other way around: when new
nodes join the cluster, data automatically rebalances onto it, ensuring loading
is evenly distributed. CockroachDB automatically realizes / detect when failure
happens and starts redistributing data to continue maximizing survivability.
Similarly, when a new node joins the cluster, data get automatically rebalanced
to ensure even distribution of data load. In relationship to other layers in Cock-
roachDB, the Replication Layer receives requests from and sends responses to
the Distribution Layer and writes accepted requests to the Storage Layer.

• Storage Layer: Each CockroachDB node contains at least one store, designated
when the node starts, which is where the cockroach process reads and writes
its data on disk. Data is stored as key-value pairs on disk using RocksDB and
it is treated primarily as a black-box API. Internally, each store contains three
instances of RocksDB:

– One for the Raft log

– One for storing temporary Distributed SQL data

– One for all other data on the node

23

Figure 2.17: Layered Architecture Diagram [11]

In addition, there is also a block cache shared amongst all stores in a node.
These stores have a collection of range replicas in turn. More than one replica
for a range will never be placed on the same store or on the same node. In
relationship to other layers in CockroachDB, the Storage Layer serves successful
reads and writes from the Replication Layer.

CockroachDB guarantees consistency among replicas using replication layer of its
architecture. It is achieved by offering serializability of SQL transaction, no downtime
for server restarts, machine failures, or data center outages, server restart, machine
failures supported in zero downtime, replication locally or in wide area, no stale
reads when failure occurs and use of Raft Consensus algorithm. CockroachDB uses
timestamp cache to cache the last value of members read by ongoing transaction. It
provides isolation in read and write transactions. It provides all the relational concepts
of SQL such as schemas, tables, columns, indexes etc. No need to learn a new language,
SQL developers can structure, manipulate and query the data using well-established,
time-proven tools and processes. It also supports PostgreSQL wire protocol which
helps developers to connect their applications simply by plugging language specific
drivers for PostgreSQL. CockroachDB supports traditional ACID semantics, which
means that if you have few servers at single location or many servers distributed across
different datacenters, it doesn’t make any difference for CockroachDB transactions.

24

CockroachDb’s transactions are distributed across the cluster without need to know
the precise location of data. Simply, you just talk to the one node and get whatever you
want. CockroachDB uses a peer-to-peer gossip protocol to communicate opportunities
for rebalancing. This protocol provides exchange of information between nodes such
as storage capacity, network address or other information, so that it ensures automated
scaling and repair and high availability.

25

CHAPTER 3

IMPLEMENTATION

3.1 Cockroachdbdriver Implementation

3.2 Cockroach DB and Prerequisites

In this chapter, we introduce all the prerequisites, instructions and steps, which took
place in order to integrate the implementation of our project. We refer to all technical
details and suggestions, based on scientific background, occupation and experience,
that we have recorded to contribute to the minimum in the specific scientific field.
More specifically, at section 3.1, we mention all the prerequisites and preparations
that need to be made in order to shape the environment required for our system to
work. At section 3.2, we formulate in detail the steps of code analysis and production
of CockroachDB driver.

3.1 Cockroachdbdriver Implementation

The factors that determine how easy is the process of creating a driver are:

• Existence of libraries: developers can use a library to make system calls in-
stead of implementing those system calls over and over again. In addition, the
behavior is provided for reuse by multiple independent programs

26

• Piece of code that could easily be readable and configurable for future work
(i.e. abstractdriver)

• Programming language version that is compatible with the majority of applica-
tions

According to Andy Pavlo, there are some instructions for how to implement a
new driver for a system. The source code for the new driver must be put in a single
Python source file inside of the drivers directory. The file name must contain the
name of the system in lowercase with no spaces, followed by the word ”driver”. This
file must contain a class that extends the AbstractDriver class that define the driver
interface and implements the required functions listed below:

• Configuration Functions, which configure the driver prior to loading data and
executing transactions

– makeDefaultConfig(): represents the default configuration of the driver

– loadConfig(): the configuration parameters for the driver

• Data Loading Functions, which are used by the controller to load data into the
target system using the driver

– loadStart(): callback to indicate to the driver that the data loading phase
is about to begin

– loadTuples(tableName, *tuples): load the list of tuples into the underlying
database

– loadFinish(): callback to indicate to the driver that the data loading phase
is finished

– loadFinishWarehouse(w_id): callback to indicate to the driver that all of
the data for a given logical WAREHOUSE has been given to the driver

– loadFinishDistrict(w_id, d_id): callback to indicate to the driver that all of
the data for a given logical DISTRICT has been given to the driver

– loadFinishItem(): callback to indicate to the driver that all of the ITEM
data has been given to the driver

• Execution Functions

27

– executeStart(): callback to indicate to the driver that the transaction execu-
tion phase is about to begin

– executeFinish(): callback to indicate to the driver that the transaction exe-
cution phase is finished

• Transaction Functions, which are used to implement the actual logic of the
native TPC-C transactions

– doDelivery(params): implements the DELIVERY transaction

– doNewOrder(params): implements the NEW_ORDER transaction

– doOrderStatus(params): implements the ORDER_STATUS transaction

– doPayment(params): implements the PAYMENT transaction

– doStockLevel(params): implements the STOCK_LEVEL transaction

3.1.1 Study of existing Py‐TPCC drivers

During development, we needed to see some implementations from the already exist-
ing Py-TPCC drivers. We got involved with mongodbdriver, scalarisdriver and sqlit-
edriver. All the drivers have got the same code-architecture base as they implement
AbstractDriver and the same basic functions that regard the workload production.
Differences regard database individuals. Depending on the database, drivers need dif-
ferent packages in order to connect and produce workload to the database. Although
the main functions are the same within the drivers, their implementation differentiate
depending on the perquisites of each of them. For some databases function imple-
mentations look simpler that others, which is reasonable as soon as each database
has got its own demands. Further information about the differences requires deeper
examination of each database driver which is beyond the scope of this thesis. All of
the drivers use the following functions:

• loadTuples()

• loadConfig()

• doDelivery()

• doNewOrder()

28

• doPayment()

• doStockLevel()

3.1.2 Psycopg2 and SQLite driver

Considering all of the above, we embarked on the core topic of this thesis. First of
all, there was the need to use a library that would facilitate the simplification of code
writing and would favor the interconnection and adaptation of the driver, and by
extension the Py-TPCC benchmark, with the PostgreSQL database, used by Cock-
roachDB. This is the library Psycopg2 [29], which is the most popular PostgreSQL
database adapter for the Python programming language. Its main features are the
complete implementation of the Python DB API 2.0 specification and the thread
safety (several threads can share the same connection). It was designed for heavily
multi-threaded applications that create and destroy lots of cursors and make a large
number of concurrent ”INSERT”s or ”UPDATE”s.

Psycopg2 is mostly implemented in C as a libpq wrapper, resulting in being both
efficient and secure. It features client-side and server-side cursors, asynchronous com-
munication and notifications, ”COPY TO/COPY FROM” support. Many Python types
are supported out-of-the-box and adapted to matching PostgreSQL data types; adap-
tation can be extended and customized thanks to a flexible objects adaptation system.
Psycopg2 is both Unicode and Python 3 friendly. Observing the previously imple-
mented drivers of Py-TPCC benchmark (Cassandra, CouchDB, CSV Output, HBase,
HyperTable, Membase, MongoDB, Redis, Scalaris, SQLite), we recognised a big simi-
larity between the basic functions (connect, fetchone, fetchall, execute, executemany)
of Psycopg2 and SQLite3 library, which is getting import in SQLite driver [30]. There-
fore, it was obvious to use SQLite driver as a template in order to build over there
our CockroachDB driver.

3.1.3 SQL compatibility

To the next level, the version of SQLite driver was old enough (Copyright 2011),
and respectively the SQL version, so it was not recognizable by the Python 3.7.2
release. For this reason, we had to make changes and update the syntax of commands
referred to the dictionary of ”TXN_QUERIES” and method ”loadTuples()”, in order

29

to be compatible with Python version. Moreover, there have to be modified the types

(a) CockroachDB loadTuples() (b) SQLite loadTuples()

Figure 3.1: Function loadTuples()

below, so there is compatibility with CockroachDB SQL version in order to have
CREATEs and DROPs of tables occasionally:

• Datetime instead of Timestamp

• Int instead of Tinyint

• Syntax of references: at the old SQL version, tables’ primary keys were written
in random order as a result there were not recognized the references between
tables

3.1.4 CockroachDB Port

(a) CockroachDB localhost port (b) CockroachDB HTTP port

Figure 3.2: CockroachDB Ports

Furthermore, one more important thing that we have to consider was the port
for communication between the two systems, CockroachDB and our implemented
CockroachDB driver. For a local cluster, CockroachDB default port, used for internal
and client traffic is 26257, which tells the node to listen only on localhost and for
HTTP requests from the Admin UI the port is 8080.

3.1.5 Commit()

During the implementation and running of the driver, we have experienced the prob-
lem of the size of transaction from CockroachDB. The respective SQLite driver did

30

Figure 3.3: Size Commit Error

not contain any limitation on the size of the transaction. CockroachDB uses a restric-
tion on query size in order to protect the cluster memory usage. A single statement
can perform at most 64MiB of combined updates. When a statement exceeds these
limits, its transaction gets aborted. Currently, INSERT INTO ... SELECT FROM and
CREATE TABLE AS SELECT queries may encounter these limits.

3.1.6 Function loadConfig()

Finally, we were concerned with the development of the loadConfig() function, which
is the function responsible for the communication with the PostgreSQL database of
CockroachDB. From here, the driver should clear out all of the records in the database
prior to returning and load tuples or execute the transactional workload, respectively.
More specifically, loadConfig() method accomplish two actions:

• Connection with PostgreSQL of CockroachDB

• Drops, if already exist, and Creates the Tables in PostgreSQL of CockroachDB

3.1.7 Batch_size

In native TPC-C benchmark, the number of queries required to complete a transaction
in order to be ready for execute consists the batch_size. This constant variable is set
at 10.000 queries by default in native TPC-C. So, we had to set the same batch size
for our implementation of Py-TPCC cockroachdb driver.

31

Figure 3.4: Function loadConfig()

(a) Cockroach.exe (b) Cockroach.init

Figure 3.5: CockroachDB Installation

3.2 Cockroach DB and Prerequisites

For the implementation on this thesis, we assume that the installation is done on
Microsoft Windows 10 64bit operating system locally on a desktop with CPU: In-
tel(R) Core(TM) i7-7500U @2.70GHz with 2 cores (2 logical cores per physical) and
8 GB RAM. Firstly, we downloaded the binary file and in a local host ran com-
mand ”C:/cockroach-v2.1.7.windows-6.2-amd64> ./cockroach.exe” from the directory
of the file, where databases default, postgres & system are generated. After that, Cock-
roachDB offers a web user interface for an optical representation of databases and the
whole schema furthermore 3.6. Moreover, for the implementation of cockroachdb-
driver.py, we installed Python 3.7.2 version.

32

Figure 3.6: CockroachDB Web UI

(a) Postgres database (b) System database

Figure 3.7: CockroachDB Tables

33

CHAPTER 4

EVALUATION

4.1 Py‐TPCC vs Native TPC‐C CLI differences

4.2 Py‐TPCC vs Native TPC‐C performance differences

In this chapter, we analyse the experimental evaluation of our work. More specifically,
we compare the performane between the native TPC-C and Py-TPCC benchmark. In
this case, we could derive useful information from the visual representation of the
SQL database schema, offered by the CockroachDB Admin UI.

4.1 Py‐TPCC vs Native TPC‐C CLI differences

Initially, as a theoretical background, we lay down the differences that distinguish the
Py-TPCC and native TPC-C benchmark. CockroachDB has built-in benchmarks and
one of them is native TPC-C. All of the benchmarks use the same built-in SQL driver
named Cockroachdriver, which is a wrapper around lib/pq (Figure 4.3). lib/pq is
the C application programmer’s interface to PostgreSQL. lib/pq is also the underlying
engine for several other PostgreSQL application interfaces, including those written for
C++, Perl, Python, Tcl and Go. lib/pq is a set of library functions that allow client
programs to pass queries to the PostgreSQL backend server and to receive the re-
sults of these queries. In fact, this library acts as an emulation layer and provides
round-robin load balancing amongst a list of Postgres URLs to connect to. In our

34

case, round robin algorithm does not play any role, as our experiments are focused
on the transactions themselves, and not the replication or sharding amongst several
cluster nodes. Native TPC-C benchmark uses its own functions to generate transac-
tions adjusted in Go language demands. Transaction values are generated randomly.
Each transaction type has got inclusive creation and load function. The differences
imply to code architectural style. For example, in native TPC-C load functions and
related helper functions are separated to different code files while in Py-TPCC are all
placed in one code file.

On the other hand, Py-TPCC benchmark consists of a driver that acts as a con-
nection layer between the PostgreSQL of CockroachDB and the transaction generator
using PostgreSQL adapter (Psycopg2 3.1.2). CockroachDB driver is used as link layer
between client and cockroachdb. After connection is set, tables are created automati-
cally. Values for table fills are generated in a random way, such as native TPC-C, and
are written to the database. As soon as table filling finishes, Py-TPCC generates loads
and executes transactions with corresponding functions as well. Each transaction type
has got its own generate and load functions.

Below, there are some characteristics of native TPC-C benchmark, which are not
contained at Py-TPCC:

• Choose generator seed (query values)

• Interleaved tables choice (–interleaved) (provides better query performance).
Key-value ranges of closely related tables are optimized by attempting to be
saved on the same key-value range. Behavior is not affected within SQL

• Table partitioning: user can define table partitions – choose how and where
data is stored. Reduces latencies and costs.

– Geo-partitioning (–partitions): location-based partitions; data must be saved
close to the user (e.g if a district is located in Ioannina it would be wrong
to be saved to a zone referred to Athens)

– Archival-partitioning: set perquisites for data to be saved to nodes with
specific features

– In table creation:

* List partitioning: enumerate all possible values for each

35

* Range partitioning: specify range for each partition

* Partition using primary key

– Affinity partitions (–affinityPartition): run load generator against specific
partition

– Active warehouses (–activeWarehouses): run the load generator against a
specific number of warehouses

– Scatter ranges (–scatter)

– Serializable (–serializable)

– Split tables (–split)

– Zones for partitioning (–zones): the number of zones should match the
number of partitions and the zones used to start

We conclude that native TPC-C benchmark located in cockroach is well-suited and
developed on the needs of CockroachDB.

In contrast, the similarities between the two benchmark are that both implemen-
tations are based on the same database schemas and workload concludes exactly the
same insertion, update and delete queries.

With a first high level comparison, we notice that the native TPC-C benchmark
is more monolithically written in relation with Py-TPCC, which explains the fact
that it is not the same extensible. As we can see in figure 4.3, this becomes more
understandable, taking into consideration that the Cockroach driver in native TPC-
C constitutes a built in driver of the benchmark in contrast with Py-TPCC, where
developer can choose which driver to implement, as we have already mentioned at
3.1.1.

Regarding the code architecture, Py-TPCC has much simpler code architecture
style (Figure 4.1). Transaction value generation, transaction creation, transaction de-
livery and execution. In the file executor.py, parameters of the queries of each trans-
action are generated using random value generator. Also, there is a function called
execute which is responsible for transaction execution. This function is strongly related
with the benchmark run, as it caters for transaction start and execution during the
benchmark execution interval. There is a function called inside named, executeTrans-
action. This function is always directed to corresponding executeTransaction of the
abstract driver. In this way, execute transaction, refers to the actual transaction execu-

36

Figure 4.1: Py-TPCC Transaction process

tion functions written on the cockroachdb driver. The transaction execution functions
of the cockroachdb driver are: doDelivery, doStockLevel, doPayment, doOrderStatus
and doNewOrder, each for the synonym transaction type. In these functions, happens
the actual execution of the transactions, using the execute function of the psycopg2
library 3.1.2. Functions that clearly regard transactions are implemented as we have
already said within 3 main code files containing 500 lines of code for them.

In native TPC-C benchmark, things get more complex, as we can see in Figure 4.2.
It is built in the original Cockroachdb code implementation provided in github [31].
There is a variety of benchmarks to choose containing native TPC-C. In native TPC-
C transaction creation, execution and delivery happens within 5 files, each for every
transaction type (delivery.go, payment.go, stocklevel.go, orderstatus.go, neworder.go).
In each file, every transaction type has its own creation function (createStockLevel,
createNewOrder, createDelivery, createOrderStatus, createPayment), where the corre-
sponding queries of each one are created. First of all, in this functions there are filled
in random way the values of the transaction queries. For transaction execution, each

37

Figure 4.2: Native TPC-C Transaction process

file has got run fuction in which a sequence of several functions are called. The most
basic of them are ExecuteInTx, which is an inline function, QueryRowTx or QueryTx,
which is called for every single query execution in each transaction. Here, the size of
the code including the above functions is 1.150 lines of code.

After completion of the implementation of our CockrochDB driver for Py-TPCC
benchmark, we went through the process of running native TPC-C benchmark on
CockroachDB in order to get some results to have some quantitative comparison
between of them.

38

Figure 4.3: Native TPC-C vs Py-TPCC

4.2 Py‐TPCC vs Native TPC‐C performance differences

In this section, we experimentally stress the CockroachDB both using Py-TPCC and
native TPC-C benchmarks . In the context of this comparison, we executed in Py-TPCC
the experiment for 10 clients and, respectively, we did the same in native TPC-C for
10 workers. We set the duration of our experiments at 60 seconds. So, we produced
figures that describe in detail not only the quantitative differences between them,
but the qualitative differences as well. All charts have been taken in real time from
the CockroachDB Web UI and the X axis shows the time (measurement every 10
seconds). We depict the different ways in which the benchmarks affect the machine,
as regards the CPU consumption and memory usage. We also check the costs of
writing queries to prepare and fill the database for the transactions execution and the
costs of performing transactions regarding the latency and the amount of queries that
are finally performed. All of the experiments were hold multiple times in order to
ensure the validity of our results. We distinguish 2 phases during experimentation:

• The phase of filling tables, where executed just insert queries

• The phase of experiment execution (performing transactions), where we have
all types of queries (selects, updates, inserts, deletes).

39

(a) Queries native TPC-C (b) Queries Py-TPCC

Figure 4.4: Queries during filling tables

4.2.1 Filling‐in tables

During the process of filling-in tables, each benchmark connects to the database, tables
are created and their fill-in process starts.

During that time, we observe in Figure 4.4 that Py-TPCC performs a larger num-
ber of insert queries in a longer fill-in phase, compared to the native TPC-C. These
differences in duration and number of SQL queries are caused by differences in the
benchmark implementations. In native TPC-C table-creation and filling function, a
bulk-insertion policy is used. Specifically, each worker issues set batches (bulks) of
fill-in transactions, while the Py-TPCC benchmark executes insert transactions sequen-
tially. Since tables are the same size in both benchmarks, we conclude that Py-TPCC
performs a larger number of smaller insert transactions. The 99-th percentile la-
tency1 of native TPC-C is much higher than the corresponding latency of Py-TPCC
(Figure 4.5).

With increasingly stringent performance requirements of modern applications,
the percentile (tail) latency has become an increasingly useful statistical measure
of systems performance. This is the reason why in Figure 4.5 we depict the 99th
percentile of the SQL queries. As we have already said, these figures are consisted of
the phase of filling and we can easily spot some large differences. During the filling
of tables, the duration lasts much longer in Py-TPCC comparing to native TPC-C
benchmark. In native TPC-C experiment, we experience latency of order of seconds
while in Py-TPCC of order of miliseconds. However, the time it takes to complete
the process of filling tables in the native TPC-C is approximately 5 minutes, much
less from the time it takes Py-TPCC to complete the same phase (approximately 50
minutes).

Concerning resource consumption during the fill-in phase, we can see in Figure
1With increasingly stringent performance requirements of modern applications, the percentile (tail)

latency has become an increasingly useful statistical measure of systems performance.

40

(a) 99th Percentile native TPC-C (b) 99th Percentile Py-TPCC

Figure 4.5: 99th Percentile during filling tables

(a) CPU Consumption native TPC-C (b) CPU Consumption Py-TPCC

Figure 4.6: CPU Consumption during filling tables

4.6 and Figure 4.7 that both CPU consumption and memory usage are in agreement
with the behavior described above. More specifically, requirements on computing
power and memory are greater during native TPCC benchmark, as more resources
are needed to serve the bigger queries in less time.

However, what really counts in benchmarking systems is the execution phase;
being fast in the filling-phase is important, but not a critical factor for the evaluation
process.

4.2.2 Experiment Execution

During the process of executing the core experimental phase of the TPC-C transaction
mix, each benchmark executes transactions to the database for a duration of 60
seconds.

As we can see in Figure 4.8, the total number of transactions that take place is
higher for the native benchmark (about 2x) compared to the Py-TPCC benchmark,
and the increase (about 2x when increasing from 1 to 10 workers/clients, with a
further 5-10% when increasing to 100 clients/workers) is nearly identical for the
two benchmarks. The decreasing gains from an increasing level of load are due to
saturation of resources in our testbed.

Similar to the number of transactions, the latency of native TPC-C benchmark
is comparatively lower than the latency in the case of Py-TPCC, explaining the fact
that native TPC-C can execute more transactions in the same time interval. More-

41

(a) Memory Usage native TPC-C (b) Memory Usage Py-TPCC

Figure 4.7: Memory Usage during filling tables

(a) Native TPC-C total transactions (b) Py-TPCC total transactions

Figure 4.8: Total Transactions

over, we observe that as the number of workers/clients increases, the latency of both
benchmarks gets higher; for the Py-TPCC benchmark this increase is greater than
the native TPC-C for a larger number of clients, as shown in Figures 4.9, 4.10 and
4.11. With all else being equal, we believe that this performance difference between
native TPC-C and Py-TPCC versions over CockroachDB is due to the performance of
the PostgreSQL adaptation layer.

Finally, with regards to CPU consumption, we observe that the resources consumed
by both benchmarks are similar. Figures 4.12, 4.13 and 4.14 depict that as the num-
ber of the workers/clients increases, CPU requirements increase as well, eventually
reaching saturation.

42

(a) Native TPC-C latency for 1 worker (b) Py-TPCC latency for 1 client

Figure 4.9: Latency for 1 worker/client

(a) Native TPC-C latency for 10 workers (b) Py-TPCC latency for 10 clients

Figure 4.10: Latency for 10 workers/clients

(a) Native TPC-C latency for 100 workers (b) Py-TPCC latency for 100 clients

Figure 4.11: Latency for 100 workers/clients

(a) Native TPC-C CPU consumption for 1

worker

(b) Py-TPCC CPU consumption for 1 client

Figure 4.12: CPU Consumption for 1 worker/client

(a) Native TPC-C CPU consumption for 10

workers

(b) Py-TPCC CPU consumption for 10 clients

Figure 4.13: CPU Consumption for 10 workers/clients

43

(a) Native TPC-C CPU consumption for 100

workers

(b) Py-TPCC CPU consumption for 100 clients

Figure 4.14: CPU Consumption for 100 workers/clients

44

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

5.2 Future work

In this chapter, we summarize our conclusions from the work carried out in the con-
text of this thesis and describe possible future work. In Section 5.1, we report our
conclusions and contributions through the study and evaluation of our implementa-
tion of a Cockroachdb driver for Py-TPCC. In Section 5.2, we suggest possible next
steps.

5.1 Conclusions

In this thesis, we developed and evaluated a Cockroachdb driver for the Py-TPCC
benchmark. We initially analyzed the theoretical background of different benchmarks
and then studied the process of implementing a new driver for the Py-TPCC bench-
mark, differentiating with the a TPC-C benchmark written in Go and offered within
the Cockroachdb distributions (referred to as native).

In Section 4.2.1 we observed that during the filling of the tables, the number of
insert queries written in the database is much higher for the Py-TPCC than with native
TPC-C. However, the time needed to complete the fill-in phase is shorter for native
TPC-C compared to Py-TPCC benchmark. This behaviour is explained because of

45

bulk transactions. During the transaction execution phase (Figure 4.2.2), set to run
for 60 seconds, we observe that the number of transactions executed at the same
time is higher for the native TPC-C benchmark than for Py-TPCC, with the number
increasing with the increase of workers/clients. Since all other parameters of both
systems (such as time of transaction execution phase, the database system, and the
underlying platform) are equal, we believe that the difference in performance between
the two benchmarks is due to the peformance capabilities of the SQL adaptation layer
(psygopg2 vs. pg), which each benchmark uses to provide adaptation and connection
with the underling database layer (Figure 4.3).

The code architecture and structure of the two TPC-C benchmark implementa-
tions (studied in Figures 4.2 and 4.3) have extensibility implications. The Py-TPCC
architecture features one large code file (executor.py), which is easy to read and un-
derstand, and supports drivers in a database-independent manner; Py-TPCC drivers
call a single function (executor.py) for the execution of transactions. In our experience,
Py-TPCC is an easily extensible system. In native TPC-C, the creation of each different
type of transaction is implemented by a specific function (payment.go, delivery.go,
new_order.go, stock_level.go, order_status.go). Native TPC-C incorporates a built-in
driver for CockroachDB and is tightly integrated to it, it is thus is not designed for
extensibility. In general, a scalable database such as CockroachDB that exports an
SQL interface drastically simplifies the process of porting a benchmark driver for it.

5.2 Future work

A research question that provided the initial motivation for this thesis, was whether
an automated, or semi-automated process is possible for developing a new bench-
mark driver for an arbitrary data (key-value) store, for which a specification of its
data-access API is available. While this thesis provides a first step into the study this
research question, a full investigation extending our results would be an interesting
future endeavor. Another possible future direction is to delve deeper into the com-
plexities of different implementations of PostgreSQL adaptation layers and investigate
scalability limits as well as evaluate benchmark performance in larger scale systems.

46

BIBLIOGRAPHY

[1] “Key value store diagram.” https://en.wikipedia.org/wiki/Key-value_database#
/media/File:KeyValue.PNG. Accessed: 2019-6-10.

[2] “Document store diagram.” https://developer.couchbase.com/documentation/

server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html. Ac-
cessed: 2019-6-10.

[3] “Wide column store diagram.” https://www.lynda.com/NoSQL-tutorials/

Understanding-wide-column-stores/368756/387728-4.html. Accessed: 2019-6-10.

[4] “Graph store diagram.” https://whatis.techtarget.com/definition/

graph-database. Accessed: 2019-6-10.

[5] “Acid transactions.” https://www.morpheusdata.com/blog/

2015-01-29-when-do-you-need-acid-compliance. Accessed: 2019-6-10.

[6] “Cap theorem.” https://towardsdatascience.com/

cap-theorem-and-distributed-database-management-systems-5c2be977950e.
Accessed: 2019-6-10.

[7] “Native tpc-c database schema.” http://www.tpc.org/information/sessions/

sigmod/sld009.htm. Accessed: 2019-6-10.

[8] “Ycsb architecture.” https://www.slideshare.net/sqrrl/ycsb-benchmarking. Ac-
cessed: 2019-6-10.

[9] “Difference between rdbms, nosql and cockroachdb.” https://

callistaenterprise.se/blogg/teknik/2018/02/14/go-blog-series-part13/.
Accessed: 2019-6-10.

[10] “Cockroachdb glossary.” https://www.cockroachlabs.com/docs/stable/

architecture/overview.html. Accessed: 2019-6-10.

47

https://en.wikipedia.org/wiki/Key-value_database#/media/File:KeyValue.PNG
https://en.wikipedia.org/wiki/Key-value_database#/media/File:KeyValue.PNG
https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://www.lynda.com/NoSQL-tutorials/Understanding-wide-column-stores/368756/387728-4.html
https://www.lynda.com/NoSQL-tutorials/Understanding-wide-column-stores/368756/387728-4.html
https://whatis.techtarget.com/definition/graph-database
https://whatis.techtarget.com/definition/graph-database
https://www.morpheusdata.com/blog/2015-01-29-when-do-you-need-acid-compliance
https://www.morpheusdata.com/blog/2015-01-29-when-do-you-need-acid-compliance
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
http://www.tpc.org/information/sessions/sigmod/sld009.htm
http://www.tpc.org/information/sessions/sigmod/sld009.htm
https://www.slideshare.net/sqrrl/ycsb-benchmarking
https://callistaenterprise.se/blogg/teknik/2018/02/14/go-blog-series-part13/
https://callistaenterprise.se/blogg/teknik/2018/02/14/go-blog-series-part13/
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://www.cockroachlabs.com/docs/stable/architecture/overview.html

[11] “Cockroachdb layered architecture diagram.” https://www.zcfy.cc/original/

cockroach-design-md-at-master-cockroachdb-cockroach-github. Accessed: 2019-
6-10.

[12] “Google cloud bigtable.” https://cloud.google.com/bigtable/. Accessed: 2019-
6-10.

[13] “Cassandra db.” http://cassandra.apache.org/. Accessed: 2019-6-10.

[14] “Mongo db.” https://www.mongodb.com/what-is-mongodb. Accessed: 2019-6-10.

[15] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter, “Nosql database systems: a
survey and decision guidance,” SIAM Review, vol. 45, no. 2, pp. 353–365, 2016.

[16] F. Moscato, R. Aversa, B. Di Martino, T. Fortiş, and V. Munteanu, “An analysis of
mosaic ontology for cloud resources annotation,” in 2011 Federated Conference
on Computer Science and Information Systems (FedCSIS), pp. 973–980, Sep.
2011.

[17] S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber, “Coordinating business
transactions on the web,” IEEE Internet Computing, vol. 7, pp. 30–39, Jan 2003.

[18] E. Brewer, “A certain freedom: Thoughts on the cap theorem,” in Proceedings of
the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, PODC ’10, (New York, NY, USA), pp. 335–335, ACM, 2010.

[19] “Tpc-c benchmark.” http://www.tpc.org/default.asp. Accessed: 2019-7-1.

[20] V. Reniers, D. Van Landuyt, A. Rafique, and W. Joosen, “On the state of nosql
benchmarks,” in Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, ICPE ’17 Companion, (New York, NY,
USA), pp. 107–112, ACM, 2017.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with ycsb,” in Proceedings of the 1st ACM Sym-
posium on Cloud Computing, SoCC ’10, (New York, NY, USA), pp. 143–154,
ACM, 2010.

[22] “Tpc-h benchmark.” http://www.tpc.org/tpch/default.asp. Accessed: 2019-7-
11.

48

https://www.zcfy.cc/original/cockroach-design-md-at-master-cockroachdb-cockroach-github
https://www.zcfy.cc/original/cockroach-design-md-at-master-cockroachdb-cockroach-github
https://cloud.google.com/bigtable/
http://cassandra.apache.org/
https://www.mongodb.com/what-is-mongodb
http://www.tpc.org/default.asp
http://www.tpc.org/tpch/default.asp

[23] “Ycsb benchmark.” https://github.com/brianfrankcooper/YCSB. Accessed: 2019-
6-10.

[24] “Py-tpcc benchmark.” https://github.com/apavlo/py-tpcc. Accessed: 2019-6-
10.

[25] “Cockroachdb labs.” https://www.cockroachlabs.com/. Accessed: 2019-6-10.

[26] “Postgresql.” https://www.postgresql.org/. Accessed: 2019-6-10.

[27] A. Pavlo and M. Aslett, “What’s really new with newsql?,” SIGMOD Rec., vol. 45,
pp. 45–55, Sept. 2016.

[28] K. Rabbani and I. Masli, “Cockroachdb: Newsql distributed, cloud native
database,” Universite Libre De Bruxelles, 2017.

[29] “Psycopg2.” https://pypi.org/project/psycopg2/. Accessed: 2019-6-10.

[30] “Sqlite driver.” https://github.com/apavlo/py-tpcc/blob/master/pytpcc/

drivers/sqlitedriver.py. Accessed: 2019-6-10.

[31] “Tpcc transaction functions.” https://github.com/cockroachdb/cockroach/tree/

master/pkg/workload/tpcc. Accessed: 2019-6-10.

https://github.com/brianfrankcooper/YCSB
https://github.com/apavlo/py-tpcc
https://www.cockroachlabs.com/
https://www.postgresql.org/
https://pypi.org/project/psycopg2/
https://github.com/apavlo/py-tpcc/blob/master/pytpcc/drivers/sqlitedriver.py
https://github.com/apavlo/py-tpcc/blob/master/pytpcc/drivers/sqlitedriver.py
https://github.com/cockroachdb/cockroach/tree/master/pkg/workload/tpcc
https://github.com/cockroachdb/cockroach/tree/master/pkg/workload/tpcc

SHORT BIOGRAPHY

Michail Sotiriou is a M.Sc. graduate student at the Department of Computer Science
and Engineering of University (CSE) of Ioannina, Greece. Michail received his B.Sc.
degree from the School of Informatics of Aristotle University of Thessaloniki (AUTH).
His research interests include NoSQL DBs on distributed systems and cloud serving
systems.

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objectives
	Structure

	Background
	NoSQL Database Systems
	NoSQL DB Categories
	ACID Transactions
	CAP Theorem

	Benchmarks
	TPC-C Benchmark
	YCSB Benchmark
	PyTPCC Benchmark

	Cockroach DB
	From SQL to NewSQL
	CockroachDB Architecture

	Implementation
	Cockroachdbdriver Implementation
	Study of existing Py-TPCC drivers
	Psycopg2 and SQLite driver
	SQL compatibility
	CockroachDB Port
	Commit()
	Function loadConfig()
	Batch_size

	Cockroach DB and Prerequisites

	Evaluation
	Py-TPCC vs Native TPC-C CLI differences
	Py-TPCC vs Native TPC-C performance differences
	Filling-in tables
	Experiment Execution

	Conclusion and Future Work
	Conclusions
	Future work

	Bibliography
	Short Biography

