Clustering Methods Based on Reinforcement Learning
A Thesis
submitted to the designated
by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee
by
Eleni Pachi
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE
WITH SPECIALIZATION

IN SOFTWARE

University of loannina
October 2019

Examining Committee:

e Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of loannina (Supervisor)

e Konstantinos Blekas, Associate Professor, Department of Computer Science and
Engineering, University of loannina

e Konstantinos Vlachos, Assistant Professor, Department of Computer Science and
Engineering, University of loannina

DEDICATION

To my family and Nikos.

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Prof. Aristidis Likas for the guidance and patience
throughout my research. His positive outlook and his brilliant ideas not only made this thesis

possible but also helped me develop strong research skills and critical thinking.

TABLE OF CONTENTS

List of Figures ii
List of Tables v
List of Algorithms vi
Abstract vii
Exterapévn Hepiinyn ota EAlnviké iX
1 Introduction 1
1.1 INtrodUCtION ..o 1

1.2 CIUSTEIING .ot 3
1.2.1 Prototype-based Clusteringccoooiiiiiiiiiiiie. 5

1211 k-Means Algorithm ..., 5

1.2.2 Competitive Learning for Clusteringccooeiennn 8

1221 LVQ algorithmcooiiiii e 9

1.3 Reinforcement Learningcooooviiiiiiiiiiiiieii e 10
131 REINFORCE algorithmscooiiiiiiiiee, 12

1.4 ThesSiSROAUMADviutitii e 16

2 Related Work 17
2.1 The Reinforcement Clustering Approachcoocoiiiiiiini 17

2.2 TheRGCL Algorithm ... 20

3 The Proposed Algorithms 24
3.1 Multinomial Stochastic (MS) Unit ..., 24
3.1.1 REINFORCE algorithmsand MS unitsooeeeee. 25

3.2 RMSAIQOMthM ..o 28

3.2.1
3.2.2

3.3 Batch-RMS Algorithm

3.3.1
3.3.2

The Reinforcement Clustering Scheme

RMS Algorithm ..

The Reinforcement Clustering Scheme

The Batch-RMS Algorithm ...,

Experimental Study

4.1 Evaluation

4.2 Experimental Results

421
4.2.2

4.3 Discussion

Synthetic Data
Real Data

5 Conclusion and Future Work

5.1 Conclusion

5.2 Future Work

5.2.1
5.2.2

References

Deep Clustering ...
Other Future Work

28
30
32
33
35
38
38
41
41
49
55
57
57
58
58
60
62

LIST OF FIGURES

1.1 Aclustering paradigm.oooiiiiii 3
1.2 A visualization of hierarchical clustering. ..o, 4
1.3 A visualization of k-Means algorithm. ... 7
1.4 The Reinforcement Learning SChemeooiviiiiiiiiiiii i 12
1.5 A visualization of a stochastic unit computations.cooeviiiiinnn... 13
3.1 Avisualization of an MS UNIt. ... 25
3.2 Visualization of an MS unit computations.ccooiiiiiiiiii i, 29
3.3 Visualization of MS unit computations in batch-RMS. 34

4.1 (a) Visualization of Syntheticl dataset (b) Syntheticl dataset and initial canters
(c) Syntheticl dataset and centers after running LVQ (d) Syntheticl
dataset and centers after running RGCL (e) Syntheticl dataset and
centers after running RMS (f) Syntheticl dataset and centers after
running batch-RMS. ... e 45

4.2 (a) Visualization of Synthetic2 dataset (b) Synthetic2 dataset and initial canters
(c) Synthetic2 dataset and centers after running LVQ (d) Synthetic2
dataset and centers after running RGCL (e) Synthetic2 dataset and
centers after running RMS (f) Synthetic2 dataset and centers after
running batch-RMS. 46

4.3 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVVQ, for
Syntheticl dataset.coooviiiii i 47

4.4 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for
Synthetic2 dataset.c.ovrieiiii 48

4.5 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for
Synthetic3 dataset.oooiiiiiii 49

4.6 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for
Pendigits (1,3,5,7,9) dataset.cooeiiiiiiii i, 53

4.7 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for
COMlL dAtaSEL. .. .oneeeee e 53

4.8 (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for

COMlB dAtaSEL. .. .ot 54
5.1 AULOBNCOUEY. .. ettt e e e e e e e 59
5.2 Deep clustering framework.o 60

LIST OF TABLES

4.1 A summarization of the tested dataSetsooveeeeem e,

4.2 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Syntheticl dataset.

4.3 t-scores and p-values for Syntheticl dataset.cooiiiiiiit.

4.4 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Synthetic2 dataset.

4.5 t-scores and p-values for Synthetic2 dataset.cooiiiiiiiit.

4.6 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Synthetic3 dataset.

4.7 t-scores and p-values for Synthetic3 dataset.ccoceeiiiiiiiiiiiinn.n.

4.8 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Pendigits (1,3,5,7,9) dataset.

4.9 t-scores and p-values for Pendigits (1,3,5,7,9) dataset.coevenn.n.

4.10 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Coill dataset.

4.11 t-scores and p-values for Coill dataset.ccooveviiiiiiiiiiiiieae

4.12 Average clustering error (J), average NMI and percentage of algorithm
superiority for 20 experiments with Coil3 dataset.

4.13 t-scores and p-values for Coil3 datasetcoviviiiiiiiiiiiiiene,

42
43

43
43

44
44

50
o1

51
o1

52
52

LIST OF ALGORITHMS

121
1.2.2
2.2.1
321
3.3.1

K-IMIBANS .o 6
LV ittt e, 9
RGO ittt 21
RIS 31
DAtCN-RIMS L. 36

Vi

ABSTRACT

Eleni Pachi

MSc, Computer Science and Engineering, University of loannina, Greece
October 2019

Title: Clustering Methods Based on Reinforcement Learning

Supervisor: Aristidis Likas

Clustering is one of the most popular problems in machine learning and data mining. It
belongs to the category of unsupervised learning problems since no label information is
provided to assist in partitioning the data points into coherent groups. Although clustering is
an unsupervised problem, it is possible to view clustering from a reinforcement learning
perspective. In reinforcement learning, an agent learns an action policy that solves a

sequential decision problem using reinforcement signals provided by the environment.

In reinforcement-based clustering, the clustering system learns through reinforcements to
follow the desired clustering policy. The previous method of this type (RGCL algorithm)
trains a team of binary stochastic units to perform on-line clustering. Each unit corresponds to
a cluster and the weights of each stochastic unit correspond to a representative point
(centroid) of the respective cluster. The team of stochastic units is trained to perform
clustering using the REINFORCE algorithm by exploiting properly defined reinforcement

signals provided by the environment.

In this thesis we propose two extensions of the RGCL algorithm based on the use of a single
stochastic multinomial unit instead of a team of binary stochastic units. In the first method the
unit is trained on-line based on the REINFORCE framework using immediate reinforcement
signals. In the second method the stochastic multinomial unit is trained in a batch mode based

on the REINFORCE framework using delayed reinforcement signals. In both cases the

vii

weight update equations are derived so that the weight updates lead to the stochastic

minimization of the well-known k-means clustering error.
An experimental study has been conducted using synthetic and real datasets to assess the

performance of the proposed methods. The experimental results indicate that improved
clustering results are obtained in the majority of cases.

viii

EKTETAMENH IIEPIAHYH XTA EAAHNIKA

EAévn Toym

MSc, Tuiua Mnyoavikev H/Y kot [TAnpogopikrg, [Tavemiotypio looavvivov
OxtoBprog 2019

Tithog: MéBodor Opadonoinong Paciopéves e Evioyvtikn Mébnon
EmBAénov: Apioteidng Adkag

H opadomoinon tov dedopévov givar £va amd to To SNUOPIA TPOPANUATO TNEG UNYOVIKNG
pdonong kabag kot g eE6pLéng dedopévmv. AVIRKEL GtV Katnyopio Tov mpofAnudtov
pdonong yopig enifreyn, aeod N LOVY TANPOPOPID TOV TAPEXETOL Y10, TOV SLUXWPIGUO TOV
dedopévev oe opddes, elvarl to 0w tar dedopéva Kat Oyl eTkéteg avtwv. [Hapdio mov 1
opadonoinon stvor TpoPAnpa ympig enifreyn, eival piktd va TNV TPOGEYYIGOVLE Kol GOV
éva TPOPANUO EVIGYVTIKNAG HAONoNG. Xty evioyvTikny pabnomn, to cvotnuo podoivel pio
oTpaTNYIK N omoia AOvel Eva TPOPANUA O1000YIKADV OTOPAGEDY YPNCLLOTOIDVTOS GTLLOTO,

gvioyvong mov mapéyovror and 10 TEPPAALOV.

21NV opadomoinen e EVICYLTIKY Habnon, 1o cuotnua pabaivel péoa amd onuate EVIoYLoNg
va. akohovOnoel v emBouunt GTPATNYIKN OHAOOTOINoNG. ZOUG®VA LE TNV 1060 QLTI O
nwponyovuevn pébodoc (adydpiBpog RGCL), Bacileton oty ekmaidevorn evog cuvorov amd
OTOYOOTIKEG OLOOIKEG LOVAdEG Kot LAOmOolel éva oelplokd adyopiBuo opadomoinong. X
péBodo avty KABe GTOYOOTIKN HOVAdW OVTICTOUKEl G€ o OpAd0 KOl Ol TOPAUETPOL TNG
OGTOYOOTIKNG HOVAOOG OVTIGTOLYOVV GTOV OoVIIPOS®To TG opddas. To ovvoro twv
OTOYACTIKOV pHovadwv ekmardevetar pe t Pondeia tov REINFORCE teyvikdv xor pe
KATOAANAQ OplopEVO. CNUOTO €VIGYLONG MOV OTEAVOVTIOL £T61L (MGTE VO, VAOTOlEITOL M

opadomoinon Tev dedopévov.

Xmv gpyacio avtn mpoteivovpe dvo véeg peBodoovg mov enekteivovv tov aAydpduo RGCL
KOl YPNOLUOTO00V it LOVO GTOYOOTIKY) TOAV®VUUIKY HOvVAda, avii Yo £€vo GOVOAO omd
OTOYOOTIKEG OVOOIKEG HOVAOEG. XNV PN UEDOOO 1 OGTOYOUOTIKY] HOVAON EKTOOEVETOL

oelplokd, pe v eknaidevorn vo Paciletar oto REINFORCE alydpiBuo ypnoyonoumvrog
IX

onuato AGueong evioyvong. Xtn dgvtepn HEBOSO 1M OTOYOOTIKY TOAVMOVLUIKY HOVAOW
ekmoudeveTol oe ouddec mapaderypdtov (batches) ko Pacileran méd oto REINFORCE
alyopiOpo, pe deopd otL AapBdvovue voyn Kou maperboviikd onuata evioyvons. Kat
OTIG OVO TTEPWMTAOGELS TAPOLSLALoVUE TIG EEIGDGEIC TOV TPOKVTTOLY YL TNV EVNUEPDOT TOV
nopapetpov. H evnuépmon tov mopopétpov yivetar pe T€TO0 TPOTO OCTE TO YVOOTO

ol opadonoinong tov K-Means vo ehoylotomogitol 6To oo TIKA.

Aldpopo TEWPAPATO GE TEYVNTA Kol TPAYHOTIKO cUVOAo dedopévev deénydnkav yu va
UEAETAGOVUE TNV EMIOOCT TV TPOTEWVOUEV®OV HEBOO®V, OOV GTIC TEPIGGOTEPES MEPUTTMGELS

T TEWPOUATIKE amoteAéopata £6€1EAV OTL 00N YOVUACTE GE KAADTEPEG AVGELS OLOOOTOINOT|G.

CHAPTER 1

INTRODUCTION

1.1 Introduction
1.2 Clustering
1.3 Reinforcement Learning

1.4 Thesis Roadmap

1.1 Introduction

As available information and data increase, users seek ways to discover hidden information.
Machine learning develops models that learn through examples in order to implement a
specific task. There are different types of learning. The most common types are supervised,
unsupervised and reinforcement learning. In supervised learning the model ‘learns’ through
data and also from correct answers (labels) that are provided. In contrast, in unsupervised
learning the model uses only unlabeled data to learn and implement a task.

Additionally, as far as reinforcement learning is concerned, we can claim that this type of
learning lies somewhere in the middle of supervised and unsupervised learning. Thus, the
model ‘learns’ from the data and through a reinforcement signal provided from the
environment. This reinforcement signal provides useful guidance about how the system
should operate in future. We should not confuse reinforcement learning with supervised,
because reinforcement signal does not contain correct answers as happens in supervised

learning, but only an indirect information about the system’s operation.

Supervised, unsupervised and reinforcement learning can be used in order to solve several
types of problems, such as classification or clustering of data. The most common
unsupervised learning problem is clustering. Suppose the dataset has the form of X =
(x1, x5, ..., Xy), With x,, € RP and does not contain any correct answers, i.e. class labels. The
goal of clustering is to partition the X dataset in L groups, called clusters, in a such way that
data belonging to the same cluster are similar to each other and dissimilar to those in other
clusters. Because clustering tries to reveal hidden structures of data without ground truth, it
has many applications in various fields such as pattern recognition, image segmentation,

medicine, spatial database analysis, finance and other.

It has been shown that is possible to view clustering as a reinforcement learning problem,
where the clustering system learns through reinforcements to follow the desired clustering
policy. In this thesis, we propose two clustering algorithms that learn stochastically to group

data with the help of a reinforcement signal provided from the environment.

The first algorithm trains on-line a single multinomial stochastic unit based on the
REINFORCE framework [3] using immediate reinforcement signals. In the second algorithm
the unit is trained in a batch mode based on the REINFORCE framework using delayed
reinforcement signals. In both cases the weight update equations are derived and is shown that

the weights lead to the stochastic minimization of the well-known k-means clustering error.

We have tested the proposed methods in several real and artificial datasets and compared
them with other existing clustering algorithms. It can be concluded that our algorithms in
many cases achieve a better clustering solution. This mainly happens because of the included
stochasticity, which lets the algorithms explore different clustering solutions from the same

initialization of the parameters.

In the following subsections we present the basic knowledge which is necessary to introduce

and understand our work properly.

1.2 Clustering

Clustering aims at partitioning data into groups (or clusters) with similar properties. The
obtained meaningful groups of objects that share common characteristics, reveal the natural
structure of the data. Because of this, cluster analysis has many applications to practical
problems in biology, medicine, business, finance, etc. Except for understanding the hidden
structure of data, clustering can also be used in many cases for data summarization or
compression, if we take into consideration that each cluster can be represented by one data

point, the cluster representative.

The goal of clustering is to partition a dataset X = {x,},i = 1,...,N in L groups, called
clusters, such that the objects inside a cluster are similar to one another and different from the
objects in other clusters. So, the greater the similarity within a group and the greater the
difference between groups are, the better or more distinct the clustering is. Fig. 1.1 presents a

typical clustering paradigm.

Object

A A
® Cluster
A, ¢
A ¢
¢ [& ¢
o'o0d
‘e . A
AA
o o, AA,
s 0 A 0 A,
A 00 o A ...:.
o0 00’0
[]
®
> >
Unorganized Objects Objects Clusters

Figure 1.1: A clustering paradigm.

In the definition of clustering, the notion of similarity is important. In order to measure the
similarity between objects or clusters, every clustering algorithm needs a proximity measure.
We are going to work with algorithms that use distance as a proximity measure and more

specifically they use the Euclidean distance. So, for every dataset X containing vectors x,, €

R? we consider the distance matrix d € R¥*N,d,,.. = d(x,, x,,), Where d,,,,, is the Euclidean

distance of x,, from x,,.

There are many types of algorithms that implement clustering. The first big category is
hierarchical clustering algorithms. The main idea of these algorithms is that objects are more
related to nearby objects than to objects farther away. Thus, in every step we group the closest
pairs of groups. Because of this, we can describe hierarchical clustering as a set of nested
clusters that can be organized in a tree. Each node of the tree represents a cluster and is the
union of its children, that represent the sub clusters. Usually, the leaf nodes are singleton
clusters of individual data points and the root is the cluster containing all data points. We can

see an example of a dendrogram in Fig. 1.2 below.

Cluster Dendrogram

Height

Figure 1.2: A visualization of hierarchical clustering.

A second category is partitional clustering that is simply a division of the set of data points
into clusters with no hierarchy. The clusters can be non-overlapping, defining hard clustering,
where each object belongs exclusively to one cluster, and overlapping, defining fuzzy
clustering which allows objects to belong in different clusters with a degree of membership.
We can further divide the partitional clustering algorithms, into density-based algorithms,
which define clusters as sets of objects generated by the same distribution and graph-based
algorithms, where data are represented as a graph with graph’s nodes being the data points

and edge links with weights analogous to the similarity among them. Thus, a cluster is defined

as a strongly connected component in graph, i.e. a group of objects that are strongly
connected to one another, but have few connections to objects outside the group.

Also, the partitional clustering algorithms can be further divided into prototype-based
clustering algorithms that contain parameters, where the clusters are described by a cluster
prototype or a representative. This thesis focuses on hard partitional clustering and more

specifically on prototype-based algorithms.

1.2.1 Prototype-based Clustering

In this type of clustering algorithms, every cluster is described by a data point that is usually
named prototype or representative of the cluster. Thus, in prototype-based clustering a cluster
is a set of objects in which each object is more similar to the prototype that describes the
cluster than to the prototype of any other cluster. For data with continuous attributes, the

prototype of a cluster is often a centroid, i.e. the average of all points in the cluster.

Because a prototype of a cluster is usually the most central point of the cluster, prototype-
based algorithms are referred in the literature as center-based algorithms, also. Such clusters
tend to be globular. It worth noticing that the most common advantage of prototype-based
methods is that they provide an intuitive summarization of the given dataset using a few

instances, i.e. the cluster prototypes.

1.2.1.1 k-Means Algorithm

The most popular and oldest prototype-based algorithm is k-Means. Because of its simplicity

and efficiency, k-Means has been used to perform clustering in a large variety of disciplines.

k-Means is a prototype-based algorithm, consequently each cluster is represented by a point

called centroid or center, which is usually the average of the points of the cluster. This point is

not necessarily a point of the dataset. Also, it is a hard partitional clustering algorithm which
5

tries to split data in L disjoint clusters, in a such way that the distance between a data point
and cluster centroid is minimized. In other words, k-Means tries to minimize the variance

inside the clusters. In typical k-Means the Euclidean distance is used as a proximity measure.

After defining the parametric clustering model, like in every parametric clustering algorithm,
k-Means needs a clustering criterion to optimize, in this case to minimize, with respect to the
parameters. The most common clustering criterion used by prototype-based clustering
algorithms, is the clustering error. Clustering error is defined as the sum of squared Euclidean
distances between each data point x and the cluster centroid w; of the cluster C, that x
belongs. More specifically, given a set of observations (x;, x5, ..., x5) Where each observation
Is a p-dimensional real vector, k-Means tries to partition the N observations in L clusters C =

(C1, Cy, ..., C) minimizing the objective function

L

Js W) =)Y by = will? CEY

i=1 xn€C;
where w; is the centroid of cluster C;.

k-Means optimizes the above objective function by initializing the L centroids, usually chosen
randomly from the dataset, through an iterative procedure. Firstly, the distances between each
datapoint and the centroids are computed. The centroid that is closer to the data point is
specified. Then, the data point is assigned to its closest centroid cluster and consequently all
clusters update their centers. The update of every cluster centroid is equal to the average of all
data points that belong to this cluster. This is repeated until convergence, i.e. no data point

changes cluster, thus the centroids do not change. We present the k-Means algorithm below.

Algorithm 1.2.1 k-Means

Input: Dataset X = (xq, x5, ..., Xy), number of clusters L, initial centroids wy, ..., w;.

Output: Final clusters Cj, ..., C;, final centroids wy, ..., w;.

1. Forall points x,,n =1, ...,N do

2. For all clusters C;,i = 1, ..., L do

Compute the distance ||x,, — w;||?
Find c¢*(x,) = argmin;(||x, — w;||?)

3

4

5. Forall clusters C;,i =1, ...,L do

6 Update cluster C; = {x,|c*(x,) = i}
7

For all clusters C;,i = 1, ...,L do

8. Update centroid w; = W

9. If convergence then

10. Then return final clusters C;, final centroids w;.
11. Else

12. Go to step 1.

Fig. 1.3 presents a visualization of k-Means steps. As we see, Fig 1.3(a) presents a set of 2-
dimensional data points and Fig 1.3(b) presents the initialization of the centers along with the
data. Fig 1.3(c) shows which points are closer to each centroid and Fig 1.3(d) shows the
update of the cluster centroids, i.e. the first iteration of k-means. Fig 1.3(e) and Fig 1.3(f)

present the second iteration of k-means, where convergence happens.

(d) (e} ()

Figure 1.3: A visualization of k-Means algorithm.

Of course, besides Euclidean distance other measures can be used, such as cosine distance or
Mahalanobis distance. Note that changes in the proximity measure result in changes in the
objective function. Also, there are cases where the centroids are not always the mean of the

cluster data.

The computational complexity of k-Means is O(MN), which makes it practical for large
datasets. Moreover, it is an easily implemented algorithm. However, it suffers from some
limitations. First of all, the solution is highly dependent on the initialization of the centroids.
This problem is typically treated by executing k-Means several times, and then store the
solutions and select the one with the minimum clustering error. A related important limitation
is that k-Means converges to a local minimum of the objective function and therefore it is not
a global optimization technique. Moreover, it identifies only linearly separable datasets and it
is difficult for k-Means to identify clusters that do not have spherical shape such as datasets
with the shape of a ring. Finally, the dataset must be in the form of vectors and the number of
clusters is required as input. Despite all the beforementioned limitations, k-Means is widely
used because of its simplicity and efficiency.

1.2.2 Competitive Learning for Clustering

Competitive learning is a form of unsupervised learning used commonly in artificial neural
networks, in which neurons compete to each other in order to implement desirable task.
Competitive learning can also be used for clustering. The basic concept of online competitive
learning for clustering is that clusters compete each other in order to cluster data properly. We

can model a clustering problem as a competitive learning problem as follows. [4]

Suppose we are given a set X = (xy,...,xy) of unlabeled data with x,, = (x4, .., Xpp) " €
RP and want to assign each of them to one L clusters. Each cluster is described by a
prototype vector w; = (w;y, ...,wl-p)T, (i=1,..,L) and let W = (wq, ..., w;) the matrix of
all prototype vectors. Also, let the proximity measure be a distance measure d(x,w). The

objective function that choose to minimize in order to find good clusters is the clustering error

N
JW) = Z min, d(x,,w,). (1.2)

The clustering strategy in competitive learning techniques can be described as follows. First,

randomly select an example x of dataset X, then for each cluster i = 1,...,L compute the

distance d(x,w;) and store the winning cluster i* where cluster prototype has the minimum
distance from x. Next, update the weights w;- so that the winning cluster prototype moves
towards x. This procedure is repeated until a termination criterion is satisfied. It worth
noticing that the aforementioned clustering strategy operates in an online mode, because the
system updates its parameters immediately after the presentation of a sample. Also, it is a
prototype-based clustering strategy, since clusters are represented by prototypes.

1.2.2.1 LVQ algorithm

A well-known competitive learning algorithm is Learning Vector Quantization (LVQ) [4].
LVQ has been mainly used for supervised learning techniques, such as classification but can
be applied in unsupervised learning problems, such as clustering, too. Here, we present LVQ

for clustering.

Since LVQ is a competitive learning algorithm, it will follow the clustering strategy described
in the previous subsection. As far the update of the parameters is concerned, LVQ was
designed to update only the winning prototype, moving it towards the pattern x, while leaving
the other prototypes unchanged. Thus, the update equation for the winning prototype i* for a

sample x, is the following:
Awp = a(x — w;+) (1.3)

where a is the learning rate parameter and determines the strength of the update. We present
the LVQ algorithm in the table below.

Algorithm 1.2.2 LVQ

Input: Dataset X = (x4, x3,...,xy), number of clusters L, initial cluster prototypes W =

(Wq, e, W) .

Output: Final cluster prototypes W = (wy, ..., w;) .

9

Specify: Learning rate: a, number of epochs: num_epochs.
For all e = 1,..., num_epochs do
For all data points x,,,n =1, ..., N do

For all clusters w;,i =1, ...,L do

1.

2

3

4. Compute the distance d(x,,, w;)

5 Find the winning prototype i* such that i* = arg;min d(x,, w;)
6

Update only the weights of the winning prototype as Aw;« = a(x,, — w;=).

The LVQ algorithm operates online. Therefore, when a sample x is presented to the system,
the update of the parameters occurs exactly after the presentation. Note that LVQ is related to
k-Means. Actually, LVQ is the online version of k-Means. Note that k-Means updates the
system parameters after all instances have been presented and minimizes the same clustering
error. Also, LVQ is a prototype-based clustering algorithm, since clusters are described by
prototypes or representatives. We can execute LVQ for a specific number of epochs or until

there is no change in parameter values.

1.3 Reinforcement Learning

Reinforcement learning is a machine learning category, where the learning model based on its
decisions, receives from the external environment a reinforcement signal that contains indirect
information about system’s operation. We can consider this operation like the evaluation of
human behavior, where we reward someone if he behaves well or penalize him if he does not.
Thus, we reward the system if it operates well and implements the desirable task or penalize it

if it performs badly.

We can describe the system as a learning agent who receives the reinforcement information
and wants to implement an action policy. Since the environment does not provide the correct
answers but only sends a reinforcement signal, the agent’s actions based on that signal are
characterized by stochasticity. Of course, in reinforcement learning, like in every machine

learning method, every strategy needs a performance criterion to optimize. Commonly in
10

reinforcement learning, the objective function that is going to be optimized, contains the
reinforcement signal. Thus, the model is trained to take actions that maximize the

reinforcement signal, not necessarily immediately but in a long term.

Basically, a reinforcement learning problem can be modeled as a Markov Decision Process
(MDP). We have the following.: a set of system states S and a set of actions A taken by the
agent. Also, we have a probability of transition P,(s,s") = Pr (s'|s,a) from a state s to a
state s’ under an action a and a reward r(s, a) related to the action a selected from state s.
Finally, there is a discount factor y € (0,1) that quantifies the difference in importance

between immediate rewards and future rewards.

As we mentioned before, every reinforcement learning system tries to maximize the reward
sent from the environment. Thus, we can define as the objective function, that we want to
maximize, the sum of the rewards in a long term, across all future timesteps t, given by the

equation

R® = Z Y " (sks ak) (1.4)
k=t+1
where y is the discount factor and r(sy, ay) is the reward associated with taking the action a

at state s at a timestep t.

According to the above MDP modelling, a reinforcement learning agent interacts with the
environment at discrete time steps and the reinforcement scheme is described as follows. The
agent takes from the environment, that is in a state s;, a reward r; and makes an action a,.
This action is sent back to the environment that moves in a new state s;.,, and the reward r;,
associated with the transition (s, a;, S¢4+1) 1S determined. The beforementioned procedure is
repeated and the agent changes its action policy in order to optimize the objective function. A

visual description is provided in Fig. 1.4 below.

Reinforcement learning due to its generality, has been applied in many disciplines, such as

game theory, control theory, object tracking, multi-agent systems etc.

There are many reinforcement learning algorithms that follow different procedures. Also, we
can classify the algorithms in two big categories, those with immediate reinforcers and those

with the delayed ones. In immediate reinforcement learning, after each action performed by

11

the agent, the environment sends the reinforcement signal immediately. On the other hand, in
delayed reinforcement learning, this signal is sent after several actions have been taken.

| Agent

state reward
Ly

action
a.'

Environment}

Figure 1.4: The Reinforcement Learning scheme

In this thesis we are going to exploit immediate reinforcement learning algorithms. More
specifically our work is based on algorithms of the family of REINFORCE algorithms. In the
next subsection, we are going to describe this category of algorithms. Also, in the following
chapters we show clustering strategies that based on reinforcement learning, and how
REINFROCE algorithms can be adjusted to this concept.

1.3.1 REINFORCE algorithms

In reinforcement learning algorithms [3], the learning agent can be viewed as a feedforward
network consisting of several individual units. Because the learning system needs to explore
the best decisions, these individual units operate stochastically, so we can call them stochastic
units. The network operates by receiving an input from the environment and stochastically
propagating the corresponding activity through the net. Then it sends the activity produced
from output units to the environment for evaluation. This evaluation is sent through the
reinforcement signal » to all units in the net. Then each unit updates its parameters and the

cycle begins again.

12

To describe the above mathematically. For input x = (x4, ...,x,) € RP let denote as y; the
output of ith unit. Each unit has its own parameters w; = (w4, ..., w;,) such that W =
(ws, ..., w;) denotes all network parameters. Since each unit acts stochastically, the output y;
of a unit is drawn from a distribution, and depends on the input x and unit parameters w;.
Suppose that this distribution is described through its probability mass function.

Consequently, for each unit i we define
9i(z,wy, x) = Priy; = z|lw;, x} (1.5)

to be the probability mass function determining the output of the unit as a function of its input
and its parameters. It worth noting that all the quantities such as r, y;, x depend on time, but
for convenience, in the following, when they appear in the same equation represent values for

the same time instance.

A widely used subclass of stochastic units in connectionist networks are the stochastic logistic
or Bernoulli units. In these units, a binary output y; € {0,1} is drawn from a probability

distribution with mass function p;, which is computed as

pi = f(s1) (1.6)
where f is the logistic function
1
f(s) = Tt 1.7
and
s;=wlx (1.8)

is the inner product of w; and x. In this way, through logistic function we achieve to convert
the inner product of w; and x into a probability that can be used to select the output. In Fig 1.5

below we present the computations of a stochastic logistic unit.

) s =wlx — | —> %

Figure 1.5: A visualization of a stochastic unit computations.

13

Like in every machine learning method we need an objective function to optimize. A very
common objective function that is used in immediate reinforcement learning problems, is the
expected value of reinforcement signal r, E{r|W} conditioned on the system parameters . It
is necessary to use the expected values because of the randomness of the system. Thus, the
learning system searches the space of all possible parameters W for a point where E{r|W} is
maximum. Also, it worth noting that the E{r|W} is well defined because the environment’s
choice of an input pattern and the reinforcement signal for that input, are determined by
stationary distributions. Also, the choice of an input pattern is determined independently of

time.

In REINFORCE algorithms the parameters w;; of the learning system, after each step are

updated as
ding;
. . . .) dlng; .
where «;; is the learning rate parameter, b;; is the reinforcement baseline and ——isa
ij

quantity called the characteristic eligibility of w;;.

An important and interesting result of REINFORCE algorithms is that they make weight
adjustments in the direction for which the performance measure E{r|W} is increasing. More

specifically it can be proved that

OE{r|W, x;}

E{AwulW,x]} = aWU

(1.10)

if a;; = a remains constant. Alternatively REINFORCE algorithms claim that the quantity

(r— bij)% represents an unbiased estimate of %IW}_ Therefore, they can be used to
ij U

perform stochastic maximization of the performance measure, because they relate the gradient
of the performance measure in the weight space to the average update vector in the weight

space, too.

Also, for a Bernoulli unit since it has two possible outcomes it holds that,

14

1—-p; ifz=0

p; if z=1 (1.11)

o0 =]

where the probability p; will be computed by the Eq. 1.6 presented above.

ding;
an'j

Therefore, the characteristic eligibility of the update Eq. 1.9 can be further analyzed as

dlng; _ 0lng;(y;; p;) Op; Os;

aWij B apl aSi aWU (112)
where because of Eq. 1.11 we have that
—— ify; =0
dlng;(yispi) | 1-p; Vi
—_— = (1.13)
ap; 1 ,
—_ if Vi = 1
i
olng; (y;: v .
L 0ngiQyiip) _ yi—pi (1.14)
dap; pi(1—p;)
Also, because of Eq 1.6, Eq. 1.7 and Eq. 1.8 it holds that
op; ,
o= =1'(s) =Pl —p) (L15)
Si
and
oSt _ 1.16
aWij B xj (')

Therefore from Eq. 1.14, Eg. 1.15 and Eq. 1.16 the update equation of the parameters in
REINFORCE algorithms in the case of Bernoulli units, takes the form

Awy; = ayj(r — b)) (v — P (1.17)

where a;; is the learning rate parameter and b;; the reinforcement baseline.

15

The training of Bernoulli units using REINFORCE algorithms is exploited in the methods
presented in next chapter, where we use REINFORCE algorithms to implement a clustering
strategy.

1.4 Thesis Roadmap

The structure of this thesis is organized as follows. In Chapter 1, we have introduced our topic
providing basic information about the two types of machine learning methods that we use:
unsupervised learning, specifically clustering, and reinforcement learning. More specifically,
we analyze the clustering and reinforcement techniques, on which our work is based. Chapter
2 presents the closely related work. More specifically, presents how reinforcement learning
and especially REINFORCE algorithms can be used to implement a clustering strategy
(RGCL algorithm). Next in Chapter 3, we present two new algorithms. An algorithm that
performs clustering combining reinforcement learning and operating in on-line mode and an
algorithm that makes exactly the same but operating in a batch mode. Then, in Chapter 4 we
provide comparative experimental results on synthetic and real datasets and we discuss
interesting drawn conclusions as well. Finally, Chapter 5 concludes this thesis by

summarizing our findings and also presents interesting directions for future work.

16

CHAPTER 2

RELATED WORK

2.1 The Reinforcement Clustering Approach
2.2 RGCL Algorithm

2.1 The Reinforcement Clustering Approach

In [1] a method is presented for clustering based on competitive learning and combined with
reinforcement learning simultaneously. The main idea is that the clustering system can be
viewed as a reinforcement learning system that learns through reinforcement signals to follow
the clustering strategy. Actually, the proposed algorithm expands the LVQ algorithm,
presented earlier in Chapter 1, by introducing stochasticity to it. Therefore, the closest cluster
prototype is not always selected, but it is selected according to some probability distribution.
Since the selection is characterized by stochasticity, we need the external environment to
evaluate it through a reinforcement signal. This is the point where REINFORCE algorithms
are applied in the clustering strategy. To express the reinforcement clustering approach more

analytically, the following have been defined.

Suppose we are given X = (xy, ..., xy) of unlabeled data where x,, = (xp1, ..., xn,) T € RP is
a p- dimensional vector and want to assign them to L clusters. Each cluster is described by a
prototype vector w; = (wl-l,...,wip)T, (i=1,..,L) and let W = (wy,...,w;) be all the
prototype vectors. Therefore, the algorithm deals with prototype-based clustering. Also, in

order to apply clustering, a proximity measure is needed. Let d(x,w) the distance of data

17

point x from a cluster’s prototype w, to be the proximity measure. Therefore, goal of

clustering strategy is to minimize the objective function

N
JW) =) min,d(xy, wy) (2.1)
n=1

which is the well-known clustering error.

Having defined the model of the clustering system and the objective function to be optimized
we are going to present how it can be trained with REINFROCE algorithms [1]. Basically,
REINFORCE algorithms are used for updating the model parameters, where the parameters

here are the cluster prototypes.

It is assumed that each cluster i (i =1,...,L) corresponds to a Bernoulli unit, whose
parameter vector w; = (wjy, ..., W;,)" corresponds to the prototype vector of cluster i. At each
step each Bernoulli unit i is fed with a randomly selected sample x and the following

procedure is implemented.

Firstly, the distance s; = d(x,w;) of sample x from prototype w; is computed. After that,

p; is computed as follows:

pi = h(s) =2(1 = f(s1)) (2.2)

where f(s;) is the logistic function (Eq. 1.7) fined previously and providing values in (0,1)
and s; is the aforementioned distance. In this way, a relation between distances and
probabilities is achieved. More specifically because of the form of f(s;), they are inversely
proportional quantities. Therefore, the closer the vector of a unit i is to input sample x, the
higher the probability the unit to be active, i.e. y; = 1. As we notice, the probabilities p;
provide a measure of the proximity between data and the cluster prototypes. Therefore, if a

unit i is active, it is very probable that this unit is closer to the input data point.

In immediate reinforcement learning, after each output y; is computed, we need the
environment to evaluate it by sending a reinforcement signal r; to each unit i. This evaluation
is made in such a way that the units update their parameters so that the desirable clustering
strategy is implemented. Thus, using the update equation of REINFORCE algorithms in Eq.

18

1.9 and assuming that the learning rate is the same during the whole procedure, the update

equation for the reinforcement clustering scheme takes the following form

dlng;(yi; pi) Op; 0s;

Aw;j = a(r; — byj) on: 3513w (2.3)
For the Bernoulli units, we know that
0lngi(yispi) _ _Yi— P (2.4)
ap; pi(1 —p;)
Also, from Eq. 2.2 we have that
Z_}sj: = —Dif (s1) (25)

since the derivative of logistic function is f'(s;) = f(s;)(1 — f(s).

Thus, from equation Eq. 2.4 and Eq. 2.5 the parameter update equation corresponding to the

proposed reinforcement clustering scheme is

f(si) 0Os; (2.6)
Y (i = b)) 0 = (1 —p;) ow;;
It is assumed that the term % = ﬁ is incorporated to the learning rate a. Therefore,
the update equation becomes
ds; (2.7)
Awj = —a(r; — byj) (v — py) ﬁ

ij
As we mentioned in Chapter 1, REINFORCE algorithms operate towards maximizing the

reinforcement signal. Thus, the above parameter update scheme maximizes the objective

function

R(W) = i RW,x,) = i Z E(rIW, x,) (28)

where E{r;|W, x,,} denotes the expected value of the reinforcement received by cluster unit i

when the input pattern is x,. Consequently, the reinforcement clustering scheme can be

employed in the case of problems whose objective function is in the form of R(W) and the
19

maximization is achieved by performing updates that at each step maximize the term

R(W, x,,). The latter is valid, because from Eq. 1.10 we have that

QE{r|W, x,) (2.9)

E{AWU|W, xn} =a aWU

and since the weight w;; affects only the term E{r;|W,x,} in the definition of R(W), we

conclude that

OR(W,x,) (2.10)

E{Awij|W, xn} =aq aWij

Therefore, the very interesting result is that through the reinforcement clustering approach the
objective function R is maximized in the same sense that LVQ minimizes the objective
function J (Eq. 2.1). Next, we are going to present the RGCL algorithm as proposed in [1] that

is based on the aforementioned reinforcement clustering scheme.

2.2 The RGCL Algorithm

As we mentioned previously, in LVQ algorithm only the winning cluster i* updates its
parameters and is moved towards pattern x, while the parameters of the other clusters remain
unchanged. RGCL algorithm expands the LVQ combining it with the reinforcement

clustering scheme. Thus, the strategy is described as follows.

For every data point x there is a closest cluster to it. Let us denote this cluster as i* and
mention it as the winning cluster. The strategy that would like the system to learn is similar to
LVQ. Thus, only the winning cluster/unit i* will update its parameters, while the other
units/clusters remain the same. Note that the closest unit may not be active necessarily since
its output is computed stochastically depending on the Bernoulli distribution. For this reason,
the environment needs to evaluate the unit’s decision y;. Thus, identifies the winning unit i*
and returns a reward signal ;= = 1, if it has decided correctly, i.e. y;» = 1 or a penalty signal
r;+ = —1, if its decision is wrong, i.e. y;» = 0. The reinforcements sent to the other units, are
r; = 0, so their weights are not affected. Therefore, the reinforcement signal is defined as
20

1 ifi=i"andy; =1
r;=49—1 ifi=i"andy; =0 (2.11)
0 ifi #i*

Setting the baseline b;; = 0, the update equation Eq. 2.7 takes the form

ds; (2.12)
Awj = —ary(y; — Pi)ﬁ;_
Also, if s; = d(x,w;) the distance of input pattern x from the cluster’s prototype w; is the
Euclidean distance

14
si=) (g —wy)? (213)
j=1
the term % in the update equation Eq. 2.12 becomes
)
ds; (2.14)
ow —(x — wyj)

i

and therefore, the update equation of the parameters of the reinforcement clustering scheme
takes the form of

Awy; = ary(y; — p) (% — wyj) (2.15)

Thus, RGCL algorithm has the following steps presented below. It worth noticing again that
the parameter a remains fixed at a specific small value and the reinforcement baseline is not

used.

Algorithm 2.2.1 RGCL

Input: Dataset X = (x4, x5, ..., Xy), number of clusters L, initial cluster prototypes wy, ..., w;.
Output: Final clusters Cj, ..., Cy, final cluster prototypes wy, ..., w;.

Specify: Learning rate a, number of epochs: num_epochs

1. Forall e = 1,...,num_epochs do

21

Forevery x,,n=1,...,N do
Foreveryw;, i =1,2,..,L do
Compute the distance s; using Eq. 2.13.
Compute the probability p; using Eg. 2.2 and decide the output y; of unit i.
Determine the winning unit i* with p;+ = max (p;).

Compute the reinforcements r;, (i = 1,2, ..., L) using Eq. 2.11.

© N o a bk~ w D

Update the cluster prototypes w;, (i = 1,2, ..., L) using Eq. 2.15.

According to the specification of the rewarding strategy, high values of r are received when
the system follows the clustering strategy, while low values are obtained when the system
fails in this task. Therefore, the maximization of the expected value of r means that the
system follows the clustering strategy. Since the clustering strategy aims at minimizing the
objective function J, RGCL algorithm achieves an indirect way to minimize J, through the
maximization of the immediate reinforcement signal . This intuition is made more clear in

the following proof presented in [1].

The reinforcements in RGCL algorithm are provided by Eq. 2.11, where it holds that: a) r; =
1 when y; = 1 with probability p; and i =i* and b) r; = 0 when y; = 0 with probability

1 —p; and i = i*. In any other case r; = 0. Therefore, from equation

R(W) = iZL:E{TiIW,xn}

it is derived that the objective function maximized by RGCL for a cluster i, taking into

(2.16)

consideration the Eq. 2.11, is

N (2.17)
R(W) =) [p () = (1 = pir ()]

where p;-(x,,) is the maximum probability for input x,,. This leads to

N (2.18)
ROW) =2 pele) =N
n=1

22

and since N is a constant and the probability p; is inversely proportional to the distance, we
conclude that the RGCL performs updates that minimize the objective function J, since it

operates toward maximization of the objective function R.

Moreover, if we notice carefully the update equations of LVQ and RGCL algorithm, we can
observe that the actual difference lies in the presence of the term (y; —p;) in the RGCL
update equation. Because this term depends stochastically on the outcome of output y;, the
strength of the parameter updates w;; can be different depending on the output y;. That makes
the RGCL algorithm more efficient from LVQ, because it can escape from shallow local
minima of the objective function by introducing a kind of noise through the different

outcomes of y;.

It worth noticing that RGCL is a local optimization clustering procedure that tries to escape
from local minima, but it can be trapped to these as well. Also, in order for RGCL to be

executed, the specific number of clusters is needed as input.

Having presented the related work and introduced the necessary theory as well, in next
Chapter we present two new methods that implement clustering based on a reinforcement
learning scheme by expanding the RGCL approach.

23

CHAPTER 3

THE PROPOSED ALGORITHMS

3.1 Multinomial Stochastic (MS) Unit
3.2 RMS Algorithm
3.3 Batch — RMS Algorithm

3.1 Multinomial Stochastic (MS) Unit

As we mentioned previously, in REINFORCE algorithms the learning agents use stochastic
units that draw their output from some distribution. Also, we defined a subclass of stochastic
units, the Bernoulli stochastic units where the RGCL algorithm is basically based on. In this
subsection, we are going to introduce another subclass of stochastic units that is going to be
used in the proposed algorithms, the Multinomial Stochastic (MS) unit [2]. As Bernoulli units

are based on the Bernoulli distribution, MS units are based on multinomial distribution.

An MS unit characterized by parameters s = (sy,...,5;), provides an output or selects an
action y among L possible outcomes {a,, ..., a;} using a probability vector p = (py, ..., pL).
In other words, having a set of actions {a, ..., a, } that each one is chosen with a probability

p = (py, ..., pL), an MS unit selects an action a; = y with a probability p;.

The major difference between Bernoulli and MS unit, is that the former is binary and have
two possible outcomes, while MS units have L possible outcomes. Therefore, it is obvious
that an MS unit is an extension of a Bernoulli unit. Fig. 3.1 below provides a visualization of

the operation of an MS unit and actually describes how an MS unit selects an output.
24

S1 - Sy, —* P1-- Pr — ¥

Figure 3.1: A visualization of an MS unit.

During the selection of an output vy, it is necessary the probability vector p = (p4, ..., p.) to be
computed based on the values of s;. Thus, using the parameter vector s, we choose to

compute the probability vector p = (p4, ..., p;,) from the equation

exp(=si/T)
P S exp (=5,/T)

(3.1)

where T is a constant. The SoftMin function in Eq 3.1, is used to transform the parameter

vector s to a probability vector p. The constant T controls the normalization. If T — 0 we get

the min operation, i.e. p; = 1 for s, = min (sy,...,s;) and p; =0 for j # k. If T > o all p;

1
are equal to o

3.1.1 REINFORCE algorithms and MS units

Having defined the MS unit and the computation of the probability vector p, we present how
the MS unit is trained using the REINFORCE framework.

Let us denote as k the action that the MS unit selects and provides an output y. Obviously,
this action has been selected with a probability p, and it is characterized by parameters s,.
After the selection the environment should send a reinforcement signal r, in order to evaluate
the selection. The corresponding update equation of unit parameters that depends on the

selection of the MS unit, will be given by the equation

B ding
ASi = Qq; (T - bi) ? (32)

1

25

where g (yv,s) = Pr{y|s} is the probability to select the action k and provide the output y

having the parameter vector s. Because of the Eq 3.1, every % term depends on s; and on

the rest of s;,j = 1,...,L — 1 terms. Thus, it holds that

dlng - ding dp;

(3.3)
aSi = ap] aSi

J

Since we select the action k with a probability p,,, for the first terms of the sum of Eq. 3.3 it
holds that

1
din . ifi—
apg = { b Tk (3.4)
' 0 otherwise
Because of Eq. 3.4, a;Z‘_g = 0 for i # k, thus the terms of Eq. 3.3 where j # k will equal to

zero. Therefore, the only term that is needed to be calculated is the Zﬂ. Because k is the

2

selected action, from Eq. 3.1 it holds that, if k = i

op_ —7 o0 C*/p) Sesexn (T/y) +pexp C/pesp (CH/p)

)7 (3.5)
0Sk 2;7:1 exp (S]/T)
—Sk —Sk i
L1 exp (_/T) [exp(_/T) (3.6)
dsy T Zﬁzlexp(SJ’/T) Z§=1exp(Sj/T)
0 1
= a—z: = —?Pk(l — Pi) 37)

On the other hand, if i # k then from Eq. 3.1 we have that

26

ope _rex» C*Ypexp (¥ /p)

ds; L =Sjs \? (38)
j=1 EXP(/T)
apk 1
== = FPiPk (3.9)
l
Thus, combining the Eg. 3.7 and Eq. 3.9 we have that

1 : ,

op, | "pPid—p) k=i
95, = 1 (3.10)

' 7 PiPx if k+1i

Because of the Eg. 3.3, Eqg. 3.4 and Eqg. 3.10, the update equation of system parameters takes

the following form

1
—a(r—b)=(1—-p) .._
As; = T ifi =k (3.11)
1 ifi #k
a(r — bi)fpi

where « is the learning rate and b; the reinforcement baseline.

Consequently, Eq. 3.10 presents the update equation of REINFORCE algorithms for training
an MS unit. Also, we showed in Chapter 1 that the average update in parameter space S lies in
a direction for which the expected value of the reinforcement signal r is increasing.
Therefore, using the REINFORCE algorithm to train an MS unit (Eq. 3.11), we achieve

stochastic function optimization of the expected reward signal.

27

3.2 RMS Algorithm

3.2.1 The Reinforcement Clustering Scheme

The related work that was described in Chapter 2, forms the basis of the method presented
next. In this subsection we present, how to train the MS unit using the REINFORCE
framework to perform clustering. Our goal is to develop an algorithm, that extends LVQ by
introducing stochasticity. However, instead of using a team of Bernoulli units, like RGCL
does, we aim at using the aforementioned MS unit. Since MS unit is an extension of
Bernoulli, we estimate that the new algorithm will be an extension of RGCL and consequently
it is expected to perform better.

First of all, the clustering problem is described as follows. We suppose that each cluster i (i =
1,..,L) is represented by a parameter vector w; = (w4, ..., w;;,)" corresponding to the cluster

prototype and let W = (wy, ..., w;) be the matrix of all prototype vectors. Thus, the algorithm
belongs to the prototype-based clustering category. Let d(x, w;) the distance metric of a data
point x to the cluster prototype w;. The objective function that we want to minimize is the

well -known clustering error J,

Jw) = Z min,d (x,, w,). (3.12)

We would like to perform clustering through REINFORCE framework and the proposed
reinforcement clustering scheme based on MS unit is described in the following. The basic
idea is that the actions selected by the MS unit, correspond to the clusters. Through the
REINFORCE framework we train the MS unit to select the right clusters in order to cluster

data in a proper way.

Thus, at each step, the MS unit is fed with a data point x. For every cluster prototype w;, the
following steps are executed. First of all, we compute the distances s; = d(x, w;) of x from
each prototype w;. Thus, we have computed the parameters s;. In order to select the cluster to
which an input x will be assigned, the probability vector p = (p4, ..., p;,) is calculated using
Eq. 3.1. According to this calculation, a desirable relation between probabilities and distances

is achieved: the closest a cluster i to the input is, i.e. the smallest s;, the higher the probability
28

p; this cluster to be selected. Therefore, the probabilities provide a measure of proximity
between data and clusters. Next, by selecting using the probability vector p = (p4, ..., p) an
action y is specified, i.e. a cluster is selected for the input example x. In Fig. 3.2 we present a

visualization of the aforementioned MS unit computations.

5, = d(x,wy)
x P1-- Pi —* | ¥

5, = d(x,wy)

Figure 3.2: Visualization of an MS unit computations.

Having described how a cluster is selected through sampling, we want the environment to
evaluate this selection by sending a reinforcement signal r to the system, in order the
desirable clustering strategy to be followed by the learning system. As soon as the
reinforcement signal is received, the system immediately updates its parameters. This update
will be based on the REINFORCE framework.

Based on the REINFORCE update Eq. 3.11, we have that in this case the weight updates will

be given by the equation

(r—b) s (1—p

_a r — . — — p. J—

Aw:: = T COwyifi=k (3.13)
u- _p l aSl' lfl * k .

where « is the learning rate, b; the reinforcement baseline.

Due to the REINFORCE property the above parameter update equation maximizes the
expected value of the reinforcement signal r, because of Eq. 2.10, which indicates that the

parameters update lies in the same direction where reinforcements are increasing.

The basic difference between the reinforcement clustering scheme proposed in [1] with this
one, is that in RGCL algorithm every cluster corresponds to a Bernoulli unit and consequently

we have a team of units equal to the number of clusters. The REINFORCE framework is used
29

to train this team in order to achieve clustering. On the other hand, in RMS algorithm there is
a single MS unit on which the reinforcement framework is applied, which combines the

distances to all cluster prototypes to compute the probability vector.

3.2.2 RMS Algorithm

Having introduced the MS unit and the reinforcement framework, we are ready to present our

new algorithm. We name it Reinforcement Multinomial Stochastic — RMS algorithm.

For an input x we determine a) the winning (the closest) cluster i* to the input pattern x and
b) the selected cluster k for x after sampling of the MS unit. The strategy that we would like
the system to learn is to select the closest cluster, i.e. to hold k =i*. In this case the
environment rewards the system and sends reinforcement signal » = 1. In any other case, the
environment penalizes the system sending a reinforcement signal of » = —1. Therefore, the

proposed reinforcement signal is designed as

(1 ifk =1i"
"= {—1 otherwise. (3.14)
We choose to use the Euclidean distance
p
j=1
and consequently, we have that
aSi
Thus, the update equation Eq. 3.13 becomes
1 o
arT(l -p)(xj—wy) ifi=k
Aw;j = 1 (3.17)

—aeri(xj—Wij) ifi #k

30

where k is the selected unit, « is the learning rate and r is given by Eq. 3.14. Also, we do not
use the baseline and we set it equal to zero, i.e. b;; = 0. The steps of the RMS algorithm are

described below.

According to the specification of the rewarding strategy, high values of reinforcement signal r
are received when the system follows the clustering strategy, i.e. when i* = k, while low
values are obtained when the system fails in this task. Therefore, the maximization of the
expected value of » means that the system follows the clustering strategy. Since the clustering
strategy aims at minimizing the clustering error /, RMS algorithm achieves an indirect way to
minimize J, through the maximization of the immediate reinforcement signal . This intuition

is made more clear in the following.

Algorithm 3.2.1 RMS

Input: Dataset X = (xq, x5, ..., Xy), number of clusters L, initial cluster prototypes wy, ..., w;.
Output: Final clusters Cj, ..., C;, final cluster prototypes wy, ..., w;.

Specify: Learning rate a, number of epochs: num_epochs, parameter T.

For all e = 1,..., num_epochs do
Forx, eX,n=1,..,Ndo
Forw, e W,i=1,2,...,L do
Compute the distance s; using Eqg. 3.15.

1.
2
3
4
5. Compute the probability p; using Eg. 3.1.
6 Decide the selected cluster k.

7 Specify the winning cluster i* with p;» = max (p;).
8 Compute the reinforcements r using Eq. 3.14.

9

Update the parameter vectors w;, (i = 1,2, ..., L) using Eq. 3.17.

As we presented, the reinforcements in RMS algorithm are provided by Eqg. 3.15. Using this

and considering that we select a cluster i with probability p;, from equation

31

N L

ROV =D > ElW,) (3.8)
it holds that
N
ROV) = > pi-Cen) = (1= pre () (3.19)
n=1

where for every x,, the cluster i either is the closest one (i =i*) and we select it with
probability p;-(x,,) taking reinforcement r = 1, or we make wrong and do not select it with

probability 1 — p;-(x,,) taking a reinforcement r = —1. Thus, Eq. 3.19 becomes

N
R(W) =2 pirCy) = N (3.20)
n=1

where N is a constant. Since the probability p;- is inversely proportional to the distance, we
conclude that the RMS performs updates that minimize the objective function J, since it

operates toward maximization of the objective function R.

It worth to notice that RMS is a local clustering procedure that tries to escape from local
minima by introducing stochasticity to learning but it can be trapped in local minima as well.
Also, the execution of RMS needs the specific number of clusters as input. Finally, the RMS
algorithm operates in an online mode meaning that the update of the system parameters is

done as soon as an input x is presented to the system.

3.3 Batch-RMS Algorithm

As mentioned before, the RMS algorithm operates in an online mode and updates the system
parameters as soon as an input x is presented to the system. We have developed an adaptation
of RMS in order to operate in a batch mode as well. We call this algorithm as the batch-RMS

algorithm.

32

When operating in batch mode, we gather update information from all input patterns and then
we use this cumulative information to update the parameters of the system. In this case, we do
not update the parameters as soon as a pattern is presented to the system, but after the

presentation of all patterns. The batch-RMS algorithm is presented in the next subsections.

3.3.1 The Reinforcement Clustering Scheme

Because batch-RMS is derived from online RMS, we use basically the same modelling of the
clustering problem and the same objective function to minimize, i.e. the clustering error.
Thus, suppose that X = (x4, ..., xy) is the matrix that describes the whole dataset, where x,, =
(Xn1, -, Xnp) € RP is a p-dimensional vector. Also, each cluster i (i = 1, ...,L) is described
by a parameter vector w; = (w;y, ..., w;,)" Which corresponds to the prototype vector of
cluster i. Let W = (wy, ..., w;) be the matrix of all prototype vectors. Again, the Euclidean
distance d(x,w) of a data point x from a cluster prototype w is selected as the proximity
measure and the objective function that we want to minimize is the well-known clustering
error J(W) (Eq. 3.12).

Also, we use the same reinforcement clustering scheme as with RMS algorithm, where we use
an MS unit to select a cluster for each input x and we use the same update for the parameters,
the one presented in Eq. 3.17.

Although, we based on online RMS, in batch-RMS there are some differences. First of all,
because the update of system’s parameters is done after all input patterns x,, have been
presented, the MS unit shares the same parameters w; for every pattern x,,. Thus, in the Fig.

3.3 below is presented the computations of MS unit in a single epoch of batch-RMS.

Also, another important difference lies on the design of reinforcement signal. In online mode
the environment evaluates the decision for an input pattern, and sends a reinforcement signal
according to the decision. Because now we operate in batches, the system needs to store
information on the decisions for all input patterns and use it properly when all patterns have

been presented to it. The reinforcement signal is provided after all inputs have been presented

33

to the system. Since we have the cluster assignments for all input patterns it is natural to

consider the clustering error as the basis for the reinforcement signal r,

N
E = ; d(x,, wy) (3.21)

where wy is the parameter vector of the selected cluster k for the pattern x,, and d(x,, wy) is

the Euclidean distance of x,, from wy,.

511 = d{xg,wy)

1 Pi1 - P1i — | n

Sy = dxy,wy)

Sy = dxy,wy)

N P - Pre —* | ¥y

syz = d(xy,wy)

Figure 3.3: Visualization of MS unit computations in batch-RMS.

This function basically is the sum of Euclidean distances of patterns from the corresponding
selected clusters. Obviously, the clustering strategy is accomplished correctly if the clustering
error is minimized. Since the REINFORCE updates lead to maximization of expected reward,

the reinforcement signal sent from the environment should be inversely proportional to

r= (3.22)

c
E

34

where ¢ is a constant. In this way, it is obvious that E and r are inversely proportional

amounts.

Having defined the reinforcement signal the update of system parameters will be based on Eq.
3.17. Since, this update equation derived from REINFORCE algorithms, it updates the cluster
prototypes towards maximizing the reward r, therefore the clustering error will be minimized
and consequently the clustering operation is implemented. In the following we present the
details of batch-RMS algorithm.

3.3.2 The Batch-RMS Algorithm

In our REINFORCE algorithms considered so far, we choose the reinforcement baseline equal
to zero. As far as this algorithm is concerned, the exploitation of the baseline is very
important for the algorithm. More specifically, we compute the baseline as weighted average
of past reinforcement signals:

r)=yrt—1D+QA—-py)r(t—-1) (3.23)

where 0 <y < 1 is a constant that actually measures how much importance we put on past

values of r.

For an input x,, we choose to update only the prototype of winning cluster i*, while leaving
the other cluster prototypes unchanged. Thus, the update equation Eq. 3.17 taking into

account the reinforcement baseline becomes

1
a(r — f)?(l —pi)(xpj —wy;) ifi*=iandi" =k

Aw;;™ = 1 L (3.24)
—a(r — r)?pl-(xnj - wij) ifi*=iandi* # k

0 ifi #i”
Consequently, the algorithm consists of the following steps. First, for every pattern x,,, the

winning cluster (i.e. that with the maximum probability) as well as the selected cluster are

computed. Then the clustering error and the reinforcement signal are computed (Eg. 3.22).

Next, for every pattern x,, we compute the updates of the cluster prototypes 4w; j(”) from Eq.

35

3.24. Finally, we compute the total update Aw; for each cluster prototype w; as the average of

the weight updates Aw;; ™

Nj
1
Aw; = —2 Aw,® (3.25)
Ni n=1

where N; is the number of x,, have been assigned to cluster i.

Algorithm 3.3.1 batch-RMS

Input: Dataset X = (xy, x5, ..., Xy), number of clusters L, initial cluster prototypes wy, ..., w;.
Output: Final clusters Cy, ..., C;, final cluster prototypes wy, ..., w;.

Specify: Learning rate a, number of epochs: num_epochs, parameter T, parameter y.

Forall e = 1,..., num_epochs do
Forx, e X,n=1,..,Ndo
Forw, e W,i=1,2,...,L do

1.

2

3

4. Compute the distance s; using Eqg. 3.15.

5 Compute the probability p; using Eg. 3.1.

6 Decide the selected cluster and store it.

7 Specify the winning cluster i* with p; = max(p;) and store it.

8 Compute J using Eg. 3.21 the reinforcement r using Eq. 3.22 and the baseline 7 using
Eqg. 3.23.

9. Forx, e X,n=1,..,Ndo

10. Compute and store the updates of weight vectors Awi(jn),i =1,...,L using Eq. 3.24.

11. Update the winning cluster prototypes using Eq. 3.25.

Concluding, batch-RMS is based on the same reinforcement clustering approach like RMS
does. The main difference is that it operates in batches, while the RMS operates online.
Because of this, it is necessary to use a different approach to specify the reinforcement signal

that exploits the property that first all patterns are presented to the system and then the update

36

of parameters is implemented. To this way the reinforcement signal r is directly related to
clustering error E (Eq. 3.22). The batch-RMS performs local stochastic optimization of the

clustering error. Finally, we assume that the number of the clusters is known and provided as
input to the algorithm.

In Chapter 4 that follows, we present comparative experimental results of four algorithms,
LVQ, RGCL, RMS and batch-RMS.

37

CHAPTER 4

EXPERIMENTAL STUDY

4.1 Evaluation
4.2 Experimental Results

4.3 Discussion

In this chapter we present experiments using the two proposed algorithms, which are
compared with LVQ and RGCL. We test them in real and artificial datasets. The code has

been implemented in Python 3.5.

4.1 Evaluation

The performance of our algorithms is measured on synthetic data, as well as on real ones. The
real datasets concern objects images (Coil-20 dataset) and collections of handwritten digits
(Pendigits dataset).

As we mentioned in previous chapter, we evaluate the clustering solution through clustering
error. The clustering error is defined as the sum of distances of every input from its closest

cluster representative

N
J = Z rninrd(xn, Wr) (41)
n=1

38

where X = (xq,x,,...,xy) IS the dataset and W = (w;,w,,..,w;) are the cluster
representatives of the L clusters. Thus, the lower the clustering error is, the better the

performance of the algorithm.

Also, we use Normalized Mutual Information (NMI) criterion to evaluate our clustering
performance. NMI derives from entropy in information theory. Let H(X) =
—2xp(x) logp(x) be the entropy of a discrete random variable X. The mutual information
of two random discrete variables that measures the mutual dependence between them, can be
defined as I(X,Y) = H(X) — H(X|Y), where H(X|Y) = =X, ¥, p(x,y)log p(x|y) is the
conditional entropy between X,Y. According to this, the normalized mutual information
(NMI) is defined as follows

21(X,Y)

Nowadays NMI has become the most widely used criterion for evaluation of clustering
methods solutions, if the ground truth labels are known. In our case, because the ground truth
labels are given for all datasets, we use the criterion to compare them with the predicted ones
provided by each algorithm. NMI score ranges between 0.0 and 1.0, with 1.0 indicating
perfect cluster labeling. Obviously, higher NMI values indicate a better match between
ground truth cluster labels and the predicted ones. It worth noticing that ground truth labels

are used only to compute NMI score and we make no use of them during the clustering phase.

We evaluate the performance of clustering algorithms as follows. For each dataset, we
conducted 20 experiments for every of the four algorithms: LVQ, RGCL, RMS and batch-
RMS. Consequently, we have 20 different initial states selected randomly. In every
experiment all the algorithms are executed from the same random initial state. Also, each
algorithm, is executed for 200 epochs. One epoch is completed when all data points have been
presented to the system. During the execution of each algorithm we keep track the best
solution so far. As best solution we define the clustering solution at a specific epoch where the
algorithm achieves the lowest clustering error. Having stored this solution after training, we
apply the k-Means algorithm once in order to achieve convergence and store the values of

clustering error and NMI for evaluation and comparison.

More specifically, for a fair comparison, we calculate for each algorithm the averages of

clustering error and NMI. However, average is not always a good measure since it is affected
39

from extreme values in the sample. Thus, in order to detect if there is difference between
average values indeed, we perform a t-test between the clustering errors obtained from the 20

different experiments.

Basically, a t-test tells how significant the differences between groups are, in this case
between clustering errors. In other words, it let us know if these differences happened by
chance. Difference is measured by a t-score. The t-score is a ratio between the difference
between two groups and the difference within the groups. Thus, the larger the t-score, the
more difference there is between groups, or the smaller the t-score, the more similarity there is
between them. Moreover, every t-value has a p-value to go with. A p-value is the probability
that indicates if the results from our sample occurred by chance. P-values are from 0% to
100% and are usually written as a decimal. Low p-values are good because they indicate that

data did not occur by chance.

There are different types of t-tests. In our evaluation we use the independent sample t-test that
compares the averages of two groups. The null hypothesis is that the two independent samples
have identical average values. So, we reject the null hypothesis of equal averages if the p-
value is smaller than a threshold, e.g. 1%, 5%, or 10%. In any other case we cannot reject it.
We perform the t-test on the clustering errors of the following pairs of algorithms. RMS vs
RGCL, RMS vs LVQ, RMS vs batch-RMS, LVQ vs batch-RMS, RGCL vs batch-RMS. We
implement the t-test in Python with the help of Scipy package.

Finally, besides averages and t-test, we also measure for every dataset the percentage of the
20 experiments for which the performance of every algorithm was superior. For example, we
detect which one algorithm achieves the lowest clustering error in the first experiment, which

one in the second, etc. Experimental results are presented in the next subsection.

40

4.2 Experimental Results

4.2.1 Synthetic Data

We created three different synthetic datasets using a procedure that generates a mixture of
various cluster structures, and specifically structures such as gaussian, student-t, uniform
rectangle and uniform oval. The function accepts as input the desirable size of dataset, the
number of clusters and the dimension of the samples of the dataset. The default type of
clusters structure is a random combination of the structures mentioned above, but there is an

option to choose any structure that we prefer.

The first artificial dataset (Syntheticl) is a 2-dimensional dataset of 500 examples. The
structure of the clusters is a mixture of 4 gaussian, 1 student-t, 3 uniform rectangle and 2
uniform oval distributions. Thus, we have 10 clusters. Because every sample is a 2-
dimensional vector, we present a visualization of the dataset in Fig. 4.1 (a). The second
dataset (Synthetic2) is also a 2-dimensional dataset of 1500 examples and 20 clusters; 5
gaussian, 4 student-t, 4 uniform rectangle and 7 uniform oval cluster structures. We also
provide a visualization of it in Fig. 4.2 (a). Finally, the last dataset (Synthetic3) is a 10-
dimensional dataset of 500 examples that has 20 clusters; 3 gaussian, 5 student-t, 7 uniform

rectangle and 5 uniform ovals.

As we mentioned previously, in RMS algorithm the update equation (Eg. 3.18), has a
parameter a, the learning rate. We choose for all the three synthetic datasets the learning rate
of all algorithms to be a = 0.01 until epoch 150 and then it becomes a = 0.001. We follow
this because we want the algorithm to initially “explore” with a larger value of learning rate
and then we restrict it at a lower one in order to converge. Moreover, for the batch-RMS
algorithm, as we presented in chapter 3, we use the baseline of Eq.3.24 to the update equation
Eq. 3.25. We choose the parameter y to be equal to 0.999 for all experiments. Finally, as far

as the T parameter is concerned, in all experiments we choose it equal to 1.

A summarization of the main characteristics of the tested datasets is presented in Table 4.1
containing the synthetic and real datasets as well. Tables 4.2 - 4.7 present the results for
Syntheticl, Synthetic2 and Synthetic3 datasets.

41

In general, we notice that the RMS algorithm usually demonstrates the best performance
compared to the other clustering algorithms.

Table 4.1: A summarization of the tested datasets.

Dataset Instances Features Clusters
Syntheticl 500 2 10
Synthetic2 1500 2 20
Synthetic3 500 10 20
Pendigits 3715 16 5

Coill 216 1000 3

Coil3 360 1000 5

Table 4.2: Average clustering error (J), average NMI and percentage of algorithm superiority
for 20 experiments with Syntheticl dataset.

Dataset: Syntheticl RMS batch-RMS RGCL LVQ
Average J 19.266 47.862 39.351 37.028
Average NMI 0.9522 0.9015 0.9024 0.9037
Percentage 86.25% 6.25% 6.25% 1.25%

More specifically, for Syntheticl, from the Table 4.2 and Table 4.3, it can be observed that
RMS has the minimum average clustering error and the maximum average NMI, with the
difference in clustering error being statistically significant for p-value threshold 0.1. Also,

RMS gives the lowest clustering error at the majority of the experiments (86.25%).

42

Table 4.3: t-scores and p-values for Syntheticl dataset.

Dataset: Syntheticl

(t-score, p-value)

RMS vs RGCL
RMS vs LVQ
RMS vs batch-RMS
LVQ vs batch-RMS

RCGL vs hatch-RMS

(-2.0133, 0.0512)
(-1.9895, 0.0538)
(-2.9469, 0.0054)
(-0.9581, 0.3440)

(-0.7003, 0.4879)

Table 4.4: Average clustering error (J), average NMI and percentage of algorithm superiority

for 20 experiments with Synthetic2 dataset.

Dataset: Synthetic2

Average NMI

RMS batch -RMS RGCL

28.536 68.346 69.019
0.9559 0.9190 0.9217
100% -

Table 4.5: t-scores and p-values for Synthetic2 dataset.

Dataset: Synthetic2

(t-score, p-value)

RMS vs RGCL
RMS vs LVQ
RMS vs batch-RMS
LVQ vs batch-RMS

RCGL vs batch-RMS

(-5.9459, 6.753e-07)

(-5.6542, 1.6972¢-06)

(-5.1319, 8.7865¢-06)
(-0.1960, 0.8456)

(0.0685, 0.9457)

Table 4.6: Average clustering error (J), average NMI and percentage of algorithm superiority
for 20 experiments with Synthetic3 dataset.

Dataset: Synthetic3 RMS batch-RMS RGCL LVQ
Average J 765.375 826.361 963.917 997.313
Average NMI 0.9121 0.9041 0.8967 0.8980

Percentage 60% 25% 12.5% 2.5%

Again, for Synthetic2 dataset RMS algorithm has the best clustering performance, achieving
the lowest clustering error at the 100% of the experiments and the minimum average of

clustering error as well, with the superiority being statistically significant.

Table 4.7: t-scores and p-values for Synthetic3 dataset.

Dataset: Synthetic3 (t-score, p-value)
RMS vs RGCL (-2.8797, 0.0065)
RMS vs LVQ (-3.7858, 0.00053)
RMS vs batch-RMS (-0.9059, 0.3706)
LVQ vs batch-RMS (2.7740, 0.0085)
RCGL vs batch-RMS (1.9859, 0.0542)

As we understand from the experimental results of the three synthetic datasets, RMS has the
best performance. For Syntheticl and Synthetic2 batch-RMS, LVQ and RGCL seem to have
no difference on the averages of the clustering error according to the t-test since the p-value is
higher than the threshold of 0.1, although batch-RMS achieves the second best percentage of
superiority of the experiments. On the other hand, at Synthetic3, it is clear that batch-RMS
has the second best performance after RMS, since Table 4.7 indicates clearly the difference
between the averages of LVQ, RGCL versus batch-RMS. Because Syntheticl and Synthetic2
are datasets with 2-dimensional data points, in Fig. 4.1 and Fig. 4.2 we demonstrate the

clustering solution given by each algorithm.

44

15 N o data 15 . e data
. . ﬁ‘ e centers
10 10
05 @ 05 &
00 ot 00 ot
- [&)
-05 —0.5
-~ 5 - ©
-104{ @ -104 @
15 15
- - sl
[] []
-2.0 #. —2.0 (]
[] []
15 -1o0 -05 oo 05 10 15 20 15 -1o0 -05 00 05 1o 15 20
(@) (b)
15 ‘ . e data 15 ' . e data
centers
10] *‘ * 10 0 *‘ ® centers
05 o 05 [}
0o 0.0 -t
[-
o - o o - O
-10 '] -1.0]
-15 15
e . @
[]
-2.0 #o 20 * #0
[] []
15 -1o -05 00 05 10 15 20 15 -le -05 00 o5 10 15 20
(c) (d)
15 ‘ . e data 15 ‘ ° e dafa
enters
10 . N . 10 . % ® centers
05 o 05 o]
0.0 ¢ : 0.0 4 'o
o] »
o o © o P ©
-10{ B -101 @
-15 15
. @ e @
.
2.0 #. =20 * #‘
L] []
15 -1o -05 0o 05 10 15 20 15 -10 -05 oo 05 10 15 20
(e) V)

Figure 4.1: (a) Visualization of Syntheticl dataset (b) Syntheticl dataset and initial canters (c)
Syntheticl dataset and centers after running LVVQ (d) Syntheticl dataset and centers after
running RGCL (e) Syntheticl dataset and centers after running RMS (f) Syntheticl dataset and
centers after running batch-RMS.

45

2 L o e data 2 L . © G
.*’ . ?’ .. L] . ,.
' il s® # d ' eo® & >
. . > o - *» o
e, .. oo B A
-1 9 . -1 Y L
LY 0 L1 ¢
2 4 0 1 : 2 =2 1 D 1 : 2
@) (b)
2 O @ data 2 O o e data
[] []
: pEn om0} : S .?
o - L L o - .. L
e T . UL N
-1 LY 2 4 -1 e 2 5
) s . -2 y .
2 R 0 1 - 2 2 1 0 1 2
(c) (d)
2 O o e data 3 O . e data
. . ® . @ L]
. o en o3 . o ce o
0 = e o o LI
- ., ¢ "‘ * .?'.\ ¢ "- .
-1 [& 4 -1 e [.
-2 . . -7 s .
Y a 0 1 2 2 a 0 1 : 2
(e))

Figure 4.2: (a) Visualization of Synthetic2 dataset (b) Synthetic2 dataset and initial canters (c)
Synthetic2 dataset and centers after running LVVQ (d) Synthetic2 dataset and centers after
running RGCL (e) Synthetic2 dataset and centers after running RMS (f) Synthetic2 dataset and
centers after running batch-RMS.

46

More specifically, for the Syntheticl and Synthetic2 datasets, Fig. 4.1 (a) and Fig. 4.2 (a)
presents a plot of data and Fig. 4.1. (b) and Fig. 4.2 (b) present along with the data, the
randomly initialized centers, respectively. The remaining subfigures present the final solution
of the four algorithms; LVQ, RGCL, RMS and batch-RMS respectively. It can be noticed that
RMS provides the best clustering solutions.

Since all tested algorithms aim at minimizing the clustering error, in the next figures we
present some indicative diagrams of the evolution of clustering error with respect to the

number of epochs.

From the plot of the clustering error, it is obvious that the RMS and batch-RMS algorithms
exhibit higher stochasticity while RGCL explores in a stricter way and LVQ in a completely

deterministic way. LVQ converges very fast to the final solution between epoch 3 and 5.

120 —— Clustering Error 200 —— Clustering Error

190
100

180

170

60 160
0 150
140
20
130
o 25 50 75 100 125 150 175 200 b 5 50 75 100 125 150 175 200
(a) (b)
130
— Clustering Error —— Clustering Error
120 %0
110
100 80
90
70
80
T0
B0
60 _‘_-—
50 : : : :
o 5 50 75 100 125 150 175 200 "] 25 50 75 100 125 150 175 200
(c) (d)

Figure 4.3: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVVQ, for Syntheticl dataset.

47

160 4
140 4
120 4

100 4

180
160
140
120

100

Figure 4.4: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Synthetic2 dataset.

1900 4
1800 4
1700 4
1600 4
1500 4
1400 4

1300 4

—— Clustering Error

=

25 100 125 150 175 200
(a)
—— Clustering Error
T T T T T T T
o 25 100 125 150 175 200

(©

—— Clustering Error

=4

W0 125 150 175 200

300 4

280

260

240

220

200 4

= Clustering Error

100 4

T
25

W0 125 150 175 200

(b)

—— Clustering Error

_

00 135 150 175 200

(d)

2200

2150

2100

2050

2000 4

1950

—— Clustering Error

48

160 125]_":IO l]‘!5 260

(b)

2200 —— Clustering Error 1500 —— Clustering Error

2100 1450

1400
2000
1350
1900
1300
1800

1250

1200 k

1700

1600 1150

(©) (d)

Figure 4.5: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Synthetic3 dataset.

From the plots we can see that there are cases where the clustering error of RMS and batch-
RMS takes intermediate values higher than LVVQ error. This happens because the proposed
algorithms seek for a good clustering solution stochastically, thus they may not reach
immediately the lowest values of clustering error. Therefore, we apply k-Means at the end, in
order for the algorithms to converge deterministically. Through this we observe that the
clustering error is lowest eventually than the one found by LVQ. Thus, we conclude that the
stochastic exploration property of the algorithms results in a better clustering solution, if it is

followed by some exploitation.

4.2.2 Real Data

The four algorithms have been compared in real data as well. We choose two different
datasets of real data. The first one is Pendigits dataset which is a digit database of 250
samples of handwritten digits (from 0 to 9) from 44 writers. Each sample has 16 features
meaning that is a 16-dimensional vector and the total number of samples is 10992. From this
dataset, we choose only the five odd digits to test the four algorithms. So, the used dataset is a
subset of the Pendigits dataset containing the digits 1, 3, 5, 7, 9. Thus, we have 5 clusters and

3715 examples. The experimental results are presented in tables Table 4.8 and Table 4.9.

49

Also, we tested our algorithms in Coil-20 dataset, which is comprised of 72 images taken
from different angles for each of 20 selected objects. For our purposes, we use two subsets of
the dataset, the first one named Coill dataset, includes 3 objects and has 216 examples and
the second one, named Coil3 includes 5 objects and has 360 examples. Each sample has 1000
features. A summarization of the three datasets has been presented in Table 4.1. Moreover, for
the three real datasets we choose the learning rate to be equal to a = 0.001. The parameter y
of the baseline at batch-RMS algorithm is 0.999 and T is set equal to 1. Finally, for the t-test
we consider the p-value 0.1 to be the threshold and all datasets are normalized. Tables 4.8-

4.13 demonstrate the experimental results.

The results in Table 4.8 and Table 4.9 concerning the Pendigits (1,3,5,7,9) dataset,
demonstrate that all algorithms besides LVVQ achieve similar clustering performance in terms
of NMI. However, RMS achieves the lowest clustering error in the highest percentage of

experiments.

Table 4.8: Average clustering error (J), average NMI and percentage of algorithm superiority
for 20 experiments with Pendigits (1,3,5,7,9) dataset.

Dataset: Pendigits RMS batch-RMS RGCL LVQ
(1,3,5,7,9)
Average J 14635.541 14991.789 14646.963 17014.876
Average NMI 0.5485 0.5297 0.5507 0.5187
Percentage 37.5% 15% 32.5% 15%

As far as Coill and Coil3 datasets are concerned, from the results we conclude that batch-
RMS has the best performance, while the others seem to provide similar results. Also, batch-
RMS achieves the lowest clustering error in the highest percentage of experiments. The
second best percentage corresponds to RMS, although its average clustering error is not
different from RGCL and LVQ.

50

Table 4.9: t-scores and p-values for Pendigits (1,3,5,7,9) dataset.

Dataset: Pendigits (t-score, p-value)
(1,3,5,7,9)
RMS vs RGCL (-0.0219, 0.9826)
RMS vs LVQ (-4.7481, 2.906e-05)
RMS vs batch-RMS (-0.7060, 0.48446)
LVQ vs batch-RMS (4.3456, 9.997e-05)
RCGL vs batch-RMS (-0.7089, 0.4826)

Table 4.10: Average clustering error (J), average NMI and percentage of algorithm superiority
for 20 experiments with Coill dataset.

Dataset: Coill RMS batch-RMS RGCL LVQ
Average J 130.991 121.993 129.544 130.056

Average NMI 0.7892 0.9343 0.8081 0.8141
Percentage 17.08% 52.08% 15.415% 15.415%

Table 4.11: t-scores and p-values for Coill dataset

Dataset: Coill (t-score, p-value)
RMS vs RGCL (0.2831, 0.7785)
RMS vs LVQ (0.1798, 0.8581)
RMS vs batch-RMS (2.0063, 0.0519)
LVQ vs batch-RMS (1.9756, 0.0554)
RCGL vs batch-RMS (1.9029, 0.0646)

o1

Table 4.12: Average clustering error (J), average NMI and percentage of algorithm superiority
for 20 experiments with Coil3 dataset.

Dataset: Coil3 RMS batch-RMS RGCL LVQ
Average J 264.226 251.591 262.563 264.021

Average NMI 0.6974 0.8529 0.7091 0.6945
Percentage 15% 85% - -

Table 4.13: t-scores and p-values for Coil3 dataset

Dataset: Coil3 (t-score, p-value)
RMS vs RGCL (0.4852, 0.6302)
RMS vs LVQ (0.0571, 0.9547)
RMS vs batch-RMS (3.9142, 0.00036)
LVQ vs batch-RMS (4.2627, 0.00012)
RCGL vs batch-RMS (4.0322, 0.00025)
40000 —— Clustering Error 58000 = Clustering Error
35000 56000
0000 54000
52000
25000
50000
20000
45000
o 5 50 75 100 125 150 175 200 6 25 50 73 100 125 150 175 200
(a) (b)

52

—— Clustering Error S i
q 26000 Clustering Error
56760
56750 24000
55740 22000
56730 20000
55720 18000
0 5 50 75 0o 135 180 175 200 0 5 50 k) w0 125 150 175 200
(©) (d)

Figure 4.6: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Pendigits (1,3,5,7,9)

dataset.
—— Clustering Error = Clustering Error
300 332
280
330
260
240 28
220
200 326
180
324
160
D 25 s0 75 100 125 150 175 200 D 25 s 75 100 125 150 175 200
(a) (b)
R 300
= Clustering Error —_— i
300 g Clustering Error
275
275
250
250
225
225
200 200
175 175
150 150
125 T T T T T T T T T 125 T T T T T T T T T
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
(c) (d)

Figure 4.7: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVVQ, for Coill dataset.

53

505.0
—— (Clustering Error = Clustering Error
502.5
450
500.0
400 4975
495.0
350
4925
300 430.0
457.5
250 T
o 5 50 75 100 125 150 175 200 o 25] 75 100 125 150 175 200
(a) (b)
—— Clustering Error —— Clustering Error
450
450
425
400 400
375
350 350
325
300 300
275
250 T T T T T T T T T T T T T T T T T T
o 25 50 7= 100 125 150 175 200 o 5 50 75 100 125 150 175 200
(©) (d)

Figure 4.8: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c)
Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Coil3 dataset.

In Fig. 4.6-4.8 we provide some indicative plots of the evolution of clustering error for the
four algorithms exactly as we did with the synthetic datasets. The plots demonstrate that the
clustering error is minimized as iterations proceed. As we mentioned before, the learning rate
in real datasets is equal to 0.001. For this reason, RMS and RGCL algorithm seem not to
“explore” very much. We select a smaller learning rate because higher values lead to worse

results.

54

4.3 Discussion

Having presented the experimental results, we end up with some interesting conclusions. First
of all, the two proposed algorithms, RMS and batch-RMS, lead to better results and better
minimization of the clustering error than RGCL and LVQ do. It worth noticing that the four
algorithms minimize the same criterion, the clustering error (Eq. 4.1). Therefore, we can
claim that by inserting stochasticity in a clustering algorithm based on competitive learning
and adjusting it properly with a reinforcement learning scheme leads to more efficient

solutions.

Moreover, another interesting result is that RMS and batch-RMS do not depend on the
initialization of cluster representatives as much as LVQ does which always ends up in the
same clustering solution. This happens because of the stochasticity included in the clustering
scheme and implemented by MS units. Consequently, RMS and batch-RMS achieve a
disparity in the clustering solutions even from the same initial parameters. As far as the
comparison with RGCL is concerned, we notice that a single MS unit performs better than a
team of Bernoulli units. Maybe this holds due to the fact that it is more efficient to train a

single unit with multiple outcomes than a team of units with binary outcomes.

The RMS algorithm and the RGCL are used without the baseline. We choose not to use it
because preliminary results indicated that baseline in RMS does not provide noticeable
difference. However, in batch-RMS the baseline is necessary, because the update of the
parameters is not performed after each sample has been presented to the system but after all
samples have been used. Thus, we need information about the reinforcement values at
previous steps in order to judge where the currently selected actions correspond to improved
clustering error or not. Based on a lot of experiments, we have decided the parameter y of the
baseline, that actually defines how much important the past is, to be equal to 0.999 in all

cases, thus we assign high importance to past values.

Also, the learning rate parameter in the update equations of RMS, RGCL and batch-RMS has
been selected empirically after several experiments. In order to achieve a fair comparison, all
algorithms are executed with the same learning rate. However, we have empirically found that
every algorithm needs its own learning rate to provide best performance. For example, batch-
RMS needs a lower learning rate than RMS or RGCL, while RGCL needs the highest values.

55

Also, we have noticed that in the synthetic datasets we get similar results even with higher
learning rate values. On the other hand, in real datasets it is more efficient if the learning rate

takes smaller values.

RMS and batch-RMS depend on initialization. However, from the experimental results and
especially at synthetic datasets where the cluster structure is known and the number of
clusters is large, we notice that RMS can detect the real clusters very efficiently. Thus, we
could say that RMS is effective in datasets with a big number of clusters.

Furthermore, in the batch-RMS as we mentioned in Chapter 3, we design the reinforcement
signal as
. C
"TE (4.3)

where c is a constant and E is the clustering error. In all experiments, we choose constant ¢ to
be equal to the value of the clustering error at the first epoch of each run. This has been
chosen empirically based on the observation. Maybe there are other functions that lead to

better or an alternative value of constant ¢ could have been selected.

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

5.2 Future Work

5.1 Conclusion

In this thesis, we proposed two algorithms, the online RMS and batch-RMS, that cluster the
data through a stochastic procedure, with the help of a reinforcement signal sent from the
environment. The reinforcement signal indicates to the system if it operates well or not and
the system learns to implement clustering strategy by maximizing this reinforcement signal.
We use the family of REINFORCE algorithms to update system parameters. It was proved
that the update of the parameters leads to the stochastic minimization of the well-known

clustering error of k-Means.

We tested our algorithms in real and synthetic datasets and compared the algorithms with
LVQ for clustering and RGCL. We evaluated the four algorithms based on the clustering error
and NMI. The results demonstrate that RMS and batch-RMS outperform RGCL and LVQ
giving better clustering solutions in the majority of tested datasets, i.e. solutions with
minimum clustering error and maximum NMI. Also, we noticed that our algorithms, because
of their stochasticity, overcome more efficiently the limitation of a bad initialization of the
cluster representatives by exploring better the solution space and providing superior results.
Furthermore, RMS proved to give promising results in datasets with a large number of

clusters.

57

5.2 Future Work

Finally, we present some thoughts about potential future work and some preliminary studies
on deep clustering: deep learning and clustering simultaneously.

5.2.1 Deep Clustering

Many reasons can affect the performance of a clustering algorithm. For example, one such
reason can be the need of data preprocessing such as dimensionality reduction. With the term
of dimensionality reduction, we mean that our data are projected from an initial space to
another space with a lower dimension. This is very popular task nowadays since data usually
suffer from the curse of dimensionality. Thus, in the case of clustering, instead of applying a

clustering algorithm in the initial space, we may apply it in the projected one.

Because of the success of deep neural networks (DNNSs) in supervised and unsupervised
learning, unsupervised deep learning approaches are widely used for dimensionality reduction
prior to clustering. One such approach is the autoencoder, an unsupervised deep learning
technique that uses DNNs in order to perform dimensionality reduction. More specifically, an
autoencoder is a neural network that learns to copy its input to its output. It has an
intermediate hidden layer, the code, and its constituted by two parts; an encoder that maps the
input to the code and a decoder that maps the code to a reconstruction of the original input. A

visualization of the autoencoder is presented in Fig. 5.1.

Thus, the objective function which an autoencoder tries to optimize, is the reconstruction error

described by the equation

N (5.1)
_ 2
Erec = Z min ”xi - xirec”
i=1

58

where X = (x4, ..., xy) is a set of unlabeled data and x; __is the reconstruction of x;.

imput output

code

decoder
encoder

Figure 5.1: Autoencoder.

In several learning approaches, first the dimensionality of data is reduced and then any
clustering algorithm is applied. In [7] a method has been proposed where dimensionality
reduction (with deep learning techniques) and clustering are performed simultaneously.
Inspired from this, we thought to use an autoencoder in order to reduce the dimensionality of
data and in the corresponding latent space to cluster our data by applying the RMS algorithm
simultaneously with the autoencoder training. This is made more clear in Fig 5.2. More
specifically, the input x; will be projected through the encoder to z;, the z; which correspond
to the cluster prototypes will be updated by RMS update equation in order the clustering

strategy to be implemented and then will be projected back to x; _through the decoder.

Consequently, the objective function to train the system is the sum of what the RMS
minimizes and what the autoencoder minimizes, i.e. the objective function will be the sum of

clustering error J (in the latent space) and reconstruction error E,,.,

E :] + Erec (52)

59

Reconstruction
D

l Latent Space

RMS

Figure 5.2: Deep clustering framework.

In this way, the deep clustering network will update their parameters in order to achieve both
clustering and x;’s reconstruction. According to this deep clustering framework, we cluster
our data in a latent space and not in the original one. This method may lead to more clustering
friendly latent spaces.[7]

Although this deep clustering network seems promising, our preliminary experimental results
have shown that the deep clustering strategy does not lead to more improved results than
those obtained by treating the dimensionality reduction with an autoencoder first and then
apply RMS clustering in the latent space, separately. Thus, we are still not certain that a
method that proposes RMS clustering and dimensionality reduction simultaneously is more

efficient. For this reason, additional experimentation is needed to draw reliable conclusions.

5.2.2 Other Future Work

As far as the RMS and batch-RMS is concerned, some directions of future work are the
following. First of all, alternative reward functions might be designed that lead to better
performance. Furthermore, besides Bernoulli or MS units, maybe other types of stochastic

units could be defined based on different probability distributions.

60

Another interesting potential work is to introduce the stochasticity not necessarily in the
selection of a cluster prototype, but somewhere else, like in the distance computation for
example. As we mentioned, the distance used here is the Euclidean and is calculated
deterministically. It is possible that this distance can be modified by adding some noise
resulting from some known probability distribution. Moreover, besides Euclidean distance,
other distance metrics can also be used.

RMS and batch-RMS optimize locally the clustering criterion, exactly like LVQ and RGCL
do. Since the optimization is local, all the algorithms can be trapped in local minimum. A way
to overcome this limitation is to use sustained exploration suggested in [1]. Another possible
future work could be to find a better way to handle exploration versus exploitation. For
example, through the execution of the algorithm, some steps could be deterministic and some
other stochastic. Consequently, we will not apply the k-Means only at the end, but also

somewhere in the intermediate steps of the algorithms.

Finally, as we presented the batch-RMS algorithm updates only the winning cluster prototype
based on the REINFORCE framework, making the algorithm stricter to the parameter
updates. As future work we want to let the batch-RMS algorithm to “explore” more the
solution space. Thus, instead of leaving the cluster prototypes that are different form the
winning one unchanged, they maybe will be updated from the second term of the update

equation (Eq. 3.24) as well.

61

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. Likas, “A Reinforcement Learning Approach to Online
Clustering”, Neural Computation 11, pp. 1915-1932, 1999.

A. Likas, “Multivalued Parallel Recombinative Reinforcement
Learning”, HERCMA 98, 1998.

R. J. Williams, “Simple Statistical Gradient — Following Algorithms
for Connectionist Reinforcement Learning”, Machine Learning 8, pp.
229-256, 1992.

T. Kohonen, Self-organization and associative memory (3rd ed.).
Berlin: Springer-Verlag, 1989.

P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
AddisonWesley, Boston, MA, USA, 2005.

R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.

B. Yang, X. Fu, N. D. Sidiropoulos, M. Hong, “Towards K-means-
friendly Spaces: Simultaneous Deep Learning and Clustering”, ICML,
2017.

62

SHORT CV

Eleni Pachi was born in loannina, Greece in 1992. In 2010, she enrolled in the department of
Mathematics of Aristotle University of Thessaloniki and received the BSc degree in 2014. In
2014, she enrolled as a MSc student in the same department and received the MSc degree
“Theoretical Computing and Theory of Systems and Control” in 2016. In continuation of her
studies, she enrolled as a MSc student in the department of Computer Science & Engineering
of University of loannina. After fulfilling her responsibilities as a graduate student, she
presented her thesis in October 2019 in order to complete the Master’s Degree. Her main

interests are in the area of data analysis and machine learning.

