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ABSTRACT 

Eleni Pachi 

MSc, Computer Science and Engineering, University of Ioannina, Greece 

October 2019 

Title: Clustering Methods Based on Reinforcement Learning 

Supervisor: Aristidis Likas 

 

 

Clustering is one of the most popular problems in machine learning and data mining. It 

belongs to the category of unsupervised learning problems since no label information is 

provided to assist in partitioning the data points into coherent groups. Although clustering is 

an unsupervised problem, it is possible to view clustering from a reinforcement learning 

perspective. In reinforcement learning, an agent learns an action policy that solves a 

sequential decision problem using reinforcement signals provided by the environment.  

 

In reinforcement-based clustering, the clustering system learns through reinforcements to 

follow the desired clustering policy.  The previous method of this type (RGCL algorithm) 

trains a team of binary stochastic units to perform on-line clustering. Each unit corresponds to 

a cluster and the weights of each stochastic unit correspond to a representative point 

(centroid) of the respective cluster. The team of stochastic units is trained to perform 

clustering using the REINFORCE algorithm by exploiting properly defined reinforcement 

signals provided by the environment. 

 

In this thesis we propose two extensions of the RGCL algorithm based on the use of a single 

stochastic multinomial unit instead of a team of binary stochastic units. In the first method the 

unit is trained on-line based on the REINFORCE framework using immediate reinforcement 

signals. In the second method the stochastic multinomial unit is trained in a batch mode based 

on the REINFORCE framework using delayed reinforcement signals.   In both cases the 
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weight update equations are derived so that the weight updates lead to the stochastic 

minimization of the well-known k-means clustering error.    

 

An experimental study has been conducted using synthetic and real datasets to assess the 

performance of the proposed methods. The experimental results indicate that improved 

clustering results are obtained in the majority of cases.  
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Ελένη Παχή 

MSc, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων 

Οκτώβριος 2019 

Τίτλος: Μέθοδοι Ομαδοποίησης βασισμένες σε Ενισχυτική Μάθηση 

Επιβλέπων: Αριστείδης Λύκας 

 

 

Η ομαδοποίηση των δεδομένων είναι ένα από τα πιο δημοφιλή προβλήματα της μηχανικής 

μάθησης καθώς και της εξόρυξης δεδομένων. Ανήκει στην κατηγορία των προβλημάτων 

μάθησης χωρίς επίβλεψη, αφού η μόνη πληροφορία που παρέχεται για τον διαχωρισμό των 

δεδομένων σε ομάδες, είναι τα ίδια τα δεδομένα και όχι ετικέτες αυτών. Παρόλο που η 

ομαδοποίηση είναι πρόβλημα χωρίς επίβλεψη, είναι εφικτό να την προσεγγίσουμε και σαν 

ένα πρόβλημα ενισχυτικής μάθησης. Στην ενισχυτική μάθηση, το σύστημα μαθαίνει μια 

στρατηγική η οποία λύνει ένα πρόβλημα διαδοχικών αποφάσεων χρησιμοποιώντας σήματα 

ενίσχυσης που παρέχονται από το περιβάλλον. 

Στην ομαδοποίηση με ενισχυτική μάθηση, το σύστημα μαθαίνει μέσα από σήματα ενίσχυσης 

να ακολουθήσει την επιθυμητή στρατηγική ομαδοποίησης. Σύμφωνα με την ιδέα αυτή μια 

προηγούμενη μέθοδος (αλγόριθμος RGCL), βασίζεται στην εκπαίδευση ενός συνόλου από 

στοχαστικές δυαδικές μονάδες και υλοποιεί ένα σειριακό αλγόριθμο ομαδοποίησης. Στη 

μέθοδο αυτή κάθε στοχαστική μονάδα αντιστοιχεί σε μια ομάδα και οι παράμετροι της 

στοχαστικής μονάδας αντιστοιχούν στον αντιπρόσωπο της ομάδας. Το σύνολο των 

στοχαστικών μονάδων εκπαιδεύεται με τη βοήθεια των REINFORCE τεχνικών και με  

κατάλληλα ορισμένα σήματα ενίσχυσης που στέλνονται έτσι ώστε να υλοποιείται η 

ομαδοποίηση των δεδομένων.  

Στην εργασία αυτή προτείνουμε δυο νέες μεθόδους που επεκτείνουν τον αλγόριθμο RGCL 

και χρησιμοποιούν μια μόνο στοχαστική πολυωνυμική μονάδα, αντί για ένα σύνολο από 

στοχαστικές δυαδικές μονάδες. Στην πρώτη μέθοδο η στοχαστική μονάδα εκπαιδεύεται 

σειριακά, με την εκπαίδευση να βασίζεται στο REINFORCE αλγόριθμο χρησιμοποιώντας 



 

x 

 

σήματα άμεσης ενίσχυσης. Στη δεύτερη μέθοδο η στοχαστική πολυωνυμική μονάδα 

εκπαιδεύεται σε ομάδες παραδειγμάτων (batches) και βασίζεται πάλι στο REINFORCE 

αλγόριθμο, με τη διαφορά ότι λαμβάνουμε υπόψη και παρελθοντικά σήματα ενίσχυσης. Και 

στις δυο περιπτώσεις παρουσιάζουμε τις εξισώσεις που προκύπτουν για την ενημέρωση των 

παραμέτρων. Η ενημέρωση των παραμέτρων γίνεται με τέτοιο τρόπο ώστε το γνωστό 

σφάλμα ομαδοποίησης του k-Means να ελαχιστοποείται στοχαστικά. 

Διάφορα πειράματα σε τεχνητά και πραγματικά σύνολα δεδομένων διεξήχθηκαν για να 

μελετήσουμε την επίδοση των προτεινόμενων μεθόδων, όπου στις περισσότερες περιπτώσεις 

τα πειραματικά αποτελέσματα έδειξαν ότι οδηγούμαστε σε καλύτερες λύσεις ομαδοποίησης.  
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CHAPTER 1  

INTRODUCTION 

1.1      Introduction 

1.2      Clustering 

1.3      Reinforcement Learning 

1.4      Thesis Roadmap 

 

 

1.1 Ιntroduction 

 

As available information and data increase, users seek ways to discover hidden information. 

Machine learning develops models that learn through examples in order to implement a 

specific task. There are different types of learning. The most common types are supervised, 

unsupervised and reinforcement learning. In supervised learning the model ‘learns’ through 

data and also from correct answers (labels) that are provided. In contrast, in unsupervised 

learning the model uses only unlabeled data to learn and implement a task.  

Additionally, as far as reinforcement learning is concerned, we can claim that this type of 

learning lies somewhere in the middle of supervised and unsupervised learning. Thus, the 

model ‘learns’ from the data and through a reinforcement signal provided from the 

environment. This reinforcement signal provides useful guidance about how the system 

should operate in future. We should not confuse reinforcement learning with supervised, 

because reinforcement signal does not contain correct answers as happens in supervised 

learning, but only an indirect information about the system’s operation. 
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Supervised, unsupervised and reinforcement learning can be used in order to solve several 

types of problems, such as classification or clustering of data. The most common 

unsupervised learning problem is clustering. Suppose the dataset has the form of 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑁), with 𝑥𝑛 ∈ ℝ
𝑝 and does not contain any correct answers, i.e. class labels. The 

goal of clustering is to partition the 𝑋 dataset in 𝐿 groups, called clusters, in a such way that 

data belonging to the same cluster are similar to each other and dissimilar to those in other 

clusters. Because clustering tries to reveal hidden structures of data without ground truth, it 

has many applications in various fields such as pattern recognition, image segmentation, 

medicine, spatial database analysis, finance and other. 

It has been shown that is possible to view clustering as a reinforcement learning problem, 

where the clustering system learns through reinforcements to follow the desired clustering 

policy. In this thesis, we propose two clustering algorithms that learn stochastically to group 

data with the help of a reinforcement signal provided from the environment.  

The first algorithm trains on-line a single multinomial stochastic unit based on the 

REINFORCE framework [3] using immediate reinforcement signals.  In the second algorithm 

the unit is trained in a batch mode based on the REINFORCE framework using delayed 

reinforcement signals. In both cases the weight update equations are derived and is shown that 

the weights lead to the stochastic minimization of the well-known k-means clustering error. 

We have tested the proposed methods in several real and artificial datasets and compared 

them with other existing clustering algorithms. It can be concluded that our algorithms in 

many cases achieve a better clustering solution. This mainly happens because of the included 

stochasticity, which lets the algorithms explore different clustering solutions from the same 

initialization of the parameters.  

In the following subsections we present the basic knowledge which is necessary to introduce 

and understand our work properly. 
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1.2 Clustering 

 

Clustering aims at partitioning data into groups (or clusters) with similar properties. The 

obtained meaningful groups of objects that share common characteristics, reveal the natural 

structure of the data. Because of this, cluster analysis has many applications to practical 

problems in biology, medicine, business, finance, etc. Except for understanding the hidden 

structure of data, clustering can also be used in many cases for data summarization or 

compression, if we take into consideration that each cluster can be represented by one data 

point, the cluster representative. 

The goal of clustering is to partition a dataset 𝑋 = {𝑥𝑛}, 𝑖 = 1,… ,𝑁 in 𝐿 groups, called 

clusters, such that the objects inside a cluster are similar to one another and different from the 

objects in other clusters. So, the greater the similarity within a group and the greater the 

difference between groups are, the better or more distinct the clustering is. Fig. 1.1 presents a 

typical clustering paradigm. 

 

 

Figure 1.1: A clustering paradigm. 

In the definition of clustering, the notion of similarity is important. In order to measure the 

similarity between objects or clusters, every clustering algorithm needs a proximity measure. 

We are going to work with algorithms that use distance as a proximity measure and more 

specifically they use the Euclidean distance. So, for every dataset 𝑋 containing vectors 𝑥𝑛 ∈
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ℝ𝑝 we consider the distance matrix 𝑑 ∈ ℝ𝑁𝑥𝑁 , 𝑑𝑛𝑚 = 𝑑(𝑥𝑛, 𝑥𝑚), where 𝑑𝑛𝑚 is the Euclidean 

distance of 𝑥𝑛 from 𝑥𝑚. 

There are many types of algorithms that implement clustering. The first big category is 

hierarchical clustering algorithms. The main idea of these algorithms is that objects are more 

related to nearby objects than to objects farther away. Thus, in every step we group the closest 

pairs of groups. Because of this, we can describe hierarchical clustering as a set of nested 

clusters that can be organized in a tree. Each node of the tree represents a cluster and is the 

union of its children, that represent the sub clusters. Usually, the leaf nodes are singleton 

clusters of individual data points and the root is the cluster containing all data points. We can 

see an example of a dendrogram in Fig. 1.2 below. 

 

  

Figure 1.2: A visualization of hierarchical clustering. 

A second category is partitional clustering that is simply a division of the set of data points 

into clusters with no hierarchy. The clusters can be non-overlapping, defining hard clustering, 

where each object belongs exclusively to one cluster, and overlapping, defining fuzzy 

clustering which allows objects to belong in different clusters with a degree of membership. 

We can further divide the partitional clustering algorithms, into density-based algorithms, 

which define clusters as sets of objects generated by the same distribution and graph-based 

algorithms, where data are represented as a graph with graph’s nodes being the data points 

and edge links with weights analogous to the similarity among them. Thus, a cluster is defined 
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as a strongly connected component in graph, i.e. a group of objects that are strongly 

connected to one another, but have few connections to objects outside the group. 

Also, the partitional clustering algorithms can be further divided into prototype-based 

clustering algorithms that contain parameters, where the clusters are described by a cluster 

prototype or a representative. This thesis focuses on hard partitional clustering and more 

specifically on prototype-based algorithms. 

 

1.2.1 Prototype-based Clustering 

 

In this type of clustering algorithms, every cluster is described by a data point that is usually 

named prototype or representative of the cluster. Thus, in prototype-based clustering a cluster 

is a set of objects in which each object is more similar to the prototype that describes the 

cluster than to the prototype of any other cluster. For data with continuous attributes, the 

prototype of a cluster is often a centroid, i.e. the average of all points in the cluster.  

Because a prototype of a cluster is usually the most central point of the cluster, prototype-

based algorithms are referred in the literature as center-based algorithms, also. Such clusters 

tend to be globular. It worth noticing that the most common advantage of prototype-based 

methods is that they provide an intuitive summarization of the given dataset using a few 

instances, i.e. the cluster prototypes. 

 

1.2.1.1   k-Means Algorithm 

 

The most popular and oldest prototype-based algorithm is k-Means. Because of its simplicity 

and efficiency, k-Means has been used to perform clustering in a large variety of disciplines. 

k-Means is a prototype-based algorithm, consequently each cluster is represented by a point 

called centroid or center, which is usually the average of the points of the cluster. This point is 

not necessarily a point of the dataset. Also, it is a hard partitional clustering algorithm which 
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tries to split data in 𝐿 disjoint clusters, in a such way that the distance between a data point 

and cluster centroid is minimized. In other words, k-Means tries to minimize the variance 

inside the clusters. In typical k-Means the Euclidean distance is used as a proximity measure. 

After defining the parametric clustering model, like in every parametric clustering algorithm, 

k-Means needs a clustering criterion to optimize, in this case to minimize, with respect to the 

parameters. The most common clustering criterion used by prototype-based clustering 

algorithms, is the clustering error. Clustering error is defined as the sum of squared Euclidean 

distances between each data point 𝑥 and the cluster centroid 𝑤𝑘 of the cluster 𝐶𝑘 that 𝑥 

belongs. More specifically, given a set of observations (𝑥1, 𝑥2, … , 𝑥𝑁) where each observation 

is a 𝑝-dimensional real vector, k-Means tries to partition the 𝑁 observations in 𝐿 clusters 𝐶 =

(𝐶1, 𝐶2, … , 𝐶𝐿) minimizing the objective function 

 𝐽(𝑤1, … , 𝑤𝐿) =∑ ∑ ‖𝑥𝑛 − 𝑤𝑖‖
2

𝑥𝑛∈𝐶𝑖

𝐿

𝑖=1

 (1.1) 

where 𝑤𝑖 is the centroid of cluster 𝐶𝑖.  

k-Means optimizes the above objective function by initializing the 𝐿 centroids, usually chosen 

randomly from the dataset, through an iterative procedure. Firstly, the distances between each 

datapoint and the centroids are computed. The centroid that is closer to the data point is 

specified. Then, the data point is assigned to its closest centroid cluster and consequently all 

clusters update their centers. The update of every cluster centroid is equal to the average of all 

data points that belong to this cluster. This is repeated until convergence, i.e. no data point 

changes cluster, thus the centroids do not change. We present the k-Means algorithm below. 

 

Algorithm 1.2.1 k-Means 

Input: Dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), number of clusters 𝐿, initial centroids 𝑤1, … , 𝑤𝐿 . 

Output: Final clusters 𝐶1, … , 𝐶𝐿, final centroids 𝑤1, … , 𝑤𝐿. 

 

1. For all points 𝑥𝑛 , 𝑛 = 1,… ,𝑁 do 

2.     For all clusters 𝐶𝑖 , 𝑖 = 1,… , 𝐿 do 
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3.          Compute the distance ‖𝑥𝑛 − 𝑤𝑖‖
2 

4.      Find 𝑐∗(𝑥𝑛) = argmini(‖𝑥𝑛 − 𝑤𝑖‖
2) 

5. For all clusters 𝐶𝑖 , 𝑖 = 1,… , 𝐿 do  

6.     Update cluster 𝐶𝑖 = {𝑥𝑛|𝑐
∗(𝑥𝑛) = 𝑖} 

7. For all clusters 𝐶𝑖 , 𝑖 = 1,… , 𝐿 do  

8.     Update centroid 𝑤𝑖 =
∑ 𝑥𝑛𝑥𝑛∈𝐶𝑖

|𝐶𝑖|
 

9. If convergence then 

10.      Then return final clusters 𝐶𝑖, final centroids 𝑤𝑖. 

11. Else 

12.       Go to step 1. 

 

Fig. 1.3 presents a visualization of k-Means steps. As we see, Fig 1.3(a) presents a set of 2-

dimensional data points and Fig 1.3(b) presents the initialization of the centers along with the 

data. Fig 1.3(c) shows which points are closer to each centroid and Fig 1.3(d) shows the 

update of the cluster centroids, i.e. the first iteration of k-means. Fig 1.3(e) and Fig 1.3(f) 

present the second iteration of k-means, where convergence happens. 

 

Figure 1.3: A visualization of k-Means algorithm. 

Of course, besides Euclidean distance other measures can be used, such as cosine distance or 

Mahalanobis distance. Note that changes in the proximity measure result in changes in the 

objective function. Also, there are cases where the centroids are not always the mean of the 

cluster data. 
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The computational complexity of k-Means is 𝑂(𝑀𝑁), which makes it practical for large 

datasets. Moreover, it is an easily implemented algorithm. However, it suffers from some 

limitations. First of all, the solution is highly dependent on the initialization of the centroids. 

This problem is typically treated by executing k-Means several times, and then store the 

solutions and select the one with the minimum clustering error. A related important limitation 

is that k-Means converges to a local minimum of the objective function and therefore it is not 

a global optimization technique. Moreover, it identifies only linearly separable datasets and it 

is difficult for k-Means to identify clusters that do not have spherical shape such as datasets 

with the shape of a ring.  Finally, the dataset must be in the form of vectors and the number of 

clusters is required as input. Despite all the beforementioned limitations, k-Means is widely 

used because of its simplicity and efficiency. 

 

1.2.2 Competitive Learning for Clustering 

 

Competitive learning is a form of unsupervised learning used commonly in artificial neural 

networks, in which neurons compete to each other in order to implement desirable task. 

Competitive learning can also be used for clustering. The basic concept of online competitive 

learning for clustering is that clusters compete each other in order to cluster data properly. We 

can model a clustering problem as a competitive learning problem as follows. [4] 

Suppose we are given a set 𝑋 = (𝑥1, … , 𝑥𝑁) of unlabeled data with 𝑥𝑛 = (𝑥𝑛1, … , 𝑥𝑛𝑝) 
𝑇 ∈

ℝ𝑝 and want to assign each of them to one  𝐿 clusters. Each cluster is described by a 

prototype vector 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑝)
𝑇,  (𝑖 = 1,… , 𝐿) and let 𝑊 = (𝑤1, … , 𝑤𝐿) the matrix of 

all prototype vectors. Also, let the proximity measure be a distance measure 𝑑(𝑥, 𝑤). The 

objective function that choose to minimize in order to find good clusters is the clustering error 

 𝐽(𝑊) = ∑𝑚𝑖𝑛𝑟𝑑(𝑥𝑛, 𝑤𝑟)

𝑁

𝑛=1

. (1.2) 

The clustering strategy in competitive learning techniques can be described as follows. First, 

randomly select an example 𝑥 of dataset 𝑋, then for each cluster 𝑖 = 1,… , 𝐿 compute the 
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distance 𝑑(𝑥 , 𝑤𝑖) and store the winning cluster 𝑖∗ where cluster prototype has the minimum 

distance from 𝑥. Next, update the weights 𝑤𝑖∗ so that the winning cluster prototype moves 

towards 𝑥. This procedure is repeated until a termination criterion is satisfied. It worth 

noticing that the aforementioned clustering strategy operates in an online mode, because the 

system updates its parameters immediately after the presentation of a sample. Also, it is a 

prototype-based clustering strategy, since clusters are represented by prototypes. 

 

1.2.2.1   LVQ algorithm 

 

A well-known competitive learning algorithm is Learning Vector Quantization (LVQ) [4]. 

LVQ has been mainly used for supervised learning techniques, such as classification but can 

be applied in unsupervised learning problems, such as clustering, too. Here, we present LVQ 

for clustering. 

Since LVQ is a competitive learning algorithm, it will follow the clustering strategy described 

in the previous subsection. As far the update of the parameters is concerned, LVQ was 

designed to update only the winning prototype, moving it towards the pattern 𝑥, while leaving 

the other prototypes unchanged. Thus, the update equation for the winning prototype 𝑖∗ for a 

sample 𝑥, is the following:  

 𝛥𝑤𝑖∗ = 𝑎(𝑥 − 𝑤𝑖∗) (1.3) 

where 𝑎 is the learning rate parameter and determines the strength of the update. We present 

the LVQ algorithm in the table below. 

  

Algorithm 1.2.2 LVQ      

 

Input: Dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), number of clusters 𝐿, initial cluster prototypes 𝑊 =

(𝑤1, … , 𝑤𝐿) . 

Output: Final cluster prototypes 𝑊 = (𝑤1, … , 𝑤𝐿) . 



 

10 

 

Specify: Learning rate: 𝑎, number of epochs: num_epochs. 

 

1. For all 𝑒 = 1,…, num_epochs do 

2.      For all data points 𝑥𝑛, 𝑛 = 1, … , 𝑁 do 

3.          For all clusters 𝑤𝑖, 𝑖 = 1,… , 𝐿 do 

4.                Compute the distance 𝑑(𝑥𝑛, 𝑤𝑖) 

5.           Find the winning prototype 𝑖∗ such that 𝑖∗ = argimin 𝑑(𝑥𝑛, 𝑤𝑖) 

6.           Update only the weights of the winning prototype as 𝛥𝑤𝑖∗ = 𝑎(𝑥𝑛 − 𝑤𝑖∗).  

 

The LVQ algorithm operates online. Therefore, when a sample 𝑥 is presented to the system, 

the update of the parameters occurs exactly after the presentation. Note that LVQ is related to 

k-Means. Actually, LVQ is the online version of k-Means. Note that k-Means updates the 

system parameters after all instances have been presented and minimizes the same clustering 

error. Also, LVQ is a prototype-based clustering algorithm, since clusters are described by 

prototypes or representatives. We can execute LVQ for a specific number of epochs or until 

there is no change in parameter values.  

 

1.3 Reinforcement Learning  

 

Reinforcement learning is a machine learning category, where the learning model based on its 

decisions, receives from the external environment a reinforcement signal that contains indirect 

information about system’s operation. We can consider this operation like the evaluation of 

human behavior, where we reward someone if he behaves well or penalize him if he does not. 

Thus, we reward the system if it operates well and implements the desirable task or penalize it 

if it performs badly. 

We can describe the system as a learning agent who receives the reinforcement information 

and wants to implement an action policy. Since the environment does not provide the correct 

answers but only sends a reinforcement signal, the agent’s actions based on that signal are 

characterized by stochasticity. Of course, in reinforcement learning, like in every machine 

learning method, every strategy needs a performance criterion to optimize. Commonly in 
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reinforcement learning, the objective function that is going to be optimized, contains the 

reinforcement signal. Thus, the model is trained to take actions that maximize the 

reinforcement signal, not necessarily immediately but in a long term.  

Basically, a reinforcement learning problem can be modeled as a Markov Decision Process 

(MDP). We have the following.: a set of system states 𝑆  and a set of actions 𝐴 taken by the 

agent. Also, we have a probability of transition 𝑃𝑎(𝑠, 𝑠
′) = Pr (𝑠′|𝑠, 𝑎) from a state 𝑠 to a 

state 𝑠′ under an action 𝑎 and a reward 𝑟(𝑠, 𝑎) related to the action 𝑎 selected from state 𝑠. 

Finally, there is a discount factor 𝛾 ∈ (0,1) that quantifies the difference in importance 

between immediate rewards and future rewards.  

As we mentioned before, every reinforcement learning system tries to maximize the reward 

sent from the environment. Thus, we can define as the objective function, that we want to 

maximize, the sum of the rewards in a long term, across all future timesteps 𝑡, given by the 

equation 

 𝑅(𝑡) = ∑ 𝛾𝑘−𝑡−1𝑟(𝑠𝑘, 𝑎𝑘)

∞

𝑘=𝑡+1

 (1.4) 

where 𝛾 is the discount factor and 𝑟(𝑠𝑘, 𝑎𝑘) is the reward associated with taking the action 𝑎 

at state 𝑠 at a timestep 𝑡.  

According to the above MDP modelling, a reinforcement learning agent interacts with the 

environment at discrete time steps and the reinforcement scheme is described as follows. The 

agent takes from the environment, that is in a state 𝑠𝑡, a reward 𝑟𝑡 and makes an action 𝑎𝑡. 

This action is sent back to the environment that moves in a new state 𝑠𝑡+1 and the reward 𝑟𝑡+1 

associated with the transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) is determined. The beforementioned procedure is 

repeated and the agent changes its action policy in order to optimize the objective function. A 

visual description is provided in Fig. 1.4 below. 

Reinforcement learning due to its generality, has been applied in many disciplines, such as 

game theory, control theory, object tracking, multi-agent systems etc. 

There are many reinforcement learning algorithms that follow different procedures. Also, we 

can classify the algorithms in two big categories, those with immediate reinforcers and those 

with the delayed ones. In immediate reinforcement learning, after each action performed by 
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the agent, the environment sends the reinforcement signal immediately. On the other hand, in 

delayed reinforcement learning, this signal is sent after several actions have been taken. 

 

 

Figure 1.4: The Reinforcement Learning scheme 

In this thesis we are going to exploit immediate reinforcement learning algorithms. More 

specifically our work is based on algorithms of the family of REINFORCE algorithms. In the 

next subsection, we are going to describe this category of algorithms. Also, in the following 

chapters we show clustering strategies that based on reinforcement learning, and how 

REINFROCE algorithms can be adjusted to this concept. 

 

1.3.1 REINFORCE algorithms 

 

In reinforcement learning algorithms [3], the learning agent can be viewed as a feedforward 

network consisting of several individual units. Because the learning system needs to explore 

the best decisions, these individual units operate stochastically, so we can call them stochastic 

units.  The network operates by receiving an input from the environment and stochastically 

propagating the corresponding activity through the net. Then it sends the activity produced 

from output units to the environment for evaluation. This evaluation is sent through the 

reinforcement signal 𝑟 to all units in the net. Then each unit updates its parameters and the 

cycle begins again.  
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To describe the above mathematically. For input 𝑥 = (𝑥1, … , 𝑥𝑝) ∈ ℝ
𝑝  let denote as 𝑦𝑖 the 

output of 𝑖th unit. Each unit has its own parameters  𝑤𝑖 = (𝑤𝑖1, … , 𝑤1𝑝) such that 𝑊 =

(𝑤1, … , 𝑤𝐿) denotes all network parameters. Since each unit acts stochastically, the output  𝑦𝑖 

of a unit is drawn from a distribution, and depends on the input 𝑥 and unit parameters 𝑤𝑖. 

Suppose that this distribution is described through its probability mass function. 

Consequently, for each unit 𝑖 we define 

 𝑔𝑖(𝑧, 𝑤𝑖, 𝑥) = Pr{𝑦𝑖 = 𝑧|𝑤𝑖, 𝑥} (1.5) 

to be the probability mass function determining the output of the unit as a function of its input 

and its parameters. It worth noting that all the quantities such as 𝑟, 𝑦𝑖, 𝑥 depend on time, but 

for convenience, in the following, when they appear in the same equation represent values for 

the same time instance. 

A widely used subclass of stochastic units in connectionist networks are the stochastic logistic 

or Bernoulli units. In these units, a binary output 𝑦𝑖 ∈ {0,1} is drawn from a probability 

distribution with mass function 𝑝𝑖, which is computed as 

 𝑝𝑖 = 𝑓 (𝑠𝑖) (1.6) 

where 𝑓  is the logistic function  

 𝑓 (𝑠𝑖) =
1

1 + 𝑒−𝑠𝑖
 (1.7) 

and  

 𝑠𝑖 = 𝑤𝑖
𝑇𝑥  (1.8) 

is the inner product of 𝑤𝑖 and 𝑥.  In this way, through logistic function we achieve to convert 

the inner product of 𝑤𝑖 and 𝑥 into a probability that can be used to select the output. In Fig 1.5 

below we present the computations of a stochastic logistic unit. 

 

Figure 1.5: A visualization of a stochastic unit computations. 
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Like in every machine learning method we need an objective function to optimize. A very 

common objective function that is used in immediate reinforcement learning problems, is the 

expected value of reinforcement signal 𝑟, 𝐸{𝑟|𝑊} conditioned on the system parameters 𝑊. It 

is necessary to use the expected values because of the randomness of the system. Thus, the 

learning system searches the space of all possible parameters 𝑊 for a point where 𝐸{𝑟|𝑊}  is 

maximum. Also, it worth noting that the 𝐸{𝑟|𝑊} is well defined because the environment’s 

choice of an input pattern and the reinforcement signal for that input, are determined by 

stationary distributions. Also, the choice of an input pattern is determined independently of 

time. 

In REINFORCE algorithms the parameters 𝑤𝑖𝑗 of the learning system, after each step are 

updated as 

 𝛥𝑤𝑖𝑗 = 𝛼𝑖𝑗(𝑟 − 𝑏𝑖𝑗)
𝜕𝑙𝑛𝑔𝑖
𝜕𝑤𝑖𝑗

 (1.9) 

where 𝛼𝑖𝑗 is the learning rate parameter, 𝑏𝑖𝑗 is the reinforcement baseline and 
𝜕𝑙𝑛𝑔𝑖

𝜕𝑤𝑖𝑗
 is a 

quantity called the characteristic eligibility of 𝑤𝑖𝑗.   

An important and interesting result of REINFORCE algorithms is that they make weight 

adjustments in the direction for which the performance measure  𝐸{𝑟|𝑊} is increasing. More 

specifically it can be proved that 

 𝐸{𝛥𝑤𝑖𝑗|𝑊, 𝑥𝑗} = 𝛼
𝜕𝐸{𝑟|𝑊, 𝑥𝑗}

𝜕𝑤𝑖𝑗
 (1.10) 

if 𝛼𝑖𝑗 = 𝛼 remains constant. Alternatively REINFORCE algorithms claim that the quantity 

(𝑟 − 𝑏𝑖𝑗)
𝜕𝑙𝑛𝑔𝑖

𝜕𝑤𝑖𝑗
 represents an unbiased estimate of 

𝜕𝐸{𝑟|𝑊}

𝜕𝑤𝑖𝑗
. Therefore, they can be used to 

perform stochastic maximization of the performance measure, because they relate the gradient 

of the performance measure in the weight space to the average update vector in the weight 

space, too. 

Also, for a Bernoulli unit since it has two possible outcomes it holds that,   
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 𝑔𝑖(𝑧, 𝑤𝑖, 𝑥) = {
1 − 𝑝𝑖      if  𝑧 = 0
  𝑝𝑖              if  𝑧 = 1 

 (1.11) 

where the probability 𝑝𝑖 will be computed by the Eq. 1.6 presented above. 

Therefore, the characteristic eligibility 
𝜕𝑙𝑛𝑔𝑖

𝜕𝑤𝑖𝑗
 of the update Eq. 1.9 can be further analyzed as 

 
𝜕𝑙𝑛𝑔𝑖
𝜕𝑤𝑖𝑗

=
𝜕𝑙𝑛𝑔𝑖(𝑦𝑖; 𝑝𝑖)

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑠𝑖

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

 (1.12) 

where because of Eq. 1.11 we have that   

 
𝜕𝑙𝑛𝑔𝑖(𝑦𝑖; 𝑝𝑖)

𝜕𝑝𝑖
=

{
 

 −
1

1 − 𝑝𝑖
    if  𝑦𝑖 = 0

    
1

𝑝𝑖
            if  𝑦𝑖 = 1

 (1.13) 

 

 
 
⇒
𝜕𝑙𝑛𝑔𝑖(𝑦𝑖; 𝑝𝑖)

𝜕𝑝𝑖
=

𝑦𝑖 − 𝑝𝑖
𝑝𝑖(1 − 𝑝𝑖)

 (1.14) 

Also, because of Eq 1.6, Eq. 1.7 and Eq. 1.8 it holds that  

 
𝜕𝑝𝑖
𝜕𝑠𝑖

= 𝑓 
′(𝑠𝑖) = 𝑝𝑖(1 − 𝑝𝑖) (1.15) 

and 

 
𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

= 𝑥𝑗  (1.16) 

Therefore from Eq. 1.14, Eq. 1.15 and Eq. 1.16 the update equation of the parameters in 

REINFORCE algorithms in the case of Bernoulli units, takes the form 

 𝛥𝑤𝑖𝑗 = 𝑎𝑖𝑗(𝑟 − 𝑏𝑖𝑗)(𝑦𝑖 − 𝑝𝑖)𝑥𝑗  (1.17) 

where 𝑎𝑖𝑗 is the learning rate parameter and 𝑏𝑖𝑗 the reinforcement baseline. 
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The training of Bernoulli units using REINFORCE algorithms is exploited in the methods 

presented in next chapter, where we use REINFORCE algorithms to implement a clustering 

strategy. 

 

1.4 Thesis Roadmap 

 

The structure of this thesis is organized as follows. In Chapter 1, we have introduced our topic 

providing basic information about the two types of machine learning methods that we use: 

unsupervised learning, specifically clustering, and reinforcement learning. More specifically, 

we analyze the clustering and reinforcement techniques, on which our work is based. Chapter 

2 presents the closely related work. More specifically, presents how reinforcement learning 

and especially REINFORCE algorithms can be used to implement a clustering strategy 

(RGCL algorithm). Next in Chapter 3, we present two new algorithms. An algorithm that 

performs clustering combining reinforcement learning and operating in on-line mode and an 

algorithm that makes exactly the same but operating in a batch mode. Then, in Chapter 4 we 

provide comparative experimental results on synthetic and real datasets and we discuss 

interesting drawn conclusions as well. Finally, Chapter 5 concludes this thesis by 

summarizing our findings and also presents interesting directions for future work. 
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CHAPTER 2  

RELATED WORK 

2.1      The Reinforcement Clustering Approach 

2.2      RGCL Algorithm 

 

2.1 The Reinforcement Clustering Approach 

 

In [1] a method is presented for clustering based on competitive learning and combined with 

reinforcement learning simultaneously. The main idea is that the clustering system can be 

viewed as a reinforcement learning system that learns through reinforcement signals to follow 

the clustering strategy. Actually, the proposed algorithm expands the LVQ algorithm, 

presented earlier in Chapter 1, by introducing stochasticity to it. Therefore, the closest cluster 

prototype is not always selected, but it is selected according to some probability distribution. 

Since the selection is characterized by stochasticity, we need the external environment to 

evaluate it through a reinforcement signal. This is the point where REINFORCE algorithms 

are applied in the clustering strategy. To express the reinforcement clustering approach more 

analytically, the following have been defined. 

Suppose we are given 𝑋 = (𝑥1, … , 𝑥𝑁) of unlabeled data where 𝑥𝑛 = (𝑥𝑛1, … , 𝑥𝑛𝑝) 
𝑇 ∈ ℝ𝑝 is 

a 𝑝- dimensional vector and want to assign them to 𝐿 clusters. Each cluster is described by a 

prototype vector 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑝)
𝑇,  (𝑖 = 1,… , 𝐿) and let 𝑊 = (𝑤1, … , 𝑤𝐿) be all the 

prototype vectors. Therefore, the algorithm deals with prototype-based clustering. Also, in 

order to apply clustering, a proximity measure is needed. Let 𝑑(𝑥, 𝑤) the distance of data 
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point 𝑥 from a cluster’s prototype 𝑤, to be the proximity measure. Therefore, goal of 

clustering strategy is to minimize the objective function 

 𝐽(𝑊) = ∑𝑚𝑖𝑛𝑟𝑑(𝑥𝑛, 𝑤𝑟)

𝑁

𝑛=1

. (2.1) 

which is the well-known clustering error.  

Having defined the model of the clustering system and the objective function to be optimized 

we are going to present how it can be trained with REINFROCE algorithms [1]. Basically, 

REINFORCE algorithms are used for updating the model parameters, where the parameters 

here are the cluster prototypes.  

It is assumed that each cluster 𝑖 (𝑖 = 1,… , 𝐿) corresponds to a Bernoulli unit, whose 

parameter vector 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑝)
𝑇 corresponds to the prototype vector of cluster 𝑖. At each 

step each Bernoulli unit 𝑖 is fed with a randomly selected sample 𝑥 and the following 

procedure is implemented. 

Firstly, the distance 𝑠𝑖 = 𝑑(𝑥,𝑤𝑖)  of sample 𝑥 from prototype 𝑤𝑖 is computed. After that, 

𝑝𝑖 is computed as follows: 

 𝑝𝑖 = ℎ(𝑠𝑖) = 2(1 − 𝑓(𝑠𝑖)) (2.2) 

where 𝑓(𝑠𝑖) is the logistic function (Eq. 1.7) fined previously and providing values in (0,1) 

and 𝑠𝑖 is the aforementioned distance. In this way, a relation between distances and 

probabilities is achieved. More specifically because of the form of 𝑓(𝑠𝑖), they are inversely 

proportional quantities. Therefore, the closer the vector of a unit 𝑖 is to input sample 𝑥, the 

higher the probability the unit to be active, i.e. 𝑦𝑖 = 1. As we notice, the probabilities 𝑝𝑖 

provide a measure of the proximity between data and the cluster prototypes. Therefore, if a 

unit 𝑖 is active, it is very probable that this unit is closer to the input data point. 

In immediate reinforcement learning, after each output 𝑦𝑖 is computed, we need the 

environment to evaluate it by sending a reinforcement signal 𝑟𝑖 to each unit 𝑖. This evaluation 

is made in such a way that the units update their parameters so that the desirable clustering 

strategy is implemented. Thus, using the update equation of REINFORCE algorithms in Eq. 
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1.9 and assuming that the learning rate is the same during the whole procedure, the update 

equation for the reinforcement clustering scheme takes the following form  

 𝛥𝑤𝑖𝑗 = 𝛼(𝑟𝑖 − 𝑏𝑖𝑗)
𝜕𝑙𝑛𝑔𝑖(𝑦𝑖; 𝑝𝑖)

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑠𝑖

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

 (2.3) 

For the Bernoulli units, we know that  

 𝜕𝑙𝑛𝑔𝑖(𝑦𝑖; 𝑝𝑖)

𝜕𝑝𝑖
=

𝑦𝑖 − 𝑝𝑖
𝑝𝑖(1 − 𝑝𝑖)

 
(2.4) 

Also, from Eq. 2.2 we have that  

 𝜕𝑝𝑖
𝜕𝑠𝑖

= −𝑝𝑖𝑓(𝑠𝑖) 
(2.5) 

since the derivative of logistic function is 𝑓′(𝑠𝑖) = 𝑓(𝑠𝑖)(1 − 𝑓(𝑠𝑖). 

Thus, from equation Eq. 2.4 and Eq. 2.5 the parameter update equation corresponding to the 

proposed reinforcement clustering scheme is  

 
𝛥𝑤𝑖𝑗 = −𝛼(𝑟𝑖 − 𝑏𝑖𝑗)(𝑦𝑖 − 𝑝𝑖)

𝑓(𝑠𝑖)

(1 − 𝑝𝑖)

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

 
(2.6) 

It is assumed that the term 
𝑓(𝑠𝑖)

(1−𝑝𝑖)
=

1

1−𝑒−𝑠𝑖
, is incorporated to the learning rate 𝑎. Therefore, 

the update equation becomes 

 
𝛥𝑤𝑖𝑗 = −𝛼(𝑟𝑖 − 𝑏𝑖𝑗)(𝑦𝑖 − 𝑝𝑖)

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

. 
(2.7) 

As we mentioned in Chapter 1, REINFORCE algorithms operate towards maximizing the 

reinforcement signal. Thus, the above parameter update scheme maximizes the objective 

function  

 𝑅(𝑊) = ∑ �̂�(𝑊, 𝑥𝑛)

𝑁

𝑛=1

=∑∑𝐸{𝑟𝑖|𝑊, 𝑥𝑛}

𝐿

𝑖=1

𝑁

𝑛=1

 (2.8) 

where 𝐸{𝑟𝑖|𝑊, 𝑥𝑛} denotes the expected value of the reinforcement received by cluster unit 𝑖 

when the input pattern is 𝑥𝑛. Consequently, the reinforcement clustering scheme can be 

employed in the case of problems whose objective function is in the form of 𝑅(𝑊) and the 
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maximization is achieved by performing updates that at each step maximize the term 

�̂�(𝑊, 𝑥𝑛). The latter is valid, because from Eq. 1.10 we have that  

 
𝐸{𝛥𝑤𝑖𝑗|𝑊, 𝑥𝑛} = 𝛼

𝜕𝐸{𝑟𝑖|𝑊, 𝑥𝑛}

𝜕𝑤𝑖𝑗
. 

(2.9) 

and since the weight 𝑤𝑖𝑗 affects only the term 𝐸{𝑟𝑖|𝑊, 𝑥𝑛} in the definition of 𝑅(𝑊), we 

conclude that  

 
𝐸{𝛥𝑤𝑖𝑗|𝑊, 𝑥𝑛} = 𝛼

𝜕�̂�(𝑊, 𝑥𝑛)

𝜕𝑤𝑖𝑗
. 

(2.10) 

Therefore, the very interesting result is that through the reinforcement clustering approach the 

objective function 𝑅 is maximized in the same sense that LVQ minimizes the objective 

function 𝐽 (Eq. 2.1). Next, we are going to present the RGCL algorithm as proposed in [1] that 

is based on the aforementioned reinforcement clustering scheme. 

 

2.2 The RGCL Algorithm 

 

As we mentioned previously, in LVQ algorithm only the winning cluster 𝑖∗ updates its 

parameters and is moved towards pattern 𝑥, while the parameters of the other clusters remain 

unchanged. RGCL algorithm expands the LVQ combining it with the reinforcement 

clustering scheme. Thus, the strategy is described as follows. 

For every data point 𝑥 there is a closest cluster to it. Let us denote this cluster as 𝑖∗ and 

mention it as the winning cluster. The strategy that would like the system to learn is similar to 

LVQ. Thus, only the winning cluster/unit 𝑖∗ will update its parameters, while the other 

units/clusters remain the same. Note that the closest unit may not be active necessarily since 

its output is computed stochastically depending on the Bernoulli distribution. For this reason, 

the environment needs to evaluate the unit’s decision 𝑦𝑖. Thus, identifies the winning unit 𝑖∗ 

and returns a reward signal 𝑟𝑖∗ = 1, if it has decided correctly, i.e. 𝑦𝑖∗ = 1 or a penalty signal 

𝑟𝑖∗ = −1, if its decision is wrong, i.e. 𝑦𝑖∗ = 0. The reinforcements sent to the other units, are 

𝑟𝑖 = 0, so their weights are not affected. Therefore, the reinforcement signal is defined as 
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 𝑟𝑖 = {
1
−1
0

if 𝑖 = 𝑖∗ and 𝑦𝑖 = 1
if 𝑖 = 𝑖∗ and 𝑦𝑖 = 0

if 𝑖 ≠ 𝑖∗
 (2.11) 

Setting the baseline 𝑏𝑖𝑗 = 0, the update equation Eq. 2.7 takes the form 

 
𝛥𝑤𝑖𝑗 = −𝛼𝑟𝑖(𝑦𝑖 − 𝑝𝑖)

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

 
(2.12) 

Also, if 𝑠𝑖 = 𝑑(𝑥,𝑤𝑖) the distance of input pattern 𝑥 from the cluster’s prototype 𝑤𝑖 is the 

Euclidean distance  

 𝑠𝑖 =∑(𝑥𝑗 −𝑤𝑖𝑗)
2

𝑝

𝑗=1

 (2.13) 

the term 
𝜕𝑠𝑖

𝜕𝑤𝑖𝑗
 in the update equation Eq. 2.12 becomes 

 𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

= −(𝑥𝑗 − 𝑤𝑖𝑗) 
(2.14) 

and therefore, the update equation of the parameters of the reinforcement clustering scheme 

takes the form of  

 𝛥𝑤𝑖𝑗 = 𝛼𝑟𝑖(𝑦𝑖 − 𝑝𝑖)(𝑥𝑗 − 𝑤𝑖𝑗) (2.15) 

Thus, RGCL algorithm has the following steps presented below. It worth noticing again that 

the parameter 𝛼 remains fixed at a specific small value and the reinforcement baseline is not 

used. 

 

Algorithm 2.2.1 RGCL      

Input: Dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), number of clusters 𝐿, initial cluster prototypes 𝑤1, … , 𝑤𝐿 . 

Output: Final clusters 𝐶1, … , 𝐶𝐿, final cluster prototypes 𝑤1, … , 𝑤𝐿. 

Specify: Learning rate 𝑎, number of epochs: num_epochs 

 

1. For all 𝑒 = 1,…,num_epochs do 
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2.       For every 𝑥𝑛 , 𝑛 = 1, … ,𝑁 do 

3.            For every 𝑤𝑖, 𝑖 = 1,2, … , 𝐿 do 

4.                  Compute the distance 𝑠𝑖 using Eq. 2.13. 

5.                  Compute the probability 𝑝𝑖 using Eq. 2.2 and decide the output 𝑦𝑖 of unit 𝑖. 

6.            Determine the winning unit 𝑖∗ with 𝑝𝑖∗ = max (𝑝𝑖). 

7.            Compute the reinforcements 𝑟𝑖, (𝑖 = 1,2, … , 𝐿) using Eq. 2.11.  

8.            Update the cluster prototypes 𝑤𝑖, (𝑖 = 1,2, … , 𝐿) using Eq. 2.15. 

 

According to the specification of the rewarding strategy, high values of 𝑟 are received when 

the system follows the clustering strategy, while low values are obtained when the system 

fails in this task. Therefore, the maximization of the expected value of 𝑟 means that the 

system follows the clustering strategy. Since the clustering strategy aims at minimizing the 

objective function 𝐽, RGCL algorithm achieves an indirect way to minimize 𝐽, through the 

maximization of the immediate reinforcement signal 𝑟. This intuition is made more clear in 

the following proof presented in [1]. 

The reinforcements in RGCL algorithm are provided by Eq. 2.11, where it holds that: a) 𝑟𝑖 =

1 when 𝑦𝑖 = 1 with probability 𝑝𝑖 and 𝑖 = 𝑖∗  and b)  𝑟𝑖 = 0 when 𝑦𝑖 = 0 with probability 

1 − 𝑝𝑖 and 𝑖 = 𝑖∗. In any other case 𝑟𝑖 = 0. Therefore, from equation 

 

𝑅(𝑊) = ∑∑𝐸{𝑟𝑖|𝑊, 𝑥𝑛}

𝐿

𝑖=1

𝑁

𝑛=1

 

(2.16) 

it is derived that the objective function maximized by RGCL for a cluster 𝑖, taking into 

consideration the Eq. 2.11, is 

 

𝑅 (𝑊) = ∑[𝑝𝑖∗(𝑥𝑛) − (1 − 𝑝𝑖∗(𝑥𝑛))]

𝑁

𝑛=1

 

(2.17) 

where 𝑝𝑖∗(𝑥𝑛) is the maximum probability for input 𝑥𝑛. This leads to 

 

𝑅 (𝑊) = 2∑𝑝𝑖∗(𝑥𝑛)

𝑁

𝑛=1

− 𝑁 

(2.18) 
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and since 𝑁 is a constant and the probability 𝑝𝑖 is inversely proportional to the distance, we 

conclude that the RGCL performs updates that minimize the objective function 𝐽, since it 

operates toward maximization of the objective function 𝑅. 

Moreover, if we notice carefully the update equations of LVQ and RGCL algorithm, we can 

observe that the actual difference lies in the presence of the term (𝑦𝑖 − 𝑝𝑖) in the RGCL 

update equation. Because this term depends stochastically on the outcome of output 𝑦𝑖, the 

strength of the parameter updates 𝑤𝑖𝑗 can be different depending on the output 𝑦𝑖. That makes 

the RGCL algorithm more efficient from LVQ, because it can escape from shallow local 

minima of the objective function by introducing a kind of noise through the different 

outcomes of 𝑦𝑖.  

It worth noticing that RGCL is a local optimization clustering procedure that tries to escape 

from local minima, but it can be trapped to these as well. Also, in order for RGCL to be 

executed, the specific number of clusters is needed as input. 

Having presented the related work and introduced the necessary theory as well, in next 

Chapter we present two new methods that implement clustering based on a reinforcement 

learning scheme by expanding the RGCL approach. 
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CHAPTER 3  

THE PROPOSED ALGORITHMS 

3.1      Multinomial Stochastic (MS) Unit 

3.2      RMS Algorithm 

3.3      Batch – RMS Algorithm 

 

 

3.1 Multinomial Stochastic (MS) Unit 

 

As we mentioned previously, in REINFORCE algorithms the learning agents use stochastic 

units that draw their output from some distribution. Also, we defined a subclass of stochastic 

units, the Bernoulli stochastic units where the RGCL algorithm is basically based on. In this 

subsection, we are going to introduce another subclass of stochastic units that is going to be 

used in the proposed algorithms, the Multinomial Stochastic (MS) unit [2]. As Bernoulli units 

are based on the Bernoulli distribution, MS units are based on multinomial distribution. 

An MS unit characterized by parameters 𝑠 = (𝑠1, … , 𝑠𝐿),  provides an output or selects an 

action 𝑦 among 𝐿 possible outcomes {𝑎1, … , 𝑎𝐿} using a probability vector 𝑝 = (𝑝1, … , 𝑝𝐿).  

In other words, having a set of actions {𝑎1, … , 𝑎𝐿} that each one is chosen with a probability 

𝑝 = (𝑝1, … , 𝑝𝐿), an MS unit selects an action 𝑎𝑖 = 𝑦 with a probability 𝑝𝑖.  

The major difference between Bernoulli and MS unit, is that the former is binary and have 

two possible outcomes, while MS units have 𝐿 possible outcomes. Therefore, it is obvious 

that an MS unit is an extension of a Bernoulli unit. Fig. 3.1 below provides a visualization of 

the operation of an MS unit and actually describes how an MS unit selects an output. 
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Figure 3.1: A visualization of an MS unit. 

During the selection of an output 𝑦, it is necessary the probability vector 𝑝 = (𝑝1, … , 𝑝𝐿) to be 

computed based on the values of 𝑠𝑖. Thus, using the parameter vector 𝑠, we choose to 

compute the probability vector 𝑝 = (𝑝1, … , 𝑝𝐿) from the equation 

 𝑝𝑖 =
exp (−𝑠𝑖/𝑇)

∑ exp (−𝑠𝑗/𝑇)
𝐿
𝑗=1

 (3.1) 

where 𝑇 is a constant. The SoftMin function in Eq 3.1, is used to transform the parameter 

vector 𝑠 to a probability vector 𝑝. The constant 𝑇 controls the normalization. If 𝑇
 
→ 0 we get 

the min operation, i.e. 𝑝𝑘 = 1 for 𝑠𝑘 = min (𝑠1, … , 𝑠𝐿) and 𝑝𝑗 = 0 for 𝑗 ≠ 𝑘. If 𝑇
 
→∞ all 𝑝𝑖 

are equal to 
1

𝐿
. 

 

3.1.1 REINFORCE algorithms and MS units 

 

Having defined the MS unit and the computation of the probability vector 𝑝, we present how 

the MS unit is trained using the REINFORCE framework.  

Let us denote as 𝑘 the action that the MS unit selects and provides an output 𝑦. Obviously, 

this action has been selected with a probability 𝑝𝑘 and it is characterized by parameters 𝑠𝑘. 

After the selection the environment should send a reinforcement signal 𝑟, in order to evaluate 

the selection. The corresponding update equation of unit parameters that depends on the 

selection of the MS unit, will be given by the equation  

 
𝛥𝑠𝑖  = 𝛼𝑖 (𝑟 − 𝑏𝑖 )

𝜕𝑙𝑛𝑔 
𝜕𝑠𝑖

 (3.2) 
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where 𝑔 (𝑦 , 𝑠) = Pr{𝑦 |𝑠} is the probability to select the action 𝑘 and provide the output 𝑦 

having the parameter vector 𝑠 . Because of the Eq 3.1, every 
𝜕𝑙𝑛𝑔 

𝜕𝑠𝑖
 term depends on 𝑠𝑖 and on 

the rest of  𝑠𝑗 , 𝑗 = 1,… , 𝐿 − 1 terms. Thus, it holds that  

 𝜕𝑙𝑛𝑔 
𝜕𝑠𝑖

=∑
𝜕𝑙𝑛𝑔 
𝜕𝑝𝑗

𝜕𝑝𝑗

𝜕𝑠𝑖

𝐿

𝑗=1

 (3.3) 

Since we select the action 𝑘 with a probability 𝑝𝑘, for the first terms of the sum of Eq. 3.3 it 

holds that  

 𝜕𝑙𝑛𝑔 
𝜕𝑝𝑖

= {

1

𝑝𝑖
if 𝑖 = 𝑘

     0 otherwise

 (3.4) 

Because of Eq. 3.4, 
𝜕𝑙𝑛𝑔 

𝜕𝑝𝑖
= 0 for 𝑖 ≠ 𝑘, thus the terms of Eq. 3.3 where 𝑗 ≠ 𝑘 will equal to 

zero. Therefore, the only term that is needed to be calculated is the 
𝜕𝑝𝑘

𝜕𝑠𝑖
. Because 𝑘 is the 

selected action, from Eq. 3.1 it holds that, if 𝑘 = 𝑖 

 
𝜕𝑝𝑘
𝜕𝑠𝑘

=
−
1
𝑇 exp (

−𝑠𝑘
𝑇⁄ )∑ exp (

−𝑠𝑗
𝑇⁄ ) +

1
𝑇 exp (

−𝑠𝑘
𝑇⁄ )exp (

−𝑠𝑘
𝑇⁄ )𝐿

𝑗=1

∑ exp (
−𝑠𝑗

𝑇⁄ )𝐿
𝑗=1

2  (3.5) 

 

 
 
⇒
𝜕𝑝𝑘
𝜕𝑠𝑘

= −
1

𝑇
[

exp (
−𝑠𝑘

𝑇⁄ )

∑ exp (
−𝑠𝑗

𝑇⁄ )𝐿
𝑗=1

− (
exp (

−𝑠𝑘
𝑇⁄ )

∑ exp (
−𝑠𝑗

𝑇⁄ )𝐿
𝑗=1

)

2

] (3.6) 

 

  
⇒
𝜕𝑝𝑘
𝜕𝑠𝑘

= −
1

𝑇
𝑝𝑘(1 − 𝑝𝑘) (3.7) 

On the other hand, if  𝑖 ≠ 𝑘 then from Eq. 3.1 we have that 
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𝜕𝑝𝑘
𝜕𝑠𝑖

=

1
𝑇 exp (

−𝑠𝑖
𝑇⁄ )exp (

−𝑠𝑘
𝑇⁄ )

∑ exp (
−𝑠𝑗

𝑇⁄ )𝐿
𝑗=1

2  (3.8) 

 

  
⇒
𝜕𝑝𝑘
𝜕𝑠𝑖

=
1

𝑇
𝑝𝑖𝑝𝑘. (3.9) 

Thus, combining the Eq. 3.7 and Eq. 3.9 we have that  

 
𝜕𝑝𝑘
𝜕𝑠𝑖

= {
−
1

𝑇
𝑝𝑖(1 − 𝑝𝑖) if  𝑘 = 𝑖

        
1

𝑇
𝑝𝑖𝑝𝑘         if  𝑘 ≠ 𝑖

 (3.10) 

Because of the Eq. 3.3, Eq. 3.4 and Eq. 3.10, the update equation of system parameters takes 

the following form 

 

𝛥𝑠𝑖 = {
−𝛼(𝑟 − 𝑏𝑖)

1

𝑇
(1 − 𝑝𝑖)

𝛼(𝑟 − 𝑏𝑖)
1

𝑇
𝑝𝑖

if 𝑖 = 𝑘
if 𝑖 ≠ 𝑘

 (3.11) 

where 𝛼 is the learning rate and 𝑏𝑖 the reinforcement baseline. 

Consequently, Eq. 3.10 presents the update equation of REINFORCE algorithms for training 

an MS unit. Also, we showed in Chapter 1 that the average update in parameter space 𝑆 lies in 

a direction for which the expected value of the reinforcement signal 𝑟 is increasing. 

Therefore, using the REINFORCE algorithm to train an MS unit (Eq. 3.11), we achieve 

stochastic function optimization of the expected reward signal. 
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3.2 RMS Algorithm 

3.2.1 The Reinforcement Clustering Scheme 

 

The related work that was described in Chapter 2, forms the basis of the method presented 

next. In this subsection we present, how to train the MS unit using the REINFORCE 

framework to perform clustering. Our goal is to develop an algorithm, that extends LVQ by 

introducing stochasticity. However, instead of using a team of Bernoulli units, like RGCL 

does, we aim at using the aforementioned MS unit. Since MS unit is an extension of 

Bernoulli, we estimate that the new algorithm will be an extension of RGCL and consequently 

it is expected to perform better.  

First of all, the clustering problem is described as follows. We suppose that each cluster 𝑖 (𝑖 =

1, … , 𝐿) is represented by a parameter vector 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑝)
𝑇 corresponding to the cluster 

prototype and let 𝑊 = (𝑤1, … , 𝑤𝐿) be the matrix of all prototype vectors. Thus, the algorithm 

belongs to the prototype-based clustering category. Let 𝑑(𝑥, 𝑤𝑖) the distance metric of a data 

point 𝑥 to the cluster prototype 𝑤𝑖. The objective function that we want to minimize is the 

well -known clustering error 𝐽,  

 

𝐽(𝑊) = ∑minr𝑑(𝑥𝑛, 𝑤𝑟).

𝑁

𝑛=1

 (3.12) 

We would like to perform clustering through REINFORCE framework and the proposed 

reinforcement clustering scheme based on MS unit is described in the following. The basic 

idea is that the actions selected by the MS unit, correspond to the clusters. Through the 

REINFORCE framework we train the MS unit to select the right clusters in order to cluster 

data in a proper way. 

Thus, at each step, the MS unit is fed with a data point 𝑥. For every cluster prototype 𝑤𝑖, the 

following steps are executed. First of all, we compute the distances 𝑠𝑖 = 𝑑(𝑥,𝑤𝑖) of 𝑥 from 

each prototype 𝑤𝑖. Thus, we have computed the parameters 𝑠𝑖. In order to select the cluster to 

which an input 𝑥 will be assigned, the probability vector 𝑝 = (𝑝1, … , 𝑝𝐿) is calculated using 

Eq. 3.1. According to this calculation, a desirable relation between probabilities and distances 

is achieved: the closest a cluster 𝑖 to the input is, i.e. the smallest 𝑠𝑖, the higher the probability 
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𝑝𝑖 this cluster to be selected. Therefore, the probabilities provide a measure of proximity 

between data and clusters. Next, by selecting using the probability vector 𝑝 = (𝑝1, … , 𝑝𝐿) an 

action 𝑦 is specified, i.e. a cluster is selected for the input example 𝑥. In Fig. 3.2 we present a 

visualization of the aforementioned MS unit computations. 

 

Figure 3.2: Visualization of an MS unit computations. 

Having described how a cluster is selected through sampling, we want the environment to 

evaluate this selection by sending a reinforcement signal 𝑟 to the system, in order the 

desirable clustering strategy to be followed by the learning system. As soon as the 

reinforcement signal is received, the system immediately updates its parameters. This update 

will be based on the REINFORCE framework. 

Based on the REINFORCE update Eq. 3.11, we have that in this case the weight updates will 

be given by the equation  

 

𝛥𝑤𝑖𝑗 =

{
 
 

 
 −𝛼(𝑟 − 𝑏𝑖)

1

𝑇
(1 − 𝑝𝑖)

𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

𝛼(𝑟 − 𝑏𝑖)
1

𝑇
𝑝𝑖
𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

  if 𝑖 = 𝑘
   if 𝑖 ≠ 𝑘

 (3.13) 

where 𝛼 is the learning rate, 𝑏𝑖 the reinforcement baseline. 

Due to the REINFORCE property the above parameter update equation maximizes the 

expected value of the reinforcement signal 𝑟, because of Eq. 2.10, which indicates that the 

parameters update lies in the same direction where reinforcements are increasing.  

The basic difference between the reinforcement clustering scheme proposed in [1] with this 

one, is that in RGCL algorithm every cluster corresponds to a Bernoulli unit and consequently 

we have a team of units equal to the number of clusters. The REINFORCE framework is used 
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to train this team in order to achieve clustering. On the other hand, in RMS algorithm there is 

a single MS unit on which the reinforcement framework is applied, which combines the 

distances to all cluster prototypes to compute the probability vector. 

             

3.2.2 RMS Algorithm     

 

Having introduced the MS unit and the reinforcement framework, we are ready to present our 

new algorithm. We name it Reinforcement Multinomial Stochastic – RMS algorithm.  

For an input 𝑥 we determine a) the winning (the closest) cluster 𝑖∗ to the input pattern 𝑥 and 

b) the selected cluster 𝑘 for 𝑥 after sampling of the MS unit. The strategy that we would like 

the system to learn is to select the closest cluster, i.e. to hold 𝑘 = 𝑖∗. In this case the 

environment rewards the system and sends reinforcement signal 𝑟 = 1. In any other case, the 

environment penalizes the system sending a reinforcement signal of 𝑟 = −1. Therefore, the 

proposed reinforcement signal is designed as  

 𝑟 = {
1
−1

if 𝑘 = 𝑖∗

otherwise.
 (3.14) 

We choose to use the Euclidean distance  

 

𝑠𝑖 =∑(𝑥𝑗 −𝑤𝑖𝑗)
2

𝑝

𝑗=1

 (3.15) 

and consequently, we have that  

 𝜕𝑠𝑖
𝜕𝑤𝑖𝑗

= −(𝑥𝑗 − 𝑤𝑖𝑗). (3.16) 

Thus, the update equation Eq. 3.13 becomes 

 

𝛥𝑤𝑖𝑗 = {
𝛼𝑟
1

𝑇
(1 − 𝑝𝑖)(𝑥𝑗 − 𝑤𝑖𝑗) if 𝑖 = 𝑘

−𝛼𝑟
1

𝑇
𝑝𝑖(𝑥𝑗 − 𝑤𝑖𝑗)         if 𝑖 ≠ 𝑘

 (3.17) 
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where 𝑘 is the selected unit, 𝛼 is the learning rate and 𝑟 is given by Eq. 3.14. Also, we do not 

use the baseline and we set it equal to zero, i.e. 𝑏𝑖𝑗 = 0. The steps of the RMS algorithm are 

described below. 

According to the specification of the rewarding strategy, high values of reinforcement signal 𝑟 

are received when the system follows the clustering strategy, i.e. when 𝑖∗ = 𝑘, while low 

values are obtained when the system fails in this task. Therefore, the maximization of the 

expected value of 𝑟 means that the system follows the clustering strategy. Since the clustering 

strategy aims at minimizing the clustering error 𝐽, RMS algorithm achieves an indirect way to 

minimize 𝐽, through the maximization of the immediate reinforcement signal 𝑟. This intuition 

is made more clear in the following. 

 

Algorithm 3.2.1 RMS         

Input: Dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), number of clusters 𝐿, initial cluster prototypes 𝑤1, … , 𝑤𝐿 . 

Output: Final clusters 𝐶1, … , 𝐶𝐿, final cluster prototypes 𝑤1, … , 𝑤𝐿. 

Specify: Learning rate 𝑎, number of epochs: num_epochs, parameter 𝑇. 

 

1. For all 𝑒 = 1,…, num_epochs  do 

2.      For 𝑥𝑛 ∈ 𝑋, 𝑛 = 1,… ,𝑁 do 

3.           For 𝑤𝑖 ∈ 𝑊, 𝑖 = 1,2, … , 𝐿 do 

4.                Compute the distance 𝑠𝑖 using Eq. 3.15. 

5.                Compute the probability 𝑝𝑖 using Eq. 3.1. 

6.           Decide the selected cluster 𝑘. 

7.           Specify the winning cluster 𝑖∗ with 𝑝𝑖∗ = max (𝑝𝑖). 

8.           Compute the reinforcements 𝑟 using Eq. 3.14. 

9.           Update the parameter vectors 𝑤𝑖, (𝑖 = 1,2, … , 𝐿) using Eq. 3.17. 

 

 

As we presented, the reinforcements in RMS algorithm are provided by Eq. 3.15. Using this 

and considering that we select a cluster 𝑖 with probability 𝑝𝑖, from equation  
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𝑅(𝑊) = ∑∑𝐸{𝑟𝑖|𝑊, 𝑥𝑛}

𝐿

𝑖=1

𝑁

𝑛=1

 (3.18) 

it holds that 

 

𝑅(𝑊) = ∑𝑝𝑖∗(𝑥𝑛) − (1 − 𝑝𝑖∗(𝑥𝑛))

𝑁

𝑛=1

 (3.19) 

where for every 𝑥𝑛, the cluster 𝑖 either is the closest one (𝑖 = 𝑖∗) and we select it with 

probability 𝑝𝑖∗(𝑥𝑛) taking reinforcement 𝑟 = 1, or we make wrong and do not select it with 

probability  1 − 𝑝𝑖∗(𝑥𝑛)  taking a reinforcement  𝑟 = −1. Thus, Eq. 3.19 becomes 

 

𝑅 (𝑊) = 2∑𝑝𝑖∗(𝑥𝑛)

𝑁

𝑛=1

− 𝑁 (3.20) 

where 𝑁 is a constant. Since the probability 𝑝𝑖∗ is inversely proportional to the distance, we 

conclude that the RMS performs updates that minimize the objective function 𝐽, since it 

operates toward maximization of the objective function 𝑅. 

It worth to notice that RMS is a local clustering procedure that tries to escape from local 

minima by introducing stochasticity to learning but it can be trapped in local minima as well. 

Also, the execution of RMS needs the specific number of clusters as input. Finally, the RMS 

algorithm operates in an online mode meaning that the update of the system parameters is 

done as soon as an input 𝑥 is presented to the system. 

 

3.3 Batch-RMS Algorithm 

 

As mentioned before, the RMS algorithm operates in an online mode and updates the system 

parameters as soon as an input 𝑥 is presented to the system. We have developed an adaptation 

of RMS in order to operate in a batch mode as well. We call this algorithm as the batch-RMS 

algorithm. 
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When operating in batch mode, we gather update information from all input patterns and then 

we use this cumulative information to update the parameters of the system. In this case, we do 

not update the parameters as soon as a pattern is presented to the system, but after the 

presentation of all patterns. The batch-RMS algorithm is presented in the next subsections. 

 

3.3.1 The Reinforcement Clustering Scheme 

 

Because batch-RMS is derived from online RMS, we use basically the same modelling of the 

clustering problem and the same objective function to minimize, i.e. the clustering error. 

Thus, suppose that 𝑋 = (𝑥1, … , 𝑥𝑁) is the matrix that describes the whole dataset, where 𝑥𝑛 =

(𝑥𝑛1, … , 𝑥𝑛𝑝) ∈ ℝ
𝑝 is a 𝑝-dimensional vector. Also, each cluster 𝑖 (𝑖 = 1,… , 𝐿) is described 

by a parameter vector 𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑝)
𝑇 which corresponds to the prototype vector of 

cluster 𝑖. Let 𝑊 = (𝑤1, … , 𝑤𝐿) be the matrix of all prototype vectors. Again, the Euclidean 

distance 𝑑(𝑥, 𝑤) of a data point 𝑥 from a cluster prototype 𝑤 is selected as the proximity 

measure and the objective function that we want to minimize is the well-known clustering 

error 𝐽(𝑊) (Eq. 3.12). 

Also, we use the same reinforcement clustering scheme as with RMS algorithm, where we use 

an MS unit to select a cluster for each input 𝑥 and we use the same update for the parameters, 

the one presented in Eq. 3.17. 

Although, we based on online RMS, in batch-RMS there are some differences. First of all, 

because the update of system’s parameters is done after all input patterns 𝑥𝑛 have been 

presented, the MS unit shares the same parameters 𝑤𝑖 for every pattern 𝑥𝑛. Thus, in the Fig. 

3.3 below is presented the computations of MS unit in a single epoch of batch-RMS.  

Also, another important difference lies on the design of reinforcement signal. In online mode 

the environment evaluates the decision for an input pattern, and sends a reinforcement signal 

according to the decision. Because now we operate in batches, the system needs to store 

information on the decisions for all input patterns and use it properly when all patterns have 

been presented to it. The reinforcement signal is provided after all inputs have been presented 
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to the system. Since we have the cluster assignments for all input patterns it is natural to 

consider the clustering error as the basis for the reinforcement signal 𝑟, 

 

𝐸 = ∑𝑑(𝑥𝑛, 𝑤𝑘)

𝑁

𝑛=1

 (3.21) 

where 𝑤𝑘 is the parameter vector of the selected cluster 𝑘 for the pattern 𝑥𝑛 and 𝑑(𝑥𝑛, 𝑤𝑘) is 

the Euclidean distance of 𝑥𝑛 from 𝑤𝑘. 

 

 

… 

 

Figure 3.3: Visualization of MS unit computations in batch-RMS. 

This function basically is the sum of Euclidean distances of patterns from the corresponding 

selected clusters. Obviously, the clustering strategy is accomplished correctly if the clustering 

error is minimized. Since the REINFORCE updates lead to maximization of expected reward, 

the reinforcement signal sent from the environment should be inversely proportional to  

 𝑟 =
𝑐

𝐸
 (3.22) 
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where 𝑐 is a constant. In this way, it is obvious that 𝐸 and 𝑟 are inversely proportional 

amounts.  

Having defined the reinforcement signal the update of system parameters will be based on Eq. 

3.17. Since, this update equation derived from REINFORCE algorithms, it updates the cluster 

prototypes towards maximizing the reward 𝑟, therefore the clustering error will be minimized 

and consequently the clustering operation is implemented. In the following we present the 

details of batch-RMS algorithm. 

3.3.2 The Batch-RMS Algorithm 

 

In our REINFORCE algorithms considered so far, we choose the reinforcement baseline equal 

to zero. As far as this algorithm is concerned, the exploitation of the baseline is very 

important for the algorithm. More specifically, we compute the baseline as weighted average 

of past reinforcement signals: 

  �̅� (𝑡) = 𝛾𝑟(𝑡 − 1) + (1 − 𝛾) �̅� (𝑡 − 1) (3.23) 

where 0 < 𝛾 ≤ 1 is a constant that actually measures how much importance we put on past 

values of 𝑟. 

For an input 𝑥𝑛 we choose to update only the prototype of winning cluster 𝑖∗, while leaving 

the other cluster prototypes unchanged. Thus, the update equation Eq. 3.17 taking into 

account the reinforcement baseline becomes 

 

𝛥𝑤𝑖𝑗
(𝑛) =

{
 
 

 
 𝛼(𝑟 − �̅�)

1

𝑇
(1 − 𝑝𝑖)(𝑥𝑛𝑗 − 𝑤𝑖𝑗) if 𝑖∗ = 𝑖 and 𝑖∗ = 𝑘

−𝛼(𝑟 − �̅�)
1

𝑇
𝑝𝑖(𝑥𝑛𝑗 − 𝑤𝑖𝑗)             if 𝑖∗ = 𝑖 and 𝑖∗ ≠ 𝑘    

0                                         if 𝑖 ≠ 𝑖∗

 (3.24) 

Consequently, the algorithm consists of the following steps. First, for every pattern 𝑥𝑛, the 

winning cluster (i.e. that with the maximum probability) as well as the selected cluster are 

computed. Then the clustering error and the reinforcement signal are computed (Eq. 3.22). 

Next, for every pattern 𝑥𝑛 we compute the updates of the cluster prototypes 𝛥𝑤𝑖𝑗
(𝑛)  from Eq. 
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3.24. Finally, we compute the total update 𝛥𝑤𝑖 for each cluster prototype 𝑤𝑖 as the average of 

the weight updates 𝛥𝑤𝑖𝑗
(𝑛)  

 

𝛥𝑤𝑖 =
1

𝑁𝑖
∑𝛥𝑤𝑖

(𝑛)

𝑁𝑖

𝑛=1

 (3.25) 

where 𝑁𝑖 is the number of 𝑥𝑛 have been assigned to cluster 𝑖. 

 

Algorithm 3.3.1 batch-RMS         

Input: Dataset 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), number of clusters 𝐿, initial cluster prototypes 𝑤1, … , 𝑤𝐿 . 

Output: Final clusters 𝐶1, … , 𝐶𝐿, final cluster prototypes 𝑤1, … , 𝑤𝐿. 

Specify: Learning rate 𝑎, number of epochs: num_epochs, parameter 𝑇, parameter 𝛾. 

 

1. For all  𝑒 = 1,…, num_epochs do 

2.      For 𝑥𝑛 ∈ 𝑋, 𝑛 = 1,… ,𝑁 do 

3.           For 𝑤𝑖 ∈ 𝑊, 𝑖 = 1,2, … , 𝐿 do 

4.                  Compute the distance 𝑠𝑖 using Eq. 3.15. 

5.                  Compute the probability 𝑝𝑖 using Eq. 3.1. 

6.           Decide the selected cluster and store it. 

7.           Specify the winning cluster 𝑖∗ with 𝑝𝑖∗ = max( 𝑝𝑖) and store it. 

8.      Compute 𝐽 using Eq. 3.21 the reinforcement 𝑟 using Eq. 3.22 and the baseline �̅� using 

Eq. 3.23. 

9.      For 𝑥𝑛 ∈ 𝑋, 𝑛 = 1,… ,𝑁 do 

10.           Compute and store the updates of weight vectors 𝛥𝑤𝑖𝑗
(𝑛)
, 𝑖 = 1, … , 𝐿 using Eq. 3.24. 

11.  Update the winning cluster prototypes using Eq. 3.25. 

 

Concluding, batch-RMS is based on the same reinforcement clustering approach like RMS 

does. The main difference is that it operates in batches, while the RMS operates online. 

Because of this, it is necessary to use a different approach to specify the reinforcement signal 

that exploits the property that first all patterns are presented to the system and then the update 
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of parameters is implemented. To this way the reinforcement signal 𝑟 is directly related to 

clustering error 𝐸 (Eq. 3.22). The batch-RMS performs local stochastic optimization of the 

clustering error. Finally, we assume that the number of the clusters is known and provided as 

input to the algorithm. 

In Chapter 4 that follows, we present comparative experimental results of four algorithms, 

LVQ, RGCL, RMS and batch-RMS. 
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CHAPTER 4  

EXPERIMENTAL STUDY 

4.1      Evaluation 

4.2      Experimental Results 

4.3      Discussion 

 

In this chapter we present experiments using the two proposed algorithms, which are 

compared with LVQ and RGCL. We test them in real and artificial datasets. The code has 

been implemented in Python 3.5. 

 

4.1 Evaluation 

 

The performance of our algorithms is measured on synthetic data, as well as on real ones. The 

real datasets concern objects images (Coil-20 dataset) and collections of handwritten digits 

(Pendigits dataset).  

As we mentioned in previous chapter, we evaluate the clustering solution through clustering 

error. The clustering error is defined as the sum of distances of every input from its closest 

cluster representative 

 𝐽 = ∑min𝑟𝑑(𝑥𝑛, 𝑤𝑟)

𝑁

𝑛=1

 (4.1) 
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where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁) is the dataset and 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝐿) are the cluster 

representatives of the 𝐿 clusters. Thus, the lower the clustering error is, the better the 

performance of the algorithm. 

Also, we use Normalized Mutual Information (NMI) criterion to evaluate our clustering 

performance. NMI derives from entropy in information theory. Let 𝐻(𝑋) =

−∑ 𝑝(𝑥) log 𝑝(𝑥)𝑥  be the entropy of a discrete random variable 𝑋.  The mutual information 

of two random discrete variables that measures the mutual dependence between them, can be 

defined as 𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌), where 𝐻(𝑋|𝑌) = −∑ ∑ 𝑝(𝑥, 𝑦)log 𝑝(𝑥|𝑦)𝑥𝑦  is the 

conditional entropy between 𝑋, 𝑌.  According to this, the normalized mutual information 

(NMI) is defined as follows  

 𝑁𝑀𝐼(𝑋, 𝑌) =
2𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 (4.2) 

Nowadays NMI has become the most widely used criterion for evaluation of clustering 

methods solutions, if the ground truth labels are known. In our case, because the ground truth 

labels are given for all datasets, we use the criterion to compare them with the predicted ones 

provided by each algorithm. NMI score ranges between 0.0 and 1.0, with 1.0 indicating 

perfect cluster labeling. Obviously, higher NMI values indicate a better match between 

ground truth cluster labels and the predicted ones. It worth noticing that ground truth labels 

are used only to compute NMI score and we make no use of them during the clustering phase.  

We evaluate the performance of clustering algorithms as follows. For each dataset, we 

conducted 20 experiments for every of the four algorithms: LVQ, RGCL, RMS and batch-

RMS. Consequently, we have 20 different initial states selected randomly. In every 

experiment all the algorithms are executed from the same random initial state. Also, each 

algorithm, is executed for 200 epochs. One epoch is completed when all data points have been 

presented to the system. During the execution of each algorithm we keep track the best 

solution so far. As best solution we define the clustering solution at a specific epoch where the 

algorithm achieves the lowest clustering error. Having stored this solution after training, we 

apply the k-Means algorithm once in order to achieve convergence and store the values of 

clustering error and NMI for evaluation and comparison. 

More specifically, for a fair comparison, we calculate for each algorithm the averages of 

clustering error and NMI. However, average is not always a good measure since it is affected 
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from extreme values in the sample. Thus, in order to detect if there is difference between 

average values indeed, we perform a t-test between the clustering errors obtained from the 20 

different experiments. 

Basically, a t-test tells how significant the differences between groups are, in this case 

between clustering errors. In other words, it let us know if these differences happened by 

chance. Difference is measured by a t-score. The t-score is a ratio between the difference 

between two groups and the difference within the groups. Thus, the larger the t-score, the 

more difference there is between groups, or the smaller the t-score, the more similarity there is 

between them. Moreover, every t-value has a p-value to go with. A p-value is the probability 

that indicates if the results from our sample occurred by chance. P-values are from 0% to 

100% and are usually written as a decimal. Low p-values are good because they indicate that 

data did not occur by chance.  

There are different types of t-tests. In our evaluation we use the independent sample t-test that 

compares the averages of two groups. The null hypothesis is that the two independent samples 

have identical average values. So, we reject the null hypothesis of equal averages if the p-

value is smaller than a threshold, e.g. 1%, 5%, or 10%. In any other case we cannot reject it. 

We perform the t-test on the clustering errors of the following pairs of algorithms. RMS vs 

RGCL, RMS vs LVQ, RMS vs batch-RMS, LVQ vs batch-RMS, RGCL vs batch-RMS. We 

implement the t-test in Python with the help of Scipy package. 

Finally, besides averages and t-test, we also measure for every dataset the percentage of the 

20 experiments for which the performance of every algorithm was superior. For example, we 

detect which one algorithm achieves the lowest clustering error in the first experiment, which 

one in the second, etc. Experimental results are presented in the next subsection. 
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4.2 Experimental Results 

4.2.1 Synthetic Data  

 

We created three different synthetic datasets using a procedure that generates a mixture of 

various cluster structures, and specifically structures such as gaussian, student-t, uniform 

rectangle and uniform oval. The function accepts as input the desirable size of dataset, the 

number of clusters and the dimension of the samples of the dataset. The default type of 

clusters structure is a random combination of the structures mentioned above, but there is an 

option to choose any structure that we prefer. 

The first artificial dataset (Synthetic1) is a 2-dimensional dataset of 500 examples. The 

structure of the clusters is a mixture of 4 gaussian, 1 student-t, 3 uniform rectangle and 2 

uniform oval distributions. Thus, we have 10 clusters. Because every sample is a 2- 

dimensional vector, we present a visualization of the dataset in Fig. 4.1 (a). The second 

dataset (Synthetic2) is also a 2-dimensional dataset of 1500 examples and 20 clusters; 5 

gaussian, 4 student-t, 4 uniform rectangle and 7 uniform oval cluster structures. We also 

provide a visualization of it in Fig. 4.2 (a). Finally, the last dataset (Synthetic3) is a 10-

dimensional dataset of 500 examples that has 20 clusters; 3 gaussian, 5 student-t, 7 uniform 

rectangle and 5 uniform ovals.  

As we mentioned previously, in RMS algorithm the update equation (Eq. 3.18), has a 

parameter 𝑎, the learning rate.  We choose for all the three synthetic datasets the learning rate 

of all algorithms to be 𝑎 = 0.01 until epoch 150 and then it becomes 𝑎 = 0.001. We follow 

this because we want the algorithm to initially “explore” with a larger value of learning rate 

and then we restrict it at a lower one in order to converge. Moreover, for the batch-RMS 

algorithm, as we presented in chapter 3, we use the baseline of Eq.3.24 to the update equation 

Eq. 3.25. We choose the parameter 𝛾 to be equal to 0.999 for all experiments. Finally, as far 

as the 𝑇 parameter is concerned, in all experiments we choose it equal to 1. 

A summarization of the main characteristics of the tested datasets is presented in Table 4.1 

containing the synthetic and real datasets as well. Tables 4.2 - 4.7 present the results for 

Synthetic1, Synthetic2 and Synthetic3 datasets. 
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In general, we notice that the RMS algorithm usually demonstrates the best performance 

compared to the other clustering algorithms.  

 

Table 4.1: A summarization of the tested datasets. 

Dataset Instances Features Clusters 

Synthetic1 500 2 10 

Synthetic2 1500 2 20 

Synthetic3 500 10 20 

Pendigits 3715 16 5 

Coil1 216 1000 3 

Coil3 360 1000 5 

 

 

Table 4.2: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Synthetic1 dataset. 

Dataset: Synthetic1 RMS batch-RMS RGCL LVQ 

Average J  19.266  47.862 39.351 37.028 

Average NMI 0.9522 0.9015 0.9024 0.9037 

Percentage  86.25% 6.25% 6.25% 1.25% 

 

 

More specifically, for Synthetic1, from the Table 4.2 and Table 4.3, it can be observed that 

RMS has the minimum average clustering error and the maximum average NMI, with the 

difference in clustering error being statistically significant for p-value threshold 0.1. Also, 

RMS gives the lowest clustering error at the majority of the experiments (86.25%). 
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Table 4.3: t-scores and p-values for Synthetic1 dataset. 

Dataset: Synthetic1 (t-score, p-value) 

RMS vs RGCL (-2.0133, 0.0512) 

RMS vs LVQ (-1.9895, 0.0538) 

RMS vs batch-RMS (-2.9469, 0.0054) 

LVQ vs batch-RMS (-0.9581, 0.3440) 

RCGL vs batch-RMS (-0.7003, 0.4879) 

 

 

Table 4.4: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Synthetic2 dataset. 

Dataset: Synthetic2 RMS batch -RMS RGCL LVQ 

Average J  28.536 68.346  69.019 66.435 

Average NMI 0.9559 0.9190 0.9217 0.9200 

Percentage 100% - - - 

 

 

Table 4.5: t-scores and p-values for Synthetic2 dataset. 

Dataset: Synthetic2 (t-score, p-value) 

RMS vs RGCL (-5.9459, 6.753e-07) 

RMS vs LVQ (-5.6542, 1.6972e-06) 

RMS vs batch-RMS (-5.1319, 8.7865e-06) 

LVQ vs batch-RMS (-0.1960, 0.8456) 

RCGL vs batch-RMS (0.0685, 0.9457) 
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Table 4.6: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Synthetic3 dataset. 

Dataset: Synthetic3 RMS batch-RMS RGCL LVQ 

Average J  765.375  826.361 963.917  997.313  

Average NMI 0.9121 0.9041 0.8967 0.8980 

Percentage 60% 25% 12.5% 2.5% 

 

Again, for Synthetic2 dataset RMS algorithm has the best clustering performance, achieving 

the lowest clustering error at the 100% of the experiments and the minimum average of 

clustering error as well, with the superiority being statistically significant. 

 

Table 4.7: t-scores and p-values for Synthetic3 dataset. 

Dataset: Synthetic3 (t-score, p-value) 

RMS vs RGCL (-2.8797, 0.0065) 

RMS vs LVQ (-3.7858, 0.00053) 

RMS vs batch-RMS (-0.9059, 0.3706) 

LVQ vs batch-RMS (2.7740, 0.0085) 

RCGL vs batch-RMS (1.9859, 0.0542) 

 

As we understand from the experimental results of the three synthetic datasets, RMS has the 

best performance. For Synthetic1 and Synthetic2 batch-RMS, LVQ and RGCL seem to have 

no difference on the averages of the clustering error according to the t-test since the p-value is 

higher than the threshold of 0.1, although batch-RMS achieves the second best percentage of 

superiority of the experiments. On the other hand, at Synthetic3, it is clear that batch-RMS 

has the second best performance after RMS, since Table 4.7 indicates clearly the difference 

between the averages of LVQ, RGCL versus batch-RMS. Because Synthetic1 and Synthetic2 

are datasets with 2-dimensional data points, in Fig. 4.1 and Fig. 4.2 we demonstrate the 

clustering solution given by each algorithm.  
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                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

 

                                 (e)                                                                         (f) 

Figure 4.1: (a) Visualization of Synthetic1 dataset (b) Synthetic1 dataset and initial canters (c) 

Synthetic1 dataset and centers after running LVQ (d) Synthetic1 dataset and centers after 

running RGCL (e) Synthetic1 dataset and centers after running RMS (f) Synthetic1 dataset and 

centers after running batch-RMS. 
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                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

 

                                 (e)                                                                         (f) 

Figure 4.2: (a) Visualization of Synthetic2 dataset (b) Synthetic2 dataset and initial canters (c) 

Synthetic2 dataset and centers after running LVQ (d) Synthetic2 dataset and centers after 

running RGCL (e) Synthetic2 dataset and centers after running RMS (f) Synthetic2 dataset and 

centers after running batch-RMS. 
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More specifically, for the Synthetic1 and Synthetic2 datasets, Fig. 4.1 (a) and Fig. 4.2 (a) 

presents a plot of data and Fig. 4.1. (b) and Fig. 4.2 (b) present along with the data, the 

randomly initialized centers, respectively. The remaining subfigures present the final solution 

of the four algorithms; LVQ, RGCL, RMS and batch-RMS respectively. It can be noticed that 

RMS provides the best clustering solutions. 

Since all tested algorithms aim at minimizing the clustering error, in the next figures we 

present some indicative diagrams of the evolution of clustering error with respect to the 

number of epochs. 

From the plot of the clustering error, it is obvious that the RMS and batch-RMS algorithms 

exhibit higher stochasticity while RGCL explores in a stricter way and LVQ in a completely 

deterministic way. LVQ converges very fast to the final solution between epoch 3 and 5. 

 

                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

Figure 4.3: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Synthetic1 dataset. 
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                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

Figure 4.4: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Synthetic2 dataset. 

 

                                 (a)                                                                     (b) 
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                                 (c)                                                                     (d) 

Figure 4.5: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Synthetic3 dataset. 

From the plots we can see that there are cases where the clustering error of RMS and batch-

RMS takes intermediate values higher than LVQ error. This happens because the proposed 

algorithms seek for a good clustering solution stochastically, thus they may not reach 

immediately the lowest values of clustering error. Therefore, we apply k-Means at the end, in 

order for the algorithms to converge deterministically. Through this we observe that the 

clustering error is lowest eventually than the one found by LVQ. Thus, we conclude that the 

stochastic exploration property of the algorithms results in a better clustering solution, if it is 

followed by some exploitation. 

 

4.2.2 Real Data 

 

The four algorithms have been compared in real data as well. We choose two different 

datasets of real data. The first one is Pendigits dataset which is a digit database of 250 

samples of handwritten digits (from 0 to 9) from 44 writers. Each sample has 16 features 

meaning that is a 16-dimensional vector and the total number of samples is 10992. From this 

dataset, we choose only the five odd digits to test the four algorithms. So, the used dataset is a 

subset of the Pendigits dataset containing the digits 1, 3, 5, 7, 9. Thus, we have 5 clusters and 

3715 examples. The experimental results are presented in tables Table 4.8 and Table 4.9. 
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Also, we tested our algorithms in Coil-20 dataset, which is comprised of 72 images taken 

from different angles for each of 20 selected objects. For our purposes, we use two subsets of 

the dataset, the first one named Coil1 dataset, includes 3 objects and has 216 examples and 

the second one, named Coil3 includes 5 objects and has 360 examples. Each sample has 1000 

features. A summarization of the three datasets has been presented in Table 4.1. Moreover, for 

the three real datasets we choose the learning rate to be equal to 𝑎 = 0.001. The parameter 𝛾 

of the baseline at batch-RMS algorithm is 0.999 and 𝑇 is set equal to 1. Finally, for the t-test 

we consider the p-value 0.1 to be the threshold and all datasets are normalized. Tables 4.8-

4.13 demonstrate the experimental results. 

The results in Table 4.8 and Table 4.9 concerning the Pendigits (1,3,5,7,9) dataset, 

demonstrate that all algorithms besides LVQ achieve similar clustering performance in terms 

of NMI. However, RMS achieves the lowest clustering error in the highest percentage of 

experiments. 

 

Table 4.8: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Pendigits (1,3,5,7,9) dataset. 

Dataset: Pendigits 

(1,3,5,7,9) 

RMS batch-RMS RGCL LVQ 

Average J  14635.541  14991.789  14646.963  17014.876  

Average NMI 0.5485 0.5297 0.5507 0.5187 

Percentage 37.5% 15% 32.5% 15% 

 

 

As far as Coil1 and Coil3 datasets are concerned, from the results we conclude that batch-

RMS has the best performance, while the others seem to provide similar results. Also, batch-

RMS achieves the lowest clustering error in the highest percentage of experiments. The 

second best percentage corresponds to RMS, although its average clustering error is not 

different from RGCL and LVQ.    
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Table 4.9: t-scores and p-values for Pendigits (1,3,5,7,9) dataset. 

Dataset: Pendigits 

(1,3,5,7,9) 

(t-score, p-value) 

RMS vs RGCL (-0.0219, 0.9826) 

RMS vs LVQ (-4.7481, 2.906e-05) 

RMS vs batch-RMS (-0.7060, 0.48446) 

LVQ vs batch-RMS (4.3456, 9.997e-05) 

RCGL vs batch-RMS (-0.7089, 0.4826) 

 

 

Table 4.10: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Coil1 dataset. 

Dataset: Coil1 RMS batch-RMS RGCL LVQ 

Average J 130.991 121.993 129.544 130.056 

Average NMI 0.7892 0.9343 0.8081 0.8141 

Percentage 17.08% 52.08% 15.415% 15.415% 

 

 

Table 4.11: t-scores and p-values for Coil1 dataset 

Dataset: Coil1 (t-score, p-value) 

RMS vs RGCL (0.2831, 0.7785) 

RMS vs LVQ (0.1798, 0.8581) 

RMS vs batch-RMS (2.0063, 0.0519) 

LVQ vs batch-RMS (1.9756, 0.0554) 

RCGL vs batch-RMS (1.9029, 0.0646) 
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Table 4.12: Average clustering error (J), average NMI and percentage of algorithm superiority 

for 20 experiments with Coil3 dataset. 

Dataset: Coil3 RMS batch-RMS RGCL LVQ 

Average J 264.226 251.591 262.563 264.021 

Average NMI 0.6974 0.8529 0.7091 0.6945 

Percentage 15% 85% - - 

 

 

Table 4.13: t-scores and p-values for Coil3 dataset 

Dataset: Coil3 (t-score, p-value) 

RMS vs RGCL (0.4852, 0.6302) 

RMS vs LVQ (0.0571, 0.9547) 

RMS vs batch-RMS (3.9142, 0.00036) 

LVQ vs batch-RMS (4.2627, 0.00012) 

RCGL vs batch-RMS (4.0322, 0.00025) 

 

 

                                 (a)                                                                     (b) 
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                                 (c)                                                                     (d) 

Figure 4.6: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Pendigits (1,3,5,7,9) 

dataset. 

 

                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

Figure 4.7: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Coil1 dataset. 
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                                 (a)                                                                     (b) 

 

                                 (c)                                                                     (d) 

Figure 4.8: (a) Plot of clustering error of RMS (b) Plot of clustering error of batch-RMS (c) 

Plot of clustering error of RGCL (d) Plot of clustering error of LVQ, for Coil3 dataset. 

In Fig. 4.6-4.8 we provide some indicative plots of the evolution of clustering error for the 

four algorithms exactly as we did with the synthetic datasets. The plots demonstrate that the 

clustering error is minimized as iterations proceed. As we mentioned before, the learning rate 

in real datasets is equal to 0.001. For this reason, RMS and RGCL algorithm seem not to 

“explore” very much. We select a smaller learning rate because higher values lead to worse 

results.  
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4.3 Discussion 

 

Having presented the experimental results, we end up with some interesting conclusions. First 

of all, the two proposed algorithms, RMS and batch-RMS, lead to better results and better 

minimization of the clustering error than RGCL and LVQ do. It worth noticing that the four 

algorithms minimize the same criterion, the clustering error (Eq. 4.1). Therefore, we can 

claim that by inserting stochasticity in a clustering algorithm based on competitive learning 

and adjusting it properly with a reinforcement learning scheme leads to more efficient 

solutions.  

Moreover, another interesting result is that RMS and batch-RMS do not depend on the 

initialization of cluster representatives as much as LVQ does which always ends up in the 

same clustering solution. This happens because of the stochasticity included in the clustering 

scheme and implemented by MS units. Consequently, RMS and batch-RMS achieve a 

disparity in the clustering solutions even from the same initial parameters. As far as the 

comparison with RGCL is concerned, we notice that a single MS unit performs better than a 

team of Bernoulli units. Maybe this holds due to the fact that it is more efficient to train a 

single unit with multiple outcomes than a team of units with binary outcomes. 

The RMS algorithm and the RGCL are used without the baseline. We choose not to use it 

because preliminary results indicated that baseline in RMS does not provide noticeable 

difference. However, in batch-RMS the baseline is necessary, because the update of the 

parameters is not performed after each sample has been presented to the system but after all 

samples have been used. Thus, we need information about the reinforcement values at 

previous steps in order to judge where the currently selected actions correspond to improved 

clustering error or not. Based on a lot of experiments, we have decided the parameter 𝛾 of the 

baseline, that actually defines how much important the past is, to be equal to 0.999 in all 

cases, thus we assign high importance to past values.  

Also, the learning rate parameter in the update equations of RMS, RGCL and batch-RMS has 

been selected empirically after several experiments. In order to achieve a fair comparison, all 

algorithms are executed with the same learning rate. However, we have empirically found that 

every algorithm needs its own learning rate to provide best performance. For example, batch-

RMS needs a lower learning rate than RMS or RGCL, while RGCL needs the highest values. 
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Also, we have noticed that in the synthetic datasets we get similar results even with higher 

learning rate values. On the other hand, in real datasets it is more efficient if the learning rate 

takes smaller values. 

RMS and batch-RMS depend on initialization. However, from the experimental results and 

especially at synthetic datasets where the cluster structure is known and the number of 

clusters is large, we notice that RMS can detect the real clusters very efficiently. Thus, we 

could say that RMS is effective in datasets with a big number of clusters. 

Furthermore, in the batch-RMS as we mentioned in Chapter 3, we design the reinforcement 

signal as  

 𝑟 =
𝑐

𝐸
 (4.3) 

where 𝑐 is a constant and 𝐸 is the clustering error. In all experiments, we choose constant 𝑐 to 

be equal to the value of the clustering error at the first epoch of each run. This has been 

chosen empirically based on the observation. Maybe there are other functions that lead to 

better or an alternative value of constant 𝑐 could have been selected. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1      Conclusion 

5.2      Future Work 

 

5.1  Conclusion 

 

In this thesis, we proposed two algorithms, the online RMS and batch-RMS, that cluster the 

data through a stochastic procedure, with the help of a reinforcement signal sent from the 

environment. The reinforcement signal indicates to the system if it operates well or not and 

the system learns to implement clustering strategy by maximizing this reinforcement signal. 

We use the family of REINFORCE algorithms to update system parameters. It was proved 

that the update of the parameters leads to the stochastic minimization of the well-known 

clustering error of k-Means.  

We tested our algorithms in real and synthetic datasets and compared the algorithms with 

LVQ for clustering and RGCL. We evaluated the four algorithms based on the clustering error 

and NMI. The results demonstrate that RMS and batch-RMS outperform RGCL and LVQ 

giving better clustering solutions in the majority of tested datasets, i.e. solutions with 

minimum clustering error and maximum NMI. Also, we noticed that our algorithms, because 

of their stochasticity, overcome more efficiently the limitation of a bad initialization of the 

cluster representatives by exploring better the solution space and providing superior results. 

Furthermore, RMS proved to give promising results in datasets with a large number of 

clusters. 
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.        

5.2 Future Work 

 

Finally, we present some thoughts about potential future work and some preliminary studies 

on deep clustering: deep learning and clustering simultaneously.  

 

5.2.1 Deep Clustering 

 

Many reasons can affect the performance of a clustering algorithm. For example, one such 

reason can be the need of data preprocessing such as dimensionality reduction. With the term 

of dimensionality reduction, we mean that our data are projected from an initial space to 

another space with a lower dimension. This is very popular task nowadays since data usually 

suffer from the curse of dimensionality. Thus, in the case of clustering, instead of applying a 

clustering algorithm in the initial space, we may apply it in the projected one.  

Because of the success of deep neural networks (DNNs) in supervised and unsupervised 

learning, unsupervised deep learning approaches are widely used for dimensionality reduction 

prior to clustering. One such approach is the autoencoder, an unsupervised deep learning 

technique that uses DNNs in order to perform dimensionality reduction. More specifically, an 

autoencoder is a neural network that learns to copy its input to its output. It has an 

intermediate hidden layer, the code, and its constituted by two parts; an encoder that maps the 

input to the code and a decoder that maps the code to a reconstruction of the original input.  A 

visualization of the autoencoder is presented in Fig. 5.1. 

Thus, the objective function which an autoencoder tries to optimize, is the reconstruction error 

described by the equation 

 

𝐸𝑟𝑒𝑐 =∑min ‖𝑥𝑖 − 𝑥𝑖𝑟𝑒𝑐‖
2

𝑁

𝑖=1

 

(5.1) 
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where 𝑋 = (𝑥1, … , 𝑥𝑁) is a set of unlabeled data and 𝑥𝑖𝑟𝑒𝑐  is the reconstruction of 𝑥𝑖.  

 

 

Figure 5.1: Autoencoder. 

 

In several learning approaches, first the dimensionality of data is reduced and then any 

clustering algorithm is applied. In [7] a method has been proposed where dimensionality 

reduction (with deep learning techniques) and clustering are performed simultaneously. 

Inspired from this, we thought to use an autoencoder in order to reduce the dimensionality of 

data and in the corresponding latent space to cluster our data by applying the RMS algorithm 

simultaneously with the autoencoder training. This is made more clear in Fig 5.2. More 

specifically, the input 𝑥𝑖 will be projected through the encoder to 𝑧𝑖, the 𝑧𝑖 which correspond 

to the cluster prototypes will be updated by RMS update equation in order the clustering 

strategy to be implemented and then will be projected back to 𝑥𝑖𝑟𝑒𝑐  through the decoder. 

Consequently, the objective function to train the system is the sum of what the RMS 

minimizes and what the autoencoder minimizes, i.e. the objective function will be the sum of 

clustering error 𝐽 (in the latent space) and reconstruction error 𝐸𝑟𝑒𝑐,  

 

 𝐸 = 𝐽 + 𝐸𝑟𝑒𝑐 (5.2) 
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Figure 5.2: Deep clustering framework. 

In this way, the deep clustering network will update their parameters in order to achieve both 

clustering and 𝑥𝑖’s reconstruction. According to this deep clustering framework, we cluster 

our data in a latent space and not in the original one. This method may lead to more clustering 

friendly latent spaces.[7] 

Although this deep clustering network seems promising, our preliminary experimental results 

have shown that the deep clustering strategy does not lead to more improved results than 

those obtained by treating the dimensionality reduction with an autoencoder first and then 

apply RMS clustering in the latent space, separately. Thus, we are still not certain that a 

method that proposes RMS clustering and dimensionality reduction simultaneously is more 

efficient. For this reason, additional experimentation is needed to draw reliable conclusions. 

 

5.2.2 Other Future Work 

 

As far as the RMS and batch-RMS is concerned, some directions of future work are the 

following. First of all, alternative reward functions might be designed that lead to better 

performance. Furthermore, besides Bernoulli or MS units, maybe other types of stochastic 

units could be defined based on different probability distributions. 
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Another interesting potential work is to introduce the stochasticity not necessarily in the 

selection of a cluster prototype, but somewhere else, like in the distance computation for 

example. As we mentioned, the distance used here is the Euclidean and is calculated 

deterministically. It is possible that this distance can be modified by adding some noise 

resulting from some known probability distribution. Moreover, besides Euclidean distance, 

other distance metrics can also be used. 

RMS and batch-RMS optimize locally the clustering criterion, exactly like LVQ and RGCL 

do. Since the optimization is local, all the algorithms can be trapped in local minimum. A way 

to overcome this limitation is to use sustained exploration suggested in [1]. Another possible 

future work could be to find a better way to handle exploration versus exploitation. For 

example, through the execution of the algorithm, some steps could be deterministic and some 

other stochastic. Consequently, we will not apply the k-Means only at the end, but also 

somewhere in the intermediate steps of the algorithms. 

Finally, as we presented the batch-RMS algorithm updates only the winning cluster prototype 

based on the REINFORCE framework, making the algorithm stricter to the parameter 

updates. As future work we want to let the batch-RMS algorithm to “explore” more the 

solution space. Thus, instead of leaving the cluster prototypes that are different form the 

winning one unchanged, they maybe will be updated from the second term of the update 

equation (Eq. 3.24) as well. 
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