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ABSTRACT 

In this thesis, we address the problem of the short-term prediction of glucose concentration in 

the interstitial fluid in people with type 1 diabetes under free-living conditions. This thesis 

consists of three main parts. In the first part, we approached the specified problem via a time-

invariant support vector regression function of multiple input variables, concerning the recent 

subcutaneous glucose profile, the effect of food and insulin intake, the energy expenditure due 

to physical activities and the time of the day, which was evaluated individually for each patient. 

By utilizing different input cases, the effect of each input to the model’s prediction error was 

quantified and, it was demonstrated that the effective combination of multivariable data can 

significantly improve the prediction error. The subsequent study on the evaluation of the 

proposed model with respect to the prediction of single hypoglycaemic events, drove us to 

introduce new input variables accounting for recurrent nocturnal hypoglycaemia, due to 

antecedent hypoglycaemia, exercise, and sleep, which resulted in a considerably higher 

sensitivity and precision values. In the second part of this thesis, we proceeded to feature 

ranking for assessing, separately for each patient, the importance of the defined feature set with 

respect to subcutaneous glucose concentration prediction, aiming at the customization of the 

input of the regression function. To this end, the random forests and RReliefF algorithms were 

employed, and through a forward sequential feature selection procedure, we investigated the 

effectiveness of highly-ranked features on the prediction error by kernel-based regression 

models (support vector regression and Gaussian processes). In the third part of this thesis, we 

demonstrated the capability of sparse kernel adaptive filtering algorithms (i.e. fixed budget 

quantized kernel least mean square algorithm, and approximate linear dependency kernel 

recursive least squares algorithm) to learn online and predict the short-term course of the 

subcutaneous glucose concentration in type 1 diabetes. In parallel, we verified that multivariate 

data improve systematically both the regularity and the time lag of the predictions, reducing 

the errors in critical glucose value regions. 
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ΠΕΡΙΛΗΨΗ 

Η παρούσα διδακτορική διατριβή πραγματεύεται το πρόβλημα της βραχυπρόθεσμης 

πρόβλεψης της συγκέντρωσης της γλυκόζης στον υποδόριο χώρο σε άτομα με σακχαρώδη 

διαβήτη τύπου 1 και υπό κανονικές συνθήκες διαβίωσης. Η διδακτορική διατριβή αποτελείται 

από τρία μέρη. Στο πρώτο μέρος, προσεγγίσαμε το συγκεκριμένο πρόβλημα μέσω μίας 

χρονικά-αμετάβλητης συνάρτησης παλινδρόμησης διανυσμάτων υποστήριξης, η αξιολόγηση 

(εκπαίδευση και έλεγχος) της οποίας πραγματοποιήθηκε ξεχωριστά για τον κάθε ασθενή. Η 

είσοδος του μοντέλου περιγράφει το πρόσφατο ιστορικό της υποδόριας γλυκόζης, την 

επίδραση του φαγητού και της θεραπείας ινσουλίνης, την κατανάλωση ενέργειας κατά τις 

φυσικές δραστηριότητες, και χρονική πληροφορία αναφορικά με την ώρα της ημέρας κατά την 

οποία πραγματοποιείται η πρόβλεψη. Εξετάζοντας διαφορετικές περιπτώσεις εισόδου, 

ποσοτικοποιήσαμε την επίδραση κάθε μεταβλητής στο σφάλμα πρόβλεψης της συγκέντρωσης 

της γλυκόζης, και δείξαμε ότι ο συνδυασμός πολύ-μεταβλητών δεδομένων βελτιώνει 

σημαντικά το σφάλμα πρόβλεψης. Εν συνεχεία, εξετάσαμε τη συμπεριφορά του 

προτεινομένου μοντέλου ως προς την πρόβλεψη των μεμονωμένων υπογλυκαιμικών 

επεισοδίων. Η μελέτη αυτή μας οδήγησε στην εισαγωγή νέων μεταβλητών εισόδου οι οποίες 

στοχεύουν να περιγράψουν την επίδραση της προηγηθείσας υπογλυκαιμίας, της άσκησης και 

του νυχτερινού ύπνου στην εκδήλωση ενός υπογλυκαιμικού επεισοδίου, οι οποίες και 

βελτίωσαν την ευαισθησία και τη θετική προγνωστική αξία του μοντέλου. Στο δεύτερο μέρος 

της παρούσας διδακτορικής διατριβής προχωρήσαμε σε τεχνικές κατάταξης χαρακτηριστικών 

για την αξιολόγηση της προβλεπτικής αξίας του συνόλου των χαρακτηριστικών, με απώτερο 

στόχο την εξατομίκευση της εισόδου της συνάρτησης παλινδρόμησης της συγκέντρωσης της 

γλυκόζης στον υποδόριο χώρο. Ειδικότερα, χρησιμοποιήσαμε τον αλγόριθμο τυχαίων δασών 

και τον αλγόριθμο RReliefF, και μέσω μιας διαδικασίας εμπρόσθιας διαδοχικής επιλογής 

χαρακτηριστικών, διερευνήσαμε την επίδραση των πιο σημαντικών χαρακτηριστικών στο 

σφάλμα πρόβλεψης των βασιζόμενων σε συναρτήσεις πυρήνα μοντέλων παλινδρόμησης 

(παλινδρόμηση διανυσμάτων υποστήριξης και Gaussian διαδικασίες). Στο τρίτο μέρος της 

παρούσας διδακτορικής διατριβής, προτείναμε την προσαρμοστική εκμάθηση και πρόβλεψης 
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της βραχυπρόθεσμη πορείας την υποδόριας συγκέντρωσης της γλυκόζης στον διαβήτη τύπου 

1 μέσω αραιών αναπαραστάσεων προσαρμοστικών φίλτρων πυρήνα. Ειδικότερα, οι 

αλγόριθμοι που εξετάσαμε αποτελούν αναπαραστάσεις της μεθόδου ελαχίστων μέσων 

τετραγώνων και επαναληπτικών ελαχίστων τετραγώνων στον χώρο συναρτήσεων Hilbert με 

αναπαραγωγικό πυρήνα. Παράλληλα, επαληθεύσαμε ότι, όταν λαμβάνονται υπόψιν οι 

εξωγενείς είσοδοι, υπάρχει συστηματική βελτίωση της ποιότητας των προβλέψεων, ως προς 

την ομαλότητα και τη χρονική υστέρηση, καθώς και μείωση του σφάλματος στις κρίσιμες 

περιοχές της υπογλυκαιμίας και υπεργλυκαιμίας. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Thesis Motivation 

1.2 Overview of the Thesis 

 

1.1 Background and Thesis Motivation 

Diabetes is a group of metabolic disorders characterized by hyperglycaemia resulting from 

defects in insulin secretion, insulin action or both [1]. Type 1 diabetes results from a cellular-

mediated autoimmune destruction of the β-cells in the pancreas leading to absolute insulin 

deficiency. On the other hand, type 2 diabetes is characterized by a progressive loss of insulin 

secretion on the background of insulin resistance [2]. According to the International Diabetes 

Federation, the number of people (adults 20-79 years) with diabetes worldwide is estimated to 

rise from 415 million in 2015 to 642 million in 2040, while the incidence of type 1 diabetes 

among children and adolescents is increasing by around 3% annually. Moreover, the long-term 

microvascular and macrovascular complications related to chronic hyperglycaemia render 

diabetes a major cause of early death in most countries. 

The most vital and challenging issue for people with type 1 or advanced type 2 diabetes 

is the achievement and maintenance of euglycaemia overtime in a safe manner. Intensive 

insulin therapy (IIT), implemented by either multiple daily insulin injections (MDI) or 

continuous subcutaneous insulin infusion (CSII), could be the remedy to hyperglycaemia in 

type 1 diabetes should it did not increase the risk of hypoglycaemia [3]. The effective 

integration of continuous glucose monitoring (CGM) and CSII technologies into one system, 

i.e. sensor-augmented pump (SAP), allows for improvements in glycaemic control of type 1 

diabetes when compared with MDI therapy or the individual components alone [1, 4, 5]; 

however, the problem of severe hypoglycaemia and, in particular, nocturnal hypoglycaemia is 

not solved. CGM enabled a high time-resolution description of the short-term glucose 

dynamics in the subcutaneous space, the awareness of which by both patients and physicians 
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has been shown to improve the long-term glycaemic control [i.e. glycated haemoglobin 

(HbA1c) levels] in type 1 diabetes and facilitate the evaluation of the response to therapy, as 

compared to self-monitoring of the blood glucose concentration (SMBG). The continuously 

improved accuracy of CGM effected its approval for making therapeutic decisions in Europe 

[6, 7]. However, there is still room for improvement in the hypoglycaemic range which, in 

conjunction with the lag time of interstitial fluid glucose concentration relative to blood glucose 

concentration, hinders the precise detection of hypoglycaemia based merely on CGM data. In 

addition, only the combined use of CGM, CSII and blood glucose predictive algorithms has 

been shown to reduce the incidence and duration of hypoglycaemia, though it may come at a 

price of an increase in hyperglycaemia [8, 9]. More specifically, the integration of low-glucose 

predictive alerts into today open- or hybrid closed loop systems of glycaemic control in 

diabetes is imperative towards minimizing the risk of hypoglycaemic events or hyperglycaemic 

excursions [10, 11].  

Medical care in diabetes can be enhanced by the development of computational models 

of blood glucose metabolism able to predict the blood glucose response to various stimuli. In 

particular, short-term predictive modelling of blood glucose concentration has the potential to 

further advance insulin-treated diabetes management either: (i) in open loop conditions by 

providing advanced knowledge of abnormal glycaemic variations and facilitating the 

appropriate patient reaction in crucial situations, such as asymptomatic hypoglycaemia, or (ii) 

in closed loop conditions as an integral component of the control algorithm of an artificial 

pancreas system [12-15]. To this end, more dynamic and sensitive to overall patient’s context 

predictive algorithms may result in tighter glycaemic control minimizing the risk of 

hypoglycaemia and setting the appropriate conditions for closing the loop during the day. 

Motivated by the need for a more precise daily care of type 1 diabetes, this thesis’s 

primary objective is the development of a personalized, adaptive, real-time, data driven 

computational solution to the short-term predictive modelling of subcutaneous glycaemic 

dynamics in type 1 diabetes, which shall be highly accurate as well as computationally 

efficient. In particular, we aim at establishing a multivariate nonlinear prediction model of 

subcutaneous glucose concentration course in type 1 diabetes capable of learning the short-

term effect of insulin therapy, carbohydrate content of meals and physical activity on the 

subsequent glycaemic dynamics under free-living conditions. We place special emphasis on 

the assessment of its predictive capacity in critical glucose value regions (i.e. hypoglycaemia 

and hyperglycaemia) and, especially, as regards the prediction of hypoglycaemic events 
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overnight. In this direction, a subsequent objective became to assess the significance of the 

defined feature set and to define the minimum feature set maximizing the generalization 

capability of the predictive model. Considering the intrinsic nonlinearity and non-stationarity 

of the blood glucose regulatory system, we opted for nonlinear dynamical machine learning 

models aiming at establishing an adaptive solution which may explain the intra-patient and 

inter-patient variability. Mathematical models of the kinetics of exogenous materials (i.e. 

subcutaneously administered insulin, carbohydrates ingestion) in the glucose-insulin system 

are also employed at the input level of the data-driven models. Throughout the doctoral 

research, a multivariate dataset aggregating daily self-monitoring health, behavioural, and 

physiological data and characterized by a high-level of input excitation is exploited, which 

supported learning the different modes the glucose-insulin regulatory system. 

1.2 Overview of the Thesis 

The thesis is organized as follows: 

The second chapter presents the medical background of the normal physiology of blood 

glucose metabolism and the pathophysiology of diabetes. Special focus is given on the glucose 

counterregulatory mechanisms which are responsible for the prevention or correction of the 

hypoglycaemia. In addition, existing approaches to the assessment of glycaemic control and 

the principles of insulin therapy are discussed. The clinical impact of more advanced medical 

technologies for monitoring and controlling blood glucose levels (i.e. CGM, CSII) in type 1 

diabetes is also pointed out, as well as of current paradigms of closed-loop blood glucose 

control systems. 

The third chapter presents the current status of the literature in the field of identification 

and short term prediction of the subcutaneous glucose concentration in type 1 diabetes. The 

existing modelling approaches were stratified with respect to the type of the learning method 

(batch vs. online learning), and, the type of the regression function (i.e. linear or nonlinear 

function of the input), whereas specific details are provided as regards the dataset, the defined 

feature set, the training/testing procedure, and the estimation of the generalization error. A 

separate section is devoted to the sub problem of hypoglycaemic events prediction, which is 

formulated either as a regression or a classification function. In this chapter, the contribution 

of the thesis along with the novelties that it introduces are clearly stated. 
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In the fourth chapter, we present our first approach to short-term predictive modelling 

of the subcutaneous glucose concentration in type 1 diabetes. The chapter is divided into two 

main parts. In the first part, we describe the formulation of the respective multivariate 

regression problem, the determination of the input, as well as, the individual modules of the 

proposed method [i.e. support vector regression (SVR), physiological models of the kinetics of 

subcutaneously administered insulin and glucose ingestion]. In addition, we provide a 

systematic evaluation of the effect of the exogenous inputs [i.e. plasma insulin concentration, 

appearance of meal-derived glucose in the systemic circulation, energy expenditure (EE) 

during physical activities] on the daily glucose prediction both in normal and critical glucose 

value regions, by employing established goodness-of-fit metrics and procedures. The second 

part presents a thorough evaluation of the performance of the SVR-based glucose prediction 

model with respect to the prediction of individual hypoglycaemic events, emphasizing on the 

definition of a hypoglycaemic event and, subsequently, a true positive prediction.  

In the fifth chapter, we present our study on the individualized evaluation of the short 

term predictors of subcutaneous glucose concentration and the subsequent refinement of the 

model’s input. In particular, we propose feature ranking as a pre-processing step in the 

construction of patient-specific glucose predictive models. The results derived from two feature 

evaluation algorithms suitable for regression problems [i.e. random forests (RF), RReliefF] are 

discussed, and their generality and effectiveness is demonstrated with respect to the 

performance of kernel-based regression modelling [i.e. SVR, Gaussian processes (GP)] by 

employing a forward feature selection procedure. 

In the sixth chapter, we approach the problem of subcutaneous glucose concentration 

prediction in type 1 diabetes from the point of view of nonlinear adaptive models for regression. 

Kernel adaptive filtering (KAF) is proposed as a learning scheme for the nonlinear dynamical 

system of glucose and, particularly, we analyse KAF methods which generalize least mean 

square or recursive least squares algorithms in a reproducing kernel Hilbert space (RKHS) 

yielding, in parallel, a sparse regularized solution. Similarly to our previous studies, the 

influence of the multivariate feature set on the generalization capability of the model, especially 

in the regions of hypoglycaemia and hyperglycaemia, is systematically investigated. 

Finally, in the seventh chapter, the conclusions of this thesis are highlighted, based on 

the results and limitations as they result from the previous chapters. Directions and trends for 

future research in the field are also discussed. 
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CHAPTER 2. BLOOD GLUCOSE METABOLISM AND 

TYPE 1 DIABETES 

2.1 Physiology of the Blood Glucose Metabolism 

2.2 Diagnosis and Classification of Diabetes 

2.3 Assessment of Glycaemic Control 

2.4 Insulin Therapy 

 

2.1 Physiology of the Blood Glucose Metabolism 

2.1.1 Blood Glucose Metabolism 

Blood glucose is derived from three sources: (i) the intestinal absorption of glucose following 

the ingestion of a meal, (ii) the breakdown of glycogen in liver and muscles (i.e. 

glycogenolysis), and (iii) the synthesis of glucose in liver and kidney from other substrates (i.e. 

gluconeogenesis); lactate, alanine and glycerol are the major gluconeogenic precursors. 

Glucose transported into tissues is either metabolized via glycolysis to pyruvate, which in turn 

is either completely oxidized or converted to lactate, or is directly stored as glycogen into the 

liver and muscles [16]. 

Blood glucose diffuses down the concentration gradient, from the capillaries, via the 

interstitial fluid, into tissue cells. Glucose transport across cell membranes is facilitated by 

specific proteins, embedded in the membrane, which are called glucose transporters, with the 

GLUT family of passive glucose transporters allowing the movement of glucose across a cell 

membrane down a concentration gradient. Assuming Michaelis-Menten kinetics, each member 

GLUTn of the GLUT family is characterized by a Michaelis-Menten constant mK . Tissues 

requiring a constant glucose uptake (e.g. the brain), independently of the extracellular glucose 
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concentration over the normal range, express GLUT with a low mK  value. The sodium-

glucose cotransporter (SGLT) family consists of active glucose transporters which allow the 

movement of glucose across a cell membrane up a concentration gradient. 

The liver plays a significant role in carbohydrate metabolism. The nutrients absorbed 

from the small intestine into the blood are first transported, via the hepatic portal vein, into the 

hepatocytes, before they reach the systemic circulation. The key glucoregulatory hormones 

insulin and glucagon, which are secreted by the pancreas, are also first transferred to the liver 

via the hepatic portal vein. Glucose transport into hepatocytes is facilitated by the GLUT2 

transporter which is characterized by a relatively high mK  value ( 7 20mK    mmol·L-1), 

which, in turn, implies that the glucose uptake rate by hepatocytes is determined by the 

concentration gradient across the hepatocyte membrane. Glucose is phosphorylated 

intracellularly by the enzyme glucokinase to form glucose 6-phosphate, which is either stored 

as glycogen or is glycolyzed. Hepatic glycogen synthesis is stimulated postprandially by 

insulin, which brings about the activation of the main regulatory enzyme of glycogen synthesis, 

i.e. glycogen synthase. Concurrently, insulin inhibits glycogen breakdown by inactivating the 

key enzyme, i.e. glycogen phosphorylase. The pathway of glycolysis is also stimulated by 

insulin. A decrease in insulin to glucagon ratio (e.g. during overnight fasted conditions) will 

bring about the activation of glycogen phosphorylase and, concurrently, the inactivation of 

glycogen synthase, favouring glycogen breakdown and the formation of glucose 6-phosphate. 

Glucose 6-phosphate is converted to glucose by glucose-6-phosphatase and, then it is released 

into the circulation via the GLUT2 transporter. Besides glucagon, epinephrine also regulates 

the activation of glycogen phosphorylase. The synthesis of glucose 6-phosphate from other 

substrates, gluconeogenesis, takes also place in the liver, and similarly to glycogenolysis, it is 

stimulated by glucagon and inhibited by insulin. Hepatic gluconeogenesis is additionally 

regulated by the rate of supply of gluconeogenic precursors from other tissues. 

The energy demands of the brain are entirely covered by glucose oxidation (except in 

the case of prolonged starvation), accounting for 20% of whole body daily EE (120 g of 

glucose). The presence, predominantly, of GLUT3 ( 1.6mK   mmol·L-1) as well as GLUT1 (

5 7mK    mmol·L-1) transporters accomplishes a constant glucose utilization rate by brain 

cells. Other tissues, such as the skeletal and cardiac muscle and the adipose tissue, use either 

glucose or free fatty acids as a metabolic fuel depending on their blood availability. Glucose 
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uptake by these tissues is mainly facilitated by the insulin-sensitive GLUT4 glucose 

transporters ( 5mK   mmol·L-1); when insulin binds to its receptors, GLUT4 glucose 

transporters move from the cell interior, where they are stored in membrane vesicles, to the cell 

membrane increasing thus the glucose uptake rate. It should be mentioned that glucose within 

the skeletal muscle cell enters either the glycolytic pathway or is stored as glycogen; however, 

muscle glycogen cannot contribute directly to blood glucose due to the lack of the glucose-6-

phosphatase enzyme. 

2.1.2 Blood Glucose Regulation 

Blood glucose homeostasis is precisely coordinated by: (i) hormones and neurotransmitters 

regulating intermediary metabolism (i.e. glucose, fatty acid, and amino acid metabolism), (ii) 

proteins, enzymes and other small molecules involved in glucose metabolism pathways within 

cells, and (iii) gluconeogenic substrates [17, 18]. Insulin, which is secreted from the β-cells of 

the pancreatic islets, is the main regulatory hormone of blood glucose. Insulin binding to its 

receptor proteins embedded in the cell surface: (i) stimulates glucose uptake by insulin-

sensitive tissues (i.e. skeletal and cardiac muscle, adipose tissue), (ii) suppresses hepatic 

glucose production, and (iii) stimulates both uptake and storage of fatty acids as triacylglycerol 

within adipocytes and, in parallel, suppresses lipolysis (i.e. the breakdown of triacylglycerol 

into free fatty acids and glycerol in the adipose tissue); together resulting in a decrease in blood 

glucose concentration. 

The rate of insulin secretion is itself primarily regulated by the circulating glucose 

which enters β-cells via the GLUT2 transporters ( 7 20mK    mmol·L-1); adenosine-5'-

triphosphate (ATP) production by glycolysis within the β-cell leads to the exocytosis of insulin. 

As it shown in Figure 2.1, the insulin secretion rate vs. blood glucose concentration curve 

resembles a sigmoid function, with insulin secretion increasing as the blood glucose 

concentration rises above its normal value of 90 mg·dL-1 [19, 20]. Gastrointestinal inhibitory 

polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) incretin hormones, which are secreted 

from the intestine in response to glucose ingestion, amplify glucose-stimulated insulin 

secretion, which explains the greater increase in plasma insulin levels in response to an oral 

glucose load compared with an isoglycaemic amount of intravenously infused glucose. In 

addition, the GLP-1 suppresses gastric emptying. 
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Figure 2.1  Dose–response curve for the effect of glucose concentration on the rate of insulin 

secretion by isolated human islets of Langerhans, studied in vitro. [21] 

2.1.3 Blood Glucose Counterregulation 

Blood glucose counterregulation encompasses all those processes which prevent or rapidly 

correct hypoglycaemia, i.e. a blood glucose concentration value below 70 mg·dL-1 [22]. Firstly, 

the suppression of endogenous insulin secretion, as blood glucose concentration declines below 

80-85 mg·dL-1, stimulates hepatic glucose production and inhibits insulin-stimulated glucose 

uptake. Secondly, a further reduction of blood glucose concentration marginally below the 65-

70 mg·dL-1 induces the activation of counter-regulatory hormones: 

1. Glucagon, which is secreted from the α-cells of the pancreatic islets, constitutes the 

primary defence against hypoglycaemia by increasing hepatic glucose synthesis (i.e. 

glycogenolysis and gluconeogenesis). 

2. Epinephrine, which is secreted from the chromaffin cells of the adrenal medulla, 

increases hepatic as well as renal glucose production, and increases plasma 

gluconeogenic precursor and free fatty acid (via lipolysis) concentrations. Its response 

to hypoglycaemia becomes critical in the case of glucagon deficiency. 

3. Growth hormone and cortisol act synergistically in prolonged hypoglycaemia by 

increasing the synthesis of gluconeogenic enzymes, inhibiting glucose uptake by tissues 

and increasing the breakdown of muscle protein. 
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2.1.4 The Postabsorptive Phase 

In the postabsorptive state (i.e. the period between meals when all of the last meal has been 

absorbed from the intestinal tract), blood glucose and plasma insulin concentrations are 

typically around 90 mg·dL-1 and 60 pmol·L-1, respectively. Moreover, the rate of hepatic 

glucose production equals that of glucose utilization by tissues (2.2 mg·kg-1·min-1 on average) 

[18, 22]. Figure 2.2 illustrates glucose metabolism after an overnight fast. Glycogenolysis and 

gluconeogenesis, which both take place in the liver, contribute almost equally (~50%) in 

endogenous glucose production [17, 23, 24]. The stimulus for both processes is a decreased 

insulin to glucagon ratio. The disposal of glucose into cells follows primarily the glycolytic 

pathway, where a significant proportion of glucose is converted to lactate, the main 

gluconeogenic substrate [17, 25]. Insulin-independent glucose utilization in the brain, the 

splanchnic tissues, the kidney and the blood cells accounts for approximately 50%, 10%, 10% 

and 5%, respectively, of basal glucose uptake, whereas insulin-dependent glucose utilization, 

primarily in the skeletal muscle and secondarily in the adipose tissue, accounts for the 

remaining 25% [17]. As the insulin to glucagon ratio decreases, glucose uptake by most tissues 

is progressively reduced and their energy supply increasingly derives from lipolysis, fatty acid 

oxidation and ketogenesis (i.e. the breakdown of fatty acids and ketogenic amino acids into 

ketone bodies). In addition, the hepatic glycogen content is gradually reduced and 

gluconeogenesis becomes the predominant source of glucose production. Under prolonged 

fasting conditions, renal gluconeogenesis is substantially stimulated. 

 

Figure 2.2  The pattern of glucose metabolism after an overnight fast. The numbers are 

approximations only, in mg per min, for a typical person of 65 kg body weight. [21] 
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2.1.5 The Postprandial Phase 

In the postprandial state, the increase of blood glucose concentration and the subsequent 

increase of insulin secretion from the pancreatic β-cells result in: (i) the suppression of 

endogenous glucose production and, (ii) the stimulation of glucose uptake. Plasma 

concentration of non-esterified fatty acids is also reduced postprandially, due to the insulin-

stimulated suppression of fat mobilization in the adipose tissue, which further enhances blood 

glucose utilization by the skeletal muscle. Figure 2.3 portrays the direct (i.e. glucose from the 

small intestine to liver glycogen) and the indirect (i.e. glucose forming lactate in peripheral 

tissues which is then converted to glucose-6-phosphate and glycogen in the liver) pathways of 

glycogen deposition. Skeletal muscle glycogen synthesis is also stimulated by the rise of 

plasma insulin concentration.  

Figure 2.4 illustrates the time course of blood concentration of glucose, insulin and glucagon 

following the ingestion of 75g of glucose in healthy subjects [17]. Blood glucose concentration 

increases within ~15 min, reaches its peak in 30-60 min and returns to its postabsorptive levels 

within 3-4 h. Plasma insulin concentration exhibits a similar behaviour to that of blood glucose 

being three to fourfold higher than its basal levels, whereas blood glucagon concentration is 

suppressed by ~50%. As it is shown in Figure 2.5, the rate of exogenous (ingested) glucose 

appearance into the systemic circulation reaches its peak in 60-80 min and gradually declines 

thereafter [17]. In parallel, the hepatic glucose release is markedly suppressed by 80% within 

1-2 h after the oral glucose load. 

 

Figure 2.3  The pattern of glucose metabolism after a carbohydrate breakfast. [21] 
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Figure 2.4  Changes in plasma glucose, insulin, and glucagon after ingestion of a 75 g oral 

glucose load in normal volunteers. "Principles of Diabetes Mellitus, Normal Glucose 

Homeostasis, 2004, 39-56, John E. Gerich, Steven D. Wittlin, Christian Meyer, (©Springer 

Science+Business Media New York 2004) With permission of Springer". 

 

Figure 2.5  Changes in rates of entry of glucose into the circulation from ingested glucose, 

liver, and kidney. "Principles of Diabetes Mellitus, Normal Glucose Homeostasis, 2004, 39-

56, John E. Gerich, Steven D. Wittlin, Christian Meyer, (©Springer Science+Business Media 

New York 2004) With permission of Springer". 
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2.2 Diagnosis and Classification of Diabetes 

2.2.1 Diagnosis of Diabetes 

Diabetes is a group of metabolic diseases characterized by hyperglycaemia resulting from 

defects in insulin secretion, insulin action or both [1]. The diagnosis of diabetes is based on 

plasma glucose criteria, either the fasting plasma glucose (FPG) or the 2-h plasma glucose after 

a 75-g oral glucose tolerance test (OGTT), or the HbA1c criterion [1]. Additionally, a random 

plasma glucose concentration value of ≥200 mg·dL-1, accompanied with classic 

hyperglycaemic symptoms or a hyperglycaemic crisis, suffices to diagnose diabetes. The 

current diagnostic criteria for diabetes are summarized in Table 2.1 [1]. The concordance 

between FPG and OGTT as well as between HbA1c and either plasma glucose criterion is 

imperfect, with the HbA1c designated cut point presenting the lower sensitivity. More 

specifically, the HbA1c cut point of ≥6.5% has been found to identify one third fewer cases of 

undiagnosed diabetes than an FPG cut point of ≥126 mg·dL-1, which is partially offset by the 

HbA1c test’s greater convenience (since fasting is not required), lower inter-day variability 

during periods of stress and illness and greater preanalytical stability as compared with FPG 

and OGTT. However, the effect of age, race/ethnicity and anaemia/hemoglobinopathies on 

average HbA1c should be considered.  

Table 2.1  Criteria for the Diagnosis of Diabetes [1] 

FPG ≥126 mg·dL-1 (7.0 mmol·L-1). Fasting is defined as no caloric intake for at least 8 h.* 

Two-hour plasma glucose ≥200 mg·dL-1 (11.1 mmol·L-1) during an OGTT. The test should be performed as 

described by the World Health Organization, using a glucose load containing the equivalent of 75 g 

anhydrous glucose dissolved in water.* 

HbA1C ≥6.5%(48 mmol·mol-1). The test should be performed in a laboratory using a method that is NGSP 

certified and standardized to the Diabetes Control and Complications Trial (DCCT).* 

In a patient with classic symptoms of hyperglycaemia or hyperglycaemic crisis, a random plasma glucose 

≥200 mgdL-1 (11.1 mmolL-1). 

*In the absence of unequivocal hyperglycaemia, criteria 1-3 should be confirmed by repeat testing. 

All three tests can be also applied for the identification of people with prediabetes, an 
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intermediate stage associated with at increased risk for developing diabetes as well as 

cardiovascular disease. Prediabetes is formally defined as: (i) impaired fasting glucose (IFG), 

i.e. 100 mg·dL-1 ≤ FPG ≤ 125 mg·dL-1, or (ii) impaired glucose tolerance (IGT), i.e. 140 mg·dL-

1 ≤ 2-hour plasma glucose during an OGTT ≤ 199 mg·dL-1, or (iii) an HbA1c range of 5.7 - 

6.4%. 

2.2.2 Classification of Diabetes 

Diabetes can be classified into the following general categories: (i) type 1 diabetes due to an 

autoimmune destruction of the pancreatic β-cells usually leading to an absolute deficiency of 

insulin secretion, (ii) type 2 diabetes due to a progressive loss of β-cell insulin secretion 

frequently on the background of resistance to insulin action, (iii) gestational diabetes mellitus 

which is defined as diabetes diagnosed in the second or third trimester of pregnancy which is 

not clearly either pre-existing type 1 or type 2 diabetes, and similar to type 2 diabetes its main 

underlying pathophysiological abnormality is insulin resistance, and (iv) other specific types 

of diabetes which are mainly associated with monogenetic defects in β-cell function [e.g. 

neonatal diabetes, maturity-onset diabetes of the young (MODY)], diseases of the exocrine 

pancreas (e.g. cystic fibrosis-related diabetes), and drug- or chemical-induced diabetes [e.g. 

glucocorticoid-induced, new-onset diabetes after transplantation (NODAT)] [26]. The vast 

majority of people with diabetes suffer from either type 1 or type 2 diabetes.  

2.2.2.1 Type 1 Diabetes 

Type 1 diabetes accounts for 5-10% of all patients with diabetes and results from a cellular-

mediated autoimmune destruction of the β-cells in the pancreatic islets. Type 1 diabetes is 

defined by the presence of at least one of the following autoimmune markers: (i) islet cell 

autoantibodies, (ii) autoantibodies to insulin, (iii) autoantibodies to glutamic acid 

decarboxylase (GAD65) and, (iv) autoantibodies to the tyrosine phosphatases IA-2, IA-2β and 

ZnT8 [1, 26]. In addition, autoimmune type 1 diabetes has strong, either predisposing or 

protective, human leukocyte antigen (HLA) associations with linkage to the DQA and DQB 

genes. The development of the disease encompasses three distinct stages (Table 2.2). Its rate 

of progression is dependent on the age at first detection of antibodies, number of antibodies, 

antibody specificity, and antibody titer. C-peptide concentration, which decreases with the loss 

of insulin secretory capacity, can provide insight into disease progression. Moreover, 
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individuals with a low first-phase insulin secretory response (<100 uU·mL-1), assessed by the 

intravenous glucose tolerance test, who concurrently express pancreatic autoantibodies are at 

high risk of developing immune-mediated type 1 diabetes. Type 1 diabetes has multiple genetic 

predispositions; the expression of two or more autoantibodies in first degree relatives of 

patients with immune-mediated type 1 diabetes indicates an increased risk (>90%) over the 

next 10 years [27].  

Idiopathic type 1 diabetes, which constitutes a rare form of type 1 diabetes, is 

characterized by episodic ketoacidosis and varying degrees of insulin deficiency between 

episodes [1, 26]. Idiopathic type 1 diabetes is strongly inherited, lacks immunological evidence 

of β-cell deficiency and is not HLA associated. 

Table 2.2  Staging of Type 1 Diabetes [1]  

 Stage 1 Stage 2 Stage 3 

Characteristics Autoimmunity 

Normoglycaemia 

Pre-symptomatic 

Autoimmunity 

Dysglycaemia 

Pre-symptomatic 

New-onset hyperglycaemia 

Symptomatic 

Diagnostic 

criteria 

Multiple autoantibodies 

No IGT or IFG 

Multiple autoantibodies 

Dysglycaemia: IFG and/or 

IGT 

FPG 100–125 mgdL-1 

2-h PG 140–199 mgdL-1 

A1C 5.7–6.4% (39–47 

mmol mol-1) or ≥10% 

increase in A1C 

Clinical symptoms 

Diabetes by standard 

criteria 

2.2.2.2 Type 2 Diabetes 

Type 2 diabetes, which accounts for ~90-95% of those with diabetes, is characterized by a 

combination of inadequate insulin secretion and resistance to insulin action [1, 26]. The β-cell 

demise and dysfunction often worsen in the long-run and absolute insulin replacement therapy 

is needed. In contrast to immune-mediated type 1 diabetes, the aetiology of type 2 diabetes is 

unidentified. The risk of developing this form of diabetes increases with age, obesity, 

particularly intra-abdominal obesity, and lack of physical activity. It is more prevalent in 

women with prior gestational diabetes mellitus, in individuals with hypertension or 
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dyslipidaemia, and in certain racial/ethnic subgroups. Types 2 diabetes is also associated with 

a greater genetic predisposition as compared to the autoimmune form of type 1 diabetes, 

although its genetics are not well defined. 

2.3 Assessment of Glycaemic Control 

2.3.1 HbA1c Testing 

Chronic hyperglycaemia in diabetes is associated with long-term microvascular (peripheral 

neuropathy, nephropathy and retinopathy) and macrovascular (coronary heart disease, 

peripheral arterial disease, and stroke) complications. HbA1c, a biomarker of average plasma 

glucose concentration over the preceding ~3 months ( 0.92r  [28]), carries a strong prognostic 

significance with respect to long-term microvascular and macrovascular complications in both 

type 1 and type 2 diabetes [29-31]. Glycaemic recommendations for non-pregnant adults with 

diabetes encompass an HbA1c of less than 7% (53 mmol mol-1) accompanied by preprandial 

capillary plasma glucose in the range of 80-130 mg·dL-1, and peak postprandial capillary 

plasma glucose (measured 1-2 h after the beginning of the meal) of less than 180 mg·dL-1. 

However, the American Diabetes Association (ADA) stresses that glycaemic targets should be 

individualized based on duration of diabetes, age/life expectancy, comorbid conditions, 

advanced microvascular or cardiovascular complications, hypoglycaemia unawareness, and 

individual patient preferences [32]. 

2.3.2 Self-monitoring of Blood Glucose 

SMBG constitutes an integral component of each effective diabetes management plan allowing 

patients to assess their instant glycaemic status and their individual response to therapy. 

Increased daily frequency of SMBG in type 1 diabetes management has been associated with 

lower HbA1c levels (-0.2% per additional test per day) and fewer acute complications [33, 34]. 

The ADA recommends that most patients on intensive insulin regimen (multiple-dose insulin 

or insulin pump therapy) should consider SMBG prior to meals and snacks, occasionally 

postprandially, at bedtime, prior to exercise, when they suspect low blood glucose, after 

treating low blood glucose until they are normoglycemic, and prior to critical tasks such as 

driving, which corresponds to 6-10 (or more) measurements daily [32]. Optimal use of SMBG 
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requires the proper integration of SMBG results into lifestyle management and pharmacologic 

therapy of type 1 diabetes. 

2.3.3 Continuous Glucose Monitoring 

CGM technologies, relying on a subcutaneously implantable sensor, report the glucose 

concentration in the interstitial fluid at intervals of 1-5 min. CGM systems intended for real-

time use (e.g. Medtronic Minimed® 530G, 640G; DexcomG4®, G5TM; Freestyle® Navigator II) 

display the level and rate of change of subcutaneous glucose concentration, with recent systems 

providing also customizable predictive alerts for hypo- and hyperglycaemic excursions [6]. On 

the other hand, professional (operating in a “blind” mode) CGM systems (e.g. Medtronic 

iPro®2) target at the retrospective evaluation of CGM data by healthcare professionals in order 

to assess the quality of glycaemic control and magnitude of glycaemic variability, detect crucial 

glycaemic patterns (e.g. dawn phenomenon, postprandial hyperglycaemia, asymptomatic and 

nocturnal hypoglycaemia) and evaluate the effect of treatment interventions [6, 35]. 

Standardization of the presentation and analysis of CGM data is considered crucial to 

optimizing decision making in both clinical and self-monitoring conditions [36, 37]. Figure 2.6 

portrays the ambulatory glucose profile report of a typical subject during two weeks of 

monitoring. 

 

Figure 2.6  Ambulatory glucose profile of a person with type 1 diabetes during (a) the first 

and (b) second week of the observational period. 
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Proper calibration of CGM systems based on capillary blood glucose measurements 

highly affects the accuracy and time lag (TL) of the estimated interstitial fluid glucose 

concentration relative to blood glucose concentration. A comparative effectiveness analysis of 

three CGM systems (FreeStyle Navigator, Abbott Diabetes Care; G4 Platinum, Dexcom; 

Enlite, Medtronic) in adults and adolescents with type 1 diabetes under closed-loop blood-

glucose control showed that the G4 Platinum and FreeStyle Navigator outperform in terms of 

accuracy the Enlite sensor, with the aggregate mean absolute relative difference (MARD) of 

all paired subcutaneous-venous plasma glucose points being 10.8±9.9%, 12.3±12.1% and 

17.9±15.8%, respectively [38]. The accuracy and reliability of contemporary CGM systems 

have been substantially improved, effecting their approval for making therapeutic decisions 

without confirmation with a blood glucose test [6, 7].  

The findings of numerous clinical trials confirm that CGM results in lower HbA1c in 

type 1 diabetes as compared to SMBG [35, 39-42]; however, they have not shown consistent 

reductions in severe hypoglycaemia [43-45]. Baseline glycaemic control and frequency of 

CGM sensor use are determinants of its HbA1c-lowering effect on type 1 diabetes for all age 

groups, while age (≥25 years) correlates with frequency of CGM use [39]. A meta-analysis of 

randomized control trials in adults with type 1 diabetes demonstrated that (i) CGM results in 

lower HbA1c levels by 0.30% on average as compared to SMBG, (ii) every one day increase 

of sensor usage per week increased the effect of CGM on HbA1 by 0.15% and (iii) every 1% 

increase in baseline HbA1c increased the effect by 0.126% [40]. It has been also demonstrated 

that CGM can be of considerable benefit to individuals with type 1 diabetes with HbA1c <7.0-

7.5%, reducing the frequency of hypoglycaemia (≤70 mg·dL-1) and maintaining tight glucose 

control [46, 47]. 

2.3.4 Hypoglycaemia in Diabetes 

2.3.4.1 Definition and Classification of Hypoglycaemia 

Hypoglycaemia is defined as a blood glucose concentration value ≤70 mg·dL-1 and is typically 

accompanied by a number of neurogenic (e.g. palpitation, tremor, anxiety, sweating, hunger 

and paresthesia) or neuroglycopenic symptoms (e.g. cognitive impairment, behavioural 

changes, confusion, seizure, coma or, if untreated, death) [17]. Table 2.3 presents the 
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classification of hypoglycaemia in diabetes according to the American Diabetes Association 

and Endocrine Society Workgroup [17]. Recently, the International Hypoglycaemia Study 

Group recommended that a plasma glucose concentration of <54 mg·dL-1, detected by self-

monitoring of plasma glucose, CGM (for at least 20 minutes), or a laboratory measurement of 

plasma glucose, should be used to define "clinically significant biochemical hypoglycaemia" 

and should be reported in relevant clinical studies [18]. 

Table 2.3  The American Diabetes Association and Endocrine Society Classification of 

Hypoglycaemia in Diabetes [17] 

Severe hypoglycaemia An event requiring assistance of another person to actively administer 

carbohydrates, glucagon, or take other corrective actions. Plasma glucose 

concentrations may not be available during an event, but neurological 

recovery following the return of plasma glucose to normal is considered 

sufficient evidence that the event was induced by a low plasma glucose 

concentration. 

Documented symptomatic 

hypoglycaemia 

An event during which typical symptoms of hypoglycaemia are 

accompanied by a measured plasma glucose concentration ≤70 mgdL-1. 

Asymptomatic hypoglycaemia An event not accompanied by typical symptoms of hypoglycaemia but with 

a measured plasma glucose concentration ≤70 mgdL-1. 

Probable symptomatic 

hypoglycaemia 

An event during which symptoms typical of hypoglycaemia are not 

accompanied by a plasma glucose determination but that was presumably 

caused by a plasma glucose concentration ≤70 mgdL-1. 

Pseudo-hypoglycaemia An event during which the person with diabetes reports any of the typical 

symptoms of hypoglycaemia with a measured plasma glucose concentration 

>70 mgdL-1 but approaching that level. 

2.3.4.2 Glucose Counterregulation in Diabetes 

Hypoglycaemia in individuals with type 1 or advanced type 2 diabetes is the result of 

therapeutic hyperinsulinemia and an attenuated physiological response to falling plasma 

glucose concentrations [2, 19-21]. Therapeutic hyperinsulinemia is primarily related to 

patient’s actions leading to relative, with respect to the rates of glucose influx and efflux out of 

the circulation, or absolute excess of circulating insulin (e.g. incorrect insulin dosing, type or 

timing, missed meal, exercise, overnight fast, alcohol consumption). On the other hand, both 

defective glucose counterregulation and hypoglycaemia unawareness are linked to the 

pathophysiology of diabetes per se. In type 1 diabetes or insulin-treated type 2 diabetes, the 
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counterregulatory system cannot prevent or restore hypoglycaemia: (i) plasma insulin 

concentration, as a function of the clearance of administered insulin, is not reduced, (ii) the 

primary defence against hypoglycaemia, i.e. stimulation of glucagon secretion, is lacking, and 

(iii) the epinephrine response to hypoglycaemia is attenuated. In addition, the diminished 

response of the sympathetic nervous system to hypoglycaemia in people with type 1 diabetes 

leads to hypoglycaemia unawareness. According to the concept of hypoglycaemia-associated 

autonomic failure (HAAF) in diabetes, recent hypoglycaemic events (even asymptomatic 

ones), exercise and sleep intensify both defective glucose counterregulation and 

hypoglycaemia unawareness by further suppressing epinephrine response to a subsequent 

hypoglycaemic event as well as neurogenic symptoms [2, 22]. 

2.4 Insulin Therapy 

2.4.1 Insulin Analogues 

Available insulin products include regular human insulin as well as analogues of human 

insulin with specific pharmacokinetic/pharmacodynamic properties, which, as it is shown in 

Table 2.4, are classified as rapid-acting, short-acting, intermediate-acting and long-acting 

insulins [27, 48, 49]. The gradual dissociation of regular insulin hexamers into dimers and 

monomers, which are the forms of insulin which are absorbed into the bloodstream, results in 

a delayed onset (30-60 min) and duration of action. Rapid-acting insulin analogues are 

produced by altering one (i.e. Aspart) or two (i.e. Lispro, Glulisine) amino acids in the sequence 

of regular insulin such that their rate of absorption, following subcutaneous administration, 

increases. Neutral protamine hagedorn (NPH) insulin exhibits an intermediate-acting profile 

with an onset of action of 2-4 h, peak action from 6 to 10 h and duration of action up to 16 h. 

Long-acting insulin analogues (i.e. Glargine, Detemir, Degludec) show no pronounced peak 

metabolic effect and provide 24-h of basal insulin supply. The pharmacodynamics of regular 

and NPH insulin are dose-dependent with larger doses causing a delay in the peak and 

increasing their duration of action. The absorption of subcutaneously injected insulin into the 

bloodstream shows substantial intra-patient and inter-patient variability, which is significantly 

associated with blood flow differences in the subcutaneous tissue attributed to the site of 

injection per se or other exogenous factors (e.g. exercise, heat application or local massage) 
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[48, 49]. The increase of blood flow at the injection site is translated to a higher rate of 

absorption. In addition, smaller insulin concentrations result in more rapid pharmacokinetics. 

Table 2.4  Pharmacodynamics of Regular Insulin and Insulin Analogues [49] 

 Onset of 

Action (h) 

Peak Action 

(h) 

Effective 

Duration of 

Action (h) 

Maximum 

Duration (h) 

Rapid-Acting Insulin 

Analogues 

Lispo 0.25 - 0.5 0.5-1.5 3-4 4-6 

Aspart 0.25 - 0.5 0.5 -1.25 3-4 4-6 

Glulisine  0.25 - 0.5 0.5 -1.25 3-4 4-6 

Short-Acting Insulin Regular 0.5 - 1 2-3 3-6 6-8 

Intermediate-Acting 

Insulin Analogues 

NPH 2-4 6-10 10-16 14-16 

Long-Acting Insulin 

Analogues 

Glargine 0.5-1.5 8-16 18-20 20-24 

Detemir 0.5-1.5 6-8 14 ~20 

Degludec 0.5-1.5 none 24 40 

2.4.2 Principles of Intensive Insulin Therapy 

Intensive insulin therapy, defined as MDI of prandial (bolus) and basal insulin or CSII, attempts 

to replicate the pattern of physiologic insulin secretion such that individualized glycaemic 

targets are achieved. The prevailing scheme to MDI therapy uses long-acting insulin at bedtime 

to provide a basal insulin supply throughout the day, and rapid-acting insulin before each meal 

to control postprandial glucose excursions. The ADA recommends optimizing the timing and 

dose of prandial insulin based on the type of insulin used, measured blood glucose 

concentration, carbohydrate intake and timing of the meal and anticipated activity. In the case 

of CSII therapy, rapid-acting insulin is delivered subcutaneously by an insulin pump at a 

customizable basal insulin infusion rate (in 25/1000-unit increments) with bolus doses being 

manually administered using a built-in bolus calculator (in 1/10-unit increments). CSII therapy 

provides greater flexibility and more precise insulin administration than MDI therapy. A key 

safety issue of CSII is the risk of insulin under-delivery due to the gradually altered absorption 

of insulin at the subcutaneous site. 

Despite the continuous improvements in rapid- and long-acting insulin analogues, 

hypoglycaemia remains the main side effect of intensive insulin therapy (IIT). A systematic 

meta-analysis concluded that there are minimal differences in HbA1c and rates of severe 

hypoglycaemia between CSII and MDI in type 1 adults and children [45, 50]. More integrative 

solutions, such as SAP effectively combining CGM and CSII into one system, have been shown 
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to significantly improve HbA1c, when compared with MDI or CSSI, without reducing severe 

hypoglycaemia [4, 5]. Substantial reductions of overall hypoglycaemic (≤70 mg·dL-1) exposure 

as well severe hypoglycaemia in type 1 diabetes, without increasing HbA1c levels, come from 

SAP interrupting insulin delivery when existing or predicted subcutaneous glucose 

concentration reaches a pre-set low-glucose threshold value [9-11, 51-54]. 

2.4.3 Closed-Loop Control of Blood Glucose in Type 1 Diabetes 

An artificial pancreas should ideally emulate the physiologic feedback glucose-responsive 

functionality of β-cells [8]. Artificial pancreas systems consist of a CGM sensor, an insulin 

pump and a control algorithm which adjusts the insulin infusion rate in response to recent CGM 

measurements such that glycaemic targets are safely achieved and maintained. The main 

algorithmic approaches to closed-loop control of blood glucose in type 1 diabetes are 

proportional-integral-derivative control, model predictive control and fuzzy logic [55]. The 

functionality of the controller may be supported by hypoglycaemia risk minimizing modules, 

i.e. threshold-based or predictive low-glucose insulin suspension [56, 57]. At present, hybrid 

closed-loop systems combine automatic inter-prandial insulin delivery with manual 

administration of prandial insulin boluses [58]. Finally, bihormonal artificial pancreas systems 

adopt a more holistic approach, regulating blood glucose by subcutaneously delivering both 

insulin and glucagon hormones aiming at hypoglycaemia prevention or counterregulation [8, 

59, 60]. 

The safety and efficacy of overnight closed-loop delivery of insulin in type 1 diabetes 

has been well-demonstrated in numerous, mainly randomised controlled, clinical trials, with 

all studies consistently concluding that artificial pancreas approaches can reduce nocturnal 

hypoglycaemia and improve overall nocturnal glycaemic control both in an inpatient and an 

outpatient setting [56, 61-66]. In addition, there is now considerable evidence that 24h closed-

loop blood glucose control in outpatient settings can lead to an increase in the percentage of 

time in the target range reducing, in parallel, the time in hypoglycaemia as compared with 

conventional CSII therapy or SAP therapy, with dual-hormone artificial pancreas systems 

being associated with a greater improvement in time in target range compared with single-

hormone systems [8, 54, 59, 67-69].  
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CHAPTER 3. LITERATURE OVERVIEW 

3.1 Introduction 

3.2 Linear Time Series Models of Glucose Concentration in the Interstitial Fluid 

3.3 Non-Linear Models of Glucose Concentration in the Interstitial Fluid 

3.4 Adaptive Models of Glucose Concentration in the Interstitial Fluid 

3.5 Prediction of Hypoglycaemia 

3.6 Contribution of the Thesis 

 

3.1 Introduction  

The prediction of the short-term course of subcutaneous glucose concentration in individuals 

with type 1 diabetes is a research problem that has been widely studied, particularly, since the 

adoption of CGM and CSII in the daily management of the disease. From a data-driven 

perspective, the dynamic system of blood glucose metabolism is approximated by a 

parameterized model relying on linear system identification or generalized linear (with respect 

to the parameters) regression approaches. 

The p -step-ahead prediction of subcutaneous glucose concentration at time t  is 

described as a function    ˆ ,t pTy t f Z   of previous input-output observations up to time 

t pT  (denoted by t pTZ  ), with T  being the sampling interval of subcutaneous glucose 

concentration and mR   the parameters of the model. The function f  might be linear or 

nonlinear with respect to the input t pTZ  and the parameter vector mR   is learnt on a training 

set Z  by (regularized) least squares such that  ˆ arg min
mR

E


 


 , where  E   is the error 

function. The class of the model, the parameter estimation method, the formulation of the input 

along with the quality of the observed data determine the generalization error of the derived 

predictive model. 
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3.2 Linear Time Series Models of Glucose Concentration in the Interstitial Fluid 

3.2.1 Autoregressive and Moving Average Models 

Linear system identification techniques have been applied to subcutaneous glucose predictive 

modelling by assuming that the underlying system of blood glucose metabolism is linear and 

time-invariant. Literature suggests that autoregressive (AR) models of high order can 

effectively explain the variance of the subcutaneous glucose concentration signal in the case 

where its high frequency components are not modelled [70-72]. In addition, should the 

frequency content of the glucose signal is adequately captured, then AR model portability 

among patients is feasible [71, 73]. Nevertheless, the existent inter-patient variability in 

response to exogenous inputs indicates training and testing of multivariate glucose models need 

to be applied individually, as is the case in the undermentioned studies. Table 3.1 presents the 

main studies proposing AR models of the subcutaneous glucose concentration in people with 

diabetes, which were identified by prediction error methods and were evaluated by different 

statistical measures and for different values of prediction horizon. 

Gani et al. proposed an AR model of order 30, AR(30), which parameters were obtained 

through regularized least squares on smoothed CGM data [70]. The Tikhonov approach was 

applied both for smoothing the raw CGM data as well as for regularizing the parameter 

estimates. The stationarity of the CGM time series was verified before the analysis. The dataset 

comprised nine subjects with type 1 diabetes who were monitored over 5 days. The training 

and test set were each comprised of 2000 samples, with the sampling interval of CGM 

measurements being equal to 1min.T   Both the root mean squared error (RMSE) and the TL 

corresponding to the maximum of the cross-correlation function were evaluated with respect 

to the smoothed glucose signal. The estimated AR coefficients reflected the temporal behaviour 

of the autocorrelation function of the glucose signal, leading to stable accurate 30-min 

predictions with negligible RMSE (0.1±0.02 mmol·L-1) and TL (0.2±0.4 min). The prediction 

accuracy decreased with increasing prediction horizon, with prediction horizons of 60 min and 

90 min being associated with higher errors (0.7±0.1 mmol·L-1 and 1.6±0.2 mmol·L-1, 

respectively) and clinically acceptable TLs (12.3±2.8 min and 38.4±5.2 min, respectively). 

Lu et al. showed that the frequency content of the subcutaneous glucose concentration 

signal in people with type 1 diabetes resembles that of the blood glucose signal, retaining the 

four frequency bands (Band I: 5-15 min, Band II: 60-120 min, Band III: 150-500 min, Band 
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IV: ≥700 min as they are characterized by the periodicity of blood glucose signal’s 

oscillations), despite the time delay and signal attenuation from the blood-to-interstitial 

transport [72, 74]. In particular, Bands III and IV accounted for the majority of the 

subcutaneous glucose signal’s power spectral density (PSD), whereas ~1.5 % and ∼0.6% of 

PSD fall into Band II and Band I, respectively. Lu et al., by applying the same training and 

testing AR configuration as in [70], compared the predictive capacity of bands II-IV and of 

their pairwise combinations for prediction horizons of 0-50 min. A reference AR model was 

also developed using the overall spectrum of the glucose signal except Band I. The high-

frequency band, i.e. Band I was treated as noise considering that it is associated with rapid 

pulsatile insulin secretion by pancreatic β-cells in healthy individuals [75, 76]. They showed 

that: (i) the reference AR model yields the smallest RMSE for all horizons, (ii) the AR models 

concerning the medium-frequency dynamics (Band II or Band III) exhibit comparable 

performance to the reference model for prediction horizons <25 min yielding negligible 

RMSEs (<3 mg·dL-1), (iii) Band III models outperform Band II models for longer prediction 

horizons (25-50 min), (iv) Band IV model, which had systematically inferior performance for 

horizons <40 min, outperform Band II and III models for prediction horizons >45 min, and (v) 

models combining Band II, with either Band III or Band IV, compare well with the reference 

model over the 0-50 prediction horizon range, and outperform each of the single-band models. 

The latter confirms the importance of Band II which represents the glucose dynamics in 

response to meal intake and insulin injections. 

In a subsequent study by Gani et al. [71], the PSD analysis of the subcutaneous glucose 

concentration signals of people with type 1 or type 2 diabetes, coming from three different 

studies, provided corroborating evidence on the preservation of the four frequency bands I-IV 

across different individuals. Therefore, the invariance of the AR parameters on a periodic 

signal’s amplitude and phase and their sole dependency on its frequency led to regularized 

AR(30) models of comparable short-term (≤30 min) predictive capacity. Nevertheless, the need 

for filtering out the high-frequency glucose dynamics (with periods <60 min) and regularizing 

the AR fitting method was stressed for obtaining physiologically plausible AR parameters and 

robust models. 

3.2.2 Autoregressive and Moving Average Models with Extra Inputs 

Table 3.1 presents the state-of-the-art studies which employ linear time-invariant models with 
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extra inputs to predict short-term subcutaneous glucose dynamics.  

In Stahl et al. [77], a number of linear system identification models [i.e. autoregressive moving 

average model (ARMA), autoregressive moving average model with extra inputs (ARMAX), 

and generalized transfer function model (GTFM)] were evaluated on interpolated blood 

glucose concentration values aiming at providing reasonably accurate 2-h-ahead predictions. 

Data were collected from one subject with type 1 diabetes in ambulatory conditions, with the 

first week of data comprising the training set and the second week of data comprising the test 

set. The insulin (Input 1) and carbohydrate (Input 2) fluxes, computed via compartmental 

modelling, formed the exogenous inputs to the system. The separation of system dynamics by 

a GTFM of order 5an  , 1 2bn  , 2 3bn  , 1 1fn  , 2 1fn  , 3cn   and 2dn   

(GTFM(5,2,3,1,1,3,2)) resulted in less correlated residuals as compared with an ARMAX 

model of order 6an  , 1 2bn  , 2 1bn   and 1cn   (ARMAX(6,2,1,1)), and yielded a slight 

increase in the FIT% concerning the 2-h-ahead (eight-step-ahead) predictions from 59.11% to 

60.83%. Stahl et al. pointed out that the accuracy of blood glucose concentration predictions is 

affected by: (i) potentially unrepresented inputs and unmeasured disturbances, and (ii) the 

almost concurrent and, more importantly, in a specified ratio delivery of insulin and 

carbohydrates [insulin-to-carbohydrate ratio (ICR)]. In addition, the spectral coherence 

between the input and output variables supported the presence of nonlinear system dynamics. 

Cescon et al. [78] carried out a detailed evaluation of ARMAX models of interpolated 

blood glucose concentration, which were fed with interpolated plasma insulin concentration 

measurements and the simulated rate of appearance of glucose into plasma following 

carbohydrate intestinal absorption [79]. In particular, ARMAX models of order in the range 

1 10an  , 1 10bin  , 1 10cn  , and 1 3
iun  , with 1,2i  , which were identified using 

data collected in a clinical setting (equally split into training and test set) [80], satisfied the 

criteria of stability, uncorrelated (white noise) residuals and physiologically sensible responses 

to 1 IU of insulin and 10 g of carbohydrates. In addition, 30 min-ahead predictions were 

associated with a FIT% 68.19% and a VAF% 89.27. As regards 60 min-ahead predictions, a 

VAF≥50% was achieved in the majority of patients; nevertheless, the requirement of FIT≥50% 

was not achieved. 

A simulation study relying on the physiological model of Hovorka et al. linked the 

generalization capability of autoregressive with extra inputs (ARX), ARMAX and Box-Jenkins 
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models with the linear dependence between the bolus insulin dose ( 1u ) and the meal 

carbohydrate content ( 2u ) vectors as assessed by the condition number of the input matrix 

 1 2,u u [81, 82]. Models’ input comprised the simulated profiles of plasma insulin 

concentration and exogenous glucose appearance rate [82]. The median FIT% of ARMAX and 

Box-Jenkins models (77% and 73%, respectively) in the case of 1-h ahead predictions was 

negatively correlated with the condition number ( 0.86r    and 0.88r   , respectively), 

whereas these correlations were weaker for 2-h ahead predictions ( 0.64r    and 0.82r   , 

respectively). On the other hand, the median FIT% of ARX models was correlated to a 

significantly lesser extent with the condition number, with 0.43r    (FIT% 51%) and 

0.39r    (FIT% 25%) for 1-h and 2-h ahead predictions, respectively. 

An attempt to address input collinearity was made by Zhao et al. via latent variables 

[83]. The proposed scheme combined partial least squares regression and canonical correlation 

analysis. The effect of carbohydrates and subcutaneously administered insulin was described 

by the corresponding finite impulse response functions [84]. The method was evaluated on 10 

in silico subjects from the University of Virginia/Padova type 1 diabetes simulator [85] and 

under three different simulation scenarios (Case I: ideal ICR, Case II: 30% increase in ICR and 

Case III: 30% decrease in ICR). Both univariate and multivariate L models (LV and LVX, 

respectively) were compared and contrasted with the respective AR and ARX models for a 

maximum prediction horizon of 60 min. Regarding the in silico subjects, LVX and ARX 

models performed equally well in Case I clearly outperforming AR and LV models for 

prediction horizons ≥30 min. In addition, the LVX model, unlike the ARX model, maintained 

its accuracy in Cases II and III. A complementary retrospective evaluation on 7 subjects with 

type 1 diabetes, monitored in ambulatory conditions, revealed the predominance of LVX 

models for prediction horizons ≥30 min. 

Zhao et al. proposed additionally a methodology for rapid identification of ARX models 

of subcutaneous glucose concentration in type 1 diabetes [86]. In particular, (i) a base ARX 

model, with the same input configuration as in [83], was first estimated by least squares using 

data from one subject, and (ii) for each new subject, the parameters concerning the exogenous 

inputs of insulin and carbohydrate responses (i.e.    1 2 and B q B q , respectively) were 

iteratively updated (increment or decrement by a predefined step) according to the sign of the 

difference    ˆmean y mean y  using a small amount of data. A proof-of-concept study 
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including 30 in-silico subjects from the University of Virginia/Padova type 1 diabetes simulator 

[85], demonstrated a slightly better performance as compared with individualized ARX models 

for prediction horizons ≥30 min in the case where training and test data come from different 

simulation scenarios (Case I: ideal ICR, Case II: 30% increase in ICR, Case III: 30% decrease 

in ICR, and Case IV: Case I with bolus insulin being injected 30 min later after the respective 

meal). 

The problem of multi-step-ahead prediction of subcutaneous glucose concentration in 

type 1 diabetes was also formulated as a subspace-based multiple-input multiple-output system 

of the inputs mu R , the outputs 
ly R , the state nx R , and, an uncorrelated with u , zero-

mean white noise process lR   [87]. The input 2u R  (i.e. 2m  ) described the rate of 

appearance of ingested glucose into plasma and the plasma insulin concentration [79]. 

Predictions of future subcutaneous glucose concentration from time t   up to time 1t f   

were expressed as a linear combination, ˆˆˆ ,f p fy z u    of the past joint input-output data 

 T m l pp p pz u y R
   

 and the future input f mfu R  within the time intervals  , 1t p t   

and  , 1t t f  , respectively. The optimization of  ˆ lp l m p
R

 
  and ˆ lp mfR   was 

formulated as a least-squares problem assuming that: (i) the input signals are persistently 

exciting of order at least mf , (ii) the intersection of the spans of the Hankel matrices pZ  and 

fU  is zero [88]. Given a sampling interval of 10minT  , two different model configurations 

were examined, i.e. Case A with 3f   and Case B with 12f  . The assessment of the model 

using as reference the blood glucose signal and, in parallel, the comparison with a Kalman-

based third-order ARMAX model demonstrated the competitiveness of their approach. 
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Table 3.1  Linear System Models of Short-Term Prediction of Subcutaneous Glucose Concentration in Diabetes 

Study Model Input Dataset Prediction Performance 

Gani et 

al. [70] 

Regularized AR(30) CGM data Subjects: Nine people with type 1 

diabetes [89] 

CGM Device: iSense, iSense 

Corp. 

Sampling Interval: 1 min 

Monitoring Period: 5 days 

RMSE 

30 min: 0.1±0.02 mmol·L-1 

60 min: 0.7±0.1 mmol·L-1 

90 min: 1.6±0.2 mmol·L-1 

TL 

30 min: 0.2±0.4 min 

60 min: 12.3±2.8 min 

90 min: 38.4±5.2 min 

Gani et 

al. [71] 

Regularized AR(30) CGM data 

S
tu

d
y

 1
 

Monitoring Period: 5 days 

Sampling Interval: 1 min 

Subjects: Nine people with 

type 1 diabetes [89] 

CGM Device: iSense, 

iSense Corp. 

Same-Subject Cross-Subject Cross-Study 

RMSE 

30 min: 0.17±0.02 

mmol·L-1 

TL 

30 min: 0.6±1.7 min 

Clarke EGA - Zone A: 

30 min: 99.0% 

RMSE 

30 min: 0.18±0.03 

mmol·L-1 

TL 

30 min: 0.3±1.2 min 

RMSE 

30 min: 0.17±0.03 

mmol·L-1 

TL 

30 min: 0.4±1.4 min 

S
tu

d
y

 2
 

Subjects: 18 children with 

type 1 diabetes 

CGM Device: Guardian 

RT, Medronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 6 days 

Same-Subject Cross-Subject Cross-Study 

RMSE 

30 min: 0.21±0.06 

mmol·L-1 

TL 

30 min: 0.0±0.0 min 

Clarke EGA - Zone A: 

30 min: 99.3% 

RMSE 

30 min: 0.21±0.07 

mmol·L-1 

TL 

30 min: 0.1±0.8 min 

RMSE 

30 min: 0.22±0.08 

mmol·L-1 

TL 

30 min: 0.2±1.0 min 
S

tu
d
y

 3
 

Subjects: 7 people with 

type 2 diabetes 

CGM Device: Dexcom, 

Dexcom Inc. 

Sampling Interval: 5 min 

Monitoring Period: 56 days 

Same-Subject Cross-Subject Cross-Study 

RMSE 

30 min: 0.16±0.03 

mmol·L-1 

TL 

30 min: 0.0±0.0 min 

Clarke EGA - Zone A: 

30 min: 99.5% 

RMSE 

30 min: 0.16±0.03 

mmol·L-1 

TL 

30 min: 0.0±0.0 min 

RMSE 

30 min: 0.17±0.03 

mmol·L-1 

TL 

30 min: 0.0±0.0 min 

Finan et 

al. [81] 

ARMAX models Blood glucose 

concentration 

Insulin and carbohydrate 

compartmental modelling 

[82] 

In-silico type 1 diabetes data  FIT% 

1-h: 77% 

2-h: 65% 

RAD: 

1-h: 4.7% 

2-h: 6.3% 

Clarke EGA - Zone A: 

1-h: 99% 

2-h: 94% 

Cescon & ARMAX models Linearly interpolated blood Subjects: Nine people with type 1 FIT% VAF% 
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Study Model Input Dataset Prediction Performance 

Johansson 

[78] 

glucose and insulin 

concentration 

Insulin and carbohydrate 

compartmental modelling 

[79] 

diabetes [80] 

Monitoring Period: 3 days 

Sampling Interval: 1 min 

30 min: 68.19±8.83 

60 min: 41.15±15.81 

90 min: 23.42±20.71 

120 min: 12.67±25.02 

30 min: 89.27±5.82 

60 min: 63.75±20.85 

90 min: 39.15±37.54 

120 min: 21.12±53.47 

Cescon et 

al. [87] 

Subspace-based 

multi-step models 

CGM data 

Insulin and carbohydrate 

compartmental modelling 

Subjects: Nine people with type 1 

diabetes [80] 

CGM Device: Abbot Freestyle 

Navigator  

Sampling Interval: 10 min 

Monitoring Period: 3 days 

Case A Case B 

Prediction error standard deviation 

10 min: 3.66±0.99 mg·dL-1 

20 min: 9.44±2.63 mg·dL-1 

30 min: 15.58±4.87 mg·dL-1 

Prediction error standard deviation 

30 min: 19.77±7.46 mg·dL-1 

60 min: 39.44±16.11 mg·dL-1 

90 min: 52.28±21.04 mg·dL-1 

120 min: 59.56±24.44 mg·dL-1 

Zhao et al 

[83] 

Latent variable –

based model without 

or with extra inputs 

(i.e. LV, LVX) 

CGM data 

Second-order transfer 

function models of insulin 

and meal intake [84] 

Subjects: Seven people with type 

1 diabetes 

CGM Device: DexCom 7 Plus, 

DexCom 

Monitoring Period: - 

Sampling Interval: 5 min 

LV LVX 

RMSE 

15 min: 11.3±2.4 mg·dL-1 

30 min: 19.7±3.3 mg·dL-1 

45 min: 26.0±3.8 mg·dL-1 

60 min: 31.2±4.0 mg·dL-1 

Clarke EGA - Zone A: 

15 min: 96.4±2.0 % 

30 min: 84.9±7.6 % 

45 min: 76.3±10.2 % 

60 min: 68.4±9.6 % 

RMSE 

15 min: 11.1±2.4 mg·dL-1 

30 min: 18.7±3.7 mg·dL-1 

45 min: 24.4±4.7 mg·dL-1 

60 min: 29.2±5.5 mg·dL-1 

Clarke EGA - Zone A: 

15 min: 96.8±1.8 % 

30 min: 86.1±7.5 % 

45 min: 78.8±9.9 % 

60 min: 72.1±10.6 % 

Zhao et al 

[73, 86] 

ARX, Model 

migration 

CGM data 

Second-order transfer 

function models of insulin 

and meal intake [84] 

In-silico data / University of 

Virginia / University of Padova 

Simulator  

RMSE 

Adolescents:14.85±4.94 mg·dL-1 

Adults: 10.98±2.10 mg·dL-1 

Children: 18.56±10.29 mg·dL-1 

CG-rEGA - Zone A 

Adolescents:70.76±1.31 % 

Adults: 70.50±0.57 % 

Children: 66.87±5.71 % 

RAD: Relative absolute deviation; EGA: Error grid analysis.
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3.3 Non-Linear Models of Glucose Concentration in the Interstitial Fluid 

Linear regression models, which comprise linear combinations of adaptive non-linear basis 

functions, have been effectively applied to the identification and prediction of the subcutaneous 

glucose concentration in type 1 diabetes. Literature suggests that nonlinear modelling of the 

subcutaneous glucose concentration yields significantly more accurate short-term (≤30 min) 

and mostly long-term (>30min) predictions as compared with linear, with respect to the input, 

models and, in addition, benefit from the utilization of particularly configured multivariate 

features sets. Table 3.2 presents the state-of-the-art studies treating the short-term prediction of 

subcutaneous glucose concentration as a nonlinear regression problem. 

3.3.1 Neural Network-based Regression Models 

Nonlinearity in the blood glucose system has been addressed via black-box 

parameterizations and, particularly, neural network-based regression models. A two-layer feed-

forward neural network (FFNN) fed with subcutaneous glucose concentration measurements 

during the preceding 20 min produced considerably lower RMSEs for prediction horizons of 

30 min and 45 min when compared with a first-order AR model identified by weighted 

recursive least-squares; though, FFNN-based predictions were associated with a higher 

temporal delay [90]. Multivariate nonlinear regression models of subcutaneous glucose 

concentration are expected to exhibit a better predictive performance than univariate solutions 

considering the short-term auto-correlation of the subcutaneous glucose concentration, which 

becomes zero at about 30 min [91], as well as the immediate effect of exogenous inputs on 

blood glucose regulation. Similarly to linear time series models, quantitative information on 

carbohydrates intake or subcutaneous insulin administration is incorporated through 

compartmental modelling of their respective kinetics and dynamics. In particular, 

Mougiakakou et al was the first to combine a recurrent neural network (RNN) with 

compartmental models of plasma insulin concentration and carbohydrates absorption [92, 93].  

Zecchin et al. proposed a hybrid predictive scheme combining a FFNN with a linear 

model of short-term (30 min ahead) subcutaneous glucose system dynamics [94]. The p -step-

ahead prediction of subcutaneous glucose concentration at time t  was expressed as the sum of 

the linear model’s output  ˆ
ly t  and the estimation of the associated error      ˆ ˆ ,le t y t y t   

i.e.      ˆ ˆ ˆ
ly t y t e t  . The linear model was postulated as a first-order polynomial which 
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parameters were learnt recursively by weighted least squares [95]. The error  ê t  was estimated 

by a FFNN function of: (i) the error      ˆ
le t pT y t pT y t pT      relating to the glucose 

concentration value at time t pT , (ii) the trend    1 mT
z e t pT


   over the last 15minmT 

, (iii) the value of  y t pT , (iv) the trend    1 mT
z y t pT


   over the last 15minmT  , (v) 

the glucose rate of appearance at time t , i.e.  Ra t  computed according to [79], and (vi) the 

difference vector        2 2 3
1 , ,a a a a a

T
T T T T T

z z z z z Ra t   
   with 10minaT  , which entails 

the announcement of each meal at least pT  minutes in advance. The FFNN was comprised of 

one hidden layer with 8  neurons having a tangent sigmoid activation function, and one output 

layer with one neuron having a linear function. The weights and bias parameters of the FNNN 

were trained based on the Levenberg-Marquardt back-propagation algorithm applied in a batch 

mode and with early-stopping (i.e. validation set). In addition, both network structure and 

inputs were determined by 10-fold cross-validation over the training set. The method was 

evaluated on 20 in silico subjects from the University of Virginia/Padova type 1 diabetes 

simulator [85] as well as on 15 subjects with type 1 diabetes monitored in free-living conditions 

[80]. The data of all patients were merged and, subsequently, properly divided into training and 

test sets aiming at deriving a non-personalized predictive solution. The comparison with two 

state-of-the-art univariate glucose models, having a linear time-varying AR(1) [95] and a non-

linear FFNN [90] structure, respectively, with regard to the real data and for a 30-min 

prediction horizon, demonstrated a RMSE almost identical to that of the FFNN (14.0±4.1 vs. 

14.2±4.5 vs. 19.6±7.2 mg·dL-1) accompanied by improved, comparable to those of the 

recursive AR(1) model, temporal gain (TG) (16.2±3.7 vs. 12.8±1.6 vs. 16.7±4.2 min) and 

regularity indices (ESODnorm 2.7±1.6 vs. 105.3±52.8 vs. 3.9±0.8). 

Zecchin et al., in a subsequent study, substituted a jump neural network for the 

abovementioned hybrid scheme and, in parallel, reduced the input complexity [96]. A jump 

neural network resembles a FFNN which inputs are connected to the first hidden layer and the 

output layer as well. The p -step-ahead prediction of subcutaneous glucose concentration at 

time t  was based on: (i) the glucose concentration value at time t pT , i.e.  y t pT , (ii) 

the difference  y t pT  , (ii) the rate of glucose appearance into plasma at time t pT , i.e. 

 Ra t pT , and (iv) the difference  Ra t pT  . The connection of the input to the output 
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layer introduced the term        , , , ,1
TT

IOw y t pT y t pT Ra t pT Ra t pT        , where 

IOw  is the corresponding weight vector, whose first two terms account for the linear glycaemic 

dynamics and the last two capture the linear short-term effect of Ra  on the subcutaneous 

glucose concentration. The jump neural network comprises 1 hidden layer of 5  neurons with a 

tangent sigmoid activation function, and one output neuron with a linear function. As in the 

preceding study of Zecchin et al. [94], the model’s parameters were optimized by the 

Levenberg-Marquardt back-propagation algorithm over the training set via cross-validation. 

The method was evaluated on 20 subjects with type 1 diabetes, who were monitored over a 2-

3 day period in real-life conditions; with the datasets of 10 patients forming the training and 

validation sets, and the remaining 10 datasets forming the test set. An average RMSE of 

16.6±3.1 mg·dL-1 and an average TG of 18.5±3.4 min were obtained, whereas the predicted 

profile was characterized by limited spurious oscillations (ESODnorm: 9.6±1.6). In addition, the 

jump neural network had on average a statistically comparable generalization performance to 

the reference model proposed in [94]. 

Three different types of artificial neural networks (ANNs), i.e. a self-organizing map 

(SOM), a neuro-fuzzy network with wavelets as activation functions [wavelet fuzzy neural 

network (WFNN)], and a FFNN, were compared with respect to the prediction of the 

subcutaneous glucose concentration in type 1 diabetes over a 30-, 60-, and 120-min horizon 

[97]. Two input cases, i.e. Case 1 and Case 2, were defined aiming to examine the contribution 

of EE to the prediction performance. The univariate input case, Case 1, consisted of  y t pT  

and  y t pT  , whereas in Case 2, the sum of EE within the 30-min interval 

 150, 120t pT t pT     was additionally introduced. The dataset was comprised of 10 

patients with type 1 diabetes who were observed for 6 days. All models were evaluated 

individually for each patient by 10-fold cross-validation, and their hyper-parameters were 

either preselected or determined though 10-fold cross-validation over each training set. In Case 

1, SOM was found statistically more accurate than FFNN and WFNN for all horizons. 

Moreover, the continuous glucose error grid analysis (CG-EGA) revealed its better 

performance over hypoglycaemic and hyperglycaemic ranges. Case 2 yielded a substantial 

improvement in average predictive performance over all prediction horizons (RMSE: -7%, -

3%, -10%; MARD: -6%, -5% , -11%; r : +0.2%, -0.1%, +1%, for SOM, WFNN and FFNN, 

respectively) and, primarily, in the hypoglycaemic range. 
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3.3.2 Ensemble Models 

Ensemble learning have been shown to improve the generalization error of glucose prediction 

methods. Stahl et al. proposed a sliding window Bayesian model averaging approach to 

combining multiple predictive models of subcutaneous glucose concentration [98]. A 

probabilistic mixture of the form: 

      ,i i i

i j i j

j

p y x p M x p y x M , (3.1) 

was produced, in which  ,i

i jp y x M  is the conditional probability of iy  at time it  given the 

input ix  received until it pT  and model jM , and  | i

jp M x  represent the input-dependent 

mixing coefficients. In particular, the input space was partitioned into different regions 

(clusters), and an one-to-one correspondence was assumed between them and the latent 

variable iz , such that: 

      ,
i

i i i

j j i i

z

p M x p M z x p z x , (3.2) 

under the constraint   1i

j

j

p M x  . By assuming that each instant it  is associated with only 

one iz  and  i

ip z x is equal for all iz  (3.2) was condensed to    ,i i

j j ip M x p M z x . A 

window-based constrained optimization problem was formulated using an asymmetric cost 

function, which consider the absolute glucose value and the sign of the prediction error. The 

efficacy of  the ensemble model was shown using: (i) simulated data which consisted of two 

dynamic modes and were generated by the University of Virginia/Padova type 1 diabetes 

simulator (20 datasets of 8 days each), as well as, (ii) data from 6 type 1 diabetes subjects 

monitored over 3 days in a clinical trial setting (the DAQ trial and the DIAdvisor I B and C 

trials, conducted within the DIAdvisor project [80]). Three linear state space models with 2 

extra inputs, the plasma insulin concentration and the exogenous glucose appearance rate, were 

identified on one simulated dataset (Model I: trained on mode A data, Model II: trained on 

mode B data, Model III: trained on the entire dataset). Subsequently, a p -step-ahead 

prediction model was inferred using a Kalman filter, and the ensemble model was tested on the 

remaining 19 datasets. On the other hand, a state-space-based model [99], a recursive ARX 

model [100] and a kernel-based model [101] were identified on the clinical trial dataset. Each 
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of the base models was trained on the first trial data (DAQ), whereas the ensemble prediction 

model was evaluated via cross-validation on B and C trial data. In both experiments, the RMSE 

of the ensemble model (for 60-min and 40-min prediction horizons, respectively) was found 

comparable to that of the best performing base model. 

An adaptive weighted model averaging approach was proposed in [102], where, at each 

iteration i , the weighing coefficient of each model jM , 
j

iw , was adjusted according to the sum 

of squared prediction errors up to iteration i . A forgetting factor  0,1   was introduced in 

order to control the contribution of past instances such that: 

 
1 1

,j

i j j
ji i

w
SSE SSE

   (3.3) 

where 

  
2

1

i
j i n j

i n

n

SSE e 



 . (3.4) 

The p -step-ahead prediction of subcutaneous glucose concentration at time 
it  was 

given by the weighted sum of the base model predictions. Three univariate models of 

subcutaneous glucose concentration, namely an AR(5) model, an extreme learning machine 

with 3 inputs (i.e. subcutaneous glucose concentration values over the last 15 min) and 25 

hidden nodes, and a SVR model ( 50C  , 0.5   and local optimization of kernel type and 

parameters), were combined and evaluated on 10 subjects with type 1 diabetes randomly 

selected from a JDRF randomized clinical trial [99]. A ~58% of the dataset of each patient 

(which corresponds to the first 2500 min of CGM with a sampling interval 5minT  ) was 

used as the training set, and the remaining ~42% (which corresponds to the last 1800 min) as 

the test set. The ensemble glucose prediction solution was systematically more accurate 

compared to the constituent models for prediction horizons ≤45 min, exhibiting a higher 

robustness to glucose dynamics variations and prediction horizon increase. 
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Table 3.2  Nonlinear Machine Learning Models of Short-Term Prediction of Subcutaneous Glucose Concentration in Diabetes 

Study Model Input Dataset Prediction Performance 

Zecchin et al. 

[94] 

FFNN & First-

order recursive 

AR model 

Non-

personalized 

model 

CGM data 

Carbohydrate 

compartmental 

modelling [79] 

 

Subjects: Fifteen people with type 1 

diabetes  

CGM Device: Freestyle Navigator, 

Abbot Diabetes Care 

Sampling Interval: 1 min 

Monitoring Period: 7 days 

30 min: 

RMSE 14.0±4.1 mg·dL-1 

Time Gain 16.2±3.7 min 

ESODnorm 2.7±1.6 

J 10.8±7.4 

Zecchin et al. 

[96, 103] 

Jump neural 

networ 

Non-

personalized 

model 

CGM data 

Carbohydrate 

compartmental 

modelling [79] 

 

Subjects: Twenty people with type 1 

diabetes 

CGM Device: Dexcom Seven Plus, 

Dexcom 

Sampling Interval: 5 min 

Monitoring Period: 2-3 days 

30 min: 

RMSE 16.6±3.1 mg·dL-1 

Time Gain 18.5±3.4 min 

ESODnorm 9.6±1.6 

Zarkogianni 

et al. [97] 

SOM CGM data 

Physical 

activity: 

Energy 

expenditure 

Subjects: Ten people with type 1 

diabetes 

CGM Device: Guardian RT, 

Medronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 6 days  

Case 1 Case2 

RMSE 

30 min: 12.29±2.27 mg·dL-1 

60 min: 21.06±3.20 mg·dL-1 

120 min: 33.68±5.26 mg·dL-1 

r  (%) 

30 min: 97.92±0.70 

60 min: 94.00±1.77 

120 min: 84.22±4.87 

MARD 

30 min: 5.34±1.08 

60 min: 9.36±1.95 

120 min: 15.99±3.14 

CG-EGA (Accurate Readings) 

30 min:  

Hypo 91.11%, Hyper 88.59% 

60 min:  

Hypo 78.47%, Hyper 86.96% 

120 min:  

Hypo 56.40%, Hyper 84.73% 

RMSE 

30 min: 11.42±2.33 mg·dL-1 

60 min: 19.58.06±3.80 mg·dL-1 

120 min: 31.00±6.07 mg·dL-1 

r  (%) 

30 min: 98.14±0.37 

60 min: 94.26±1.27 

120 min: 84.28±6.54 

MARD 

30 min: 5.19±1.48 

60 min: 8.95±2.24 

120 min: 14.56±3.46 

CG-EGA (Accurate Readings) 

30 min:  

Hypo 89.10%, Hyper 90.65% 

60 min:  

Hypo 76.70%, Hyper 89.06% 

120 min:  

Hypo 58.77%, Hyper 86.17% 

Stahl et al. Sliding CGM data Subjects: Six people with type 1 Trial B Trial C 
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Study Model Input Dataset Prediction Performance 

[98] window 

Bayesian 

model 

averaging 

Linear state-

space models 

Recursive 

ARX model 

Kernel-based 

model 

Carbohydrate 

and insulin 

compartmental 

modelling [79] 

 

diabetes  

CGM Device: 

Freestyle Navigator, Abbot Diabetes 

Care, 

Dexcom Seven Plus, Dexcom 

Sampling Interval: - 

Monitoring Period: 3 days  

RMSE/RMSEbest 

1.03 [0.75-1.04]* 

CG-EGA - Zones A+B 

95.5% 
*Median [min-max] 

RMSE/RMSEbest 

1.03 [0.94-1.05]* 

CG-EGA - Zones A+B 

95.3% 
*Median [min-max] 

ESODnorm: Normalized energy of the second order differences
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3.4 Adaptive Models of Glucose Concentration in the Interstitial Fluid 

The analysis of the short-term subcutaneous glucose dynamics in type 1 diabetes has verified 

that a universal or global AR prediction model of subcutaneous glucose concentration is 

feasible in different frequency ranges, which characterize different physiological mechanisms 

exemplified by the periodicity of their oscillations [71, 73]. However, the high inter- and intra-

patient variability of blood glucose dynamics in response to exogenous inputs supports the 

individualization of the predictive models and their continuous adaptation to both biological 

(e.g. variations in insulin sensitivity or body mass) and environmental changes (e.g. variations 

in the level of physical activity) as well. For instance, the slow decrease of the sample 

autocorrelation function of frequently-sampled blood glucose data from subjects with type 1 

diabetes under ambulatory conditions over 2 days as well as their non-constant mean and 

variance evidenced a nonstationary process, which effect on AR modelling for each patient 

was ameliorated by taking the first difference of the glucose measurements [104]. The need for 

capturing the variations in the blood glucose system dynamics can be partially met by 

performing a periodic patient-specific re-estimation of model parameters (i.e. retraining). 

Nevertheless, sequential (or recursive) learning algorithms with the inherent ability to represent 

the time-varying behaviour of the underlying blood glucose regulatory system would allow for 

a better representation of the associated spatial and temporal input-output dependencies. Table 

3.3 reports the state-of-the-art studies employing dynamical models to the short-term prediction 

of the subcutaneous glucose concentration in diabetes.  

3.4.1 Linear Adaptive Models 

Sparacino et al. investigated the effect of the forgetting factor on the performance of an AR 

model of first-order, AR(1), which parameters were recursively identified by weighted least 

squares after applying low-pass filtering to CGM data [95]. A constant forgetting factor equal 

to 0.5 was shown to better balance the mean squared prediction error (MSE), the energy of the 

second-order differences of the predicted profile (ESOD), and the associated time delays 

between the predicted and the measured profile. In particular, the evaluation of the predictive 

model on 28 people with type 1 diabetes, whose subcutaneous glucose concentration was 

monitored with a sampling interval over 48 h in ambulatory conditions, demonstrated a median 

MSE of 353 mg·dL-1, a median ESOD of 35925, and average lag of 2.15±15.63 min and 

2.35±13.03 min on positive (nadir-to-peak) and negative (peak-to-nadir) trends for a prediction 

horizon of 30 min. As expected, a time-invariant AR(1) model resulted in  lags close to the 
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prediction horizon when applied to the same dataset, which could be attributed to the low order 

of the model. Finan et al. assessed the performance of a recursively identified (weighted least 

squares with a constant forgetting factor equal to 0.99) low-order ARX model of subcutaneous 

glucose concentration, which extra inputs comprised the insulin infusion rate and the meals’ 

carbohydrate amount, in dynamic ambulatory conditions and for 3 prediction horizons of 30, 

60, an 90 min. More specifically, Prednisone was administered to six people with type 1 

diabetes over the last 3 days of the monitoring period inducing, thus, a decrease in insulin 

sensitivity. Nevertheless, the results did not reveal any noticeable contribution of the recursive 

estimation of ARX model’s parameters on the prediction performance over ARX models 

trained in a batch mode.  

The feasibility of a linear adaptive ARX solution to the prediction of the short-term 

subcutaneous glucose dynamics in type 2 diabetes has been demonstrated in [105, 106]. In 

particular, weighted recursive least squares with an adjustable forgetting factor, according to 

the variation of model parameters over a window of size 5wN   steps, was used to identify 

both ARMA and ARMAX models of the subcutaneous glucose concentration. The extra inputs 

concerned physiological signals related to a subject’s physical activity and emotional condition 

[i.e. EE, average longitudinal acceleration, heat flux, galvanic skin response (GSR), and near-

body temperature]. The Akaike information criterion was applied for selecting the order of the 

respective ARMA and ARMAX models with constant parameters over the entire dataset 

(ARMA 2,  1A Cn n  ; ARMAX  2,  1,1,2,2,2 ,  =1A B Cn n n    and the delay 

  4,4,5,7,5d  ). It was shown that a multivariate ARMAX model outperforms a univariate 

model as applied to five people with type 2 diabetes under free-living conditions (23.8±2.4 

days) [Sum of squares of the glucose prediction error (SSGPE):7.43 % vs. 8.81 %; Relative 

absolute deviation (RAD): 4.24±5.14 % vs 5.77±7.18 %)]. Similarly, constrained weighted 

recursive least squares, with a time-varying forgetting factor, provided a stable 30-min-ahead 

ARMAX prediction model of the subcutaneous glucose concentration in patients with type 1 

diabetes fed with information on insulin on-board, EE, and GSR (  1,  11,3,3 ,A Bn n   

  =1 and the delay 1,2,2Cn d  ) [107]. Physiological constraints were imposed to the model’s 

parameters related to the extra inputs (i.e. insulin on-board, EE, and GSR) and, additionally, 

the spectral radius of the state matrix of the respective state-space representation of the 

ARMAX model was set less than or equal to 1 to assure the stability of the model. It should be 
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mentioned that a Kalman filter provided real-time smoothing of the raw CGM data. This model 

was evaluated on 14 people with type 1 diabetes, who were monitored under free-living 

conditions, and achieved an average RMSE of 18.55 mg·dL-1 and an average SSGPE of 9.91 

% for a prediction horizon of 30 min. Moreover, its incorporation into a generalized predictive 

insulin controller allowed the accurate prediction of hypoglycaemic events and led to the 

prevention of post-exercise hypoglycaemia [108]. 

3.4.2 Nonlinear Adaptive Models 

A discrete-time state-space model with time-varying coefficients was used to describe the 

subcutaneous glucose concentration dynamics in response to insulin (  1u t ) and carbohydrate 

intake (  2u t ) [109]. The absorption of subcutaneously injected insulin and the absorption of 

carbohydrates in the small intestine were both modelled through truncated Gaussian finite 

impulse response filter functions considering a time span of 1N  and 2N , and a delay of 1d  and 

2d  sampling intervals, respectively. The state variable (glucose concentration in the interstitial 

fluid) and the coefficients of the model (autoregression:   ,  1, ,ia t i p ; linear regression 

on  1u t :   ,  1, ,i t i q   ; linear regression on  2u t :   ,  1, ,i t i r   ;) were estimated 

simultaneously by a second-order extended Kalman filter (EKF), constraining     and i it t   

to negative and positive values, respectively. The model, with 2,p   6,q   6,r   1N 24,  

1d 6,  1 18,   1 9,   2N 18,  2d 1,  2 3,   and 2 6   was evaluated on five insulin-

pump treated people with type 1 diabetes who were monitored under normal daily life 

conditions for ≤3 days using a 5-min sampling interval. All performance metrics were 

computed using predictions starting from the second day of the observational period, whereas 

EKF hyper-parameter tuning was performed on data from the first day. The EKF-based state-

space model was found to outperform a recursively-identified ARX model with a similar 

configuration (  2,  and 6,6A Bn n  , a forgetting factor of 0.95, and without imposing the 

constraints 0,  0,  1, ,6i i i    ) (R2: 0.71±0.19 vs 0.64±0.24; RAD (%): 20.31±10.44 vs 

22.20±11.83; Time gain: 12.00±10.37 vs 1.00±2.24). It was also demonstrated that the 

exploitation of meal information improves the temporal gain (TG) of predictions, though the 

goodness-of-fit was not affected (Time gain: 12.00±10.37 min vs 6.00±6.52 min). However, 
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EKF-identified state-space models provide a solution to nonlinear problems that is non-optimal 

[110, 111].  

Two different real-time adaptive models, a RNN and an ARX model, were 

comparatively assessed with regard to the prediction of subcutaneous glucose concentration 

15, 30 and 45 min ahead in people with type 1 diabetes under SAP therapy, as well as, their 

capability of forming an early warning system of hypoglycaemia [112, 113]. The insulin 

infusion rate constituted the extra input to ARX and RNN models. Both models were identified 

individually for each patient using half of his/her dataset as the training set and the remaining 

as the test set. The selection of the ARX model’s orders and the estimation of its parameters 

relied on the minimum description length criterion and the recursive least squares method, 

respectively. During the evaluation process, the ARX model’s output was corrected by the 

expected instantaneous prediction error (relating to time t  for which the prediction is made); 

the instantaneous prediction error of the ARX model was estimated by a linear combination of 

the current (relating to time t pT  at which the prediction is made) subcutaneous glucose 

concentration and its first and second derivatives ( 5minT  ), the parameters of which were 

identified via least squares on the training set corresponding to the specified prediction horizon. 

Similarly, a RNN with two feedback loops was trained based on teacher-forced, real-time, 

recurrent learning, with its architecture being selected via trial-and-error processing. The 

dataset was comprised of 23 people with type 1 diabetes who were monitored during everyday 

living conditions. It was shown that the output correction module contributes to a significant 

reduction of the TL of ARX-based predictions, inducing, though, an insignificant increase in 

the RMSE. The RNN model yielded less erroneous and less lagged predictions as compared 

with the corrected ARX model for all prediction horizons (30-min-predictions’ RMSE: 18.9 vs 

27.7 mg·dL-1; 30-min-predictions’ TL: 10 vs 15 min). In addition, their combination resulted 

in 100% correct alarms of hypoglycaemic events which is indicative of the complementary 

qualities of linear and non-linear models with respect to predictive modelling of subcutaneous 

glucose dynamics. 

Naumova et al. proposed a novel approach to iteratively selecting/adjusting the hyper-

parameters of a Tikhonov regularization learning algorithm (i.e. the regularization parameter 

and the parameters of the kernel generating the associated Reproducing Kernel Hilbert Space) 

to each new input, which was evaluated in the context of the blood glucose prediction problem 

[101]. Pairing each subcutaneous glucose concentration measurement g  with the associated 
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sampling time t , a regularized function of time    2 2:
m n

f R R   is learnt on a training set 

  , , 1, ,Z x y M     of size Z M , where    1 1 0 0, , , ,m mx t g t g   

   
 
 

, 

   1 1, , , ,n ny t g t g    
 

, 0t  denotes the time at which a prediction is made, 

1 1 0 1m nt t t t t         and 1 1 hi it t    such that samples in Z  are could be 

considered as linearly independent. In particular,  f x  is the minimizer of: 

  
 2

2 2

1

1 n
K

Z

RKHS
Z f x y f 






  , (3.5) 

which, according to the Representer Theorem, is given by: 

    
1

,
Z

f x c K x x

 


 , (3.6) 

where   is the regularization parameter. The vector of coefficients  
1

Κ yc Z I 


 

 
1

Κ yc Z I 


   with I  the Z Z  unit matrix,   
, 1

Κ ,
Z

i j
i j

K x x


  is the Gram matrix 

and  1y= , ,
T

Z
y y . The set of admissible kernels is parameterized in terms of  , ,     

such that: 

      
2

1 2 1 2 1 2, , expK x x x x x x


     
  . (3.7) 

The learning process of the hyper-parameters of f  (meta-learning) was divided into 3 

phases: (i) the optimum kernel K   (i.e. 
o

 ) and regularization parameter 
o

  are learnt for 

each sample  ,x y   (formulated as M  regularized learning problems defined on 

    , , 1, , ,  1, ,i iZ t g i m n M
        ), (ii) a two-dimensional meta-feature vector u  

is computed for each x , comprising the coefficients of the linear least squares fit from 

 1 0, ,mt t 

 
 to  1 0, ,mg g 

 
 (iii) the optimum kernel K  and regularization parameter   

of f  are learnt as a function of the vector u  (formulated as a regularized learning problem 

defined on   ' , , 1, ,oZ u M    ). The optimization of the hyper-parameters of the 
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1M   regularized learning problems was performed by partitioning the respective datasets into 

two mutually exclusive sets (training and validation sets) and minimizing, via grid search over 

 , a functional accounting for the regularized loss as well as the validation error. Moreover, 

the regularization parameter   was taken as a functional of K  (i..e.    min max,K    

). The performance of the overall scheme was assessed using data from 2 clinical trials executed 

within the framework of the DIAdvisor project (Trial Ι: CGM data ( 10minT  ) from 9 type 

1 or type 2 diabetes patients monitored over ~10 days; Trial IΙ: CGM ( 5minT  ) and 

frequently sampled blood glucose data from 6 type 1 or type 2 diabetes patients monitored over 

3 days). It should be stressed the abovementioned meta-learning procedure was applied only 

once for one particular patient ( 6n m  , 24M  , 5minT  ). Regarding Trial I, the Clarke 

error grid analysis (EGA) revealed significantly higher percentages of predictions in Zones A 

and B for 30-, 60-, and 75-min prediction horizons as compared with two state of the art 

methods (AR- and neural network-based glucose prediction approaches [89, 114]). In addition, 

the prediction-error grid analysis (PRED-EGA), with reference the Yellow Spring Instruments 

(YSI) analyser blood glucose measurements from Trial II, showed that it may provide more 

accurate estimations as well as 1-step-ahead predictions of blood glucose concentration in the 

hypoglycaemic and hyperglycaemic ranges as compared with the specified CGM system 

(DExCom® SEVEN® PLUS, 2011).
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Table 3.3  Adaptive Models of Short-Term Prediction of Subcutaneous Glucose Concentration in Diabetes 

Study Model Input Dataset Prediction Performance 

Sparacino et 

al. [95] 

AR 

Weighted recursive 

least squares with a 

forgetting factor 

equal to 0.5 

CGM data Subjects: Twenty eight people with 

type 1 diabetes 

CGM Device: Glucoday 

Sampling Interval: 3 min 

Monitoring Period: 48 h 

MSPE (mg dL-1) 

30 min: 353 (146, 924)  

45 min: 1200 (480, 3690) 
*Median(10%, 90% 

percentiles) 

ESOD 

30 min: 35925 (6675, 

302364) 

45 min: 90780 (14543, 

917982) 
*Median(10%, 90% 

percentiles) 

TL 

Positive Trends 

30 min: 2.15±15.63 min 

45 min: 8.09±19.37 min 

Negative Trends 

30 min: 2.35±13.03 min 

45 min: 7.42±15.27 min 

Finan et al. 

[115] 

ARX 

Weighted recursive 

least squares 

CGM data 

Meal and insulin 

modelling 

 

Subjects: Six people with type 1 

diabetes monitored in normal daily life 

conditions. They were administered 

Prednisone for 3 days. 

CGM Device: CGMS®, Medtronic 

Minimed Inc. 

Sampling Interval: 5 min 

Monitoring Period: 

2-8 days without the prednisone 

medication. 

3 additional days with the prednisone 

medication 

FIT 

30 min: 65 % 

60 min: 40 % 

90 min: 19 % 

RMSE 

30 min: 27 mg dL-1 

60 min: 45 mg dL-1 

90 min: 61 mg dL-1 

Eren-Oruklu 

et al. [105] 

ARMA 

Weighted recursive 

least squares with an 

adaptive forgetting 

factor 

CGM data Subjects: Fourteen people with type 2 

diabetes monitored in normal daily life 

conditions 

CGM Device: System GoldTM, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 48 h 

SSGPE  

30 min: 5.56±2.38 % 

RAD  

30 min: 3.83+1.63 % 

CG-EGA 

Hypoglycaemia 

Accurate Readings 

92.94% 

Benign Errors 5.29% 

Euglycaemia 

Accurate Readings 

91.50% 

Benign Errors 7.87% 

Hyperglycaemia 

Accurate Readings 

89.79% 

Benign Errors 8.70% 

Eren-Oruklu 

et al. [106] 

ARMAX 

Weighted recursive 

least squares with an 

adaptive forgetting 

factor 

CGM data 

Physiological 

Data: Energy 

expenditure, 

average 

longitudinal 

acceleration, heat 

flux, GSR, near-

body temperature 

Subjects: Five people with type 2 

diabetes monitored in normal daily life 

conditions 

CGM Device: MMT-7012, Medtronic 

Inc. 

Sampling Interval: 5 min 

Monitoring Period: 23.8±2.4 days 

Univariate Model Multivariate Model 

SSGPE  

30 min: 8.81 % 

RAD  

30 min: 5.77±7.18 

% 

SSGPE 

30 min:7.43 % 

RAD  

30 min: 

4.24±5.14 % 
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Study Model Input Dataset Prediction Performance 

Turksoy et al. 

[107, 108, 

116] 

ARMAX in state-

space form 

Constrained recursive 

least squares 

Real-time Kalman 

filtering 

CGM data 

Insulin on board 

Energy 

expenditure and 

GSR 

Subjects: Fourteen people with type 1 

diabetes monitored in normal daily life 

conditions 

CGM Device: iPRO, Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: - 

RMSE 

15 min: 7.18 mg dL-1 

30 min: 18.55 mg dL-1 

60 min: 48.93 mg dL-1 
 

SSGPE 

15 min: 3.84 % 

30 min: 9.91 % 

60 min: 26.08 % 

Bayrak et al. 

[117] 

AR 

Recursive partial least 

squares 

Real-time Savitzky-

Golay filter 

CGM data Subjects: Seventeen people with type 1 

diabetes  

CGM Device: Guardian RT, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: - 

RMSE 

10 min: 1.78 mg dL-1 

20 min: 4.32 mg dL-1 

30 min: 7.79 mg dL-1 

40 min: 11.84 mg dL-1 

50 min: 15.92 mg dL-1 

SSGPE 

10 min: 1.66 % 

20 min: 4.06 % 

30 min: 7.35 % 

40 min: 11.22 % 

50 min: 15.19 % 

Daskalaki et 

al. [112, 113, 

118] 

Ensemble Modelling 

1) ARX with output 

correction module 

(cARX) 

Recursive least 

squares 

2) RNN with real-

time recurrent 

learning 

CGM data 

Insulin infusion 

rate data 

Subjects: Twenty three people with 

type 1 diabetes under SAP therapy 

monitored in normal daily life 

conditions 

CGM Device: Minimed CGM, 

Medtronic Inc.  

CGM Sampling Interval: 5 min 

Monitoring Period:  

Training Set 5.30±1.40 days 

Evaluation Set 4.83±1.80 days 

cARX RNN 

RMSE 

15 min: 16.8 mg dL-1 

30 min: 27.7 mg dL-1 

45 min: 37.0 mg dL-1 

RMSE 

15 min: 11.9 mg dL-1 

30 min: 18.9 mg dL-1 

45 min: 26.1 mg dL-1 

TL 

15 min: 5 min 

30 min: 15 min 

45 min: 30 min 

TL 

15 min: 5 min 

30 min: 10 min 

45 min: 20 min 

Correlation Coefficient 

15 min: 0.96 

30 min: 0.90 

45 min: 0.82 

Correlation Coefficient 

15 min: 0.98 

30 min: 0.94 

45 min: 0.90 

Naumova et 

al. [101] 

Regularized kernel 

learning 

Meta-learning 

approach to choosing 

a kernel and a 

regularization 

parameter 

CGM data Six people with type 1 diabetes under 

a hospitalized setting 

CGM Device: DexCom  

CGM Sampling Interval: 5 min 

Blood Glucose Device: Yellow 

Springs Instrument 

Clarke EGA 

Zone A (%) 

30 min: 91.3 

60 min: 75.14 

75 min: 68.77 

Zone B (%) 

30 min: 8.51 

60 min: 24.13 

75 min: 29.97 

Zone D (%) 

30 min: 0.19 

60 min: 0.54 

75 min: 0.82 

PRED-EGA  

(with reference to blood glucose measurements) 
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Study Model Input Dataset Prediction Performance 

Hypoglycaemia 

Accurate Readings 

10 min:90.82 % 

20 min: 81.75 % 

Benign Errors 

10 min:5.16 % 

20 min: 5.16 % 

Euglycaemia: 

Accurate Readings 

10 min: 82.96 % 

20 min: 82.11 % 

Benign Errors 

10 min: 13.05 % 

20 min: 16.08 % 

Hyperglycaemia 

Accurate Readings 

10 min:90.52 % 

20 min: 90.81 % 

Benign Errors 

10 min:4.14 % 

20 min: 1.33 % 

Wang et al. 

[109] 

Time-varying state-

space model  

Extended Kalman 

Filter 

CGM data 

FIR modelling of 

subcutaneous 

insulin absorption 

and meal 

absorption 

Subjects: Five people with type 1 

diabetes using insulin pump monitored 

in normal daily life conditions 

CGM Device: Minimed CGM MMT-

7102, Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 60.4±10.6 hours 

R2 

0.71±0.19 

RAD 

20.31±10.44 % 

Time Gain (min) 

12.00±10.37 mn 

J 

377.93±644.32 

RAD: Relative absolute deviation; EGA: Error grid analysis. 
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3.5 Prediction of Hypoglycaemia 

The precise prediction of the short-term course of subcutaneous glucose concentration may 

contribute significantly to the prevention of hypoglycaemic events in the daily management of 

insulin-treated diabetes. The hypoglycaemia prediction problem has been addressed through 

linear system identification or machine learning regression or classification models, which 

exploit the recent CGM profile of the patient in conjunction with information on the insulin 

therapy or his/her behaviour (e.g. meals, physical activity). Physiological signals linked to 

autonomic and central nervous system activation in response to a hypoglycaemic excursion 

[i.e. GSR, electrocardiogram (ECG), electroencephalogram] have been also exploited towards 

hypoglycaemia detection or prediction [11, 119]. Nevertheless, the non-specificity of GSR- 

and ECG-related features to hypoglycaemia (e.g. increase in perspiration or heart rate) together 

with the effect of HAAF necessitate properly fusing them with blood or subcutaneous glucose 

concentration data, aiming at reducing the false positive predictions.  

3.5.1 Hypoglycaemia Prediction as a Regression Problem 

The assessment of the predictive capacity of a glucose prediction model in the hypoglycaemic 

region can be implemented either in a sample- or an event-based manner. Table 3.4 reports 

regression models which were evaluated with respect to their ability to predict single 

hypoglycaemic concentration values. Both CG-EGA and PRED-EGA enable the classification 

of individual predictions of subcutaneous glucose concentration as accurate readings (AR), 

benign errors (BE) or erroneous reading (ER) separately for the hypoglycaemic (≤70 mg dL-

1), the euglycaemic (71-180 mg dL-1) and the hyperglycaemic (>180 mg dL-1) glucose ranges, 

taking into account the result of the point-error and rate-error grid analyses as well as the 

clinical impact of the consequent treatment decisions. For instance, in Naumova et al. [101], 

PRED-EGA characterized 90.89%, 90.82%, and 81.75% of the predictions in the 

hypoglycaemic range as accurate for 0-, 10-, and 20-min prediction horizons, respectively, with 

reference to blood glucose samples by the YSI analyser. Each individual prediction can be also 

characterized as true positive (TP) with regard to the corresponding actual glucose 

concentration value if both fall in the hypoglycaemic region, which, in turn, allows the 

computation of classical metrics of the performance of a model (e.g. accuracy, sensitivity, 

specificity, false positive rate) [120]. On the other hand, the problem of hypoglycaemic event 

prediction concerns the early prediction of the onset of the event [121, 122]. We focus on 
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methods treating the problem of hypoglycaemia prediction as an event prediction problem, 

emphasising on the definition of a hypoglycaemic event, the inference of a predictive warning 

and the evaluation of a TP event (Table 3.5). 

Weighted recursive least squares, with an adjustable forgetting factor, was used for the 

identification of ARMA models of subcutaneous glucose dynamics in diabetes [107, 123]. 

Eren-Orukle et al., having set the hypoglycaemic threshold to 60 mg·dL-1, defined a 

hypoglycaemic event as at least two consecutive (i.e. ≥10 min) blood glucose concentration 

measurements ≤60 mg·dL-1, and denoted its end by a blood glucose value >65 mg·dL-1 [123]. 

In this context, three different approaches to hypoglycaemic alarm generation were proposed: 

(i) Absolute Predicted Value: A hypoglycaemic alarm was issued at time it  if the p-step-ahead 

prediction of subcutaneous glucose concentration  ˆ
iy t pT   was <60 mg·dL-1, (ii) 

Cumulative Sum Control Chart (CUSUM): A hypoglycaemic alarm was issued at time it  if the 

lower control limit of the CUSUM,    0 1
ˆmax 0,i i iC K y t pT C  


       , exceeded a 

certain threshold value 5 , where 0 0C  , 1 0 2K    , 
-1

0 65 mg dL    and 

-1

1 60 mg dL    are the target mean glucose concentration value and the out-of-control mean 

glucose concentration values, respectively, and 
-11 mg dL     is the standard deviation of the 

glucose signal, and (iii) Exponentially Weighted Moving-Average (EWMA) Control Chart: A 

hypoglycaemic alarm was issued at time it  if     1
ˆ 1i i iz y t pT z       , with 

-1

0 0 65 mg dLz     and centreline equal to 0 , crosses the lower control limit 

   
2

0 2 1 1
i

iLCL L         
 

, where the parameter 5L   determines the width of 

control limits and 0.8   ( 0 1  ). The method was assessed on 54 subjects with type 1 

diabetes who underwent an insulin-induced hypoglycaemia test (≤55 mg·dL-1) during their 

short-term (24 hours) inpatient stay. Besides CGM, the blood glucose concentration was also 

measured at regular intervals, i.e. every 60 min during the day, every 30 min during the night 

and every 5 min during the hypoglycaemic event. A TP prediction was considered when the 

alarm had been issued 45 min at most before a true hypoglycaemic event, as assessed by the 

reference blood glucose measurements, and an FP prediction was considered when an alarm 

had been incorrectly issued during a non-hypoglycaemic period or it had been issued >45 min 

before the event. A sensitivity 89%, a false positive rate 11% and a detection time (the time 
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interval between the start of the alarm and the start of the hypoglycaemic event) 27.7±5.32 min 

were reported for the EWMA control chart method. 

As it is described in 3.4.1, physiological signals related to a subject’s physical activity 

or emotional condition (i.e. EE, GSR) as well as information on insulin regime (i.e. insulin on-

board) complemented the input of a recursive ARMA model and, in conjunction with 

physiological constraints imposed to model parameters, led to stable accurate short-term (30-

min ahead) predictions of the subcutaneous glucose concentration [107]. In particular, Turksoy 

et al. defined a hypoglycaemic event as successive subcutaneous glucose concentration values 

≤70 mg·dL-1, with sequences of hypoglycaemic values being separated by ≥2 non-

hypoglycaemic values being considered two discrete events. An alarm was immediately issued 

when the current subcutaneous glucose concentration value or its 1-step-ahead (i.e. 5 min) 

prediction were below the defined hypoglycaemic threshold (70 mg·dL-1). Otherwise, the 

algorithm examined if the 1p  -step-ahead-predictions of subcutaneous glucose 

concentration cross the hypoglycaemic threshold and, accordingly, alerts the patient. The 

predictive alarm system became more sensitive to nocturnal or post exercise hypoglycaemic 

events by increasing the threshold to 80 mg·dL-1 based on information provided by the 

SenseWear® Armband (BodyMedia Inc.) physical activity monitor. Similarly to [123], an 

alarm followed by a true event in the next 60 min signified a TP prediction. On average, a 

sensitivity 0.815 accompanied with a false positive rate 0.343 and a detection time 29.06 min 

were obtained for a dataset of 12 subjects with type 1 diabetes who had been observed in real-

life conditions. 

Daskalaki et al. constructed an ensemble predictive modelling scheme of 

hypoglycaemia in type 1 diabetes by linearly combining the output of the two online adaptive 

models presented in 3.4.2, i.e. the ARX model with the output correction module and the RNN 

model; the output of the ensemble model was given as the linear combination of the outputs 

 1
ŷ  and 

 2
ŷ  of the individual models, 

     1 2ˆ ˆ ˆ1y ay a y   , with  0,1a  [112, 113, 118]. 

The definition of a hypoglycaemic event encompassed the occurrence of ≥2 (i.e. ≥10 min) 

consecutive subcutaneous glucose concentration measurements below 70 mg·dL-1. A 

hypoglycaemic alarm was inferred if: (i) the current glucose value was within the euglycaemic 

range, (ii) the 15-min-ahead or at least one of the 30- or 45-min-ahead predictions were within 

the hypoglycaemic range, and (iii) the event was predicted for the first time. The maximum 

acceptable time distance between the issued alarm and the start of the event, which also defined 
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TP predictions, was set equal to the largest prediction horizon examined by the authors, i.e. 45 

min. Both ARX and RNN models were individually trained and tested on data from 23 patients 

with type 1 diabetes under SAP and during everyday living conditions; the first half of the data 

was used in model identification and the second one in model testing. The selection of the 

parameter  0,1a  was based on the maximization of a heuristic function of the TP 

predictions, the detection time and the false alarms over the training set. A perfect sensitivity 

[100.0% (100.0-100.0)] was achieved, which was complemented by a detection time of 16.7 

min (10.0-25.0) and 0.8 daily false alarms (0.0 -1.2) (the median and the 5th - 95th percentiles 

were given for each metric). 

3.5.2 Hypoglycaemia Prediction as a Classification Problem 

A retrospective analysis of CGM data, relying on support vector machines classification, was 

proposed as a complementary procedure to CGM calibration algorithms [124, 125]. In 

particular, Jensen et al. treated the problem of hypoglycaemia detection as a 2-class problem, 

with hypoglycaemia being defined as a plasma glucose ≤ 70 mg·dL-1 and non-hypoglycaemia 

as a plasma glucose >70 mg·dL-1. A ≥30 min subsequent period with no plasma glucose ≤ 70 

mg·dL-1 signified the end of the event. A candidate set of 2289 features, formed by using CGM 

measurements in the time interval  120, 120i it t  , was tested for its discriminative ability 

with respect to the classification of the subcutaneous glucose concentration at time it . A feature 

selection method based on principal component analysis was used to confine the input size, 

whereas SVR training was performed in parallel with a forward selection procedure in a leave-

one-subject-out cross-validation mode. In total, seven features were retained: 1) the current 

subcutaneous glucose concentration value, 2) the linear regression of CGM values in the 

interval  60, 5i it t  , 3) the kurtosis of CGM values in the interval  5, 115i it t  , 4) the time 

since last insulin injection, 5) the kurtosis of CGM values in the interval  50, 15i it t  , 6) the 

kurtosis of CGM values in the interval  70,i it t , and 7) the skewness of CGM values in the 

interval  120, 60i it t  . A minimum of four consecutive subcutaneous glucose values being 

classified as hypoglycaemic define a detected event, whereas a TP prediction requires at least 

one of them be confirmed by a plasma glucose measurement ≤70 mgdL-1. The study population 

consisted of 10 subjects with type 1 diabetes, who underwent an insulin induced 
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hypoglycaemia test during which capillary blood samples were drawn every 10 min; otherwise, 

every 30-60 min. Moreover, patients were equipped with a CGM system (Guardian® RT CGM, 

Medtronic). A 100% sensitivity with 1 FP showed a significant improvement over CGM alone 

(63% sensitivity with 0 FP) or an optimized calibration algorithm (89% sensitivity with 2 FP), 

which had been shown to improve the accuracy (i.e. MARD) of the Guardian® RT CGM system 

in all glycaemic ranges. 

Cichosz et al. tested the hypothesis that the integration of ECG and CGM data could 

enhance the early detection of a hypoglycaemic event as compared to a CGM system [126, 

127]. A two-class problem was defined, where each input vector ix  in the dataset 

  
1

,
N

i

i
i

Z x y


  is classified as  ,Ci non hypo hypoy C   based on the reference blood glucose 

measurement at time it . The RR intervals in the ECG signal were grouped in epochs of 5 min 

and the Heart Rate Variability (HRV) in each epoch was analysed using time domain, 

frequency domain and non-linear measures. A number of features were extracted by combining 

HRV measures of different epochs prior to it  using a set of typical statistical operators i.e. 

differentiation, average, slope standard deviation, skewness, and ratio. In addition, a confined 

set of features was extracted from CGM measurements 0-30 min prior to it , i.e. the 

subcutaneous glucose concentration at  igl t , the difference    30i igl t gl t  , the slope of 

all CGM measurements in the interval  30,i it t  and the slope relative to the current reading. 

The classification framework encompassed feature ranking, based on class separability criteria 

(i.e. receiver operating characteristic (ROC) curve) and their intercorrelation, followed by a 

forward selection procedure in conjunction with a binary linear logistic regression classifier. 

Frequent blood glucose measurements (every 10 min) were obtained during an insulin-induced 

hypoglycaemia test from ten patients with type 1 diabetes, who were continuously monitored 

(Guardian RT CGM, Medtronic Inc; ECG Lead II) in a hospital-setting for two days. A leave-

one-patient-out cross-validation showed that single blood glucose values below 70 mg·dL-1 

were predicted 1-step-ahead (i.e. 10 min) with a specificity comparable to that of the CGM 

(0.99 vs. 0.98), a considerably higher sensitivity than CGM (0.79 vs. 0.33) and a total area 

under the ROC curve (AUC) 0.98. In addition, hypoglycaemic events, being defined as ≥2 

consecutive low (<70 mg·dL-1) blood glucose concentration levels, were all correctly detected, 

compared to sensitivity 0.75 provided by CGM, without any FP predictions. Most importantly, 
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the time difference between the onset of the detected event and the nadir blood glucose of a TP 

event was improved from 0±11 to 22±11 min. In a subsequent study, Cichosz et al. studied the 

performance of the developed algorithm in the prediction of spontaneous hypoglycaemic 

events in free-living conditions, using a dataset of 21 patients with type 1 diabetes collected 

over a 3-day monitoring period [127]. Single vein plasma glucose and self-monitoring blood 

glucose (SMBG) measurements below 70 mg·dL-1 were used as reference hypoglycaemic 

values in order to locate hypoglycaemic events into CGM time series, which means that the 

precise start of the event is not known. Different prediction horizons were examined ranging 

from 0 to 30 min; for a prediction horizon of 20 min, the model yielded a ROC AUC 0.96 with 

sensitivity 100% and specificity 91%. 

 



 

53 

Table 3.4  Hypoglycaemia Prediction Methods evaluated in a Sample-based Mode 

Study Model Input Dataset Prediction Performance 

Zarkogianni et 

al. [97] 

Self-Organizing Map 

Hypoglycaemic 

Threshold: 70 mg dL-1 

CGM data 

Physical activity: 

Energy expenditure 

Subjects: Ten people with type 1 

diabetes monitored in normal daily 

life conditions 

CGM Device: Guardian RT, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 6 days 

Case 1 Case2 

CG-EGA Hypoglycaemia 

30 min: 

AR 91.1 % BE 2.4 % ER 6.5 % 

60 min: 

AR 78.5 % BE 2.5 % ER 19.0 % 

120 min: 

AR 56.4 % BE 2.1 % ER 41.5 % 

CG-EGA Hypoglycaemia 

30 min: 

AR 89.1% BE 0.9 % ER 10.0 % 

60 min: 

AR 76.7% BE 1.2 % ER 22.1 % 

120 min: 

AR 58.8% BE 1.2 % ER 40.0 % 

Eren-Oruklu 

et al. [105] 

ARMA 

Weighted recursive least 

squares with an adaptive 

forgetting factor 

Hypoglycaemic 

Threshold: 70 mg dL-1 

CGM data Subjects: Fourteen people with type 

2 diabetes monitored in normal daily 

life conditions 

CGM Device: System GoldTM, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 2 days 

CG-EGA Hypoglycaemia 

30 min: 

AR 92.94 % BE 5.29 % ER 1.77 % 

 

Eren-Oruklu 

et al. [106] 

ARMAX 

Weighted recursive least 

squares with an adaptive 

forgetting factor 

Hypoglycaemic 

Threshold: 60 mg dL-1 

CGM data 

Physiological Data: 

Energy expenditure, 

average longitudinal 

acceleration, heat flux, 

GSR, near-body 

temperature 

Subjects: Five people with type 2 

diabetes monitored in normal daily 

life conditions 

CGM Device: MMT-7012, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 23.8±2.4 days 

Sensitivity 

30 min: 74 % 

False Discovery Rate  

30 min: 31 % 

Wang et al. 

[102, 109] 

Time-varying state-space 

model  

Extended Kalman Filter 

Hypoglycaemic 

Threshold: 70 mg dL-1 

CGM data 

FIR modelling of 

subcutaneous insulin 

absorption and meal 

absorption 

Subjects: Five people with type 1 

diabetes using insulin pump 

monitored in normal daily life 

conditions 

CGM Device: Minimed CGM 

MMT-7102, Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 60.4±10.6 hours 

Sensitivity 

30 min: 78.71±7.26 % 

False Discovery Rate 

30 min: 35.60±9.61 % 

Detection Time 

30 min: 12.00±10.37 min 
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Study Model Input Dataset Prediction Performance 

Naumova et 

al. [101] 

Regularized kernel 

learning 

Meta-learning approach 

to choosing a kernel and 

a regularization 

parameter 

Hypoglycaemic 

Threshold: 70 mg dL-1 

 

CGM data Subjects: Six people with type 1 

diabetes under a hospitalized setting 

CGM Device: DexCom  

CGM Sampling Interval: 5 min 

Blood Glucose Device: Yellow 

Springs Instrument 

BG Sampling Interval: 5-10 min for 

specific time periods resulting in 

120 blood samples per patient 

Monitoring Period: 3 days 

PRED-EGA (with reference to blood glucose measurements) 

0 min: 

AR: 90.89 %, BE: 4.94 %, ER: 4.17 % 

10 min: 

AR: 90.82 %, BE: 5.16 %, ER: 4.02 % 

20 min: 

AR: 81.75 %, BE: 5.16 %, ER: 13.09 % 

 

Table 3.5  Hypoglycaemia Prediction Methods evaluated in an Event-based Mode 

Study Model Input Dataset Prediction Performance 

Zhao et al [73, 

86] 

ARX, Model migration 

Hypoglycaemic Threshold: 70 mg 

dL-1 

Event Definition 

Start: ≥3 consecutive s.c. glucose 

concentration values below or equal 

to 70 mg dL-1. 

End: ≥3 consecutive s.c. glucose 

concentration values above 65 mg 

dL-1 

CGM data 

Second-order transfer 

function models of insulin 

and meal intake [84] 

In-silico data / University of 

Virginia / University of Padova 

Simulator  

Sampling Interval: 5 min 

Sensitivity 

30 min: 

Adolescents:60.96 

% 

Adults: 58.84 % 

Children: 74.92 % 

Specificity 

30 min: 

Adolescents: 

99.65 % 

Adults: 99.59 % 

Children: 97.34 % 

TL 

30 min: 

Adolescents: 

4.71±2.21 samples 

Adults: 5.00±2.24 

samples 

Children: 

3.59±2.45 samples 

Eren-Oruklu et 

al. [123] 

ARMA 

Weighted recursive least squares with 

an adaptive forgetting factor 

Hypoglycaemic Threshold: 60 mg 

dL-1 

Event Definition 

Start: ≥2 consecutive (10 minutes or 

more) blood glucose measurements 

below or equal to the threshold value. 

End: Blood glucose concentration 

rises above 65 mg dL-1 

CGM data Subjects: 54 people with type 1 

diabetes monitored in a hospital 

setting [128, 129] 

CGM Device: CGMSTM, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: 1 day 

Absolute 

Predicted Value 

Cumulative-Sum Exponentially 

Weighted 

Moving-Average 

Control Chart 

Sensitivity 

30 min: 89.0 % 

Specificity 

30 min: 67.0 % 

False Positive 

Rate 

30 min: 33.0 % 

False Discovery 

Rate 

30 min: 15.0 % 

Sensitivity 

30 min: 87.5 % 

Specificity 

30 min: 74.0 % 

False Positive 

Rate  

30 min: 26.0 % 

False Discovery 

Rate 

30 min: 12.5 % 

Sensitivity 

30 min: 89.0 % 

Specificity 

30 min: 78.0 % 

False Positive 

Rate 

30 min: 22.0 % 

False Discovery 

Rate 

30 min: 11.0 % 
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Study Model Input Dataset Prediction Performance 

Detection Time 

30 min: 

30.00±5.51 min 

Detection Time 

30 min: 

25.80±6.46 min 

Detection Time 

30 min: 27.7±5.32 

min 

Turksoy et al. 

[107, 108, 

116] 

ARMAX in state-space form 

Constrained recursive least squares 

Real-time Kalman filtering 

Hypoglycaemic Threshold: 70 mg 

dL-1 

Event Definition 

Start: ≥1 consecutive s.c. glucose 

concentration values below or equal 

to 70 mg dL-1. 

End: ≥1 consecutive s.c. glucose 

concentration values above 70 mg 

dL-1 

CGM data 

Insulin on board 

Energy expenditure and 

GSR 

Subjects: Fourteen people with 

type 1 diabetes monitored in 

normal daily life conditions 

CGM Device: iPRO, Medtronic 

Inc. 

Sampling Interval: 5 min 

Monitoring Period: - 

Sensitivity 

30 min: 0.78±0.16 

False Positive Rate 

30 min: 0.37±0.06 

Detection Time 

30 min: 32±3.34 min 

Bayrak et al. 

[117] 

AR 

Recursive partial least squares 

Real-time Savitzky-Golay filter 

Event Definition 

Start: ≥1 consecutive s.c. glucose 

concentration values below or equal 

to 70 mg dL-1. 

End: ≥1 consecutive s.c. glucose 

concentration values above 70 mg 

dL-1 

CGM data Subjects: Seventeen people with 

type 1 diabetes  

CGM Device: Guardian RT, 

Medtronic Inc. 

Sampling Interval: 5 min 

Monitoring Period: - 

Sensitivity 

30 min: 0.86 

False Positives / Day 

30 min: 0.42 

Detection Time 

30 min: 25.25 min 

Daskalaki et 

al. [112, 113, 

118] 

Ensemble Modelling 

1) ARX with output correction 

module; Recursive least squares 

2) RNN with real-time recurrent 

learning 

Hypoglycaemic Threshold: 70 mg 

dL-1 

Event Definition 

Start: ≥2 consecutive s.c. glucose 

concentration values below or equal 

to 70 mg dL-1. 

CGM data 

Insulin infusion rate data 

Subjects: Twenty three people 

with type 1 diabetes under SAP 

therapy monitored in normal 

daily life conditions 

CGM Device: Minimed CGM, 

Medtronic Inc.  

CGM Sampling Interval: 5 min 

Monitoring Period:  

Training Set 5.30±1.40 days 

Evaluation Set 4.83±1.80 days 

Correct Warnings 

100.0 (100.0-100.0) %* 

Detection Time 

16.7 (10.0-25.0) min* 

Daily False Alarms 

0.8 (0.0-1.2)* 
*Values are Median (5th – 95th percentiles) 
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3.6 Contribution of the Thesis 

3.6.1 A Multivariate Kernel-based Regression Model of Subcutaneous Glucose 

Concentration in Type 1 Diabetes 

3.6.1.1 Status of the Literature 

Linear identification of the underlying blood glucose regulation system, with or without extra 

inputs, had been met in a number of studies. Different linear time-invariant model structures, 

ranging from AR to state-space ones, combined with physiological models of the kinetics of 

subcutaneously administered insulin and glucose ingestion, provided a linear predictive 

framework to the approximation of the dynamics of the glucose system in both type 1 and type 

2 diabetes, which was associated with reasonably accurate short-term (≤30 min) predictions. 

Moreover, multivariate nonlinear, with respect to the input, regression techniques of 

machine learning, and, particularly, neural network-based regression models (e.g. FFNN and 

RNN) had been effectively applied to the identification and prediction of the subcutaneous 

glucose concentration in type 1 diabetes, and the potential for improved performance over 30-

min horizon, as compared to AR approaches, was demonstrated. However, the input of such 

models was limited to past continuous measurements of the subcutaneous glucose 

concentration combined with quantitative information concerning the carbohydrates intake 

and/or the exogenous insulin administration. The inclusion of real-time physical activity data 

into predictive models had just emerged, which was considered very important given the 

prominent effect of exercise on blood glucose concentration. In addition, the real contribution 

of exogenous inputs to a specific model predictions had not been quantified in a systematic 

way. 

3.6.1.2 Contribution of the Thesis 

In [130], the problem of subcutaneous glucose concentration prediction in patients with type 1 

diabetes was addressed, for the first time in the literature, in the context of SVR taking 

advantage of a multivariate dataset acquired under free-living conditions. In particular, we 

proposed an individualized predictive model relying on SVR of multiple input variables 
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concerning the recent subcutaneous glucose profile, the effect of food and insulin intake, the 

EE due to physical activities and the time of the day (as a predictor of the 24-h variations of 

glucose). Physiological models of the subcutaneous insulin absorption and the glucose 

absorption following oral ingestion were combined with the patient-specific predictive model 

of the subcutaneous glucose concentration. By utilizing different input cases, the effect of each 

input to the model’s prediction error was quantified and, it was demonstrated that the 

availability of multivariable data and their effective combination can significantly improve the 

error of both short-term (i.e. for 15 min and 30 min) and long-term (i.e. for 60 min and 120 

min) predictions. 

3.6.2 Prediction of Hypoglycaemic Events under Free-Living Conditions 

3.6.2.1 Status of the Literature 

The prevention of hypoglycaemic events is of paramount importance in the daily management 

of insulin-treated diabetes. The use of short-term prediction algorithms of the subcutaneous 

glucose concentration may contribute significantly towards this direction. This specific 

problem had been dealt with through linear, time-invariant or adaptive, ARMA models, which 

had their predictive capability validated by hypoglycaemic clamp studies. The literature 

suggests that, although the recent glucose profile is a prominent predictor of hypoglycaemia, 

the overall patient’s context greatly impacts its accurate estimation. Moreover, the effect of 

HAAF necessitates properly fusing blood or subcutaneous glucose data with information on 

medication (insulin therapy), behaviour (e.g. meals, physical activity) or physiological signals 

linked to autonomic nervous system activation in response to a hypoglycaemic excursion, 

aiming at reducing false positive predictions. 

3.6.2.2 Contribution of the Thesis 

Machine-learning techniques may efficiently represent the linear or non-linear effect of 

patient’s contextual information (e.g. meals, insulin, exercise, sleep) on the subcutaneous 

glucose concentration, without requiring any a priori knowledge about the underlying glucose 

regulation dynamics, whereas they exhibit a very good generalization performance. 

In [131], we extended the SVR-based model, which was presented in [130], to predict 
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separately the nocturnal hypoglycaemic events during sleep and the non-nocturnal (i.e., 

diurnal) ones over 30-min and 60-min horizons based on real-life data. In particular, we 

introduced new input variables accounting for recurrent nocturnal hypoglycaemia due to 

antecedent hypoglycaemia, exercise, and sleep (i.e. HAAF). We showed that hypoglycaemia 

prediction using SVR can be accurate and performs better in most diurnal and nocturnal cases 

compared with other techniques applied to the same data and task. Results suggested that the 

prediction of nocturnal hypoglycaemic events becomes more accurate when HAAF-related 

factors are additionally considered. 

3.6.3 Evaluation of Short-Term Predictors of Glucose Concentration in Type 1 Diabetes 

Combining Feature Ranking and Regression Models 

3.6.3.1 Status of the Literature 

Literature suggested that nonlinear modelling of the short-term (≤30 min) and mostly long-

term (>30min) subcutaneous glucose concentration is significantly more accurate as compared 

with linear, with respect to the input, approaches and, in addition, benefits from the utilization 

of particularly configured multivariate features sets. The majority of glucose prediction 

methods found in the literature were trained individually for each patient, which renders them 

as personalized solutions. However, their feature space was equally defined for all patients (e.g. 

by explicitly defining the embedding dimension for each input in order to model the glucose 

dynamics). The latter entails the specification of a high-dimensional input with the aim of fully 

capturing the temporal relationships between the input and the output, which, in turn, may 

compromise the generalization capability of the model. Given that linear regression methods 

are suited for learning a priori defined and fixed memory mappings of input-output data in a 

stationary environment, we presumed that feature evaluation can be included within the model 

development pipeline. 

3.6.3.2 Contribution of the Thesis 

In [134], we proposed feature ranking as a pre-processing step in the construction of patient-

specific predictive models of the short-term subcutaneous glucose concentration in type 1 

diabetes. Two well-established feature ranking algorithms suitable for regression problems, i.e. 
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RF and RReliefF, were employed for assessing, separately for each patient, the set of features 

defined in [130]. The generality and effectiveness of the feature ranking were examined with 

respect to the predictive performance of a kernel-based regression model (SVR or GP) by 

employing a forward selection procedure. Both feature evaluation algorithms produced 

rational, robust results revealing, whose quality was further verified by their noticeable 

contribution in short-term kernel-based predictive modelling of the subcutaneous glucose 

concentration. More specifically, the convergence of the error curves for feature subsets about 

half the size of the original feature set did confirmed that both feature ranking algorithms 

properly locate high in hierarchy the most predictive features of glucose concentration. The 

consequent reduction of the input size is of particularly important for regression analysis. Our 

results suggested that RF and RReliefF can find the most informative features and can be 

successfully used to customize the input of glucose predictive models. 

3.6.4 Short-term Prediction of Glucose in Type 1 Diabetes Using Kernel Adaptive Filters 

3.6.4.1 Status of the Literature 

The feasibility of linear AR and moving average models, based primarily on weighted recursive 

least squares, to predict the short-term subcutaneous glucose dynamics in type 1 and 2 diabetes 

has been demonstrated. On the other hand, nonlinear adaptive learning of the glucose system, 

as one of the most promising research directions for implementing precision medicine in the 

self-management of diabetes, has been attempted so far through suboptimal solutions (i.e. 

extended Kalman filters) or real-time RNNs. In this context, novel nonlinear recursive 

frameworks to the online identification and prediction of the dynamic glucose system in type 

1 diabetes can be evaluated. Targeting at a real-time AR or multivariate model, special 

emphasis should be placed on their time and space complexity in combination with their 

convergence behaviour and generalization capacity. 

3.6.4.2 Contribution of the Thesis 

In [132], we proposed KAF as a learning scheme for the nonlinear dynamical system of 

glucose. KAF are capable of handling nonlinearities by expressing all operations in terms of 

inner products in the RKHS sparsifying, in parallel, the solution online to confine the structure 
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of the underlying radial basis function (RBF) network and, consequently, accomplish 

regularization. Nonlinear regression was performed in a reproducing kernel Hilbert space, by 

either the fixed budget quantized kernel least mean square (QKLMS-FB) or the approximate 

linear dependency kernel recursive least squares (KRLS-ALD) algorithm, such that a sparse 

model structure is accomplished. We showed not only the feasibility of KAF to predict the 

short-term course of subcutaneous glucose concentration, but also that multivariate data 

improve systematically both the regularity and the TL of the predictions, reducing the errors in 

critical glucose value regions for a prediction horizon ≥30 min. 
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CHAPTER 4. MULTIVARIATE PREDICTION OF 

SUBCUTANEOUS GLUCOSE CONCENTRATION IN 

TYPE 1 DIABETES PATIENTS BASED ON SUPPORT 

VECTOR REGRESSION 

4.1 Modelling Subcutaneous Glucose Concentration as a Support Vector Regression 

Problem 

4.2 A Glucose Model Based on Support Vector Regression for the Prediction of 

Hypoglycaemic Events under Free-Living Conditions 

 

4.1 Modelling Subcutaneous Glucose Concentration as a Support Vector Regression 

Problem 

4.1.1 Introduction 

The homeostatic regulation of glucose concentration in the blood stream is primarily controlled 

by the action of two pancreatic hormones, insulin and glucagon. Type 1 diabetes is caused by 

a cellular-mediated autoimmune destruction of the β-cells in the pancreas leading to absolute 

deficiency of insulin secretion and, consequently, to elevated blood glucose concentration [1]. 

The chronic hyperglycaemia of diabetes is associated with long-term microvascular (diabetic 

neuropathy, nephropathy and retinopathy) and macrovascular complications (coronary artery 

disease, peripheral arterial disease and stroke), rendering diabetes as a leading cause of 

morbidity and mortality worldwide. The use of IIT for the management of type 1 diabetes, 

based on multiple-dose insulin injections (3-4 daily injections) or CSII, leads to tight glycaemic 

control, which has been shown to reduce the incidence of diabetic complications [133]. Patients 

on IIT are more likely to experience hypoglycaemia; however, this side effect can be mitigated 
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by self-monitoring their blood glucose frequently throughout the day. 

Recent advances in glucose monitoring technologies allow patients to measure the 

glucose concentration in the subcutaneous interstitial space continuously and, thus, patients can 

evaluate their individual response to therapy in a more efficient way [134]. However, achieving 

and maintaining tight glycaemic control in diabetes, necessitates the proper consideration of 

additional factors having a direct impact on subsequent blood glucose concentrations, such as 

nutrition, physical activity, patient’s psychological status and his overall lifestyle [132, 135, 

136]. In addition, the endogenous processes involved in the regulation of glucose homeostasis, 

for which there is scientific evidence that exhibit circadian rhythms [137, 138], as well as the 

prominent intra- and inter-patient variability in response to therapy [139-141] render glucose 

control in type 1 diabetes a rather difficult procedure. To this end, medical care in diabetes can 

be enhanced by the development of computational models of glucose metabolism, which offer 

the potential to predict the blood glucose response to various stimuli. Such predictive models 

can provide advanced knowledge of abnormal glycaemic variations facilitating the appropriate 

patient reaction in crucial situations, such as asymptomatic hypoglycaemia. 

Considerable research efforts have been reported towards the development of 

mathematical models suitable for simulating the physiology of healthy blood glucose 

metabolism as well as the pathophysiology of type 1 diabetes [142, 143]. In particular, linear 

compartmental models, which are a class of dynamic models based on mass conservation 

principles, have been mainly used for studying the underlying processes involved in the 

regulation of blood glucose. Despite the fact that new important quantitative knowledge has 

been gained on glucose metabolism and control by insulin [79, 144, 145], the predictive 

capability of compartmental models is still limited due to the inherent complexity of the 

glucose-insulin system. On the other hand, data-driven modelling techniques are able to predict 

the glucose concentration by utilizing only the information hidden in the input-output data, 

without needing a priori knowledge about the relationship between them. Neural network 

models for predicting the time course of the blood glucose concentration in subjects with type 

1 diabetes, have been investigated in a number of studies [77, 146, 147]. In those studies, the 

predictive models were evaluated using discrete blood glucose measurements, which were 

recorded three or more times daily. Nevertheless, CGM provides significant insight into 

glycaemic control giving rise to more accurate predictions of glucose concentration in the blood 

as well as in the subcutaneous interstitial fluid. In the latter case, the existent effect of the TL 

between blood and subcutaneous glucose, which ranges from 5 to 15 min [148], can be 
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mitigated using predictive models of sufficient long-term prediction horizon. 

The fact that glucose prediction could be enhanced by exploiting the recent history of 

the CGM measurements was initially suggested by Bremer and Gough [104]. This has been 

further supported by other studies [70, 71, 95, 105, 149], which demonstrated that AR and 

ARMA models can provide accurate, short-term (up to 30 min) predictions of the subcutaneous 

glucose concentration in both type 1 and type 2 diabetes. In order to address the nonlinear 

behaviour of the subcutaneous glucose time series, Pérez-Gandía et al. [90] developed a neural 

network model based on the CGM values during the preceding 20 min, which however showed 

limited performance. The short-term predictive capability of these models can be partially 

justified by the fact that the auto-correlation function of the subcutaneous glucose 

measurements vanishes at about 30 min [91]. 

A predictive model that is able to represent and infer the response of the blood glucose 

metabolism to the exogenous inputs (e.g. carbohydrates intake, subcutaneous insulin 

administration, exercise) may allow predictions for longer horizons compared with AR models. 

Because of the intrinsic nonlinearity and nonstationarity of the glucose regulatory system [142], 

nonlinear regression techniques of machine learning, such as FFNNs and RNNs, and GP, have 

been efficiently used for predicting the subcutaneous glucose concentration in type 1 diabetes 

[114, 150, 151]. The results of these studies are highly dependent on the input which is used, 

which, in all cases, includes the past continuous measurements of the subcutaneous glucose 

concentration and quantitative information concerning the carbohydrates intake and the 

exogenous insulin administration. A more comprehensive feature set has been considered in 

[114] which encompassed qualitative descriptors of the lifestyle and the emotional status of the 

patient. Furthermore, in [151] the physical activity was taken into account by using real data 

recorded continuously throughout the observation days. 

In this study, the problem of subcutaneous glucose prediction in patients with type 1 

diabetes is addressed in the context of the SVR technique based on a multivariate dataset 

acquired under free-living conditions. SVR performs nonlinear regression based on the 

computation of a linear regression function in a high dimensional feature space where the input 

variables are mapped to with the aid of a kernel function. Considering that both exogenous and 

endogenous factors have been shown to be critical for the regulation of blood glucose, we 

examine 6 input cases. First, the predictions are made using only past continuous measurements 

of the subcutaneous glucose concentration (Case 1). In order to model the glucose dynamics 
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resulting from the insulin injections and the daily meals, the predictive model is enhanced with 

information regarding the plasma insulin concentration and, either the rate of appearance of 

meal-derived glucose in plasma alone (Case 2) or in combination with the total amount of 

exogenous glucose entering the systemic circulation (Case 3). The time of the day is 

additionally used as a predictor of the 24-hour variations of glucose (Case 4). In addition to the 

inputs of the two previous cases, the energy consumed during daily physical activities is 

utilized in Case 3 (to form Case 5) and in Case 4 (to form Case 6). We evaluate and compare 

the predictive accuracy of the SVR technique for each input case in relation to the prediction 

horizon. To our knowledge, this is the first systematic work which examines the effect of a 

number of factors on subcutaneous glucose prediction in people with type 1 diabetes with the 

aid of the SVR technique. 

4.1.2 Subjects 

Data from 27 type 1 diabetic subjects following multiple-dose insulin therapy were collected 

in the framework of an EU research project called METABO [152] from the participating 

clinical partners. The observation period of the study ranged from 5 to 22 days (average 

13.42±3.69). The baseline characteristics of the patients and the daily average number of 

hypo/hyperglycaemic events as well as the average duration of them, as calculated for all 

patients together, are given in Table 4.1. Hypoglycaemia was defined as the event in which at 

least two consecutive subcutaneous glucose values are less than 60 mg·dL-1, whereas 

hyperglycaemia as the event in which at least two consecutive subcutaneous glucose values are 

larger than 180 mg·dL-1. Calculations were made with a 5-min measurement sampling which 

is that of the CGM system used in this study. 

Each patient wore the Guardian® Real-Time CGM system (Medtronic Minimed Inc.), 

which records an average glucose value every 5 min. The patients were also equipped with the 

SenseWear® Armband (BodyMedia Inc.), which is a wearable body monitoring system 

acquiring body physiological signals from multiple-sensors. This system reports the EE of daily 

physical activities or exercise events every 1 min. Furthermore, information regarding the food 

intake (i.e. type of food, serving sizes and time) was recorded on a daily basis by the patients 

using a specially designed paper diary. The carbohydrate content of each meal was post-

analysed by a dietician. Similarly, the daily insulin doses, types of insulin and injection times 

were recorded. 
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We split the 27 patients in 3 groups according to the type of information that was 

recorded since some patients either were not wearing the activity body monitoring system for 

a long period of time or were not systematically recording the meal/insulin intakes. In 

particular, group A includes 15 patients for whom we have all the information required, group 

B includes 5 patients for whom it was not possible to exploit activity data and, group C includes 

the remaining 7 patients for whom only the CGM signal was available. 

Table 4.1  Dataset Characteristics 

Patient Baseline Characteristics Descriptive Statistics of the Glucose Dataset 

Gender  Average Hypoglycaemic 

Events Per Day 

0.40 (0-2) 

No. Female 12 

No. Male 15 

Age (y/o)  Average Duration of 

Hypoglycaemic Events (min) 

43.10 (0-88.33) 

Mean ± SD 43.5±13.4 

Range 19-72 

BMI (kg·m-2)  Average Hyperglycaemic 

Events Per Day 

1.64 (0-3.36) 

Mean ± SD 25±3.70 

Range 18.75–35.80 

HbA1c (%)  Average Duration of 

Hyperglycaemic Events (min) 

129.30 (0-283.75) 

Mean ± SD 7.07±1.11 

Range 5.20 – 8.50 

SD: Standard deviation 

The values in parenthesis indicate min and max average values per patient. 

4.1.3 The Proposed Method 

The proposed method relies on the combination of compartmental models of the glucose-

insulin regulatory system and a patient-specific predictive model of subcutaneous glucose 

concentration. The compartmental models are used to simulate (i) the absorption and, the 

kinetics and dynamics of subcutaneous administered insulin and (ii) the absorption of ingested 

carbohydrates. To learn the glucose metabolism of each specific patient and, consequently, to 

provide individualized predictions of the subcutaneous glucose concentration, we employ the 

SVR technique. The principal input variables of the glucose predictive model include: (1) the 

subcutaneous glucose measurements (gl), (2) the plasma insulin concentration (Ip), (3) the rate 

of exogenous glucose appearance in plasma (Ra), (4) the cumulative amount of exogenous 

glucose that appeared in the systemic circulation (SRa), (5) the hour of day from 1 to 24 (h) 

and, (6) the cumulative amount of the energy expended during physical activities or exercise 

(SEE). 

The predicted subcutaneous glucose concentration at time t l  assuming that t  is the 
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current time and l is the prediction horizon, is expressed as a function : df R R  as follows: 

    1, , ,nf x f v v  (4.1) 

where each individual constituent iv  is associated with one of the input variables (i.e. gl, Ip, 

Ra, SRa, h, SEE) and the n  (1 6n  ) denotes the number of the input variables used in the 

predictive model. 

We model the time delays in glucose regulation process by considering the history of 

the input variables with respect to the time at which the prediction is made (i.e. t). More 

specifically, each input variable iv  in (4.1), except when iv h , is described by a finite length 

vector containing successive values within the time window  1 , :
i i i iv v v vt n t t   

 
 

       1 , , , ,
i i i i i ii i v v v i v v i vv v t n t v t t v t     

 
 (4.2) 

where 
ivt  is the upper limit of the time window, 

ivt  is the sampling period and the parameter 

ivn  determines the length of the time window. Thus, the total size d (number of features) of the 

input x  of the glucose predictive model is:  

 
1

.
i

n

v

i

d n


  (4.3) 

The value of 
ivt  is equal to t  or t l  depending on whether the input variable iv  derives from 

the monitoring devices or the compartmental models, respectively. Furthermore, the parameter 

ivn , which physically shows the temporal effect of the input iv  on glucose, and the sampling 

period 
ivt  are determined based on some observations as well as on theoretical and clinical 

results found in literature [70, 71, 90, 91, 105]. A detailed description of the different 

components of our method is given in the following subsections. 

4.1.3.1 Insulin Model 

We model the absorption kinetics of subcutaneous administered insulin according to a 

mechanical approach [153], which is able to describe the absorption of different insulin 
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formulations including rapid-acting (lispro, aspart), short-acting (regular), intermediate-acting 

(NPH) and long-acting (glargine) analogues of insulin. In this model the diffusion of insulin in 

the subcutaneous tissue was considered to be isotropic i.e. homogeneous and with rotational 

symmetry with respect to the injection site. In addition to the chemical relationship between 

insulin dimers and hexamers, a virtual insulin association state was introduced to explain the 

kinetics of long–acting insulin analogs. By assuming that only the dimeric form of insulin can 

be absorbed into the plasma with a rate proportional to its concentration, the exogenous insulin 

flow at time t ,  exI t  (U·min-1), into the bloodstream is given by: 

    , ,

sc

ex d d

V

I t B c t r dV   (4.4) 

where 
dB  is the absorption rate constant, 

dc  is the dimeric insulin concentration in the 

subcutaneous tissue, 
scV  is the complete subcutaneous volume and r  is the distance from the 

injection site. The computation of the dimeric insulin concentration, 
dc , requires the solution 

of a system of partial differential equations describing the overall insulin infusion process. 

A compartmental model is used to simulate the dynamics of plasma insulin after a 

subcutaneous injection [154]. This model estimates the plasma insulin concentration, pI , 

(uU·mL-1), as follows: 

 
 

     1 2 3 ,
ex

p p h i

d

I t
I k I t k I t k I t

V
     (4.5) 

where  and h iI I  are the insulin concentrations in the liver and the interstitial tissue, respectively, 

dV  is the plasma insulin distribution volume, and 
1 2 3,   and k k k  are the rate constants of plasma, 

hepatic and interstitial insulin elimination, respectively. Given the lack of insulin production 

in pancreas on type 1 diabetes, the only input to this physiological model is the exogenous 

insulin flow,  exI t , obtained by (4.4). 

4.1.3.2 Meal Model 

The rate of appearance of meal-derived glucose into the systemic circulation ( Ra ) is described 

by the model of Lehmann et al. [155]. Ra  is determined by assuming a trapezoidal gastric 

emptying function, a single compartment for the intestine and a constant rate of intestinal 
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glucose absorption. The time interval for which the rate of gastric emptying function is constant 

and maximal is a function of the carbohydrate content of the meal, while the time intervals 

corresponding to the increase and the decrease of this trapezoidal function have a default value 

of 30 min. Thus, the amount of glucose in the gut at time t , gutq  (mg), following the ingestion 

of a meal, which contains D  grams of glucose equivalent carbohydrates, and the rate of 

appearance of exogenous glucose in plasma are given as: 

    , ,gut abs gut emptq k q t G t D    (4.6) 

     ,abs gutRa t k q t  (4.7) 

where 
absk  is the intestinal absorption rate constant and emptG  (mg·min-1) is the rate of gastric 

emptying. 

4.1.3.3 Support Vector Regression 

According to the SVR technique [156], the prediction function f  in (4.1) is given by the 

following linear form: 

     ,Tf x w x b   (4.8) 

where  x  denotes a fixed feature-space transformation, and w and b are the weight and bias 

parameters, respectively. A key feature of the SVR algorithm is solving nonlinear regression 

problems by mapping the training data jx  , with 1, ,j N  denoting the size of the training 

dataset, into a feature space   where the relation between jx  and the target output jy  

becomes linear. To obtain sparse solutions, an ε-insensitive loss function is utilized in which 

the error increases linearly with distance beyond the insensitive region. However, errors larger 

than ±ε are treated by introducing the slack variables j  and j

 for each data point jx . The 

optimization problem is defined as: 
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 (4.9) 

The constant C  determines the trade-off between the flatness of the SVR function f  (i.e. 

small w) and the amount up to which deviations larger than ε are tolerated. Solving the 

optimization problem, it is found that the prediction for a new point x can be made using: 

      
1

, ,
N

j

j j

j

f x a a x x b



    (4.10) 

where ,  j ja a
 are the Lagrange multipliers and the kernel function   is used for computing the 

similarity between two input vectors x  and jx  in the transformed space. 

4.1.4 Impact of Input Variables on Glucose Prediction 

One of the most crucial issues in machine learning techniques, as they apply to real problems, 

is the evaluation of the significance of the input variables. In the present work, 6 different cases 

are investigated in order to elucidate the predictive capability of each input variable regarding 

the prediction of subcutaneous glucose concentration in type 1 diabetes. 

In the first case, denoted herein as Case 1, the prediction of subcutaneous glucose is 

made based only upon the past interstitial glucose profile (i.e. 1n  ). This implies that the 

effect of the external inputs has been already incorporated into the glucose concentration, and 

thus it is assumed that this information is sufficient to predict the future glucose values. More 

specifically, we simply utilize the measurements of the gl variable in the last 30 min with 

respect to the current time t  and, therefore, the corresponding time window in (4.2) becomes 

 1 ,gl glt n t t   
 

 with 7gln   and 5 minglt  . This is in accordance with previous studies 

in diabetes demonstrating the existence of a strong dependency between glucose samples which 

are 30 or fewer minutes apart [70, 71, 90, 91, 105].  

In the second case, denoted as Case 2, the pI  and the Ra  variables are also added in 
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the input of the model (i.e. 3n  ). Since both variables reflect the human’s body response to 

insulin and food intake, respectively, it is more efficient to use their values that expand up to 

the time for which the prediction is to be made i.e. t l . The upcoming values of these variables 

within the time interval  ,t t l  are computed by the compartmental models using the insulin 

and meal recordings until the current time t , provided that no future event (i.e. meal, insulin 

injection) will occur during the period  ,t t l  which could alter the time course of these two 

signals. The latter assumption is valid since otherwise the prediction of subcutaneous glucose 

for the time t l  would not be sensible. The time window for the pI  and the Ra  variables is 

defined with respect to t l  as  1 ,
i iv vt l n t t l     

 
 with i pv I  or iv Ra , 7

pI Ran n   

and 5 min
pI Rat t    , which means that we exploit their values within the last 30 min with 

respect to the time of prediction t l . 

In the third case, Case 3, a new variable, called SRa , providing information on the 

cumulative amount of exogenous glucose appeared in plasma during the last 90 min with 

respect to the time of prediction t l , is additionally included in the input of the predictive 

model (i.e. 4n  ). Similar to the previous cases, the subcutaneous glucose concentration at 

time t l  is assumed to depend on SRa  values within the window  1 ,SRa SRat l n t t l        

with 6SRan   and 15 minSRat  . Each value, iSRa , for 0, ,5i  , in this vector expresses 

the amount of exogenous glucose absorbed during the time period 

 90, 75 SRat l t l i t         and is given by: 

  
 75

90

.
SRat l i t

i

t l

SRa Ra



   

  

   (4.11) 

There is experimental evidence from in vivo and in vitro studies on type 1 diabetes that the 

absorption time of meal-derived glucose into the systemic circulation lasts approximately 3 hrs 

after meal ingestion . In this study, we utilize the last 90 min of Ra assuming that the effect of 

its previous values is already reflected in the glucose signal. 

The fourth case, Case 4, accounts for the circadian control of the daily glucose 

metabolism. The circadian clock has been reported to generate daily rhythms in plasma glucose 

concentrations by mediating cellular and physiological functions related to glucose 



 

71 

homeostasis (e.g. endocrine control, peripheral glucose uptake, hepatic glucose production) 

[137, 138]. On this basis, the h  variable identifying the 24 hourly intervals in a day is added in 

the input of Case 3 in an attempt to capture the daily rhythms of blood glucose concentration 

(i.e. 5n   and 0hn  ).  

The last two cases, namely Case 5 and Case 6, result from the addition of information 

about physical activity to the input of Case 3 (i.e. 5n  ) and Case 4 (i.e. 6n  ), respectively. 

The moderate-intensity physical activities as well as more intense exercise events have been 

shown to stimulate the peripheral glucose uptake, thus being a potential risk factor for 

hypoglycaemia especially in subjects with type 1 diabetes [132, 136]. Using the same rationale 

as in Case 3, the physical activity is described by a vector, SEE , whose values ( iSEE ) denote 

the EE during  180, 170 SEEt t i t      : 

  
 170

180

,
SEEt i t

i

t

SEE EE



  

 

   (4.12) 

for 0, ,17i   ( 18SEEn  ) and for 10 minSEEt  . EE  expresses the instantaneous EE 

provided by the SenseWear® Armband. Thus, the short-term effect of physical activities 

performed during the last 3 hrs on the subsequent glucose concentration levels is investigated. 

4.1.5 Model Training and Evaluation 

The proposed method is intended to build patient-specific glucose predictive models and, 

therefore, it is evaluated individually for each patient using the dataset acquired during the 

observation period. The dataset of each patient is transformed to a  1N d   matrix 

containing the whole set of features (i.e. 49d  ) and the predicted value of the subcutaneous 

glucose concentration. More specifically, each row in the matrix concerns a specific time 

instance t  and provides the values within the time window ,
i i i iv v v vt n t t     for each input 

variable iv , 1, ,6i  , as well as the subcutaneous glucose concentration at time t l . 

Predictions are performed for four different values of prediction horizon l , i.e. 15, 30, 60 and 

120 min. The dataset for each one of the 6 different cases is formed by keeping the columns 

they are associated with. It should be noted that Case 1 may be applied to all groups of patients, 

Cases 2-4 may be applied to groups A and B, whereas Cases 5-6 only to group A. 
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The total number of instances in the dataset, N , depends mainly on the length of 

observation period for each patient but also on the number of gaps in the sensor data. Ideally, 

the time difference between two consecutive rows in the dataset is 5 min, i.e. equal to the 

sampling time of subcutaneous glucose concentration. However, since our method requires a 

defined set of input features, when (i) some values of the gl variable within the time window 

 30,t t  are not available, or (ii) some sums 
iSEE , for 0, ,17i  , cannot be calculated due 

to gaps in the SenseWear Armband data, then the corresponding row is removed from the 

dataset (Condition A). The same also applies when the glucose concentration at time t l  is 

not available (Condition B). In addition, if an event (i.e. food intake, insulin intake, moderate 

or intense exercise) occurs at the time interval  ,t t l  then the corresponding row into the 

dataset is also deleted, because that training instance does not represent a rational mapping 

between the input and the output (Condition C). Actually, in this case, the subcutaneous glucose 

concentration at time t l  depends not only on the configured input but also on these future 

events, which cannot be known in advance in real conditions so as to be incorporated in the 

model. The average percentages of data remaining in group A for 15, 30, 60 and 120 min 

prediction horizon are 81%, 74%, 61% and 43%, respectively. The corresponding percentages 

in group B are 90%, 84%, 72% and 52%, and in group C 96%, 94%, 92% and 86%. It is 

essential to notice that Conditions A and B are applied to all patient groups, while the Condition 

C is applied only to groups A and B and actually, for the latter, partially, due to the lack of 

physical activity data by the SenseWear® Armband. This justifies the greater reduction of the 

dataset in these groups compared with group C, which becomes more significant as the 

prediction horizon increases. 

A 10-fold cross validation procedure is employed to evaluate the predictive 

performance of the SVR technique. It should be noted that all input data jx , with 1, , ,j N

were normalized between 0 and 1 prior to validation. The SVR is built with a Gaussian kernel 

and the hyper parameters C, ε and the kernel parameter    are optimized using the differential 

evolution algorithm [157]. The fitness function for differential evolution algorithm is defined 

as the average RMSE of the 10-fold cross validation process as it is shown in (13): 

   
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1 1

1 1
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where 
kN  represents the size of kth fold, jy  is the actual value of subcutaneous glucose 
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concentration associated with the input jx  and  jf x  is the glucose value computed by the 

SVR. In addition, the three dimensional search space of the parameters is set as 

 0.001,1024C  ,  0.0001,1   and  0.00001,8  . 

The assessment of the predictive accuracy of the proposed method is based on the 

RMSE10-fold and on the correlation coefficient (r10-fold) resulting from the 10-fold cross 

validation:  
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10
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r r



   (4.14) 

where kr  is the correlation coefficient regarding the kth fold. The percentage of the successful 

hypoglycaemic (≤70 mg·dL-1) and hyperglycaemic (≥180 mg·dL-1) predictions [158] is also 

used to evaluate the proposed method. Besides differences in the values between the predicted 

and actual signals, another aspect of the prediction capability is the TL observed between them. 

This is estimated by using the approach proposed in [70] in which the TL is equal to the lag 

that yields the peak cross-correlation. We calculate the cross-correlation over segments of the 

two signals that are at least 120-min long. The TL between the two signals is calculated as the 

average of each segment’s lag. 

In addition, the CG-EGA [93, 149, 159] is used aiming to evaluate the clinical impact 

of the predictions in terms of both location and rate of change. This analysis defines three types 

of prediction errors (i.e. Accurate Readings, Benign Errors and Erroneous Readings) which are 

computed separately for each glucose range, namely for hypoglycaemia (≤70 mg·dL-1), 

euglycaemia (71-180 mg·dL-1) and hyperglycaemia (>180 mg·dL-1). 

4.1.6 Model Evaluation over the whole Glucose Range 

4.1.6.1 Optimized SVR Parameters 

The average value and the standard deviation of the parameters of SVR model (i.e. C ,   and 

 ) concerning group A, as derived from the differential evolution optimization algorithm, are 

given in Table 4.2. We observe that the three parameters are found in specific regions of the 

search space for each input case and prediction horizon; however, there exist considerable 
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inter-patient deviations. More specifically, it can be seen that the average values of parameter 

C in Cases 2-6 are significantly higher compared to Case 1 for both short-term (i.e. for 15 min 

and 30 min) and medium- to long-term (i.e. for 60 min and 120 min) predictions, which means 

that we obtain smoother predictions at the expense of increasing model’s complexity. However, 

the values of C vary slightly among different prediction horizons. Regarding parameter  , its 

average values show no prevalence trend with respect to the different input cases ranging 

between 0.32 and 0.57, except in Cases 1 and 2 for predictions of 15 min and 60 min, 

respectively, where   is ≈0.7. Furthermore, we observe a substantial decrease in the average 

values of parameter   in Cases 5 and 6, which also implies a better generalization ability of the 

SVR model in these cases. However, parameter   increases with increasing prediction horizon 

showing that the SVR function becomes less smooth for longer predictions. Finally, the 

optimization results for groups B and C revealed no significant inter-group differences 

regarding Cases 1-4. 

4.1.6.2 Assessment of Predictions 

The average value of RMSE10-fold and r10-fold for the respective patient groups of each input case, 

and the corresponding standard deviation, are reported in Table 4.3. Regarding group A, it can 

be seen that the short-term predictions (i.e. for 15 min and 30 min) of the subcutaneous glucose 

concentration in Case 1 exhibit low error and a high degree of correlation with the observed 

ones. However, as expected, the prediction accuracy becomes considerably lower for medium- 

to long-term predictions (i.e. for 60 min and 120 min). The corresponding average time TLs 

were: 2.8, 7.8, 16.4, 25.8 min, respectively, which shows that the long-term predictions are not 

reliable. In Case 2, the SVR model yields 15-min and 30-min glucose concentration predictions 

with an average RMSE10-fold less than 10 mg·dL-1, while, as the prediction horizon increases, it 

tends to be comparable with that of 30 min in Case 1. The inclusion of the SRa  variable in 
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Table 4.2  Optimized Parameters of the SVR Glucose Predictive Model for Group A 

 Prediction Horizon 

15 min 30 min 60 min 120 min 

C e γ C e γ C e γ C e γ 

Case 1 557.82 

(255.96) 

0.68 

(0.24) 

6.07 

(2.45) 

593.33 

(326.57) 

0.46 

(0.33) 

6.48 

(1.54) 

516.96 

(274.67) 

0.45  

(0.29) 

7.08  

(2.02) 

622.39 

(346.46) 

0.57 

(0.33) 

7.69 

(0.70) 

Case 2 801.27 

(166.08) 

0.33 

(0.24) 

4.48 

(1.58) 

986.58 

(66.05) 

0.47 

(0.34) 

7.50 

(0.70) 

953.05 

(112.33) 

0.69  

(0.26) 

7.91  

(0.22) 

983.41 

(65.73) 

0.39 

(0.37) 

7.93 

(0.14) 

Case 3 863.94 

(186.85) 

0.51 

(0.32) 

3.71 

(1.68) 

875.72 

(197.68) 

0.35 

(0.21) 

6.48 

(1.28) 

947.15 

(114.77) 

0.47  

(0.35) 

7.83  

(0.38) 

938.27 

(124.89) 

0.52 

(0.35) 

7.89 

(0.24) 

Case 4 861.07 

(182.47) 

0.42 

(0.28) 

3.26 

(1.14) 

839.81 

(194.82) 

0.50 

(0.37) 

6.22 

(1.58) 

880.29 

(125.73) 

0.51  

(0.29) 

7.28  

(0.81) 

954.92 

(132.61) 

0.46 

(0.32) 

7.87 

(0.50) 

Case 5 707.07 

(217.32) 

0.49 

(0.25) 

1.68 

(0.63) 

791.40 

(157.37) 

0.37 

(0.25) 

2.74 

(0.91) 

873.90 

(169.41) 

0.40  

(0.31) 

3.75  

(1.73) 

867.76 

(211.22) 

0.33 

(0.30) 

4.73 

(2.48) 

Case 6 801.49 

(176.96) 

0.51 

(0.32) 

1.53 

(0.66) 

875.63 

(130.78) 

0.32 

(0.24) 

2.58 

(0.94) 

791.80 

(208.67) 

0.47  

(0.36) 

3.34  

(1.65) 

850.48 

(179.60) 

0.48 

(0.29) 

4.74 

(2.48) 

Data are mean (standard deviation) values. 
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Table 4.3  Average Prediction Accuracy of the SVR Glucose Predictive Model for all Input 

Cases and for Different Patient Groups 

Case# 

Prediction Horizon 

15 min 30  min 60 min 120 min 

RMSE r RMSE r RMSE r RMSE r 

 Group A 

Case 1 9.05 

(2.24) 

0.98 

(0.01) 

15.29 

(2.76) 

0.95 

(0.01) 

24.19 

(3.78) 

0.87 

(0.05) 

33.04 

(6.49) 

0.72 

(0.12) 

Case 2 7.31 

(1.74) 

0.99 

(0.00) 

9.15 

(1.88) 

0.98 

(0.01) 

12.24 

(2.89) 

0.97 

(0.02) 

15.31 

(4.27) 

0.94 

(0.04) 

Case 3 6.55 

(1.74) 

0.99 

(0.00) 

8.24 

(2.25) 

0.99 

(0.01) 

10.55 

(2.85) 

0.97 

(0.02) 

13.43 

(4.20) 

0.95 

(0.03) 

Case 4 6.10 

(1.83) 

0.99 

(0.00) 

7.16 

(2.01) 

0.99 

(0.01) 

8.56 

(2.23) 

0.98 

(0.01) 

10.33 

(2.99) 

0.97 

(0.02) 

Case 5 5.35 

(1.63) 

0.99 

(0.00) 

6.38 

(1.57) 

0.99 

(0.00) 

7.82 

(2.01) 

0.99 

(0.01) 

8.57 

(1.75) 

0.98 

(0.01) 

Case 6 5.21 

(1.58) 

0.99 

(0.00) 

6.03 

(1.67) 

0.99 

(0.00) 

7.14 

(1.84) 

0.99 

(0.01) 

7.62 

(1.81) 

0.99 

(0.01) 

 Group B 

Case 1 9.56 

(0.67) 

0.98 

(0.00) 

16.60 

(1.94) 

0.95 

(0.01) 

27.51 

(5.07) 

0.86 

(0.04) 

37.56 

(7.34) 

0.72 

(0.07) 

Case 2 7.45 

(1.21) 

0.99 

(0.00) 

9.83 

(1.39) 

0.98 

(0.01) 

13.65 

(2.48) 

0.96 

(0.02) 

16.26 

(3.33) 

0.95 

(0.03) 

Case 3 6.92 

(1.23) 

0.99 

(0.00) 

8.66 

(1.65) 

0.99 

(0.01) 

11.90 

(1.84) 

0.97 

(0.01) 

14.28 

(2.50) 

0.96 

(0.01) 

Case 4 6.03 

(0.94) 

0.99 

(0.00) 

6.96 

(1.04) 

0.99 

(0.00) 

7.77 

(1.57) 

0.99 

(0.00) 

10.00 

(2.01) 

0.98 

(0.01) 

 Group C 

Case 1 10.44 

(2.26) 

0.97 

(0.02) 

17.30 

(2.58) 

0.92 

(0.05) 

26.73 

(3.53) 

0.81 

(0.06) 

37.45 

(6.82) 

0.57 

(0.10) 

Data are mean (standard deviation) values. 

Case 3 contributes to a further reduction of the average RMSE10-fold by 14% for 60 min and 12% 

for 120 min, compared with Case 2. The results obtained for Case 4 show that the time alone, 

expressed through the h variable, is also a significant predictor of the subcutaneous glucose 

concentration. Nevertheless, the best predictions are obtained when introducing the SEE 

variable (Cases 5 and 6), with Case 6 resulting in an average prediction error less than 8 mg·dL-

1 for all horizons. For Cases 2-6, the average r10-fold, is close to 1 for all horizons. Regarding the 

TLs, the ranges were 1.6 – 6.5 min and 1.0 - 3.4 min for Case 2 and 3, respectively, with the 

lags increasing with the horizon, whereas for Cases 4-6, all TLs were shorter than 1 min. The 

actual vs. predicted glucose signals for Cases 1, 3 and 6 for 30-min and 60-min horizons can 

be seen in Figure 4.1 and Figure 4.2, respectively, for a patient during a day. 
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Figure 4.1  Predicted vs measured subcutaneous glucose concentration of a typical subject 

during one day for 30-min prediction horizon based on (a) Case 1, (b) Case 3 and (c) Case 6. 

 

Figure 4.2  Predicted vs measured subcutaneous glucose concentration of a typical subject 

during one day for 60-min prediction horizon based on (a) Case 1, (b) Case 3 and (c) Case 6. 
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In critical glucose value regions, the percentage of successful predictions is gradually 

improved from Case 1 to 3. Particularly for Case 3, 89%, 85%, 76% and 70% of the values of 

group A are successfully predicted as hypoglycaemic, whereas 96%, 95%, 91% and 89% are 

successfully predicted as hyperglycaemic for each horizon, respectively. For Cases 4-6 the 

performance is further improved, although there are no systematic differences among them. 

Case 6 produces 91%, 87%, 83% and 85% successful hypoglycaemic predictions and 96%, 

96%, 94% and 92% hyperglycaemic ones. In general, the percentages are higher when the 

glucose values are greater than 180 mg/dl, which is probably attributed to the existence of more 

hyperglycaemic instances in the dataset. 

Table 4.4 contains the results of the CG-EGA concerning group A only for Cases 4 and 

6. It can be observed that in both cases for all horizons more than 90% of the predictions are 

classified as clinically accurate or with benign errors (i.e. unlikely to lead to a negative 

outcome). The short-term predictions are more accurate in the hypoglycaemic range compared 

to the hyperglycaemic one, whereas the accuracy is decreased for hypoglycaemia as the horizon 

increases. Overall, Cases 4, 5 and 6 perform equally as regards this type of analysis, while 

Cases 1-3 are associated with higher erroneous predictions (CG-EGA results are not shown 

herein). The predictive behaviour of the model is also confirmed for groups B and C. 

Nevertheless, the results obtained for these groups should be interpreted with caution because 

of the free parameters (future meal/insulin intakes and physical activities) existing during the 

training-validation phase.  

Table 4.4  CG-EGA of Predictions for Group A 

 Prediction Horizon 

15 min 30 min 60 min 120 min 

AR BE ER AR BE ER AR BE ER AR BE ER 

Hypoglycaemia             

Case 4 96.76 2.00 1.24 94.56 2.56 2.88 92.16 2.74 5.09 87.63 4.50 7.88 

Case 6 96.75 2.37 0.89 94.05 2.93 3.02 90.59 3.91 5.50 90.05 6.32 3.63 

Euglycaemia             

Case 4 95.84 3.79 0.37 95.51 4.20 0.28 94.35 5.33 0.33 93.03 6.65 0.32 

Case 6 96.56 3.16 0.29 95.80 3.91 0.29 94.93 4.81 0.25 93.57 6.24 0.20 

Hyperglycaemia             

Case 4 89.68 6.09 4.23 88.20 7.76 4.04 86.45 9.53 4.02 84.85 11.03 4.12 

Case 6 90.00 5.82 4.19 89.28 6.57 4.15 87.45 8.75 3.81 83.29 12.98 3.73 

AR = Accurate readings, BE = Benign errors, ER = Erroneous readings.  
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4.1.7 Discussion and Conclusions 

In this paper, a study on the prediction of subcutaneous glucose concentration in patients with 

type 1 diabetes under free-living conditions was presented. The innovative elements of the 

study are that (a) we experimented with different inputs corresponding to combinations of 

several variables associated with both the endogenous and the exogenous regulation of glucose 

in order to elucidate their effect on the prediction capability of a regression technique, and (b) 

the SVR technique was proposed for modelling the dynamic behaviour of blood glucose 

metabolism. Comparisons of the numerical accuracy of the generated predictions were made 

for six input cases. 

This prediction problem was addressed for the first time in the literature with the aid of 

the SVR technique. SVR may approximate non-linear functions of the input variables, such as 

the blood glucose concentration, with a given accuracy, while controlling model’s complexity 

to avoid over-fitting. Despite the fact that SVR accounts for non-linearity by mapping the input 

space to a higher dimensional feature space, the use of kernel functions enables the 

computations to be made in the original one. This is very important considering the great 

number of features already introduced to represent the temporal dependencies between the 

input variables and the glucose concentration. Furthermore, the utilization of the ε-insensitive 

loss function and of the slack variables not only further enhance the generalization performance 

of SVR but also lead to a sparse solution rendering SVR advantageous over other kernel-based 

approaches for the manipulation of large datasets, which is the case in glucose prediction 

problems. In addition to these, the fact that the regularized error function is characterized from 

the absence of local minima, as opposed to other machine learning techniques such as neural 

networks, is an especially important feature. However, capacity control in SVR requires the 

fine tuning of the hyper parameters C, ε, and the kernel parameters, which increases the 

computational cost involved in solving the convex optimization problem. 

It becomes apparent that the determination of the input variables is essential for making 

reasonable and accurate predictions of glucose. The findings of the current and other studies 

[70, 71, 90, 95, 105, 149] showed that the subcutaneous glucose signal itself ( gl ) contains a 

sufficient amount of the information needed to make accurate short-term (up to 30 min) 

predictions, however, the auto-correlation of the signal attenuates rapidly after that time point. 

To this end, previous studies [150, 151] have also used the past values of the pI  and the Ra  

simulated signals to improve the capabilities of their predictive models. In order to exploit the 
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most of the compartmental models, in the present work we further proposed to expand the 

simulation time from the current time up to the time for which the prediction is to be made and 

use those additional future values as input to the SVR. Although comparative results were not 

provided herein, those future values contributed to more accurate predictions than when using 

only the time history up the current time. Furthermore, we moved one step forward by 

exploiting the area under the Ra  curve, through the introduction of the variable SRa , which 

represents the cumulative amount of exogenous glucose inserted in the plasma over time 

(calculated every 10 min). Similarly, the effects of physical activities and exercise on type 1 

diabetes were treated by introducing the variable SEE , which expresses the EE over the last 

3 hrs in the form of a vector calculated cumulatively every 10 min. The only study [151] which 

used information from an activity monitor for making predictions was based only on the METs 

recorded every 5 min, which is, however, an instantaneous value of the activity intensity not 

showing the history of the activity. Our preliminary results reported in [160] showed that METs 

were less significant than SEE  for SVR. Furthermore, an attempt was made to capture the 

effect of the circadian rhythms on glucose variability by using as input the hour of day which 

was proved to contribute to significantly better predictions. The six input cases that were 

considered in this study were employed so as to address different practical conditions, namely: 

(i) Case 1 is concerned with patients wearing only the CGM device, (ii) Cases 2-4 additionally 

require the patients to systematically record the food and insulin intake, and (iii) Cases 5-6 

require the patients to wear an activity monitoring system for long-time periods within the day. 

The evaluation of the proposed method was based on a representative dataset from 27 

people with type 1 diabetes, whose subcutaneous glucose concentration profile included a 

sufficient amount of hypo/hyperglycaemic events. Table 4.3 revealed that the short-term 

subcutaneous glucose concentration can be predicted with a sufficient numerical accuracy in 

all patient groups in all cases. However, when we exploited the full set of input variables (Case 

6), a significant improvement was achieved in the average RMSE10-fold, compared with Case 1, 

which was 42% and 61% for 15-min and 30-min predictions, respectively. As expected, the 

increase in the prediction horizon led to lower accuracy in the predictions for all cases. For 

Case 1, the predictions that were made in the medium- and long-term (60 and 120 min) had not 

only low accuracy but can also lead to potentially erroneous treatment. By introducing 

additional inputs, the prediction accuracy was greatly improved and became clinically 

acceptable in both normal and critical glucose ranges. More specifically, for Case 4 the 

accuracy for 60-min and 120-min predictions was 8.56 mg·dL-1 and 10.33 mg·dL-1 (i.e. 
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improved by 65% and 69% compared to Case 1), whereas for Case 6 was 7.14 mg·dL-1 and 

7.62 mg·dL-1 (i.e. improved by 70% and 77%), respectively. Besides improved accuracy, 

equally important is the fact that we achieved a strong positive linear correlation as well as a 

very short TLs (<1 min) in Cases 4-6, regardless of the prediction horizon. Comparison of 

Cases 4 and 6 reveals the important role of the information about physical activity on the whole 

prediction process. Nevertheless, the results obtained from Case 4 indicate that predictions can 

be sufficiently accurate and clinically acceptable even if the patient does not use an activity 

monitor, which renders the proposed predictor effective in less intrusive and thus more 

practical conditions.  

A comparison of the proposed method with those reported in the literature is shown in 

Table 4.5. The results indicate that the proposed method outperforms all the other methods 

except for that of Gani et al. [70] for 30-min predictions; however, the results of that method 

were computed based only on CGM data segments that were described by a stationary process. 

On the other hand the proposed method may as well perform in the presence of external inputs, 

when the stationarity hypothesis is no more valid, by timely modelling the data obtained from 

the patients. We should also mention that the performance of the predictive model in [114] is 

assessed on data from patients not included in the training set. 

Table 4.5  Comparison with other Methods Reported in the Literature 

Study Method Dataset Prediction Horizon (min) / RMSE (mg·dL-1) 

Sparacino et 

al. [24] 

AR CGM Data 30 /18.78 45 / 34.64   

Eren-Oruklu 

et al.[26] 

AR, ARMA CGM Data 30 / 3.83a    

Gani et al. 

[27] 

AR CGM Data 30 / 1.8 60 / 12.6 90 / 28.8  

Perez - 

Gandia et al. 

[29] 

FFNN CGM Data 15 / 9.7 30 / 17.5 45 / 27.1   

Mougiakakou 

et al. [31] 

NN CGM Data, Insulin, 

CHO 

5 / 13.65    

Pappada et al. 

[33] 

FFNN CGM Data, Insulin, 

Nutrition, 

Lifestyle/Emotional 

Factors, Time 

75 / 43.9    

This work SVR (Case 6) CGM Data, Insulin, 

CHO, Exercise 

Data, Time 

15 / 5.21 

(2.06a) 

30 / 6.03 

(2.41a) 

60 / 7.14 

(2.79a) 

120 / 7.62 

(3.02a) 

aThis value refers to mean absolute percentage error (MAPE). 
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Although the present study treats the blood glucose metabolism in type 1 diabetes as a 

multi-parametric, dynamic system, there are still factors that have not been taken into 

consideration. Firstly, the model of the subcutaneous insulin kinetics [153] relies solely on the 

physicochemical properties, concentration and dose of insulin, without taking into account the 

effect of the injection conditions (e.g. site of injection, skin temperature) on the diffusion and 

absorption of insulin in the subcutaneous tissue [140]. Similarly, the meal simulation model 

[155] does not consider the influence of meal’s composition (e.g. fats, fibres, glycaemic index) 

on the dynamics of the digestive and absorptive processes of carbohydrates [135]. In addition, 

these models are applied using population parameters and, thus, do not describe the inter- and 

intra-patient variability [79, 139-141]. A challenging prospective could be to additionally use 

as input to the model further information such as lifestyle details (e.g. working night shifts, 

frequent traveling), the psychological status (e.g. stress), patient’s profile (e.g. age, HbA1c, 

BMI).  

The advantages offered by a glucose prediction method are extremely useful for 

personal diabetes advisory systems intended for daily use. The proposed method has already 

been integrated in the METABO diabetes monitoring and management system as part of a 

mobile decision support subsystem. The architecture of the proposed method requires the data 

to be first collected from each patient for a period and thereafter to train and test the 

personalized predictor based on these data. However, additional technical issues need to be 

examined, such as what is the optimal observation period required for data collection, the rate 

of model updating etc. Besides these issues, an extensive clinical validation of the prediction 

system is ongoing which is essential for the potential real life application of the system. 

4.2 A Glucose Model Based on Support Vector Regression for the Prediction of 

Hypoglycaemic Events under Free-Living Conditions 

4.2.1 Introduction 

The most vital and challenging issue for people with type 1 or advanced type 2 diabetes is the 

achievement and maintenance of euglycaemia over time in a safe manner. The long-term 

benefits of IIT along with the increased frequency of hypoglycaemic events were first 

demonstrated by the Diabetes Control and Complications Trial [29]. Since then, despite the 

significant improvements in insulin analogues, hypoglycaemia has been recognized as the 
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major barrier to the management of diabetes [3]. The unpleasant symptoms that accompany the 

impermanent brain dysfunction, as well as the fact that prolonged and untreated hypoglycaemia 

may directly or indirectly be fatal, discourage those with diabetes from more intensive 

glycaemic control. 

Hypoglycaemia in insulin-dependent diabetes patients is the aggregate of therapeutic 

hyperinsulinemia and an attenuated sympathoadrenal response to falling plasma glucose 

concentrations [161]. Recent antecedent hypoglycaemia, prior exercise, and sleep further 

impair the physiological and behavioural defences against a potential subsequent 

hypoglycaemia (i.e., HAAF) and therefore cause a vicious cycle of recurrent hypoglycaemia 

[3, 162]. The awareness of all these factors by patients with diabetes may contribute to the 

prevention of hypoglycaemia on a daily basis. Nevertheless, those with diabetes could take 

advantage of computational solutions that alert them for an upcoming hypoglycaemia and thus 

enable its prevention. 

The last advances in CGM technologies have promoted the research in predictive 

modelling of glucose metabolism both in type 1 and in type 2 diabetes. AR and ARMA models 

of the CGM time series [70, 71, 95, 105, 149] as well as FFNNs [90] based only on recent 

CGM data were found to have short-term (up to 30 min) predictive capacity of the 

subcutaneous glucose concentration. More accurate predictions were achieved by applying a 

RNN on a wider (200-min) CGM history [163]. The fact that (1) the autocorrelation function 

of the subcutaneous glucose measurements vanishes at about 30 min [91] and (2) several 

exogenous inputs play a vital role in glucose regulation have led to predictive models 

incorporating more comprehensive information [92-94, 114, 130, 164]. More specifically, 

multivariate nonlinear regression techniques of machine learning, such as FFNNs [94, 114] 

and RNNs [92, 93, 164], and SVR [130] were efficiently used for this purpose, demonstrating 

the effect of additional inputs on short- and long-term predictions. 

Although hypoglycaemia is the limiting factor in the glycaemic management of insulin-

treated diabetes, there have been only a few studies that went one step further by addressing 

the problem of hypoglycaemic event prediction. This problem involves the successful 

prediction of the beginning of the event and therefore differs from predicting single 

hypoglycaemic values [106, 120, 158]. On this basis, only statistical and time-series methods 

[121-123] were evaluated for prediction horizons up to 55 min using hypoglycaemic thresholds 

ranging from 60 mg·dL-1 to 90 mg·dL-1. The results obtained are promising with sensitivity 
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reaching 100% in a study [122] with lead times close to the examined prediction horizons. 

However, these methods were evaluated on CGM recordings of patients with type 1 diabetes 

who underwent an insulin-induced hypoglycaemia test during their admission in clinical 

research centres. With the view to embedding these new models eventually into CGM systems 

or into diabetes advisory mobile systems, the need to test them under free-living conditions in 

daily life is evident. 

We have previously proposed an individualized approach to predicting the 

subcutaneous glucose concentration that relies on the SVR technique, which was evaluated on 

a multivariate dataset of 27 type 1 diabetes patients in free-living conditions [130]. One of the 

innovations of our work was the experimentation with different inputs corresponding to 

combinations of variables associated with the subcutaneous glucose profile, the plasma insulin 

concentration, the rate of appearance of meal-derived glucose in the system circulation, the EE 

during physical activities, and the time of the day. Besides high performance over the full range 

of glucose values, more than 94% of both short-term (i.e., for 15 min and 30 min) and medium- 

to long-term (i.e., for 60 min and 120 min) hypoglycaemic predictions were classified as 

clinically accurate or with benign errors according to the continuous glucose-error grid analysis 

[159]. 

In this study, we extend our method to predict hypoglycaemic events 30 min and 60 

min in advance and provide a comparison of SVR with other well-established machine learning 

techniques. Considering that in type 1 diabetes hypoglycaemia occurs most frequently at night 

during sleep and is potentially fatal if untreated [165], we separated the hypoglycaemic events 

into nocturnal and diurnal ones. In particular, for nocturnal events, we introduce new input 

variables in addition to those defined in our previous work [130] with the aim of capturing the 

effect of HAAF on the incidence of a future hypoglycaemic event. To our knowledge, this is 

the first work that deals with the problem of hypoglycaemia prediction as an event in free-

living patients using SVR. 

4.2.2 Subjects 

Fifteen type 1 diabetes patients, following multiple-dose insulin therapy, were monitored for 

from 5 to 22 days (average, 12.5 ± 4.6 days) in free-living conditions within the European 

Union co-funded research project METABO [152]. The dataset consisted of three women and 

12 men whose ages ranged from 19 to 65 years (average, 40.3 ± 13.5 y/o) with a body mass 
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index from 21.4 to 30.0 kg·m-2 (average, 25.2 ± 2.9 kg·m-2) and hemoglobinA1c level from 

5.2% to 8.5% (average, 7.1 ± 1.2%). Patients wore the Guardian® Real-Time CGM system 

(Medtronic Minimed Inc., Northridge, CA), which reports an average subcutaneous glucose 

value every 5 min. They were also recording information on food intake (i.e., type, amount, 

and time) and insulin regimen (i.e., type, dose, and time) on a daily basis, while a dietician 

calculated the amount of carbohydrates for each meal. In addition, the SenseWear® Armband 

(BodyMedia® Inc., Pittsburgh, PA) physical activity monitor was used, which computes a 

range of relative variables (e.g., EE, metabolic equivalents [MET], sleep detection) every 1 

min. The descriptive characteristics of the subcutaneous glucose dataset are given in Table 4.6. 

Table 4.6  Statistics of the Glucose Dataset per Patient 

 Time Interval 

Diurnal Nocturnal 

Subcutaneous glucose concentration (mg·dL-1)   

Mean 148.85 ± 23.41 140.75 ± 29.89 

Minimum 52.92 ± 11.96 60.79 ± 18.06 

Maximum 332.44 ± 47.81 281.12 ± 49.38 

% of values   

Hypoglycaemic 0.04 ± 0.04 0.05 ± 0.05 

Hyperglycaemic 0.27 ± 0.15 0.22 ± 0.18 

Hypoglycaemic events per day/night 0.68 ± 0.48 0.35 ± 0.15 

Duration per hypoglycaemic event (min) 56.78 ± 28.31 75.98 ± 42.97 

Data are mean ± standard deviation values. A glucose concentration value of ≤70 mg·dL-1 is 

defined as hypoglycaemic; a glucose concentration value of ≥180 mg·dL-1 is defined as 

hyperglycaemic. 

4.2.3 Glucose Predictive Model 

The prediction of the subcutaneous glucose concentration at time t l , assuming that t is the 

time at which the prediction is made and l is the prediction horizon, is given by the SVR 

function [156] of the input dx R  until time t. SVR function is of the form 

    ,Tf x w x b   where w  and b  are the weight and bias parameters, respectively, and   

is a fixed mapping to a high-dimensional feature space introduced for the approximation of 

nonlinear functions of the input variables, such as the blood glucose concentration. However, 

the use of a kernel function enables the computations to be made in the original space of fewer 

dimensions while, through an ε-insensitive loss function, a sparse solution is also obtained. 

Moreover, SVR achieves very good generalization performance by controlling, with the use of 

the constant C, the amount up to which deviations larger than ±ε are tolerated as well as the 
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model’s complexity (i.e., small w ). 

In our study, the SVR model was built with a Gaussian kernel, and the hyperparameters 

,  ,C   and the kernel parameter   were optimized using the differential evolution algorithm 

[157], in which the objective function was defined as the average root mean square error of the 

10-fold cross-validation procedure. The three-dimensional search space was set as 

 0.001,1024C  ,  0.0001,1  , and  0.00001,8  . The overall evaluation of the glucose 

predictive model was performed individually for each patient’s dataset by 10-fold cross-

validation. 

For comparison purposes, the problem of hypoglycaemic event prediction is also 

addressed by two other widely known machine learning techniques: the FFNN [166] and GP 

[167] regression techniques. The FFNN is composed of one hidden layer with H neurons 

having a tangent sigmoid activation function and one output layer with one neuron having a 

linear function. The weights and bias parameters of the network are trained based on the 

Levenberg–Marquardt back-propagation algorithm applied in a batch mode and with early-

stopping (i.e., validation set). The number of hidden neurons H is optimized individually for 

each patient based on 10-fold cross-validation. The GP model is built with an exponential 

quadratic kernel, while its hyperparameters (i.e., kernel parameters and noise precision) are 

learned for each patient separately through the maximization of the log likelihood function. 

Both MLP and GP are evaluated separately for each patient by 10-fold cross-validation. 

4.2.4 Hypoglycaemic Event Prediction 

In accordance with the American Diabetes Association recommendations [165], we use the 

threshold of 70 mg·dL-1 to identify a subcutaneous glucose concentration value, measured by 

the CGM system, as hypoglycaemic. To this end, we define that: (1) a hypoglycaemic event 

starts when at least two consecutive subcutaneous glucose concentration values (i.e., 10 min or 

more) are ≤70 mg·dL-1, and (2) it ends when the glucose value rise above 70 mg·dL-1 [36]. To 

treat potential oscillations either in the predicted or in the actual time-series, consecutive 

hypoglycaemic events that are ≤30 min away are considered as the same event. Predictions are 

performed for horizons of 30 min and 60 min. Moreover, a new glucose prediction is produced 

every 5 min, which is the sampling period of the CGM system used in this study. 

A prediction of a hypoglycaemic event is considered true-positive (TP) when the start 
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of the actual hypoglycaemic either precedes the start of the predicted one by ≤l min or follows 

the start of the predicted one by l  min. Otherwise, when a true hypoglycaemic event is not 

predicted or a false hypoglycaemic event is predicted, then a false-negative (FN) or a false-

positive (FP) prediction, respectively, is identified. Note that we do not apply the term true-

negative, which in our case would mean to correctly identify a non-hypoglycaemic region (i.e., 

euglycaemia or hyperglycaemia) as such. 

Because hypoglycaemia occurring during nocturnal sleep is important for diabetes 

patients, we separate hypoglycaemic events into nocturnal and diurnal ones. In particular, 

nocturnal hypoglycaemia is defined as each hypoglycaemic event occurring at night when the 

individual is asleep, whereas all the other events are characterized as diurnal. The sleep state is 

detected using the related information provided by the SenseWear armband activity monitor. 

4.2.5 Determination of the Input 

The SVR glucose predictive model is fed with three different cases of input. In the first case, 

denoted herein as Case 1hypo (corresponding to Case 4 in Georga et al. [130]), the input consists 

of the variables gl, Ip, Ra, SRα, and h, whereas in the second case, namely, Case 2hypo 

(corresponding to Case 6 in Georga et al. [130]), the variable SEE is additionally used. 

The concept of HAAF led us to introduce an additional input case, denoted herein as 

Case 3hypo, which would also allow for the inclusion of its causes, namely, recent antecedent 

hypoglycaemia, prior exercise, and sleep. Variable SEE, which concerns the EE during the last 

3 h, may only explain hypoglycaemia shortly after exercise. However, exercise-related HAAF 

is exemplified by hypoglycaemia that typically occurs several hours (6–15 h) after exercise and 

thus is often nocturnal [162]. 

HAAF is mainly associated with hypoglycaemic events that occur during sleep. Thus, 

we define Case 3hypo only for nocturnal events, whereas Case 1hypo and Case 2hypo are applied 

to both the prediction of nocturnal and diurnal ones. This means that in Case 3hypo the SVR 

model is trained to predict only the night glucose time series. Thus, in addition to the inputs of 

Case 1hypo, Case 3hypo includes: 

1. The total EE during the day due to physical activities of intensity of <3 METs 

(EEdaily,<3METs). 

2. The total EE during the day due to physical activities of intensity ≥3 METs 
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(EEdaily,≥3METs). 

3. The time passed from the start of the sleep state (tsleep). 

4. A Boolean variable describing the incidence or not of a hypoglycaemic event during 

the previous 24 h (hypo). 

Moreover, experimental and clinical observations have indicated that glucose levels 

change more gradually at night than during the day . Therefore, in the present analysis for each 

of the previous cases as regards the nocturnal events, we consider one subcase (i.e., Case 1ahypo, 

Case 2ahypo, Case 3ahypo), where the history of gl  is set equal to 60 min. 

4.2.6 Evaluation Criteria 

The proposed method is evaluated by computing the measures of sensitivity, precision, and TL. 

Sensitivity, defined as  TP TP FN , relates to the method’s ability to identify positive 

hypoglycaemic events. On the other hand, precision, defined as  TP TP FP , reflects the 

probability that a predicted event is true. Finally, TL, defined as the mean absolute temporal 

error between the start of the actual and the predicted hypoglycaemic event, is a highly crucial 

measure that reflects the TG in preventing the upcoming event. 

4.2.7 Model Evaluation over the Hypoglycaemic Range 

The average results obtained in all 15 subjects of the study are reported in Table 4.7 separately 

for nocturnal and diurnal hypoglycaemic events. In Case 1hypo, the 30-min and 60-min 

nocturnal predictions are of satisfactory sensitivity and of high precision, but they are 

associated with relatively high TLs. Case 2hypo, as expected, does not induce significant 

changes in the number of TP and FP outcomes. In contrast, Case 3hypo increases sensitivity and 

precision especially of 60-min predictions (average, 90% and 100%, respectively) and lowers 

markedly the TL for both prediction horizons (average, 5.00 min and 6.18 min, respectively) 

compared with the previous cases. In Figure 4.3, we see the actual onset of the nocturnal events 

of a patient and the predicted onset (with 30-min horizon) denoted by a vertical dotted line. It 

can be observed that in Case 3hypo the TL is smaller than in Case 1hypo. The sensitivity of Case 

1hypo and Case 2hypo is almost unaffected by increasing the gl  history from 30 min to 60 min 

(Case 1ahypo and Case 2ahypo), whereas there is a noticeable improvement in their precision rate. 

Regarding Case 3ahypo, it results in predicting correctly 94% of the events with 98% precision 
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for both prediction horizons. Nevertheless, it is obvious that gl  history has a great influence 

on the TG in the TP events for a 60-min prediction horizon. 

Table 4.7  Evaluation Results of the Support Vector for Regression Model for Predicted 

Nocturnal and Diurnal Hypoglycaemic Events and for all Input Cases 

Hypoglycaemic 

events, case 

number 

Prediction Horizon 

30 min 60 min 

SNS PRC TL SNS PRC TL 

Nocturnal       

Case 1hypo 0.89 ± 0.21 0.95 ± 0.11 9.26 ± 9.78 0.86 ± 0.26 0.93 ± 0.12 14.39 ± 15.04 

Case 1ahypo 0.89 ± 0.21 0.98 ± 0.06 8.68 ± 8.73 0.88 ± 0.20 0.96 ± 0.12 7.81 ± 10.39 

Case 2hypo 0.88 ± 0.21 0.97 ± 0.10 7.50 ± 9.23 0.86 ± 0.23 0.90 ± 0.15 12.71 ± 15.07 

Case 2ahypo 0.87 ± 0.20 0.97 ± 0.10 6.91 ± 9.54 0.86 ± 0.20 0.96 ± 0.12 8.13 ± 12.10 

Case 3hypo 0.91 ± 0.23 0.98 ± 0.08 5.00 ± 6.85 0.90 ± 0.17 1.00 ± 0.00 6.18 ± 8.35 

Case 3ahypo 0.94 ± 0.10 0.98 ± 0.08 5.43 ± 7.11 0.94 ± 0.10 0.98 ± 0.08 4.57 ± 5.47 

Diurnal       

Case 1hypo 0.92 ± 0.12 0.93 ± 0.13 4.53 ± 5.30 0.96 ± 0.14 0.97 ± 0.10 3.64 ± 4.72 

Case 2hypo 0.84 ± 0.23 0.94 ± 0.16 3.17 ± 4.65 0.93 ± 0.17 0.96 ± 0.14 4.52 ± 5.97 

Data are mean ± standard deviation values. 

PRC: Precision, SNS: Sensitivity, TL: Time lag. 

Regarding diurnal hypoglycaemic events, Case 1hypo predicts correctly 92% and 96% 

of the true hypoglycaemic events 30 min and 60 min in advance, respectively, with 93% and 

97%, respectively, of the positive predictions being indeed true. The TL for both prediction 

horizons is less than 5 min. However, the sensitivity of the method is reduced when the variable 

SEE is additionally used in Case 2hypo, reaching 84% for 30-min predictions and 93% for 60-

min predictions. In addition, there are no significant changes in precision rate compared with 

Case 1hypo, while the TL is still less than 5 min. The output of Case 1hypo and Case 2hypo for a 

patient is illustrated in Figure 4.4, where for the ninth hypoglycaemic event we observe that 

Case 2hypo generates a FN result contrary to Case 1hypo. 
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Figure 4.3  The output of (a) Case 1hypo and (b) Case 3hypo for a prediction horizon of 30 min regarding the nocturnal hypoglycaemic events of a typical patient. 

Each hypoglycaemic event (solid blue line represents glucose values) was predicted to happen at the time indicated by the red dotted line. 
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Figure 4.4 The output of (a) Case 1hypo and (b) Case 2hypo for a prediction horizon of 30 min regarding the diurnal hypoglycaemic events of a typical patient. 

Each hypoglycaemic event (solid blue line represents glucose values) was predicted to happen at the time indicated by the red dotted line. 
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Table 4.8 and Table 4.9 present the average results obtained by the MLP and GP prediction 

techniques, respectively. Regarding the nocturnal events, SVR outperforms MLP in all cases 

except Case 3hypo for the 30-min prediction horizon and Case 2ahypo for 60 min. We observe 

that Case 3hypo and Case 3ahypo improve significantly the performance of MLP, and especially 

the TL, for both horizons. On the other hand, GP produces smaller TLs than SVR and, 

consequently, higher sensitivities for most of the input cases, which becomes more apparent in 

60-min predictions. More specifically, the sensitivity of GP in Case 3hypo for 30-min and 60-

min predictions is 95% and 98%, respectively, reaching 100% in Case 3ahypo for both horizons, 

and all TLs are less than 5 min. However, SVR and GP techniques have similar precision rates. 

As far as diurnal events are concerned, SVR performs better than both other techniques except 

for Case 2hypo for the 30-min prediction horizon, where it has a slightly lower sensitivity. 

Table 4.10 presents the evaluation results of the three techniques only on diurnal 

hypoglycaemic events verified by a finger-stick blood glucose measurement. The most 

significant changes are observed for Case 1hypo, where the 30-min sensitivity of SVR and GP 

is reduced to 82% and 71%, respectively, whereas the 60-min sensitivity of MLP and GP is 

reduced to 48% and 57%, respectively. However, it should be noted that blood glucose 

measurements were not available for all hypoglycaemic events. 

Table 4.8  Evaluation Results of the FFNN Regression Model 

Hypoglycemic 

events, case 

number 

Prediction Horizon 

30 min 60 min 

SNS PRC TL SNS PRC TL 

Nocturnal       

Case 1hypo 0.76 ± 0.25 0.89 ± 0.17 14.11 ± 10.63 0.82 ± 0.28 0.91 ± 0.13 22.00 ± 16.69 

Case 1ahypo 0.67 ± 0.38 0.78 ± 0.39 15.19 ± 11.05 0.84 ± 0.26 0.93 ± 0.13 18.67 ± 16.81 

Case 2hypo 0.86 ± 0.21 0.88 ± 0.20 10.88 ± 9.08 0.80 ± 0.22 0.94 ± 0.12 12.50 ± 13.68 

Case 2ahypo 0.86 ± 0.21 0.88 ± 0.21 11.47 ± 9.01 0.94 ± 0.15 0.91 ± 0.15 10.29 ± 12.36 

Case 3hypo 0.93 ± 0.16 0.95 ± 0.12 4.72 ± 4.62 0.83 ± 0.27 0.95 ± 0.12 6.00 ± 6.87 

Case 3ahypo 0.91 ± 0.23 1.00 ± 0.00 5.71 ± 6.08 0.92 ± 0.16 0.95 ± 0.12 3.48 ± 3.85 

Diurnal       

Case1hypo 0.76 ± 0.20 0.89 ± 0.19 8.51 ± 9.08 0.73 ± 0.39 0.95 ± 0.16 10.86 ± 9.55 

Case2hypo 0.86 ± 0.17 0.90 ± 0.17 5.85 ± 6.56 0.89 ± 0.21 0.97 ± 0.10 10.48 ± 12.74 

Data are mean ± standard deviation values. 

PRC: Precision, SNS: Sensitivity, TL: Time lag. 
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Table 4.9  Evaluation Results of the GP Regression Model 

Hypoglycemic 

events, case 

number 

Prediction Horizon 

30 min 60 min 

SNS PRC TL SNS PRC TL 

Nocturnal       

Case 1hypo 0.81 ± 0.33 0.98 ± 0.06 6.29 ± 5.91 0.82 ± 0.25 0.96 ± 0.09 8.06 ± 8.53 

Case 1ahypo 0.87 ± 0.26 0.98 ± 0.06 5.61 ± 6.22 0.93 ± 0.12 0.95 ± 0.10 6.67± 8.45 

Case 2hypo 0.84 ± 0.28 0.94 ± 0.13 6.06 ± 8.08 0.93 ± 0.16 0.95 ± 0.12 6.89 ± 8.02 

Case 2ahypo 0.86 ± 0.26 0.92 ± 0.17 6.62 ± 8.41 0.95 ± 0.15 0.94 ± 0.16 4.17 ± 4.39 

Case 3hypo 0.95 ± 0.10 0.98 ± 0.08 4.31 ± 4.95 0.98 ± 0.08 1.00 ± 0.00 4.34 ± 5.60 

Case 3ahypo 1.00 ± 0.00 0.98 ± 0.06 4.08 ± 5.31 1.00 ± 0.00 0.98 ± 0.08 2.84 ± 2.77 

Diurnal       

Case1hypo 0.83 ± 0.24 0.96 ± 0.14 3.88 ± 4.92 0.73 ± 0.39 0.95 ± 0.16 3.93 ± 5.67 

Case2hypo 0.86 ± 0.18 0.94 ± 0.16 2.55 ± 3.20 0.72 ± 0.44 0.90 ± 0.32 4.04 ± 4.00 

Data are mean ± standard deviation values. 

PRC: Precision, SNS: Sensitivity, TL: Time lag. 

Table 4.10  Evaluation Results of the Support Vector for Regression, FFNN, and GP 

Regression Techniques on Diurnal Hypoglycaemic Events verified by Blood Glucose 

Measurements 

Regression technique, case number 

Prediction Horizon 

30 min 60 min 

SNS TL SNS TL 

Support vector for regression     

Case 1hypo 0.82 ± 0.32 4.44 ± 6.84 0.94 ± 0.18 3.33 ± 5.69 

Case 2hypo 0.78 ± 0.37 2.59 ± 4.14 0.93 ± 0.19 4.12 ± 5.37 

Multiplayer perceptron     

Case 1hypo 0.78 ± 0.33 6.73 ± 7.99 0.48 ± 0.45 8.33 ± 9.85 

Case 2hypo 0.90 ± 0.18 6.21 ± 7.52 0.83 ± 0.26 9.67 ± 12.17 

Gaussian processes     

Case 1hypo 0.71 ± 0.40 3.54 ± 6.51 0.57 ± 0.45 3.46 ± 5.91 

Case 2hypo 0.82 ± 0.34 2.50 ± 3.41 0.70 ± 0.48 3.08 ± 3.84 

Data are mean ± standard deviation values. 

PRC: Precision, SNS: Sensitivity, TL: Time lag. 

4.2.8 Discussion and Conclusions 

The objective of this study was to evaluate the ability of the SVR glucose predictive model, 

which was presented in a previous study [130], to predict hypoglycaemic events over 30-min 

and 60-min time horizons. The novelty of our work consists in that (1) this problem is addressed 

with the SVR technique based on a multivariate dataset acquired in free-living conditions from 

multiple patients and (2) new inputs are introduced for treating hypoglycaemia during 

nocturnal sleep. 

This specific problem was dealt only through linear mathematical approaches that 

exploit solely the recent CGM profile [123]. The CGM signal itself is indeed the most 
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important feature but mainly explains its subsequent behaviour for up to 30 min [91] and thus 

allows only for short-term predictions of low accuracy [70, 71, 90, 95, 105, 149]. We 

demonstrated herein the implicit or explicit influence of the exogenous inputs on the glucose 

dynamics. This is actually the main advantage of the proposed method over the ones presented 

in the literature [121-123]; it has the ability to learn the effect of patient’s contextual 

information (e.g., meals, insulin, exercise, sleep) on the subcutaneous glucose concentration, 

without requiring any a priori knowledge about their physiological relationships. Moreover, 

the SVR technique may accurately explain both linear and nonlinear relationships between the 

input variables and the glucose dynamics, while exhibiting a very good generalization 

performance. In addition, for the first time we examined thoroughly additional indicators of 

hypoglycaemia concerning (1) those related to the HAAF concept mechanisms triggering 

nocturnal hypoglycaemia and (2) the slow change of glucose time series during night, which 

were proved to contribute to significantly better predictions. 

Results for 15 type 1 diabetes patients suggest that our SVR method performs 

adequately well in all cases for both prediction horizons. One important finding is that the 

method’s sensitivity to nocturnal hypoglycaemic events increases in Case 3hypo , whereas it 

shows no significant change in Case 2hypo, compared with Case 1hypo, which means that even a 

summary of the daily physical activities affects nocturnal hypoglycaemia. This is also reflected 

in reduced TLs. The comparative assessment of SVR with MLP and GP regarding nocturnal 

events has demonstrated that GP and SVR have comparable performance for the 30-min 

horizon, whereas GP shows better sensitivity as well as improved TLs for the 60-min horizon 

compared with SVR. The improvement of predictions in Case 3hypo and Case 3ahypo is 

systematically observed for all techniques, which verifies the observations. 

Regarding diurnal predictions, the SVR performs generally better compared with the 

MLP and GP techniques. There is one exception in Case 2hypo, which concerns the introduction 

of information on physical activity, where for the 30-min horizon the sensitivity of SVR is 

lower than the other techniques. Unexpectedly, this sensitivity is even smaller than in Case 

1hypo, as opposed to the corresponding MLP and GP cases. This leads us to conclude that the 

poorer SVR prediction in Case 2hypo should be possibly attributed to the technique itself and 

not to the introduction of this extra information. Diurnal predictions over 60-min horizons are 

better than those over 30-min horizons for SVR and MLP; however, a direct comparison of the 

results for 30 min and 60 min should not be made because the set of hypoglycaemic events on 

which the methods are evaluated are different (i.e., the events for 60 min is a subset of the ones 
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for 30 min). This stems from the fact that different datasets have been constructed for each 

horizon (e.g., instances at which meal or insulin events occurred in the meantime were 

excluded) [130]. 

The methods presented in the literature for hypoglycaemic event prediction [121-123] 

have been all assessed in datasets acquired from short-term (usually 24-h) studies conducted 

under controlled conditions in clinical settings. This enables fairly accurate predictions despite 

the fact that they apply time series or statistical analysis of the continuous glucose 

concentration values without using any exogenous inputs. In particular, Eren-Oroklu et al. 

[123] have reported a sensitivity of 89%, a precision rate of 78%, and a lead time of 27.7 min, 

having set the hypoglycaemic threshold to 60 mg·dL-1 and the prediction horizon to 30 min. 

Moreover, the method by Dassau et al. [122] predicted 91% and 100% of the hypoglycaemic 

events 35 min and 55 min ahead, respectively, with a threshold of 80 mg·dL-1. Although our 

method is evaluated under free-living conditions, it compares favourably with them regarding 

sensitivity and lead times for both horizons, while showing a much better precision. 

The proposed method has the potential to be applied in everyday life conditions given 

that it is adequately accurate, achieves rapid response times, and is not intrusive. Moreover, it 

has been designed to be fully automatic for potential use in smart mobile devices, but this could 

only be feasible should we have access to the CGM data in real time. To ensure its proper and 

reliable operation, the patient should record systematically the food and insulin intakes and 

wear the physical activity monitor. An activity monitor does not constraint the usability of the 

method because today there are light, comfortable, and discreet devices that accurately track 

daily physical activities. Moreover, the number and timing of the CGM sensor calibrations 

inevitably affect the quality of the predictions. Therefore, such predictions are only reliable if 

the CGM device is suitably calibrated, whereas nocturnal predictions should be interpreted 

with caution. 

One crucial issue in machine learning techniques, when applied to real and dynamic 

problems, is that they need frequent retraining so as to reflect the most recent state of the 

examined system. Thus, the rate of the SVR model updating and the optimal observation period 

required for data collection constitute some issues under examination. An improvement of the 

proposed approach could be the use of fuzzy logic for the definition of hypoglycaemic events 

in place of the sharp threshold of 70 mg·dL-1. Moreover, additional descriptive characteristics 

could be devised for summarizing the daily physical activity (e.g., number, intensity, and 
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duration of exercise events, etc.) for nocturnal hypoglycaemic event prediction considering that 

even a simplified input had a significant effect. Nevertheless, the potential incorporation of the 

proposed method either into a CGM system or into a smartphone as a personal diabetes 

management system necessitates an extensive clinical validation. 
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CHAPTER 5. EVALUATION OF SHORT-TERM 

PREDICTORS OF GLUCOSE CONCENTRATION IN 

TYPE 1 DIABETES COMBINING FEATURE 

RANKING AND REGRESSION MODELS 

5.1 Introduction 

5.2 Materials and Methods 

5.3 Results 

5.4 Discussion and Conclusions 

 

5.1 Introduction 

Daily management of type 1 diabetes at its core can be viewed as a feedback loop where 

patients adjust the insulin regime based primarily on their real-time blood glucose 

measurements and secondarily on their overall lifestyle context (e.g. meals, physical activities, 

stress) [32, 168, 169]. Patients on multiple insulin injection therapy could maintain complete 

glycaemic control, if it were not for the increased risk of hypoglycaemia [3]. The technological 

progress in CGM and in CSII has contributed to a more practical and safe therapy scheme [51, 

66, 170]. In particular, SAP therapy has been shown to reduce glycaemic variability. Until 

researchers close the loop in insulin delivery, the patient, as the main actor in this process, 

should continually reason the effect of insulin intake and lifestyle on his/her glucose 

metabolism. 

Prediction algorithms of subcutaneous glucose concentration have the potential to 

further advance insulin-treated diabetes management either in open or in semi-closed loop 

conditions [12-15]. Initial approaches to this problem, which were based on AR or ARMA 

models of the CGM time series either with constant [70, 89] or with recursively identified [95, 
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123] parameters, had sufficiently accurate short-term (15 min and 30 min) predictive capacity. 

The combination of a RNN with compartmental models of plasma insulin concentration and 

carbohydrates absorption was proposed in [92, 93]. Zecchin et al. demonstrated that feed-

forward [94] as well as jump neural networks [96] exploiting not only the past CGM data but 

also meal information allow for improved accuracy when compared to [90, 95] over 30-min 

horizon. In addition, the inclusion of real physical activity data in glucose predictive models 

has recently emerged, which is very important considering the prominent effect of exercise on 

blood glucose concentration. In our previous work [130], we proposed an individualized 

predictive model relying on SVR of multiple input variables concerning the recent 

subcutaneous glucose concentration profile, the effect of food and insulin intake, the EE in 

physical activities and the time of the day. We demonstrated that these additional inputs not 

only result in better short-term predictions but also make feasible the predictions for longer 

horizons (60 min and 120 min). Similarly, a patient-specific recursive ARMAX from a multi-

sensor body monitor outperformed a univariate model as applied to people with type 2 diabetes 

[106] and allowed the accurate prediction of hypoglycaemic events in people with type 1 

diabetes [107, 108]. 

The existent inter- and intra-patient variability in type 1 diabetes implies the 

individualization of the predictive models and their continuous adaptation to both biological 

and environmental changes as well [112, 171]. For instance, the fusion of real-time adaptive 

models (RNN and AR) resulted in 100% prediction accuracy of hypoglycaemic events for 

patients under SAP therapy during everyday living conditions [112]. This need can also be 

partially met by performing a periodic patient-specific training process. A complementary 

procedure to adaptive learning can be considered the individualized evaluation of the short-

term predictors of glucose concentration and the subsequent refinement of the model’s input 

[172]. In [130], we predefined a high-dimensional feature set in an attempt to represent spatial 

and temporal input-output dependencies. As expected, we found out considerable inter-patient 

deviations in the hyper-parameters of the SVR regarding the same input, which means that it 

can be further customized. 

In this study, we propose feature ranking as a pre-processing step in the construction of 

patient-specific predictive models of the short-term subcutaneous glucose concentration in type 

1 diabetes. Two well-established feature ranking algorithms suitable for regression problems, 

i.e. RF and RReliefF, are employed for assessing the set of features defined in [130] separately 

for each patient. RF is a prediction technique that incorporates feature ranking as part of the 
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training process [173], while RRelief is a pure feature filtering algorithm based on the nearest 

neighbours approach [174]. Their main advantages which render them appropriate for the 

specific application are: (i) the sensitivity to informative features as well as to the correlations 

among them, (ii) the absence of assumptions about the (non)linearity of the underlying function 

and (iii) the low computational complexity [174, 175]. The generality and effectiveness of the 

result of feature ranking is demonstrated with respect to the performance of a non-linear 

regression model for the estimation of glucose concentration. Herein, we choose SVR and GP 

kernel-based methods as prediction tools since they have been shown to perform equally well 

over the full range of glucose values in our previously developed dataset [131]. In this context, 

the top-ranked features obtained per individual are examined and a clinical interpretation of the 

results is attempted. To our knowledge, this is the first work which examines the concurrent 

and cumulative impact of the most important predictors of the short-term daily glucose 

dynamics in individuals with type 1 diabetes (i.e. meals, insulin therapy, physical activities and 

the glucose signal itself) with the aid of feature ranking. 

5.2 Materials and Methods 

5.2.1 Subjects 

A short-term observational study was carried out in two centres (Parma University Hospital, 

Parma and University Hospital Motol, Prague) as part of a European-Union co-funded research 

project named METABO [152]. The study was approved by the Ethics Committees of each 

hospital. Fifteen type 1 diabetic patients, following multiple-dose insulin therapy and without 

significant micro- and macro-vascular complications, were monitored from 5 to 22 days 

(average 12.5±4.6) in free-living conditions. All subjects provided written informed consent 

before enrolment. Patients wore the Guardian® Real-Time CGM system (Medtronic Minimed 

Inc.) which reports an average subcutaneous glucose value every 5 min. In addition, they were 

equipped with the SenseWear® Armband (BodyMedia Inc.) physical activity monitor which 

computes E every 1 min. Information on food intake (i.e. type of food, serving sizes and time) 

and insulin regime (i.e. type of insulin, injection dosage and time) was also recorded on a daily 

basis using a specially designed paper diary. The amount of carbohydrates for each meal was 

post-analysed by a dietician. Table 5.1 presents the baseline characteristics of the patients and 

some descriptive statistics of their CGM data. 
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Table 5.1  Description of the Dataset 

Patient Baseline Characteristics 

Gender  3 F / 12 M 

Age (y/o) 40.3±13.5 

BMI (kg·m-2) 25.2±2.9 

HbA1C (%) 7.1±1.2 

Descriptive Statistics of the Glucose Dataset 

Average Subcutaneous Glucose Concentration (mg·dL-1) 145.9±22.8 

Min Subcutaneous Glucose Concentration (mg·dL-1) 49.7±10.1 

Max Subcutaneous Glucose Concentration (mg·dL-1) 333.8±48.7 

% of Hypoglycaemic Values 0.05±0.04 

% of Hyperglycaemic Values 0.25±0.14 

Data are mean±standard deviation values. 

A glucose concentration value ≤70 mg·dL-1 is defined as hypoglycaemic.  

A glucose concentration value ≥180 mg·dL-1 is defined as hyperglycaemic. 

5.2.2 Dataset Construction 

A separate dataset 
    , 1, ,
s i

i sZ x y i N   is constructed for each subject s . Each sample 

associates the input vector i dx R  at time it  with the observed subcutaneous glucose 

concentration iy  at time it l , where l  is the prediction horizon. The feature set 

 1, , dF F F  is defined with respect to the present time (i.e. t ) and the horizon l  as follows: 

 1F h : the hour of the day associated with time t . 

       2 8 30 ,..., 5 ,F gl t gl t gl t    : Subcutaneous glucose measurements within the 

last 30 min. 

       9 15 30 ,..., 5 ,F Ra t l Ra t l Ra t l       : Rate of appearance of meal-derived 

glucose into plasma within the time interval  30,t l t l    [155]. 

       16 21 75 ,..., 15 ,F SRa t l SRa t l SRa t l       : Total glucose inserted into 

plasma calculated cumulatively every 15 min over the last 90 min with respect to ,t l  

where     
 75 15

90

5 15
t l i

t l

SRa t l i Ra



  

  

      for 0, ,5i  . 

       22 28 30 ,..., 5 ,p p pF I t l I t l I t l        : Plasma insulin concentration  within 

the time interval  30,t l t l    [153]. 

       29 46 170 ,..., 10 ,F SEE t SEE t SEE t    : Energy expenditure calculated 
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cumulatively every 10 min over the last three (3) hours where 

    
 170 10

180

17 10
t i

t

SEE t i EE



 

 

     for 0, ,17i  . The term EE  expresses the 

instantaneous (i.e. per minute) EE estimated by the physical activity monitor. 

In particular, a new sample is added into  s
Z  for each time instance in the glucose time 

series of subject s  for which all 46d   features can be defined and the value of glucose 

concentration l  min ahead is available. The size of dataset, sN , depends mainly on the length 

of the observation period for each patient and, ideally, the time difference between two 

consecutive samples in  s
Z  is equal to the sampling period of the glucose time series i.e. 5 

min. Nevertheless, the existence of gaps in the sensor data reduces sN . In addition, all samples 

 ,i

ix y  for which an event (i.e. food intake, insulin intake, moderate or intense exercise) exists 

within the time interval  ,i it t l  are excluded from  s
Z  since they do not represent a rational 

mapping between the configured input and the output. This also ensures that for all samples in 

 s
Z  the upcoming values of Ra  and pI  within  ,i it t l  have been computed based only on 

the insulin and meal recordings until it   

5.2.3 Feature Ranking 

The feature set  jF F , with 1, ,j d , is evaluated individually for each subject s  by 

applying the RF or RReliefF algorithm on  s
Z . In that way, each jF  is assigned an importance 

score j  and a ranked list of features, R , is produced by sorting them in descending order by 

jW . More specifically, let  1, ,J d  denote the indices of F . Then, the ranked list of 

features is defined as 
1
, ,

dj jR F F 
     where  1, , dJ j j   , jj J   and 

1j jj j 
  . For 

comparison purposes, the average score of each feature jF  over all patients i.e. j  and the 

corresponding average feature ranking R  are also calculated. 

5.2.3.1 Random Forests 

RF is an ensemble of low correlated regression trees, which output is computed as the average 
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of the individual predictions [173]. Each tree in the RF is constructed using an independent set 

of random vectors generated from a fixed probability distribution. Randomness is usually 

incorporated into the tree growing process by bootstrap resampling the original training set and 

randomly selecting mtry  out of d  features to split a node. The value of mtry  is usually 

determined a priori equal to 3d .  

RF provides an internal mechanism for evaluating the importance of each feature 

according to its contribution to the prediction of the target variable. Τhe prediction error of 

each tree on its out-of-bag (OOB) data, i.e. the training instances that are not included in the 

bootstrap sample used to construct that tree, is utilized. Herein, the number of trees, ntree , is 

set to the default value of 500 provided that RF does not overfit as ntree  increases. 

The importance 
j  of each feature 

jF , with 1, ,j d , is calculated as follows: 

1. For each tree kT  in the RF with 1, ,k ntree : 

a. Compute the Mean Squared Error (MSE) of kT on its OOB data, kMSE . 

b. Permute the values of feature jF  in the OOB data of kT  and compute the new 

OOB error ,k jMSE . 

2. The raw importance score of feature jF  is given by: 

  ,

1

1 ntree

j k j k

k

MSE MSE
ntree




   (5.1) 

5.2.3.2 RReliefF 

RReliefF, a classical feature ranking algorithm for regression problems, is also employed [174]. 

RReliefF estimates the discriminative power of each feature jF  between adjacent instances by 

approximating the following difference of probabilities: 

 
 ||
1

,
1

j jj j
diff C diff F diff Fdiff C diff F diff F

j

diff C diff C

P PP P

P P



 


 (5.2) 

where diff CP  corresponds to the probability two nearest instances have different predictions, 
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jdiff FP  corresponds to the probability that two nearest instances have different values for jF , 

and | jdiff C diff FP  corresponds to the probability that two nearest instances have different 

predictions and different values for jF . 

In particular, RReliefF approximates the above probabilities by iteratively ( M  times) 

selecting an instance mu , finding its K  nearest neighbours k  and computing the following 

quantities: 

 ,

1 1

,
j

M K
m k

diff F j j m k

m k

Q x x 
 

   (5.3) 

 ,

1 1

,
M K

diff C m k m k

m k

Q y y 
 

   (5.4) 

 && ,

1 1

.
j

M K
m k

diff C diff F m k j j m k

m k

Q y y x x 
 

    (5.5) 

The city-block distance function ( 1L  norm) is used to find the K  nearest neighbours 

of mu  with respect to mx , while K  is set equal to 10. The distance between mu  and k  is taken 

into account through the term ,m k  such that closer instances have greater influence: 

 

 

 

2

2

,

,
,

1

,

m k

m k

rank u

m k
rank u

K

k

e

e












 
   

 
   







 (5.6) 

where  ,m krank u   is the position of k  in the list of nearest neighbours of mu  sorted by 

distance in ascending order and    ( 50   by default) is a user-defined parameter. Moreover, 

M  is set equal to its maximum value i.e. the number of training instances. 

Finally, the estimastion of each j  is given by:  

 
&& &&

.
j j jdiff C diff F diff F diff C diff F

j

diff C diff C

Q Q Q

Q M Q



 


 (5.7) 
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5.2.4 Short-Term Predictive Modelling of Glucose Concentration 

Predicting glucose concentration in the subcutaneous space is essentially a regression problem 

that can be described by a linear model of the form: 

     ,Tf x w x b   (5.8) 

in which w is a vector of parameters,   is a vector of fixed non-linear basis functions, and b is 

the bias parameter. The function : df R R  maps the input vector dx R  to glucose 

concentration at time t l , with t  being the time at which the prediction is made and l  the 

prediction horizon. In the present study, f  is implemented through the SVR [156] and GP 

[167] methods, both utilizing a kernel function  ,x x   rather than working directly in the 

transformed feature space  . The parameters of the model are learnt from the training set 

  ,i

ix y , with 1, ,i N , of each subject. 

5.2.4.1 Support Vector Regression 

Given a new input dx R , the predicted by SVR glucose concentration at time t l  is 

expressed in terms of the kernel function as follows: 

    
1

( ) , ,
N

i

i i

i

f x a a x x b



    (5.9) 

where the Lagrange multipliers ,i ia a
 ( 0, 0i ia a  ) are introduced in the constrained 

optimization process of w  and, in our study, the kernel   is a Gaussian RBF. The sparseness 

of SVR solution is ensured by employing an  -insensitive error function; the corresponding 

Karush-Kuhn-Tucker conditions imply that 0i ia a   for 1, ,i N  and that all points lying 

inside the  -tube have 0i ia a  . Moreover, the model’s complexity is controlled by the 

regularization parameter C  which is used in the error function. 

5.2.4.2 Gaussian Processes 

In the case of GP, the glucose for a new point dx R  is estimated from a Gaussian distribution 

with mean and covariance given by: 
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        2 1 1

1

, , , ,σ k k
N

i T

i C

i

x a x x x x x K     



     (5.10) 

where ia  is the ith component of 
1

CK y
, with CK  denoting the N N covariance matrix and 

y  the target vector  1 2, , ,y
T

Ny y y , and the vector k  has elements  , ix x  for 1, , .i N  

The squared exponential kernel is the default one for GP regression. The noise on the observed 

values y  is considered and it is further assumed to be Gaussian distributed with zero mean 

and constant variance   for all ix . The latter contributes to the total variance of the predictive 

distribution given by Eq. 10. In contrast to SVR, the kernel function   must be evaluated for 

all possible pairs ix  and jx  resulting in a non-sparse model.  

5.2.5 Evaluation of Feature Ranking 

The effectiveness of feature ranking for a specific subject s  is examined with respect to the 

predictive performance of SVR and GP. A forward selection procedure is employed where 

features are sequentially added in decreasing order of importance based on RF or RReliefF 

ranking. To estimate the error rate of the prediction method, an external 10-fold cross-

validation is applied on the dataset  s
Z  with feature ranking following the resampling 

procedure itself. The latter ensures that the dataset used in the ranking process does not overlap 

with the test set and, therefore, reduces the selection bias in the estimates of the prediction error 

[176-179]. The procedure used is described as follows: 

1. Randomly partition  s
Z  into 10 disjoint folds 

 s

kZ , with 1, ,10k  , of equal size (i.e. 

10sN ). 

2. For 1, ,10k  : 

a. Let 
   s s

kZ Z  be the training set and 
 s

kZ  the test set. 

b. Apply the RF or RReliefF algorithm to 
   s s

kZ Z  so as to produce a ranked list 

of features kR . 

c. For 1, ,n d : 

i. Let ,

tr

k nZ  and ,

test

k nZ  be produced from 
   s s

kZ Z  and 
 s

kZ , respectively, by 
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retaining the first n  most important features according to kR . 

ii. Train SVR or GP glucose predictive model ,Mk n  on ,

tr

k nZ . 

iii. Test ,Mk n  on ,

test

k nZ  and compute the related ,k nRMSE . 

3. For 1, ,n d : 

a. Compute the average RMSE for all 10 folds i.e.
10

,

1

1

10
n k n

k

RMSE RMSE


  . 

As the notation implies, the ranked list of features kR  can be different for each k  (

1, ,10k  ). Moreover, it should be mentioned that the hyper-parameters of SVR and GP are 

optimized for each ,

tr

k nZ . More specifically, the values of ,C   and   minimizing the 4-fold 

cross-validation RMSE of SVR in ,

tr

k nZ  are chosen by the Differential Evolution algorithm 

[157]. Regarding GP, the parameters of the squared exponential kernel along with the noise 

variance   are also learned for each ,

tr

k nZ . In fact, they are internally optimized by the GP 

algorithm through the minimization of the negative log likelihood function, while multiple 

restarts are used to alleviate the local-minimum problem. 

The performance of the average feature ranking (i.e. R ) is assessed in an unbiased way 

by precisely averaging, for each feature jF , the scores obtained from the same fold of each 10-

fold cross-validation across all patients as follows: 

1. For 1, ,15s  : 

a. Randomly partition  s
Z  into 10 disjoint folds 

 s

kZ , with 1, ,10k  , of equal 

size (i.e. 10sN ). 

2. For 1, ,10k  : 

a. For 1, ,15s  : 

i. Compute the importance scores of F  by applying the RF or RReliefF 

algorithm to 
   s s

kZ Z . Let      
,1 ,, ,

s s s

k k k d   
 

 where 
 
,

s

k n , with 
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1, ,n d , is the importance score of feature nF  based on 
   s s

kZ Z . 

b. Compute 
,1 ,, ,k k k d       by averaging 

 
,

s

k n , with 1, ,n d , over s . 

c. Compute the ranked list kR  by sorting k  in descending order. 

Then, the same procedure is followed as for individualized ranking, with the difference 

that the dataset of each patient is not resampled and the list kR  is used in place of kR . In this 

case, the average RMSE is denoted by nRMSE . 

5.3 Results 

Figure 5.1 shows the average value and the standard deviation of the importance scores jW , 

with 1, ,46j  , over all 15 patients according to RF. The importance scores of features 1 8F   

and 9 46F   are plotted separately to aid visualization. The predominance of the features 

corresponding to glucose concentration (i.e. 2 8F  ) is evident in both 30-min and 60-min 

horizons, with most recent values conveying more information. The contribution of the other 

features to the prediction of glucose by RF is comparatively lower but not insignificant, as will 

be demonstrated later. In particular, their importance increases and becomes apparent for a 

prediction horizon of 60 min, which can be attributed to the increase of the problem complexity. 

Regarding gl  and SEE  features, which are defined with respect to the time t , their most 

recent values are clearly found to explain better the glucose concentration in the short-term. 

This is the case only for Ra  among the features representing the effect of meal and insulin 

intake (i.e Ra , SRa  and pI ) and which have been defined with respect to the time t l . More 

specifically, it was observed that for a few patients the values of SRa  and pI  closer to the time 

t l  are less associated with the glucose at that time. The evaluation of features by RReliefF 

exhibits similar patterns as it is shown in Figure 5.2. However, the difference in importance 

between gl  and the other features is much less prominent and h  is found to discriminate 

adjacent samples equally well as gl . We also observe a smooth change in importance score 

over time for each type of features and, in contrast to RF, the alterations between prediction 

horizons are not so notable. 
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The image plots in Figure 5.3 and Figure 5.4 illustrate the ranking of features obtained 

by RF and RReliefF, respectively, for each individual patient. Dark shades of grey correspond 

to high positions in the ranking, while light shades of grey represent low positions. It is obvious 

that h  and the full pI vector, in addition to gl , are ranked in the first positions for the majority 

of patients. On the other hand, there exist larger deviations in the ranking of the remaining 

features across patients, and especially of Ra  and SRa . In particular for SEE , its most recent 

values (i.e.  20SEE t  ,  10SEE t   and  SEE t ) belong to the highly ranked features in 

more than 50% of the patients. 

 

Figure 5.1  Average value and standard deviation of the importance of features based on RF 

algorithm for (a, b) 30-min and (c, d) 60-min predictions and for all patients. The x-axis 

labels correspond to the first feature of each type i.e. 
1F h ,  2 30F gl t  , 

 9 30F Ra t l   , ,  22 30pF I t l    and  29 170F SEE t  . 
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Figure 5.2  Average value and standard deviation of the importance of features based on 

RReliefF algorithm for (a) 30-min and (b) 60-min predictions and for all patients. The x-axis 

labels correspond to the first feature of each type i.e. 
1F h ,  2 30F gl t  , 

 9 30F Ra t l   ,  16 75F SRa t l   ,  22 30pF I t l    and  29 170F SEE t  . 

 

Figure 5.3  Image plot of RF-ranking for each patient for (a) 30-min and (b) 60-min 

prediction horizon. Darker shades of gray indicate a higher ranking position and lighter 

shades of gray represent a lower one. The x-axis labels correspond to the first feature of each 

type i.e. 
1F h ,  2 30F gl t  ,  9 30F Ra t l   ,  16 75F SRa t l   , 

 22 30pF I t l    and  29 170F SEE t  . 
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Figure 5.4  Image plot of RReliefF-ranking for each patient for (a) 30-min and (b) 60-min 

prediction horizon. Darker shades of gray indicate a higher ranking position and lighter 

shades of gray represent a lower one. The x-axis labels correspond to the first feature of each 

type i.e. 
1F h ,  2 30F gl t  ,  9 30F Ra t l   ,  16 75F SRa t l   , 

 22 30pF I t l    and  29 170F SEE t  . 

In Figure 5.5 and Figure 5.6 the average nRMSE  and nRMSE  of SVR and GP, 

respectively, over all 15 patients are plotted against the top-ranked ( 1, ,46n  ) features for 

a prediction horizon of 30 min. Figure 5.7 and Figure 5.8 illustrate the same information for 

60-min horizon. We observe that the average nRMSE  curve shows a sigmoidal behaviour after 

the first iteration. Its convergence for almost 2d  features implies that both feature ranking 

algorithms properly locate high in hierarchy the most predictive features of glucose 

concentration. It is obvious that RReliefF outperforms RF in the first few iterations ( 7n  ), 

which is more evident in the case of GP (with the exception of 1n   where RF yields to a 

significantly smaller error). This could be explained by considering that RReliefF, for the 

majority of the patients, locates the feature h  in the first positions along with the gl  values. 

For greater values of n , both algorithms lead to comparable average errors, although RF has 

systematically a slightly better performance for 15n  . 

Similar observations hold for the nRMSE  where the average ranking of the features has 

been used. As it can be observed for 30-min horizon (Figure 5.5 and Figure 5.6) the predictive 

capability of the features ranked by RF in the first 8n   positions, according to the 
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individualized scores, is comparable with that of the average scores. After this point and until 

convergence is achieved, the average RF-ranking, especially for SVR, yields to smaller 30-min 

errors compared with the individualized one. The opposite behaviour is observed for RReliefF, 

in which the 30-min predictions with 8n   best features are slightly better when the 

individualized scores are considered. As it is shown in Figure 5.7 and Figure 5.8, when the 

horizon increases to 60-min, the individualized RF-ranking becomes superior to the average 

one for 8n  . This can be attributed to the fact that the average RF-ranking includes the full 

gl vector and the h  in the first positions, whereas in the individualized case the Ra , SRa , ,pI  

and SEE  features are occasionally included. Then, for both RF and RReliefF, the 

individualized ranking is clearly better than the average one for 12n   and until convergence. 

Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.7 and Figure 5.8 are also annotated with 

the average RMSE concerning three of the input cases which were defined in our previous 

study [130], namely Case1 ( gl ), Case4 ( h , gl , Ra , SRa , pI ) and Case 6 ( h , gl , Ra , ,SRa  

pI , SEE ). We can see that the average error of Case 4, in which the number of features is 28, 

can be obtained with much less features. Moreover, a better solution can be also achieved even 

when the 7 best features are used instead of Case 1. 

 

Figure 5.5  Average 10-fold cross-validation RMSE rate of SVR regression models over all 

15 patients against the top-ranked features identified by RF and RReliefF for prediction 

horizon of 30 min. 
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Figure 5.6  Average 10-fold cross-validation RMSE rate of GP regression models over all 15 

patients against the top-ranked features identified by RF and RReliefF for prediction horizon 

of 30 min. 

 

Figure 5.7  Average 10-fold cross-validation RMSE rate of SVR regression models over all 

15 patients against the top-ranked features identified by RF and RReliefF for prediction 

horizon of 60 min. 
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Figure 5.8  Average 10-fold cross-validation RMSE rate of GP regression models over all 15 

patients against the top-ranked features identified by RF and RReliefF for prediction horizon 

of 60 min. 

The number of best features to which the average nRMSE  and nRMSE  converge within 

5% of the value obtained with 46n   features (i.e. cn  and cn , respectively) was calculated. 

Table 5.2 presents the average value of cn  and cn  over all patients and the corresponding 

standard deviation. We can see that SVR and GP generally converge a little faster in the case 

of RF than in the case of RReliefF. The average values of cn  and cn  concerning the 30-min 

predictions are close to each other. Nevertheless, in most of the cases the 60-min error curves 

converge considerably faster when features are ranked individually for each subject. 

5.4 Discussion and Conclusions 

A study on the evaluation of short-term predictors of subcutaneous glucose concentration in 

type 1 diabetes was presented. This problem was addressed for the first time in the literature 

with the aid of RF and RReliefF algorithms, which were applied to self-monitoring data. Their 

efficacy was verified with respect to the predictive performance of two machine-learning 

regression models. 
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Table 5.2  Number of Features to which the RMSE Rate Converges for all 15 Subjects 

 Prediction Horizon 

30 min 60 min 

SVR GP SVR GP 

Individualized Ranking     

RF 22.3±7.0 22.5±7.7 21.5±6.8 18.1±8.9 

RReliefF 24.5±8.0 24.8±9.2 24.7±10.2 22.3±10.6 

Average Ranking     

RF 21.4±7.5 22.9±9.7 26.5±9.5 24.6±12.6 

RReliefF 24.9±5.9 25.6±7.4 23.5±7.6 26.4±11.6 

Data are mean±standard deviation values. 

The need to augment the input of predictive models with features able to reveal the 

daily dynamics of glucose concentration is critical. The utilization of information on meals, 

insulin therapy and physical activities, besides glucose time series, has been shown to lower 

the prediction error [83, 94, 96, 106, 107, 112, 130, 172]. The proposed dataset, in addition to 

the glucose signal and the time of the day, includes some novel features highly connected to 

glucose dynamics. First, the future values of the Ra  and pI  simulated signals were used by 

expanding the simulation time from the present time up to the time for which the prediction is 

to be made and provided that that no future event (i.e. meal, insulin injection) will occur during 

that period. This approach was also followed in [94] for the Ra  signal with the difference that 

meal information should be announced by the patient l  min in advance. Nevertheless, the area 

under the Ra  curve has not been introduced elsewhere as a predictor variable. Similarly, the 

variable SEE , which represents the cumulative EE over time, was first introduced in [130]. 

Actually, the few studies using information from a physical activity monitor for making 

predictions are based only on the past instantaneous values of physiological signals (e.g. EE, 

GSR, heat flux) [106, 107]. However, the effect of all these variables on glucose metabolism 

varies considerably among type 1 diabetes patients due to a combination of environmental and 

biological factors. In addition, the efficient representation of the temporal dependencies 

between the input variables and the glucose concentration can be challenging. On this basis, 

we attempted to evaluate separately for each patient the proposed feature set, whose predictive 

capacity has already been validated as a whole. This is the main novelty of this work, since to 

the authors’ knowledge, there has been no other attempt to determine and assess the importance 

of such a multivariate feature set for predicting glucose at the individual level. 
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RF and RReliefF are two entirely different feature ranking algorithms but both are well-

suited for regression problems [174, 175]. The importance score computed for each feature by 

RF expresses the increase in the OOB prediction error when its values are randomly permuted 

(to mimic its absence in the prediction). It should be mentioned that the OOB error is an 

unbiased estimation of the generalization error of RF, which converges as the number of trees 

increases [173]. On the other hand, RReliefF is a statistical approach that approximates the 

probabilities of (non)separation of near instances by a given feature across the problem space. 

An appealing property of both algorithms is that they are context sensitive i.e. they take into 

account all attributes when estimating their importance. More specifically, RF can efficiently 

learn the relationships hidden in the dataset, while RReliefF detects existing dependencies in 

the feature space by exploiting the distance between instances. As a result, both algorithms 

behave well in the presence of groups of highly-correlated features, which is the case in our 

problem. Moreover, as opposed to shrinkage methods for linear regression [180], RF and 

RRelief do not assume a linear and sparse (with many zero regression coefficients) model. This 

is of particular importance in glucose predictive modelling where linear and nonlinear 

components of glucose dynamics should be described. Another important class of embedded 

methods use the change in the objective function when one feature is removed or added as a 

ranking criterion and, in combination with a greedy search strategy, they yield nested subsets 

of features e.g. Recursive Feature Elimination [181]. However, in this approach the prediction 

technique should be retrained for each new subset of features (i.e. d  times in stepwise feature 

selection); whereas, RF needs to be fitted to the training set only once. Note that the 

computational complexity of RF (i.e.  logntree mtry N N     with 3mtry d ) can be 

considered comparable to that of RReliefF (i.e.  logd N N   , despite being an embedded 

method. 

The way the two feature ranking algorithms operate is definitely reflected in their 

output. In particular, RF’s output reveals: (i) the infeasibility of predicting the subcutaneous 

glucose concentration without exploiting its recent values (e.g. the average OOB MSE 

increases by ≈2000 mg·dL-1 when  gl t  is randomly permuted) and (ii) the more pronounced 

effect of the other features with increasing prediction horizon. On the other hand, the fact that 

RReliefF computes the discriminative (and not the predictive) ability of each feature being, 

however, aware of the context of other features can explain: (i) the lack of great differences in 

features’ scores, (ii) the similarity of the output between prediction horizons and (iii) the 
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smooth transition in scores over time for features of the same type.  

Both RF and RRelief highlighted how essential is the subcutaneous glucose signal itself 

for both prediction horizons and for all 15 patients. Of great interest is that the time at which 

the predictions are made (i.e. h ) is systematically located in the first positions and its score is 

comparable to that of glucose. This reflects the existence of daily (24 h) patterns in glucose 

time series which are imposed either by each patient’s lifestyle or by circadian rhythms related 

to glucose homeostasis [137, 138]. The contribution of the other features was also well 

demonstrated, with pI  features outweighing on average Ra , SRa  and SEE ones. In addition, 

both algorithms, and especially RF, revealed some rational attenuation trends over time in 

average scores of gl , Ra , and SEE  [91, 155, 182, 183]. The effect of pI seems to be less 

immediate (since its scores tend to decrease as getting closer to the time of prediction t l ), 

which can be considered consistent with clinical evidence indicating inherent delays in 

peripheral and hepatic insulin action [184]. Moreover, the results support the existence of 

substantial inter-patient differences. 

Short-term predictive modelling of the subcutaneous glucose concentration using SVR 

and GP further verified the quality of the resulting feature ranking. The behaviour of the 

average nRMSE  curve did confirm that the top-ranked features constitute the best predictors of 

glucose in the examined feature set. The fact that the prediction performance did not degenerate 

by applying the average feature ranking reveals the generalizability and robustness of the 

results. In particular, individualized feature ranking was found to be more appropriate for 60-

min predictions, which may suggest personalized glucose predictive approaches are preferable 

as prediction horizon increases. Regarding the short-term glucose dynamics (i.e. 30-min 

horizon), the convergence rate of the average nRMSE   error curve was similar with that of the 

average nRMSE  curve. Moreover, the convergence of both error curves for a considerably 

smaller than 46d   number of features, and the consequent reduction of the input size, is 

indeed of paramount importance for regression analysis. Nevertheless, we did not find a certain 

point after which the average error starts to increase, which is mainly due to the fact that all 

features are relevant to the studied problem. We should mention at this point that the two 

kernel-based techniques were chosen due to their high prediction accuracy in both normal and 

critical glucose value regions [131]. However, other well-established machine-learning 

regression techniques could be also applied. 
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Table 5.3 presents a comparison of the proposed work with other literature studies 

utilizing a multivariate dataset. Note that the prediction error provided for SVR and GP 

corresponds to the first 20n   best features. A direct comparison of the presented results is 

not fair since they have been derived by different training/testing approaches. In [94, 96], the 

predictive models are tested on patients not included in the training set, while those in [106, 

107, 112] are recursively trained on each patient dataset. Our results indicate that multivariate 

non-linear regression models can provide predictions of high accuracy, which is also in 

agreement with previous findings. Moreover, we can see that the inclusion of information on 

physical activities is able to improve performance even when a linear model is adopted. The 

main difference of our work is that the input is not predefined but it is selected separately for 

each patient from a high-dimensional feature set which may result in much simpler models. 

Table 5.3  Comparison with other Methods reported in the Literature 

Study Method Feature set (number of 

features) 

Dataset Prediction Horizon 

(min) / RMSE 

(mg·dL-1) 

Zecchin et 

al. (2012) 

[94] 

Feed-forward neural 

network and first-order 

polynomial model 

CGM data, glucose rate of 

appearance after a meal 

(8) 

15 Type 1 

diabetic 

subjects 

30 / 14.0±4.1 

Eren-

Oruklu et 

al. (2012) 

[106] 

Recursive ARMAX 

model 

CGM data, EE, average 

longitudinal acceleration,  

near-body temperature, 

heat flux, GSR (15) 

5 Type 2 

diabetic 

subjects 

30 / 4.2±5.11 

Turksoy et 

al. (2013) 

[107] 

Recursive ARMAX 

model 

CGM data, insulin on 

board, EE, GSR (20) 

14 Type 1 

diabetic 

subjects 

30 / 11.7 

60 / 34.7 

Daskalaki 

et al. 

(2013) 

[112] 

Online adaptive RNN CGM data and insulin 

pump infusion rate  (N/A, 

patient-specific) 

23 Type 1 

diabetic 

subjects 

15 / 11.9 

30 / 18.9 

45 / 26.1 

Zecchin et 

al. (2014) 

[96] 

Jump neural network 

model 

CGM data, glucose rate of 

appearance after a meal 

(4) 

20 Type 1 

diabetic 

subjects 

30 / 16.6±3.1 

This work SVR – RF CGM data, glucose rate of 

appearance after a meal, 

plasma insulin 

concentration, EE, time of 

the day (20) 

15 Type 1 

diabetic 

subjects 

30 / 5.7±1.5 

60 / 6.4±2.1 

SVR - RRF 30 / 5.9±1.4 

60 / 6.8±2.0 

GP – RF 30 / 5.6±1.7 

60 / 6.3±2.6 

GP - RRF 30 / 5.9±1.6 

60 / 6.8±2.9 

Data are mean±standard deviation values. 
1This value refers to RAD (%). 
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The fact that RF and RReliefF algorithms yield consistent results across multiple 

subjects for both 30-min and 60-min prediction horizons implies their potential for use as an 

exploratory tool in the predictive analysis of type 1 diabetes data. Given the monitoring data 

of a new unseen patient, these algorithms can be applied to obtain a first reliable estimate of 

the predictive capability of the input variables. Certainly, the low computational complexity of 

feature ranking allows one to investigate longer latency time intervals than those examined in 

this study as well as to examine the impact of new descriptive features. The specification of 

the dimension of the input with respect to a regression technique requires employing the 

forward selection procedure, not necessarily in an exhaustive way, but for some subsets of 

features until the error converges. Similarly, the average ranking of the features could be 

utilized in the construction of “generalized” predictive models from the entire patients’ set. 

Again, the precise merging of the same folds of each 10-fold cross-validation across all patients 

would be needed to ensure unbiased estimates of the prediction error. As a future work, RF and 

RReliefF need to be evaluated in a large number of patients over a long period of time. To this 

end, both algorithms could be also tested on patients who are monitored during different time 

periods to investigate how consistent are the results for a patient and what is the effect of 

lifestyle or physiological changes. In any case, the clinicians should interpret the calculated set 

of best features together with other clinical information. 
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CHAPTER 6. SHORT-TERM PREDICTION OF 

GLUCOSE IN TYPE 1 DIABETES USING KERNEL 

ADAPTIVE FILTERS 

7.1 Introduction 

7.2 Materials and Methods 

7.3 Results 

7.4 Discussion and Conclusions 

 

6.1 Introduction 

Well-established representations of    ˆ ,t pTy t f Z   from linear system theory have been 

applied to glucose predictive modelling by assuming that the underlying system of glucose is 

linear and time-invariant [70, 87, 185]. Nonlinearity is incorporated into the glucose model by 

black-box parameterizations and, particularly, neural networks and kernel-based regression 

models, which, however, rely on batch learning algorithms (e.g. back-propagation, quadratic 

programming) [90, 96, 97, 102, 114, 130, 131, 185, 186]. Weighted recursive least squares, 

with an adjustable forgetting factor, has been used in the identification of multivariate ARMAX 

models of subcutaneous glucose dynamics in both type 1 [107, 108] and type 2 diabetes [105, 

106]. Physiological signals related to a subject’s physical activity or emotional condition (EE, 

GSR) as well as information on insulin regime (insulin on-board) complemented the input of 

the ARMAX models and, in conjunction with physiological constraints imposed to model’s 

parameters, led to stable accurate short-term (30-min ahead) predictions. Nevertheless, the 

dominance of a discrete-time nonlinear dynamic system of glucose in type 1 diabetes identified 

by an EKF over a recursively-identified ARX model having a similar configuration indicates a 

need for nonlinear adaptive learning of the glucose system [109]. 

Naumova et al. proposed a novel subject-independent approach to iteratively 
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selecting/adjusting the hyper-parameters of a Tikhonov regularization-learning algorithm (i.e. 

the regularization parameter and the parameters of the kernel generating the associated 

reproducing kernel Hilbert space) to each new input, which was evaluated in the context of the 

blood glucose concentration prediction. [101]. Both 30-min and 60-min predictions of that 

regularized scheme with input previous, but not-necessarily equi-sampled, CGM 

measurements were significantly better compared to two state of the art glucose prediction 

methods [89, 114]. Zhao et al. utilized the concept of model migration; a base ARX model is 

first built from a representative subject and, then, proper customization of the parameters 

related to the exogenous inputs (i.e. food and insulin) is performed for a new subject using a 

small amount of data [86]. Results for in-silico subjects show that model migration presents 

better generalization ability than individualized ARX models when training and testing 

conditions differ. 

The purpose of this work is: (i) to present a recursive multivariable KAF approach to 

personalized short-term glucose prediction in type 1 diabetes, and (ii) to demonstrate the 

validation of the proposed predictive model on patients with type 1 diabetes in free-living 

conditions. The novelty of the proposed glucose prediction model consists in that recursivity 

is performed in the RKHS such that the number of adjustable parameters is finite and upper 

bounded. In particular, either the QKLMS-FB [187, 188] and the KRLS-ALD [189] algorithms 

are employed for comparison purposes. A preliminary version of this work has been reported, 

which introduced KAF (QKLMS-FB in [190] and KRLS-ALD in [191]) to auto-regression of 

subcutaneous glucose concentration in type 1 diabetes. Herein, both univariate AR and 

multivariate input models are constructed and compared aiming at methodically elucidating the 

predictive potential of the exogenous inputs especially in critical hypoglycaemic and 

hyperglycaemic regions. Moreover, an extensive evaluation and comparison of QKLMS-FB 

and KRLS-ALD algorithms is presented aiming at featuring their efficacy in adaptive learning 

of subcutaneous glucose concentration course, which could advance the major ongoing 

research in the field. 

6.2 Materials and Methods 

6.2.1 Subjects 

A short-term observational study was carried out as part of the METABO study [152]. The 
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study was approved by the Ethics Committees of the participating hospitals (i.e. Parma 

University Hospital, Parma and University Hospital Motol, Prague) and all subjects provided 

written informed consent before enrolment. 

Fifteen people with type 1 diabetes (3F/12M, age: 40.3±13.5 y/o, BMI: 25.2±2.9 kg·m-

2, HbA1c: 7.1±1.2%), following multiple-dose insulin therapy and without significant micro- 

and macro-vascular complications, were monitored from 5 to 22 days (average 12.5±4.6) in 

free-living conditions. Patients were equipped with the Guardian® Real-Time CGM system 

(Medtronic Minimed Inc.) and the SenseWear® Armband (BodyMedia Inc.) physical activity 

monitor. They were also methodically recording information on daily food intake and insulin 

regime.  

6.2.2 Problem Formulation 

Consider a sequence of input-output pairs   
1

,
N

i

i
i

Z x y


 , where  , ,i

ix y Z X Y    

  and .dX R Y R   Each sample       , ,i

i i ix y x t pT y t   associates the input vector ix  

corresponding to observations up to time it pT  with the observation of subcutaneous glucose 

concentration iy  at time it , where p  is the prediction step and 5 minT   is the sampling 

interval of the subcutaneous glucose concentration. For ease of notation we will assume 

1i it t T   . Our objective is to incrementally learn a sparse regularized kernel-based 

approximation : df R R  of the true mapping such that if  (the estimate of f  at time it ) is 

updated on the basis of the previous model 1if   and the instantaneous prediction error 

 1

i

i i ie y f x   on the current sample  ,i

ix y  (Figure 6.1a) [192].  

The input   dx t R  is formed by past sequences of 5 variables  
5

1i i
v


, which are 

defined by an embedding dimension 
ivn  and a delay time 

ivt : 

1.       1 , , ,gl gl glgl t n t gl t t gl t    
  : The subcutaneous glucose concentration 

within the last 30 min with respect to t  given a delay time equal to its sampling period 

5 minglt T    and 7gln  . This is in accordance with previous studies in diabetes 
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showing a strong autocorrelation and short-term predictive capacity of glucose samples 

which are 30 or fewer minutes apart [71, 90, 91, 106, 186].  

2.       1 , , ,Ra Ra RaRa t n t Ra t t Ra t      : The rate of appearance of exogenous 

glucose into plasma within the interval  30,t t  with 5 minRat T    and 7Ran   

[155]. It should be mentioned that the computational time step of Ra  is 1 min; 

however, Ra  is resampled concurrently with the output y  assuming that it is constant 

between discrete time instants  1iT t i T   . 

3.       1 , , ,SRa SRa SRaSRa t n t SRa t t SRa t      : The exogenous glucose 

absorbed into plasma calculated cumulatively every 15 minSRat   over the last 90 min 

with 6SRan   and    
90

t

s t
SRa t Ra s



 
  . The time interval of 90 min reflects the 

peak time of Ra  following the ingestion of a meal and, it is approximately equal to 

half the length of the postprandial state [17]. Via the introduction of the variable SRa , 

we exploit the area under the Rα curve aiming at capturing the cumulative effect of 

exogenous glucose inserted in the plasma over time. 

4.       1 , , ,
p p pp I I p I pI t n t I t t I t    

  
: The plasma insulin concentration within 

the time interval  30,t t  with 5 min
pIt T    and 7

pIn   [153]. The pI  input 

signal is computed every 1 min, however, similarly to the Ra  signal, it is kept constant 

over the sampling interval 5minT  . 

5.       1 ,. ,SEE SEE SEESEE t n t SEE t t SEE t      : The EE calculated 

cumulatively every 10 minSEEt   over the last three hours with 18SEEn   and 

   
180

t

s t
SEE t EE s



 
  . The term EE  expresses the instantaneous EE sampled every 

1 min. Thus, we investigate the immediate or short-term effect of physical activities or 

exercise performed over the last 3 hrs on the glucose-insulin metabolism. 
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Figure 6.1  Online (a) learning and (b) testing of the glucose prediction model. 

We have defined three input cases, namely Case 1 ( gl ), Case 2 ( , , , pgl Ra SRa I ) and 

Case 3 ( ,gl , , ,pRa SRa I SEE ), in order to examine the effect of the different input variables on 

the prediction accuracy. 

6.2.3 Kernel Adaptive Filters 

According to the reproducing kernel theory, there exists a RKHS H  and a mapping 

: H   such that    ,x x   , where : X X R    is a positive definite kernel, and 

the minimizer if H  lies in the span of the finite set of kernels centred at the input vectors 

1 2, , , ix x x . Herein, a Gaussian kernel has been applied, with   denoting its bandwidth. 

QKLMS-FB [187, 188] and KRLS-ALD [189] attain a sparse solution by sequentially building 

a dictionary Q X , which content at iteration i  is denoted by     
1

im
j

j
Q i q i


 . Given a new 

input ,dx R  the output  if x  is expressed as follows: 

       
1

,
im

j

i j

j

f x a i q i x


  (6.1) 

where  ja i  denotes the j th component of the coefficient vector      1 , ,
i

T

ma i a i a i     at 
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iteration .i  QKLMS-FB relies on stochastic gradient descent and, similarly to KLMS, at each 

iteration i , updates only the coefficient of the new centre, i.e.  
ima i , or quantizes a redundant 

sample to its nearest centre. KRLS-ALD, at each iteration i , minimizes the sum of squared 

errors over the current dictionary and, as such, it updates the coefficient associated with the new 

centre, i.e.  
ima i , and all previous coefficients, i.e.  1a i  . The latter results in an order of 

magnitude higher convergence rate than that of QKLMS-FB. Nevertheless, the dependence of 

KRLS-ALD on the Gram matrix  1K i   defined on  1Q i   increases the time and space 

complexity from  iO m  in QKLMS-FB to  2

iO m . The adaptive learning process is outlined 

in Table 6.1. In the following subsections, we focus on the sparsification process employed in 

each algorithm. 

Table 6.1  Adaptive Learning of Subcutaneous Glucose Concentration 

Input:   , , , 1,2,i i d

i ix y x R y R i   , kernel  , algorithms’s hyperparameters 

Computation: 

while  , yi

ix  is available 

A. Adaptive Learning Phase 

1. Predict the output  1
ˆ i

i iy f x  according to (6.1). 

2. Compute the error ˆ
i i ie y y  . 

3. Evaluate the sparsification criterion (QKLMS-FB: (6.2); KRLS-ALD: (6.9)) 

and update accordingly the dictionary  Q i . 

4. Update the parameters’ vector  a i  (equivalently the solution if ) based on ie  

and according to the applied algorithm. 

B. Prediction and Testing Phase 

1. Predict the output  ˆ i p

i p iy f x 

  . 

2. Evaluate the test error  test i

i i i pe y f x   

end while 

Output:    ,a i Q i   
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6.2.3.1 Fixed Budget Quantized Kernel Least Mean Square Algorithm 

QKLMS-FB controls the growth of the dictionary by using a quantization parameter x  and a 

maximum size M . A new input vector ix  is included into  1Q i   if their distance is greater 

than x  [188]: 

     
11

, 1 min 1
i

i i j

x
j m

dis x Q i x q i 
 

      (6.2) 

whereas the less significant centre is first eliminated from  1Q i   when 1im M  . The 

significance of a centre kq  at iteration i  is denoted by  kE i  and represents the average error 

induced in the prediction of all observations up to time it ,  
1

i
j

j
x


, by removing kq  [187]: 

  
 

 
1

,
i

k j k

k

j

a i
E i x q

i






   (6.3) 

with   denoting the step size parameter and    ,j k

ka i x q   the error injected in the 

prediction of the sample  ,j

jx y . To reduce the computational complexity of (6.3) (i.e.  O i

), the probability density function of X  (i.e.  p x ) is exploited: 

        lim , k

k k
Xi

E i a i x q p x dx 


   (6.4) 

where  p x  is estimated by the Parzen window method considering a Gaussian kernel P  

such that: 

    
1

1
ˆ ,

i
j

P

j

p x x x
i




   (6.5) 

Thus, (6.4) is written as: 

  
 

   
1

, ,
i

k k j

k P
X

j

a i
E i x q x x dx

i


 



   (6.6) 

Input data quantization is likewise applied at this step such that the contribution of each  
1

i
j

j
x


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to  p x  is approximated by its nearest centre: 

 
 

             
1 1

, , , ,
M M

k k j k j

k j P k j P

j jX X

a i
E i i x q x q dx a i i x q x q dx

i


     

 

    (6.7) 

The function  j i  quantifies the number of input vectors being quantized to 
jq : 

  
 

 

1 1, if  is quantized to 

1 , otherwise

i j

j

j

j

i x q
i

i






  
 



 (6.8) 

with 0 1   being the forgetting factor. A recursive method is applied for the computation 

of (6.7) reducing its time complexity to  O M . 

6.2.3.2 Approximate Linear Dependency Kernel Recursive Least-Squares Algorithm 

KRLS-ALD ensures that the centres of the dictionary at each iteration i  are approximately 

linearly independent in the RKHS H : 

    
1

2

1

min
im

j i

i j
b

j

c q x   




    (6.9) 

with parameter 0   determining the level of sparsity; Equation (6.9) represents the 

approximate linear dependency (ALD) condition. Assuming that the 1 1i im m   Gram matrix 

 1K i   is invertible, the optimal  c i  is the solution of      1K ki c i i  , where 

     11, , , ,k i

T
mi ii x q x q   

  , and, correspondingly, the ALD condition becomes: 

              1, , 1k k K k
i i T i i T

i x x i c i x x i i i          (6.10) 

In the case where i   then the dictionary is expanded such that      1 iQ i Q i x   . The 

time and memory complexity of (6.10) is  2

iO m . 
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6.2.4 Model Evaluation 

Each algorithm is evaluated for each patient individually for multiple prediction horizons of 5, 

15, 30, 45 and 60 min, which correspond to 1, 3, 6, 9, 12 samples ahead. All simulations were 

performed using the Kernel Adaptive Filtering MATLAB Toolbox [193]. Table 6.2 presents 

the range of the free parameters’ values for which the QKLMS-FB and the KRLS-ALD 

algorithms are tested (i.e. ,  ,  ,  x     in the case of QKLMS-FB or ,     in the case of 

KRLS-ALD). Their values have been selected for each patient individually by grid search 

minimizing an empirical function of the RMSE and TG of the predictions (i.e. 
3RMSE TG ), 

over the period starting from the third day of monitoring. TG is defined as in [96]. The objective 

function 
3RMSE TG  provided a rational balance between these performance metrics, 

eliminating time-delayed replications of the actual glucose time series. 

Table 6.2  Range of the Hyperparameters of QKLMS-FB and KRLS-ALD Algorithms 

QKLMS-FB  : 0.01,  0.05,  0.1,  0.2, ,5  

 : 0.01,  0.02, ,0.5x  

0.99   

0.99    

50M    

KRLS-ALD  : 0.01,  0.05,  0.1,  0.2, ,5   

 : 0.0001,  0.001,  0.003,  0.01,  0.02,  0.05,  0.1,  0.2,  0.3,  0.5   

 

As it is shown in Figure 6.1b, at each time instant it , the updated model if  is tested on the 

prediction of the sample       , ,i p i p

i ix t y t pT x y   . The associated prediction error is 

denoted by  test i p

i p i p ie y f x 

   , with 0test

je   for 1 j p  . The goodness of fit of  ŷ t   is 

assessed over the period starting from the third day of monitoring by the following performance 

metrics:  

(1) The RMSE. 

(2) The MAPE. 

(3) The TG defined as TG PH delay  , where delay is estimated by two different 

methods which define accordingly the TG1 and TG2 metrics: 

a. the temporal shift minimizing the square of the 2L  distance between the 



 

128 

predicted time series and the actual one [96]: 

 
 

 
2

0, 1

1
ˆarg min

1

N p

i i j
j p i

delay y y T
N p




 

 
  

  
  (6.11) 

b. the lag maximizing their cross-correlation function. 

(4) The normalized ESOD (ESODnorm) defined as the ESOD of the predicted time series 

ŷ  (i.e. the sum of the squared second-order differences), normalized by the ESOD 

of the target time series y [96]: 

 
 

 

ˆ
norm

ESOD y
ESOD

ESOD y
  (6.12) 

(5) The index J  defined as: 

 
 

2
J norm

norm

ESOD

TG
  (6.13) 

with lower values of J  indicating better predictions. TGnorm is the TG of the 

predicted time series divided by the prediction horizon [94, 133]. 

(6) The sensitivity and specificity of predictions in the hypoglycaemic range, 

considering hypoglycaemic instances (subcutaneous glucose concentration values 

≤70 mg·dL-1) as positive and non-hypoglycaemic instances as negative. An 

individual glucose prediction is characterized as true positive (TP) with regard to 

the corresponding actual glucose concentration value if both fall in the 

hypoglycaemic region. 

For comparison purposes, SVR is also applied to the same data and task. The dataset of each 

patient is split up, at a ratio of 0.7 to 0.3, into two consecutive parts constituting the training 

and test set, respectively. The hyperparameters C, ε and the Gaussian kernel parameter γ are 

optimized using the Differential Evolution algorithm which fitness function is defined as the 

RMSE over a held-out validation set, consisting of the last 30% samples of the training set. In 

particular, the search space of the hyperparameters is set to  0.001,1024C ,  0.0001,1   

and  0.00001,8  . 
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6.3 Results 

6.3.1 The Effect of Hyperparameters 

The average value and the standard deviation of the hyperparameters and dictionary size, over 

all patients, are given in Table 6.3. Case 1, for both QKLMS-FB and KRLS-ALD algorithms, 

leads to a lower average   compared to Case 2 and Case 3, with a less pronounced variation 

of   values between the two latter cases. Case 2 and Case 3 induce an additional systematic 

increase in εx values, exploiting, in parallel, the maximum network size of QKLMS-FB (i.e.

50im  ). The network size of KRLS-ALD increases with increasing input size without, 

however, a consistent variation in   values among the three input cases for the examined 

prediction horizons. We can also observe a substantial increment in   in the transition from 

1- to 6-step-ahead predictions for KRLS-ALD in Case 1. In addition, longer prediction horizons 

are associated with a decreasing trend in εx and, contrarily, an increasing trend in  , with the 

latter yielding sparser solutions. 

6.3.2 Assessment of Predictions 

The mean value and the standard deviation, over all patients, of the evaluation metrics 

for QKLMS-FB and KRLS-ALD are given in Table 6.4 and Table 6.5, respectively. We 

commence with the description of the results concerning QKLMS-FB. We can observe that the 

RMSE and MAPE metrics in the case of 1- and 3-step ahead predictions are comparable among 

the 3 input cases. In addition, Case 1 yields slightly higher TGs, which counterbalance the 

associated higher ESODnorm values and lead to lower J  indices for 1p  . Adequately accurate 

predictions are also achieved for p=6, where Case 2 and Case 3 outperform Case 1 yielding 

comparable RMSEs (22.2±3.9 mg·dL-1 and 22.6±4.9 mg·dL-1, respectively) and both attaining 

an average MAPE of the order of 12.0 % (11.5±2.9 % and 11.9±3.3 %, respectively). We can 

also observe that both cases balance well the TG (Case 2: TG1: 8.4±4.3 min, TG2: 13.4±4.7 

min; Case 3: TG1: 8.4±3.8 min, TG2: 12.7±4.5 min) and ESODnorm (Case 2: 1.1±0.3; Case 3: 

1.3±0.4) metrics. The RMSE increases considerably for p>6, where the associated with the 

multivariate input cases MAPE values reach ~17.0 % and ~21.0 % for p=9 and p=12, 

respectively. Case 2 and Case 3 lead to less erroneous predictions as compared with Case 1, 

featuring better J indices, particularly due to lower ESODnorm values; the contribution of extra 
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inputs to TG1 and TG2 becomes noticeable for p=12. 

The prediction error of KRLS-ALD is significantly better than that of QKLMS-FB. 

Case 2 and Case 3, as compared with Case 1, lead constantly to a higher RMSE (as well as 

MAPE) even for longer prediction horizons. Nevertheless, as we can see in Figure 6.2, they 

result in a less delayed and, concurrently, smoother output. The full case (Case 3) improves the 

average RMSE of 1- and 3-step-ahead predictions, as compared with QKLMS-FB, by 33.2 % 

(4.0±1.2 mg·dL-1) and 20.0 % (10.5±2.4 mg·dL-1), respectively. The latter is also translated 

into better average TGs (TG1: 3.0±1.3 min, TG2:4.3±0.7 min for p=1; TG1: 7.1±2.0 min, 

TG2:10.2±2.7 min for p=3) as well as J  indices. Similarly, the average RMSE of 30-min 

predictions in Case 3 is reduced by 16.9 % (18.8±3.5 mg·dL-1), attaining an average MAPE of 

10.0±1.8 % and proactive time of 11.3±.3.0 min with respect to TG1 and of 16.4±4.4 min with 

respect to TG2. The RMSE associated with Case 3 increases to 25.8±3.9 mg·dL-1 and 31.8±6.3 

mg·dL-1 for p=9 and p=12, respectively. Nevertheless, the respective MAPE values are of the 

order of ~14.0 % and ~18.0 %. It should be mentioned that KRLS-ALD is inferior to QKLMS-

FB in terms of ESODnorm values across all input cases and prediction horizons, which is also 

reflected into higher J  indices p  concerning Case 1 and for 6p  concerning Cases 2 and 

3. Figure 6.3 shows the prediction error curves (a plot of the   2
test

iE e  versus the number 

of iterations i , over a running window of 10N  samples and starting from 0i  ) of QKLMS-

FB vs KRLS-ALD in Case 3 for an indicative subject. As expected, KRLS-ALD is 

predominantly associated with lower errors in the majority of patients. In addition, we observed 

that the error curves of both algorithms exhibit noticeable fluctuations during the learning 

phase.  
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Table 6.3  Optimal Values of the Hyperparameters of QKLMS-FB and KRLS-ALD averaged over all Patients 

 PH 5 min PH 15 min PH 30 min PH 45 min PH 60 min 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Q
K

L
M

S
-F

B
 

 

0.79 

(0.19) 

1.73 

(0.70) 

1.77 

(0.74) 

0.77 

(0.21) 

2.23 

(0.74) 

2.37 

(0.75) 

0.69 

(0.23) 

2.19 

(0.77) 

2.37 

(0.99) 

0.65 

(0.36) 

2.09 

(1.02) 

2.23 

(1.01) 

0.71 

(0.30) 

2.13 

(1.05) 

2.05 

(0.87) 

x

 

0.13 

(0.11) 

0.31 

(0.11) 

0.35 

(0.12) 

0.12 

(0.13) 

0.29 

(0.07) 

0.34 

(0.10) 

0.09 

(0.09) 

0.23 

(0.10) 

0.34 

(0.11) 

0.11 

(0.08) 

0.24 

(0.11) 

0.26 

(0.13) 

0.08 

(0.08) 

0.24 

(0.12) 

0.25 

(0.16) 

im

 

41.93 

(14.98) 

50.00 

(0.00) 

50.00 

(0.00) 

42.40 

(16.01) 

50.00 

(0.00) 

50.00 

(0.00) 

45.20 

(11.94) 

50.00 

(0.00) 

50.00 

(0.00) 

43.27 

(12.37) 

50.00 

(0.00) 

50.00 

(0.00) 

47.07 

(11.09) 

50.00 

(0.00) 

50.00 

(0.00) 

K
R

L
S

-A
L

D
 

 

1.65 

(1.13) 

3.05 

(1.18) 

3.77 

(1.04) 

2.35 

(1.34) 

3.57 

(1.14) 

4.15 

(1.00) 

2.79 

(1.64) 

3.78 

(1.08) 

3.87 

(1.14) 

2.56 

(1.67) 

3.77 

(1.13) 

3.62 

(0.93) 

2.53 

(1.31) 

3.40 

(1.23) 

3.73  

(1.32) 

  0.0013 

(0.0026) 

0.0002 

(0.0002) 

0.0003 

(0.0004) 

0.0014 

(0.0026) 

0.0007 

(0.0008) 

0.0011 

(0.0025) 

0.0010 

(0.0026) 

0.0011 

(0.0009) 

0.0017 

(0.0024) 

0.0018 

(0.0034) 

0.0097 

(0.0255) 

0.0065 

(0.0125) 

0.0691 

(0.1750) 

0.0298 

(0.0581) 

0.0201 

(0.0513) 

im

 

43.13 

(34.42) 

174.87 

(129.68) 

197.07 

(121.99) 

23.47 

(19.65) 

86.73 

(34.65) 

123.80 

(55.43) 

25.67 

(18.26) 

62.40 

(34.92) 

96.13 

(59.89) 

32.60 

(47.11) 

46.00 

(25.80) 

73.87 

(43.66) 

21.00 

(21.96) 

49.93 

(35.67) 

60.87 

(47.57) 

PH: Prediction horizon 

Data are mean (standard deviation) values. 
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Table 6.4  Evaluation of Goodness-of-fit of QKLMS-FB averaged over all Patients 

 

 PH 5 min PH 15 min PH 30 min PH 45 min PH 60 min 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RMSE 

(mg·dL-1) 
5.1±1.8 5.6±1.7 6.0±2.5 13.6±5.1 12.8±3.3 13.1±3.0 25.5±6.8 22.2±3.9 22.6±4.9 37.9±7.9 31.8±7.9 30.9±5.6 43.2±7.6 37.9±8.7 37.7±8.3 

MAPE (%) 2.2±0.5 2.6±0.7 2.7±0.9 6.4±1.8 6.4±1.9 6.6±1.7 13.1±3.6 11.5±2.9 11.9±3.3 19.7±4.1 17.1±5.6 16.5±4.3 22.5±5.3 20.8±6.9 20.8±6.1 

TG1 (min) 2.2±0.9 1.6±1.1 1.6±1.1 4.4±1.7 3.5±1.4 3.7±1.7 8.6±4.6 8.4±4.3 8.4±3.8 16.7±8.0 15.6±6.4 14.9±5.4 20.7±9.8 24.8±9.3 25.1±7.1 

TG2 (min) 4.0±0.9 3.2±1.4 3.4±1.2 8.1±2.6 7.5±2.6 7.4±2.7 13.8±6.2 13.4±4.7 12.7±4.5 18.5±10.1 21.3±6.1 19.5±6.8 22.6±13.1 25.2±8.0 29.4±8.8 

ESODnorm (-) 1.9±0.6 1.2±0.2 1.3±0.3 2.0±1.0 1.2±0.4 1.2±0.3 2.1±0.9 1.1±0.3 1.3±0.4 2.3±1.0 1.4±0.5 1.4±0.5 2.0±1.2 1.4±0.5 1.2±0.6 

J (-) 10.6 

(6.8, 18.3) 

24.6 

(11.4, 28.3) 

24.1 

(12.2, 32.0) 

22.6 

(15.4, 35.8) 

26.2 

(18.8, 35.4) 

21.5 

(13.7, 51.6) 

36.0 

(15.5, 42.8) 

20.3 

(9.2, 42.4) 

15.8 

(9.5, 39.9) 

20.9 

(13.7, 29.2) 

12.1 

(6.3, 22.4) 

11.4 

(7.2, 24.3) 

18.3 

(11.5, 27.0) 

7.9 

(5.2, 15.4) 

5.5 

(4.1, 13.3) 

Data are mean±standard deviation or median (25th percentile, 75th percentile) values. 

PH: Prediction horizon 

Table 6.5  Evaluation of Goodness-of-fit of KRLS-ALD averaged over all Patients 

 PH 5 min PH 15 min PH 30 min PH 45 min PH 60 min 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RMSE 

(mg·dL-1) 
3.8±1.1 4.1±1.4 4.0±1.2 9.4±2.2 10.2±2.5 10.5±2.4 17.0±3.1 18.2±3.4 18.8±3.5 23.7±4.4 24.7±4.7 25.8±3.9 30.9±7.6 32.1±6.6 31.8±6.3 

MAPE (%) 1.6±0.3 1.7±0.3 1.8±0.3 4.5±0.8 5.0±0.9 5.2±0.9 8.8±1.5 9.5±1.7 10.0±1.8 12.8±2.2 13.5±2.9 14.3±2.6 17.9±5.1 17.8±3.6 18.0±4.3 

TG1 (min) 2.4±1.1 3.0±1.1 3.0±1.3 5.9±1.6 7.1±2.1 7.1±2.0 9.3±3.0 11.4±4.4 11.3±3.0 12.1±3.8 15.3±5.7 16.8±4.6 20.2±14.7 25.9±6.5 22.7±6.4 

TG2 (min) 4.2±0.8 4.4±0.6 4.3±0.7 9.3±2.8 10.0±2.6 10.2±2.7 14.9±5.0 17.0±4.3 16.4±4.4 17.7±6.6 21.8±4.8 22.9±5.3 28.2±12.5 30.5±8.0 30.7±6.4 

ESODnorm (-) 3.1±0.9 4.4±2.0 3.7±1.1 6.3±2.7 4.9±1.4 5.0±2.2 10.3±4.4 6.3±3.0 5.1±3.5 15.6±9.0 6.1±4.4 4.6±3.2 13.6±9.8 5.6±4.6 3.3±2.8 

J (-) 15.3 

(6.1, 29.2) 

13.3 

(7.8, 23.9) 

10.3 

(5.2, 25.7) 

43.7 

(34.4, 49.3) 

25.9 

(15.7, 36.2) 

19.7 

(16.0, 36.3) 

113.5 

(66.1, 160.4) 

38.3 

(25.3, 64.9) 

35.6 

(17.9, 54.5) 

228.9 

(127.6, 308.7) 

45.0 

(31.2, 69.0) 

22.5 

(17.4, 60.3) 

213.1 

(87.3, 498.6) 

27.5 

(10.1, 67.9) 

15.8 

(12.5, 37.7) 

Data are mean±standard deviation or median (25th percentile, 75th percentile) values. 

PH: Prediction horizon 
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Figure 6.2  Predicted vs measured glucose concentration concerning Patient 6 by KRLS-ALD 

for multiple prediction horizons of 5, 15, 30, 45 and 60 min (a-e). The horizontal lines 

indicate the glycaemic range [70, 130] mg·dL-1. 

Figure 6.4 portrays the distribution of RMSEs in the hypoglycaemic range (≤70 mg·dL-

1) for each input case and prediction horizon. Both QKLMS-FB and KRLS-ALD produce 

highly accurate 3-step ahead predictions with Case 2 yielding a median (25th percentile, 75th 

percentile) error equal to 7.2 (6.2, 10.0) mg·dL-1 and 5.8 (5.0, 8.1) mg·dL-1, respectively. The 

median and 75th percentile values of the RMSE of QKLMS-FB indicate that Case 2 and Case 

3 lead to more accurate predictions in the hypoglycaemic range for p=6 [Case 1: 19.9 (15.1, 

23.1) mg·dL-1; Case2: 16.1 (13.5, 16.9) mg·dL-1; Case 3: 17.0 (15.5, 19.1) mg·dL-1] and p=9 

[Case 1: 28.3 (20.2, 34.6) mg·dL-1; Case 2: 23.9 (21.9, 32.4) mg·dL-1; Case 3: 24.0 (21.3, 29.4) 

mg·dL-1], whereas Case 3 considerably improves the 75th percentile values (Case1: 45.4 

mg·dL-1; Case2: 46.3 mg·dL-1; Case 3: 38.7 mg·dL-1) as well as the overall interquartile range 
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(IQR) (Case 1: 21.1 mg·dL-1; Case 2: 20.3 mg·dL-1; Case 3: 9.2 mg·dL-1) of the RMSE 

associated with 12-step-ahead predictions of hypoglycaemic values. In the case of KRLS-ALD, 

the median RMSE of 6- and 9-step ahead predictions is of the order of 15.0 mg·dL-1 and 24.0 

mg·dL-1. The effect of the multivariate input cases becomes apparent for p=12, with Case 3 

yielding a median RMSE 30.3 mg·dL-1. As it is shown in Figure 6.5, the QKLMS-FB 

prediction error in the hyperglycaemic region (≥180 mg·dL-1) is also improved in Case 2 and 

Case 3, particularly for 6p  , being, however, inferior to that of KRLS-ALD (median RMSE 

in Case 3: 29.7 vs. 24.5 mg·dL-1 for p=6; 40.1 vs 33.8 mg·dL-1 for p=9; 47.3 vs 39.8 mg·dL-1 

for p=12). 

 

Figure 6.3  Convergence curves of QKLMS-FB and KRLS-ALD in Case 3 regarding Patient 

12 for each prediction horizon i.e. 5, 15, 30, 45 and 60 min (a-e). 
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Figure 6.6 depicts the ROC curve with respect to the prediction of single 

hypoglycaemic values (≤70.0 mg·dL-1), which is formed by increasing the hypoglycaemic 

threshold from 70.0 to 90.0 mg·dL-1 by 5.0 mg·dL-1. In the case of QKLMS-FB, it is confirmed 

that Case 2 and Case 3 increase the sensitivity and specificity of predictions in the 

hypoglycaemic region for p=6 and p=9, with the effect of SEE  becoming more apparent for 

p=9. For p=12, Case 2 exhibits a higher sensitivity as well as specificity as compared with Case 

1, whereas Case 3 does increase TN predictions and slightly improves TP ones as compared 

with Case 1. The contribution of the exogenous inputs to hypoglycaemia prediction is also 

evident in the case of KRLS-ALD for 6p  . In particular for Case 3, we can observe that it 

leads systematically to a lesser specificity. Moreover, QKLMS-FB tends to be more sensitive 

than KRLS-ALD with respect to the identification of true positive hypoglycaemic values for 

6p  , despite producing higher RMSEs. 

In order to determine the clinical accuracy of the treatment decisions, we verified the 

aforementioned behaviour by the CG-EGA, whose classification of the errors is based both on 

spatial (i.e. the proximity between y  and ŷ ) and temporal characteristics (i.e. the rate and 

direction of glucose change) of the reference and predicted glucose values [194]. CG-EGA 

demonstrated (i) the better behaviour of both algorithms in Case 2 and Case 3 as compared to 

Case 1 in both hypoglycaemic and hyperglycaemic value regions for 6p  , (ii) the better 

performance of QKLMS-FB in the hypoglycaemic region for 6p  , and (iii) the less clinically 

erroneous behaviour of KRLS-ALD in the hyperglycaemic region for 9p   and 12p  . 

Table 6.6 summarizes QKLMS-FB, KRLS-ALD and SVR models’ performance on the 

last 3 10N  samples of the dataset of each patient. KRLS-ALD tends to produce on average 

lower errors than SVR for all prediction horizons, as it is denoted by the RMSE and MAPE 

metrics. We can observe that KRLS-ALD’s predictions are associated with higher ESODnorm 

values, which is balanced with higher TGs (TG1, TG2), particularly in Case 2 and Case 3 as 

prediction horizon increases. The latter could explain the lower 75th percentile values of J in 

Case 2 and Case 3. On the other hand, QKLMS-FB does not improve on the SVR’s error. 

Nevertheless, QKLMS-FB when fed with Case 2 or Case 3 outperforms SVR with respect to 

TG1 for all horizons as well as TG2 for 6p  , attaining comparable predictions to those of SVR 

in relation to the ESODnorm metric and, in turn, considerably lower J  values concerning the 

multivariate input cases for 6p  . 
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Figure 6.4  Boxplot of the RMSE of QKLMS-FB (blue hues corresponding to Case 1, 2 and 

3) and KRLS-ALD (red-purple hues corresponding to Case 1, 2 and 3) algorithms in the 

hypoglycaemic region (≤70 mgdL-1). On each box, the central mark corresponds to the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme RMSE values not considered outliers, and outliers are plotted individually 

 

Figure 6.5  Boxplot of the RMSE of QKLMS-FB (blue hues corresponding to Case 1, 2 and 

3) and KRLS-ALD (red-purple hues corresponding to Case 1, 2 and 3) algorithms in the 

hyperglycaemic region (≥180 mgdL-1). On each box, the central mark corresponds to the 

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 

extreme RMSE values not considered outliers, and outliers are plotted individually. 
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Figure 6.6  The ROC curves corresponding to the prediction of single hypoglycaemic values with the hypoglycaemic threshold being increased 

from 70 to 90 mg·dL-1 by 5 mg·dL-1. (a) QKLMS-FB and (b) KRLS-ALD algorithms. 
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Table 6.6  Comparative Evaluation of Goodness-of-fit of QKLMS-FB, KRLS-ALD and SVR Models over the last 3N/10 samples of each 

Patient’s Dataset 

 
PH 5 min PH 15 min PH 30 min PH 45 min PH 60 min 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Q
K

L
M

S
-F

B
 

RMSE 

(mgdL-1) 
4.5±2.4 5.4±2.2 5.6±2.6 13.4±7.7 12.4±4.7 12.8±4.1 23.9±8.6 21.0±4.9 21.5±6.3 34.2±10.3 30.4±10.6 29.5±7.9 39.6±11.2 37.6±12.4 35.9±11.6 

MAPE  

(%) 
2.0±0.8 2.6±0.9 2.7±1.1 6.3±2.4 6.3±2.4 6.5±2.0 12.5±4.5 11.2±3.3 11.5±3.8 18.1±4.9 16.7±7.0 15.9±5.3 20.9±5.4 21.1±8.3 19.8±7.7 

TG1 (min) 2.3±1.6 1.6±1.0 1.4±1.1 4.5±2.9 4.3±1.9 4.4±3.1 7.9±4.4 10.1±6.0 10.7±6.1 13.1±11.0 19.9±10.8 19.3±9.9 16.9±14.5 30.0±14.1 28.3±13.2 

TG2 (min) 4.3±1.1 3.3±1.4 3.6±1.6 8.5±3.0 8.4±2.8 7.3±3.7 12.8±4.4 13.9±7.3 14.3±8.0 16.9±9.3 22.4±11.1 20.3±13.3 18.4±17.3 25.0±11.7 31.1±13.9 

ESODnorm 

(-) 
2.0±0.4 1.3±0.3 1.4±0.4 2.1±1.1 1.2±0.5 1.3±0.3 2.5±1.5 1.2±0.3 1.5±0.7 2.6±1.1 1.9±1.7 1.8±1.3 2.1±1.2 1.9±1.9 1.6±1.5 

J (-) 
9.4  

(5.2, 17.4) 

11.1 

(6.6, 47.3) 

19.7 

(6.1, ∞) 

25.2 

(14.8, 38.2) 

22.5 

(7.7, 29.7) 

15.8 

(8.8, 52.1) 

38.6 

(22.7, 70.1) 

11.1 

(4.7, 50.2) 

10.9 

(5.1, 55.1) 

49.0 

(10.2, 252.7) 

8.2 

 (2.8, 69.5) 

10.0 

(3.2, 43.9) 

53.4  

(13.5, 98.3) 

8.2 

(2.4, 26.9) 

5.6  

(3.2, 14.7) 

K
R

L
S

-A
L

D
 

RMSE 

(mgdL-1) 
3.4±1.5 3.9±1.9 3.7±1.6 9.3±3.7 9.7±4.1 9.9±3.9 16.3±5.0 16.7±5.5 17.8±5.9 22.9±6.8 22.7±7.0 23.0±5.4 29.4±9.3 28.0±7.9 28.2±7.8 

MAPE  

(%) 
1.6±0.5 1.7±0.5 1.7±0.5 4.6±1.4 4.9±1.6 5.1±1.7 8.7±2.4 9.0±2.7 9.6±2.5 12.9±3.6 12.8±3.9 13.0±3.0 17.6±6.5 16.3±4.6 16.2±4.5 

TG1 (min) 2.5±1.8 2.5±1.7 2.8±1.6 5.7±1.9 6.6±2.7 6.7±2.2 8.7±3.7 11.6±5.5 11.1±5.4 9.9±4.7 16.3±8.5 16.8±7.0 19.0±17.9 27.4±13.5 24.9±12.0 

TG2 (min) 4.5±0.7 4.5±0.8 4.5±0.7 9.3±2.6 10.3±3.1 10.6±3.3 14.8±4.7 18.1±6.6 16.1±6.8 15.9±5.4 22.4±11.1 22.6±9.7 28.7±15.6 34.1±14.7 31.5±15.1 

ESODnorm 

(-) 
3.1±0.5 4.2±2.2 3.1±0.7 6.5±2.9 4.7±1.6 4.3±1.4 9.9±5.3 5.9±2.7 4.7±3.2 14.4±10.9 5.6±4.3 4.4±3.5 11.7±10.0 5.4±4.3 3.5±3.1 

J (-) 
15.0 

(4.3, 75.6) 

19.6 

(7.4, 66.4) 

11.6 

(4.4, 21.6) 

47.8 

(30.9, 70.7) 

29.6 

(14.6, 51.1) 

18.2 

(12.7, 39.3) 

125.3 

(79.2, 195.6) 

44.4 

(22.8, 78.7) 

44.1 

(19.4, 80.3) 

328.0 

(127.6, 597.3) 

36.2 

(24.4, 124.5) 

35.4 

(8.3, 91.8) 

225.0 

(73.7, 818.4) 

30.2 

(5.6, 104.0) 

24.3 

(5.6, 51.2) 

S
V

R
 

RMSE 

(mgdL-1) 
3.8±2.3 4.1±1.8 4.5±2.2 11.3±9.0 10.5±4.7 10.4±4.1 18.5±9.1 18.3±7.2 19.3±7.1 24.7±8.4 25.8±10.6 25.8±10.9 29.5±8.4 30.1±12.2 31.9±11.5 

MAPE  

(%) 
1.8±1.2 1.9±0.7 2.3±1.4 5.8±5.5 5.3±2.3 5.4±2.0 10.1±5.7 9.9±4.0 10.5±4.1 14.0±5.7 14.2±5.8 14.6±6.9 17.2±6.1 17.0±6.5 18.5±7.0 

TG1 (min) 1.8±1.7 1.0±1.5 1.3±1.6 4.9±2.6 4.3±2.9 4.1±3.2 8.1±4.8 7.8±5.5 7.3±5.9 10.9±7.3 13.4±12.4 11.6±9.0 11.6±8.9 16.8±15.1 17.0±10.2 

TG2 (min) 4.4±0.7 4.3±0.9 3.7±1.5 9.4±2.5 8.8±3.1 8.2±3.2 14.0±3.7 13.5±5.8 14.0±7.1 17.5±7.5 19.7±12.6 16.2±9.5 18.2±7.3 22.7±16.0 24.2±12.8 

ESODnorm 

(-) 
2.5±0.7 1.4±0.5 1.2±0.5 4.4±2.4 1.8±1.0 1.6±1.0 5.2±3.3 1.7±1.3 1.5±1.3 5.5±5.0 1.6±1.4 1.2±1.1 5.8±5.6 1.5±1.3 0.9±0.7 

J (-) 
20.1 

(8.5, ∞) 

∞ 

(13.3, ∞) 

34.2 

(11.0, ∞)) 

49.1 

(31.5, 70.6) 

15.1 

(11.0, 104.8) 

18.6 

(9.2, 122.4) 

95.0 

(42.1, 181.9) 

38.9 

(10.0, 87.6) 

33.4 

(12.6, 223.6) 

112.5 

(45.3, 252.0) 

21.1 

(7.8, 151.2) 

39.9 

(7.3, 146.0) 

219.4 

(65.1, 355.4) 

29.8 

(9.8, 138.3) 

11.5 

(3.7, 65.0) 

Data are mean±standard deviation or median (25th percentile, 75th percentile) values. 

PH: Prediction horizon 
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6.4 Discussion and Conclusions 

The QKLSM-FB and KRLS-ALD algorithms were applied and contrasted, for the first time in 

the literature, with respect to the identification and prediction of the dynamic glucose system 

in type 1 diabetes. Their effectiveness was verified using a multivariate dataset obtained during 

everyday living conditions. 

KAF combine the universal approximation property of neural networks (for universal 

kernels) with the convexity of least squares problems [192]. QKLSM-FB and KRLS-ALD 

algorithms are capable of solving recursively nonlinear system identification and prediction 

problems by: (i) expressing all operations in terms of inner products in the RKHS and, (ii) 

sparsifying the solution online to confine the structure of the underlying RBF network and, 

consequently, accomplish regularization. A distinct feature of QKLMS-FB sparsification 

measure is that it incorporates information not only on the distance in the input space but also 

on the prediction error, which gives QKLMS-FB the capability of better tracking time-varying 

input-output relationships. ALD is an effective sparsification approach, with proven its 

relationship to kernel principal components analysis, which also improves the numerical 

stability of KRLS-ALD provided that no regularization is employed [195]. In SVR, a sparse 

solution is also attained, but the time complexity of SVR, which scales super-linearly with the 

size of the training set, discourages its online operation. Yu et al., concurrently with our work, 

looked at non-sparse KRLS [195] and extended KRLS algorithms [196], which were integrated 

into an adaptive linear fusion scheme of RLS-based models of subcutaneous glucose 

concentration for people with type 1 diabetes [197]. However, non-sparse KAF, by retaining 

the i i  Gram matrix (i.e.  2O i  time and space complexity), poses significant scalability 

issues during continuous online operation, whilst regularization is needed to alleviate 

overfitting. The results of the present study indicated the superiority of KRLS-ALD over 

QKLMS-FB and SVR algorithms with respect to the RMSE, MAPE, and TG metrics. The 

reliance of QKLMS-FB on stochastic gradient descent and the subsequent update of one model 

parameter per iteration, besides leading to a slower convergence rate, may also explain its 

improved ESODnorm values as compared with the KRLS-ALD. It should be mentioned that 

QKLMS-FB achieves comparable ESODnorm values to SVR and, in parallel, better TGs. 

Regarding the critical blood glucose ranges, QKLMS-FB demonstrates a higher sensitivity and 

clinical accuracy (according to CG-EGA) with respect to the prediction of hypoglycaemia 
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despite the fact that those predictions are associated with higher prediction errors. On the other 

hand, KRLS-ALD’s predictions are less erroneous in the hyperglycaemic region p  and, CG-

EGA shows that they become more clinically acceptable for 9p   and 12p  .  

The subcutaneous glucose signal shows a strong positive auto-correlation at lags ≤ 6, 

which can explain its high predictive capacity for horizons up to 30 min [91]. Herein, we 

additionally exploited the recent profile (within the last 30 min) of the Ra  and pI  discrete 

signals, together with the SRa  vector representing the cumulative amount of exogenous 

glucose inserted into plasma over the last 90 min. In addition, we utilized the cumulative EE 

during the last 3 h (SEE) to explain potential hypoglycaemic or hyperglycaemic excursions 

during or shortly after exercise. In our previous work, by using appropriate feature ranking 

algorithms, we had demonstrated that the full pI  vector and the most recent values of SEE  

(i.e.  20SEE t  ,  10SEE t   and  SEE t ), in addition to gl , are located high in hierarchy 

for the majority of patients, whereas there existed larger deviations in the ranking of the 

remaining features ( Ra , SRa ) across patients [186]. At this point we should mention that the 

degree of a linear dependency between Ra  and Ip , primarily, due to the concurrent and in a 

specified ratio (ICR) delivery of insulin dosages and meal carbohydrate content, respectively 

has been shown to be negatively correlated with the performance of linear dynamical systems 

[81]. An attempt to address input collinearity and, in turn, increase the input excitation into the 

system, was made by Zhao et al. via the use of latent variables [83]. As it has been also 

discussed in [101], the gl vector certainly conveys information on the glycaemic effect of 

previous meals, insulin injections and physical activities up to the time t  at which the 

prediction is made, which can act synergistically with the information conveyed by the discrete 

signals of Ra, Ip, SRa, and SEE. For instance, exercise-related HAAF is exemplified by 

hypoglycaemia that typically occurs several hours (6-15 h) after exercise, thus, the specified 

effect of exercise can be seen in the glucose signal [162]. However, we expect that actions 

performed very close to the time t, whose influence has not been seen yet in the glucose data, 

would lower the prediction error with increasing horizon. Our reasoning is corroborated by the 

findings by Zecchin et al. [103] showing that the carbohydrate and insulin information 

improves only postprandial (up to 2h following a meal) and, presumably, hyperglycaemic 

predictions for p≥6. To this end, our results support that Case 2 and Case 3: (i) make QKLMS-

FB’s overall output less erroneous and smoother for 6p   as well as less delayed for 12p  , 
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as compared with Case 1, (ii) drive KRLS-ALD to significantly lower TGs and ESODnorm 

values slightly increasing, however, its total error, (iii) improve the sensitivity and clinical 

accuracy of both algorithms in the hypoglycaemic region for 6p  , and (iv) improve the 

clinical accuracy of both algorithms in the hyperglycaemic region, which in the case of 

QKLMS-FM is also mirrored in clearly lower RMSEs. By evaluating the RMSE in the 

glycaemic region of <54 mg·dL-1, which was recently recommended by the International 

Hypoglycaemia Study Group as clinically significant biochemical hypoglycaemia which 

should be reported in clinical trials, Case 2 and Case 3, as regards KRLS-ALD, contributed to 

more accurate predictions for 6p  , whereas their effect on the performance of QKLMS-FB 

with respect to hypoglycaemia is more apparent in the interval [54,70] mg·dL-1 [198]. The 

latter observation may give prominence to QKLMS-FB’s higher sensitivity in the 

hypoglycaemic region, which along with the smoother predictions produced by QKLMS-FB 

may explain its higher clinical accuracy in that region. 

Table 6.7 presents a comparison of the proposed work with other literature studies 

utilizing a recursively identified individualized prediction model, which has been evaluated on 

real patient data and under free-living conditions. The results reported in each study ought to 

be considered with caution provided that they refer to different datasets, particular input 

modelling approaches, and various training/testing conditions. A recursively-identified 

multivariate ARMAX model [107] performs better, in terms of the average RMSE, for 5- and 

15-min prediction horizons as compared to nonlinear solutions (i.e. RNN [118] and our work), 

whereas the latter are more robust to the increase of the prediction horizon. RNN are universal 

approximators of dynamical systems; however, their non-convex objective function and the 

high complexity of the training algorithm impede their use in online applications. In addition, 

an EKF-identified state-space model, as a non-optimal solution to nonlinear problems, is 

associated with a higher MAPE regarding 30-min predictions [109]. It is noteworthy that a 

recursive ARMAX model applied to patients with Type 2 diabetes achieves a MAPE less than 

5% for a prediction horizon of 30 min [106], which is an indicator of the lower system’s 

complexity in type 2 diabetes. Literature studies relying on batch nonlinear learning approaches 

have reported similar or better results; however, one should consider (i) the differentials in 

training/testing conditions (10-fold cross-validation vs training/test sets vs online assessment 

of the errors), and (ii) the fact that the need for recursivity may become evident in longitudinal 

observations where different modes of the system can be excited and a time-varying behaviour 

may be captured; note that the generalization performance of glucose models is now being 
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demonstrated in small-scale observational studies (ranging from 48h to 2 weeks in the case of 

type 1 diabetes). Herein, as well as in our preliminary work [191], we demonstrated the benefit 

of an adaptive non-linear glucose predictive modelling scheme over a time-invariant one, 

during everyday living conditions through the direct comparison of KAF-based recursive 

models with an SVR-based model trained in a batch mode. 

Table 6.7  Comparative Results with other Methods in the Literature 

Study Method Feature Set Dataset Prediction Horizon (min) / 

RMSE (mg·dL-1) 

Oruklu et 

al. 2012, 

[106] 

ARMAX 

Weighted 

recursive least 

squares with 

adaptive forgetting 

factor 

CGM data 

Physiological Data: 

Energy expenditure, 

average longitudinal 

acceleration, heat 

flux, GSR, near-

body temperature 

Five people with 

type 2 diabetes 

Monitoring Period: 

23.8±2.4 days 

30 / 4.24±5.14%a 

Turksoy 

et al., 

2013 

[107] 

ARMAX in state-

space form 

Constrained 

recursive least 

squares 

Real-time Kalman 

filtering 

CGM data 

Insulin on board 

Energy expenditure 

and GSR 

Fourteen people 

with type 1 

diabetes 

5 / 1.86 

15 / 7.18 

30 / 18.55 

45 / 32.86 

60 / 48.93 

Wang et 

al., 2014 

[109] 

Time-varying 

state-space model  

Extended Kalman 

Filter 

CGM data 

FIR modelling of 

subcutaneous 

insulin absorption 

and meal absorption 

Five people with 

type 1 diabetes 

using insulin pump 

Monitoring Period: 

60.4±10.6 hours 

30 / 20.31±10.44%a 

Daskalaki 

et al., 

2012 

[118] 

RNN with real-

time recurrent 

learning 

CGM data 

Insulin infusion rate 

data 

Twenty three 

people with type 1 

diabetes under SAP 

therapy 

Monitoring Period: 

- 

Training Set 

5.30±1.40 days 

Evaluation Set 

4.83±1.80 days 

15 / 11.9 (7.7, 22.7)b 

30 / 18.9 (12.8, 32.3)b 

45 / 26.1 (17.2, 39.8)b 

This work QKLMS-FB Case 3 Fifteen people with 

type 1 diabetes 

Monitoring Period: 

12.5±4.6 days 

5 / 6.0±2.5 (2.7±0.9 %a) 

15 / 13.1±3.0 (6.6±1.7 %a) 

30 / 22.6±4.9 (11.9±3.3 %a) 

45 / 30.9±5.6 (16.5±4.3 %a) 

60 / 37.7±8.3 (20.8±6.1 %a) 

This work KRLS-ALD Case 3 Fifteen people with 

type 1 diabetes 

Monitoring Period: 

12.5±4.6 days 

5 / 4.0±1.2 (1.8±0.3 %a) 

15 / 10.5±2.4 (5.2±0.9 %a) 

30 / 18.8±3.5 (10.0±1.8 %a) 

45 / 25.8±3.9 (14.3±2.6 %a) 

60 / 31.8±6.3 (18.0±4.3 %a) 

Data are mean±standard deviation values. 
aThis value refers to MAPE (%). 
bThis value refers to median (5th percentile, 95th percentile). 



 

143 

A few issues need further study. First, the complexity of the predictive model and, 

consequently, its generalization ability largely depend on the values of the hyperparameters. 

Model selection through cross-validation is the most widely employed approach, but it is most 

applicable for stationary learning. Adaptive learning of kernel bandwidth is an alternative 

solution, which has been shown to improve the prediction accuracy of KLMS significantly 

[199]. For a nonstationary system, sparsification parameters should be adaptive too. In 

addition, in the context of a patient-specific glucose model, the use of compartmental models 

of Ra and Ip, constitutes a limitation that needs to be addressed. An interesting approach is that 

proposed by Wang et al. [109] which is based on real-time identified finite impulse response 

functions. Moreover, KAF methods are best suited for learning a priori defined and fixed 

memory mappings of input-output data [200]. For instance, herein we explicitly defined the 

embedding dimension for each input in order to model the glucose dynamics and, additionally, 

we introduced specific variables, i.e. SRa  and SEE , to model the temporal effect of meals 

and physical activities constraining, in parallel, the input size. However, state-space models in 

the RKHS may learn the different modes of the glucose signal more efficiently [200]. Finally, 

innovative online adaptive sparsification and vector quantization methods are currently studied 

aiming at better exploiting the potential of kernel recursive algorithms [201, 202]. 

  



 

144 

 



 

145 

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

7.2 Future Work 

 

7.1 Conclusions 

The problem of identification and prediction of short-term glycaemic dynamics in type 1 

diabetes has been largely studied on the basis of time series and machine learning principles, 

with glucose models’ generalization performance now being demonstrated in small-scale 

observational studies conducted in real-life conditions. On the one hand, parameterized models 

from linear systems theory assume that the examined glucose system is linear and time-

invariant and, on the other hand, non-linearity is treated by machine-learning models (neural 

networks, kernel-based methods, ensemble models). In addition, dynamic adaptive learning of 

the glucose system is considered an integral component of modern modelling schemes. In this 

context, both univariate and multivariate input models have been studied, whereas the input 

level is where the synergy between physiological models and data-driven glucose predictive 

models lies in. The generalization capability of existing approaches, as it has been estimated 

on real and in-silico data, is promising; however more methodical approaches to feature 

learning and model identification and validation are still required. 

In this thesis, we studied systematically and thoroughly the problem of subcutaneous 

glucose concentration prediction in patients with type 1 diabetes. Considering the ability of 

SVR to produce smooth, global and sparse solutions to non-linear regression problems, we 

examined their capability to model the subcutaneous glucose dynamics, making a step beyond 

the state of the art at the time. By utilizing different input cases, we quantified first the effect 

of each of the examined inputs (subcutaneous glucose concentration, plasma insulin 

concentration, exogenous glucose appearance rate, EE, time of the day) to the prediction 

accuracy, coming to the conclusion that both short-term (≤30 min) and mostly long-term 
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(>30min) predictions over the full glucose range, as well as, over the hypoglycaemic and 

hyperglycaemic regions, become significantly more accurate and safe when all the available 

information is used. 

Our subsequent study on the prediction of hypoglycaemic events in type 1 diabetes, 

revealed that the prediction of nocturnal hypoglycaemic events by the SVR model becomes 

more accurate when hypoglycaemia associated autonomic failure-related factors are 

additionally considered. In addition, by increasing the glucose history at night, we obtained 

considerably lower delays between the predicted and the actual glucose signal. The fact that 

the introduction of information on physical activity reduces the sensitivity of 30-min 

predictions of diurnal events, as opposed to a FFNN and a GP model which were trained on 

the same data and task, indicates that further evaluation is needed to encode the immediate 

effect of exercise on glucose within the overall patient’s context. We concluded that the 

problem of hypoglycaemia prediction should be handled differently for nocturnal and diurnal 

periods as regards input variables and interpretation of the results. 

The utility of RF or RReliefF feature evaluation algorithms towards the exploration of 

the dynamics of the subcutaneous glucose concentration in type 1 diabetes and, the subsequent 

refinement of the glucose predictive model’s input was also shown. The subcutaneous glucose 

profile along with time of the day and plasma insulin concentration were systematically highly 

ranked, while the effect of food intake and physical activity varied considerably among 

patients. A very interesting finding was that the plasma insulin concentration is systematically 

found to outweigh the rate of appearance as well as the cumulative amount of meal-derived 

glucose inserted in the plasma over time. In addition, the possibility of obtaining equally 

accurate predictions using on average less than half of the original number of features was 

demonstrated by utilizing the derived feature ranking in the development of SVR and GP 

predictive models. It was shown that RF and RReliefF result in equally predictive feature 

ranking, but our foremost conclusion is that both show a consistent behaviour across all 

patients.  

In the final part of this thesis, KAF-based algorithms were proposed to the recursive 

nonlinear identification and prediction of the subcutaneous glucose concentration system. Their 

efficiency consists in the expressive power of the RKHS and the convexity of linear adaptive 

LMS and RLS models. In particular, QKLMS-FB and KRLS-ALD algorithms, provided 

sufficiently accurate predictions over the full glucose range for prediction horizons up to 30 
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min and maintained an average MAPE for 45-min and 60-min predictions below 20%. The 

theoretically proven higher convergence rate of KRLS-ALD rendered its predictions less 

erroneous and lagged than those of QKLMS-FB; however, QKLMS-FB provided a more 

regularized solution and a competitive performance in the hypoglycaemic region as horizon 

increased. Nevertheless, the much higher computational complexity of KRLS-ALD should be 

also considered when designing a real-time identified prediction model. Most importantly, the 

examination of model errors in critical glucose value regions revealed that multivariate models 

are more advantageous than the univariate ones with respect to the prediction of hypoglycaemic 

excursions for prediction horizons equal to or greater than 30 min, in return of a higher network. 

In addition, the benefit of these kernel-based recursive models over a time-invariant predictive 

scheme, during everyday living conditions, was demonstrated through their direct comparison 

with a multivariate SVR-based model trained in a batch mode. Nevertheless, in a non-stationary 

context, consideration should be given to the specification of their hyper-parameters which 

largely affect the generalization ability of KAF. For instance, adaptive learning of kernel 

bandwidth has been shown to improve the prediction accuracy of KLMS significantly [21].  

7.2 Future Work 

Based on the findings of this thesis, the observations we made throughout our research and the 

latest research findings on subcutaneous glucose concentration predictive modelling, we are 

going to advance our method with respect to: (i) the specification of the input, (ii) the adaptive 

learning algorithms, and (iii) the validation of the method. 

We identified the need for non-linear dynamical functions which may learn the time-

varying behaviour of the glucose regulatory system since our first study. Today, we identify 

also the need to locate and, accordingly, treat separately the linear and non-linear daily 

glycaemic dynamics. Our current research activity consists of: (i) efficient learning of the effect 

of insulin therapy and overall patient’s context (e.g. meals, physical activities, stress) on 

subsequent glucose dynamics under normal daily life conditions and, (ii) producing an adaptive 

solution that explain the intra-patient and inter-patient variability, as well as, linear and non-

linear input-output relationships. The modes of the glucose system which can actually be 

represented as a linear function of the subcutaneous glucose concentration profile, presumably 

the low-frequency glycaemic dynamics associated with circadian or ultradian rhythms, will be 

treated through linear adaptive approaches (e.g. ARIMA models [203, 204]), whereas those 
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modes related to more challenging conditions (e.g. during exercise or stress) will be treated via 

contemporary system identification and prediction approaches (e.g. state-space models in the 

RKHS [200]). To this end, we are going to separately assess the predictive capacity and 

tracking capability of the model in steady-state (e.g. overnight) and dynamic (e.g. 

postprandially, during exercise) free-living conditions. 

Moreover, the precise prediction of hypoglycaemia, treated either as a regression or a 

classification problem, is going to be based upon a more comprehensive feature set 

encompassing physiological parameters predictive or reflective of hypoglycaemia (i.e. GSR, 

heat flux, skin temperature and heart rate) along with behavioural data (i.e. medication, meals 

and physical activities). Our aim is to perform a more methodical study on how exogenous 

factors (e.g. exercise) may yield to hypoglycaemia development as well as the physiological 

changes triggered by hypoglycaemia. The evaluation of the model will be based on a well-

designed observational clinical trial, which has been recently completed and provides a higher 

input-output excitation level as compared to the current dataset. 

Looking at the global picture of precision diabetes medicine, advancements in big data 

technologies and cognitive computing shift continually the research towards more precise 

predictive, potentially preventive, solutions [205-209]. Provided the chronic and progressive 

nature of diabetes, contemporary computational prediction models of short-term glycaemic 

dynamics in the context of type 1 diabetes should be evaluated on longitudinal self-monitoring 

and multi-omics data from large population cohorts and, as such, they should integrate different 

information analysis levels [210]. For instance, unsupervised exploratory cluster analysis can 

provide a finer stratification of people with type 1 diabetes, which, in turn, can augment the 

glucose system identification and prediction process. Predictive modelling, as a dynamic 

component, has to be built upon well-defined machine-learning solutions representing the 

different time-scales and forms of nonlinearities characterizing the input-output dynamics of 

the blood glucose system without, however, neglecting the knowledge the mechanistic models 

of diabetes can bring in. 
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