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Περίληψη 

Η παρούσα μεταπτυχιακή διπλωματική εργασία παρουσιάζει μια αναλυτική 

προσέγγιση την συνεκτικότητας των εγκεφαλικών περιοχών, χρησιμοποιώντας 

δεδομένα λειτουργικής μαγνητικής τομογραφίας ασθενών με σύνδρομο ανήσυχων 

ποδιών, μια νευρολογική διαταραχή που προσβάλει σημαντικό ποσοστό του 

πληθυσμού παγκοσμίως.  

Εξετάζοντας προηγούμενες μελέτες για τη περιγραφή του συνδρόμου ανήσυχων 

ποδιών με τη χρήση fMRI παρατηρήθηκε ότι οι μελέτες περιορίζονται σε 

συγκεκριμένες υπολογιστικές μεθόδους, γεγονός που πιθανά περιορίζει την παροχή 

απαντήσεων σε ερωτήματα που σχετίζονται με την πάθηση.  Πραγματοποιήθηκε μια 

αναλυτική περιγραφή των τύπων της εγκεφαλικής συνεκτικότητας και των μεθόδων 

εξαγωγής της με σκοπό τη μοντελοποίηση του εγκεφαλικού ιστού. 

Στο πρώτο κεφάλαιο της παρούσας διατριβής, γίνεται αναφορά στις διαταραχές 

ύπνου, την κατηγοροποίηση τους ανάλογα με τα χαρακτηριστικά τους και την 

επίδραση τους στην υγεία και την ποιότητα ζωής των ασθενών.  Στη συνέχεια 

περιγράφονται αναλυτικά για την υπό μελέτη διαταραχή ύπνου, το σύνδρομο 

ανήσυχων ποδιών, στοιχεία επιδημιολογίας, παθοφυσιολογίας, διάγνωσης και 

θεραπείας, καθώς και κριτήρια κλινικής εμφάνισης.   

Στο επόμενο κεφάλαιο περιγράφονται οι αρχές λειτουργίας της ευρέως 

διαδεδομένης διαγνωστικής μεθόδου fMRI κάνοντας αναφορά στην αντίδραση BOLD, 

τους τύπους πειραματικού σχεδιασμού, την λήψη εκόνων, τις χρονοσειρές fMRI, τις 

κλινικές εφαρμογές καθώς επίσης και τα πλεονεκτήματα και τα μειονεκτήματα της 

μεθόδου.   

Στη συνέχεια γίνεται μια αναλυτική περιγραφή πρόσφατων απεικονιστικών 

μεθόδων σχετικά με το συγκεκριμένο σύνδρομο, παραθέτοντας τις μεθόδους και τα 

ευρήματα που προέκυψαν.  Περιγράφονται μελέτες που χρησιμοποίησαν PET, SPECT, 

δομικό MRI, ηλεκτροεγκεφαλογράφημα, λειτουργικό MRI κ.α..  Οι περισσότερες 

μελέτες που περιγράφονται χρησιμοποιούν λειτουργικό MRI σε κατάσταση ηρεμίας 

έχοντας ως στόχο να συγκριθούν με την παρούσα μελέτη. 

Στο τέταρτο κεφάλαιο πραγματοποιείται μια εκτενής παρουσίαση των τριών τύπων 

της εγκεφαλικής συνεκτικότητας (δομικής, λειτουργικής και αιτιώδους), καθώς επίσης 

και των μεθόδων που προτείνονται για την ανάλυση τους.   
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Το πέμπτο κεφάλαιο περιλαμβάνει τα αποτελέσματα του πειραματικού μέρους της 

παρούσας διπλωματικής εργασίας.  Συγκεκριμένα παρουσιάζονται και αναλύονται τα 

αποτελέσματα από την επικύρωση της προτεινόμενης μεθοδολογίας ακολουθώντας 

διαφορετικές προσεγγίσεις από τις ήδη υπάρχουσες μελέτες αναδεικνύοντας έτσι την 

καινοτομία της εργασίας.   

Το έκτο κεφάλαιο αποτελεί συζήτηση στα αποτελέσματα των μεθοδολογιών που 

ακολουθήθηκαν, καταγράφονται τα συμπεράσματα και προτείνονται κατευθύνσεις για 

μελλοντική έρευνα.   
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Abstract 

The current master thesis presents a detailed study of Brain Connectivity with the 

use of functional Magnetic Resonance Imaging (fMRI) data for the Restless Legs 

Syndrome (RLS), a neurological sleep disorder which affects a large number of people 

worldwide.   

After studying prior literature recordings regarding brain connectivity analysis of 

RLS, relying on fMRI, it was observed that these studies are constrained to certain 

computation methods, a fact which possibly leads to limited inferences concerning the 

disease.  An analytical description of brain connectivity types and their extraction 

methods are presented aiming to the modeling of the brain tissue. 

In the first chapter of the current thesis, the sleep disorders and their classification 

are described, depending on their special characteristics and their effect on subjects’ 

health and quality of life.  A detailed description regarding the sleep disorder 

phenomenon is presented, including epidemiological and pathophysiological elements, 

diagnostic and treatment criteria as well as the clinical presentation of the disease. 

The next chapter involves the operation principles of the popular diagnostic method 

fMRI, reporting the BOLD mechanism, the types of experimental design, the image 

acquisition, the fMRI time-series, the clinical applications as well as its advantages and 

disadvantages. 

A state-of-the-art analysis on imaging methods for RLS was conducted and 

methodologies and results of various studies are presented in the next chapter.  They 

include PET, SPECT, structural MRI, EEG and resting state fMRI, focusing on the 

conclusions of the latter because of the need for their comparison with our current study 

findings.   

In the fourth chapter an extensive presentation of the tree types of brain connectivity 

(structural, functional and effective connectivity) is given, in parallel with the proposed 

methods for their analysis. 

The fifth chapter includes the results of the experimental part of the current thesis.  

In particular, the results coming from the establishment of the proposed methodology 

are presented and analyzed, following alternative approaches compared to the existing 

studies to emphasize the novelty of our work.  

The sixth chapter includes further discussion and conclusions on the results of the 

methodology followed and new trends are proposed for further future investigation.   
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Chapter 1. Introduction 

1.1. Sleep disorders 

1.2. Restless Legs Syndrome (RLS) 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Sleep disorders  

In 1953, a study conducted by Nathaniel Kleitman and Eugene Aserinsky which 

concerned the eyelid movement during sleep, led to the discovery of REM (rapid eye 

movement) sleep, a unique stage of sleep [1].  REM sleep and Non-REM sleep are two 

different stages during sleep, which present differences with regards to the findings of 

electro-oculographic (EoG) and electro-encephalogram (EEG).  The discovery of the 

similarities the brain presented during awake state and REM sleep are amazingly 

interesting.  The characteristics of REM sleep state are associated with side-to-side 

movement of the closed eyes and the brain neurons are highly active as in the case of 

dreaming vividly.  This stage of sleep results in short range and high frequency waves 

in EEG.  Its duration lasts 90-110 min and the non-REM stages about 3 to 6 times 

during the night. 

Most brain regions are active during the three phases, that is the state of vigilance, 

REM state and non-REM state.  Sleep studies on animals were really supportive 
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regarding the understanding of the human brain allowing for in depth knowledge 

regarding diagnosis and treatment.  Furthermore, the findings from sleep studies 

performed in humans led to important conclusions about sleep and its disorders [1, 2].   

Officially, there are about a hundred recognized sleep disorders.  Most of them are 

categorized into insomnias, sleep-related breathing disorders, hypersomnias of central 

origin, circadian rhythm sleep disorders, parasomnias and sleep related movement 

disorders.  

Insomnia is characterized by difficulty initiating or maintaining sleep and contains 

large periods of nocturnal wakefulness and/or insufficient amount of nocturnal sleep.  

To fully examine insomnia, further criteria apart from initiating, maintaining sleep, 

waking too early and sleep of poor quality is needed, as the feeling of sleepiness arises 

from sleep difficulty at night, although there are suitable conditions to allow sleep.  

According to the diagnostic criteria that have arisen, insomnias can be categorized as 

primary insomnia, insomnia due to a mental disorder, psychophysiological insomnia, 

paradoxical insomnia, idiopathic insomnia, insomnia related to periodic limb 

movement disorder, insomnia related to sleep apnea, insomnia due to a medical 

condition and insomnia due to drugs or substances.  There are two main types of 

insomnia, the primary and secondary.   

The cause of primary insomnia includes both intrinsic and extrinsic factors.  The 

secondary type of insomnia contains symptoms related to a medical or psychiatric 

illness, another sleep disorder or substance abuse [3].   

The main characteristic of sleep-related breathing disorders includes in sufficient 

ventilation during sleep.  There are central apnea syndromes that cause limitation in 

respiratory process or absence in an interrupted or cyclical way (which is reflected from 

the dysfunction of central nervous system) or others which are related to underlying 

pathologic or environmental causes, such as Cheyne-Stokes breathing pattern and high 

altitude periodic breathing.  The first form of the primary central sleep apnea disorder, 

is not due to a specific cause and its feature is repeated episodes of absent breathing 

during sleep.  The second form known as secondary central sleep apnea occurs due to 

drug or substances.  In the case of an airway obstruction causing difficulty in the 

breathing process and inadequate ventilation, the syndrome is characterized as 

obstructive sleep apnea.  The features concerning this disorder are often associated with 

reduced blood oxygen saturation.  Hypoventilation or hypoxemia are also 

characteristics of disordered sleep which include five more disorders.  Sleep-related 
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nonobstructive alveolar hypoventilation, idiopathic, refers to reduced dental 

hypoventilation which in turn causes sleep-related arterial oxygen desaturation in 

patients with normal mechanical lung function. 

When it comes to hypersomnia disorders we refer to daytime sleepiness, which 

provoke unwanted lapses into sleep without primary disturbance in nocturnal sleep or 

circadian rhythms.  Relevant syndromes that are included in this category are also the 

following: narcolepsy, recurrent hypersomnia (Kleine-Levin Syndrome and menstrual-

related hypersomnia), idiopathic hypersomnia with long sleep time, behavioral-

included insufficient sleep syndrome and hypersomnia due to a medical condition.   

A persistent or recurrent misalignment between the patient’s sleep pattern and the 

pattern that is desired or regarded as the societal norm and is the main feature of the 

circadian rhythm sleep disorders.  The problem that emerges from these disorders is 

that the patient’s sleep cannot be achieved in an appropriate or certain time.  The 

requirement needed so as for a patient to be diagnosed with circadian rhythm sleep 

disorder, is whether the main cause of sleep is specific sleep period or if it is not related 

to societal norm.   

Parasomnias are disrupted sleep disorders that may occur during arousals from REM 

sleep or partial arousals from non-REM sleep.  The parasomnias include abnormal 

sleep-related movements, behaviors, emotions, perceptions, dreaming and autonomic 

nervous system functioning.  Furthermore, this type of sleep disorder includes sleep-

related dissociative disorders, sleep-related hallucinations as well as sleep-related 

eating disorders. 

Periodic limb movements (PLM) and restless legs syndrome (RLS) are also 

abnormal reactions associated with sleep-related movement disorders and feature 

simple, stereotyped movements that disrupt sleep and they are presented in detail below 

[3].   

The Diagnostic and Statistical Manual of Mental Disorders, the International 

Classification of Sleep Disorders and the International Statistical Classification of 

Diseases and Related Health Problems are systems which aim to put sleep disorders 

into specific categories.  The identification of sleep disorder is accomplished by having 

the patient and his/her partner write down their experiences as well as the poly-

nystagmography (PSG) and actigraphy findings.   

Over 40% of people worldwide, have experienced abnormal movement behavior 

during sleep that leads to lessened sleep duration and increased sleepiness during 
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daytime.  Consequently, both physical and mental health are afflicted resulting in social 

and economic effects in addition to poor quality of life [2].   

1.2 Restless Legs Syndrome (RLS) 

This study attempts to approach RLS which was first reported in the seventeenth 

century by the English physician and anatomist Sir Thomas Willis [4].  This is why 

RLS is usually referred as Willis-Ekbom disease [5].  Despite the fact that the symptoms 

that are associated with RLS were identified by Boissier de Sauvages, Magnus Huss 

and Gilles de la Tourette in 1763, 1849 and 1898 respectively, the Swedish neurologist 

Karl Axel Ekbom in 1945 first introduced the notion of ‘Restless Legs Syndrome’ with 

its clinical and epidemiological features.  Fifty years later, the diagnostic criteria of the 

disease were clarified by the International Restless Legs Syndrome Study Group (with 

updated notes in 2003) [4]. 

Plethora of knowledge regarding the pathophysiology of this disease while on the 

other hand little is known about its neuroanatomic basis [6, 7].   

1.2.1 Epidemiology of RLS 

Through current epidemiologic analysis which was conducted in different countries all 

over the world, it has been deduced that the prevalence rate of the general population 

varies between 3.9% and 15%.  This element should not be considered as a standard 

since these numbers indicatively differ among Caucasians and Asian populations.  The 

numbers range between 7-10% in the former and are obviously lower 0.1-12% in the 

latter.  RLS symptoms of greater frequency are usually more evident in western 

countries.  Research has revealed that 10% of the population of United States is affected 

by RLS, 10-15% in Canada and Europe 5.5%, in comparison to the Indian, Japanese or 

Chinese population which is 2.9%, 0.96% and 1.4%, respectively.  The genetic 

background, ethnicity, geography that differ across the various ethnic populations as 

well as their natural environment and dietary are the main reason for the existence of 

these variations [8].   

Neurodegenerative process is known to play a crucial role in the disease occurrence 

and the severity of RLS, that is, its frequency and severity are higher in older ages and 

this is why RLS is considered to be a neurologic disease.  Forty to fifty year age group 

are the most common ages that RLS symptoms become present, but there is a significant 

percentage (38-45% of patients) that experience symptoms before the age of 20.  

Furthermore, hormones such as estrogen and progesterone favor the RLS presence, 
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which shows that it affects more women than men and it is very frequent during 

pregnancy [4, 8, 9]. 

1.2.2 Clinical presentations and diagnostic criteria 

RLS is characterized by four substantial criteria which are common in all patients.  

These are the irresistible urge to move legs or sometimes also arms, the needed 

movement in order to reduce sensations, the appearance of symptoms in evening or 

night hours primarily when resting, sitting, or sleeping and last the imbalance of 

circadian rhythm [9, 10].  The following descriptions concern personal perception of 

patients and they include “creeping, crawling tingling, tingling, pulling or pain” deep 

inside the limbs, involving one or both knees, ankles or even the whole lower limbs.  

Insomnia affects patients in their daily and their Health-Related Quality of Life 

(HRQoL) which ranges depending on the different degree and severity of symptoms 

[8].   

It is necessary to mention the high circadian rhythm that appears in the sensory and 

motor symptoms in RLS which are highest at night.  It has been shown that increased 

melatonin possibly influences the symptoms because of its impact in dopamine 

secretion in the central nervous system.  An intex that relates to circadian rhythm, the 

core body temperature and shows variations in the intensity of RLS symptoms.  When 

core body temperature is falling the symptoms are increased and vice versa.   

Similar symptom features can be observed in Periodic Limb Movement Disorder 

(PLMD) a usual occurrence that affects the 80% of RLS patients.  The opposite 

phenomenon does not necessarily occur, that is PLM patients do not experience 

necessarily RLS.  The PLMD involves unwanted movements of limbs or torso in 

waking or sleeping state that patients ignore and are not the same as in RLS when 

patients provoke their movement in order to ease themselves.  The PLMD was primarily 

named as nocturnal myoclonus and supportive diagnostic tools as PSG, actigraphy or 

electromyography (EMG) indicate muscle spasm which occurs continuously with a 

duration of 0.5-10s which is repeated every 5-90s provoking regular awaking which 

can affect sleep.  In order to estimate PLMs during wakefulness immobilization tests 

are suggested which require the patients to remain completely still.  The severity of 

RLS, the follow up period of the patient and the monitor treatment response can be 

evaluated with the use of PSG which records the time of the immobilization of the 

patient and the limb movements within an hour [8, 10]. 
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The investigation concerning RLS provided diagnostic criteria that were established 

by National Institute of Health (NIH) and International Restless Legs Syndrome Study 

Group (IRLSSG) fifteen years ago.  This research shed light on the main characteristic 

of RLS, which is the uncomfortable feeling in legs that leads to the urge to move them, 

while presenting exacerbation when the subject is at rest or generally when they are less 

active during the evening or night hours.  Walking or stretching are beneficial factors 

which lessen symptoms.  Later research, which was based on a large number of 

worldwide RLS clinicals using interdisciplinary, international and evidence-based 

approach for the disease, stresses that discrimination of RLS symptoms with other 

diseases as myalgia, venous stasis or leg edema is required.  This renewed and accurate 

approximation of RLS also includes the great contribution of specifiers for clinical 

significance in the syndrome.  They are able to recognize and record the functional 

consequences that RLS carries such as social, behavioral, educational or occupational.  

They can categorize the clinical course of patients and their clinical significance giving 

important feedback to physicians a fact that supports the illumination of RLS.  

However, the subjective character of these criteria disturbs their reliability.  For this 

reason, the need for further diagnosis and classification of RLS is necessary.  

Indicatively, it could be achieved with biological markers, genetic characteristics, 

PLMs estimating, PSG or actigraphy changes [8, 11].  The following table (Table 1.1) 

includes all essential diagnostic criteria that have to be met so that RLS is accurately 

diagnosed and confirmed.     

Table 1.1: The diagnostic criteria of 2012 revised version of IRLSSG [8, 11]. 

1 The need to move the limbs, mainly the legs, without the existence of upsetting feelings. 

2 The need to move the legs as a result of uncomfortable feelings occurring during resting 

state. 

3 The need to move the legs during the episode, in order to reduce symptoms by walking 

or stretching. 

4 The need to move the legs during evening or night hours, rather than daytime, when 

being in a resting state. 

5 The existence of these symptoms should not be the result of other medical or behavioral 

conditions (e.g. myalgia, venous stasis, leg edema, arthritis, leg cramps, positional 

discomfort, habitual foot tapping). 



7 

 

There are two basic RLS discriminations concerning its cause and these are the 

primary and secondary RLS.  The first one refers to idiopathic syndrome that does not 

indicate the cause.  It is worth emphasizing the fact that a high percentage (reaching 

92%) of the patients with idiopathic RLS have a family history of RLS.  This has been 

taken into account in RLS studies inferencing the significance of genetic factors in the 

disease [8]. 

Patients with other neurological disorders, iron deficiency, pregnancy or chronic 

renal failure might develop RLS and because of the fact that it is caused by those points 

characterized as secondary RLS.  There are studies which found a low ferritin level in 

RLS patients.  Additionally, diabetic peripheral neuropathy, painful neuropathies, 

attention-deficit/hyperactivity disorder (ADHD), migraine, ankylosing spondylitis 

(AS), leprosy, inflammatory chronic demyelinating neuropathies like multiple sclerosis 

and Guillain–Barré syndrome, thyroid disease, poliomyelitis, chronic venous disorder, 

autoimmune disease including Sjögren’s syndrome, rheumatoid arthritis, inflammatory 

bowel disease and Crohn’s disease are conditions which increase the possibility of RLS 

existence.  This disease should not only be attributed to the nature of each disease but 

also as the side effects of certain drug taking.  Furthermore, when a stroke affects the 

pyramidal tract and the basal gaglia-brainstem axis the likelihood of RLS development 

is increased as this particular brain region is responsible for motion. 

Another classification of RLS is determined according to the age of onset of the 

symptoms.  When symptoms appear before the age of 45 the disease is referred as early-

onset RLS and late-onset RLS when this occurs at an older age.  Family history seems 

to be more closely related to early-onset RLS [8].   

In order to diminish secondary causes of the RLS, a detailed medical check is 

required including neurologic and vascular examination, electromyography (EMG), 

electroneuronography (ENG) and PSG control as well as hematological and 

biochemical check [2].   

1.2.3 Deferential diagnosis 

Differential diagnosis plays a crucial role in RLS patients and their treatment, so 

additional questionnaires have been created supporting the improvement of diagnosis.  

Some of them are the RLS-NHI, the RLS-EXP and the CH-RLSq [8].  The usual 

conditions that have to be differentiated from RLS are legs cramps, positional 

discomfort, local leg injury, arthritis, leg edema, venous stasis, peripheral neuropathy, 
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radiculopathy, radiculopathy, habitual foot tapping/leg rocking, anxiety, myalgia and 

drug-includes akathisia and less common are myelopathy, myopathy, vascular or 

neurogenic claudication, hypotensive akathisia, orthostatic tremor and painful legs and 

moving toes [11].   

1.2.4 Secondary RLS 

The first hypothesis about the cause of RLS, that arose in the middle of 20th century, 

concerned the low iron levels found in a significant number of patients.  This was also 

supported by pharmacological studies which indicated improved clinical features in 

RLS subjects after being administered iron supplements.  The developed investigation 

in recent research of this undefined field, stressed that the iron levels in blood are not 

quite equivalent with iron in CSF.  It can be proven from MRI studies most of which 

have revealed reduced iron levels in the substantia nigra and putamen in addition to low 

iron levels in red nucleus, thalamus or pallidum. 

RLS symptoms are also experience in 15-25% of women during pregnancy (usually 

in 3rd trimester and later).  The possible reasons why pregnant women suffer from RLS 

might be their low ferritin levels, hormonal status, folate deficiency and stretch or 

compression of nerves because of the fetal growth.   

Recording the characteristics of RLS in the general population, it is also important 

to mention hemodialysis which can be correlated with RLS at 3.9-15% of the general 

population.  The symptoms are extended in patients with end-stage renal disease.  In a 

thorough study it was found that the prevalence of RLS is associated with their body 

mass index (BMI).  For this reason, a possible cause might be the dopamine receptors 

in obese people’s brains.  In summary, it is very frequent that patients with end-stage 

renal disease suffer from RLS as well as the emergence of muscle atrophy in 

hemodialysis patients with RLS [8]. 

1.2.5 Pathophysiology  

The determination of pathophysiology of RLS is achieved focusing on different 

approaches.  These refer to changes in iron metabolism, abnormalities in dopaminergic 

system, genetic variation and disturbances in nervous system structures.   

The endothelial cells in the interface of blood brain barrier (BBB) are responsible 

for iron production.  A possible disturbance in the interface of BBB has a direct 

relationship with iron deficiency.  Specifically, lower iron indexes in endothelial cells 

are the result of a dysfunction of iron regulatory protein in the microvasculature that 
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affects the transportation across BBB.  The inadequacy of iron could cause cellular 

damage by oxidation and modification of cellular compounds.  The pathophysiology of 

RLS is formed directly from these relations between the neurons that present 

disturbances of iron and neuromelanin-containing and dopamine-producing cells.  

Consequently, the brain dopaminergic transmission is influenced by the extracellular 

dopamine, DAT, D1 and D2 receptors when they have low values.   

Pharmacological studies have demonstrated that the dopaminergic system in the 

central nervous system has a negative impact on the pathophysiology of RLS.  It is 

based on the idea that dopaminergic medications provide a rapid suppression of 

symptoms in contrast with dopamine antagonists which are not able to cross the BBB, 

a fact that should be overcome.  Thus following the same tactic in treating effectively 

Parkinson’s disease, which is another relative movement disorder.  Iron is a co-factor 

of tyrosine hydroxylase which reduces the speed process of the conversion of levodopa 

into dopamine, so its inadequacy could cause disturbances in dopaminergic system in 

brain.  The production of dopamine occurs midbrain and close to hypothalamus from 

the dopaminergic A11 cells which reach the dorsal horn and then continue until they 

arrive at the motoneuronal site.  There exists the prevailing view that the long 

projections to the spinal cord are afflicted as a natural procedure of aging.  The 

appearance of RLS symptoms is inevitable due to this process of degradation, which 

negatively influences the function of spinal sensory and motor systems.  Studies have 

emphasized on the significance of A11 cells as the stereotaxic bilateral 6-

hydroxydopamine into the A11 nucleus implies enhanced standing episodes.  Proton 

magnetic resonance spectroscopy, fMRI and PET have recently indicated the 

contribution of medial thalamus nuclei in RLS pathophysiology.  Additionally, another 

consequence of the reduction of iron could prompt cell death in the dopaminergic cells 

in the substantia nigra, suggesting opioids as an appropriate treatment due to the 

neurotransmitter systems which contain endorphins and enkephalins [8, 12, 13].   

It was obvious even from the 20th century by the first RLS researchers that there is 

familial accumulation in the RLS cases, leading Ekbom to conclude that one out of 

three cases have to do with inheritance [14].  Subsequent genetic association studies 

have found that more than half of RLS patients (60%) have a positive historic 

background indicating 5 genes and 10 different risk alleles for RLS [13, 15].  The 

inherited aspect of the syndrome affects mostly late-onset RLS and secondary RLS 

patients [8].  Genome-wide association studies (GWASs) has recorded the BTB domain 
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containing 9 (BTBD9), MEIS homeobox 1, receptor type D (PTPRD), mitogen-

activated protein kinase 5/SKI family transcriptional corepressor 1 (MAP2K5/SCOR1) 

and less commonly TOX3 the related with RLS single nucleotide polymorphisms 

(SNPs), whose main function is associated with embryonic neuronal development and 

limb movement [8, 16, 17].  BTBD9 is contained in synaptic plasticity and learning 

while it is inextricably connected with RLS and PLM patients.  Important studies have 

compared the RLS symptoms to mice and flies’ behavior in which there is an absence 

of BTBD9 (accompanied by reduced dopamine levels in the whole brain), illuminating 

the common sleep fragmentation and motor restlessness.  Additionally, a supporting 

finding that could be correlated with RLS symptoms is the overexpression of BTBD9 

in embryonic kidney cell line which demonstrates enhanced ferritin levels.  The normal 

development of limbs and motor neuron connectivity is driven by the homeobox gene.  

Furthermore, the cells that are characterized by the expression of MEIS1 participate in 

the procedure concerning nigrostriatal projection formation.  Half cases of RLS occur 

due to the existence of the MEIS1 risk allele, which causes to RLS patients limited 

MEIS1 mRNA and protein in lymphoblastoid cell lines.  MEIS1 is associated with the 

iron system and an evidence of its influence in iron homeostasis can be seen in 

Caenorhabditis elegans [16].  The receptor type tyrosine phosphatase D (PTPRD) gene 

is responsible for the encoding of a cell adhesion molecule which possibly affects the 

formation and connections, addiction-, locomotion- and sleep-related brain circuit in 

which it is expressed [18].  Its character acting as a homodimer, possibly illuminates 

the way PTPRD differences affect RLS-vulnerability-altering variations in 

dopaminergic connectome [19].   

The additional genes MAP2K5 and SKOR1 (LBXCOR1) might be the source of 

RLS symptoms.  The expression of SKOR1 mainly exists in a subset of dorsal horn 

interneurons in the developing spinal cord which correlates with pain and touch.  The 

SKOR1/Lbx1 pathway is a factor contributing to the production of GABAergic versus 

glutamatergic phenotype in these cells altering the phenotype that relates to sensory and 

pain.   TOX3 (a gene related to breast cancer) and BC034767 have recently been 

regarded as probable elements connected with RLS development, however, their 

accurate influence in the disease is still unclear [20].  

According to a recent study attempting to classify the effect of the aforementioned 

SNPs in RLS and PLM, it was found that the stronger in RLS is MEIS1, then follows 

BTBD9, MAP2K1/SCOR1, TOX3 and the last gene is PTPRD.  Respectively, in PLM, 



11 

 

BTBD9 is in first place, next in the hierarchy is TOX3, then MEIS1 and finally PTPRD 

and MAP2K1/SCOR1 [21]. 

1.2.6 Treatment 

Lifestyle changes, meditation effects and iron levels are necessary to be checked, before 

any treatment is given.  Limited sleep, alcohol or tobacco use, the absence of exercise 

or medication are reasons that could intensify the RLS symptoms leading to the need 

of personal patient control.  As in many other disorders there are non-pharmacological 

as well as pharmacological approaches for treatment.   

Improving sleep quality is helpful following the first approach which excludes drug 

taking.  Alcohol, caffeine and eating heavy meals before sleep should be avoided.  

Patients should follow a regular rate of sleep hours.  In a study which lasted for 3 months 

it was suggested that exercise can work efficiently in patients with RLS, however it 

might have negative effects if it performed late in evening or more generally before 

sleep time.  Additionally, a progress concerning the reduction of symptoms was noticed 

after cognitive behavioral therapy.  Furthermore, secondary factors such as iron or 

magnesium deficiency should be clarified as their treatment with iron or magnesium 

complements can diminish RLS symptoms.  A more glaring but relative case is that of 

kidney transplant, which helps patients with renal failure to almost achieve complete 

recession of symptoms [2, 8, 12]. 

According to pharmacological approach of RLS treatment, the main factors 

concerning the dopaminergic agents including pramipexole and ropinirole, indicating 

an improvement of 70-90% of symptoms in RLS patients.  In order to avoid side effects, 

dopamine agonists (which function as dopamine in the dopamine receptors of the brain) 

are much preferable to L-dopa.  On the other hand, pergolide and cabergoline are not 

suggested since they are related to valvular heart disease.  Additionally, the side effects 

of ergot-derived drugs may be avoided with the administration of nonergota-mine 

derivatives like ropinirole and pramipexole.  The stimulation of D2 and D3 receptors is 

accomplished by dopamine agonists.  Another drug, rotigotine which is used in Europe 

but disapproved by the FDA in US, can provide an around the clock treatment through 

transdermal patches.  Alpha-dihydroergocryptine (Almirid) and piribedil are other non-

promising dopamine agonists [8, 13, 15]. 

Unfortunately, the administration of dopamine agonists (ropinirole, pramipexole, 

pergolide) is accompanied with some unwanted symptoms which may be nausea, 
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congestion, insomnia, fluid retention and behavioral symptoms, such as hallucinations.  

Augmentation that is connected to more severe symptoms during daytime comes from 

long-term L-dopa and dopamine agonist administration and as soon as it is detected, its 

treatment should be altered by other medication [13]. 

Furthermore, the oral iron treatment has been found from a recent double-blinded 

placebo-controlled study, as an appropriate method to limit symptoms.  Also, an 

alternative method suggests the treatment including large doses of iron dextran leading 

to a good determination of long-lasting symptoms.   

If patients do not respond adequately to dopaminergic medication (usually in severe 

RLS), opioids may provide more efficient treatment.  Hydrocodone, oxycodone and 

codeine which are short-acting agents can relieve patients suffering from recurrent 

symptoms or night legs activation.  In contrast, oxycodone, methadone or fentanyl 

patches belong to long-acting opiates and are beneficial agents in severe RLS cases.  

Despite the reduction of RLS symptoms and the improvement of sleep quality using 

opioids, their administration also carries undesirable effects which include exacerbation 

of sleep apnea, limited REM, slow wave sleep, sedation, fatigue, constipation, addiction 

and Q-T interval prolongation and torsades de pointes. 

Despite the fact that pregabalin which is a modulator of the alpha-2 delta receptor is 

considered an appropriate treatment for epilepsy, neuropathic pain, generalized anxiety 

and fibromyalgia, the contribution of alpha-2-delta anticonvulsants in RLS make it a 

novel treatment.  There are studies that demonstrate their significance in improving 

sleep quality of patients and they also stress the alternative medication that works 

efficiently in RLS indicating new approaches for treatment [15]. 

Taking into consideration the depression that appears in RLS patients and the 

antidepressants (selective serotonin reuptake inhibitors (SSRIs) and tricyclic 

antidepressants (TCAs)) that make worse the symptoms, scientists suggests bupropion 

which has been proven to fight depression and avoiding RLS development.   

RLS treatment during pregnancy and lactation should be attentively performed with 

primary preference in non-pharmacological treatment.  Four years ago, IRLSSG 

recorded guidelines that pregnant women should follow in order to treat annoying 

symptoms of RLS.  In short, relieving symptoms may be achieved through light 

exercising and iron deficiency treatment avoiding long-term immobility serotonergic 

antidepressants intake [8]. 
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2.1 History 

In the field of neuroscience and specifically in brain functional connectivity analysis, 

there are two fundamental non-invasive methods that have been developed over the past 

years that aim to map the brain’s functional connectivity.  In the first category the 

methods used locate the underlying neural electromagnetic activity of the brain and in 

the second reflect the local neuronal signaling by mapping the local physiological or 

metabolic consequences of the altered brain electrical activity.  The most common 

technique belonging to the first method which examine the electrical and magnetic 

activity of the brain providing high temporal but poor spatial resolution, are 

Electroencephalogaphy (EEG) and magnetoencephalography (MEG).  The second 

category involves modern in-vivo imaging techniques such as magnetic resonance 

imaging (MRI), positron emission tomography (PET), functional magnetic resonance 

imaging (fMRI), etc.  In this study we emphasize on fMRI, a non-invasive powerful 

approach that is based on the increase in blood flow or blood oxygenation to the local 
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vasculature that accompanies neural activity in the brain and provides excellent spatial 

resolution with limited temporal resolution [22].   

The scientific developments which have led to modern fMRI is described through 

the following main phases.  As early as the 1930s, the American chemist and Nobel 

laureate Linus Pauling and his student Charles Coryell had indicated that the magnetic 

properties of oxyhemoglobin (bound oxygen molecule with hemoglobin) differ from 

the magnetic properties of deoxyhemoglobins’ (hemoglobin without oxygen).  

Paramagnetic deoxyhemoglobin (both unpaired electrons and a significant magnetic 

moment) produces local field inhomogeneities in the measurable range of MRI 

resulting in signal decrease in susceptibility-weighted MR-sequences (T2*), whereas 

diamagnetic oxyhemoglobin (no unpaired electrons and zero magnetic moment) does 

not interfere with the external magnetic field.   

At the end of 1980s, researchers at Bells laboratory, investigated the physiology of 

the brain with magnetic resonance methods.  More specifically, anesthetic rats were 

studied in 7 Tesla magnetic field in special conditions (100% O2 and 100% CO).  The 

images, which were acquired through gradient echo sequences, had a different signal 

from that which had been collected from rats breathing fresh air (oxygen content 21%).  

Specifically, in the last ones there were visible small black lines on the surface of the 

brain that scientists attributed to the blood vessels and reflected the differences of the 

magnetic susceptibility of hemoglobin [2, 23-25].  However, it was Ogawa’s and his 

collaborators’ fundamental observations which showed, that the blood oxygenation 

level was able to control these distortions, a fact that later led to the development of the 

well-known Blood Oxygen Level Dependent (BOLD) contrast mechanism [26].  

Functional Magnetic Resonance Imaging (fMRI) is a rapidly evolving application 

allowing visualization neuronal activation in vivo.   

The first studies were recorded in 1992 from three individual research groups.  

Among the former, was Kenneth Kwong’s and his collaborator’s team, followed by 

Owaga’s and Bandetti’s works.  The research team in which Kenneth Kwong was 

leading used a sequence of visual stimuli with Echo Planar Imaging (EPI) in 1.5 Tesla 

magnetic field to measure the activity of the visual cortex.  It was a block design fMRI 

paradigm in which a visual stimulus (lighting LED light) was presented and absent 

(darkness) in turn with equal time periods of 60s, resulting in the revealing of the visual 

cortex activation.  The next year, Ogawa presented the biophysical background of the 

BOLD contrast in the Biophysical Journal.  In 1995, Bandettini published a chapter 
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where the quantitative determination of the functional activation maps was presented.  

Ever since functional MRI was first described, rapid progress has been made in this 

field, and the technique is now widespread and extensively used for clinical and 

research purposes [2].   

One of the most challenging processes in the field of neuroscience is to comprehend 

the relationship between the BOLD signal and the neural activation.  The measurement 

of the increased neuronal activity is achieved indirectly via a change in the local 

magnetic field (in)homogeneity, which is caused by an oversupply of oxygenated 

blood.  The change in the local HbO2/Hb ratio acts as an endogenous marker of neural 

activity.  The BOLD signal does not correlate perfectly with neuronal action potentials 

but measures a mix of continuous membrane potentials and action potentials.  This 

offers an opportunity to consider whether our understanding of neural information 

processing might extend beyond action potentials and include a range of signals that 

are an important part of neural computation [24, 27]. 

 

Figure 2.1: fMRI scanner which is located in University Hospital of Ioannina.1  

Functional Brain Studies 

A functional connectivity study using fMRI (fcMRI) has drawn increasing attention in 

the field of neuroscience and computer science, since it is one of the most important 

techniques used for understanding the activity of the human brain [25, 28].  Nowadays, 

it has been established that fMRI has been used in a large number of studies with an 

                                                           
1 Adapted from: https://www.snf.org/en/grants/grantees/u/university-hospital-of-ioannina/radiology-

department-equipment/. 

https://www.snf.org/en/grants/grantees/u/university-hospital-of-ioannina/radiology-department-equipment/
https://www.snf.org/en/grants/grantees/u/university-hospital-of-ioannina/radiology-department-equipment/
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increasing number of papers that mention the technique in the PubMed database of 

biomedical literature, as shown in Fig. 2.2 [29]. 

 

Figure 2.2: A plot of the number of citations in PubMed databases for every year 

since 1992 [29]. 

Functional Magnetic Resonance Imaging studies of the brain compose one of the 

most recent applications of magnetic resonance imaging.  There are techniques that are 

used in these studies which provide important information for the fundamental brain 

functions, rendering it unique.  Apart from the morphological representation of 

anatomical structure, these techniques are able to reveal activation areas during 

stimulation or during a task [30].  Because of the fact that fMRI has great advantages 

compared to other methods of brain mapping in cognitive and neuroscience systems, 

there has also been great interest in using fMRI to assist in clinical diagnosis and 

management, with promising demonstrations of effectiveness in a number of 

applications [31]. 

The functional imaging techniques include three main study categories.  These are 

brain activation, blood flow in microscopic level and diffusion [30]. 

2.2 Brain activation 

The most important application of fMRI is the direct observation of the activation of 

the cerebrum cortex with no associated radiation exposure.  The brain activity reflects 

local changes of metabolism and hemoglobin conditions.  The first contrast mechanism, 

that defines the effect that there is increasing signal where the cortex areas are activated, 

is related to the changes in the local oxygenation of the blood and is represented by the 

techniques that called BOLD.  The second one is associated with inflow effects [30]. 
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2.2.1 The BOLD contrast mechanism  

fMRI is a technique which measures the changes in the blood oxygenation levels 

(BOLD signal) and gives us an indirect measure of the neuronal activity in the brain 

[26].  Under normal conditions local oxygen concentrations are relatively low, so blood 

contains a high concentration of paramagnetic deoxyhemoglobin, whereas the brain 

tissue is diamagnetic.  This means that at the interfaces of vessels and brain tissue there 

are magnetic field inhomogeneities that shorten T2* and give rise to a signal reduction 

in T2*-weighted gradient echo images [32].  When the human brain receives a stimulus, 

an increase in neuronal activation take place.  During neuronal activation, more oxygen 

is transported to the site of activation at a percentage of 20-40%, while the oxygen 

consumption is only at 5%, which means a washout of deoxyhemoglobin and an 

increased concentration of oxyhemoglobin [30].  This disproportion leads to the 

increase in the percentage of oxygen in the activated area.  Due to the increasing 

magnetic susceptibility of the oxygenated blood, the activation area is characterized by 

great T2* constant in comparison to the non-activated brain regions.  As a result, if the 

T2* sequence is chosen, the activated areas produce a more intense signal.  

 

Figure 2.3: Schematic representation of the fMRI formation [33]. 

The previous representation in Fig 2.3 is called BOLD and the magnitude of this 

effect is increased with the square of the strength of the static magnetic field.  When 

the field strength is low (i.e., less than 0.5 T), the difference between the transverse 

relaxation values for oxygenated and deoxygenated blood is small, but in higher fields 

(i.e., 1.5 T or greater), these values have significant differences.  If the sequence applied 
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is controlled in a such a way that minimizes the inference of inflow effects involving 

the brain activation areas, the T1 contrast is minimized as well [25, 30]. 

2.2.2 BOLD response  

In summary, BOLD imaging is based on the aforementioned magnetic differences 

between the oxygenated and deoxygenated hemoglobin which result in the generation 

of local gradients in the magnetic field whose strength depends on the HbO2 

concentration.   

Overall, the balance between oxyhemoglobin and deoxyhemoglobin within some 

voxels of interest depends on the local self-regulation of arteries and vasodilation.  The 

increasing of some features such as Cerebral Blood Flow (CBF), cerebral brain volume 

(CBV) and oxygen transport, are associated with the neuronal activation.  If the CBF 

represents a greater increase than CBV, the blood flow exceeds the small increases in 

the local need for oxygen due to the brain activation.  Thus, the venous and capillary 

network fill with a greater amount of diamagnetic oxyhemoglobin, than those in a 

resting state condition, because of the oxygen transportation.  This increased amount 

leads to a bigger T2* and a greater signal in T2*-weighted images.  The range of the 

increasing signal is 1-10% [30].  

 

 

Figure 2.4: Transformation of stimulation in BOLD response [30]. 

The change in the MR signal triggered by neuronal activity is known as the 

hemodynamic response (HDR) [25].  The Fig. 2.5 shows the hemodynamic response 

for a typical signal time course following neuronal activation associated with an 

external stimulus (task) or spontaneous brain activity.  
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Figure 2.5: The time courses of the physiological parameters, metabolic rate of 

oxygen consumption (CMRO2), the CBF, and the cerebral blood volume (CBV), after 

activation [32]. 

 

Figure 2.6: Schematic representation of the BOLD response [33]. 

The common features of the fMRI BOLD response to a period of neural stimulation 

is given in Fig. 2.6 and the three epochs are: a) initial dip, b) positive BOLD response, 

and c) post stimulus undershoot.  If we focus on an active voxel’s activity using BOLD 

fMRI, it has been noted that its signal increases above the baseline at about 2s following 

the onset of neuronal activity, growing to a maximum value (peak) of about 5s from a 

shot duration stimulus.  Provided that the neuronal activity is extended across a block 

of time, the peak could be similarly extended into a plateau.  After reaching its peak, 

the BOLD signal decreases in amplitude to a blow-baseline level and remains below 

baseline for an extended interval.  This effect is known as the post stimulus undershoot 

[25, 33]. 

2.3 Image acquisition process-Types of fMRI experimental design 

For anatomical images of the brain contrast is more important than the speed of 

acquisition, since structural parameters, such as size and shape, change a little over the 

course of a single scanning session.  However, understanding the function of the brain 

requires images to be acquired very rapidly, at approximately the same rate as the 
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physiological changes of interest.  The development of gradient technology has made 

EPI the most common fast imaging method for functional MRI [25] which is fast and 

sensitive in BOLD contrast. 

The data acquisition includes the following steps.  During the fMRI experiment the 

subject is positioned in the scanner and asked to alternatively perform several tasks or 

is stimulated so that different processes or emotions are triggered.  The stimuli are 

usually audio or visual and stimulations involve the motor cortex, as well as, more 

cognitive demand functions such as the function of memory and thought.  Each one of 

the aforementioned experimental conditions are repeated at different periods of time 

and can be alternated by inactive and relaxing periods [33].  

 

Figure 2.7: The equipment needed for carrying out a fMRI experiment.2 

The majority of functional neuroscience studies have focused on the brain’s response 

to a task or stimulus.  However, the brain remains extremely active even in the case 

when stimuli are absent [34].  The topic or the medical problem which is under being 

examined determines the way in which the experiment is organized [30].  The 

experimental design for fMRI, is distinguished in task related designs and those that are 

carried out during resting state conditions (task-free fMRI).  Frequently, the 

combination of both methods is worthy, because of the importance of the findings that 

are derived.  

2.3.1 Task-based fMRI 

The most common types of task-based fMRI are the following: “Block design” and 

“Event-related design”.  “Mixed design” is also possible (combining aspects of block 

                                                           
2 Adapted from: http://fmri.ucsd.edu/Research/whatisfmri.html. 

http://fmri.ucsd.edu/Research/whatisfmri.html
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and event-related designs), however it is much more complicated to design and analyze.  

In each case, the difference in BOLD contrast between two states infers the effect size 

[35].  

The most time-efficient approach for comparing brain responses to different tasks 

during the experiment is the block design.  According to this method, the stimulus is 

presented continuously for a long period (e.g. 30s) that is called block.  Activation 

blocks are alternated with the baselines or resting blocks when the patient is in a resting 

state or no stimulus is presented.  Activation block may consist of one type of stimulus 

that lasts for a long time or many different types of stimuli that alternate at a fast pace.  

It is also appropriate that scientists incorporate different types of block in the same 

study, as it is feasible to study different types of stimulus each processing their own 

block.  There are benefits and drawbacks of block experimental design.  First of all, due 

to the vast amount of data it requires for the computation of the average of responses, 

this design provides a good signal to noise ratio.  This is what makes the detection of 

the activated areas in the cerebral cortex more effective.  On the other hand, there are 

many interpretive problems that arise.  The presentation of a simple stimulus is fast, so 

the responses are overlapped.  As a result, this design does not allow a good estimation 

of the hemodynamic response.  Specifically, the what makes the estimation of the shape 

of hemodynamic response difficult is the non-linearity of the overlapping responses.  

Because block design paradigms are less demanding, they are well suited for many 

experimental cases.  Complex cognitive tasks, (for example, ‘oddball’ paradigm, in 

which the reaction is detected by an unexpected stimulus), may not be amenable to a 

block design.  Because of the fact that the responses are studied using average, 

phenomena, as possible inaccuracies involved in magnet synchronization with the 

stimulus-delivery equipment, stimulus timing or stimulus randomness, are less 

important than event-related designs [23, 30]. 

The second major type of task-based fMRI experiments is “event-related” design in 

which the stimulus is presented randomly.  Event-related, or trial-based, measurement 

is already standard testing in the field of electrophysiology, and is related to stimulus-

locked, event-related potentials (ERPs) [36].  In order to achieve a sufficient signal to 

noise ratio, event-related fMRI demands longer acquisition times than the block design 

[22].  

A crucial advantage of event-related design over block design is the cognitive 

behavior of the subject.  It is possible, in a block design experiment, for cognitive 
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behavior to interrupt the patient response, as a patient might wonder when the next 

stimulus is going to be presented or what kind of stimulus this is.  In the event-related 

design the familiarization of the patient with the experiment is avoided, due to the 

randomization of the stimulus presentation and the fact that some of them can be given 

unpredictably.  The trials can be individually categorized or parametrized depending on 

the subject’s performance, regarding the accuracy of the reaction time, for example.  In 

addition, some experiments involve events that cannot be blocked, such as ‘Oddball’ 

paradigms, in which the stimulus that is presented disrupts the prevailing context [30, 

36].  

 

Figure 2.8: Types of fMRI experiments [24]3. 

2.3.2 Resting-state fMRI 

During the last decade, there has been an increase interest in the application of the 

technique at rest, as there is a set of brain regions which are very active even in the 

absence of stimuli.  Subjects lay in the scanner under “resting state” conditions, being 

for instance in an eyes-closed or an eyes-open condition with or without a fixation 

target.  This resting-state fMRI focuses on spontaneous low frequency fluctuations 

(<0.1 Hz) in the BOLD signal and reveals spontaneous neuronal activity. 

There are several strong advantages regarding the use of the resting-state fMRI with 

respect to the task-based fMRI.  First of all, the complex set-up for stimulus 

presentation, the response recording and the task timing control, is often expensive and 

is avoided in the resting state fMRI.  Another issue that should be taken into 

consideration, is the fact that most of the patients are not able to respond to a task-based 

fMRI experiment effectively.  As a result, the absence of stimulus might work 

efficiently.  Third, the signal to noise ratio in resting state studies is better than task-

                                                           
3 ITI: inter-trial interval, ISI: inter-stimulus interval. 
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based approaches.  Finally, because of the task-free nature of resting-state fMRI the 

parameters that may cause problems in the interpretation of the task can be ignored.   

On the other hand, a limitation of this modality is the fact that when a certain brain 

network should be examined, a task-based method is the only way to achieve it.  

Secondly, for multi subject analyses, an issue that should be kept in mind is the subject’s 

mental state that relates to the brain energy.  For instance, for the study of specific 

diseases, such as schizophrenia, working memory tasks are preferable in order to 

distinguish baseline period and stimulus presentation stimulus.  Last but not least, 

controlling the subjects’ memory is impossible due to the resting state condition of the 

subject [34, 37-39]. 

2.3 Advantages and Disadvantages of fMRI 

There are at least three reasons why functional Magnetic Resonance Imaging makes the 

future of functional brain imaging particularly interesting.  First, fMRI does not involve 

ionizing radiation, and therefore it can be used repeatedly on a single subject and even 

on children, allowing long-term studies.  Second, technical improvements in fMRI (due 

to more powerful magnets, more sophisticated imaging hardware, and the development 

of new methods of experimental design and data analysis) promise to ameliorate spatial 

and temporal resolution.  Third, there is an increasing attempt to integrate the findings 

based on fMRI with those from other complementing techniques, such as 

electroencephalography (EEG) and magnetoencephalography (MEG), which have 

much greater temporal resolution.  The high cost and the state in which the patient has 

to stay motionless during the examination in order to capture clear functional images, 

are some crucial disadvantages of fMRI [27, 33, 40].  

2.4 Spatial and temporal resolution 

The good spatial and temporal resolution are the issues that made the fMRI a popular 

technique [33].  By using the phrase “spatial resolution” we refer to the ability to 

distinguish the changes in an image (or map) across different spatial locations, while 

temporal resolution describes the ability to distinguish changes concerning activity at a 

single location over time [25].  Spatial resolution is basically restricted by limited 

imaging time and by signal to noise ratio (SNR).  Smaller voxels recommend smaller 

SNR but also enhance spatial resolution by making possible the detection of smaller 

structures and smaller activated areas [33].  It provides important information about the 

gray and white matter with a relatively high spatial resolution in the order of millimeters 
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but with a temporal resolution of a few seconds which is limited by the hemodynamic 

response itself.  Because of the short acquisition time, high temporal resolution of fMRI 

is possible, but it is limited by the blurred intrinsic hemodynamic response and a finite 

SNR [23, 33].  

fMRI can be compared to other imaging methods, such as Positron Emission 

Tomography (PET), Near Infrared Spectroscopy (NIRS), EEG and MEG which are 

primary alternatives, used to obtain functional evaluation of brain metabolism in terms 

of spatial and temporal resolution and availability.  The spatial resolution of EEG and 

MEG is limited to 10-20mm.  This is because the scalp-based measurements of 

electrical and magnetic distributions are not able to provide unique dipole 

reconstruction.  The spatial resolution of EEG is smaller than MEG due to the fact that 

EEG might be spatially distorted by electrical conduction.  On the other hand, EEG and 

MEG can easily capture the dynamics of brain activity and thus offer excellent temporal 

resolution, in the order of milliseconds.  BOLD fMRI provides excellent spatial 

resolution however small temporal resolution which is mainly related to the 

hemodynamic activity.  If higher field magnets (7T) are used, a fMRI pixel size of 500 

microns or less may be easily reached, although the typical pixel size is 3-4 mm.  Both 

Near Infrared Spectroscopy (NIRS) and EEG offer similar spatial resolution (close to 

5 mm) which however is limited by the problem of reconstructing HbO2 3D maps from 

scalp recordings, in addition to the scattering and attenuation of the infrared photons 

which hinder deeper brain penetration.  Temporal resolution of NIRS is very much alike 

to fMRI because of the temporal limitations of blood oxygenation.  The spatial 

resolution of Positron Emission Tomography (PET) ranges between 5 and 20 mm as 

the size of gamma ray detectors and the positron-electron annihilation range limit it.  

Of all the methods PET has the greatest temporal resolution due to the low count rates 

of the injected nuclide, thus requiring further scans [41].  

fMRI’s spatiotemporal resolution can be mainly enhanced by: (i) optimizing the 

MRI pulse sequences, (ii) improving resonators, (iii) using higher magnetic fields, (iv) 

developing intelligent strategies for parallel imaging.  fMRI is expected to supply 

images of a fraction of a millimeter (e.g., 300 × 300 μm2 with slice thickness of a couple 

of millimeters) regularly, which amounts to ~2–3 orders of magnitude smaller voxel-

volumes than those that are nowadays used in brain imaging.  The aforementioned 

resolution may be achieved in whole-head imaging protocols, by an increasing number 
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of acquisition channels, producing superior maps of distributed brain activity in great 

regional detail and with reasonable temporal resolution of a couple of seconds [42]. 

2.4.1 fMRI time-series 

The functional images, are T2* weighted images with lower spatial resolution than 

anatomical images.  The way that anatomical images are considered and examined 

differs from functional images.  Their accumulation takes place in a certain time rate 

and constitutes a set of images.  Each voxel’s intensity value in each image of the set is 

called time-series of the specific voxel (Fig. 2.9) [33]. 

 

Figure 2.9: fMRI time-series.4 

2.4.2 Source of noise in fMRI 

Structure and random noise are also included in fMRI time-series, as well as the activity 

evoked by the experiment (effects of interest).  The sources that may produce noise in 

fMRI are the following: a) thermal noise arising from the subject, the receiver coil and 

the amplifiers, b) systematic noise arising from subject motion, c) systematic noise 

arising from tissue pulsation related to cardiac and respiratory cycles, and d) noise due 

to slow fluctuations in blood oxygenation [33].  

2.5 Applications of fMRI 

Functional neuroimaging has greatly assisted the way that cognitive neuroscientists 

study the relationship between brain and behavior.  The use of fMRI is constantly 

increasing and has become the standard modality to visualize regional brain activation.  

The variety of applications can be distinguished in two categories: the cognitive 

neuroscience applications and the clinical applications.  The first category includes 

                                                           
4 Adapted from: http://slideplayer.com/slide/9047889/. 

http://slideplayer.com/slide/9047889/
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those that are used to detect brain regions which are responsible for a variety of human 

brain functions and those that study how the brain areas react according to the stimulus 

they receive.  Moreover, understanding the learning mechanism, locating networks that 

are accountable for cognitive functions, as well as the combination of fMRI with 

electrophysiological techniques.  The clinical applications involve the imaging of 

activated brain areas which have been injured, the monitoring of rehabilitation or 

reorganization after an injury and the providing biomarkers or patterns for diagnosis 

[23, 33]. 

2.5.1 Cognitive neuroscience 

A main purpose of neurophysiological studies is the brain function detection.  Brain 

regions that are associated with specific perceptual, cognitive, emotional and behavioral 

functions, such as sensorimotor, visual, language and memory can be detected [33].  An 

important contribution of fMRI is also understanding the way in which an activated 

brain area influences another one.  For example, it is widely accepted that a visual 

stimulus can configure the brain response at the touch of an object or a face.  In 

cognitive neuroscience applications, it has been successfully used to study brain 

systems that involve learning and demonstrate the plasticity of brain systems.  In other 

words, the correlations in activity among areas change as a function of time and learned 

performance [23].  

BOLD and EEG signals are differently generated and exhibit different temporal and 

spatial properties.  For this reason, the combination of fMRI with other 

electrophysiological techniques such as Electroencephalography (EEG) has given the 

opportunity to scientists to extract important information about brain function [32]. 

2.5.2 Clinical applications 

In order to study patients with neurodegenerative diseases, the fMRI can be applied in 

different ways showing that this technology can also be used for other neurological 

disorders [43]. 

To manage an individual’s medical problem, in clinical studies, single subject results 

are demanded, whereas in research studies the result is taken from a group of studied 

subjects, in a highly controlled environment.  In clinical applications there are several 

aspects of the fMRI that should be taken into consideration in order to ensure successful 

and high quality clinical studies.  These are: a) the quantitative and qualitative 

sufficiency of the personnel, b) the necessity of effective patient cooperation, c) the 
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good patient preparation, d) the patient safety, e) the correct organization of the 

paradigms, f) the scanner capability, g) the analysis and the presentation of the data.  

By ensuring these aspects, neuroscientists use the applications of fMRI in pre-surgical 

planning, the diagnosis of diseases like epilepsy and Alzheimer Disease and the 

treatment of arteriovenous malformations. 

Pre-surgical fMRI is used to enable function preserving and safe treatment in 

patients with brain tumors and epilepsies by noninvasively localizing and lateralizing 

specific brain functions or epileptic activity.  The surgical resection of selected 

malignancies requires the accurate localization and the histological gradation to achieve 

complete removal.  However, the proximity with the surrounding cortex regions is 

required to ensure that the removal of the selected malignancies will be safe and will 

not harm other vital brain functions.  The morphological brain imaging or invasive 

measures prior to treatment can’t give this diagnostic information [23, 24, 30].  

In summary, the diagnostic aims of pre-surgical functional neuroimaging are the 

following: a) the localization of sensitive brain areas with respect to the envisaged site 

of surgery, b) the determination of the dominant hemisphere for specific brain 

functions, c) the localization of epileptic zones and lateralization of epileptic activity 

and d) the delineation of neuroplastic changes in brain activity. 

Patients after an acute and subacute phase of stroke show variable recovery which 

can be investigated with fMRI [23].  Specifically, fMRI has been used due to the spatial 

imaging of the recording motor cortex and language function and it has proven that the 

function in those areas is associated with the plasticity of the brain that is very 

supportive to the stoke treatment [30]. 

Scientists have used fMRI to identify abnormal functional brain activity during task 

performance in a variety of patient populations, including those with 

neurodegenerative, demyelinating, cerebrovascular, and other neurological disorders 

that highlight the potential utility of fMRI in both basic and clinical fields of research 

[43].  The importance of fMRI lays not only in its usage for diagnosis of diseases such 

as Dementia, Parkinson Disease, Autism, Restless Legs Syndrome etc., but also in its 

ability to distinguish the characteristics of each disease in healthy and pathological 

subjects.  In chapter 3 there is an external description about the use of fMRI in Restless 

Legs Syndrome. 
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Chapter 3. Imaging technique used for Restless Legs Syndrome  

 

3.1 Brain Imaging in Restless Legs Syndrome 

3.2 An overview on literature methods 

 

 

 

 

 

 

 

 

 

 

 

There is a great body of literature on studies that provide useful information about 

neurological disorders, such as Restless Legs Syndrome (RLS), using various imaging 

techniques to investigate different cases involved in the pathophysiology of RLS.  In 

this chapter, studies that have been carried out in recent years, including positron 

emission tomography (PET) and single positron emission computed tomography 

(SPECT) studies, mainly focusing on the dopaminergic pathway, magnetic resonance 

imaging (MRI) studies, employing various techniques such as iron-sensitive MRI 

methods, voxel-based morphometry (VBM), magnetic resonance spectroscopy (MRS), 

diffusion weighted sequences and task based or resting state functional magnetic 

resonance imaging (fMRI), which are presented in detail.  It is worth noting that there 

are discrepancies between the findings [44].  More emphasis will be placed on resting 

state fMRI methods as the dataset that has been used in our analysis is acquisitioned 

through this method.   
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3.1 Brain imaging in Resting Legs Syndrome  

PET and SPECT 

PET and SPECT use tracers which are labeled by radioactive isotopes to study the 

density of particular receptors or the metabolism and the regional cerebral blood flow 

(rCBF) in specific areas [45].   

The study of Chun-Chieh Lin et al. [46] supports that the dopaminergic dysfunction 

can be associated with the pathophysiology of RLS.  They tried to determine the 

diagnostic accuracy and potential of SPECT-TRODAT imaging so as to make a 

distinction between patients with RLS and normal individuals.  All subjects were 

injected with a single dose of 740 MBp (20 mCi) of Tc 
99m -TODAT-1 and the brain 

images were acquired 3 to 4 hours after injection using a Hawk Eye dua-head γ-camera.  

The values that were taken into consideration included age in both groups, the Beck 

Depression Inventory (BDI) score which measures symptoms of depression and 

specific uptake ratio in the striatum, caudate and putamen.  T-test was used to compare 

the mean values of uptake ratio in the striatum, caudate and putamen among RLS 

patients and healthy controls.  The SPSS 13.0 software was used for all analysis and 

the scientists found that the root of the symptoms of RLS is the dysfunction of the 

striatum of the brain dopaminergic system.   

Iron-sensitive MRI methods 

There are also several MRI techniques that are used currently in use to measure non-

heme iron content in brain tissue.  Some of these iron-sensitive MRI methods are 

relaxometry methods measuring R1, R2, R2* or R’, mapping of field-dependent 

transverse relaxation rate increase (FDRI), magnetic field correlation (MFC), phase 

imaging, susceptibility weighted imaging (SWI), direct saturation imaging, and the 

recently developed quantitative susceptibility mapping (QSM) [45]. 

Clinical studies reveal that there are low brain iron levels in substania nigra in 

patients with early onset RLS, probably due to a gene variant (btbd9) in the midbrain 

[47, 48].  Following the same line of thought, Hye-Jin Moon et al. [49] studied the iron 

content in several brain regions and particularly in the substantia nigra (SN) in early- 

and late-onset RLS patients which had been measured by T2 relaxometry using MRI.  

The authors tried to clarify the conflicting results of previous studies especially 

pertaining to the iron content in this brain region.  They used strong magnet at 3.0 Tesla 

to obtain the iron index, as it is more sensitive to brain iron levels.  A high resolution 
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three-dimensional spoiled gradient echo sequence, a spin-echo sequence and a gradient 

echo sampling of free induction decay and echo sequence were used to obtain structural 

imaging (T1-weighted images), T2 relaxometry and T2* relaxometry, respectively.  

The software that used was the ImageJ and the Medical Image Processing Analysis and 

Visualization.  The first one was used to process and produce T2, T2*, R2 and R2* 

maps and the second to outline the regions of interest on the spin echo image.  Because 

of the higher iron-related specificity of the R2’ map, it was used as the ‘iron index’.  

The statistical analysis included the Kolmogorov-Simon test to study the normality of 

distribution of the parameters, Analysis of covariance (ANCOVA) to compare the age-

adjusted iron indexes of both groups (patients and control subjects) and partial 

correlation coefficient to explore the correlation between disease severity and iron 

index.  The Pearson product-moment correlation coefficient was used to assess the 

intraobserver and interobserver variabilities on relaxation rate measurements.  After the 

aforementioned stages of research, the disease duration was found to be significantly 

longer in the early-onset group than in the late-onset group.  As for the mean iron index 

of the SN, scientists note that it was significantly lower in the late-onset RLS group 

than in the control group.   

Recent research conducted by Xu Li et al. [50] suggests the use of quantitative 

susceptibility mapping (QSM) in order to determine regional brain iron concentrations 

in RLS and test the possible correlation between measured brain tissue magnetic 

susceptibility and RLS clinical features.  It has been stated that previous studies which 

used relaxometry methods presented conflicting findings and a possible reason could 

be the different techniques used for measuring tissue iron contents with different 

sensitivities and methodological limitations.  This is why they use the quantitative 

measurement of tissue magnetic susceptibility as a more accurate and specific measure 

of tissue iron content, especially in gray matter.  More specifically, a group of thirty-

nine patients with idiopathic RLS and another one with 29 age- and gender-matched 

healthy control subjects were scanned at 7 Tesla in order to qualify the magnetic 

susceptibilities in SN, thalamus, striatum and several iron-rich gray matter regions and 

compare them with related clinical measures.  The first stage of the statistical analysis 

was a two-tailed t-test with unequal variance or Chi-Square as appropriate, which was 

used to test group differences in the clinical measurements between healthy controls 

and RLS patients.  Subsequently, ANCOVA was used to determine possible differences 

in the brain iron content between groups and to conduct exploratory tests in the 
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secondary ROIs.  Automated and fixed shape tracing were the tracing methods that 

were used to obtain the Pearson correlation between the susceptibility values in SN.  

The two tracing methods were tested on SWI high-pass filtered phase in order to 

suggest possible group difference between RLS and control and correlation between 

values.  The last method of the statistical analysis was to determine Pearson partial 

correlations controlling on the subjects age and ROIs volume for the SN and then all 

other ROIs between quantitative magnetic susceptibility and other clinical measures.  

After this detailed analysis, the scientists assessed the possible existence of iron 

insufficiency in the dentate, as also in the thalamus, something that had not been noticed 

in previous studies.  Compared to healthy controls, RLS patients did not show 

significant difference in the SN but the correlation between magnetic susceptibility in 

SN and the periodic limb movement during sleep measure was noteworthy.    

MRS 

Another noninvasive method that has been used in the investigation of RLS is the 

Proton Magnetic Resonance Spectroscopy ( H 
1 -MRS) that permits measurement of the 

concentration of specific biochemical compounds in the brain.  There is the possibility, 

as this is a method that provides a spectrum rather than an image, to quantify spectra of 

many biologically important metabolites [44].   

Proton magnetic resonance spectroscopy ( H 
1 -MRS) has revealed 50% greater 

thalamic glutamate and reduced neuronal marker N-acetyl aspartate (NAA) in the 

thalamus.  Wickermann et al. [51] focused on the quantification of gamma-

aminobutyric acid (GABA) levels which are the major central nervous system (CNS) 

inhibitory neurotransmitter, as well as on the levels of glutamate and NAA in the 

anterior cingulate cortex (ACC), thalamus and cerebellum concerning patients with 

RLS and matched controls.  These transmitters/metabolites levels correlated to RLS 

severity and to objective measures of sleep and leg movement activity.  This study 

differs from previous studies as there were no other reports assessing, levels of GABA 

in RLS patients.  All the subjects underwent various medical examinations and tests 

involving questionnaires all of which took place two days before the actual 

examination, in order to be considered as a reliable dataset.  In order to assess Periodic 

limb movements during sleep (PLMS), Actigraphy was performed on the night before 

scans.  Imaging and spectroscopy were conducted on a 4 Tesla MRI scanner at McLean 

Hospital in Belmont, MA, USA.  Analysis of variance (ANOVA) with groups and brain 
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regions as independent factors was the main statistical analysis.  In order to examine 

differences and similarities between groups uncorrected post hoc t-test were used.  

Unpaired t-tests (two-sided) were performed as a means to compare voxel tissue 

composition, demographics, psychometric scores, and diary/actigraphic data between 

groups.  GABA levels with the IRLSSG severity scale for the five days before scanning, 

RLS discomfort scores during the MRI, PSG-related sleep measures, sleep and RLS 

diaries for the two days before MRS scans, and PSG and actigraphy-related leg 

movement measures were correlated and constituted the secondary analysis.  Statistical 

analysis was realised through the use of SPSS (Version 21) software.  Levels of GABA, 

glutamate and NAA showed similarities between RLS and control subjects in the three 

voxels of interest.  On the other hand, GABA levels present a positive correlation with 

both PLM indices and RLS severity in the thalamus and negative correlation with both 

of these measures in the cerebellum in RLS subjects.  Moreover, the values of NAA of 

the ACC were higher in RLS than in controls groups.  The study concluded that their 

preliminary data indicates that known cerebellar–thalamic interactions may modulate 

the intensity of RLS sensory and motor symptoms.  Furthermore, anterior cingulate 

cortex may be related to affected components of the painful symptoms of RLS.  

Volumetric MRI 

A number of methods using high-resolution 3D T1-weighted MRI scans, have been 

developed in the last decade in order to measure progressive brain atrophy as it is an 

important feature of many central nervous system (CNS) disorders, including not only 

neurodegenerative diseases but also inflammatory conditions.  Voxel based 

morphometry (VBM) has the ability to find subtle volume changes in the human brain 

by comparing the regional attenuation of brain gray matter and white matter intensity 

across groups of subjects, voxel-by-voxel.  The reliability and reproducibility of the 

results, as well as time saving, are among the advantages of VBM in comparison to 

older approaches.  Moreover, VBM allows for the exploration of the entire brain as a 

whole, as there is no requirement of a priori hypothesis of the location of group 

differences [44].  The work of Yongmin Chang et al. [7] was based on the 

demonstration of whether or not restless legs syndrome is associated with any 

morphological change in gray matter.  Equal numbers of RLS and controls were 

scanned in a 3.0 T MRI scanner and three-dimensional anatomical MRI were acquired 

using a T1-weighted 3D spoiled gradient recalled sequence, because of the high 
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resolution and good contrast between gray and white matter structure that this sequence 

provides for the VBM.  The existence of structural changes of gray matter throughout 

the whole brain was examined with the use of the general linear model (GLM).  They 

extracted their conclusions using a whole brain-based statistical approach instead of a 

region of interest (ROI)-based method.  This approach outweighs in comparison to 

ROIs-method as it is free from any a priori hypotheses and the pathology of RLS cannot 

be hypothesized to certain brain regions.  The comparison of brain morphology for age- 

and gender-matched pair from two groups was achieved by an independent t-test.  

Partial correlation analysis controlling age and gender was used to investigate the 

relation of any significantly reduced volume in ROIs to clinical variables and assess the 

association between the RLS patient’s voxel-based volumes of the entire brain and 

clinical variables.  After the comparison between RLS and controls subjects, significant 

regional decreases of GM volume in the left hippocampal gyrus, both parietal lobes, 

medial frontal areas, lateral temporal areas and cerebellum were found.  It was also 

found that the disease duration and severity of symptoms could be related to the 

alternation of the brain structure, a fact that requires further investigation.   

Diffusion tensor MRI and structural connectivity 

The neuroscientists stress that a great challenge is to understand brain function in terms 

of connectional anatomy and the dynamic flow of information across neuron networks.  

Unique biological and clinical information can be provided from the MR measurement 

of an effective diffusion tensor of water in tissues, a fact that is not achievable by other 

imaging modalities.  Diffusion tensor imaging is an MRI modality which is a strong 

method for white matter architecture research [52].  Diffusion is the random thermal 

movement of water molecules (Brownian motion) in neural tissue and DTI has the 

ability to determine quantitative measures of brain microstructure.  The diffusion 

characteristics that can be measured using the tensor model, by means of diffusivity 

(MD) and degree of anisotropy are shown by fractional anisotropy.  The linear structure 

of WM tracts, which enables the free diffuse of water molecules along the axons but 

prevents their diffusion perpendicularly to the axonal main direction due to the myelin 

existence, features an anisotropic diffusion.  Various methods that have been used to 

analyze DTI data utilized region of interest (ROI)-based approaches or voxel-wise a 

priori hypothesis free approaches which is currently using tract-based spatial statistics 

(TBSS) as a procedure method.  Additionally, reconstruction of WM tracts, which 
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physically connect the different brain regions can be considered as another method in 

order to study DTI data.  The DTI tractography algorithms have a supporting role in 

those studies.   

In their attempt to explore the possible alternation of the reliability of brain white 

matter in RLS patients, Yongmin Chang et al. [53] used 22 RLS patients and 22 age-

matched healthy control subjects.  An eight-channel phased-array head coil in a 3.0 T 

MR imaging system was used to acquire the data.  Fractional anisotropy (FA), axial 

and radial diffusivities (AD and RD) were calculated using the Statistical Parametric 

Mapping (SPM5) software.  This software package was also used for the preprocessing 

of the images.  A two-sample t-test was used to examine group differences in FA, AD, 

and RD for each voxel across the WM of the whole brain between RLS and control 

subjects.  Correlation analysis was implemented in RLS subjects between FA, AD, and 

RD at each ROI of an individual patient and by using the simple regression function in 

SPM5 in order to quantify clinical measures that included disease severity assessed 

with K-IRLS scores and illness duration.  The whole brain voxel-based DTI analysis 

indicated significantly decreased FA in the genu of the corpus callosum, putamen and 

the frontal gyrus in RLS subjects compared with the control group.  Focusing on the 

regions that had shown the lower FA, it was pointed out that there were higher AD and 

RD in RLS patients.  A conclusion was the positive correlation of the frontal WM 

adjacent to the inferior frontal gyrus with the K-IRLS score.   

fMRI and functional connectivity 

fMRI uses either T2* in a gradient echo sequence, or T2 in a spin echo sequence to 

measure neuronal activity modifications of the transverse magnetization time 

associated to the BOLD mechanism.  Resting state fMRI is the most common technique 

to investigate functional connectivity by MRI.  Functional connectivity can be assessed 

by measuring the level of co-activation of resting state fMRI time-series between brain 

regions.  There are model-dependent and model free methods that are used to the data 

processing in order to extract the functional connectivity of the brain.  These methods 

will be presented in detail below through recent medical studies.   

The study of Chunyan Liu et al. [54] had two main objectives.  First, they tried to 

compare the brain activity between normal people and idiopathic RLS patients during 

asymptomatic periods; and second to estimate the effect of the repetitive transcranial 

magnetic stimulation (rTMS) in specific cortical regions concerning the reverse of any 
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observed differences in brain activity and the alleviation of patients’ symptoms.  Fifteen 

idiopathic RLS patients and fourteen age- and gender-matched healthy controls 

participated in the study, after they had undergone medical examination and clinical 

interviews.  Functional MRI images were acquired from a Siemens Trio 3.0 T scanner, 

during the daytime, axially, using an echo-planar imaging (EPI) sequence and also 

three-dimensional T1-weighted magnetization-prepared rapid gradient echo 

(MPRAGE) sagittal images were collected.  Statistical Parametric Mapping (SPM8) 

and Data Processing Assistant for Resting-State fMRI (DPARSF) were used for image 

preprocessing. The Resting-State fMRI Analysis Toolkit (REST) was used in order to 

calculate the amplitude of low-frequency fluctuations (ALFF).  Voxelwise general 

linear model (GLM) analysis was performed in order to study between-group 

differences in ALFF, with age and gender as covariates.  Using SPM8 the generation 

of a GM mask by thresholding an a priori gray matter probability map was achieved 

and the AFNI Alpha Sim program supports the Monte Carlo simulations performing.  

This GM mask generation included of the correction for multiple comparisons.  

Regarding the examination of within-group differences for the effect of rTMS, a paired 

t-test was conducted in order to find changes in the ALFF before and after rTMS 

treatment.  The comparisons that were examined in the current study involved the ALFF 

between RLS patients and control groups, the ALFF between the drug-naïve RLS 

patient and control groups, the ALFF between RLS patients before rTMS treatment and 

healthy controls, the ALFF values between RLS patients after rTMS treatment and 

healthy controls, as well as the changes in ALFF values after rTMS treatment and the 

changes in IRLSSG score after rTMS treatment.  The ALFF values were found to be 

lower in the sensorimotor system, including the paracentral lobule, precuneus, superior 

parietal gyrus, supplementary motor area (SMA), right precentral gyrus and right post-

central gyrus, as well as in the visual processing system, including middle occipital 

gyrus, calcarine sulcus, cuneus, fusiform gyrus and right inferior temporal gyrus.  The 

ALFF was found to be higher in the insula, parahippocampal and hippocampal gyri, 

inferior frontal gyrus, rectus, left inferior parietal gyrus, left superior parietal gyrus left 

angular gyrus and brainstem.  These results were maintained only when drug-naive 

patients were considered.  The values of ALFF in several sensorimotor and visual 

regions were increased after rTMS treatment and the IRLSSG Rating Scale had lower 

values presenting improved RLS symptoms.  These results supply innovate knowledge 



37 

 

into RLS pathophysiology and propose a potential mechanism for rTMS therapy in 

idiopathic RLS patients.   

The objective of the research of Jeonghun Ku et al. [6] was to examine the intrinsic 

changes in the thalamocortical circuit in RLS patients through a resting-state fMRI 

study.  The MRI data was obtained using a 3T MRI Signa Excite scanner with an 8-

channel high-resolution brain coil.  The anatomical image series of each participant was 

acquired with the use of 3D spoiled gradient-echo sequence and a gradient echo planar 

imaging sequence was used to collect functional images.  A seed-based method was 

used to measure the resting-state connectivity.  Analysis of Functional Neuroimages 

(AFNI) and FMRIB Software Library (FSL) were both used for the preprocessing of 

fMRI data.  The preprocessing included slice-timing correction, despiking, 3D motion 

correction, temporal normalizing, linear and quadratic detrending, spatial 

normalization, spatial smoothing and temporal filtering.  The target region of interest 

was assumed as the bilateral ventroposterolateral nuclei (VPLN) in the thalamus.  

EdDeconvole (AFNI) was used for each subject, to derive whole-brain voxel-wise 

corrections associated with the mean time-series for the left and right VPLN.  Each 

subject’s correlation maps were converted to z score maps and they were included in 

the group analysis.  T-tests were used to compare the connectivity strength of controls 

and patients and obtain the contrast map.  The K-IRLS severity scale as measure of 

disease burden was taken into consideration in order to carry out a correlation analysis 

for the examination of the networks that are related with subjective symptom severity.  

The research led to several important results regarding the functional connectivity of 

the brain.  During the asymptomatic period, the RLS group confirmed reduced thalamic 

connectivity in the right parahippocampal gyrus, right precuneus, right precentral 

gyrus, and bilateral lingual gyri.  On the other hand, an increase in thalamic connectivity 

of the right superior temporal gyrus, bilateral middle temporal gyrus, and right medial 

frontal gyrus were indicated.  Additionally, the connectivity between the thalamus and 

right parahippocampal gyrus in relation to RLS severity score presented a negative 

correlation.   

Another study that focused on the resting-state functional connectivity of the brain 

in the restless legs syndrome was conducted by another research team that Jeonhum Ku 

et al. [5] led two years later.  They focused their attention on the investigation of 

changes in the default mode network in RLS subjects.  An equal number of patients 

with drug-naive idiopathic RLS and age- and gender-matched healthy subjects 
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participated in the study.  Resting-state fMRI data was collected by a 3T MRI Signa 

Excite scanner with an eight-channel high-resolution brain coil.  3D spoiled gradient-

echo sequence was used to obtain anatomic image series and a gradient echo planar 

imaging (EPI) sequence to collect functional images.  AFNI software was used in order 

to process resting-state fMRI data.  For the purpose of extracting the DMN from the 

resting-state fMRI, several steps of seed-based resting-state connectivity analysis to 

reduce seed-selection bias were followed.  The first seed region was marked within the 

posterior cingulate cortex and the second within the medial prefrontal cortex.  The 

3dDeconvolve (AFNI) was used to compute the whole brain voxel-wise correlations 

that are associated with the mean time-series for each seed region.  Fisher’s r-to-z 

transformation were used to convert correlation maps and two binary maps of the DMN 

were generated after the application of one-sample t-test across subjects.  An 

independent t-test was used in order to find out group differences in the DMN for 

controls and RLS patients.  With the use of Pearson correlation, an inter-regional 

correlation analysis was carried out with the averaged strength of connectivity from 

each brain region.  The last step of statistical analysis was the comparison of the strength 

of connectivity from each brain region with the patient’s characteristics of symptom 

duration, age of onset, K-IRLS total and subscores of K-IRLS.  The results indicated 

abnormalities of the DMN in RLS subjects that affect the thalamic relay sensory-motor-

associated circuit.  More specifically, the reduced DNM connectivity was found in the 

left posterior cingulate cortex, the right orbito-frontal gyrus, the left precuneus, and the 

right subcallosal gyrus of the RLS subjects.  The DMN connectivity was enhanced in 

sensory-motor-associated circuits including the right superior parietal lobule, the right 

supplementary motor area, and the left thalamus.  Also, negative correlation was 

observed between DMN and thalamus and in the connectivity between the orbito-

frontal gyrus and the subcallosal gyrus in the subject.   

Connectomics 

Based on the newest developments in MRI analysis techniques, the chance to 

investigate the total structure and function of the brain network by the use of graph 

analytical methods has emerged.  Graph theory techniques can be employed not only 

on functional but also on structural MRI.  First, the determination of the brain network 

nodes is required and the so-called edges constitute the connections between regions.  

The connectivity between each pair of nodes is determined as the correlation coefficient 
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of their BOLD fluctuations.  Centrality, clustering, efficiency, hierarchy, hubs, 

modularity, robustness, small-worldness and synchronizability are several 

organizational and topological properties that can be studied through the graphs.   

Based on the aforementioned method, Jeong Woo Choi et al. [55] tried in their study 

to find abnormal cortical activity during sleep in RLS patients and to clarify the role of 

treatment with a dopamine agonist.  Specifically, a whole-brain 

electroencephalography was used in order to investigate alternations of functional 

networks, the spectral power of neural activity during sleep in RLS patients and to 

verify the involvement of pramipexole treatment on the reverse of changes.  Twelve 

drug-naive RLS subjects and sixteen age-matched healthy controls were involved in the 

study.  Overnight polysomnography was used in two stages.  The first recording took 

place immediately before providing the first dose of pramipexole and the second 

recording took place 12–16 weeks after beginning pramipexole administration.  The 

spectral power and interregional phase synchrony were assessed in 30-s epochs.  Graph-

theory measures were used to quantify the functional characteristics of the cortical 

network.  The delta-band power was significantly enhanced and the small-world 

network characteristics in the delta band were interrupted in RLS patients in 

comparison to the healthy controls.  Dopaminergic medication was applied for the 

successful treatment of these disturbances.  The RLS severity score in the RLS patients 

before treatment presented a significant correlation with the delta-band power.   

Combining imaging techniques  

Except for the methods that were previously presented and that used individual imaging 

techniques in order to investigate the restless legs syndrome, important studies have 

been recorded that use a combination of imaging techniques and lead to a better 

understanding of the disease.  Several of them have led to useful findings and are 

presented in detail below.   

In research conducted by Yaoyao Zhuo et al. [56], a combination of diffusion tensor 

imaging (DTI) and regional homogeneity (ReHo) was achieved to examine the changes 

in the regional spontaneous brain activity changes for RLS patients and healthy controls 

subjects.  The MR acquisition was carried out on a 3T GE Signa MR scanner with an 

eight-channel phased array head coil during evening hours.  Echo planar imaging (EPI) 

sequence was used to obtain resting-state fMRI images and also craniocerebral routine 

sagittal T1-weighted imaging and axial T2-FLAIR scanning were performed.  SPM8 
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was used to implement the preprocessing steps including slice-timing and head motion 

correction, spatial normalization, spatial smoothing and temporal bandbass filtering.  

The DPARSF software was used in order to analyse the ReHo between one voxel and 

its nearest time-series.  Kendall’s coefficient of concordance (ReHo value) measured 

the resemblance of a voxel and its nearest neighbors, which indicates the synchronicity 

of brain activity.  FSL software was used to perform DTI data post-preprocessing and 

statistical analysis.  The absence of non-brain tissue in DTI-EPI and the estimation of 

skull surface were achieved with the use of Brain Extraction Tool (BET).  Eddy Current 

Correction in FMRIB's Diffusion Toolbox (FDT) was used for the correction of 

distortions due to the gradient directions.  DTIFIT supports the local fitting of diffusion 

tensors and to extract parameter maps for FA and MD.  Regarding the statistical 

analysis, Student’s t-test was performed in order to compare the ages in the two groups 

and Chi-squared test to analyze groups’ genders.  Statistical analysis was achieved by 

the Statistical Analysis System (SAS) 8.0 software.  Two sample t-test compared the 

ReHo values between RLS and normal control subjects and an intra-class one sample 

t-test to measure the reliability of ReHo values.  AlphaSim program in AFNI was used 

for multiple comparison correction to control the false-positive rate.  Tract-Based 

Spatial Statistics (TBSS) was the toolbox to analyze DTI data.  After comparing RLS 

and normal controls group according to the morphological abnormalities in the 

conventional T1- and T2-weighted images, the results did not lead to their existence.  

Significant differences between groups regarding age or gender were not recorded.  

Considering the results that have emerged from the resting-state fMRI study and the 

one sample t-test, enhanced ReHo was found in the bilateral in the bilateral posterior 

cingulate/precuneus cortex compared to the groups' global means, showing that the 

default mode network was at rest.  Cluster size in RLS group was found to be smaller 

than that of the control subjects group.  The two-sample t-test led to increased ReHo in 

the RLS group in the bilateral middle frontal gyrus, anterior cingulate cortex, caudate 

nucleus, insula, thalamus, putamen and left posterior cingulate cortex compared to the 

normal controls group.  No significant differences were found between groups 

according to the results of the DTI statistical analysis and likewise there were no 

differences observed in TBSS comparison in FA or mean diffusivity (MD) of any brain 

region.   

Last but not the least, P. Margariti et al. [48] in their extensive study estimated the 

volume, iron content and activation of the brain during night-time episodes of sensory 
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leg discomfort and periodic limb movement in patients with early onset RLS.  Imaging 

was carried out by the use of 1.5 T MRI scanner after 9.00 pm.  According to the 

structural and functional imaging a T1-weighted high-resolution spoiled gradient echo 

sequence and a single-shot multisection gradient EPI were used respectively.  T2 

relaxometry was achieved by a multisection spin-echo T2-weighted sequence.  The 

study included a self-evoked event related fMRI and the PLM episodes were monitored 

by a technologist.  T1-weighted images were used for the voxel-based morphometry 

method using unified segmentation approach.  An independent-samples t-test at the 

voxel level was used to evaluate morphological differences between eRLS patients and 

control subjects.  Two different contrasts corresponding to increase or decrease of brain 

volume in the GM and WM compartments were the compared issues between patients 

and control subjects.  The off-line processing of T2 relaxometry images was performed 

in Matlab 7.6 and the Levenberg-Marquardt optimization method was the mean to 

produce a T2 map by a pixel-by-pixel fitting procedure.  The region-of-interest function 

of the previous method estimates the T2 relaxation time of the putamen, caudate 

nucleus, globus pallidus external and internal substantia nigra pars compacta and 

reticulata, STN, red nucleus and locus coeruleus. Statistical Parametric Mapping 

(SPM8) were used to utilize preprocessing of fMRI data including realignment, 

temporal and spatial correction, coregistration with high resolution anatomic image, 

normalization with the MNI template and smoothing by using a Gaussian Kernel.  First-

level analysis was performed to model monitored PLMs of each patient and second-

level random-effect analysis to determine the activated areas within the group.  The 

output of the analysis was an activation map and the parameters that were computed 

were the size, maximum z score of activated regions and corresponding P values.  The 

evaluation of age determination on disease duration was conducted by Multiple linear 

regressors analysis.  Regional brain volume change in patients did not exist but 

decreased T2 relaxation time was found in right globus pallidus internal and the STN, 

a fact that indicates enhanced iron content.  The areas that reveal enhanced activation 

were in the left hemisphere, including the primary motor and somatosensory cortex, the 

thalamus, the pars opercularis, the ventral anterior cingulum and in the right hemisphere 

included the striatum, the inferior and superior parietal lobules and the dorsolateral 

prefrontal cortex.  Also, bilateral activations were found in cerebellum, the midbrain 

and pons.     
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3.2 An overview on literature methods 

An overview on literature methods is presented in the following table (Table 3.1). 

Table 3.1: An overview on litearture methods. 

Author Dataset 
Imaging 

technique 
Statistical Analysis Results 

Chun-Chieh 

Lin et al. 

2016 [46] 

22 early-

onset RLS 

12 controls 

Tc 
99m -TRODAT-

1 SPECT 

SPSS 13.0 

Voxel-based Analysis 

Significantly reduced uptake in striatal 

dopamine transporter density and 

activity. 

Striatum dopamine transporter destiny 

was more impaired in patients with RLS 

disease. 

Hye-Jin Moon 

et al. 2013 

[49] 

20 early-

onset RLS 

17 late-onset 

RLS 

40 controls 

T2 Relaxometry 

using 3.0 Tesla 

MRI 

Analysis of covariance 

(ANCOVA) 

Partial correlation 

coefficient 

Pearson product-moment 

correlation coefficient 

Lower iron index in the SN in patients 

with late-onset RLS. 

Xu Li et al. 

2016 [50] 

39 RLS 

29 controls 

7.0 Tesla 

Quantitative 

Magnetic 

Susceptibility 

Two tailed t-test 

Analysis of covariance 

(ANCOVA) 

Pearson correlations 

Decreased magnetic susceptibility in the 

thalamus and dentate nucleus. 

Wickermann 

et al. 2014 

[51] 

18 RLS 

18 controls 

4.0 Tesla proton 

magnetic 

resonance 

spectroscopy 

H 
1 -MRS 

SPSS 21.0 

Analysis of variance 

(ANOVA) 

uncorrected post hoc t-

tests 

unpaired two-sided t-test 

Positive correlation between GABA 

levels and PLM and RLS severity. 

Higher NAA levels in the ACC in RLS. 

Yongmin 

Chang et al. 

2015 [7] 

46 RLS 

46 controls 
3.0 Tesla MRI 

SPM8 

voxel-based morphometry 

analysis 

Reduced volume in the left 

hippocampal gyrus, both parietal lobes, 

medial frontal areas, lateral temporal 

areas and cerebellum. 

Yongmin 

Chang et al. 

2014 [53] 

22 RLS 

22 controls 

3.0 Tesla MRI 

DTI 

SPM5 

Voxel-based analysis 

Two sample t-test 

Correlation Analysis 

Decreased FA in the genu of the corpus 

callosum and frontal WM 

adjacent to the inferior frontal gyrus 

Higher AD and RD in RLS in areas of 

decreases FA. 
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Author Dataset 
Imaging 

technique 
Statistical Analysis Results 

Chunyan Liu 

et al. 2015 

[54] 

15 RLS 

(9 drug-

naïve RLS) 

14 controls 

Resting-state 

fMRI 

SPM8 

Voxel wise general linear 

model (GLM) analysis 

Paired t-test 

Lower ALFF in the sensorimotor and 

visual processing regions, and higher 

ALFF in the insula, parahippocampal 

and hippocampal gyri, left posterior 

parietal areas, and brainstem in RLS 

patients. 

Increased ALFF in several sensorimotor 

and visual regions and decreased 

IRLSSG Rating Scale scores, after 

rTMS treatment. 

Jeonghun Ku 

et al. 2014 [6] 

25 RLS 

25 controls 

Resting-state 

fMRI 

AFNI 

Seed-based analysis 

t-tests 

Correlation analysis 

Reduced thalamic connectivity with the 

right parahippocampal gyrus, right 

precuneus, right precentral gyrus, and 

bilateral lingual gyri. 

Enhanced thalamic connectivity with 

the right superior temporal gyrus, 

bilateral middle temporal gyrus, and 

right medial frontal gyrus. 

Jeonhum Ku 

et al. 2016 [5] 

16 drug-

naïve RLS 

16 controls 

Resting-state 

fMRI 

AFNI 

Seed-based analysis 

whole brain voxel-wise 

correlation analysis 

 

Reduced DMN connectivity in the left 

posterior cingulate cortex, the right 

orbito-frontal gyrus, the left precuneus, 

and the right subcallosal gyrus of the 

RLS subjects. 

Increased DMN connectivity in 

sensory-motor-associated circuits 

including the right superior parietal 

lobule, the right supplementary motor 

area, and the left thalamus. 

Jeong Woo 

Choi et al. 

2017 [55] 

12 drug-

naïve RLS 

16 controls 

Polysomnography 

EEG 
Graph-theory Analysis 

Increased delta-band power and 

disrupted small-world network 

characteristics in the delta band in RLS 

patients. Significant correlation in delta-

band power and RLS severity score in 

RLS patients before treatment. 
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Author Dataset 
Imaging 

technique 
Statistical Analysis Results 

Yaoyao Zhuo 

et al. 2017 

[56] 

35 RLS 

27 controls 

DTI 3.0 Tesla 

MRI 

Resting-state 

fMRI 

FSL and TBSS to measure 

FA or MD. 

SPM8 for data processing. 

DPARSF for ReHo 

calculation. 

AlphaSim program 

(AFNI) for multiple 

comparison correction and 

false-positive rate 

controlling. 

Increased ReHo in the bilateral 

posterior ingulate/precuneus cortex 

compared to the groups' global means 

in both RLS and control groups. 

Increased ReHo in the bilateral middle 

frontal gyrus, anterior cingulate cortex, 

caudate nucleus, insula, thalamus, 

putamen and left posterior cingulate 

cortex in RLS group. 

P. Margariti et 

al. 2012 [48] 

11 

unmedicated 

early-onset 

RLS 

11 controls 

1.5 Tesla MRI for 

Voxel-based 

Morphometry, 

T2 Relaxometry 

and 

Resting-state 

fMRI 

Unified segmentation 

approach for voxel-based 

morphometry. 

Levenberg-Marquardt 

optimization method for 

T2 map production and 

unpaired two-tailed 

Student t-test for T2 

relaxation time differences 

between groups. 

First level Analysis, 

Second level Analysis and 

Multiple linear regressor 

analysis in SPM5 for 

resting-state fMRI 

analysis. 

Decreased T2 relaxation time in the 

right globus pallidus internal and the 

STN, indicating increased iron content. 

Activated areas in RLS patients: In the 

left hemisphere, the primary motor and 

somatosensory cortex, the thalamus, the 

pars opercularis, and the ventral anterior 

cingulum; and in the right hemisphere, 

the striatum, the inferior and superior 

parietal lobules, and the dorsolateral 

prefrontal cortex. 

Bilateral activation in the cerebellum, 

the midbrain, and the pons. 
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4.1 Preprocessing of fMRI data 

The raw data that is generated from MRI scanner does not remind one of a real image, 

but instead is ‘k-space’ data, which is a spatial frequency transformation of real-space.  

Fourier transformation is required in order to reconstruct the k-space data into real space 

and in this way the image may be viewed and analyzed [23].  As described in previous 

chapters, it is assumed that fMRI data consists of a three-dimensional matrix of volume 

elements (voxels) that should be repeatedly sampled over time, as efficient sampling of 

k-space is important [25].  So, a single experiment might give a brain volume of 

64×64×22 (i.e. 90,112 voxels) where the BOLD signals are collected at T separate time 

points throughout the recording time, where T ranges between 100-2000 [57].  A 

straightforward way of analyzing such a dataset would allow for the extraction of the 

raw time course of each voxel and the evaluation of differences of each of these time 

courses to some hypothesis with the use of a test of significance.  One of the 

assumptions resulting from this approach, claim that each voxel represents a unique and 
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fixed brain location and that a regular known rate is demanded for the sampling of the 

voxel to take place.  Although these assumptions may seem reliable they aren’t always 

accurate.  However, subjects head motion, physiological oscillations like heart beats 

and respiration, inhomogeneities in the static field, and/or differences in the timing of 

image acquisition lead to spatial and temporal inaccuracy of all fMRI data.  Their 

correction may reduce the detection power of an experiment.   

For this reason, a series of computational procedures the so-called preprocessing 

steps are used to operate on fMRI data following image reconstruction before the 

statistical analysis.  The major goals of preprocessing procedures are to measure and/or 

remove unwanted variability in fMRI data in order to improve experimental analyses 

as well as to prepare the data for statistical analysis [25].   

To ensure an efficient fMRI paradigm the evoked neural activity produced by the 

stimulus or task should constitute a signal which can undergo all transformations which 

are essential for the preprocessing and statistical analysis stages.  There are six 

preprocessing steps needed for the removal of the confounding effects of artifacts and 

the enhanchment of signal-to-noise ratio (SNR).  These are the following: motion 

correction (realignment), slice-timing correction, coregistration, intensity 

normalization, spatial normalization and spatial smoothing [33].   

4.1.1 Motion correction (Realignment) 

The most severe artifacts, that realignment preprocessing step aims to correct the 

artifacts that are related to the movement.  In several cases the movement is large and 

this is something that confounds the effects, so it is necessary to be discarded from the 

study.  Due to the fact that head movement in the scanner cannot fully be eliminated, 

the mathematical transformations contribute effectively in the movement correction.  

The statistical results are affected by movement.  There is a decrease in the estimation 

efficiency caused by the adding of the residual variation that causes various activation 

between adjacent voxels.  Another way the movement may affect the results is if 

activations are correlated to the stimuli [58]. 

The best possible alignment between the input image and the target image is the first 

step in motion correction [57].  As a target image the first or the intermediate image 

volume is used.  There is an assumption that only rigid body movement occurs 

according to the registration [33], so rigid body transformation involving 6 variable 

parameters is used.  In order to achieve target image matching the input image is 
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translated (shifted in the x, y and z directions) and rotated (altered roll, pitch and yaw) 

[57].  The use of a cost function is necessary in order to determine the optimal value of 

parameters.  Both its choice and optimization strategies affect the differences between 

registration algorithms.   

Mathematically, a position x=[x1, x2, x3, 1]T in image f is mapped to a position 

y=[y1, y2, y3, 1]T in image g by rigid body transformation and is expressed by the 

following equation: 

 y=M*x, (4.1) 

where M=Mf
−1MtMθMφΜωΜg is the transformation matrix.  

 

Figure 4.1: Motion correction [30]. 

Specifically, Mt is the matrix that implements the translations and the matrices 

Mθ, Mφ, Μω are the matrices that implement the rotations about the x, y, z axes, 

respectively.  The 𝑀𝑓 and 𝑀𝑔 are the transformation matrices into Euclidian space for 

images f and g that are to be registered together.  The matrices are given below:  

 

       𝑀𝑡= [

1 0 0 𝑥𝑡

0 1 0 𝑦𝑡

0 0 1 𝑧𝑡

0 0 0 1

] , 𝑀𝜃=[

1 0 0 0
0 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
0 −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 0 1

],      

𝑀𝜑=[

𝑐𝑜𝑠 𝜔 0 𝑠𝑖𝑛 𝜔 0
−𝑠𝑖𝑛 𝜔 0 𝑐𝑜𝑠 𝜔 0

0 0 1 0
0 0 0 1

], 𝛭𝑓=𝑀𝑔=

[
 
 
 
 𝑥𝑚𝑚 0 0 −

𝑎

2
𝑥𝑚𝑚

0 𝑦𝑚𝑚  −
𝑏

2
𝑦𝑚𝑚

0 0 𝑧𝑚𝑚 −
𝑐

2
𝑧𝑚𝑚

0 0 0 1 ]
 
 
 
 

. 

 

(4.2), (4.3), 

(4.4), (4.5) 

Where xmm, ymm, zmm are the voxel’s dimensions and a, b, c the image’s dimensions.  

The best possible fit for all j voxels between the two images f and g is obtained by 

minimizing the following equation and solving the parameters p:   



48 

 

 l(p)=∑ (𝑀𝑥𝑣 − 𝑠𝑦𝑣)
2

𝑗 , (4.6) 

where p=[xt, yt, zt, θ, φ,ω]Τ is the parameter vector, v is the voxel and s the parameter 

that is used to offset the differences in voxel intensity of the two images [30, 58].   

4.1.2 Slice-timing correction 

Slice-timing is the second problem that causes inaccuracies in time-series and is related 

to the sequential collection of slices within each volume [59].  Two-dimensional pulse 

sequences are commonly used in most fMRI data acquisition that collect one slice a 

time, because of the spatial gradients existence that limit the influence of an excitation 

pulse to a single slice within the brain [25].  The acquisition order determines the scan 

time of an individual slice [33].  Interleaved slice acquisition is used by the most pulse 

sequences, avoiding cross-slice excitation by collecting all of the odd slices at first and 

secondly all of the even slices.  For the less common ascending or descending sequential 

acquisitions, in which the slices are collected consecutively, the last slice is collected 

almost one TR after the first slice.  On the other hand, in interleaved acquisitions, 

adjacent slices are collected a full TR/2 apart [25].   

 

Figure 4.2: Illustration of slice-timing problem [60]. 

A problem that emerges is that the statistical analysis assumes that every voxel is 

sampled simultaneously.  Thus, the goal of slice-timing correction is to shift each 

voxel’s time course in order to be assumed as they were measured at exactly the same 

time point.  For this reason, phase shifting of the sines that comprise of the signal should 

be performed.  Also, each time-series of the voxels is transformed into the frequency 

domain, the data is performed to phase shifting and the inverse Fourier transform is 

used in order to achieve the corrected time-series recovery [33].   
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For each image volume that has q slices with m×n pixels (m is the number of the 

rows and n the number of columns), the following matrix is shaped: 

𝐴𝑐𝑞=[

𝑎11 𝑎12 …
⋮ ⋱ ⋮

𝑎𝑘1 𝑎𝑘2 …
]. (4.7) 

Where c ranges between 1 and n (c=1,…,n) and the k expresses the time points.  The 

element 𝑎𝑖𝑗 represents the intensity value of the voxel that is localized in slice q, 

specifically in line j, in column c, at a time point i.  Therefore, the first column of the 

matrix expresses the time-series of the voxel (c, 1, q).  The convolution is performed 

for each column of the matrix in frequency domain by using a shifting vector which 

depends on the TR, TA the number of slices and the acquisition order (ascending, 

descending or interleaved) [30].   

 

Figure 4.3: Slice-timing correction [30]. 

For data acquired using interleaved sequence at a long TR, slice-timing correction 

should be performed before the motion correction.  On the other hand, if the data 

acquisition order is ascending or descending or with a short TR, the slice-timing 

correction should be performed after motion correction [25].   

4.1.3 Co-registration  

The brain activity causes changes in the fMRI signal which can be detected by fMRI’s 

fast imaging methods, such as EPI, which however limits the quality and spatial 

resolution of the image.  In order to estimate activated areas of functional images, their 

superimposing onto high-resolution image is required.  The co-registration achieves the 

functional EPI volumes and the high-resolution anatomical image realignment, so that 

the anatomical structures match.  This preprocessing step uses mutual information that 

measures the statistical dependence between two random variables or the amount of 

information that one variable contains about the other.  Mutual information I (A, B) of 

the random variables A and B is defined in terms of entropy as shown below:  
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 𝐼 (𝐴, 𝐵)  =  ℎ(𝐴) +  ℎ(𝐵) −  ℎ (𝐴, 𝐵), (4.8) 

where h(A) and h(B) are the entropies of A and B respectively, and h (A, B) the joint 

entropy.   

The geometric alignment of the images A and B is achieved when the I (A, B) is 

maximal and it is the mutual information criterion [58].   

4.1.4 Intensity normalization  

There is an additional scan-to-scan variance that emerges during fMRI experiment at 

very low spatial frequencies that can be possibly attributed to the scanner itself (scanner 

drift).  This variation can be modeled and controlled by several global normalization 

approaches.  This intensity normalization concerns the rescaling of all intensities in an 

fMRI volume by the same amount and is applied at each volume individually.  In a 

common approach for intensity normalization, the first step is the calculation of the 

mean intensity across all voxels, for each fMRI volume, which have been at an intensity 

above a predetermined threshold.  The rescaling of all intensity values by a constant 

value follows and the result is that the new mean intensity becomes a preset value.  

According to another approach, the usage of mean intensity value of each volume as 

confounding variables is demanded in order to be used in further statistical analysis.  

These methods include a drawback.  In the case of strong activation, the result is the 

increase of the mean intensity, resulting in the negative correlation of the “non-

activated” parts of the volume with the stimulation after normalization, which means 

that in the final statistical image it will be presented as “deactivation” [33].  

4.1.5 Spatial normalization 

The first reason why the spatial normalization is performed as a preprocessing step is 

because it enables the report of the activated locations according to well-known 

coordinates within a standard space.  The most commonly used stereotactic spaces, in 

the field of neuroscience, that mention the locations of activations, are Talairach and 

Tournoux space or a space determined by Montreal Neurological Institute (MNI space).  

A large group of normal MRI scans are used in the MNI space definition, a fact that 

makes it more representative of the population in comparison with the Talairach and 

Tournoux atlas whose determination is based only on one person's brain.  However, 

both atlases show similarities [58].   
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The ability to perform group analysis is the second reason why normalization is used.  

Each human brain is slightly different according to size, shape and in location of 

functional areas.  It is necessary that every subject’s brain be standardized into a same 

space so that functional areas of the subjects are located [33]. 

The determination of the optimum 12-parameter affine registration between the 

template and the image to be normalized, is the first step of the spatial normalization.  

The second one is the estimation of the nonlinear deformations determined by a linear 

combination of three-dimensional discrete cosine transform (DCT) basis functions [58].  

A maximum a posteriori (MAP) approach is used for the determination of the optimum 

affine transformation.  The affine transformation is expressed by:  

 y=M*x, (4.9) 

where M=Mf
−1MtMθMφΜωMzMsΜg.  The Mz is the focus matrix and Ms is the 

shearing matrix.  They are expressed as follows: 

 

                          𝑀𝑧 = [

𝑥𝑧 0 0 0
0 𝑦𝑧 0 0
0 0 𝑧𝑧 0
0 0 0 1

],  𝑀𝜃=[

1 𝑥𝑠 𝑦𝑠 0
0 1 𝑧𝑠 0
0 0 1 0
0 0 0 1

]. (4.10), (4.11) 

The nonlinear deformations that emerge during the normalization preprocessing step 

are required to be estimated.  A linear combination of basic functions, which are the 

lowest-frequency components of discrete cosine transform, is used so that distortion 

modeling be achieved.  A linear combination of basic functions is given below:  

 𝑦𝑖=𝑥𝑖-∑ 𝑡𝑗𝑗 𝑏𝑗(𝑥𝑖). 
(4.12) 

Where tj is the jth coefficient describing translation for each three dimensions and bj(xi) 

is the jth basic function at spatial position ai [58].   

4.1.6 Spatial smoothing 

The increasing of SNR or in other words the reduction of noise without affecting the 

signal of interest, and the ensuring of reliable results from the statistical analysis, are 

the two fundamental reasons of spatial smoothing applying.  The convolution of each 

volume with a Gaussian kernel is the most common approach for spatial smoothing [30, 

33].  The amount of the image spatial smoothing depends on the full width half 

maximum (FWHM) (Fig. 4.4) [29].  The discrete convolution is described by the 

following equation: 

 𝑡𝑖=∑ ℎ𝑖−𝑢
𝑑
𝑢=−𝑑 𝑓𝑢, (4.13) 
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where d is the kernel length, h is the kernel and f the image that undergoes spatial 

smoothing.  The kernel amplitude A, at u units away from the center is defined by: 

𝐴𝑢=
𝑒

−
𝑢2

2𝑟𝑙2

√2𝜋𝑟𝑙2
, where rl=

𝐹𝑊𝐻𝑀

√8 ln2
 and the FWHM is the full width at half maimum of the 

gaussian kernel.  The most suggested FWHM for fMRI data is 2-3 times the voxel size 

of the functional images. 

 

Figure 4.4: Width of Gaussian kernel [30]. 

4.2 Brain Connectivity 

4.2.1 Functional organization and brain connectivity 

A long-lasting debate in the field of neuroscience focuses on the localization of brain 

function.  More specifically, it relates to whether specific mental functions are localized 

to specific brain regions or they rely more diffusely upon the entire brain instead.  Frank 

Gall and the phrenologists were the first to study the concept of localization and focused 

on the shape of the skull in order to localize mental functions in specific brain regions.  

Gall’s assumptions about how the skull relates to the brain were discarded by 

phrenology, despite being an outstanding neuroscientist.  In the early twentieth century, 

research revealing that cortical lesions in rats affected their behavior globally led to an 

argument against localization of function.  Later, during the twentieth century most 

neuroscientists agreed that localization of mental function exist to some point.  

Moreover, in order to achieve coherent mental function and behavior, the function of 

each of these regions must be integrated [29].  These fundamental approaches which 

are related to the brain organization are known as functional segregation and functional 

integration [61].  The first notion implies that a certain cortical area is responsible for 

some aspects of perceptual or motor processing.  While the latter notion supports that 

many specialized areas are functionally integrated [62].  Nowadays, most neuroimaging 
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studies concentrate on functional localization, which is a more general concept than 

functional segregation. On the other hand, functional integration should be taken into 

account, so that brain function can be fully explained [29].  The integration within and 

between functionally specialized areas is described by functional or effective 

connectivity [61].   

Brain connectivity defines the relationship between brain regions which may be 

anatomically different, spatially close or distant and are connected either structurally 

via neuronal axons or functionally via spontaneous intrinsic synchronization [63].  

There are three different though related forms of connectivity that are related to brain 

connectivity analysis.  These are anatomical or structural, functional and effective 

connectivity, which are described in detail below [64].   

4.2.2 Structural connectivity 

Concerning the first type of brain connectivity, anatomical or structural connectivity 

forms the connectome through synaptic contacts between neighboring neurons or fiber 

tracks connecting neuron pools in spatially distant brain regions.  These fiber tracks in 

the brain compose of the so-called white matter.  Anatomical connections present 

persistence and stability on short time scales.  While substantial plasticity may be 

observed for longer time scales [64].   

Advanced diffusion magnetic resonance imaging schemes can in detail depict in 

vivo the complex structural organization of the white matter of the brain [65].  The 

characterization of microscopic tissue properties and rendering the local direction can 

be accomplished by DTI, which measures the water diffusion tensor with the use of 

diffusion weighted pulse sequences as they are sensitive to the random water motion in 

microscopic level [63, 66].  Water molecules in the brain are continually moving and 

this motion is the so-called Brownian motion, as a result of unpredictable, thermally 

driven molecular collisions [67, 68].  Based on the criterion of whether motion is 

constrained or not, we are led to two characterizations of the diffusion.  Deep in brain, 

in vertices, which are large spaces filled with fluid, motion is not restricted and this 

characterizes the diffusion as isotropic which means that it occurs in all directions in 

equal and random rate.  In contrast, in white matter tracts where motion is constrained, 

that is the motion prevails towards one direction than another, the diffusion is 

anisotropic [67]. A severe limitation of these methods, however, is their low spatial 

resolution [64].  This phenomenon is portrayed below in Fig. 4.5. 
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Figure 4.5: Isotropic and anisotropic diffusion [67]. 

 

The pattern of water diffusion occurring in a given voxel can be effectively described 

by a three-dimensional shape reconstructed by estimating the distance in which water 

diffuses in a given voxel, in a certain amount of time, for at least six noncollinear 

directions.  The pattern of diffusion is usually modeled with the shape of an ellipsoid 

that makes available information concerning the diffusion properties and as a result the 

brain tissue microstructure.   

Fractional anisotropy (FA), mean diffusivity (MD) and Mode are three of the most 

frequent diffusivity indicators, that have been studied in the DTI literature.  FA is a 

measure of the sphericity of the diffusion ellipsoid.  FA can diversify between value of 

zero which reflects a perfect spherical diffusion and the value of one which reflects a 

complete aspherical (linear) diffusion.  In the event of a reduced FA in the WM there 

is probably damage to the axon membrane and reduction in axonal myelination, axonal 

packing density and/or axonal coherence.  On the other hand, an increased value of FA 

is likely to show supranormal levels of myelination or axonal sprouting.  The average 

displacement of water molecules because of diffusion in a given amount of time which 

is described by the diffusion ellipsoid volume, determines the MD.  In tissues where 

there are few impediments to water diffusion (e.g., CSF) the MD value is highest, while 

in tissues where diffusion is constrained in at least one direction the MD value is lowest.  

The third index, Mode, provides more information in terms of the 3D shape of the 

diffusion ellipsoid in comparison to that given by FA.  In other words, Mode shows if 

the diffusion ellipsoid is shaped like a cylinder (having high “tubular” anisotropy) or 

like a disk (having high “planar” anisotropy), for a certain FA value [68].  
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DTI fiber tracking  

The aim of DTI fiber tracking is to define intervoxel connectivity based on the 

anisotropic diffusion of water.  The diffusion tensor of each voxel is used by fiber 

tracking in order to follow an axonal tract in three-dimensions from voxel to voxel 

through the human brain.  DTI provides only microstructural information at relatively 

low spatial resolution.  This is the reason why DTI fiber tracking might be frequently 

applied in combination with functional and/or higher resolution anatomic information 

in order to clarify specific pathways.  Consequently, 3D DTI tractography has opened 

a window to the noninvasive human neuroanatomy depiction [69].   

The use of DTI has been recommended for a number of methods which aim to tract 

the fibers within the WM.  There are two broad categories, the deterministic and the 

probabilistic which include methods of reconstruction WM tracts.  Line propagation 

algorithms using local tensor information for each step of propagation are the 

characteristic of the first category [66].  A deterministic method which initiates fiber 

trajectories from user-defined voxel is Fiber Assignment by Continuous Tracking 

(FACT, Fig. 4.6) [69].  The main feature of the method in the second category is the 

global energy minimization which detects a path between two predetermined voxels 

with minimum energy violation.  Probabilistic methods are effective in particular for 

tracking fibers in areas of lower anisotropy, not excepting gray matter [66].   

 

Figure 4.6:  Schematic representation of the FACT algorithm.  Arrows symbolize 

eigenvectors in each voxel and red lines the FACT trajectories [69]. 

4.2.3 Functional connectivity 

In neuroimaging time-series analysis, functional connectivity is defined as the temporal 

correlations between spatially remote neurophysiological events.  This definition gives 

a simple description of functional interactions.  Functional connectivity only provides 

information about the observed correlation without explaining how these correlations 

are mediated [23]. 
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Therefore, the notion of functional connectivity is in essence statistical as it depends 

on statistical measures as correlation, covariance, spectral coherence, or phase locking.  

Statistical dependencies greatly rely on time and vary between a range of milliseconds 

and seconds.  As a result, the correlated activities within brain networks can be 

concluded with the use of neuroimaging modalities like fMRI, EEG, MEG, PET and 

SPECT which are some of the most commonly used techniques.  The fMRI is the most 

important modality which studies the blood oxygen-level-dependent (BOLD) signal of 

the fMRI data.  In this sense, functional connectivity concerns the temporal correlation 

between fluctuations in the BOLD signal of individual brain areas [64].     

As it was aforementioned, functional connectivity analysis of fMRI data aims to 

estimate measures of similarities between the BOLD signals generated from different 

anatomy regions in order to assess the level of their synchronization [70].  The 

correlation of activity in brain regions which are not necessarily close to one another, 

can be caused by different reasons, so the results from functional connectivity analyses 

should carefully be studied.  A description of different ways in which correlated activity 

between two regions A and B can occur is presented in Fig. 4.7.   

 

Figure 4.7: Direct influence (left panel), indirect influence through different area 

(center panel) and shared influence of a common input region (right panel) [29]. 

First, a misunderstanding could emerge, in the occurrence of a direct influence of 

one region on another as this does not refer to functional connectivity but to effective 

connectivity which is described in detail in the next chapter.  In other words, the signal 

along connection between two regions one of which sends efferent connections to the 

other one can be interpreted as correlated activity.  The inference of another region that 

is mediated by a third region or a common input to both regions could also cause the 

same problem.  Here the problem of stimulus-driven transients is implied.  Specifically, 

in the case of common input reception by two different regions from the visual cortex, 

the presentation of visual stimuli can cause correlated activity between them, even if 

they do not directly influence one another.  To be noticed, only in the first case does 

functional connectivity reflect a direct causal influence between regions [29].   
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There is a basic discrimination between the two methods used for fMRI functional 

connectivity analysis.  The first category includes model-based methods and the second 

one data-driven methods [70]. 

4.2.3.1 Model-based functional connectivity analysis 

These model-based methods include the definition of some regions of interest (ROIs) 

which are usually named “seeds” and the hypothesis whether other regions are 

connected to these seeds by defining certain metrics, leading to the generation of the 

connectivity map of the human brain.  These methods are based on prior neuroscience 

knowledge or experience as they require a priori selection of a voxel, cluster or atlas 

region from which the extraction of time-series can be accomplished.  Subsequently, 

this data is assumed as a regressor in a linear correlation analysis or in a general linear 

model (GLM) analysis, in order to calculate whole-brain, voxel-wise functional 

connectivity maps of covariance with the seed region.  The data in each voxel is 

regressed against the ‘model’ separately from every other voxel and this is included in 

univariate analysis methods [28, 71]. 

Connectivity measurements metrics determine the discrimination among model-

based functional connectivity methods in cross-correlation analysis, coherence analysis 

and statistical parametric mapping [28]. 

Cross-correlation analysis 

Cross-correlation analysis has been used in a wide range of studies as well as in fMRI 

data analysis [28].  Simultaneous linear coupling relationship between two time-series 

are measured by zero-order correlation.  In the case of high positive correlation 

existence between time courses, emerges the inference that the two regions are 

simultaneously more or less active on average.  As a result, when one region is more 

active than another this indicates that there is a high negative correlation between them.  

The usage of zero-order correlation measures inter-regional relationships in fMRI [72].  

Inherently, a possible correlation of BOLD time courses implies that this part of the 

brain, involving these time courses, is functionally connected.  For example, for the 

time course of a fMRI BOLD Fx(k) and a seed Fy(k), CCA evaluates the correlation at 

lag μ as: 

 𝐶𝑜𝑟𝑟𝑥,𝑦=
𝑐𝑜𝑣𝑥,𝑦(𝜇)

√𝑉𝑎𝑟(𝑥)×𝑉𝑎𝑟(𝑦)
, (4.16) 
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where Var(x) and Var(y) are the variances of Fx(k) and Fy(k), respectively and 

covx,y(μ) is the cross variance of Fx(k) and Fy(k) at lag μ: 

 𝑐𝑜𝑣𝑥,𝑦(𝜇)= E{(𝐹𝑥(𝑘)-E(𝐹𝑥))×(𝐹𝑦(k)-E(𝐹𝑦))}, (4.17) 

and E means the expected value, and E(Fx) and E(Fy) are the expectation or the mean 

of Fx(k) and Fy(k), respectively.  In the case of a higher value of covx,y(μ) than a certain 

threshold, it is assumed that the two BOLD time courses Fx(k) and Fy(k) are 

functionally connected.   

The full-lag-space calculation of cross-correlation of the hemodynamic response of 

blood is not required and this is a good point because there is high computational cost 

for the full calculation of cross-correlation at all lags.  The duration of HRF is restricted,  

individual subjects.  It emerges that in a short time (few seconds) the HRF will return 

to the baseline and this requires the computation of correlation to be achieved in this 

time period which depends on the TR of fMRI scans.  It is frequent that in many cross-

correlation studies, only the correlation with zero lag is computed [28]. 

Coherence analysis 

CCA is widely applied to many task-based or resting state fMRI studies.  The use of 

correlation at zero lag as the connectivity measurement is debatable.  The correlation 

presents sensitivity to the HRF shape which reveals differences across subjects or brain 

regions.  In addition, it is possible that high correlation be noticed between regions with 

no blood flow fluctuations or because of distortions caused by noises such as cardiac 

activity or blood vessel activity.   

In order to overcome the aforesaid misunderstandings, a proposed metric, the so-

called coherence, is described below [28].  Coherence measures belong to the frequency 

domain in comparison with correlation measures which belong to the time domain.  The 

first is responsible for time delays involving the effects of one region on another and it 

has great usage as statistic for the functional connectivity studies.  In the case of 

similarity existing in time-series between two different regions which appeared with a 

time delay, the effect on zero-order correlation and coherence appear to be different.  

The first shows moderate or low values as compared with the coherence which appeared 

to have higher value in the bandwidth of the curve [72]. 
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For the same time courses Fx(k) and Fy(k) defined in Eq. (1), the coherence is 

expressed as: 

 𝑐𝑜ℎ𝑥,𝑦(𝜆)=
|𝐹𝑥,𝑦(𝜆)|

2

𝐹𝑥,𝑦(𝜆)𝐹𝑦,𝑦(𝜆)
, (4.18) 

 

where Fx,y(λ) is the cross spectrum, defined by the Fourier transform of the cross 

covariance as follows: 

 𝐹𝑥,𝑦(𝜆)=∑ 𝐶𝑜𝑣𝑥,𝑦(𝑢)𝑢 × 𝑒−𝑗𝜆𝑢, (4.19) 

and Fx,x(λ) is the power spectrum, so is Fy,y(λ).   

They are defined as:  

 𝐹𝑥,𝑥(𝜆)=∑ 𝐶𝑜𝑣𝑥,𝑥(𝑢) ×𝑢 𝑒−𝑗𝜆𝑢, (4.20) 

 𝐹𝑦,𝑦(𝜆)=∑ 𝐶𝑜𝑣𝑦,𝑦(𝑢) × 𝑒−𝑗𝜆𝑢
𝑢 . (4.21) 

A more efficient approach to study time course relationships can be achieved with 

the expression of correlation in frequency domain.  For example, at low frequency 

below 0.1 Hz the coherence can be related to functional connectivity, while at higher 

frequency values around 1.25 Hz the coherence may result from cardiac activity rather 

than functional connectivity [28]. 

Statistical parametric mapping 

Statistical Parametric Mapping is the most commonly used method in order to feature 

functional anatomy, functionally specialized responses of the brain and define disease-

related changes.  From the perspective of functional integration, the relationship among 

activity changes in one region to another is investigated by multivariate approaches.  

SPM is a voxel-based approach which utilizes classical inference aiming to the 

annotation of particular regional responses related to experimental factors.  Recently, 

statistical parametric maps (SPMs) are the means of analyzing and making classical 

inferences about spatially extended data in the combined use of general linear model 

(GLM) and Gaussian random field (GRF) theory.  The parameters estimation which 

describes the spatially continuous data with great similarity to conventional analysis of 

discrete data is accomplished by GLM.  On the other hand, GLF theory dealing with 

the resolution of the multiple comparison problem which generates from making 

inferences over a volume of the brain.  GRF theory makes available a method in order 

to correct p values for the search volume of a SPM and its contribution is similar to 



60 

 

those on continuous data (images) as the Bonferonni correction for the number of 

discontinuous or discrete statistical tests [73].   

Although SPM methodology is commonly referred as a method for task-based fMRI 

experiments, it can also be applied to resting-state fMRI investigations.  The first 

processing step requires scaling and filtering across all brain voxels.  The average of 

the voxels in certain seed is taken into account and assumed as a covariate of interest 

in the first-level SPM analysis.  Subsequently, the contrast images that belong to this 

regressor are defined for each subject separately.  Finally, these images are imported to 

a second-level random effect analysis, aiming to the determination of the brain areas 

which are significantly functionally connected across subjects [28]. 

Advantages-disadvantages of model-based methods 

The prevailing point of SCA in comparison with others methods is the fact that it 

directly clarifies the network of the region that implies high level of functional 

connectivity with the seed voxel or ROI.  Scientists find this straightforward 

interpretability of SCA interesting.  According to a recent evaluation of SCA test-retest 

reliability, it has emerged that SCA is able to detect resting state networks (RSN) 

connectivity relationships with high reliability.   

However, it should be taken into account that the nature of the univariate method to 

correlate time-series of single voxel with other voxels in a brain image, ignores the 

available information within the statistical relationships between multiple data points.  

The correlation and the evaluation of the activity of a prior selected time-series in a sub-

region and the whole network places anatomical limitations on the measurement of 

network connectivity and as a result on interpretations of systems-level hypotheses.  

From the biological perspective, it is possible that the selection of the seed lead to 

connectivity results towards certain, smaller or overlapping sub-systems rather than 

larger, distinct networks [71]. 

4.2.3.2 Data-driven functional connectivity analysis 

To eliminate the problems that emerge from model-based methods, that have direct 

dependency from prior knowledge or assumed model, alternative approaches for 

functional connectivity analysis, which are based on data, have been invented.  There 

are two basic types included in these data-driven methods.  The first refers to 

decomposition techniques such as principal component analysis (PCA), singular value 

decomposition (SVD) and independent component analysis (ICA) and the second 
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includes clustering analyses such as fuzzy clustering analysis (FCA) or hierarchical 

clustering analysis (HCA).  The discrimination is achieved according to the way the 

data is analyzed.  Decomposition techniques aim to express the dataset as a linear 

combination of basic vectors (PCA/SVD) or statistically independent components 

(ICA).  In contrast, clustering techniques are addressed on fMRI dataset in clustering 

analysis methods.  Both methods support the investigation of functional connectivity 

of human brain as a whole [28]. 

Decomposition-based methods 

Principal component analysis (and singular value decomposition) 

Two commonly used techniques for data analysis are the PCA and SVD.  They are 

regarded as one type of analysis because of the fact that they have a close relationship. 

One of the most popular methods for matrix decomposition is PCA which is able to re-

express the dataset in a set of uncorrelated or orthogonal to one other components [29].   

Each contributor consists of a temporal pattern (a principal component) multiplied with 

a spatial pattern (an eigen map).  Mathematically, the SVD of X (T time points × N 

voxels) is:  

 X=US𝑉𝑇=∑ 𝑆𝑖
𝑝
𝑖=1 𝑈𝑖𝑉𝑖

𝑇, (4.22) 

where the Si is the singular value of X, Ui is the jth principal component, Vi is the 

corresponding eigen map and p is the number of chosen components.  The brain regions 

connectivity is extracted by the produced eigen maps, where a high absolute value 

(either positive or negative) indicates a correlation [28].  

As shown in Fig. 4.8, the PCA is able to find the orthogonal component of a set of 

data.  The direction in which data present the highest amount of variable corresponds 

to the first principal component and the direction that presents the next greatest amount 

of variance corresponds to the second principal component which is not correlated with 

the first one, and so on. 
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Figure 4.8: On Gaussian data, PCA finds the first component in the direction which 

carries the greatest variance and the second orthogonal component (left). On mixture 

data of two different signals, PCA is not able to find these non-orthogonal sources 

(right) [29]. 

The minimum of the number of dimensions or observations can produce the number of 

components.  In the case of fMRI data, the number of dimensions (voxels) is different 

from the number of observations (timepoints or subjects).  Another use of PCA is to 

reduce data.  It is easier to analyze data from the first few principal components that 

represent the majority of the variance in the data, instead of analyzing the data from the 

huge number of all voxels.  In order to implement PCA on fMRI data, it is necessary 

that data be expressed in a two-dimensional matrix, where the columns represent the 

voxels and rows the timepoints/subjects.  PCA is able to find a set of components with 

a given value in each timepoint, reflecting the combination of voxels which represent 

the greatest variation.  It is also feasible to estimate the level of contribution of the 

voxels in each component. 

 Due to the simple and easy implementation of PCA, it has been used in many studies 

as a method for functional connectivity analysis.  However, its sensitivity only on 

Gaussian distributed data constitutes an important disadvantage.  Several fMRI data 

follow Gaussian distribution, so PCA can be effectively performed, but in the case of 

non-Gaussian fMRI data, PCA can confuse the signal of interest.  To overcome these 

undesirable effects, the ICA is a proposed method as it is more appropriate.  Because 

of its effectiveness on fMRI data analysis, ICA has supplanted PCA on functional 

connectivity characterization [29]. 

Independent component analysis 

A recent and widely used method for functional connectivity analysis with fMRI is 

Independent Component Analysis (ICA) which is well suited not only on task-based 
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fMRI experiments but also on resting-state fMRI investigations as it does not require 

any prior information about spatial of temporal patterns of source signals.  For this 

reason, the use of ICA algorithm has been really attractive to scientists in order to find 

functional connectivity using resting-state fMRI [28]. 

Unlike general linear model (GLM) which sets as condition the parametrizing of the 

data by the user and PCA which takes into account the notion of uncorrelatedness and 

normality, ICA is based on the assumption of statistical independence [74, 75]. 

The fundamental purpose of ICA is the solution of the blind source separation 

problem. For this reason, a set of random variables (observations) is expressed as a 

linear combination of statistically maximally independent latent components variables 

(source signals) .  Blind signal separation is an explorative technique which is used in 

the field of image and sound analysis.  The definition blind was given due to the fact 

that the tools used in this technique try to detect mixed signals coming from unknown 

sources.  For instance, in the cocktail party problem, signals from multiple sources with 

different relative amplitudes, are recorded by several microphones.  ICA is based on 

the assumed statistical independence of the source signals and is a method used for 

blind signal separation.  Because of the fact that signals are of various types on fMRI 

recordings, blind signal separation techniques are suitable to isolate and distinguish the 

source of these signals separately [76].   

This ability of ICA to separate individual sources of different signals is presented in 

the following figure (Fig. 4.9). 

 

Figure 4.9: ICA can distinguish the two signals with accuracy in mixture (non-

Gaussian) data (right panel), in comparison with its implementation on Gaussian data, 

which might fit to the noise since there is no signal after whitening [29]. 

For fMRI data X (T time points × N voxels), the ICA model can be expressed as: 
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 𝑋 = 𝐴𝐶 = ∑ 𝐴𝑖
𝑁
𝑖=1 𝐶𝑖, 

(4.23) 

where Ci is the jth underlying signal source (IC component), A is the mixing matrix 

with a dimension of T×N.  Different sources are independent from each other: 

 𝑃(𝐶1, 𝐶2, … , 𝐶𝑁) =  ∏ 𝑃(𝐶1)
𝑁
𝑖=1 . (4.24) 

Here, P(C1) is the probability of the ith  underlying signal source.  Denoting W as 

the pseudo reverse of A (W also called unmixing matrix), we can obtain the independent 

components (ICs) simply by [28]: 

 𝐶 = 𝑊𝑋. (4.25) 

The statistical information needed for ICA accomplishment is higher than second 

order, so one way that it be produced is by nonlinear functions or be fully estimated.  

Algorithms that use non-linear functions and are based on maximum likelihood 

estimation, maximization of information transfer, mutual information minimization, 

and maximization of non-Gaussianity can be used in order to produce higher-order 

statistics [74]. 

The most common algorithms that are used in order to solve ICA are Infomax and 

Fixed-Point.  Both of them are based on minimization of mutual information of 

components 𝐶𝑖.  Using adaptively minimization of the output entropy of neural network 

with as many outputs as the number of ICs to be estimated Infomax manages to 

accomplish this aim, while Fixed-Point is based on the notion of negentropy [28].  

There are studies that reveal the conjoint efficiency and accuracy of the findings after 

implementing both algorithms.  In addition, they carry their separate own advantages.  

Fixed-Point algorithm prevails over Infomax according to spatial and temporal 

accuracy in comparison with Infomax which is more powerful in global model 

estimation and the decrease of noise [76]. 

After performing ICA on a dataset, the original time sources are decomposed into 

independent components which are characterized by statistical independency and 

correspond to IC maps which include correlation measures.  The connectivity maps 

with the corresponding underlying sources can be acquired after applying a threshold 

to IC maps [28]. 

During the performance of ICA, two different assumptions are possible to be made 

which lead to different findings.  First, the reconstruction of the original 4D matrix into 

a 2D matrix is needed.  Subsequently, the first assumption considers that the data 
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constitutes of T random variables (timepoints) each of which are measured in N voxels.  

From this perspective, T three-dimensional activation maps are generated.  Hence, each 

3D map is possible to be analyzed into an original N×T matrix.  As a result, the mixing 

matrix A has T×T dimensions.  In contrast, the second assumption includes the 

expression of the data as N random variables each of which are measured in T time 

points.  Consequently, the output is N independent time-series the length of which is T.  

This leads to an original T×N matrix with X dimensions and a mixing matrix A with 

N×N dimensions. 

The ICA can be distinguished in spatial ICA and temporal ICA depending on the 

way the data is decomposed.  Spatial ICA based on the analysis of spatially independent 

components and spatially independent time course.  In contrast, temporal ICA is 

referred to the data decomposition into temporarily independent components and 

temporarily independent time course. 

Both methods are used in a variety of fMRI studies but the nature of the task 

determines the most suitable selection, as these methods have different results regarding 

the characteristics of the underlying signals that are to be assessed.  Temporal ICA is 

the proposed method in the case that the underlying signals are spatially but not 

temporarily correlated.  In contrast, when signals are temporarily but not spatially 

correlated, spatial ICA suits effectively on data [28]. 

The use of ICA algorithms in fMRI studies bas been to a large extent.  However, 

there are some obstacles that should be taken into consideration.  For example, a pitfall 

could be the violation of the assumption of spatially or temporarily independence of the 

components (signal sources) which might lead to the inefficiency of ICA.  Also, a 

discussion might arise about the appropriate way of independent components selection 

as well as about thresholding the IC map in order to derive all the important information 

concerning functional connectivity.  For example, in the case that the number of the 

signal of sources is bigger than the number of ICs, there is great dependency on the 

number of ICs.  According to the second questioning, thresholding directly IC maps it 

has been confirmed that it is a difficult task.  Practically, it is usual to transform an 

independent map with non-Gaussian distribution into a z-map with a Gaussian 

distribution, but it carries a dilemma, the overestimation of the false positive rate (FPR), 

although in many cases it could be disregarded, as it does not cause severe problems.  

Finally, ICA is a non-free generative model, that can express in detail the fMRI dataset 
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through source signals and the mixing matrix A.  Hence, this does not allow the 

evaluation of the statistical significance of the source within the framework of null-

hypothesis.  The recently developed model, the so-called probabilistic ICA comes to 

overcome this problem.  According to probabilistic ICA, a set of q (q<p) statistically 

independent non-Gaussian sources (spatial maps) produce the observed p dimensional 

time-series through a linear and instantaneous ‘mixing’ procedure violated by additive 

Gaussian noise η(t): 

 𝑋𝑖 = 𝐴𝑆𝑖 + 𝜇 + 𝜂𝑖, 
(4.26) 

where Xi is the p-dimensional column vector of individual measurements at voxel 

location I, A is mixing matrix, Si refers to the q-dimensional column vector of non-

Gaussian source signals contained in the data, μ is constant part and ηi is the Gaussian 

noise ηi~N(0, σ2Σi) [28, 77]. 

In the perspective of making inferences about a group of subjects, in comparison with 

univariate methods, ICA is not able to naturally generalize to a method suitable to 

achieve this.  For instance, in the case of applying GLM on a set of data, the 

specification of regressors of interest is determined by the investigator.  This is why 

inferences about group data arise naturally as all subjects in the group use common 

regressors.  On the other hand, during ICA implementation, different subjects in the 

group have different time courses, so they will be classified in a different way, a fact 

that does not clarify directly the way of making inferences about group data by the use 

of ICA.   

However, there are some ICA multi-subject analysis approaches that have been 

recommended.  These approaches are classified into five categories, combining single 

subject ICA, group ICA with temporal concatenation or spatial concatenation, pre-

averaging and tensor ICA.  Their discrimination is based on the way the data has been 

grouped before the analysis, what kinds of output are available and the way of the 

statistical inference process [74]. 

Several approaches, which are included in the first category, first perform single-

subject ICA and afterwards use approaches such as self-organized clustering or spatial 

correlation of the components in order to combine the output into a group post hoc.  

This bears the benefit that it recognizes unique spatial and temporal features, in 

comparison with the fact that because of the nuisance of the data, the components are 

not certainly mixture similarly for each subject.  The other four approaches include the 
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ICA computation on the whole group dataset.  The advantage that has arisen after 

examining the temporal and spatial concatenation is the single performance of ICA, 

which afterwards is able to be separated into subject-specific parts, therefore it is simple 

to compare subject differences within a component.  Temporal concatenation approach 

provides unique time courses for individual subjects but supposes common aggregate 

spatial maps.  In contrast, spatial concatenation approach provides unique spatial maps 

but supposes common time-series.  Despite their differences in data organization, it has 

been proven that temporal concatenation suits better on fMRI data due to the fact that 

ICA time courses are greater regarding temporal variations in comparison with the 

variation in the spatial maps at conventional field strengths of 3T and below [78]. 

Averaging the data before ICA is assumed as a less computationally demanding 

approach but allows possessing a common time course and a common spatial map.  In 

order to evaluate group-specific temporal responses and common spatial maps in an 

extended group, the tensor model is suggested to be used.  Last, the so-called as 

multidimensional or multi-way or N-way decompositions which represent the tensor 

decomposition approaches, have recently been considered with great interest.  

However, their effectiveness on group and multi-group fMRI data, has not yet been 

clarified.  A representative approach uses three-dimensional tensor in order to assess a 

single spatial, temporal and subject-specific process for each component to recognize 

the multidimensional structure of the data in the estimation stage.  This approach might 

have no reliable results without additional preprocessing, in the case of the existence of 

different time courses between subjects.  This occurs in a resting state MRI study where 

it is clear that there is no synchronization of time courses between subjects, in 

comparison with task-based fMRI experiment which involves similar timing between 

subjects [78]. 

Clustering Analysis 

The estimation of activity patterns in fMRI studies can be achieved by the commonly 

used clustering analysis methods.  Fuzzy clustering analysis, vector quantization, self-

organizing maps, and neural gas network are notions that are included in these methods.  

Implementing clustering analysis on fMRI data aims to classify the data into different 

clusters based on the intensity proximity of the time course.  When time courses have 

high adjacency are assumed as one cluster.  It is worth noting that clustering analysis 

which is based on intensity proximity provides low sufficiency regarding the detection 
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of functional connectivity.  This is why the contribution of clustering analysis methods 

in fMRI studies relies on the similarity between time courses as the distance 

measurement, instead of the characterization of the distance by intensity proximity [28]. 

Fuzzy clustering analysis 

Fuzzy clustering analysis (FCA) is an exploratory and paradigm independent method 

with high implementation on fMRI data analysis in order to estimate functional 

connectivity signals.  Because of the fMRI data nature which includes a great amount 

of data as well as a wide range of noises, it is necessary that FCA undergo some 

restrictions on some fMRI applications.  The typical FCA method based on the 

evaluation of the similarity between two single voxels using Euclidean distance or 

Pearson correlation coefficient, which are attractive for their sensitivity, simplicity and 

simple interpretation.  Nevertheless, these univariate distance similarity measures carry 

several disadvantages.  Specifically, the computational time of these fMRI data analysis 

is huge with many repetitions because of the slow speed of convergence.  It is not 

possible that univariate based measures accomplish steady iterative state quickly.  

Furthermore, spatial random noise which is included in fMRI data should not be 

ignored.  The high susceptibility of univariate analysis methods on noise could lead to 

blurred and obscure connectivity maps, even if smoothing decreases an amount of 

spatial noise.   

In order to estimate efficiently the similarity between two sets of variables with the 

same number of sample observations, a multivariate statistic, the RV coefficient has 

been suggested [79]. 

A different way of hard clustering is proposed with the use of FCA.  Its aim is to 

detect a division of a dataset X of n time courses that are assumed as points in t-

dimensional space.  They are to be given to one of the c cluster centers (representative 

time courses) which are assigned by a matrix V (c, t).  The c-partition of X is determined 

by the matrix U (c, n) and the uik are the membership values of k-th voxel to i-th 

centroid. 

 0 ≤ 𝑢𝑖𝑘 ≤ 1 , Ɐ 𝑖, 𝑘 , (4.27) 

 0 < ∑ 𝑢𝑖𝑘
𝑛
𝑘=1 ≤ 𝑛 , Ɐ 𝑖 , (4.28) 

 ∑ 𝑢𝑖𝑘
𝑐
𝑖=1 = 1 , Ɐ 𝑘. (4.29) 
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An increased developed version of fuzzy C means algorithm defines the matrices U 

and V and minimizes the functional Jm: 

 𝐽𝑚(𝑋, 𝑈, 𝑉) = ∑ ∑ 𝑢𝑖𝑘
𝑚𝑑2(𝑥𝑘; 𝑣𝑖)

𝑛
𝑘=1

𝑐
𝑖=1 , (4.30) 

where d (xk; vi) is the distance between the k-th datum and the i-th centroid.  The 

hyperbolic correlation coefficient (HCC) measure is related to single-voxel metric 

measure which is a contrast to the RV distance measure.  It is expressed by a function 

of the correlation coefficient ρik between each data vector xk and the prototype vi: 

 𝑑(𝑥𝑘;  𝑣𝑖) = (1 − 𝜌𝑖𝑘)/(1 + 𝜌𝑖𝑘). (4.31) 

A two-stage iteration gives the solution of minimizing Jm: 

 
𝑣𝑖𝑙 =

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1 𝑥𝑘𝑙

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1

, (4.32) 

 
𝑢𝑖𝑘 =

1

∑ (
𝑑(𝑥𝑘; 𝑣𝑖)
𝑑(𝑥𝑘; 𝑣𝑖)

)

2
𝑚

−1
𝑐
𝑗=1

. 
(4.33) 

Where vil is the element of matrix V and m (m>1) is a parameter aiming to control the 

fuzziness of the clusters.  When the algorithm fulfills the predetermined requirements, 

the iterations pause. 

In order to examine the functional connectivity intensity between each location in 

the brain in a particular centroid, the search cube should be centered in a specific voxel.  

The centroid search cube is centered on the center of the cluster and datum search cube 

on the center of the voxel which is going to be classified.  The multiple nearby voxels 

of the cube have their own shape and size and the next step is to move the datum search 

cube across all voxels on the whole brain.  The multivariate similarity between the time 

courses of the voxels indicating the centroid search cube and the time courses of the 

voxels indicating the datum search cube are estimated at each location.  By selecting 

the search cube of different sizes and shapes, the connectivity patterns mapping of 

different spatial scales can be obtained [79]. 

The multivariate statistics of RV coefficient estimates the similarity between two 

sets of time courses.  The RV coefficient is expressed as follows: 

 𝑅𝑉(𝑋, 𝑌) =
𝑡𝑟(𝑋𝑋𝑡𝑌𝑌𝑡)

𝑡𝑟(𝑋𝑋𝑡𝑋𝑋𝑡)
1
2×𝑡𝑟(𝑌𝑌𝑡𝑌𝑌𝑡)

1
2

, (4.34) 

where X and Y are n×p and n×q matrices from two data sets which include p and q 

numerical variables on the same sample of n time points,  Xt is the transpose of matrix 
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X and tr (·) is the trace operator of square matrix.  In the case of X dataset consisting of 

voxels classified into the datum search cube centered by xk and Y dataset consisting of 

voxels classified into the centroid search cube by vi, the distance can be expressed by: 

 𝑑(𝑥𝑘; 𝑣𝑖) = 𝐷(𝑋, 𝑌) = √2(1 − 𝑅𝑉(𝑋, 𝑌)). (4.35) 

The RV coefficient value varies between 0 and 1.  The value of 0 corresponds to two 

independent sets, a fact that reveals absence of correlation or similarity between 

datasets.  The value 1 of RV coefficient indicates that the eigen components of dataset 

X can be extracted from Y across a homothetic transformation that presents a rotation 

matrix H and a scaling factor c such that cXH=Y.  The RV calculation demands the 

centering of X and Y into columns [79]. 

Hierarchical clustering analysis 

The hierarchical clustering analysis assumes each voxel as one cluster during the 

beginning and units the close clusters according to specific distance measurement, in 

opposition to FCA which demands an empirical selection of a number of initial clusters.  

This notion of closeness can be estimated through methods which separate single-

linkage from complete-linkage and average-linkage clustering [28]. 

The newly developed single-linkage HCA algorithm measures the distance using the 

combination of correlation analysis and frequency decomposition.  The decomposition 

of Pearson’s correlation coefficient CCx,y between two time courses Fx(k)  and  Fy(k) 

is described as:   

 𝐶𝐶𝑥,𝑦 =
𝑁 ∑ 𝑅𝑒(𝜔𝑓)𝑅𝑒(𝜑𝑓)+𝐼𝑚(𝜔𝑓)𝐼𝑚(𝜑𝑓)𝑓

𝑆
=

∑
𝑁(𝑅𝑒(𝜔𝑓)𝑅𝑒(𝜑𝑓)+𝐼𝑚(𝜔𝑓)𝐼𝑚(𝜑𝑓))

𝑆𝑓 = ∑ 𝐶𝐶𝑓(𝑥, 𝑦)𝑓 . 

(4.36) 

Where ωf and φf are complex frequency component of Fx(k)  and Fy(k)  

respectively and Re (*) and Im (*) represent the real and imaginary component of 

signal*.  S is described as: 

 

𝑆 = √∑ 𝐹𝑥
2(𝑘)

𝑁−1

𝑘=1
∑ 𝐹𝑦

2(𝑘)
𝑁−1

𝑘=0
. (4.37) 

The distance D (x, y) between Fx(k) and Fy(k) is defined as: 

 

𝐷(𝑥, 𝑦) = 1 − ∑ 𝐶𝐶𝑓(𝑥, 𝑦)

0.1𝐻𝑧

𝑓=0

. (4.38) 
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In summary, a low-pass filter to Pearson’s correlation coefficient is implemented by 

this distance and then a reverse increase function is stored in order to map the output 

into distance.  The information that demonstrates synchrony in cerebral blood flow and 

oxygenation between different brain regions is extracted from the correlation 

coefficient by the previous filtering process. 

According to the experiments including simulated or human brain data, it has been 

proven that structured contaminations such as respiratory or cardiac noises can be 

effectively removed.  Because of the high computational cost of HCA, when 

implemented on the whole brain, the enhancement of these methods is demanded [28].  

Because of the poor scaling, high complexity and sensitivity to outliers, hierarchical 

clustering analysis does not have the ability to be applied with fluency as other methods 

do in resting-state fMRI analysis.  But, what should not be ignored is the fact that this 

approach is fully deterministic and is able to express data as stratum through a 

hierarchical structure, not to re-mention its high computational cost [80]. 

Comparison between Model-based and data-driven analysis methods  

The selection of model-based or data-driven methods for functional connectivity 

analysis has been a long-term debatable topic.  Despite the attempt of researchers to 

suggest the most appropriate method, there is no evidence to prove the supremacy of 

one of them.  One method does not reject the other as their selection depends on the 

nature of study.  For example, when prior experience and knowledge already exists and 

methods may produce the same findings, disregarding them is not wise.  Additionally, 

the use of ICA instead of CCA in studies that aim to find extensive regions of correlated 

voxels appear to be more efficient [28].  
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The following figure (Fig. 4.10) illustrates a schematic representation of functional 

connectivity analysis methods. 

4.2.4 Effective connectivity 

Effective connectivity describes the influence that one neural system exerts over 

another at a synaptic or cortical level, denoting causal interactions between activated 

brain areas [59, 81].  This definition refers to a more mechanistic way through which 

observed responses are explained and it might be interpreted as the experiment- and 

time-dependent, the simplest feasible circuit diagram which accurately represents the 

observed relationships of time between recorded neurons.  As a result, effective 

connectivity tends to be dynamic (activity-dependent) and has great dependency on a 

model of directed interactions or coupling [82].   
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Figure 4.10: Schematic representation of functional connectivity analysis methods [28]. 
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Based on the aforementioned case, temporal dynamics (dynamic functional 

connectivity) could be considered as an attractive assumption on the functional 

connectivity development, but it is limited regarding the causal explanation extraction 

which is achieved by effective connectivity methods.  This is due to the fact that 

functional connectivity deals with the definition of second order data characteristics, 

preventing the interpretation of neurophysiological time-series under a mechanistic 

perspective [82].  Obviously, functional and effective connectivity show appreciable 

differences in practice, despite their common use in the fields of neuroimaging and 

electrophysiology.  For example, the neurophysiological measurements do not have 

similarities according to the time-scale and their nature (seconds vs. milliseconds and 

hemodynamic vs. spike trains) in comparison with electrophysiological measurements.  

Furthermore, in order to detect the underlying connectivity in electrophysiology, the 

confounding effects of stimulus-locked transients, which present correlations by neural 

interactions (not causally mediated), should be discarded.  In contrast, from the 

neuroimaging perspective, the previous problem is less important, as the promulgation 

of dynamics from primary sensory areas onwards is mediated by neuronal connections 

(usually reciprocal and interconnecting) [81].  Consequently, it is crucial to distinguish 

operationally the notions of functional and effective connectivity as it shapes the 

character of the inferences coming from functional integration and answers the 

questions that arise from intricate interrelationship between effective and functional 

connectivity [82]. 

The inference of causal relations is quite demanding due to the special features of 

fMRI data.  First of all, the issue that requires attention concerns the size of the model 

space.  Testing all possible graphs in order to find the most suitable for the data, could 

be a straightforward method to clarify how brain regions influence one another (which 

is the objective of effective connectivity).  When the number of regions in the graph 

becomes bigger, the directed graphs that possibly exist, are also increased at super-

exponential degree as a function of the number of the regions, a fact that cannot be 

controlled even with fast computers.  Specification of a small set of models based on 

prior knowledge could be a solution to the problem, but the validity of the results can 

only be established by focusing on the tested models. However, this seems to be 

impossible.  This is why the most suitable model fitting is rendered to be an important 

issue [29].   
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It is worth noting that the underlying neuronal signals refer to the causal interactions 

that are under investigation, despite the fact that effective connectivity analyses are 

implemented to fMRI data.  So, it is necessary to evaluate the causal relations of 

variables from observed signals which also contain noise and systematic distortion of 

the signal (such as hemodynamic delays).  A problem that might arise concerning the 

estimation of underlying causal interactions is that the recorded noise leads to the 

identification of fake causal relations which has not actual existence.  Additionally, in 

the case of being based on temporal information to extract causal relations, the 

hemodynamic response differences across regions are also the reason for fake causal 

association. 

Except for the information that effective connectivity analysis carries regarding the 

relations between activation across regions, it is noteworthy that the interest is turned 

towards the inferences concerning connectivity patterns that appear in larger groups of 

subjects instead of taking into consideration a certain set of sampled individuals.  

Furthermore, it is possible that characteristics like age, experience, genetics or other 

factors affect the true pattern of connectivity varying the connectivity parameters across 

subjects, even in the case of their sharing common causal structure.  This emphasizes 

the need for the existence of appropriate methods for effective connectivity evaluation 

at population level.  The straightforward approach that includes the combination of the 

data across subjects and the estimation of the model in the complex dataset is not 

suggested, as it could lead to an observed pattern of independence and conditional 

independence interactions that do not represent any subject in the group.  As a result, 

random effect analysis is required to achieve accurate and effective evaluation of 

connectivity across subjects [29]. 

Because of the diverse nature of causal influences of effective connectivity and its 

various interpretations, which is differentiated from the notion of synchronization in 

functional connectivity analysis, it is necessary that different methods of effective 

connectivity analysis be applied [83]. 

Effective connectivity is described by two models (linear and non-linear) which 

explain the way brain areas are connected from the aspect of mathematics and which 

areas are connected from the aspect of neuroanatomy.  According to experience, linear 

model can provide quite adequate results but attention should be paid to non-linear 

models for effective connectivity analysis.  The base of this reasoning is that brain 

reacts at simple and well-organized experiments in a straightforward process, in 
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comparison with neurophysiological interactions that appear to be non-linear and put 

the efficiency of linear models in dispute [23]. 

A set of assumptions about the inherent data structure (time-series, correlation 

matrix or higher-order statistics) or underlying biophysics that are going to be modeled 

are employed at the beginning of approaches utilized in effective connectivity 

evaluation.  Subsequently, maximum likelihoods or Bayesian inferences are some of 

the criteria that are taken into consideration in order to search the optimum models and 

lastly the conclusions of the causality or conditional dependences are emerged from the 

learned model parameters. 

For a fMRI study, effective connectivity can be commonly applied using approaches 

such as dynamic causal modeling (DCM), Granger causality analysis, structural 

equation modeling (SEM), psychophysiological interactions (PPI), graphical causal 

modeling, dynamic Bayesian networks and switching linear dynamic system and have 

been widely used in clinical studies [35]. 

Structural Equation Modeling (SEM) 

In the field of statistics, SEM describes a set of equations with supporting assumptions 

of the analyzed system, in which parameters are based on statistical observations.  So, 

structural equations are described as equations utilizing parameters in the analysis of 

the observable or latent variables [84]. 

SEM is a suggested method for effective connectivity estimation on fMRI data.  This 

is a multivariate linear statistical technique, that describes steady-state coupling 

between brain regions with the use of the covariance structure of the data, ignoring the 

temporal dynamics of the fMRI time-series [85, 86]. 

SEM, as a method testing hypotheses about causal inferences between variables, 

including regions and the directed connections between them [29, 57].  The path 

coefficients for each link are estimated reflecting the altered activity of a region having 

been influenced by a given unit change.  They also denote the average influence across 

the time interval measured.  A SEM model can be expressed in algebraic form as: 

 𝑌 = 𝑀𝑌 + 𝜀. (4.39) 

Where Y is the data matrix, M is a path coefficients matrix and ε is independent and 

identically distributed Gaussian noise.   

Another representation of the previous form could be: 
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 𝑌 = (𝐼 − 𝑀)−1𝜀,  (4.40) 

where I is the identity matrix.  The empirical covariance matrix of Y is utilized in 

order to acquire the solution of the unknown coefficients which are included in M [57].   

SEM has the characteristic to minimize the difference between the observed or 

measured covariance matrix as well as in the structure of the model.  The free 

parameters (path coefficient or connections strengths) are modified in order to minimize 

the difference between the measured and modeled covariance matrix [23].  Nested 

models and likelihood ratio test (LRT) are the basis of all inferences according to the 

assumption whether a path coefficient is reliably different from zero [57]. 

This technique is highly popular concerning the effective connectivity evaluation on 

neurocognitive systems, primary dealing with PET and fMRI data and then also on 

EEG data [87, 88].  This fact renders it a suitable model for diverse cognitive networks, 

including those mediating visual perception, motor control, language function, 

associative learning and pain processing [87]. 

The positive aspects of SEM include fast and robust computations as well as its 

implementation on large-scale simulations using neuroimaging data.  SEM is not a 

recently developed method so there are many software packages and algorithmic 

variations accessible [88]. 

In contrast, there are some model assumptions that arise during SEM performance 

that should be taken into consideration.  The assumption of normally distributed and 

independent from sample to sample data leads to SEM providing reduced temporal 

information.  As a result, a weakness which emerges is the production of the same path 

coefficient as the original data on permuted data, because the assumed independence is 

disrupted in the analysis of a single subject [57].  The disadvantages also include the 

high dependency of the sample size on the absolute evaluation of the model, the primary 

estimation of the connection directions and the incapability of utilizing fully reciprocal 

models [88]. 

Granger causality modeling 

Granger causality is a general methodological approach developed for the analysis of 

economic data, which studies the relation in time between variables in order to model 

causality.  It is based on the concept of temporal precedence information [29].  It is one 

more method which examines effective connectivity analyzing dependencies in fMRI 

time-series.  Granger causality is often framed in terms of a multivariate autoregressive 
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(MAR) model in order to capture interactions among brain regions, describing a causal 

and dynamic system of linear interactions, driven by stochastic innovations [88, 89].  In 

this method, priori specification of a structural model is not required, as past values of 

one brain region are taken into account so that current values of another can be predicted 

[57].  

According to theory, a vector autoregressive (VAR) process of order p can be used 

in order to model the discrete zero-mean vector time-series x[n] = (x1[n],… , xM[n])T 

as follows: 

 𝑥[𝑛] = −∑ 𝐴[𝑖]𝑥[𝑛 − 𝑖] + 𝑢[𝑛]𝑝
𝑖=1 , (4.41) 

where u[n] is the (multivariate) white noise.  Because of the fact that the matrices 

A[i] regress x[n] onto its own past, they are known as autoregression coefficients.  As 

it has already been said, VAR model could be assumed as linear prediction model that 

tries to predict the present value of x[n] based on a linear combination of the most recent 

past p values.  As a result, the current value of a component xi[n] is predicted based on 

a linear combination of its own past values and the past values of the other components.  

Thus, the importance of VAR concerning Granger causality evaluation across groups 

is verified.  The direction of causality from information in the data is achieved by 

temporal precedence.  If two time-series x[n] and y[n] are given, the influence from x 

to y and the influence in the reverse direction can be independently determined by 

suitable models.  A measure of linear dependence 𝐹𝑥,𝑦, between x[n] and y[n] can be 

described as a sum of three components: 

 𝐹𝑥,𝑦 = 𝐹𝑥→𝑦 + 𝐹𝑦→𝑥 + 𝐹𝑥·𝑦 . (4.42) 

Fx,y will evaluate to zero, if no value at a given instant of one can be described by a 

linear model containing all the values (past, present and future) of the other.  Fx→y is a 

measure of linear directed influence from x to y and Fy→x from y to x, respectively.  

The two directed components use the arrow of time to define the direction of influence.  

Nevertheless, it is not certain that these directed components will fully provide a total 

linear dependence between x and y.  A great amount of the total linear dependence can 

be interpreted by the instantaneous influence Fx·y between them.  Fx·y is a measure to 

quantify the progress of the prediction of the current value of x (or y) assuming the 

current value of y (or x) as a linear model already including the past values of x and y.  

Conclusively, it is obvious that there is no directional information included in Fx·y as it 
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represents residual correlations in the data.  Practically, the directed influence between 

x and y can result from the nonzero values of Fx·y.  These useful and accurate 

characteristics of these measures support investigation adapted to evaluate effective 

connectivity in fMRI data [90].   

Unlike SEM and DCM (dynamic causal modeling which is described in detail 

below), Granger causality has the benefit of utilizing time-series directly in order to 

study whole-brain effective connectivity avoiding the determination of an anatomical 

network.  On the other hand, there are some drawbacks concerning Granger causality 

modeling which emerge due to the temporal features of the fMRI data.  First, the impact 

of slice-timing is of primary importance, as Granger causality is based on the relative 

activity of region in time.  It is possible that the differences in relative timing of 

acquisition across slices have a greater value than the relative timing effects due to 

neural processing.  Second, Granger causality considers that hemodynamic response 

has the same time characteristics across the brain, a fact that will generate spurious 

causes in Granger causality analysis performing.  Actually, there are many studies 

which give evidence that Granger causality on fMRI time-series does not generate 

accurate causal influences, compared with the simultaneous use of electrophysiological 

and fMRI recordings.  Accurate extracts can be accomplished only if time-series are 

deconvolved (with the use of the hemodynamic model taken from DCM in combination 

with electrophysiological recordings).  Third, a solution to the problem that arises when 

data are sampled at a rate slower than the causal process (considerable short TR is 

suggested to acquire robust time-series), could be the obtainment of residuals from a 

time-series analysis (e.g. Granger causality analysis) and then applying the graphical 

causal model search procedures (which are described below).  Finally, if multivariate 

extension is needed, it should be done with great care, as when many regions are 

involved, the results denote instability [29, 88]. 

Dynamic causal modeling (DCM) 

The development of effective connectivity investigations renders the dynamic causal 

modeling (DCM) a powerful tool in order to evaluate causal architecture of coupled or 

distributed systems [91].  Generally, the concept of DCM is to define the parameters of 

a logically realistic neuronal system model in order to achieve an as much as possible 

fitting of the predicted BOLD signal (that arises from the converting of the modeled 

neural dynamics into hemodynamic responses) and the observed BOLD time-series. 
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Because of the state-space nature of DCM, the clarification of its levels is needed.  

A simple model of neural dynamics in a system of k coupled brain areas, corresponding 

to the hidden level of DCM, which is not possible to be observed directly by using 

fMRI.  A single state variable 𝑧𝑖 is used for each system element i representation and 

the neural state vector over time is used for the dynamics system description.  

According to the neural state variables, it is important to clarify that they are not 

equivalent to common neurophysiological measurement (as spiking rates or local field 

potentials do) but correspond with a summary of indicators of neural population 

dynamics in the respective regions.  Essentially, the DCM describes the way the neural 

dynamics react to external disturbances that come from experimentally controlled 

operations.  These disturbances are explained through means of external inputs u that 

can enter the model either evoking responses through direct influences on specific 

regions or changing the strength of coupling regions.   

The temporal evolution of the neural state vector is modeled by DCM as a function 

of the current state, the inputs u and some parameters that explain the functional 

architecture and relations among brain regions at a neuronal level: 

 

(

𝑧1̇

𝑧2̇

…
𝑧�̇�

) = �̇� =
𝑑𝑧

𝑑𝑡
= 𝐹(𝑧, 𝑢, 𝜃𝑛). (4.43) 

The state z and the inputs u, in the previous neural state equation, are time-dependent 

while the parameters are time-invariant. 

F has the bilinear form in DCM: 

 �̇� = 𝐴𝑧 + ∑ 𝑢𝑗𝐵𝑗𝑧
𝑚
𝑗=1 + 𝐶𝑢 . (4.44) 

The parameters of this equation 𝜃𝑛 = {𝐴, 𝐵1, … , 𝐵𝑚, 𝐶}, can be described as partial 

derivatives of F: 
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 , (4.45) 
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 , (4.46) 

 𝐶 =
𝜕𝐹

𝜕𝑢
 . (4.47) 

The modeled neural dynamics include three causal components, the nature of which 

is defined by the previous parameter matrices.  These components are the context-

independent effective connectivity among brain regions indicating anatomical 

connections (k×k matrix A), context-dependent changes in effective connectivity 
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included by the 𝑗𝑡ℎ input 𝑢𝑗  (k×k matrices 𝐵1, … , 𝐵𝑚) and direct input into the system 

that drive regional activity (k×m matrix C).  The effect that different mechanisms have 

on determining the dynamics of the model is related to the posterior distributions of the 

aforementioned parameters.  It is very important to discriminate the relative notions of 

‘driving’ and ‘modulatory’ from the neurobiological perspective, because they present 

an analogy of large neural population studies. 

This model of neural dynamics is combined by DCM with a hemodynamic model, 

which is featured by biophysically plausibility and experimental validity, and can 

express the transformation of neuronal activity into a BOLD response.  This commonly 

known as “Balloon model” is composed by equations that delineate the association 

between four hemodynamic state variables using five parameters (𝜃ℎ). 

The full forward model arises from the combination of neural and hemodynamic 

states into a joint state vector x and the neural and hemodynamic parameters into a joint 

parameter vector 𝜃 = [𝜃𝑛, 𝜃ℎ]𝑇 and is described below: 

 �̇� = 𝐹(𝑥, 𝑢, 𝜃), (4.48) 

 𝑦 = 𝜆(𝑥). (4.49) 

Assuming a set of given parameters θ and inputs u, the predicted BOLD response h 

(u, θ) results from the integration of the joint state equation and its pass through the 

output nonlinearity λ.  The observation model that contains observation error e and 

confounding effects X can be expressed as: 

 𝑦 = ℎ(𝑢, 𝜃) + 𝛸𝛽 + 𝑒. (4.50) 

A fully Bayesian approach with empirical priors for the hemodynamic parameters 

and conservative shrinkage priors for the neural coupling parameters are used from this 

equation in order to evaluate the neural and hemodynamic parameters from the 

measured BOLD data [92]. 

Spectral dynamic causal modeling 

Studying connectivity of resting-state brain intrinsic networks has recently become a 

very popular technique [93].  An extension to the DCM (spectral DCM) intends to 

model intrinsic dynamics on resting-state fMRI data defining the effective connectivity 

among coupled populations of neurons, which enclose the observed functional 

connectivity in the frequency domain [92].  Spectral DCM shows differences from 

stochastic DCM, as it utilizes scale-free methods to parametrize the neural fluctuations 
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and as a result, the stochastic model of neural activity changes its nature and becomes 

deterministic [93]. 

The general concept of spectral DCM is the adding of a stochastic term to model 

endogenous neuronal fluctuations in the ordinary differential equations used in the 

standard DCM.  Thus, the motion equations become stochastic and the stochastic model 

for the resting-state fMRI time-series consists of the Langevin form of evolution 

equation (�̇�) and the observation equation (y).  The observation equation is a static non-

linear mapping from the hidden physiological states to the observed BOLD activity.  

These two forms are expressed respectively below: 

 �̇� = 𝑓(𝑧, 𝑢, 𝜃) + 𝑢, (4.51) 

 𝑦 = ℎ(𝑧, 𝑢, 𝜑) + 𝑒, (4.52) 

where �̇� is the rate in change of the neural states z, θ are unknown parameters (e.g. 

effective connectivity) and v is the stochastic process (state noise) modeling the random 

neuronal fluctuations that concern resting state activity.  The unknown parameters of 

the observation function are denoted by φ and u relates to any exogenous inputs (that 

are often absent in resting-state situation).  The form of Langevin equation for resting 

state activity has the form: 

 �̇� = 𝐴𝑧 + 𝐶𝑢 + 𝑢, (4.53) 

where A is the Jacobian describing effective connectivity of the system near its 

stationary point in the absence of the fluctuations v. 

Spectral DCM evaluates the time-invariant parameters of their cross-spectra.  

Obviously, the observed BOLD time-series of each node which were modeled in the 

stochastic DCM are the observed functional connectivity between nodes which are 

modeled in spectral DCM.  Practically, it can be accomplished if the original time-series 

are replaced by their second-order statistics (cross spectra) directed by stationary 

assumptions.  This leads to covariance estimation of hidden states, instead of estimating 

their time varying, as they present no alternation over time.  Consequently, it is 

necessary to define the covariance of the random fluctuations. A power law form for 

the observation noise can be expressed as:  

 𝑔𝑣(𝜔, 𝜃) = 𝛼𝑣𝜔
−𝛽𝑣, (4.54) 

 𝑔𝑒(𝜔, 𝜃) = 𝛼𝑒𝜔
−𝛽𝑒, (4.55) 

where {𝛼, 𝛽} ⊂ 𝜃 are the parameters, which control the amplitudes and exponents of 

the spectral density of the neural fluctuations.  A generic 1 𝑓𝛾⁄ , which features the 
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fluctuations in systems that are at nonequilibrium steady-state, is used to model 

neuronal noise.  The expected cross-spectra are given with the use of parameters 𝜃 ⊇

{𝛢, 𝐶, 𝛼, 𝛽} as: 

 𝑦 = 𝜅 ∗ 𝑣 + 𝑒, (4.56) 

 𝜅 = 𝜕𝑧ℎ𝑒𝑥𝑝(𝑡𝜕𝑧𝑓), (4.57) 

 𝑔𝑦(𝜔, 𝜃) = |𝛫(𝜔)|2𝑔𝑣(𝜔, 𝜃) + 𝑔𝑒(𝜔, 𝜃), (4.58) 

where the Fourier transform of the system’s Volterra kernels κ, which are the function 

of the Jacobian or effective connectivity, are denoted by Κ(ω).  Standard Variational 

Laplace procedures are used to determine the unknown quantities 𝜓 = {𝜑, 𝜃, 𝜎}of this 

deterministic model.  The predicted cross spectra are described by 𝑔𝑦(𝜔, 𝜃) and their 

estimation can be possibly achieved with the use of autoregressive model (AR) [92].   

Despite the fact that DCM makes available the tight coupling to biophysical models 

giving the ability to explain the effective connectivity in the field of neurophysiology, 

it has on the other hand some limitations such as the high computational cost and the 

weakness to estimate effective connectivity in more than six regions.  Furthermore, 

researchers dispute the accuracy and reliability of the parameter estimation because of 

the restrictions of the generative model [88]. 

The three aforementioned methods (SEM, Granger causality and DCM) are 

proposed as the most appropriate methods for effective connectivity estimation of fMRI 

data [57, 61, 86, 88, 89, 94, 95].  Briefly, SEM analyzes steady-state brain connectivity 

patterns, ignoring temporal dynamics of time-series, Granger causality infers causal 

interactions with the use of vector autoregressive model and DCM models the dynamic 

effective relationship dealing with fMRI time-series [86, 94].  However, as we have 

primarily mentioned, there are also some other approaches that have been used for 

effective connectivity analysis although they are not that common.  Their brief 

description is presented below.   

Graphical causal models 

This modeling type includes the graphical causal models, the alternatively so-called 

‘causal Bayes nets’, which describes the combination of directed graph with a joint 

probability distribution on the graph nodes that depict random variables.  The graphical 

structure aims to express the compositional structure of the causal relations and the 

features of all probability distributions that factor according to that structure.  In the 

case of absent cycles into graphs (DAGs), the Causal Markov Property characterizes 
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the property of a graphical causal model in a set of variables as described below.  

According to the Causal Markov Condition that assumes G as the causal graph with 

vertex set V and P the probability distribution over the vertices in V generated by the 

causal structure represented by G, the Condition is satisfied by G and P if and only for 

each W in V, W is independent of V\Descendants(W)∪Parents(W) given Parents(W).  

The factorization of the distribution is related to the Markov property that indicates the 

equation between joint distribution of the variables for any value assignment and the 

product over all variables of the probability of the values of each variable conditional 

on the values of its parent variables.  A graphical causal model may be characterized 

by linearity or non-linearity, may organize time-series or present feedback relations.  

The graph features a non-parametric simultaneous representation of restricted 

conditional independence and qualitative effective connectivity relations.  Directed 

graphs with cycles or time-series with acyclic graphs can illustrate the feedback 

relations.  Markov condition is not satisfied by cyclic graphs for linear simultaneous 

equations with independent disturbances, but a Markov condition generalization is 

suggested to be performed in order to express linear systems allowing a factorization 

and computation of the vanishing partial correlations that are satisfied by all linear 

parameterizations of the graphs [96]. 

The first problem this method carries has statistical nature and concerns the search 

over a space of alternative models and is generated by the enormous size of the possible 

space of alternative causal models.  The second one is related to the statistical 

consequences of indirect measurements and latent sources and the necessity of finding 

ways to resolve it.  Furthermore, the accumulation of data from multiple subjects in 

order to shape a unified base for model search seems to be impossible even if there is a 

common causal structure shared by subjects.  Problematic issues could also be the 

distinct but overlapping variables sets and the unknown time delays that result from the 

indirect measurement of the neural processes.  Finally, the necessary reconstruction of 

activation influences, either with modeling joint time-sampled measurements of 

variables or modeling the as ‘equilibrium’ values resulting from an exogenous 

stimulation carries risks [96]. 

Dynamic Bayesian models 

A temporal extension of Bayesian networks, the so-called dynamic Bayesian networks 

or dynamic probabilistic networks, which are class of graphical models, are also 
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proposed to address dynamic systems modeling [97, 98].  In comparison with Bayesian 

networks which indicate cumulative probability distribution over a set of random 

variables independent of time, dynamic Bayesian networks refer to a multi-dimensional 

expression of a random process [97].  Taken into account the dynamic nature of the 

process there are studies that use discrete dynamic Bayesian networks to clarify 

differences between healthy and control subjects or static Bayesian networks to model 

problems such as in speech recognition, target tracking and identification, genetics, 

probabilistic expert systems and medical diagnostic systems.  A more recent apply of 

dynamic Bayesian networks is in modeling genomic regulation [98, 99]. 

Switching linear dynamic systems 

The switching linear dynamic system for fMRI (SLDSf) has the ability to provide 

infinite variability over time in connectivity parameter values as well as instantaneous 

connectivity by probabilistically mixing a small number of static model regimes [100].  

Basically, it models the task factor as a Markov random variable and its goal is the 

quantification of the overall quality and sufficiency of an identified model [101].   

The linear convolution model used in order to express the observation equations used 

in sLDSf are: 

 𝑦𝑡 = 𝛽𝜑𝑧𝑡 + 𝐷𝑣𝑡 + 𝜁𝑡 , 𝜁~ℕ(0, 𝑅), (4.59) 

 𝑧𝑡 = [𝑥𝑡 , 𝑥𝑡−𝜏, 𝑥𝑡−2𝜏, 𝑥𝑡−3𝜏, … , 𝑥𝑡−(ℎ−1)𝜏]. (4.60) 

Where h errorless lagged copies of the signals x from xt−(h−1)τ to xt are contained to 

the variables zt and yt is the observation which concerns an instantaneous linear 

function of zt at any observation level input vt and noise ζt with a diagonal covariance 

matrix Rij=0 for i≠j.  The matrix Φ refers to an a priori known set of basic vectors that 

connect the possible variability in the hemodynamic impulse response function (hIRF) 

such as a canonical hemodynamic response and its derivatives with respect to time and 

dispersion.  Certain weights of specific areas are contained to matrix β aiming to 

produce a unique hIRF βiΦ.  Thus, an equivalent between linear output βiΦZt
i and the 

regionally specific hemodynamic response arises.  The estimation of three additional 

parameters per region is required in order to obtain SLDSf output equations with basis 

vectors.  An iterative Bayesian Expectation Maximization algorithm is used to calculate 

these parameters [102]. 
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Psychophysiological interactions (PPI) 

Linear regression methods such as PPI are on the border between functional and 

effective connectivity.  Although PPI has been proposed as a method for effective 

connectivity analysis, its simplicity on the other hand includes several weaknesses.  For 

instance, in SPM package, PPI is performed in order to estimate task-dependent 

changes in the relationship between a seed region of interest and other voxels.  That 

renders PPI as a more appropriate method for task-based functional connectivity 

analysis, as it fails when implemented on effective connectivity analysis studies [88, 

92, 103]. 

4.2.5 Network analysis and graph theory  

In fMRI graph analysis, neural networks are a collection of nodes that refer to basic 

elements within the system of interest and edges which are related to the associations 

among those elements [104].  Graph theory is addressed in order to model dynamic 

processes and relationships in physical, biological, social and information systems [91].  

The description of brain networks can be achieved at levels, in microscale, mesoscale 

and macroscale or large-scale.  Due to the technical restrictions and computational 

requirements, the majority of studies utilize large-scale networks [104]. 

Generally, the representation of a complex network is G(N, K), where N refers to the 

number of nodes and K the number of edges in a graph G.  There is a basic classification 

on graphs which include information about directionality.  Thus, the graphs can be 

characterized as directed or undirected.  Given an equal weight of 1 in every edge of 

the graph, the graph is unweighted (binary) but when different strengths exist at every 

edge, the graph is characterized as weighted.  These distinctions are illustrated in Fig. 

4.11.   

 

Figure 4.11: Types of a) undirected, b) directed and c) weighted networks [105]. 

The connectivity pattern of an undirected and unweighted graph G(N, K), could be 

fully represented as an N×N symmetric square matrix, the adjacency matrix A.  In the 
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case of edge existence between node i and j, the entry of 𝛼𝑖𝑗 (that ranges between 1 and 

N) is 1 and it takes the value of 0 in the opposite case [104].   

There are some key properties of graph theory that define the topological patterns of 

the network.  These are degree and degree distribution, small-world, network 

efficiency, nodal centrality, modularity and hierarchy.  Below a short description of 

these notions follows.   

The degree of node i in a graph is the number of edges that are connected to it.  It 

can be calculated as ki = ∑ aijj∈G , where aij is the ith row and jth column element of 

adjacency matrix A.  The average degree which concerns the mean of degrees over all 

the nodes in G, estimates the size of the connected graph.  The probability that refers to 

the fraction of nodes in the graph with degree k, is given by the degree distribution P(k).  

This degree distribution determines the classes of networks that features unique 

resilience concerning the removal of nodes.   

The high local clustering that indicates high clustering coefficient Cp and the low 

minimum path length between any pair of nodes that indicates low characteristic path 

length, illustrate the small-worldness of a network.  The clustering coefficient Cp, which 

estimates the length of local interconnectivity or cliquishness of a network, refers to the 

average of the clustering coefficients from all network nodes.  For a given node i, its 

clustering coefficient Ci is calculated as: 

 𝐶𝑖 = 2𝐸/𝑘𝑖 × (𝑘𝑖 − 1), (4.61) 

where E is the number of connections among nodes neighbors and 𝑘𝑖 is the degree of 

node i.   

The characteristic path length refers to the average of the shortest path length 

between any pair of nodes.  When the distance gets shorter, the routing efficiency is 

higher but in the case of multiple components, it generates problems as it becomes 

infinite.  The ‘harmonic mean’ distance comes to solve this problem.  It is worth noting 

that ‘harmonic mean’ distance corresponds to the inverse of global efficiency 

numerically.   

The conditions that are satisfied in a real network taking into account its small-world 

properties are: 

 
𝛾 =

𝐶𝑝
𝐶𝑝−𝑟𝑎𝑛𝑑

⁄ > 1 (4.62) 
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𝜆 =

𝐿𝑝
𝐿𝑝−𝑟𝑎𝑛𝑑

⁄ ≈ 1. (4.63) 

Where Cp−rand and Lp−rand are the mean clustering coefficient and characteristic path 

length of the mean random networks.  Another representation in summary is: 

 𝜎 =
𝛾

𝜆⁄ > 1 (4.64) 

The low wiring cost renders small-world model attractive for complex brain 

networks description due to its modularized and integrated information processing.   

Other measurements that are interwoven with graph analysis are the global and local 

efficiency, which measure the potential of model to transmit information at global and 

local scale.  The global efficiency is described as: 

 𝐸𝑔𝑙𝑜𝑏(𝐺) =
1

𝑁(𝑁−1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐺  , (4.65) 

where dij is the shorter path length between node i and j.   

The local efficiency is described as: 

 𝐸𝑙𝑜𝑐(𝐺) =
1

𝑁
∑ 𝐸𝑔𝑙𝑜𝑏(𝐺𝑖)𝑖∈𝐺  ,  (4.66) 

Where Eglob(Gi) is the global efficiency of Gi the sub-graph composed of the neighbors 

of node i.   

Another significant metric regarding the network efficiency is network cost, which 

estimates the expenses for its network construction.   

In addition, nodal centrality evaluates the existence of the node into the network, by 

estimating its capability to transmit and share information with other nodes in a 

network.  Degree centrality, nodal efficiency, closeness centrality and betweenness 

centrality are some of the metrics that are used through nodal centrality estimation. It 

can be expressed as: 

 𝐸𝑖 =
1

𝑁−1
∑

1

𝑑𝑖𝑗
𝑗≠𝑖∈𝐺 . (4.67) 

The nodal centrality, which assesses the average distance from a node to all the other 

nodes in a network, is given as: 

 Ci =
N−1

∑ dijj≠i∈G
. (4.68) 

The betweenness centrality defines the influence that one node exerts over the flow 

information between other nodes and its equation is: 

 𝐵𝑖 = ∑
𝜎𝑚𝑛(𝑖)

𝜎𝑚𝑛
𝑚≠𝑖≠𝑛∈𝐺 , (4.69) 
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Where σmn is the total number of the shorter paths from node m to node n and similarly 

σmn(i) refers to those paths which pass through node i.  It is common to use the 

characterization of hub to mention node which presents high centrality.   

The description of the graph analysis measures becomes more robust with the use of 

notion modularity.  It is related to the networks level ability to be coupled on modular 

or community structure.  Mentioning modules, we refer to a set of nodes with thick 

connections among them but with weaker connections among the whole network.  

There are several optimization algorithms performing modularity through which 

localization and characterization of the modular structure in the brain is accomplished 

and thus the opportunity to understand the anatomical or functional components which 

are associated with specific biological functions is given.   

Last, the concept of hierarchical networks is important to be mentioned.  An 

hierarchical network contains hubs connected to nodes which in a different way are not 

connected to each other.  This means that, the clustering coefficient value is lower if 

the degree is larger.  The advantages of this organization are the better top-down 

relationships between nodes and it provides the minimization of the wiring cost.  In 

contrast, it bears weaknesses regarding hubs attacking.  This situation can be expressed 

with β value, an exponent of the power law relationship between clustering coefficient 

C and degree k, as: 

 𝐶 = 𝑘−𝛽. (4.70) 

A typical hierarchical structure is indicated by a large positive value of β [104, 106]. 

In the field of neuroimaging, graph theory is becoming a highly developing method 

that offers more graph operational and organizational measures into studies in order to 

investigate functional and structural connectivity [107], but there are also limitations.  

First of all, the nature of human brain consisting of neurons and physical elements 

renders the accurate estimation of the functional networks difficult.  Taking into 

account that graph theory based on voxels or anatomically- or functionally-defined 

ROIs in order to draw conclusions, the analysis gets complicated when applied in a set 

of subjects, where nodes present differences.  In conclusion, despite the careful 

selection of nodes in order to obtain accurate graphs, this seems to be impossible 

because of the inadequate knowledge concerning the brain field [91].   

 

 



89 

 

Chapter 5. Results 

 

5.1 Study 1: Functional connectivity using data-driven method 

5.2 Study 2: Functional connectivity using seed-based analysis 

5.3 Study 3: Effective connectivity using spectral Dynamic Causal Modeling 

 

 

 

 

 

 

 

 

 

 

Imaging protocol 

The fMRI data was acquired from MRI 1.5 Tesla (INTERA, Philips Medical System, 

Best, The Netherlands) of General University Hospital of Ioannina.  The imaging 

protocol in both patients and control subjects included a T1-weighted high-resolution 

(0.86×0.86×1 mm) 3D spoiled gradient-echo sequence (TR/TE, 25/4.6ms), which was 

used for structural imaging and a single-shot multisection gradient EPI, which was used 

for BOLD functional images (TR/TE, 3000/50 ms; flip angle, 40°, matrix 64×64; 

section thickness, 5mm; gap, 0 mm).  Each session consisted of 160 scans and lasted 

480 seconds.  The head of the subject was restrained with the use of cushions to 

minimize motion artifacts and the patients were advised to keep their eyes closed during 

the examination so as to minimize potential visual stimuli.  Patients were awake during 

the examination, and they were instructed to remain still and avoid voluntary 

movements.  
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Study 1: Functional connectivity using data-driven method 

In our study 13 late-onset RLS patients and 6 control healthy subjects took part.  

DICOM images received from MRI were transformed into image.img and image.hdr 

files with the use of SPM12 software package.  Subjects with 4092 functional images 

produced 186 volume images and subjects with 3200 functional images produced 160 

volume images, after having been transformed.  The 150 anatomical DICOM images 

were transformed into 1 volume structural image.  The fact that the produced number 

of volume functional images differed in some of the subjects was taken into 

consideration in the preprocessing stage, as the number of slices should be defined in 

slice-timing correction step. 

The data preprocessing was carried out using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and included the following steps: 

1. slice-timing correction 

All the raw images were selected and the differences in image acquisition time 

between slices was corrected, prepending files with an ‘a’. 

2. realignment (motion correction) 

All images were realigned according to the mean image of 186 functional images.  

The names of the realigned images have an extra ‘r’ as a prefix.  

 

Figure 5.1: The estimated displacement and the rotation angles concerning BOLD 

fMRI time-series of an RLS patient. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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3. Co-registration  

This step includes the implementation of co-registration between the structural and 

functional data that maximizes the mutual information.  At the end of co-

registration, the voxel-to-voxel affine transformation matrix is displayed, along 

with the histograms for the images in the original orientations and the final 

orientations.  Also, the registered images are displayed.   

 

 

Figure 5.2: The co-registration step for an RLS subject. 

 

4. Segmentation  

In this step, SPM12 produced gray and white matter images and a bias-field 

corrected structural image which is useful for the next preprocessing step. 

5. Normalization 

In this step the previous realigned and resliced functional images and the 

preprocessed structural image are normalized in the MNI (Montreal Neurological 

Institute) space.  The images have the prefix ‘w’. 
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6. Smoothing. 

This step includes the smoothing (or convolving) volume images with a Gaussian 

kernel of a specified width, which in this case is 8mm. 

The fMRI analysis which aims to extract functional connectivity from data was 

accomplished following two different procedures, one based on data and another based 

on a model.  In the first method, the Independent Component Analysis (ICA) was used, 

which is a widely used method particularly for studies which utilize resting-state fMRI 

data.  The implementation of this method utilized the GroupICA/IVA of fMRI toolbox 

(GIFT) version 3.0b (http://mialab.mrn.org/software/gift).  The ICA study of a group 

subjects requires the simultaneous analysis of all data.  The dataset was divided into 

two separate databases, one for controls and another one for late-onset RLS patients, 

the analysis of which was done in a group context.  In order to eliminate complicated 

computations, GIFT adopts the use of Principal Component Analysis.  In the first step 

the data was reduced from 182 (the number of time points during experiment, after 

discarding the first four dummy volume images) into 36 principal components and 

afterwards into 24 components.  The number of components was characterized as the 

most appropriate using the minimum description length algorithm indicating 25 

independent components for the RLS group and 24 components for the group of 

controls.  In the final dataset the infomax algorithm was used, which maximizes the 

information transfer from the input to the output of a network using a non-linear 

function (the most applications of ICA to fMRI use infomax since the sources of interest 

in this case are super gaussian in nature and the algorithm favors separation of super-

gaussian sources) (Group ICA/IVA of fMRI Toolbox Manual).  The final mixing matrix 

data was used in order to reconstruct spatial maps according to the courses of each 

participant and each component.  For the 13 RLS subjects with one session, the GIFT 

program produced 325 spatial maps (13 participants × 25 Independent Components × 

1 session = 325 spatial maps), respectively to ICA timepoints.  Regarding control 

subjects the results were 144 spatial maps (6 participants × 24 Independent Components 

× 1 session = 144 spatial maps), respectively to ICA timepoints. 

For each separate subject and component, the coordinates of the maximum voxel 

were recorded according to the z-score and afterwards a spatial sorting of components 

was achieved using maximum voxel criteria.  This was also carried out in group context 

both of RLS and healthy subjects. 

http://mialab.mrn.org/software/gift
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In order to estimate the spatial dependency of the automatic neuronal activity among 

different independent components, a functional connectivity network analysis was 

implemented using one-sample t-test of Mancovan toolbox v1.0 in order to produce the 

functional connectivity correlation matrices for patients and control groups. 

Results 

Studying the findings of each RLS subject, we found that the maximum voxel values 

exist in the superior temporal gyrus in the temporal lobe of the right cerebrum, the 

Declive in the posterior lobe of the left cerebellum, the cerebellar Tonsil in the posterior 

lobe of the left cerebellum as well as the cuneus in occipital lobe of the right cerebrum 

including Brodmann Area 18 (BA 18).  Additional areas presenting important 

activations are the superior frontal gyrus in the frontal lobe of the left cerebrum 

including BA 6, the Nodule in anterior lobe of the right cerebellum, the sub-lobar areas 

of third and fourth ventricle of the right cerebrum and cerebellum respectively, the pons 

and midbrain in the left and right brainstem, the limbic lobe of both left and right 

cerebrum and Uncus of the left cerebrum, as well as the parahippocampal gyrus and 

BA 35. 

In group level, the maximum z-score was located in voxels in the right cerebellum, 

particularly in Nodule in anterior lobe as well as in midbrain and pons in the left 

brainstem.  Corpus Callosum which is located in extra-nuclear area in the left cerebrum 

and sub-lobar area in the third ventricle of the right cerebrum also revealed maximum 

activation (the table which includes in detail the coordinates and brain areas of each 

patient’s components is in Table 7.2 in Appendix). 

Concerning control subjects, the areas that are associated with great activation are 

in the right cerebrum and these are the cuneus and lingual gyrus in occipital lobe, 

fusiform gyrus in temporal lobe including BA 37, sub-lobar regions of lateral ventricle, 

Culmen and Nodule in anterior lobe and middle frontal gyrus in frontal lobe including 

BA 8.  In the left cerebrum, the inferior frontal gyrus in the frontal lobe and corpus 

callosum are involved in maximum activation.  Pons in both left and right brainstem 

present great activation as well as Medulla in the left brainstem.  Additionally, it is 

necessary to record the regions Declive and fourth ventricle in the posterior lobe and 

sub-lobar regions of the right cerebellum respectively.   

In group level similar findings were obtained while the significant areas are the Pons 

in the right Brainstem, the Declive in posterior lobe of right cerebellum, the lingual 
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gyrus in the occipital lobe and the parahippocampal gyrus in the limbic lobe of the left 

cerebrum as well as inter-hemispheric areas including the corpus callosum (table 7.1 in 

Appendix includes the maximum activations for each component of each healthy 

subject).  It is worth noting that our study showed maximum activation also in inter-

hemispheric areas in both RLS and controls group. 

After implementing one sample t-test in two group datasets, T-maps, power spectra 

of each component and FNC (functional network connectivity) correlations among 

components were produced. 

 

Figure 5.3: T-map and power spectra of the fourth component of RLS patients. 

Concerning RLS subjects, the maximum correlation that is depicted in dark red in 

functional connectivity correlation matrix (Fig. 5.4) involves the components 7 [30, -

76, 20] and 20 [6, -78, 5] which are the middle occipital and lingual gyrus in occipital 

lobe of the right cerebrum as well as the component 12 [6, -46, 0] and 18 [32, -68, -25] 

which are Culmen in anterior lobe and Uvula in posterior lobe of right cerebellum, 

respectively.  Additional important functional connectivity was found between 22 [-6, 

-48, 35] and 15 [-30, 28, 50], 24 [6, -68, 55] with 21 [36, 20, 45] and 18 [32, -68, -25] 

with 20 [6, -78, 5] where the correlated areas are the precuneus in parietal lobe and 

superior frontal gyrus in frontal lobe of left cerebrum, middle frontal gyrus in frontal 

lobe of the right cerebrum and interhemispheric areas as well as the Uvula in posterior 

lobe and lingual gyrus in occipital lobe of right cerebrum. 
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Some of the areas that were found to have negative correlations were superior 

parietal lobule in parietal lobe and anterior cingulate in limbic lobe of right cerebrum 

involving the components 5 [12, -68, 65] and 2 [8, 44, 5] and the middle occipital gyrus 

in occipital lobe and the Insula in limbic Lobe of right cerebrum involving the 

components 7 [30, -76, 20] and 4 [46, -10, 15].   

An important finding is the fact that the most significant positive correlation 

concerning controls were found between components 1 [48, 32, -10] with 5 [-18, -42, 

5] and 3 [-28, 0, -25] with 14 [-36, -2, 65] which are the inferior frontal gyrus in frontal 

lobe of the right cerebrum and the parahippocampal gyrus in limbic lobe of the left 

cerebrum as well as the sub-gyral in temporal lobe of right cerebrum and middle frontal 

gyrus in frontal lobe of left cerebrum.  The Tables 7.3 and Table 7.4 which include the 

regions of the components in the correlation matrix for both groups are in Appendix. 

 

 

 

Figure 5.4: Functional connectivity correlation matrix of RLS subjects. 

 

The following figure (Fig. 5.5) includes the functional connectivity correlation matrix 

of control subjects and depicts the correlation among their 24 components. 
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Figure 5.5: Functional connectivity correlation matrix of control subjects. 

Discussion 

After comparing the findings, we concluded that there are brain areas such as Pons in 

Brainstem or Cuneus in occipital lobe of the right cerebrum that always become active 

in resting state condition, regardless of disease existence, a fact that possibly renders 

them unrelated to RLS.  In contrast, some areas such as cerebellar Tonsil in posterior 

lobe of the left cerebellum, Uncus in the limbic lobe of the right cerebrum, the third 

ventricle in sub-lobar area of the right cerebrum or amygdala in parahippocampal gyrus 

in the limbic lobe of the right cerebrum that appeared in the RLS group denoting their 

effect in the disease lead to a different understanding of the brain compared with healthy 

subjects’. 

Functional connectivity analysis led to similar findings of previous studies which 

focused on the correlation of precuneus in the parietal lobe and the inferior frontal gyrus 

in the frontal lobe of the right cerebrum.  It is also worth noting the positive correlation 

of the parahipocampal gyrus in limbic lobe of the left cerebrum with the Culmen in 

anterior lobe of the right cerebellum, as well as the higher correlation of precuneus in 

parietal lobe of left cerebrum with Insula in sub-lobar area of left cerebrum.  This high 

correlation among these components does not occur in control subjects group.   

These findings are in line with the bibliography that concerns the investigation of 

RLS. 
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Study 2: Functional connectivity using seed-based analysis 

Following a different approach compared to the previous one, we implemented the 

CONN functional connectivity toolbox v17 ( https://www.nitrc.org/projects/conn ) in 

order to extract functional connectivity measures using seed-to-voxel correlation 

mapping.  This approach calculates the temporal correlation between brain activity of 

a given region and all other regions using a General Linear Model approach [108].  

Although we had already preprocessed data using SPM12 of the previous analysis, we 

added the raw structural and functional data in CONN.  The aim was to follow the 

preprocessing pipeline of CONN so that its automated and simplified procedure would 

be established.  Since the data undergoes a similar preprocess, as this software calls 

SPM12 to implement this step, its effectiveness is secured.  In our study, we selected 

the default preprocessing pipeline for volume-based analyses which follows the 

following steps: functional realignment and unwarping (subject motion estimation and 

correction), functional center to (0, 0, 0) coordinates (translation), functional slice-

timing correction, functional outlier detection (ART-based identification of outlier 

scans for scrubbing), functional direct segmentation and normalization (simultaneous 

GM/WM/CSF segmentation and MNI normalization), structural center to (0, 0, 0) 

coordinates (translation), structural segmentation and normalization (simultaneous 

GM/WM/CSF segmentation and MNI normalization), functional smoothing (spatial 

convolution with Gaussian kernel).  Additionally, in order to remove physiological 

subject motion and other confounding effects from BOLD signal, a denoising clean up 

step followed. 

 

Figure 5.6: Histogram of functional connectivity between any pair of voxels of all 

subjects before and after denoising. 

https://www.nitrc.org/projects/conn
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We compared the functional connectivity of the middle frontal gyrus in the frontal 

lobe, the occipital lobe and the thalamus in both left and right cerebrum as well as in 

the precuneus cortex (the tables with the results are in Appendix).  The selection of 

seeds in seed-to-voxel analyses was based on previous knowledge as it has been proven 

that the regions involving these seeds are responsible for the RLS. 

Results 

Indicatively, the following Table (Table 5.1) presents the coordinates of the maximum 

voxel, the size of the cluster, the associated brain areas and their figures that resulted 

from a seed-to-voxel analysis considering as seed the middle frontal gyrus of the left 

cerebrum. 

Table 5.1: The brain areas that are functionally connected with the middle frontal 

gyrus of the left cerebrum concerning RLS group. 

MNI 

coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-38, 6, 42] 40754 R Cerebrum, Middle Frontal Gyrus 0.000000 0.000000 0.000000 0.000000 

[52, -60, -28] 1545 
R Cerebellum, Posterior Lobe, 

Declive, GM 
0.000000 0.000000 0.613404 0.000008 

[-60, -54, -16] 1330 

L Cerebrum, Temporal Lobe, 

Inferior Temporal Gyrus, GM, BA 

37 

0.000000 0.000000 0.424448 0.000004 

[-18, -90, -40] 1041 
Left Cerebellum, Posterior Lobe, 

Tuner, GM 
0.000000 0.000000 0.165311 0.000001 

[-8, -6, 6] 657 
L Cerebrum, Sub-lobar, Thalamus, 

GM 
0.000000 0.000000 0.577960 0.000007 

[66, -40, -16] 583 
R Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus 
0.000001 0.000000 0.246651 0.000001 

[16, 14, 12] 427 
R Cerebrum, Sub-lobar, Caudate, 

GM, Caudate Body 
0.000033 0.000001 0.488107 0.000005 

[-18, -100, -6] 206 
L Occipital Lobe, Occipital Lobe, 

Cuneus, WM 
0.005853 0.000253 0.128142 0.000001 

[-56, 0, -30] 165 
L Cerebrum, Temporal Lobe, 

Fusiform Gyrus, GM, BA 20 
0.018173 0.000789 0.963490 0.000048 

[-38, -66, -22] 128 
L Cerebrum, Occipital Lobe, 

Fusiform Gyrus 
0.054265 0.002401 0.998160 0.000126 

[-38, 18, -36] 124 
L Cerebrum, Temporal Lobe, 

Inferior Temporal Gyrus 
0.061343 0.002725 0.987170 0.000072 
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Figure 5.7:  The activation in slices of RLS patients considering the left middle 

frontal gyrus as seed. 

To make our study more robust, we assumed the middle frontal gyrus of the left 

cerebrum as seed in an additional seed-based analysis concerning the controls group. 

Table 5.2: The functionally connected areas of the middle frontal gyrus of the left 

cerebrum in controls group. 

MNI 

coordinates of 

maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-36, 30, 32] 2199 

L Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, 

BA 9 

0.000000 0.000000 0.222985 0.000001 

[-42, -66, 54] 894 

Left Cerebrum, Parietal Lobe, 

Superior Parietal Lobe, GM, 

BA 7 

0.000000 0.000000 0.097323 0.000000 

[40, 30, 38] 515 
R Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.000000 0.000000 0.317282 0.000001 

[-36, -76, -34] 494 
L Cerebellum, Posterior Lobe, 

Uvula, GM 
0.000000 0.000000 0.566713 0.000002 

[-6, -64, 60] 465 
L Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 7 
0.000000 0.000000 0.252949 0.000001 

[42, -78, 38] 418 
R Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 19 
0.000000 0.000000 0.999867 0.000009 

[0, 24, 42] 337 Inter-Hemispheric 0.000000 0.000000 0.999035 0.000005 

[22, -78, -46] 305 

R Cerebellum, Posterior Lobe, 

Interior Semi-Lunar Lobule, 

GM 

0.000000 0.000000 0.311366 0.000001 

[-2, -36, 42] 256 
L Cerebrum, Limbic Lobe, 

Cingulate Gyrus 
0.000001 0.000000 0.999932 0.000011 
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[-24, 0, -30] 163 
L Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, WM 
0.000039 0.000004 0.999988 0.000017 

[34, 6, 66] 105 

Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, 

BA 6 

0.000868 0.000085 0.999992 0.000019 

 

 

 

Figure 5.8: The activation in slices for controls considering the middle frontal gyrus 

of the left cerebrum as seed. 

Discussion 

Compared with ICA analysis, seed-based analysis presented similar findings.  These 

results agree with the bibliography findings.  Furthermore, it is obvious that this toolbox 

usage offers great visualization concerning activation maps giving the ability to switch 

among subjects.  It is inferior to other methods when direct contact and intervention in 

code is needed. 

Study 3: Effective connectivity using spectral Dynamic Causal Modeling 

As already referred to a previous chapter, the effective connectivity analysis can be 

studied by model-based approaches including structural equation modeling (SEM) or 

dynamic causal modeling (DCM) and data-driven approaches including Granger 

causality analysis [108]. 

According to the first method we implement spectral DCM in order to investigate 

the endogenous effective connectivity in both RLS and control groups.  The aim of this 

method is to model BOLD signal when there are no exogenous inputs (driving or 
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modulatory), a fact that renders it suitable for its implementation in resting-state fMRI 

data.   

The spectral DCM analysis was performed using DCM12 routine implemented in 

SPM12.  For each subject, eight regions of interest (ROIs) were selected.  The ROIs of 

spectral DCM analysis (Table 5.3) were selected according to their increased level of 

involvement in RLS as long as both our and previous studies revealed either high 

activation or high functional connectivity.  ROIs were defined as spheres with a radius 

of 8mm centered at the peak coordinate of the component map produced by the previous 

ICA study.   

Time-series from the ROIs were created as the residuals of a general linear model 

(GLM).  These regressors that were included in this model were the six rigid body 

realignment parameters to model the movement correlated effects, one contrast 

regressor to model the baseline that was used in the extractions to constrain the 

extraction of BOLD time-series within the brain, cosine basis functions to model 

possible signal drift and aliased respiratory and cardiac signals and a high-pass filter of 

1/128 Hz to remove possible ultraslow fluctuations [107]. 

Table 5.3: ROIs selected for the spectra DCM analysis. 

 ROIs Center of ROI5 

1 Right Cerebrum, Parietal Lobe, Precuneus, GM, BA 7 (RPP) [6, -73, 56] 

2 
Right Cerebrum, Sub-lob, Thalamus, GM, Mammillary Body 

(RTM) 
[13, -17, -5] 

3 Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, WM (RFI) [36, 25, -16] 

4 
Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus, GM, BA 46 

(RFM) 
[-46, 31, 20] 

5 
Right Cerebrum, Limbic Lobe, Parahippocampal Gyrus, GM, 35 

(RLP) 
[23, -21, -23] 

6 Right Cerebrum, Anterior Lobe, Culmen, GM (RAC) [6, -46, -5] 

7 
Right Cerebrum, Occipital Lobe, Middle Frontal Gyrus, WM 

(ROM) 
[29, -79, 19] 

8 Right Cerebrum, Temporal Lobe, Superior Temporal Gyrus (RTS) [53, 11, -6] 

 

 

                                                           
5 The coordinates were transformed from Talairach into MNI space. 
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After extracting the resting-state fMRI time-series from all eight ROIs (Fig. 5.9), a 

fully-connected model which has bi-directional connections between any pair of ROIs 

was specified for each subject (Fig. 5.10).  The following table (Table 5.4) includes the 

effective connectivity parameters of the first RLS subject, where the matrix elements 

represent the effective influence between regions.  The effective connectivity 

parameters of the other subjects are included in the Appendix. 

 

 

 

Figure 5.9: Time-series extraction of most significant ROIs of the first RLS patient. 
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Figure 5.10: The fully-connected model with bi-directional connections between any 

pair of ROIs and effective connectivity parameters for the first RLS subject. 

Table 5.4: Effective connectivity parameters of the first RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.9890 0.7336 -0.0422 0.1822 -0.4870 0.3665 0.0458 -0.0454 

RTM -0.0399 -0.8527 -0.0752 0.0118 -0.1920 -0.0336 -0.2775 -0.0080 

RFI -0.0390 0.1917 -0.8813 0.0729 -0.0024 -0.0801 0.4542 0.00460 

RFM -0.0142 -0.1228 0.0608 0.2077 0.2743 -0.1802 0.0448 -0.0026 

RLP -0.0046 0.9833 0.0327 0.0559 -0.9029 0.0299 -1.3031 -0.0977 

RAC -0.1492 0.7109 0.1707 0.0115 0.3804 -0.7155 -1.1320 -0.0695 

ROM -0.0763 -0.1307 -0.0384 -0.0277 0.2974 -0.0438 -0.5457 0.0364 

RTS -0.0262 0.1929 0.1842 0.0186 -0.1562 0.0321 0.2958 0.1465 

The selection of the model expressing the data is a serious matter and it is necessary 

that the model fitting as well as the model’s complexity are taken into consideration.  

After evaluating the effective connectivity parameters, a Bayesian Model Selection was 

chosen and fixed effects inference method (FFX) followed in order to compare the 

winning model that effectively describes the data.  Observing the connectivity 
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parameters from tables, the most frequent appearing areas with the highest values were 

selected in order to construct the desirable combination of areas.  As this results in a 

large number of models, researchers should decide on which areas they should focus 

on.   

Indicatively, we relied on the first ROI (precuneus in parietal lobe of right cerebrum) 

and its highly associated areas as they appeared more often in the tables, in order to 

construct the first model and the third ROI (inferior frontal gyrus in frontal lobe of right 

cerebrum) with the associated areas in order to construct the second model (Fig. 5.11).  

The second one is obviously the winning model indicating that this network has greater 

influence over the other one concerning the first RLS subject (Fig. 5.12).    

 

 

Figure 5.11: The desirable specification of endogenous (fixed) connections for the 

model comparison. 

 

Figure 5.12: The ‘winning’ model is the second one using Fixed Effects inference 

method (FFX). 
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Chapter 6. Conclusions 

 

6.1 Discussion 

6.2 Limitations 

6.3 Future work 

 

 

 

 

 

 

 

 

 

 

6.1 Discussion 

RLS is a common neurological disorder accompanied with annoying feelings during 

state of rest.  The irresistible urge to move legs or sometimes arms in order to reduce 

the uncomofortable sensations affects the quality of life of patients.  The 

pathophysiology of the disease has been formed after realizing that with the 

implementation of dopaminerging agents and iron supplements, the symptoms were 

improved, assuming that the possible source of problem is located in the central nervous 

system and in the levels of iron and dopamine.   

MRI studies have led to results concerning low iron levels in specific brain areas as 

well as PET and SPECT studies focused on the amount of disturbunces in dopamine 

receptors.  fMRI is a contemporary application of MRI which is used in ordrer to locate 

brain areas which are activated when the subject carries out a task or is in resting state.  

Subsequently, patterns with connected and disconnected brain areas can be formed in 

order to shed light on the pathology of a disease compared with connectivity patterns 



106 

 

of healthy subjects.  The differentiation of brain network associations between healthy 

subjects and patients can lead to significant findings in diagnosis or therapy.   

In this research work, we attempted to describe the sleep disorder of RLS from the 

perspective of brain connectivity using fMRI, searching the most appropriate analysis 

method.  We utilized data from 13 RLS subjects with late-onset RLS without treatment 

and 6 healthy subjects.  We first tried to find the activated areas in patients’ brains as 

well as in controls’ brains, using an already implemented method (ICA).  This was a 

supporting attempt for us to verify the findings and be based on reliable results.  

Accompanied with the aforementioned data-driven method for functional connectivity 

analysis, a model-based analysis mehod was used and compared with the previous one.  

It was found that areas such as cerebellar Tonsil in posterior lobe of left cerebellum or  

Amygdala and parahippocampal gyrus in limbic lobe of left cerebrum showed greater 

activation than controls group.  Concerning functional connectivity, there were areas 

that revealed a different correlation compared with controls.  The model-based method 

provides results that aim to be more specific that data-driven methods giving greater 

visualization of brain.  As far as effective connectivity is concerned, it was found that 

the possibility of implementing spectral Dynamic Causal Modeling on data provides 

useful information going beyond the restricted and much used methods.   

6.2 Limitations 

Concerning the proposed methodology of the current study, we concluded that in both 

functional and effective connectivity analysis, the methods that were followed have 

given reliable results.  However, because of the fact that we implemented model-based 

analysis methods, the regions of interest were necessary to be defined and this is a 

limitation.  Furthermore, the complexity of the effective connectivity models and the 

large number of areas and their combinations that are necessary in order to construct 

each model, render the determination of the best model a not simple matter. 

6.3 Future work 

The target of this work was not to prove that there is only one method describing the 

RLS data, as there is no such thing, but to present both advantages and disadvantages 

of each method.  The selection of the most appropriate method depends on the 

researchers’ incentives and the aim of each study.  Since RLS has not been clarified 

yet, there will always be the need for further study and analysis.   
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Appendix 

Table 7.1: The brain areas that showed activation in each control subject. 

subject component 
maximum 

voxel 
brain areas z-score 

spatial sorting 

using maxim 

voxel criteria 

1 1 [15, -91, -10] 
Right Cerebrum, Occipital Lobe, Inferior 

Occipital Gyrus, GM, BA 17 
9,4760 24 

 2 [24, -88, -16] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, WM 
9,0859 8 

 3 [51, -61, -16] 
Right Cerebrum, Temporal Lobe, Fusiform 

Gyrus, GM, BA 37 
14,5443 3 

 4 [0, -61, 62] Inter-Hemispheric 5,6401 19 

 5 [6, 17, 2] 
Right Cerebrum, Sub-lobar, Caudate, GM, 

GM, Caudate Head 
9,5913 18 

 6 [15, -91, -10] 
Right Cerebrum, Occipital Lobe, Inferior 

Occipital Gyrus, GM, BA 17 
11,4124 13 

 7 [27, -88, -16] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, WM 
10,7081 14 

 8 [21, -91, -13] 
Right Cerebrum, Occipital Lobe Fusiform 

Gyrus, WM 
14,7544 21 

 9 [45, -70, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,1659 22 

 10 [0, -10, 2] 
Right Cerebrum, Sub-lobar, Third Ventricle, 

CSF 
8,0295 6 

 11 [33, 23, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
8,9114 7 

 12 [27, 44, 44] 
Rigth Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus 
6,6038 5 

 13 [0, -40, 5] Inter-Hemispheric 14,4047 1 

 14 [24, 35, 56] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
13,3764 16 

 15 [12, 23, -1] 
Right Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
8,0360 20 

 16 [6, -94, 20] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 18 
9,4230 2 

 17 [24, -91, -13] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, WM 
5,6731 11 

 18 [42, -70, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
13,5454 15 

 19 [21, -91, -13] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, WM 
14,4608 10 

 20 [-12, -1, 29] 
Left Cerebrum, Limbic Lobe, Cingulate 

Gyrus, WM 
9,3693 23 

 21 [6, 14, 17] 
Right Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
11,8349 9 

 22 [-12, 32, 62] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 6 
11,6978 12 

 23 [6, 56, -1] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
7,3507 17 
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 24 [0 -10, 14] Inter-Hemispheric 17,0271 4 

2 1 [-9, -13, -19] Left Brainstem, Pons 9,1826 7 

 2 [33, -85, -25] Right Cerebrum, Posterior Lobe, Uvula, GM 9,2931 11 

 3 [15, -31, -46] Left Brainstem, Pons 13,1553 3 

 4 [-3, -67, 62] Inter-Hemispheric 7,1411 16 

 5 [21, -28, -31] Left Brainstem, Pons 10,1552 22 

 6 [-12, -34, -19] Left Cerebellum, Anterior Lobe, Culmen, GM 8,6999 18 

 7 [-9, -1, -22] Left Cerebrum, Limbic Lobe, Uncus 19,9712 5 

 8 [-27, -70, 53] 
Left Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 7 
7,6453 9 

 9 [39, 35, 38] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, GM, BA 8 
9,7627 10 

 10 [15, -28, -46] Left Brainstem, Pons 9,6627 2 

 11 [-9, -13, -22] Left Brainstem, Pons 15,3003 1 

 12 [-6, 44, 53] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
5,9738 19 

 13 [0, -46, 11] Inter-Hemispheric 8,7451 6 

 14 [12, -28, -46] Right Brainstem, Pons 7,0514 17 

 15 [-36, 8, -16] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
7,3674 23 

 16 [-12, 2, -16] Left Cerebrum, Limbic Lobe 11,7087 13 

 17 [0, -82, 14] Inter-Hemispheric, Occipital Lobe, Cuneus 8,3202 20 

 18 [39, -82, -13] 
Right Cerebrum, Occipital Lobe, Inferior 

Occipital Gyrus, GM, BA 18 
10,1900 8 

 19 [-6, -22, 38] 
Left Cerebrum, Limbic Lobe, Cingulate 

Gyrus 
9,0360 15 

 20 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
7,8973 24 

 21 [0, -7, -1] 
Right Cerebrum, Sub-lobar, Third Ventricle, 

CSF 
6,1272 4 

 22 [3, -43, 77] Inter-Hemispheric 11,1879 14 

 23 [15, -28, -43] Right Brainstem, Pons 8,0756 12 

 24 [0, -7, 11] Inter-Hemispheric 7,1551 21 

3 1 [0, -40, -16] Left Brainstem, Midbrain 6,6010 9 
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 2 [21, -85, -16] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus 
6,3282 11 

 3 [12, -91, -10] 
Right Cerebrum, Occipital Lobe, Inferior 

Occipital Gyrus, GM, BA 17 
6,5945 13 

 4 [3, -76, 47] Right Cerebrum, Posterior Lobe, Precuneus 6,8266 20 

 5 [0, -46, -37] Left Brainstem, Medulla 8,0276 16 

 6 [0, -16, 2] 
Right Cerebrum, Sub-lobar, Third Ventricle, 

CSF 
6,4260 22 

 7 [-9, -1, -19] Left Cerebrum, Limbic Lobe, Uncus 9,4053 7 

 8 [-42, 11, 44] 
Left Cerebrum, Frontal Lobe, Middle Frontal 

Gyrus, WM 
5,3044 14 

 9 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 13,8047 5 

 10 [57, 11, 2] Right Cerebrum, Temporal Lobe 6,3013 18 

 11 [0, -13, -13] Left Brainstem, Midbrain 13,6858 15 

 12 [-42, -73, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
6,3799 19 

 13 [0, -46, 5] Inter-Hemispheric 12,3271 4 

 14 [-6, 44, 53] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
8,0512 24 

 15 [0, 50, -4] Inter-Hemispheric 7,4304 1 

 16 [0, -46, -37] Left Brainstem, Medulla 10,4295 3 

 17 [6, -64, 14] 
Right Cerebrum, LimbicLobe, Posterior 

Cingulate, WM 
5,7312 6 

 18 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 7,9315 12 

 19 [15, -25, -40] Right Brainstem, Pons 6,9616 2 

 20 [0, -40, -22] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
11,4022 10 

 21 [-3, 2, 23] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
5,1144 23 

 22 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
9,4262 17 

 23 [-3, -55, 41] 
Left Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 7 
6,1672 8 

 24 [0, -16, 8] inter-Hemispheric 6,7780 21 

4 1 [-3, -73, 53] 
Left Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 7 
6,8247 7 

 2 [18, -25, -40] Right Brainstem, Pons 15,0438 11 

 3 [-12, -34, -43] Left Brainstem, Pons 16,1048 3 
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 4 [-6, -67, 32] Left Cerebrum, Occipital Lobe, Cuneus, WM 9,8201 2 

 5 [0, -43, -37] Left Brainstem, Medulla 10,1963 6 

 6 [9, -91, -4] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
14,0847 13 

 7 [-21, 14, -25] Left Cerebrum, BA 38 19,1390 21 

 8 [-45, 29, 32] 
Left Cerebrum, Frontal Lobe, Middle Frontal 

Gyrus, WM 
7,4406 15 

 9 [42, 35, 35] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, WM 
7,7381 4 

 10 [33, 17, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM BA 38 
9,4191 5 

 11 [-39, 14, -13] 
Left Cerebrum, Frontal Lobe, Inferior Frontal 

Gyrus 
17,9036 10 

 12 [-42, 14, -16] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
6,6593 23 

 13 [-12, -34, -43] Left Brainstem, Pons 13,7083 24 

 14 [-42, -16, 62] 
Left Cerebrum, Frontal Lobe, Precentral 

Gyrus, GM, BA 6 
7,7403 20 

 15 [0, -43, -37] Left Brainstem, Medulla 10,0485 14 

 16 [42, 11, -1] Right Cerebrum, Sub-lobar, Insula, WM 7,0168 9 

 17 [-3, -88, 5] 
Left Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 17 
7,3450 22 

 18 [36, -70, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,1130 8 

 19 [9, -91, -1] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
7,3619 19 

 20 [15, -19, -28] Left Brainstem, Pons 7,8489 17 

 21 [0, -46, -34] Left Brainstem, Medulla 10,7870 18 

 22 [-24, -28, 74] 
Left Cerebrum, Parietal Lobe, Postcentral 

Gyrus, GM, BA 3 
7,5659 16 

 23 [0, -70, 41] Inter-Hemispheric 9,3687 1 

 24 [3, 5, 8] 
Right Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
8,7340 12 

5 1 [9, -97, 8] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
11,4505 11 

 2 [30, -85, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
16,3772 6 

 3 [18, -28, -40] Right Brainstem, Pons 8,9713 13 

 4 [3, -67, 59] Right Cerebrum, BA 7 8,0955 2 

 5 [-15, -37, 14] 
Left Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
8,6131 20 
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 6 [12, -94, 2] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 17 
19,9207 22 

 7 [-12, -1, -19] 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus 
9,9617 24 

 8 [45, -73, -22] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
10,0963 10 

 9 [6, 38, 56] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
6,7727 19 

 10 [12, -31, -13] 
Right Cerebellum, Anterior Lobe, Culmen, 

GM 
11,5997 1 

 11 [15, -28, -22] Right Brainstem, Pons 27,0034 17 

 12 [12, -94, -1] Right Cerebrum, Occipital Lobe, Cuneus 9,1744 8 

 13 [0, -49, 8] inter-Hemispheric 19,4779 7 

 14 [33, -37, 71] 
Right Cerebrum, Parietal Lobe, Postecentral 

Gyrus 
9,1795 18 

 15 [18, -28, -22] Right Brainstem, Pons 7,2226 21 

 16 [18, 2, -13] 
Right Cerebrum, Frontal Lobe, Subcallosar 

Gyrus 
8,7838 14 

 17 [6, -94, 14] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 18 
10,4588 12 

 18 [45, -70, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
9,9615 3 

 19 [9, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 17 
11,5685 16 

 20 [-6, -34, 77] 
Left Cerebrum, Frontal Lobe, Paracentral 

Lobule, WM 
12,8937 5 

 21 [3, 8, 20] 
Right Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
9,4312 4 

 22 [-9, -34, 77] 
Left Cerebrum, Frontal Lobe, Paracentral 

Lobule, WM 
12,6223 15 

 23 [-42, -76, 38] 
Left Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 19 
6,8883 23 

 24 [0, -7, 14] Inter-Hemispheric 12,0446 9 

6 1 [-24, 17, -25] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
7,2551 7 

 2 [30, -85, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
11,6114 13 

 3 [-33, -13, 25] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM 
11,0613 24 

 4 [18, 68, 17] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 10 
10,3015 21 

 5 [-15, -37, 14] 
Left Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
8,1332 2 

 6 [-30, -7, 71] 
Left Cerebrum, Frontal Lobe, Precentral 

Gyrus, GM, BA 6 
7,7290 3 

 7 [-12, -4, -19] 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus 
26,1909 16 
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 8 [63, 17, 14] 
Right Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, GM, BA 44 
7,2143 17 

 9 [18, 35, 56] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
10,3108 18 

 10 [24, 53, 38] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 9 
8,1747 20 

 11 [-30, 8, -28] 
Left Cerebrum, Temporal Lobe, Sub-Gyral, 

WM 
6,7219 9 

 12 [18, 68, 17] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 10 
7,7434 4 

 13 [0, -46, 8] Inter-Hemispheric 16,4463 14 

 14 [15, 53, 47] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
9,4466 15 

 15 [15, 65, 14] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 10 
8,8994 19 

 16 [18, 68, 14] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 10 
10,8250 22 

 17 [15, -28, -46] Right Brainstem, Pons 10,6948 10 

 18 [48, -55, -25] Right Cerebellum, Posterior Lobe, Tuber, GM 10,5952 5 

 19 [9, 65, 29] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 9 
8,5660 12 

 20 [12, 5, 26] 
Right Cerebrum, LimbicLobe, Posterior 

Cingulate, WM 
10,3915 6 

 21 [-3, 14, 17] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
12,9219 23 

 22 [-30, -4, 68] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
8,3035 1 

 23 [12, 47, 53] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
7,5957 8 

 24 [6, -4, 14] 
Right Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
12,9711 11 

group 1 [6, -94, 8] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
7,0656 7 

 2 [30, -85, -19] 
Right Cerebrum, Posterior Lobe, Declive, 

GM 
12,9342 13 

 3 [15, -28, -43] Right Brainstem, Pons 10,6579 11 

 4 [0, -67, 59] Inter-Hemispheric 8,4151 24 

 5 [-15, -37, 14] 
Left Cerebrum, Sub-lobar, Lateral Ventricle, 

CSF 
8,5388 2 

 6 [9, -94, -1] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 17 
12,8032 6 

 7 [-12, -1, -19] 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus 
19, 8024 21 

 8 [-45, 32, 32] 
Left Cerebrum, Frontal Lobe, Middle Frontal 

Gyrus, GM, BA 9 
6,0457 18 

 9 [39, 35, 38] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, GM, BA 8 
6,7031 3 
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 10 [0, -13, 2] 
Right Cerebrum, Sub-lobar, Third Ventricle, 

CSF 
9,0958 16 

 11 [18, -28, -22] Right Brainstem, Pons 16,0519 20 

 12 [-42, 14, -16] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
5,4788 22 

 13 [0, -43, 5] Inter-Hemispheric 18,5596 14 

 14 [24, 35, 56] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 6 
9,1053 10 

 15 [0, 50, -4] Inter-Hemispheric 8,8042 15 

 16 [-9, 2, -16] Left Cerebrum 9,7818 5 

 17 [3, -79, 14] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 18 
6,3961 4 

 18 [42, -70, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
11,7584 19 

 19 [21, -91, -13] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, WM 
7,5550 23 

 20 [12, 2, 26] 
Right Cerebrum, Limbic Lobe, Cingulate 

Gyrus, WM 
9,4110 1 

 21 [0, 5, 20] inter-Hemispheric, WM, Corpus Callosum 12,7074 9 

 22 [-21, -37, 77] 
Left Cerebrum, Parietal Lobe, Postcentral 

Gyrus, WM 
9,3764 17 

 23 [0, -58, 32] Left Cerebrum, Parietal Lobe, Precuneus 7,3192 8 

 24 [0. -7, 14] Inter-Hemispheric 14,2915 12 

Table 7.2: The brain areas that showed activation in each RLS subject. 

subject component 
maximum 

voxel 
Brain areas z-score 

spatial sorting 

using maxim 

voxel criteria 

1 1 [-3, -94, 11] 
Left Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 18 
7,4208 12 

 2 [0, -85, -19] Right Cerebellum, GM 8,0339 23 

 3 [33, 14, -19] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
9,0451 9 

 4 [-3, -94, 11] 
Left Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 18 
8,8319 14 

 5 [0, -88, -13] Inter-Hemispheric 6,5886 25 

 6 [-15, -88, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
7,306 3 

 7 [-27, -88, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
6,6735 4 

 8 [33, 11, -28] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
7,6464 18 

 9 [12, -13, -25] Right Brainstem, Pons 10,4789 21 
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 10 [0, -85, -19] Right Cerebellum, GM 6,4978 16 

 11 [-21, -28, -28] Left Brainstem, Pons 7,1139 19 

 12 [0, -46, 8] Inter-Hemispheric 19,0215 22 

 13 [0, -7, 11] Inter-Hemispheric 7,4167 15 

 14 [-15, 2, -19] Left Cerebrum, Limbic Lobe, Uncus 9,7306 8 

 15 [-12, 59, 35] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 9 
7,6906 1 

 16 [0, -46, 8] Inter-Hemispheric 8,14 13 

 17 [9, 8, 23] 
Right Cerebrum, Frontal Lobe, Sub-Gyral, 

WM, Corpus Callosum 
6,8012 6 

 18 [-15, -25, -31] Left Brainstem, Pons 8,7709 2 

 19 [0, -28, 11] Inter-Hemispheric, WM, Corpus, Callosum 8,0101 11 

 20 [6, -73, 14] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
6,6708 24 

 21 [-27, -88, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
8,2012 17 

 22 [0, -49, 29] 
Left Cerebrum, Limbic Lobe, Cingulate 

Gyrus 
7,9471 7 

 23 [6, -7, -22] Right Brainstem, Pons 15,7693 20 

 24 [0, -70, 59] Inter-Hemispheric 7,4211 5 

 25 [0, -46, 8] Inter-Hemispheric 9,3194 10 

2 1 [-15, -37, -19] 
Left Cerebellum, Anterior Lobe, Culmen, 

GM 
8,0408 3 

 2 [6, -49, -19] 
Right Cerebellum, Anterior Lobe, 

Fastigium, GM 
5,3325 11 

 3 [-15, -34, -22] 
Left Cerebellum, Anterior Lobe, Culmen, 

GM 
11,804 23 

 4 [51, 14, 32] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, WM 
6,0403 16 

 5 [42, -55, -25] 
Right Cerebellum, Posterior Lobe, Tuber, 

GM 
5,9787 8 

 6 [51, 14, -10] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
7,2238 18 

 7 [-39, -70, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
7,707 19 

 8 [6, -40, -34] Right Brainstem, Pons 8,472 15 

 9 [18, -10, -22] 
Right Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, GM, BA 28 
7,5012 1 

 10 [-48, 17, 41] 
Left Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, GM, BA 8 
5,6253 12 
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 11 [36, 11, -19] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
9,8325 7 

 12 [0, -46, 11] Inter-Hemispheric 8,0496 13 

 13 [9, -13, 20] 
Right Cerebrum, Sub-lobar, Lateral 

Ventricle, CSF 
7,6552 17 

 14 [57, 17, -4] 
Right Cerebrum, Temporal Lobe, Inferior 

Temporal Gyrus 
7,1668 9 

 15 [18, 59, 26] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
8,1015 6 

 16 [51, 5, -10] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
8,8013 14 

 17 [12, -4, 26] 
Right Cerebrum, Limbic Lobe, Cingulate 

Gyrus, WM 
7,5157 24 

 18 [-39, -79, -25] 
Left Cerebellum, Posterior Lobe, Tuber, 

GM 
8,3828 4 

 19 [54, 8, -16] 
Right Cerebrum, Temporal Lobe, Middle 

Temporal Gyrus, GM, BA 21 
8,2985 5 

 20 [3, -76, 47] Right Cerebrum, Parietal Lobe, Precuneus 5,1556 21 

 21 [57, 23, 29] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, GM, BA 9 
5,6402 10 

 22 [48, 20, 41] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, GM, BA 8 
5,4198 22 

 23 [-3, -4, -22] Left Brainstem, Pons 9,6512 2 

 24 [18, -67, 65] 
Right Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
6,7246 20 

 25 [-30, -28, 71] 
Left Cerebrum, Parietal Lobe, Postcentral 

Gyrus 
4,5374 25 

3 1 [-18, -31, -28] Left Brainstem, Pons 12,9532 8 

 2 [3, -49, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
6,9002 23 

 3 [-18, -31, -25] Left Brainstem, Pons 13,8937 17 

 4 [-12, -31, -22] Left Brainstem, Pons 6,8016 3 

 5 [-39, -34, 68] 
Left Cerebrum, Parietal Lobe, POstcentral 

Gyrus, WM 
6,4248 19 

 6 [-9, 59, 38] Left Cerebrum, Frontal Lobe 6,6023 1 

 7 [-30, -82, -13] 
Left Cerebrum, Occipital Lobe, Fusiform 

Gyrus, GM, BA 19 
6,1963 11 

 8 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
24, 609 16 

 9 [0, -52, 14] 
Inter-Hemispheric, Limbic Lobe, Posterior 

Cingulate 
10,7383 14 

 10 [-21, 41, 50] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
7,1774 12 

 11 [-21, -31, -25] Left Cerebellum, Anterior Lobe, GM 12,7552 18 
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 12 [0, -46, 5] Inter-Hemispheric 12,4525 25 

 13 [-3, 5, 8] 
Left Cerebrum, Sub-lobar, Lateral 

Ventricle, CSF 
11,4843 9 

 14 [-15, -31, -28] Left Brainstem, Pons 11,6705 13 

 15 [0, 44, 50] Inter-Hemisheric 6,5891 22 

 16 [-18, -28, -28] Left Brainstem, Pons 12,7315 20 

 17 [-6, -4, 23] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
14,8134 10 

 18 [-18, -31, -25] Left Brainstem, Pons 11,2961 24 

 19 [-21, -31, -28] Left Brainstem, Pons 13,0678 2 

 20 [18, -58, 5] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
7,6618 4 

 21 [-18, -31, -22] 
Left Cerebellum, Anterior Lobe, Culmen, 

GM 
5,9018 6 

 22 [0, -49, 23] 
Left Cerebrum, Limbic Lobe, Posterior 

Cingulate 
8,8388 15 

 23 [-9, -1, -19] Left Cerebrum, Limbic Lobe, Uncus 16,2426 5 

 24 [3, -76, 47] Right Cerebrum, Parietal Lobe, Precuneus 7,0446 7 

 25 [0, -4, -4] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
11,1887 21 

4 1 [-33, -73, -10] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
12,5576 23 

 2 [0, -85, -1] Left Cerebrum, Occipital Lobe 6,9851 18 

 3 [-36, 14, -16] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus 
14,1204 14 

 4 [-12, 59, 35] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 9 
5,5181 3 

 5 [42, -58, 59] 
Right Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
8,0121 11 

 6 [36, 14, -25] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
8,0374 1 

 7 [12, -94, 2] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 17 
8,1154 13 

 8 [36, 14, -25] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
7,6918 12 

 9 [33, -7, -34] 
Right Cerebrum, Limbic Lobe, Uncus, 

GM, BA 20 
7,7668 19 

 10 [-36, 47, 32] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 9 
5,7065 20 

 11 [36, 14, -19] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
12,844 21 

 12 [-6, -40, -1] 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus 
9,6929 7 
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 13 [0, -16, 17] Inter-Hemispheric 10,5441 5 

 14 [-15, 5, -19] Left Cerebrum, Frontal Lobe 14,936 9 

 15 [-12, -4, -19] 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus 
6,026 6 

 16 [39, 14, -25] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
7,2826 17 

 17 [-3, 8, 17] 
Left Cerebrum, Sub-lobar, Lateral 

Ventricle, CSF 
7,598 16 

 18 [-33, -73, -13] 
Left Cerebrum, Occipital Lobe, Fusiform 

Gyrus, GM, BA 19 
17,9655 8 

 19 [0, -52, 20] 
Left Cerebrum, Limbic Lobe, Posterior 

Cingulate 
9,3382 22 

 20 [21, -67, 11] Left Cerebrum, Occipital Lobe, Cuneus 9,2021 2 

 21 [39, -61, 56] 
Right Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
9,1682 24 

 22 [0, -58, 20] Left Cerebrum, Occipital Lobe, Precuneus 7,128 15 

 23 [0, -13, -19] Right Brainstem, Pons 21,2398 25 

 24 [39, 14, -25] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, WM 
6,4369 10 

 25 [3, 23, 59] Inter-Hemispheric 5,8885 4 

5 1 [0, -40, -13] 
Left Cerebellum, Anterior Lobe, Cerebellar 

Lingual, GM 
7,6581 3 

 2 [0, -22, -7] Left Brainstem, Midbrain 7,9256 23 

 3 [33, 17, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
18, 0289 12 

 4 [27, 11, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
5,6325 6 

 5 [-24, -61, 68] 
Left Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, WM 
7,7684 19 

 6 [0, -22, -4] Left Brainstem, Midbrain 11,9947 24 

 7 [9, -1, -22] Right Cerebrum, Limbic Lobe, Uncus 7,5985 11 

 8 [-6, -37, -34] Left Brainstem, Pons 5,3943 14 

 9 [30, 11, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
8,6629 9 

 10 [-30, -40, -37] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
5,369 13 

 11 [0, -22, -4] Left Brainstem, Midbrain 11,367 16 

 12 [0, -43, 5] Inter-Hemispheric 14,083 2 

 13 [0, -22, -4] Left Brainstem, Midbrain 8,654 22 
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 14 [0, -13, 2] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
10,6803 5 

 15 [42, -4, 5] 
Right Cerebrum, Sub-lobar, Insula, GM, 

BA 13 
5,2376 1 

 16 [33, 11, -22] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
8,0137 7 

 17 [-6, 5, 23] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
6,3506 25 

 18 [-3, -85, -16] Left Cerebellum, GM 5,6954 20 

 19 [0, -22, -4] Left Brainstem, Midbrain 11,8686 17 

 20 [30, 11, -19] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
6,7822 21 

 21 [39, 50, -1] 
Right Cerebrum, Frontal Lobe, Middle 

Frontal Gyrus, WM 
5,9926 18 

 22 [0, -16, -1] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
7,8679 4 

 23 [3, -10, -22] Right Brainstem, Pons 17,0691 8 

 24 [0, -64, 62] Inter-Hemispheric 11,5826 10 

 25 [0, -13, -4] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
7,2733 15 

6 1 [0, -37, -13] Left Brainstem, Midbrain 17,1564 8 

 2 [12, -85, -16] 
Right Occipital Lobe, Libgual Lobe, GM, 

BA 18 
15,3035 23 

 3 [42, 8, -13] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
14,6842 18 

 4 [0, -40, -22] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
9,7846 19 

 5 [39, -79, -25] 
Right Cerebellum, Posterior Lobe, Tuber, 

GM 
10,1748 1 

 6 [6, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
7,4142 11 

 7 [27, -82, 35] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 19 
10,6307 2 

 8 [0, -46, -31] Left Brainstem, Pons 32,6353 3 

 9 [-15, -25, -31] Left Brainstem, Pons 9,3974 13 

 10 [6, -82, -22] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,8708 14 

 11 [-18, -25, -25] Left Brainstem, Pons 15,6637 17 

 12 [3, -43, 2] Inter-Hemispheric 9,0007 7 

 13 [12, -88, -16] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 18 
14,2859 5 

 14 [-18, -31, -25] Left Brainstem, Pons 12,9469 25 
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 15 [-18, -31, -25] Left Brainstem, Pons 5,6143 4 

 16 [-18, -31, -25] Left Brainstem, Pons 8,9818 9 

 17 [0, -85, -16] Right Cerebellum, GM 12,4736 12 

 18 [3, -85, -16] Right Cerebellum, GM 20,3015 16 

 19 [39, -79, -25] 
Right Cerebellum, Posterior Lobe, Tuber, 

GM 
17,1672 22 

 20 [0, -82, 17] Inter-Hemispheric, Occipital Lobe, Cuneus 8,6246 20 

 21 [0, -88, -13] Inter-Hemispheric 7,841 24 

 22 [3, -85, -22] Right Cerebellum, GM 8,9521 10 

 23 [0, -10, -22] Left Brainstem, Pons 24,4373 21 

 24 [12, -91, -13] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
8,1837 6 

 25 [0, -4, -1] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
9,795 15 

7 1 [0, -40, -16] Left Brainstem, Midbrain 12,8208 12 

 2 [18, -28, -22] Right Brainstem, Pons 9,2658 8 

 3 [18, -28, -22] Right Brainstem, Pons 13,6975 11 

 4 [0, -43, 8] Inter-Hemispheric 8,375 23 

 5 [21, -28, -28] Right Brainstem, Pons 9,3364 3 

 6 [45, -7, -7] 
Right Cerebrum, Temporal Lobe, Sub-

Gyral, WM 
6,5733 13 

 7 [-33, -88, -16] 
Left Cerebrum, Occipital Lobe, Fusiform 

Gyrus 
10,0794 14 

 8 [0, -46, -31] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
28,5093 1 

 9 [-15, -19, -25] Left Brainstem, Pons 11,7685 9 

 10 [-48, 20, -4] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, WM 
7,3065 19 

 11 [-21, -28, -28] Left Brainstem, Pons 18,0035 7 

 12 [0, -43, 5] Inter-Hemispheric 28,8548 5 

 13 [0, -19, 5] Inter-Hemispheric, CSF, Optic Tract 12,9913 24 

 14 [-24, 5, -16] 
Left Cerebrum, Limbic Lobe, 

Parahippocanpal Gyrus, GM, BA 34 
12,9406 2 

 15 [0, 2, 2] Inter-Hemispheric 6,9129 18 
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 16 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 8,4071 25 

 17 [-6, -7, 26] 
Left Cerebrum, Limbic Lobe, Cingulate 

Gyrus 
6,9283 16 

 18 [18, -28, -28] Right Brainstem, Pons 8,8935 4 

 19 [0, -25, 2] Left Brainstem, Midbrain 11,8683 20 

 20 [-21, -34, -31] Left Brainstem, Pons 7,6238 10 

 21 [-33, -88, -16] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
6,2756 17 

 22 [0, -52, 23] Inter-Hemispheric 6,8143 15 

 23 [-9, -4, -22] Left Cerebrum, Limbic Lobe, Uncus 17,6074 22 

 24 [0, -70, 56] Inter-Hemispheric 9,2945 6 

 25 [-12, -28, -34] Left Brainstem, Pons 8,4963 21 

8 1 [0, -40, -13] 
Left Cerebellum, Anterior Lobe, Cerebellar 

Lingual, GM 
14,8449 8 

 2 [12, -88, -16] 
Right Cerebellum, Posterior Lobe, Uvuvla, 

GM 
13,4321 18 

 3 [12, -91, -13] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
9,8392 14 

 4 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 8,0724 13 

 5 [-36, -82, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
12,2664 23 

 6 [-15, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
12,8836 1 

 7 [-27, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
14,0449 22 

 8 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
24,5202 7 

 9 [30, -88, -16] 
Right Cerebrum, Occipital Lobe, Fusiform 

Gyrus, GM, BA 18 
8,6918 2 

 10 [-33, -73, 47] 
Left Ceerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
6,8143 11 

 11 [3, -85, -19] Right Cerebellum, GM 13,0016 6 

 12 [0, -43, 5] Inter-Hemispheric 10,5552 5 

 13 [-15, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
15,5973 20 

 14 [-21, -1, -16] 
Left Cerebrum, Limbic Lobe, 

Parahippocanpal Gyrus, GM, Amygdala 
15,6947 12 

 15 [-9, 38, 53] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
6,3004 3 

 16 [0, -43, -25] 
Left Cerebellum, Anterior Lobe, Culmen, 

GM 
8,8862 21 
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 17 [-27, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
7,8452 19 

 18 [-27, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
22,6638 16 

 19 [0, -28, -1] Left Brainstem, Midbrain 9,1177 24 

 20 [0, -85, -16] Right Cerebellum, GM 11,8091 9 

 21 [27, -76, 50] 
Right Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 7 
9,3057 4 

 22 [-15, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
14,1548 25 

 23 [-27, -88, -22] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
15,2753 17 

 24 [-3, -64, 62] Left Cerbrum, Parietal Lobe, Precuneus 8,7199 10 

 25 [-30, -37, 68] 
Left Cerebrum, Parietal Lobe, Postcentral 

Gyrus 
8,0227 15 

9 1 [-12, -28, -34] Left Brainstem, Pons 10,2907 23 

 2 [33, -85, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,0709 3 

 3 [-39, 14, -13] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus 
14,1156 7 

 4 [18, 59, 26] 
Right Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
5,0435 11 

 5 [-48, -46, 59] 
Left Cerebrum, Parietal Lobe, Inferior 

Parietal Lobule, GM,BA 40 
7,6112 12 

 6 [6, -7, -22] Right Brainstem, Pons 9,2857 14 

 7 [-27, -88, -13] 
Left Cerebrum, Occipital Lobe,Inferior 

Occipital Gyrus, GM, BA 18 
14,0535 1 

 8 [-15, -97, -10] 
Left Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
7,6782 19 

 9 [-30, 8, -19] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
6,1966 17 

 10 [-3, 35, 53] Inter-Hemispheric 5,251 6 

 11 [33, 14, -19] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
13,8916 15 

 12 [0, -43, 5] Inter-Hemispheric 13,6652 8 

 13 [3, -85, -4] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 18 
6,7431 5 

 14 [-18, 5, -19] 
Left Cerebrum, Limbic Lobe, Uncus, GM, 

BA 34 
12,9905 2 

 15 [-18, 59, 29] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus 
7,7025 16 

 16 [-12, -28, -34] Left Brainstem, Pons 7,0525 13 

 17 [-6, -1, 23] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
9,3753 25 
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 18 [-45, -67, -25] 
Left Cerebellum, Posterior Lobe, Tuber, 

GM 
5,6584 20 

 19 [12, -16, -19] Right Brainstem, Pons 10,1916 9 

 20 [0, -7, -13] Left Brainstem, Midbrain 6,2031 24 

 21 [-15, -97, -10] 
Left Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
5,645 18 

 22 [3, -64, 44] 
Right Cerebrum, Parietal Lobe, Precuneus, 

GM, BA 7 
5,6271 21 

 23 [0, -10, -19] Right Brainstem, Pons 22,7264 22 

 24 [-39, -49, 65] 
Left Cerebrum, Parietal Lobe, inferior 

Parietal Lobule, WM 
5,7775 10 

 25 [27, -43, 74] 
Right Cerebrum, Parietal Lobe, Postcentral 

Gyrus, GM, BA 5 
6,7041 4 

10 1 [-12, 32, 56] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 6 
8,0065 8 

 2 [6, -91, 14] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
5,9329 15 

 3 [63, 11, 17] 
Right Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus 
5,3858 23 

 4 [-33, -64, -34] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
8,9226 12 

 5 [21, -61, 71] 
Right Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
8,3466 7 

 6 [-30, -64, -34] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
7,9543 4 

 7 [-33, -64, -34] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
8,9326 5 

 8 [-33, -64, -34] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
16,4299 1 

 9 [-21, -1, -25] Left Cerebrum, Limbic Lobe, Uncus, WM 5,7012 17 

 10 [-15, 47, 50] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA8 
6,2609 13 

 11 [-9, 14, 17] 
Left Cerebrum, Sub-Lobar, Lateral 

Ventricle, CSF 
5,7532 6 

 12 [0, -43, 5] Inter-Hemispheric 9,2717 18 

 13 [-3, 41, 20] 
Left Cerebrum, Frontal Lobe, Medial 

Frontal Gyrus 
7,9662 14 

 14 [9, 2, -13] 
Right Cerebrum, Frontal Lobe, Subcallosal 

Gyrus 
7,3227 22 

 15 [-3, 44, 50] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
9,6009 21 

 16 [-3, 47, 47] Left Cerebrum, Frontal Lobe 6,4654 24 

 17 [3, 8, 17] 
Right Cerebrum, Sub-lobar, Lateral 

Ventricle, CSF 
8,0059 16 

 18 [-33, -64, -34] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
7,6754 10 
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 19 [3, -31, 5] 
Right Cerebrum, Sub-lobar, Lateral 

Ventricle, CSF 
7,062 19 

 20 [-3, 44, 44] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
6,0114 25 

 21 [-3, 44, 47] 
Left Cerebrum, Frontal Lobe, Superior 

Frontal Gyrus, GM, BA 8 
7,2246 20 

 22 [18, -91, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,3069 2 

 23 [-6, -7, -22] Left Brainstem, Pons 9,4522 11 

 24 [18, -91, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,2082 9 

 25 [0, 47, 47] Inter-Hemispheric 6,1527 3 

11 1 [12, -91, -4] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, WM 
10,2171 23 

 2 [15, -88, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
13,7369 8 

 3 [-36, 14, -16] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus 
8,6798 12 

 4 [9, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 17 
10,3102 13 

 5 [9, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 17 
11,657 17 

 6 [-54, 20, -1] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, GM, BA 47 
6,8525 9 

 7 [42, -46, -16] 
Right Cerebrum, Temporal Lobe, 

Fusiform, Gyrus, WM 
8,6293 2 

 8 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 22,0848 18 

 9 [9, -94, 8] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
14,5252 21 

 10 [-33, -70, 53] 
Left Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
9,8313 5 

 11 [0, -19, 5] Inter-Hemispheric, CSF, Optic Tract 9,7126 24 

 12 [-3, -40, 2] Inter-Hemispheric 24,4186 20 

 13 [9, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 17 
20,1843 4 

 14 [-12, -4, -16] 
Left Cerebrum, LimbicLobe, 

Parahippocampal Gyrus 
8,2321 1 

 15 [-3, 56, 35] 
Left Cerebrum, Frontal Lobe, Medial 

Frontal Gyrus 
7,1921 10 

 16 [33, -82, -25] 
Right Cerebellum, Posterior Lobe, Uvuvla, 

GM 
7,8031 11 

 17 [9, -94, 5] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 17 
15,4128 22 

 18 [15, -85, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
13,525 3 

 19 [15, -88, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
8,3222 7 
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 20 [-3, -88, 29] 
Right Cerebrum, Occipital Lobe, Cuneus, 

GM, BA 19 
10,5871 19 

 21 [9, -94, 8] 
Right Cerebrum, Occipital Lobe, Cuneus, 

WM 
12,5754 14 

 22 [3, -55, 14] 
Right Cerebrum, Limbic Lobe, Posterior 

Cingulate, GM, BA 23 
8,8464 16 

 23 [0, -4, -22] Left Braintsem, Pons 25,2282 15 

 24 [0, -61, 62] Inter-Hemispheric 11,4983 6 

 25 [0, -22, 50] 
Left Cerebrum, Frontal Lobe, Medial 

Frontal Gyrus 
5,4296 25 

12 1 [0, -40, -16] Left Brainstem, Midbrain 31,6729 8 

 2 [0, -13, -4] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
7,6692 1 

 3 [-21, -31, -31] Left Brainstem, Pons 18,4593 19 

 4 [0, -40, -22] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
12,83 3 

 5 [-48, -37, 62] 
Left Cerebrum, Parietal Lobe, Inferior 

Parietal Lobule, GM,BA 40 
7,3235 11 

 6 [0, -40, -13] 
Left Cerebellum, Anterior Cerebellum, 

Cerebellar Lingual, GM 
6,669 12 

 7 [0, -19, 5] Inter-Hemispheric, CSF, Optic Tract 12,4677 23 

 8 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
39,5873 14 

 9 [0, -43, -19] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
8,5616 4 

 10 [-54, 20, 2] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, GM, BA 47 
8,6901 13 

 11 [0, -22, 5] Inter-Hemispheric, CSF, Optic Tract 18,2984 7 

 12 [3, -40, 2] Inter-Hemispheric 17,7229 25 

 13 [0, -19, 5] Inter-Hemispheric, CSF, Optic Tract 12,7471 20 

 14 [-15, 5, -19] Left Cerebrum, Frontal lobe 14,1057 24 

 15 [0, -40, -22] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
7,4182 16 

 16 [-3, -43, -25] Left Cerebellum, Anterior Lobe, GM 9,8502 21 

 17 [9, -1, 26] 
Right Cerebrum, Limbic Lobe, Cingulate 

Gyrus, WM 
9,0432 17 

 18 [-39, -67, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
8,6073 10 

 19 [0, -28, 5] Inter-Hemispheric 23,2108 18 

 20 [-3, -52, -31] 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
10,4833 9 
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 21 [0, -4, -4] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
9,6748 22 

 22 [0, -64, 35] Left Cerebrum, Parietal Lobe, Precuneus 7,8884 2 

 23 [3, -7, -22] Right Brainstem, Pons 15,9875 15 

 24 [0, -43, -28] Right Cerebellum, Anterior Lobe, GM 10,2993 5 

 25 [0, -49, -34] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
12,2752 6 

13 1 [-3, -43, -13] 
Left Cerebellum, Anterior Lobe, Cerebellar 

Lingual, GM 
8,9098 18 

 2 [0, -46, -19] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
8,4836 4 

 3 [-42, -4, -4] Left Cerebrum, Insula, GM, BA 13 11,8388 3 

 4 [21, -82, -22] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
12,1192 4 

 5 [-21, -70, 62] 
Left Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
5,3953 24 

 6 [-39, -22, 8] 
Left Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
9,4261 12 

 7 [36, -49, -25] 
Right Cerebellum, Anterior Lobe, Culmen, 

GM 
6,0733 23 

 8 [0, -46, -22] 
Right Cerebellum, Sub-lobar, Fourth 

Ventricle, CSF 
8,8147 14 

 9 [45, -73, -16] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
5,7133 6 

 10 [-54, 38, 11] 
Left Cerebrum, Frontal Lobe, Inferior 

Frontal Gyrus, GM, BA 46 
6,323 1 

 11 [-39, -19, 11] 
Left Cerebrum, Sub-lobar, Insula, GM, BA 

13 
10,9563 8 

 12 [0, -43, 2] Inter-Hemispheric 10,5668 2 

 13 [-42, -10, 2] Left Cerebrum, Sub-lobar, Insula 7,4355 17 

 14 [24, -82, -22] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
9,5528 15 

 15 [0, 59, 26] Inter-Hemispheric 7,5807 22 

 16 [36, 17, -25] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus, GM, BA 38 
6,1653 13 

 17 [9, -7, 26] 
Right Cerebrum, Limbic Lobe, Cingulate 

Gyrus, WM 
8,427 20 

 18 [24, -82, -22] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
18,6552 19 

 19 [-15, -31, -10] Left Cerebrum, Limbic Lobe 6,998 25 

 20 [6, -88, 5] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus 
7,392 10 

 21 [0, -46, 11] Inter-Hemispheric 5,8418 16 
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 22 [21, -85, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
7,5283 7 

 23 [-15, -31, -16] 
Left Cerebellum, Anterior, Lobe, Culmen, 

GM 
9,774 9 

 24 [0, -64, 56] Inter-Hemispheric 10,5887 5 

 25 [0, -37, 71] Inter-Hemispheric 6,9602 21 

group 1 [0, -40, -16] Left Brainstem, Midbrain 20,4335 8 

 2 [12, -88, -16] 
Right Cerebrum, Occipital Lobe, Lingual 

Gyrus, GM, BA 18 
10,4907 23 

 3 [42, 11, -13] 
Right Cerebrum, Temporal Lobe, Superior 

Temporal Gyrus 
13,0399 12 

 4 [0, -40, -25] Left Cerebellum, Anterior Lobe, GM 8,8913 1 

 5 [15, -67, 68] 
Right Cerebrum, Parietal Lobe, Superior 

Parietal Lobule 
7,2967 11 

 6 [57, 14, -1] Right Cerebrum, Frontal-Temporal Space 6,2738 19 

 7 [-27, -88, -19] 
Left Cerebellum, Posterior Lobe, Declive, 

GM 
7,5999 14 

 8 [0, -46, -28] 
Right Cerebellum, Anterior Lobe, Nodule, 

GM 
30,9428 3 

 9 [-15, -25, -31] Left Brainstem, Pons 10,4626 24 

 10 [-33, -73, 50] 
Left Cerebrum, Parietal Lobe, Superior 

Parietal Lobule, GM, BA 7 
5,9358 17 

 11 [-18, -28, -25] Left Brainstem, Pons 14,8655 13 

 12 [0, -43, 5] Inter-Hemispheric 22,7752 2 

 13 [-3, -1, 11] Left Cerebrum, Sub-lobar, Lateral CSF 10,8362 18 

 14 [-18, 5, -19] 
Left Cerebrum, Limbic Lobe, Uncus, GM, 

BA 34 
13,6002 9 

 15 [0, 44, 47] Inter-Hemispheric 5,9436 4 

 16 [0, -43, -25] Left Cerebellum, Anterior Lobe, GM 8,5626 16 

 17 [-6, -1, 23] 
Left Cerebrum, Sub-lobar, Extra-Nuclear, 

WM, Corpus Callosum 
10,9215 22 

 18 [6, -85, -19] 
Right Cerebellum, Posterior Lobe, Declive, 

GM 
10,463 25 

 19 [0, -25, -1] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
14,3136 7 

 20 [0, -79, 14] Inter-Hemispheric, Occipital Lobe, Cuneus 7,1435 5 

 21 [45, 20, 41] 
Right Cerebrum, Frontal Lobe, 

MiddleFrontal Gyrus, WM 
5,6248 20 

 22 [0, -64, 32] Left Cerebrum, Occipital Lobe, Cuneus 8,0612 6 
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 23 [0, -7, -22] Left Braintsem, Pons 24,1209 15 

 24 [0, -64, 59] Inter-Hemispheric 11,3618 10 

 25 [0, -4, -4] 
Right Cerebrum, Sub-lobar, Third 

Ventricle, CSF 
7,7661 21 

Table 7.3: The components with their coordinates and the related figured areas for the 

RLS group depicted in functional correlation matrix. 

components coordinates brain areas 

1 [10, -36, -15] Right Cerebellum, Anterior Lobe, Culmen, GM 

2 [8, 44, 5] Right Cerebrum, Limbic Lobe, Anterior Cingulate, GM, BA 32 

3 [-42, 2, 5] Left Cerebrum, Sub-lobar, Insula, WM 

4 [46, -10, 15] Right Cerebrum, Parietal Lobe, Insula, WM 

5 [12, -68, 65] Right Cerebrum, Parietal Lobe, Superior Parietal Lobule 

6 [50, 26, -5] Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, WM 

7 [30, -76, 20] Right Cerebrum, Occipital Lobe, Middle Occipital Gyrus, WM 

8 [0, -54, -30] Right Cerebellum, Anterior Lobe, Nodule, GM 

9 [-20, -8, -20] Left Cerebrum, Limbic Lobe, Parahippocampal Gyrus, WM 

10 [-46, 28, 20] Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus, GM, BA 46 

11 [34, 16, -25] Right Cerebrum, Temporal Lobe, Superior Temporal Gyrus, GM, BA 38 

12 [6, -46, 0] Right Cerebellum, Anterior Lobe, Culmen, GM 

13 [-6, 20, 0] Right Cerebrum, Sub-lobar, Lateral Ventricle, CSF 

14 [16, -4, -15] Right Cerebrum, Limbic Lobe, Parahippocampal Gyrus, GM, BA 34 

15 [-30, 28, 50] Left Cerebrum, Frontal Lobe, Superior Frontal Gyrus, WM 

16 [12, -34, 15] Right Cerebrum, Sub-lobar, Lateral Ventricle, CSF 

17 [8, 8, 20] Right Cerebrum, Sub-lobar, Lateral Ventricle, CSF 

18 [32, -68, -25] Right Cerebellum, Posterior Lobe, Uvula, GM 

19 [-8, -24, 15] Left Cerebrum, Sub-lobar, Extra-Nuclear, WM 

20 [6, -78, 5] Right Cerebrum, Occipital Lobe, Lingual Gyrus, WM 
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21 [36, 20, 45] Right Cerebrum, Frontal Lobe, Middle Frontal Gyrus, GM, BA 8 

22 [-6, -48, 35] Left Cerebrum, Parietal Lobe, Precuneus, GM, BA 31 

23 [-6, -10, -20] Left Brainstem, Pons 

24 [6, -68, 55] Inter-Hemispheric 

25 [-16, -46, 65] Left Cerebrum, Parietal Lobe, Postcentral Gyrus, WM 

Table 7.4: The components with their coordinates and the related figured areas for the 

group of controls depicted in functional correlation matrix. 

components coordinates brain areas 

1 [48, 32, -10] Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, WM 

2 [18, -82, -25] Right Cerebellum, Posterior Lobe, Uvula, GM 

3 [-28, 0, -25] Left Cerebrum, Temporal Lobe, Sub-Gyral, WM 

4 [-8, -58, 50] Right Cerebrum, Parietal Lobe, Precuneus, GM, BA 7 

5 [-18, -42, 5] Left Cerebrum, Limbic Lobe, Parahippocampal Gyrus, WM 

6 [0, -46, 50] Left Cerebrum, Parietal Lobe, Precuneus 

7 [-30, -32, -10] Left Cerebrum, Limbic Lobe, Parahippocampal Gyrus, WM 

8 [-42, -40, 35] Left Cerebrum, Parietal Lobe, Supramarginalis Gyrus, GM, BA 40 

9 [36, 56, 20] Right Cerebrum, Frontal Lobe, Middle Frontal Gyrus, GM, BA 10 

10 [-50, 12, -5] Left Cerebrum, Temporal Lobe, Superior Temporal Gyrus, GM, BA 22 

11 [-48, 32, 30] Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus, GM, BA 9 

12 [-2, 38, 50] Left Cerebrum, Frontal Lobe, Superior Frontal Gyrus 

13 [0, -40, 15] Inter-Hemispheric, WM, Corpus Callosum 

14 [-36, -2, 65] Left Cerebrum, Frontal Lobe, Middle Frontal Gyrus 

15 [-18, 26, 10] Left Cerebrum, Sub-lobar, Extra-Nuclear, WM 

16 [-26, -4, -15] Left Cerebrum, Limbic Lobe, Parahippocampal Gyrus, GM, Amygdala 

17 [-12, -64, -5] Left Cerebrum, Occipital Lobe, Lingual Gyrus 

18 [6, -40, 70] Right Cerebrum, Parietal Lobe, Postcentral Gyrus, GM, BA 5 

19 [-6, -4, 40] Left Cerebrum, Limbic Lobe, Cingulate Gyrus, WM 

20 [50, 38, -10] Right Cerebrum, Frontal Lobe, Inferior Frontal Gyrus, WM 

21 [8, 54, 20] Right Cerebrum, Frontal Lobe, Medial Frontal Gyrus, WM 
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22 [12, -46, 80] Right Cerebrum, Frontal Lobe, Superior Frontal Gyrus, WM 

23 [18, 36, 40] Right Cerebrum, Frontal Lobe, Superior Frontal Gyrus, WM 

24 [0, 2, 10] Inter-Hemispheric 

Table 7.5: Functionally connected areas assuming the right middle frontal gyrus as 

seed for RLS group. 

MNI 

coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[48, 24, 32] 56571 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.000000 0.000000 0.000001 0.000000 

[24, -58, -24] 1083 
Right Cerebellum, Posterior 

Lobe, Declive, GM 
0.000000 0.000000 0.444681 0.000004 

[-12, -6, 2] 858 
Left Cerebrum, Sub-lobar, 

Thalamus, GM 
0.000000 0.000000 0.167847 0.000001 

[16, -4, 14] 787 
Right Cerebrum, Sub-lobar, 

Extra-Nuclear, WM 
0.000000 0.000000 0.275920 0.000002 

[-56, -60, -12] 644 

Left Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, GM, 

BA 19 

0.000000 0.000000 0.633112 0.000008 

[-56, -36, 8] 501 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.000003 0.000000 0.400471 0.000003 

[30, -6, -42] 214 
Right Cerebrum, Limbic Lobe 

Uncus, GM, BA 20 
0.003168 0.000126 0.519575 0.000005 

[-32, -42, -34] 163 
Left Cerebellum, Anterior Lob, 

Culmen, GM 
0.013978 0.000560 0.199487 0.000001 

[16, -58, -48] 140 
Right Cerebellum, Posterior 

Lobe, Cerebellar Tonsil, GM 
0.028562 0.001153 0.881857 0.000022 

[-56, -22, -34] 91 
Left Cerebrum, Temporal Lobe, 

Fusiform Gyrus 
0.145171 0.006242 0.240116 0.000001 

[64, -18, 18] 90 
Right Cerebrum, Parietal Lobe, 

Postcentral Gyrus, WM 
0.150246 0.006479 0.928131 0.000031 

[12, 14, -22] 85 

Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, GM, BA 

25 

0.178450 0.007823 0.992606 0.000077 

[40, -6, 18] 82 
Right Cerebrum, Sub-lobar, 

Insula, GM, BA 13 
0.197864 0.008775 0.993725 0.000080 

Table 7.6: Functionally connected areas assuming the right middle frontal gyrus as 

seed for controls group. 

MNI 

coordinates of 

maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[34, 14, 32] 2622 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.000000 0.000000 0.104722 0.000000 

[16, -72, 56] 1593 
Right Cerebrum, Parietal Lobe, 

Precuneus, WM 
0.000000 0.000000 0.111911 0.000000 
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[-48, 8, 42] 968 
Left Cerebrum. Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 8 
0.000000 0.000000 0.295646 0.000001 

[-42, -60, 54] 940 
Left Cerebrum, Parietal Lobe, 

Inferior Parietal Lobule 
0.000000 0.000000 0.979886 0.000004 

[-2, 30, 42] 769 
Left Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, GM, BA 8 
0.000000 0.000000 0.999776 0.000005 

[-36, -60, -36] 455 
Left Cerebellum, Posterior Lobe, 

Tuner, GM 
0.000000 0.000000 0.999746 0.000005 

[6, -42, 48] 280 
Right Cerebrum, Parietal Lobe, 

Precuneus, WM 
0.000000 0.000000 0.999993 0.000012 

[70, -30, -12] 158 

Right Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, GM, BA 

21 

0.000055 0.000001 1.000000 0.000036 

[-24, -4, -36] 154 
Left Cerebrum, Limbic Lobe, 

Uncus, WM 
0.000070 0.000001 0.999971 0.000009 

[24, -82, -18] 146 
Right Cerebrum, Occipital Lobe, 

Lingual Gyrus, WM 
0.000114 0.000002 0.267704 0.000001 

[36, 60, 14] 144 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.000128 0.000002 0.999999 0.000018 

[40, -70, 36] 128 
Right Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 39 
0.000345 0.000005 1.000000 0.000084 

[22, -6, 6] 123 

Right Cerebrum, Sub-lobar, 

Lentiform Nucleus, GM, Lateral 

Globus Pallidus 

0.000474 0.000007 1.000000 0.000033 

[-54, -42, 14] 116 
Left Cerebrum, Temporal Gyrus, 

Superior Temporal Gyrus, WM 
0.000745 0.000012 0.263277 0.000001 

[-12, -52, -42] 97 
Left Cerebellum, Anterior Lobe, 

Culmen, GM 
0.002666 0.000042 0.999998 0.000016 

[-12, -16, 6] 91 

Left Cerebrum, Sub-lobar, 

Thalamus, GM, Medial Dorsal 

Nucleus 

0.004054 0.000064 0.999999 0.000020 

[0, 48, 48] 90 Inter-Hemispheric 0.004351 0.000069 1.000000 0.000063 

[-54, -60, -16] 88 
Left Cerebrum, Temporal Lobe, 

Inferior Temporal Gyrus, WM 
0.005016 0.000079 1.000000 0.000027 

[68, -48, -6] 87 
Right Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus 
0.005388 0.000085 0.171888 0.000001 

[24, -10, -40] 77 
Right Cerebrum, Limbic Lobe, 

Uncus 
0.011177 0.000177 1.000000 0.000024 

[46, -60, -46] 59 
Right Cerebellum, Posterior Lobe, 

Inferior Semi-Lunar Lobule, GM 
0.044780 0.000722 0.050978 0.000000 

[12, 54, 8] 53 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.072692 0.001189 1.000000 0.000039 

[-54, 28, -12] 53 
Left Cerebrum, Frontal Gyrus, 

Inferior Frontal Gyrus, GM, BA 47 
0.072692 0.001189 1.000000 0.000045 

[22, -18, -18] 50 
Right Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, WM 
0.092939 0.001537 1.000000 0.000024 

[50, 14, -44] 50 

Right Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, GM, BA 

21 

0.092939 0.001537 1.000000 0.000152 

[6, -46, 72] 42 
Right Cerebrum, Parietal Lobe, 

Postcentral Gyrus, GM, BA 5 
0.180103 0.003129 0.999777 0.000005 
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[0, -16, -18] 42 Left Brainstem, Midbrain 0.180103 0.003129 1.000000 0.000090 

[-8, -90, -34] 41 
Left Cerebellum, Posterior Lobe, 

Pyramis, GM 
0.195627 0.003430 1.000000 0.000030 

[-20, -76, 20] 40 
Left Cerebrum, Occipital Lobe, 

Precuneus 
0.212450 0.003763 1.000000 0.000377 

[-26, -84, -16] 40 

Left Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, GM, 

BA18 

0.212450 0.003763 1.000000 0.000083 

[16, -52, 38] 37 
Right Cerebrum, Parietal Lobe, 

Precuneus, WM 
0.271572 0.004993 0.999846 0.000006 

[-38, -64, -18] 35 
Left Cerebrum, Occipital Lobe, 

Sub-Gyral, WM 
0.319022 0.006054 1.000000 0.000032 

[-44, -76, 18] 34 
Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.345366 0.006675 1.000000 0.000021 

[-38, 14, 54] 30 
Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, WM 
0.468845 0.009969 1.000000 0.000099 

[-30, 38, 42] 29 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 8 
0.504077 0.011050 0.999997 0.000014 

[-50, -24, 0] 29 
Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.504077 0.011050 1.000000 0.000074 

Table 7.7: Functionally connected areas assuming the right thalamus as seed for RLS 

group. 

MNI 

coordinates of 

maximum voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[6, -22, 12] 20017 
Right Cerebrum, Sub-lobar, 

Extra-Nuclear, WM 
0.000000 0.000000 0.000002 0.000000 

[10, 44, 42] 963 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.000000 0.000000 0.051319 0.000000 

[66, 0, -6] 894 

Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, GM, 

BA 22 

0.000000 0.000000 0.145411 0.000001 

[-18, -76, -34] 650 
Left Cerebellum, Posterior Lobe, 

Uvula, GM 
0.000000 0.000000 0.260587 0.000001 

[-50, 26, 14] 515 
Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.000000 0.000000 0.850226 0.000015 

[58, -34, 14] 394 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.000008 0.000000 0.310173 0.000001 

[-54, -12, 30] 312 
Left Cerebrum, Frontal Lobe, 

Precentral Gyrus, WM 
0.000068 0.000002 0.779401 0.000011 

[4, 24, 18] 261 

Right Cerebrum, Sub-lobar, 

Extra-Nuclear, WM, Corpus 

Callosum 

0.000291 0.000010 0.047124 0.000000 

[42, -66, 42] 250 

Right Cerebrum, Parietal Lobe, 

Inferior Parietal Lobe, Inferior 

Parietal Lobule, GM, BA39 

0.000403 0.000014 0.375673 0.000002 

[-54, -16, 2] 222 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.000946 0.000032 0.383343 0.000002 
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[6, 6, 54] 161 

Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 

6 

0.006947 0.000234 0.782565 0.000011 

[58, -4, 20] 142 
Right Cerebrum, Frontal Lobe, 

Precentral Gyrus, WM 
0.013549 0.000459 0.787013 0.000011 

[66, -22, -4] 116 
Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.035333 0.001209 0.602354 0.000005 

[24, 8, -36] 115 
Right Cerebrum, Limbic Lobe, 

Uncus, GM, BA 28 
0.036700 0.001257 0.988666 0.000052 

[-56, -46, -4] 108 
Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.047980 0.001653 0.997206 0.000078 

[-12, -64, 56] 107 
Left Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 7 
0.049869 0.001720 0.577250 0.000005 

[10, 60, -16] 104 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.056021 0.001938 0.928631 0.000023 

[-32, -12, 8] 101 
Left Cerebrum, Sub-lobar, 

Claustrum, GM 
0.062977 0.002187 0.928631 0.000024 

[24, -48, -48] 94 
Right Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
0.086332 0.002912 0.733901 0.000009 

[-56, 26, -4] 93 
Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, GM 
0.086332 0.003035 0.151376 0.000001 

[46, -70, -10] 93 
Right Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, WM 
0.097283 0.003035 0.992488 0.000059 

[-54, 8, 20] 90 
Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.097283 0.003440 0.992690 0.000060 

[-38, -12, -16] 90 
Left Cerebrum, Temporal Lobe, 

Sub-Gyral WM 
0.134095 0.003440 0.552131 0.000004 

[-50, 20, -24] 82 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.134095 0.001840 0.978226 0.000041 

Table 7.8: Functionally connected areas assuming the right thalamus as seed for 

controls group. 

MNI 

coordinates of 

maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[16, -12, 12] 1290 

Right Cerebrum, Sub-lobar, 

Thalamus, GM, Ventral Lateral 

Nucleus 

0.000000 0.000000 0.136704 0.000001 

[-26, 38, 48] 423 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.000000 0.000000 0.999627 0.000007 

[46, 20, 48] 296 

Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 

8 

0.000000 0.000000 0.471483 0.000002 

[0, -58, 24] 184 Inter-hemispheric 0.000052 0.000001 0.999999 0.000030 

[0, -90, -6] 179 
Inter-hemispheric, Occipital 

Lobe 
0.000066 0.000001 0.999101 0.000005 

[-20, -72, 60] 123 

Left Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, 

BA 7 

0.001350 0.000025 0.999999 0.000025 

[36, -22, 6] 105 
Right Cerebrum, Sub-lobar, 

Claustrum, GM 
0.003896 0.000072 0.999988 0.000016 
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[-44, 20, -34] 94 

Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, GM, 

BA 38 

0.007665 0.000142 0.999428 0.000006 

[52, 32, -10] 78 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.021464 0.000399 1.000000 0.000033 

[52, 8, -42] 71 
Right Cerebrum, Temporal 

Lobe, Middle Temporal Gyrus 
0.034308 0.000642 1.000000 0.000045 

[42, -58, 24] 68 

Right Cerebrum, Temporal 

Lobe, Middle Temporal Gyrus, 

GM, BA 39 

0.042094 0.000791 1.000000 0.000053 

[36, 24, 26] 59 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.078698 0.001507 1.000000 0.000103 

[4, 62, -6] 56 Right Cerebrum 0.097294 0.001882 0.521546 0.000002 

[-8, -18, -24] 53 Left Brainstem, Midbrain 0.120441 0.002360 0.999996 0.000020 

[46, -18, -18] 42 
Right Cerebrum, Temporal 

Lobe, Sub-Gyral, WM 
0.263621 0.005628 1.000000 0.000087 

[-42, 36, -22] 42 Left Cerebrum 0.263621 0.005628 1.000000 0.000077 

Table 7.9: Functionally connected areas assuming the left thalamus as seed for RLS 

group. 

MNI 

coordinates of 

maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-8, -28, -4] 12204 Left Brainstem, Midbrain 0.000000 0.000000 0.000001 0.000000 

[-30, 12, 48] 10975 

Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 

6 

0.000000 0.000000 0.003900 0.000000 

[42, -28, 44] 1017 
Right Cerebrum, Parietal Lobe, 

Postcentral Gyrus, GM, BA 2 
0.000000 0.000000 0.352472 0.000002 

[-26, -82, -28] 797 
Left Cerebellum, Posterior 

Lobe, Declive, GM 
0.000000 0.000000 0.152065 0.000001 

[60, -64, 6] 718 

Right Cerebrum, Temporal 

Lobe, Middle Temporal Gyrus, 

GM, BA 39 

0.000000 0.000000 0.567643 0.000005 

[-38, -12, -16] 407 
Left Cerebrum, Temporal Lobe, 

Sub-lobar, WM 
0.000011 0.000000 0.179451 0.000001 

[52, -10, -34] 342 
Right Cerebrum, Temporal 

Lobe, Fusiform Gyrus, WM 
0.000053 0.000002 0.164688 0.000001 

[-44, 24, -18] 253 

Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, GM, BA 

47 

0.000584 0.000021 0.911514 0.000023 

[4, 66, -18] 178 Inter-hemispheric 0.005526 0.000199 0.847536 0.000016 

[60, -46, -10] 156 

Right Cerebrum, Temporal 

Lobe, Middle Temporal Gyrus, 

WM 

0.011291 0.000409 0.975877 0.000044 

[46, 2, -42] 98 
Right Cerebrum, Temporal 

Lobe, Middle Temporal Gyrus 
0.086831 0.003269 0.916537 0.000024 
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Table 7.10: Functionally connected areas assuming the left thalamus as seed for 

controls group. 

MNI 

coordinates of 

maximum voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FEW 

Peak p-

unc 

[-2, -16, 8] 1274 
Inter-hemispheric, Sub-lobar, 

Extra-Nuclear, WM 
0.000000 0.000000 0.021608 0.000000 

[10, -60, 68] 279 
Right Cerebrum, Parietal Lobe, 

Precuneus, WM 
0.000000 0.000000 0.999987 0.000014 

[-36, -66, 38] 244 Left Lobe, Precuneus, GM, BA 39 0.000002 0.000000 0.999958 0.000011 

[-42, 12, 56] 236 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 6 
0.000003 0.000000 0.999999 0.000026 

[40, 30, 44] 178 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 8 
0.000047 0.000001 0.999438 0.000005 

[-32, 20, -40] 101 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.003869 0.000068 0.999539 0.000006 

[34, -18, 2] 96 
Right Cerebrum, Sub-lobar, Extra-

Nuclear, WM 
0.005321 0.000094 0.999581 0.000086 

[24, 12, 6] 84 
Right Cerebrum, Sub-lobar, 

Lentiform Nucleus, GM, Putamen 
0.011686 0.000207 1.000000 0.000086 

[6, -60, 18] 78 
Right Cerebrum, Limbic Lobe, 

Posterior Cingulate, GM, BA 23 
0.017539 0.000311 1.000000 0.000060 

[-8, 56, 38] 73 

Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 

9 

0.024770 0.000441 1.000000 0.000032 

[42, -54, 38] 68 
Right Cerebrum, Parietal Lobe, 

Supramarginal Gyrus, WM 
0.035207 0.000630 1.000000 0.000074 

[24, 48, 42] 66 

Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 

8 

0.040597 0.000729 1.000000 0.000094 

[48, -58, 18] 49 
Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.141205 0.002676 0.999993 0.000016 

[-26, -70, 54] 48 

Left Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, BA 

7 

0.152145 0.002901 0.999982 0.000013 

[-50, 8, -24] 45 
Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.190297 0.003711 0.999981 0.000013 

[46, -52, -40] 45 
Right Cerebellum, Posterior Lobe, 

Tuner, GM 
0.190297 0.003711 1.000000 0.000036 

Table 7.11: Functionally connected areas assuming the precuneus cortex as seed for 

RLS group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FEW 

Peak p-

unc 

[0, -70, 38] 63257 
Left Cerebrum, Parietal Lobe, 

Precuneus 
0.000000 0.000000 0.000000 0.000000 

[-30, 30, 2] 5558 
Left Cerebrum, Frontal Gyrus, 

Sub-lobar, WM 
0.000000 0.000000 0.011784 0.000000 
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[-54, -30, 2] 235 

Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, GM, 

BA 22 

0.001859 0.000075 0.852401 0.000019 

[-6, 68, -16] 191 
Left Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, GM, BA 11 
0.006324 0.000254 0.818506 0.000016 

[16, 6, 8] 188 
Right Cerebrum, Sub-lobar, Extra-

Nuclear, WM 
0.006896 0.000278 0.631498 0.000008 

[42, 18, -22] 181 
Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus 
0.008455 0.000341 0.886716 0.000023 

[10, 14, -22] 151 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, GM, BA 25 
0.020846 0.000845 0.719499 0.000011 

[-14, 12, -22] 142 Left Cerebrum, Frontal Lobe 0.027598 0.001123 0.348847 0.000002 

[-6, -46, -48] 112 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
0.072827 0.003033 0.997855 0.000109 

[-44, 26, -32] 88 

Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, GM, 

BA 38 

0.163804 0.007175 0.904850 0.000026 

[-2, 24, -10] 85 
Left Cerebrum, Limbic Lobe, 

Anterior Cingulate 
0.181486 0.008033 0.001287 0.000000 

Table 7.12: Functionally connected areas assuming the precuneus cortex as seed for 

controls group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-38, -78, 32] 7020 
Left Cerebrum, Temporal Lobe, 

Angular Gyrus, GM, BA 39 
0.000000 0.000000 0.028368 0.000000 

[40, -72, 48] 354 

Right Cerebrum, Parietal Lobe, 

Inferior Parietal Lobule, GM, BA 

7 

0.000000 0.000000 0.999997 0.000019 

[28, -18, -16] 215 
Right Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, WM 
0.000001 0.000000 0.591580 0.000002 

[30, 32, 54] 194 
Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus 
0.000019 0.000000 0.095627 0.000000 

[-50, -48, 36] 167 
Left Cerebrum, Parietal Lobe, 

Supramarginal Gyrus, WM 
0.000079 0.000001 0.999995 0.000017 

[-30, -40, -16] 131 
Left Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, WM 
0.000595 0.000010 0.999450 0.000005 

[-32, -82, -40] 118 
Left Cerebellum, Posterior Lobe, 

Tuner, GM 
0.001288 0.000022 1.000000 0.000006 

[24, 26, 30] 117 
Right Cerebrum, Frontal Lobe 

Sub-Gyral, WM 
0.001368 0.000024 0.999991 0.000015 

[18, -58, -46] 89 
Right Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
0.008039 0.000141 1.000000 0.000056 

[-6, 44, 24] 81 
Left Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, BA 9 
0.013752 0.000241 1.000000 0.000030 

[-42, 24, 36] 80 
Left Cerebrum, Frontal Lobe, 

Precentral Gyrus, GM, BA 9 
0.014723 0.000259 0.999952 0.000010 

[10, -24, 8] 75 
Right Cerebrum, Sub-lobar, 

Thalamus, GM, Pulvinar 
0.020784 0.000366 0.053671 0.000000 
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[10, 68, -4] 75 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.020784 0.000366 0.999966 0.000011 

[10, 50, 48] 61 
Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 8 
0.056479 0.001014 0.700242 0.000003 

[34, 20, -42] 59 
Right Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.065411 0.001179 1.000000 0.000100 

[10, 44, 32] 58 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.070418 0.001273 1.000000 0.000029 

[-42, -28, 60] 47 
Left Cerebrum, Parietal Lobe, 

Postcentral Gyrus, WM 
0.160247 0.003045 0.999851 0.000007 

[-20, 44, 48] 45 
Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 8 
0.186244 0.003593 1.000000 0.000030 

[-30, -40, -40] 41 
Left Cerebellum, Posterior Lobe, 

Cerebellar Tonsil, GM 
0.251119 0.005042 1.000000 0.000082 

[-54, -22, -18] 39 
Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.291036 0.005997 1.000000 0.000327 

Table 7.13: Functionally connected areas assuming the right occipital lobe as seed for 

RLS group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[6, -94, 12] 15512 
Right Cerebrum, Occipital Lobe, 

Cuneus, WM 
0.000000 0.000000 0.000173 0.000000 

[6, -6, 74] 404 
Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 6 
0.000008 0.000000 0.412680 0.000003 

[58, -18, -12] 398 
Right Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, WM 
0.000009 0.000000 0.588603 0.000005 

[46, 24, -10] 293 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.000141 0.000005 0.807652 0.000013 

[-48, -76, -36] 180 
Left Cerebellum, Posterior Lobe, 

Tuner, GM 
0.004182 0.000145 0.784344 0.000011 

[18, -48, -18] 173 
Right Cerebellum, Anterior Lobe, 

Culmen, GM 
0.005264 0.000182 0.489990 0.000003 

[-26, 56, 12] 151 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.011073 0.000384 0.287695 0.000001 

[-38, 30, 6] 133 
Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.020856 0.000727 0.830202 0.000014 

[-36, 12, 30] 125 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.027850 0.000974 0.803689 0.000012 

[-62, -32, 2] 116 

Left Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, GM, BA 

22 

0.038790 0.001365 0.994087 0.000066 

[36, -58, 60] 114 

Right Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, BA 

7 

0.041789 0.001473 0.993956 0.000066 

[-18, -40, -28] 106 
Left Cerebellum, Anterior Lobe, 

Culmen, GM 
0.056471 0.002005 0.623279 0.000006 

[36, -4, 68] 102 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.065767 0.002347 0.357408 0.000002 

[-36, 2, 66] 85 
Left Cerebrum, Middle Frontal 

Gyrus, WM 
0.127186 0.004693 0.977973 0.000043 
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Table 7.14: Functionally connected areas assuming the right occipital lobe as seed for 

controls group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[10, -96, 6] 1229 
Right Cerebrum, Occipital Lobe, 

Cuneus, WM 
0.000000 0.000000 0.369500 0.000002 

[0, -82, 32] 742 Left Cerebrum, Occipital Lobe 0.000000 0.000000 0.999890 0.000006 

[42, -72, -16] 602 

Right Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, GM, BA 

18 

0.000000 0.000000 0.896725 0.000004 

[-24, -72, -22] 574 
Left Cerebellum, Posterior Lobe, 

Declive, GM 
0.000000 0.000000 0.697325 0.000003 

[-26, 36, 48] 120 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.000424 0.000006 1.000000 0.000029 

[24, -48, -22] 118 
Right Cerebellum, Anterior Lobe, 

Culmen, GM 
0.000485 0.000007 0.418135 0.000002 

[-18, -100, -10] 113 
Left Cerebrum, Occipital Lobe, 

Lingual Gyrus, WM 
0.000679 0.000010 0.999994 0.000011 

[-20, -82, 6] 112 
Left Cerebrum, Occipital Lobe, 

Lingual Gyrus, GM, BA 18 
0.000726 0.000011 0.272768 0.000001 

[-8, -42, 2] 111 Left Cerebellum, Culmen, GM 0.000778 0.000012 0.999999 0.000016 

[10, 54, 44] 72 

Right Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 

9 

0.013299 0.000202 0.694901 0.000003 

[42, -60, 20] 62 

Right Cerebrum, Temporal Lobe, 

Middle Temporal Gyrus, GM, BA 

39 

0.029562 0.000453 1.000000 0.000055 

[36, -70, 50] 58 

Right Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, BA 

7 

0.041074 0.007337 1.000000 0.000072 

[-26, -76, 48] 56 

Left Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, BA 

7 

0.048511 0.008030 1.000000 0.000019 

[-24, -94, 20] 42 

Left Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, GM, BA 

18 

0.160140 0.026170 1.000000 0.000186 

Table 7.15: Functionally connected areas assuming the left occipital lobe as seed for 

RLS group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-8, -96, -16] 18824 
Left Cerebrum, Occipital Lobe, 

Lingual Gyrus, WM 
0.000000 0.000000 0.000279 0.000000 

[52, 26, -10] 1240 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.000000 0.000000 0.120211 0.000000 

[-60, -16, -4] 577 
Left Cerebrum, Temporal Lobe, 

Superior Temporal Gyrus, WM 
0.000000 0.000000 0.686523 0.000009 
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[12, 36, -16] 350 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.000060 0.000002 0.928775 0.000028 

[54, 32, 14] 276 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus 
0.000405 0.000015 0.706881 0.000009 

[-36, 60, 0] 212 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.002423 0.000091 0.984758 0.000055 

[-20, -42, -30] 208 
Left Cerebellum, Anterior Lobe, 

Culmen, GM 
0.002725 0.000102 0.276521 0.000001 

[54, 32, 14] 198 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus 
0.003665 0.000138 0.836073 0.000016 

[36, -72, 54] 149 

Right Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, GM, 

BA 7 

0.016900 0.000639 0.788660 0.000013 

[-14, 24, 50] 143 
Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, WM 
0.020579 0.000779 0.859373 0.000018 

[10, 44, 38] 134 
Right Cerebrum, Frontal Lobe, 

Medial Frontal Gyrus, WM 
0.027776 0.001056 0.831449 0.000016 

[48, 6, -12] 112 
Right Cerebrum, Sub-lobar, 

Insula, GM, BA 22 
0.059159 0.002285 0.980625 0.000051 

[-38, -64, 44] 111 
Left Cerebrum, Parietal Lobe, 

Inferior Parietal Lobule, WM 
0.061274 0.002369 0.992183 0.000069 

[40, -4, 56] 108 
Right Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, GM, BA 6 
0.068113 0.002643 0.337195 0.000002 

[-24, -18, 0] 107 
Left Cerebrum, Sub-lobar, Extra-

Nuclear, WM 
0.070567 0.002742 0.220617 0.000001 

[-18, 12, -22] 103 
Left Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus 
0.081349 0.003179 0.743984 0.000011 

Table 7.16: Functionally connected areas assuming the left occipital lobe as seed for 

controls group. 

MNI coordinates 

of maximum 

voxel 

Cluster 

size 

(voxels) 

Brain areas 
Size p-

FWE 

Size p-

unc 

Peak p-

FWE 

Peak p-

unc 

[-8, -84, 18] 1318 
Left Cerebrum, Occipital Lobe, 

Cuneus, WM 
0.000000 0.000000 0.367967 0.000002 

[30, -90, 20] 510 

Right Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, GM BA 

19 

0.000000 0.000000 0.844837 0.000003 

[18, -78, 44] 130 
Right Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 7 
0.000375 0.000006 1.000000 0.000029 

[42, -72, -10] 129 
Right Cerebrum, Occipital Lobe, 

Inferior Occipital Gyrus, BA 19 
0.000399 0.000006 1.000000 0.000030 

[-2, 56, 36] 118 
Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus, GM, BA 9 
0.000795 0.000013 1.000000 0.000026 

[24, -58, -12] 70 
Right Cerebrum, Limbic Lobe, 

Parahippocampal Gyrus, WM 
0.021543 0.000353 1.000000 0.000225 

[-12, -48, -10] 69 
Left Cerebellum, Anterior Lobe, 

Culmen, GM 
0.023222 0.000381 1.000000 0.000166 

[54, 0, 48] 67 
Right Cerebrum, Frontal Lobe, 

Precentral Gyrus, GM, BA 6 
0.027006 0.000444 0.999998 0.000017 

[-30, 30, 50] 46 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus, WM 
0.140720 0.002458 1.000000 0.000217 
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[36, -64, 56] 44 
Right Cerebrum, Parietal Lobe, 

Superior Parietal Lobule, WM 
0.165352 0.002929 1.000000 0.000026 

[4, 18, -28] 43 Right Cerebrum 0.179231 0.003201 1.000000 0.000110 

[-24, 44, -22] 41 
Left Cerebrum, Frontal Lobe, 

Superior Frontal Gyrus 
0.210499 0.003831 1.000000 0.000283 

[-56, -72, 14] 40 

Left Cerebrum, Occipital Lobe, 

Middle Temporal Gyrus, GM, BA 

19 

0.228049 0.004195 1.000000 0.000050 

[28, -52, 54] 39 
Right Cerebrum, Parietal Lobe, 

Precuneus, GM, BA 7 
0.246983 0.004597 1.000000 0.000073 

[22, -94, 12] 39 
Right Cerebrum, Occipital Lobe, 

Middle Occipital Gyrus, WM 
0.246983 0.004597 1.000000 0.000137 

[48, 30, -10] 39 
Right Cerebrum, Frontal Lobe, 

Inferior Frontal Gyrus, WM 
0.246983 0.004597 1.000000 0.000083 

[28, -42, -24] 35 
Right Cerebellum, Anterior Lobe, 

Culmen, GM 
0.338056 0.006687 1.000000 0.000073 

[-56, 2, 42] 34 
Left Cerebrum, Frontal Lobe, 

Middle Frontal Gyrus 
0.364964 0.007359 1.000000 0.000034 

[-42, -64, -6] 34 
Left Cerebrum, Occipital Lobe, 

Sub-lobar, WM 
0.364964 0.007359 1.000000 0.000155 

Table 7.17: Effective connectivity parameters of the first RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.8434 -0.1212 -0.0177 0.0429 0.2316 1.5059 0.1639 0.0291 

RTM -0.0868 -0.4148 0.6209 -0.0659 0.1385 0.9816 -0.7887 0.0447 

RFI 0.0681 -0.3163 -0.5521 -0.1068 -0.0759 0.3895 -0.0585 0.0955 

RFM -0.0416 0.2793 0.2786 0.1051 -0.0548 -0.1449 -0.1612 -0.0088 

RLP -0.1180 -0.2315 0.8982 0.1644 -0.5724 -0.1721 0.7401 -0.1252 

RAC -0.1604 -0.1654 0.3415 0.0168 0.0937 -0.4972 -0.4203 -0.0270 

ROM -0.0285 0.0670 -0.1422 -0.0161 
5.6312e-

04 
0.2471 -1.0540 0.0325 

RTS -0.0391 -0.3477 -0.0337 0.0520 0.0613 0.2303 -0.0044 0.0438 

The model could not be implemented in the second RLS patient, the white 

matter time-series could not be extracted! 

Table 7.18: Effective connectivity parameters of the third RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -1.4335 -0.0157 0.1477 0.8049 0.5607 -0.1143 0.1249 0.1692 

RTM 0.0530 -0.8569 0.1646 0.7827 0.2989 0.1445 -0.4660 -0.2999 

RFI -0.0105 0.4199 -0.8289 -0.7043 0.0607 -0.0408 0.1639 0.6506 

RFM -0.1260 -0.0382 0.2683 -0.8067 -0.1811 0.0104 -0.7336 0.1200 

RLP -0.0937 -0.4566 -0.3415 -0.3113 -0.8489 0.0880 0.6986 -0.2288 

RAC 0.1118 -1.4943 -0.7576 0.0067 -0.8055 -0.9268 -0.3245 0.7819 

ROM 0.0035 0.1973 0.0526 0.2653 -0.1220 -0.0204 -0.1735 0.2568 

RTS -0.0088 -0.2728 -0.1946 0.4244 0.2315 -0.2139 -0.2446 -0.8182 
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Table 7.19: Effective connectivity parameters of the fourth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.9909 0.8951 0.2884 0.7600 0.6839 -0.9943 0.1522 -0.1937 

RTM 0.0081 -0.1682 0.1453 0.0421 0.0877 -0.1057 -0.5163 0.4837 

RFI -0.0115 0.2699 -0.8953 -0.1755 1.3243 0.1749 -0.0136 -0.5405 

RFM 0.0016 -0.1565 0.2203 -0.9802 -0.2134 -0.3757 -0.0139 0.2683 

RLP -0.1478 -0.2910 -0.1240 0.1115 -0.9238 -0.1952 0.3628 -0.0598 

RAC 0.1075 -0.2290 0.1722 0.1241 0.5131 -0.5565 0.3545 0.0090 

ROM 0.1217 -0.1430 0.2582 -0.1275 -0.3225 -0.7542 -0.1238 0.4885 

RTS -0.3835 -0.9354 0.5366 0.5448 -0.0192 -0.1122 0.9430 -0.7678 

Table 7.20: Effective connectivity parameters of the fifth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.7512 -0.2108 0.0360 0.2045 0.0408 -0.1123 0.9512 -0.1233 

RTM 0.0597 -0.5342 -0.1015 0.0898 0.0242 -0.3396 -0.0462 -0.0438 

RFI -0.0504 1.2477 -0.9157 1.1675 -0.4785 0.2569 -0.3603 0.0569 

RFM -0.0687 -0.2472 -0.0671 -0.4377 0.0197 -0.0422 0.2112 -0.0711 

RLP 0.0065 0.3467 0.1063 -0.0066 -0.6019 -0.1628 0.1666 -0.0461 

RAC -0.0428 0.8246 0.2166 0.5968 0.0457 -1.1119 0.2689 -0.0407 

ROM -0.0534 0.1705 0.0302 -0.0170 -0.0693 -0.0671 -0.8493 0.0230 

RTS 
5.2208e-

04 
0.4212 0.1861 1.1196 0.1537 -0.0192 -0.3310 -1.0116 

Table 7.21: Effective connectivity parameters of the sixth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.3308 -0.0646 0.2433 0.6211 -0.0235 0.5695 0.3054 -0.7034 

RTM 0.0112 -0.9090 -0.3582 -0.0227 -0.0859 -0.1907 -0.0593 -0.0610 

RFI 0.0924 0.5629 -0.2428 0.1639 0.0635 -0.2058 0.0819 0.2183 

RFM -0.0228 0.3014 -0.0512 -0.8081 0.3368 -0.0124 0.0166 0.0261 

RLP 0.0566 0.1895 0.1307 -1.6986 -1.0668 0.1280 0.0833 0.3471 

RAC 0.0566 0.1895 0.1307 -1.6986 -1.0688 0.1280 0.0833 0.3471 

ROM 0.0168 0.5721 -0.1744 0.2752 0.0524 -0.0619 -0.8248 0.3769 

RTS 0.0193 0.7913 0.2782 0.2682 0.0891 0.2777 -0.2636 -0.4675 

Table 7.22: Effective connectivity parameters of the seventh RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.3497 0.0339 -0.5171 -0.0518 0.0339 -0.4264 0.4665 0.6250 

RTM 0.0393 -0.1283 0.3697 -0.3057 -0.0910 -0.1587 -0.2095 0.5030 

RFI 0.1060 -0.0416 -0.5332 0.4526 -0.0153 -0.3641 -0.0414 -0.3485 

RFM 0.0083 -0.2047 -0.0495 -0.3680 0.0162 -0.0076 -0.0243 0.2329 

RLP 0.2756 0.7878 -0.0849 -0.3693 -0.8598 -1.5066 -0.5847 0.0681 

RAC 0.0295 0.4702 -0.0755 -0.5382 0.1881 -0.5137 0.1167 0.4244 

ROM -0.0699 -0.4973 0.1465 -0.2664 0.0326 0.0937 -0.6178 0.3840 

RTS 0.0090 -0.0247 0.3479 -0.4711 0.0212 -0.1610 0.2203 -0.2574 
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Table 7.23: Effective connectivity parameters of the eighth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.6231 0.1263 1.0902 0.0198 0.0173 -0.0257 -0.2705 1.4624 

RTM -0.031 -0.5616 -0.2165 0.0869 -0.3018 -0.0041 0.1031 0.4510 

RFI -0.2255 0.4523 -0.7706 0.0204 -0.0824 0.2567 0.0777 0.0578 

RFM 0.1475 -0.1528 0.0762 -0.8907 -0.1254 0.1668 -1.2659 0.2154 

RLP 0.0447 0.4273 -0.4799 0.0959 -0.7425 -0.1098 -0.2272 0.1800 

RAC -0.1114 0.0707 -1.1192 0.1186 -0.3174 -0.9549 -0.1140 0.8350 

ROM -0.0074 0.2318 0.0858 0.2478 0.0202 0.0119 -0.2664 0.2335 

RTS -0.1629 -0.0319 -0.0300 0.0903 0.1049 -0.1929 -0.1568 -0.6182 

Table 7.24: Effective connectivity parameters of the ninth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.7532 -0.4563 0.0322 0.9658 0.3285 0.0268 1.2887 -0.7428 

RTM 0.0096 -0.6261 0.0685 -0.1253 0.1572 0.1637 0.0034 0.0174 

RFI 0.0770 -0.6636 -0.3674 0.2553 -0.0089 -0.4841 -0.0268 -0.0525 

RFM -0.1429 -0.1655 -0.1239 -0.6444 0.1482 0.0094 -0.2815 0.0263 

RLP -0.0861 -0.6454 -0.2208 -0.2942 -0.0318 -0.0675 -0.0401 0.3354 

RAC -0.0439 -0.1730 0.0067 0.2002 0.0654 -1.1265 0.3226 -0.2129 

ROM -0.1356 -0.0180 0.1498 0.7134 0.0039 0.0786 -0.5712 -0.0536 

RTS -0.0066 0.0458 0.0305 0.6848 -0.1161 0.4154 -0.4796 -0.7613 

Table 7.25:  Effective connectivity parameters of the tenth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.9953 -0.9911 0.1340 1.6205 -0.3058 0.5551 0.7328 -0.0213 

RTM 0.0344 -0.8746 -0.2605 -0.0810 0.1193 -0.0544 -0.3089 0.0716 

RFI 0.1629 0.4159 -0.8846 0.2008 0.1445 -0.6871 -0.3946 -0.1066 

RFM -0.2168 0.3643 -0.2845 -0.6952 0.1368 -0.2941 -0.0317 -0.0573 

RLP 0.1009 0.0186 0.0116 0.0308 -0.7696 -0.9431 0.4703 -0.0298 

RAC -0.0275 -0.2110 0.2196 0.1549 0.1477 -0.5827 0.3268 0.0217 

ROM -0.1005 -0.0343 0.2366 0.1285 -0.2634 0.2216 -0.9443 0.1359 

RTS 0.1536 -0.1878 0.4544 0.4782 -0.2604 0.0371 -1.3753 -0.8076 

Table 7.26: Effective connectivity parameters of the eleventh RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -01127 0.1370 0.2909 0.2448 0.1527 0.1024 -0.4841 0.1328 

RTM 0.0803 -0.3667 0.1265 -0.5104 -0.1604 -0.2192 -0.4765 -0.0579 

RFI 
8.1637e-

04 
-0.1141 

8.0399e-

05 
-0.0789 -0.0491 0.2717 -0.2144 0.0145 

RFM -0.0752 0.0195 0.0789 -0.6867 -0.0023 -0.1199 0.7925 -0.0823 

RLP 0.0611 0.3936 0.2154 -0.4093 0.0587 -0.1580 -0.3782 0.0026 

RAC 0.0797 0.2278 -0.2225 0.3456 0.2470 -0.6816 1.0062 0.0118 

ROM 0.0603 0.2189 0.1709 -0.4011 -0.0204 0.0073 -0.8493 -0.0497 

RTS 0.0013 0.3677 0.0748 0.4654 -0.3339 0.1944 0.2377 0.0646 
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Table 7.27: Effective connectivity parameters of the twelfth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.7591 -0.8787 0.0011 -0.5130 -0.1455 0.0534 0.6336 0.0480 

RTM 0.0181 -0.5871 0.3319 -0.1859 -0.0891 0.1297 0.2752 0.0885 

RFI 0.2116 -1.2710 -0.5746 0.1615 0.0372 0.1104 -0.5221 -0.1084 

RFM -0.0184 0.2486 0.0431 -0.6654 0.2763 0.0397 0.0081 0.2427 

RLP -0.0140 -0.3034 -0.1971 -1.1461 -0.6487 -0.7757 -0.1534 -0.0638 

RAC 0.0098 -0.0023 -0.1720 0.3078 0.2134 -0.6222 -0.0855 -0.2205 

ROM 0.0920 0.0951 0.1057 -0.1399 0.0715 
-3.4582e-

04 
-1.1430 0.0110 

RTS -0.0023 0.5137 0.0420 -0.7307 0.2023 0.4620 0.2699 -0.7217 

Table 7.28: Effective connectivity parameters of the thirteenth RLS subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP 0.1216 -0.4160 -0.0983 0.5502 -0.0383 0.0360 1.4179 -0.1070 

RTM -0.1631 -0.8103 -0.2540 0.4775 0.1386 0.1858 -0.1572 -0.0399 

RFI -0.0373 1.9053 -0.4124 -0.8788 0.0894 0.4810 0.3454 -0.6581 

RFM -0.2062 -0.5521 -0.0121 -0.6569 -0.0398 -0.0256 0.8395 -0.1664 

RLP -0.0594 0.3927 0.0992 -0.1375 0.2248 -0.0850 0.1931 -0.1392 

RAC -0.6144 1.4705 0.0629 1.5083 0.3693 -0.9185 -1.2445 -0.2908 

ROM -0.5337 0.5304 0.0438 0.6179 0.0395 -0.0810 -0.5895 0.0242 

RTS -0.0098 -0.6775 -0.295 0.6795 0.3497 1.4303 -0.8323 0.0408 

Table 7.29: Effective connectivity parameters of the first control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.3790 0.2256 -0.1879 0.2194 0.0395 -0.6065 0.2424 0.5085 

RTM 0.1857 -0.6564 -0.2340 0.5045 -0.0832 -0.4886 -1.3219 0.5143 

RFI 0.4575 -0.6713 -0.5032 -0.3138 
-7.4120e-

04 
-0.1538 0.4440 -0.2013 

RFM -0.5619 0.2146 0.4596 -0.8671 -0.1719 0.2590 0.6015 -0.0579 

RLP 0.0336 -0.5623 0.1199 1.2505 -0.7220 0.7525 0.6220 -0.6411 

RAC -0.0765 0.1215 -0.0346 0.1954 -0.0162 -0.6937 0.2140 0.2189 

ROM 0.0987 0.2158 -0.2517 0.1050 -0.1471 -0.4265 -0.4653 0.2223 

RTS -0.0845 0.0296 0.0704 -0.1655 0.1496 -0.1093 0.8187 -0.5730 

Table 7.30: Effective connectivity parameters of the second control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP 0.1259 0.2037 0.1262 -0.0067 0.0082 0.1281 -0.2310 0.1534 

RTM 0.0252 -0.0905 0.0406 -0.3640 -0.1044 -0.5006 -0.4789 -0.1757 

RFI -0.0972 0.1688 0.2791 -0.0299 -0.0161 -0.0452 -0.5194 0.0565 

RFM 0.0997 0.2462 -0.1195 0.3136 -0.0724 -0.3428 0.3759 -0.5633 

RLP 0.0480 0.4635 -0.0211 -0.2212 0.5140 0.0909 -0.1982 -0.3949 

RAC 0.0253 0.2452 0.2757 0.5321 -0.0906 0.0013 0.0365 0.3036 

ROM 0.0588 0.5381 0.1082 -0.1957 0.1266 0.2303 -0.3675 0.0561 

RTS -0.1517 -0.2012 0.1058 0.0822 -0.0714 0.2289 -0.7083 -0.6207 
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Table 7.31: Effective connectivity parameters of the third control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.4879 0.0049 -0.2050 0.4794 0.1215 1.3462 -0.4768 0.1879 

RTM -0.0342 -0.5923 0.3383 -0.0466 -0.3108 0.1711 -0.0407 0.1439 

RFI 0.0182 -0.6213 -0.2125 0.0344 0.5820 -0.2749 0.6259 -0.0026 

RFM -0.1302 -0.1580 -0.3871 -1.0767 0.0208 -0.2228 0.0471 0.0732 

RLP 0.0370 0.9124 -0.1573 1.1860 -0.9344 -0.2308 0.4637 -0.1074 

RAC -0.2796 0.1656 0.2771 0.0144 0.0537 -1.1599 0.2996 -0.2073 

ROM 0.0419 -0.2224 0.1662 0.1208 -0.6222 0.1761 -0.6697 -0.0590 

RTS 0.0298 -1.5738 0.0044 -0.0538 -0.6225 0.6291 0.4411 -0.9906 

Table 7.32: Effective connectivity parameters of the fourth control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.2488 -0.9964 0.1354 -0.1212 -0.0764 -0.0206 0.5697 0.1287 

RTM -0.0073 -0.9243 0.0645 0.2727 -0.0031 0.1002 -0.0759 -0.0536 

RFI -0.0159 -0.5149 -0.8334 1.0277 0.0099 -0.2954 -0.1483 0.3412 

RFM 0.0057 -0.1465 -0.0919 -0.6664 -0.0477 0.1429 -0.1472 -0.2784 

RLP 0.1463 -0.0406 -0.2047 0.4794 -0.5370 -1.2991 0.7726 0.3090 

RAC -0.0408 -0.5495 0.0304 0.4275 0.2638 -0.9500 0.3062 -0.1727 

ROM -0.0768 0.1380 0.1037 0.6941 -0.0608 -0.1130 -0.6144 -0.0755 

RTS -0.1575 0.3071 -0.0746 1.0528 0.1154 0.4208 0.1396 -0.7337 

Table 7.33: Effective connectivity parameters of the fifth control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.7097 0.8360 0.2040 0.1126 0.0227 0.2613 0.2009 -0.1970 

RTM -0.0532 -0.5273 -0.4237 0.0406 -0.0575 -0.1925 0.1145 0.0671 

RFI 0.0697 1.0159 -0.4490 -0.4224 0.0235 -0.1694 -0.0046 -0.3231 

RFM -0.1145 0.3273 0.1233 -1.0676 -0.0127 0.0647 -0.0842 -0.1421 

RLP 0.2840 0.8917 0.0665 0.7425 -1.2870 0.2622 -2.1940 -0.3468 

RAC -0.1625 -0.6720 0.5048 0.2915 0.0558 -0.6557 -0.1749 0.6044 

ROM -0.1220 0.0173 -0.0563 0.2149 0.2246 0.1255 -0.5323 -0.0069 

RTS 0.1807 -0.6812 -0.4011 0.3425 -0.0808 -0.6449 0.3529 -0.3219 

Table 7.34: Effective connectivity parameters of the sixth control subject. 

 RPP RTM RFI RFM RLP RAC ROM RTS 

RPP -0.1232 -0.3033 0.2535 -0.0150 0.1728 -0.3373 -0.1202 0.3255 

RTM -0.0325 -0.0391 -0.0694 0.0243 -0.1226 0.1327 0.1154 0.1845 

RFI -0.0666 0.4888 -0.3853 0.0269 -0.1198 -0.3389 -0.1329 -0.2246 

RFM 0.1764 -0.4688 0.1627 -1.6596 0.1529 0.5321 -2.3416 0.0267 

RLP -0.2339 1.2351 0.7344 -0.0246 -0.9792 0.7966 -0.0418 -0.0819 

RAC 0.0883 -0.2078 0.3824 -0.0883 -0.2331 -1.1759 -0.0795 0.0800 

ROM -0.0133 0.1174 0.1288 0.2016 -0.0077 0.0063 -0.7824 -0.0785 

RTS -0.3921 -1.6144 -0.3992 -0.0581 -0.3028 0.2827 0.5137 -0.8600 

 

 


