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When we synthesize research findings via meta-analysis, it is common to assume 

that the true underlying effect differs across studies. There is a plethora of 

estimation methods available for the between-study variability. The widely used 

DerSimonian and Laird estimation method has been challenged but knowledge 

for the overall performance of heterogeneity estimators is incomplete. We 

identified 20 heterogeneity estimators in the literature and evaluated their 

performance in terms of bias, type error I rate and power via a simulation study. 

Moreover, we compared the Knapp and Hartung and the Wald-type method for 

estimating confidence interval for the summary estimate. Although previous 

simulation studies have suggested the Paule-Mandel (PM) estimator, it has not 

been compared with all the available estimators. For dichotomous outcomes, 

estimating heterogeneity through Markov Chain Monte Carlo is a good choice if 

the prior distribution for heterogeneity is informed by published Cochrane 

reviews. Non parametric bootstrap (DLb) performs well for all assessment 

criteria for both dichotomous and continuous outcomes. The positive 

DerSimonian and Laird (DLp) and the Hartung-Makambi (HM) estimators can 

be an alternative choice for dichotomous outcome when the heterogeneity values 

are close to 𝟎. 𝟎𝟕 and for continuous outcome for all and for medium 

heterogeneity values (𝟎. 𝟎𝟏, 𝟎. 𝟎𝟓), respectively. Hence, they are heterogeneity 

estimators (DLb; DLp) which perform better than the suggested PM. Maximum 

likelihood (ML) provide the best performance for both types of outcome in the 

absence of heterogeneity.  

Keywords: bias; type I error; heterogeneity variance estimators; power; simulation 

study 

1. Introduction  
When synthesizing results from different studies via a meta-analysis model, it is likely 

that we will encounter two sources of variation. Summary estimates are expected to 

differ because of sampling variability within studies but we also expect that studies 

would differ in methodological (study design, risk of bias etc.) and clinical 

(participants, dosage, duration etc.) characteristics [1]. If these characteristics modify 

the effect of the intervention, the true underlying intervention effect would differ 

across studies. Between-study variation of the true underlying effect is commonly 
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called statistical heterogeneity or heterogeneity. Two approaches are typically 

employed to synthesize study findings via meta-analysis. The fixed-effect and the 

random-effects model, which will be described in detail in Section 2. In a nutshell, the 

former allows only for within study variation whereas the latter allows for between 

study variation [1, 3]. Within study variation, although unknown, is approximated 

through its sample estimate. Between-study variation (heterogeneity) is estimated 

using a plethora of methods. Veroniki et al. [4] gave a thorough review of the 

available methods to estimate heterogeneity. 

In this study, we conduct a simulation study to assess the performance of 20 different 

estimators for heterogeneity variance in terms of bias, type error I rate and power. The 

different estimators are; DerSimonian and Laird (DL) [5], general Hedges-Olkin 

(GHO) [6], Paule-Mandel (PM) [7], positive DerSimonian and Laird (DLp) [8], two-

step DerSimonian and Laird (DL2) [9], two-step General Hedges-Olkin (GHO2) [9], 

Hartung-Makambi (HM) [10, 11], Hunter-Schmidt (HS) [12], maximum likelihood 

(ML) [13, 14], restricted maximum likelihood (REML) [5, 15], approximate restricted 

maximum likelihood (AREML) [14, 15, 16], Sidik Jonkman (SJ) [17], alternative 

Sidik-Jonkman (SJgho) (the same estimator with Sidik-Jonkman with a GHO 

estimator for a priori estimate) [15], Rukhin Bayes (RB) [18], positive Rukhin Bayes 

(RBp) [18], fully Bayesian (FB) using Markov Chain Monte Carlo in WinBUGS [19], 

Bayes modal (BM) [20, 21], non-parametric bootstrap DerSimonian and Laird (DLb) 

[8], empirical Bayes (EB) [16] and Malzahn, Böhning and Holling (MBH) [22]. 

Moreover, we compare the Wald-type and the Knapp and Hartung method of 

confidence interval for 𝜇 with the use of the most well-known estimators DL, GHO, 

ML and REML. 

Although the DerSimonian and Laird estimator is by far the most commonly used and 

the only option in RevMan [23], there is much criticism to this choice and several 

empirical and simulation studies have been recently conducted to address this issue. 

Bowden et al. [24] suggested the use of PM estimator as one estimation method with 

good properties, while Knapp and Hartung [25] found that PM is less sufficient than 

DL and REML. Kontopantelis et al. [8] suggested the use of DLb after the 

comparisons with DL, DLp, DL2, GHO2, REML, SJ, RB and RBp. Novianti et al. 

[26] compared the DL, GHO, SJ, SJgho, PM, REML and DL2 estimators and 

recommended DL2 and PM as the best choice for dichotomous and continuous 

outcomes. In addition, both Novianti et al. [26] and Viechtbauer [27] suggested the 

REML estimator as a preferable alternative to DL for continuous outcomes.  

There are some individual conclusions of empirical studies in the literature that 

compare a subset of the estimators considered in this work. Veroniki et al. [4] 

provided recommendation based on a qualitative evaluation of the existing literature 

and expert consensus and suggested that a thorough simulation study is needed to 

provide evidence-based recommendation. This motivated us to conduct a simulation 

study where all the available heterogeneity variance methods would be compared 

under the same scenarios under a representative simulation design of systematic 

review. In this study, we identified 20 estimators and evaluated them in terms of bias, 

empirical type error I and power. 

The paper is organized as follows: Section 2 provides the models commonly used to 

summarize evidence in meta-analysis, confidence intervals for summary estimates and 



the various heterogeneity estimators; Section 3 describes the design of our simulation 

study; Section 4 presents the simulation study results for the two types of outcomes, 

dichotomous and continuous; Section 5 summarizes the findings of our simulation and 

finally Section 6 concludes the findings of the study. 

2. Methods 
There are two popular statistical models for the synthesis of study findings in a meta-

analysis, the fixed effect (FE) model and the random-effects (RE) model [1, 3]. 

Although only the latter model is of interest in this project, we will present the 

mathematical details of both models because that will help us explain some of the 

estimators presented in Section 2.2. Fixed-effect meta-analysis, assumes that all 

studies estimate a common true effect size 𝜇 (fixed effect) and variability between the 

observed effect sizes is due to sampling error. Let us consider a group of 𝑘 studies 

from the same population where each study 𝑖 population variance  𝜎𝑖
2 and observed 

effect estimates 𝑦𝑖 , 𝑖 = 1, … . 𝑘 from which we wish to estimate the overall true mean 

effect  𝜇. Therefore, under the fixed effect model, the effect size will vary across 

studies due to error attributed to within-study variability: 

 𝑦𝑖 = 𝜇 + 𝜀𝑖       ,    𝜀𝑖~𝛮(0, 𝜎𝑖
2) 

Each study is weighted by the inverse of its variance. In the fixed effect model, 

variation is equal to the population variance. In practice, population variance is 

unknown and we approximate it with the within-study sample variance estimators  𝑠𝑖
2. 

The weights assigned to each study are 

𝑤𝑖,𝐹𝐸 =
1

𝑠𝑖
2 

, the overall mean is the weighted average of the observed effect sizes 

�̂�𝐹𝐸=
∑  𝑤𝑖,𝐹𝐸𝑦𝑖 

𝑘
𝑖=1

∑ 𝑤𝑖,𝐹𝐸
𝑘
𝑖=1

 

with variance equal to the inverse of the sum of the weights of the meta-analysis 

�̂�𝑀 =
1

∑  𝑤𝑖,𝐹𝐸
𝑘
𝑖=1

 

Under the random effects model, the effect size will vary across studies due to within 

(𝜎𝑖
2) and between (𝜏2) study variability. This can be written as a hierarchical model: 

𝑦𝑖 = 𝜃𝑖 + 𝜀𝑖    , 𝜀𝑖~𝛮(0, 𝜎𝑖
2) 

𝜃𝑖 = 𝜇 + 𝜉𝑖      ,   𝜉𝑖 ~𝛮(0, 𝜏2) 

In practice, variability is unknown and we use estimates for the within (𝑠𝑖
2) and 

between (�̂�2) study variation. The weights for the random effects model are now 

defined as 

𝑤𝑖,𝑅𝐸 =
1

𝑠𝑖
2 + �̂�2

 

and the overall mean is the weighted average of the observed effect sizes 



�̂�𝑅𝐸 =
∑   𝑤𝑖,𝑅𝐸𝑦𝑖 

𝑘
𝑖=1

 𝑤𝑖,𝑅𝐸
 

with variance equal to the inverse of the sum of the weights of the meta-analysis [1]: 

�̂�𝑀 =
1

∑   𝑤𝑖,𝑅𝐸
𝑘
𝑖=1

 

2.1 Confidence intervals for summary estimate 𝝁 

Uncertainty around the summary estimate is expressed by (1 − 𝛼)% confidence 

intervals. There are two types of intervals commonly used: 

(a) Wald-type (Wt) confidence interval 

The Wald-type method is the most popular technique for establishing confidence 

intervals for a parameter of interest. DerSimonian and Laird [5] used Wald-type 

confidence intervals for expressing uncertainty for summary estimate 𝜇 in the meta-

analysis. Assuming that the summary estimate is asymptotically normally distributed, 

a (1 − 𝛼)% confidence interval is given by  

�̂�𝑅𝐸 ± 𝑧𝑎
2⁄ √𝑉𝑀 

(b) Knapp and Hartung (KH) confidence interval 

Hartung [28] and Knapp and Hartung [25] suggested the use of the 𝑡-distribution with 

𝑘 − 1 degrees of freedom for constructing confidence interval for the summary 

estimate  𝜇. Sidik and Jonkman [29] independently developed this approach. The 

motivation behind this approach is that the normal approximation is more liberal for 

meta-analysis with few studies and large heterogeneity and the t-distribution has 

heavier tails than the normal one [30]. Hartung [28] showed that  

�̂�𝑅𝐸 − 𝜇

√𝑉𝑎𝑟(�̂�𝑅𝐸)
~𝑡𝑘−1 

with 𝑉𝑎𝑟(�̂�𝑅𝐸) = 𝑄𝑔𝑒𝑛
1

(𝑘−1) ∑ 𝑤𝑖,𝑅𝐸
𝑘
𝑖=1

, where 𝑄𝑔𝑒𝑛 is a generalised 𝑄-statistic which 

quantifies the amount of between-study variance and it is given by  𝑄𝑔𝑒𝑛 =

∑ 𝑤𝑖,𝑅𝐸(𝑦𝑖 − �̂�𝑅𝐸)2
𝑖  [28]. Therefore, a (1 − 𝛼)% confidence interval for summary 

estimate 𝜇 can be described as [28]:          

�̂�𝑅𝐸 ± 𝑡𝑘−1,𝑎 2⁄ √𝑉𝑎𝑟(�̂�𝑅𝐸) 

2.2 Estimators for 𝝉𝟐 

Estimation of between-study variance is a necessary step to quantify uncertainty 

around the summary estimate in random-effects meta-analysis. A plethora of 

estimators involving both non-iterative (closed form expressions) and iterative (e.g. 

maximum likelihood) methods, have been suggested. Some of the estimators yield 

only positive values (positive estimators) whereas others may give negative values 

(non-negative estimators) that are subsequently truncated to zero.  

Table 1 lists, to our knowledge, all the heterogeneity estimators that have been 

developed. A comprehensive review and details for heterogeneity estimators can be 



found in Veroniki et al. [4]. In this study, we consider the 19 estimators reviewed in 

Veroniki et al. [4] plus the non-parametric Malzahn, Böhning and Holling (MBH) 

estimator for continuous outcomes. We provide details for the MBH estimator. For 

more details for the remaining estimators, you may resort to the corresponding 

references or to Veroniki et al. [4]. 

Malzahn, Böhning and Holling [22] proposed a nonparametric estimator of the 

population heterogeneity variance which can be used only when effect sizes are 

expressed as standardized mean differences using Hedges’𝑔. More specifically, it is 

given by 

�̂�𝛭𝛣𝛨
2 =

∑ (1 − 𝜑𝑖)(𝑦𝑖 − �̂�𝐹𝐸)2𝑘
𝑖=1

𝑘 − 1
−

1

𝑘
∑ (

𝑛𝑖

𝑛𝑖𝑡𝑛𝑖𝑐
) −

1

𝑘
∑ 𝜑𝑖𝑦𝑖

2

𝑘

𝑖=1

𝑘

𝑖=1

 

where  𝑛𝑖 = 𝑛𝑖𝑐 + 𝑛𝑖𝑡 is the total size for 𝑖 study, 𝑛𝑖𝑐 the total size for control group, 

𝑛𝑖𝑡 the total size for treatment group and 𝜑𝑖 is given by 𝜑𝑖 = 1 −
𝑛𝑖−4

𝐽2(𝑛𝑖−2)
 with the 

correction  𝐽𝑖   for unbiased estimators with type  𝐽𝑖 = 1 −
3

4(𝑛𝑖𝑐+𝑛𝑖𝑡)−9
. 

3. Simulation design  
We conducted a simulation study to assess the performance of all the available 

heterogeneity variance estimators. We considered a range of dichotomous and 

continuous outcomes to represent observed values from a practical meta-analysis. The 

simulation design was similar to the one used in Novianti et al. [26]. In individual 

studies of randomized control trials (RCTs) the outcome is compared in two groups, 

the experimental group (T) and the control group (C). Assuming 𝑘 number of trials 

included in a meta-analysis we follow the simulation of Novianti et al. [26] with the 

following steps: 

 For study 𝑖 = 1, … 𝑘, generate the treatment effect 𝜃𝑖~𝛮(𝜃, 𝜏2) 

 Generate within-study sample sizes, 𝑛𝑖𝑡 for the treatment group and 𝑛𝑖𝑐 for the 

control group, assuming equal sample sizes, 𝑛𝑖 = 𝑛𝑖𝑐 = 𝑛𝑖𝑡 generated from a 

discrete uniform assuming values from 20 to 200 

 

3.1 Dichotomous outcome data 

For dichotomous outcomes we need the number of events and non-events (or sample 

size) for each group in all studies. We considered the number of events  𝛼𝑖 and  𝑐𝑖  and 

the group sizes 𝑛𝑖𝑡 and  𝑛𝑖𝑐 for experimental and control group, respectively. We 

simulated data with the study specific treatment effect being the logarithmic odds 

ratio (OR). 

 Obtain the total number of events 𝑐𝑖 for the control group from a 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖𝑐 , 𝑝𝑖𝑐) distribution with 𝑝𝑖𝑐 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0.05, 0.65) 

 Obtain the total number of events 𝛼𝑖 for the treatment group from a 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖𝑡, 𝑝𝑖𝑡) distribution with 𝑝𝑖𝑡 =
𝑝𝑖𝑐𝑒𝜃𝑖

1−𝑝𝑖𝑐+𝑝𝑖𝑐𝑒𝜃𝑖
 

 Calculate the total number of non-events for treatment group and control 

group 𝑏𝑖 = 𝑛𝑖𝑡 − 𝛼𝑖, 𝑑𝑖 = 𝑛𝑖𝑐 − 𝑐𝑖, respectively (If any number of events or 

non-events is zero, add the value 0.5) 



 Calculate the treatment effect 𝑦i = 𝑙𝑜𝑔 (𝑂𝑅)𝑖 = 𝑙𝑜𝑔 {
𝛼𝑖×𝑑𝑖

𝑏𝑖×𝑐𝑖
} and the within-

study variance  𝑠𝑖
2 =

1

𝛼𝑖
+

1

𝑏𝑖
+

1

𝑐𝑖
+

1

𝑑𝑖
 

 

3.2 Continuous outcome data 

For continuous outcomes, the study specific effect size is estimated by the 

standardized mean difference Hedges’ 𝑔 which is defined as the standardized 

difference between the average in the treatment group and the average of control 

group.  

 Simulate 𝑛𝑖𝑐 observations 𝛧𝑖𝑐 for control group with 𝛧𝑖𝑐~𝛮(0,1) 

 Simulate 𝑛𝑖𝑡 observations 𝛧𝑖𝑡 for treatment group with 𝛧𝑖𝑡~𝛮(𝜃𝑖 , 1) 

 Calculate the pooled variance 𝑆𝑖𝑝 = √
(𝑛𝑐−1)𝑆𝑖𝑐

2 +(𝑛𝑡−1)𝑆𝑖𝑡
2

𝑛𝑐+𝑛𝑡−2
 with the sample 

variances for control group and treatment group  𝑆𝑖𝑐
2 , 𝑆𝑖𝑡

2  , respectively 

 Calculate the treatment effect 𝑦𝑖 =
𝑍𝑖𝑡−𝑍𝑖𝑐

𝑆𝑖𝑝
 and its within-study variance 

               𝑆𝑖
2 =

8+𝑦𝑖
2

4𝑛𝑖
 (𝑛𝑖 = 𝑛𝑖𝑐 = 𝑛𝑖𝑡) 

 Use the correction 𝐽𝑖 = 1 −
3

8𝑛𝑖−9
 to avoid biased estimators 

 Calculate the unbiased estimate of the treatment effect 𝐽𝑖 × 𝑦𝑖 and the within-

study variance 𝑠𝑖
2 = 𝐽𝑖

2 × 𝑆𝑖
2 

3.3 Scenarios 

The simulation was performed in the freeware statistical software R [31], which 

allows estimation of most of the heterogeneity variance estimators via the metafor 

package [32]. PM estimator is actually equivalent method to the EB estimator [4]. 

Additionally, AREML estimator is an approximate of REML when the population 

variances are equal [27]. In practice, population variances are not equal and therefore 

AREML is excluded from simulation study. So, in the simulation study we included 

17 heterogeneity estimators for dichotomous outcome and an additional estimator 

(MBH) for continuous outcome. We used the Wald-type confidence interval to obtain 

the summary estimate but for four of the estimators (DL, GHO, ML, REML) we 

additionally used the Knapp and Hartung method for constructing the confidence 

interval with the aim to compare the two methods for the confidence interval for 𝜇 

(Wald-type and Knapp-Hartung methods). We focused on these four estimators as 

they are the most commonly used in practice. 

We computed ten estimators (DL, GHO, HS, SJ, ML, REML, PM, DL2, GHO2, 

SJgho) with the metafor package [32]. In addition, metafor package was applied for 

the computation of the Wald-type and the Knapp and Hartung confidence intervals 

of 𝜇. FB estimator was computed using Markov Chain Monte Carlo (MCMC) within 

the Bayesian software WinBUGS [19] via the R package of R2WinBUGS [33]. 

MCMC was conducted with a vague normal prior distribution for the summary 

estimate  𝜃~𝛮(0, 106), the log-normal 𝑙𝑜𝑔𝑁(−2.56, 1.742) prior distribution on the 

untransformed 𝜏2 scale for dichotomous outcome and the 

𝑙𝑜𝑔(𝜏2)~𝑡(−3.44, 2.592, 5) for continuous outcomes. These distributions for 𝜏2 are 

the predictive distributions for a future meta-analysis in a general setting suggested by 



Turner et al. [34] and Rhodes et al. [35], respectively.  Moreover, we compared the 

above informative prior distributions with the 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) prior distribution 

(vague prior distribution). We symbolized the FB estimator as 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 using a vague 

prior and as 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 using the informative prior. We created R functions to 

compute seven estimators (DLp, DLb, ΗΜ, RBp, RBo, MBH and BM) which, to our 

knowledge, are not offered in any R package. The R and WinBUGS codes used in this 

simulation study are given in the supplementary material. 

For a detailed comparison of the heterogeneity variance estimators, we included 

various values for the number of studies 𝑘 = 10, 20, 30, 50 reflecting small, medium 

and large number of studies and different values for the true overall effect  𝜃 =
0, 0.3, 0.5, 0.8 that represent a range of intervention effects that can be found in 

practice. We also assumed between-study heterogeneity values taking into account the 

empirical heterogeneity variance distributions [34, 35], 𝜏2 =
0, 0.025, 0.07, 0.3  values for dichotomous outcomes and 𝜏2 = 0, 0.01, 0.05, 0.5 

values for continuous outcomes. Each scenario was repeated 𝛣 = 1000 times with a 

significance level of  𝛼 =  0.05. 

3.4 Assessment criteria 

The performance of the heterogeneity variance estimators was assessed using three 

measures: (a) average absolute bias, (b) type error I, (c) power 

(a) Average absolute bias 

Bias is the difference between the expected value of the estimator and its true value, 

and is given by 𝑏𝑖𝑎𝑠(�̂�2) = 𝐸(�̂�2) − 𝜏2 = 𝐸(�̂�2 − 𝜏2). Ideally, a good estimator must 

be unbiased which means that the expected value must be equal to its true 

value (𝐸(�̂�2) = 𝜏2). In the simulation study, we used the average absolute bias, which 

is an empirical measure of bias and is given by 

𝑏𝑖𝑎𝑠 =
1

𝐵
∑|�̂�𝑖

2 − 𝜏2|

𝐵

𝑖=1

 

where  �̂�𝑖
2  is the observed heterogeneity variance estimator for the study  𝑖  and 𝜏2 the 

true value of heterogeneity. The close the average absolute bias is to zero, the better 

the estimator is. The performance of simulation in terms of bias is conducted for all 

values of  𝑘, 𝜃  and 𝜏2. 

(b) Empirical type error I 

Given the null hypothesis 𝛨0: 𝜃 = 𝜃0, we produced 𝐵 simulated datasets and for each 

dataset we estimated the (1 − 𝛼)% confidence interval for 𝜃0, [𝜃𝑖,𝐿 , 𝜃𝑖,𝑈], 𝑖 = 1, … , 𝐵. 

Empirical type error I is defined as the number of times that the estimated interval for 

𝜃0, did not include its true value 𝜃0. 

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑡𝑦𝑝𝑒 𝑒𝑟𝑟𝑜𝑟 𝐼 =
#(𝜃𝑖,𝐿 >= 𝜃0  ||  𝜃𝑖,𝑈 <= 𝜃0 )

𝐵
 

A good estimator must have empirical type error I close to its nominal level. With 

level of significance 𝑎, a good estimator must minimize the empirical type error I and 



its values must range in the confidence interval of  (𝑎 − 1.96√
𝛼(1−𝛼)

𝛣
, 𝛼 +

1.96√
𝛼(1−𝛼)

𝛣
). With a level of significance of  𝛼 = 0.05 and 𝐵 = 1000, an estimator 

has good performance if its empirical type error I is located within the 

interval (𝐿, 𝑈) = (0.0365, 0.0635). Empirical type error I has a direct relationship 

with the coverage probability for 𝜇. This means that high values of empirical type 

error I are associated with more rejections of the null hypothesis than what we should 

have observed. This fact produces lower values in coverage probability for 𝜇 and 

therefore heterogeneity estimators have similar behavior in these two measures. We 

calculated the empirical type error I for all heterogeneity estimators in all scenarios. 

(c) Power 

Suppose that the null hypothesis is 𝛨0: 𝜃 = 𝜃0 and the alternative is 𝛨𝛼: 𝜃 = 𝜃1. We 

produced 𝐵 simulated datasets under the alternative hypothesis and estimated the 

(1 − 𝛼)% confidence interval for  𝜃0, denoted as [𝜃𝑖,𝐿 , 𝜃𝑖,𝑈], 𝑖 = 1, … , 𝐵 in each 

simulated sample. Power is defined as the number of times out of the 𝐵 simulated 

datasets that 𝜃0 does not belong to the closed confidence interval for  𝜃0. 

𝑝𝑜𝑤𝑒𝑟 =
#(𝜃𝑖,𝐿 >= 𝜃0  || 𝜃𝑖,𝑈  <= 𝜃0 )

𝐵
 

Therefore, a good estimator provides high power. The performance of simulation in 

terms of power is conducted for all the values of  𝑘 and 𝜏2 with the null hypothesis for 

overall mean 𝛨0: 𝜃 = 𝜃0 = 0  and the alternatives  𝜃1 = 0.3, 0.5. 

4. Simulation Results 

4.1 Dichotomous outcome data 

(a) Average absolute bias 

Figure 1 shows the performance of heterogeneity variance estimators in terms of bias 

for all values of 𝑘, 𝜃 and 𝜏2. In all cases, results show that bias increased with 

increasing heterogeneity 𝜏2 and decreased with increasing number of studies 𝑘. RBp 

estimator has the largest bias compared to other heterogeneity estimators in most 

cases. The SJ estimator has the second largest bias for heterogeneity values up to 

 0.07 and similar performance with the majority of estimators for larger heterogeneity 

values 𝜏2. In addition, HE, RBo, SJgho and BM present large values of bias. It is 

noteworthy that the ΗΜ has the lowest bias from all heterogeneity estimators for 

heterogeneity values close to  0.07. The 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 estimator has comparative bias 

with DLb and lower values than the other estimators. In most cases, 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 

presents lower bias than DLb with the exception of a zero or high heterogeneity 

(e.g. 𝜏2 = 0.3). Moreover, DLp might be an alternative choice to 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 and 

DLb. The ML estimator has the lowest bias in the absence of heterogeneity followed 

by the HS estimator.  

 (b) Empirical type error I 

As the number of trials increases, the closer the values of the empirical type error I are 

to its nominal level (Figure 2), which is assumed to be 0.05 with 95% confidence 



interval  (𝐿 = 0.0365, 𝑈 =  0.0635) denoted by dotted line. We found that RBp 

estimator has a much lower empirical type error I than the lower limit of the interval 𝐿 

for all scenarios. With the increase of heterogeneity, type error I of RBp estimator 

increases but still remains far lower than  𝐿. Whereas, only in case of 𝑘 = 10 

and 𝜏2 = 0.3, RBp is located into the nominal interval. HM has empirical type error I 

into the nominal interval only for medium values of heterogeneity. SJ estimator has a 

much lower empirical type error I from 𝐿, for all cases when heterogeneity is less than 

or equal to 0.07. Though it ranges closer to permissible interval by increasing 

heterogeneity. The empirical type error I of RBo estimator is within the permissible 

interval in the absence of heterogeneity or when heterogeneity is 0.025 for all 

scenarios. For larger heterogeneity values, RBo estimator has empirical type error I 

larger than the allowed interval. Apart from the RBo, RBp and SJ listed above, all 

other estimators have similar behavior for the empirical type error I with values close 

to the interval (𝐿, 𝑈). Moreover, it should be noted that the estimators from the Knapp 

and Hartung (DLknha, GHOknha, MLknha, REMLknha) perform better from Wald-

type method for all heterogeneity values.  

(c) Power 

When heterogeneity increased, power reduced for all heterogeneity estimators (Figure 

3). It is obvious that power increases with the number of studies and with the true 

intervention effect. RBp has the lowest power followed by the SJ. In addition, 

estimators from the Knapp and Hartung (DLknha, GHOknha, MLknha and 

REMLknha) present slightly lower power from Wald-type method. All other 

estimators have similar behavior and they present high power. Finally, in the absence 

of heterogeneity, all the estimators present similar performance for big number of 

studies and for smaller number of studies (𝑘 = 10, 20) HS and ML perform better 

than the other estimators. 

4.2 Continuous outcome data 

(a) Average absolute bias 

In all cases, results show that bias increased with increasing heterogeneity and 

decreased with increasing number of studies (Supporting Information Figure 1).  RBp 

has large bias for heterogeneity value until 0.05, while it has the smallest bias for 

larger heterogeneity value for all scenarios. Moreover, SJ has large bias for all 

scenarios when there is no heterogeneity or it is equal to 0.01, while for larger 

heterogeneity value (> 0.01) it ranges with the majority heterogeneity variance 

estimators. We also found that REML and DL2 have small bias in all cases and 

perform better than DL and PM. In general, REML, as a recommended choice from 

Novianti et al. [26], has good performance in all scenarios for all heterogeneity 

values. Moreover, DLb and secondly DLp present small bias for all cases. HM has 

good performance either for 0.01 (the best performance compared to all other 

heterogeneity estimators) either for  0.05 or for both cases. 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 with the 

suggested prior by Rhodes et al. [35] for continuous outcome has not the best 

performance while its bias ranges with the majority of heterogeneity. Finally, in cases 

with absence of heterogeneity, RBo and ML have the smallest bias. 



(b) Empirical type error I 

As the number of trials increases, the closer the values of the empirical type error I are 

to its nominal level (Supporting Information Figure 2). RBp and SJ have empirical 

type error I smaller from the nominal interval for heterogeneity until 0.05 and 

0.01 value respectively, while for larger heterogeneity they range in the nominal 

interval. In addition, RBo has larger type error I up than the nominal interval for all 

random effects meta-analysis scenarios. Knapp and Hartung method performs better 

to Wald-type method in terms of type error I. All other estimators have similar 

behavior for the empirical type error I with values close to the interval (𝐿, 𝑈).  

(c) Power 

When heterogeneity increased, power reduced for all heterogeneity estimators 

(Supporting Information Figure 3).  Power increases when the number of studies or 

the true intervention effect increased for all heterogeneity estimators. For the absence 

or for small heterogeneity, we have similar performance (large power) for all 

heterogeneity estimators. In all cases, RBo and DLb have large power in comparison 

with the other estimators. On the opposite side, estimators from Knapp and Hartung 

method, 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 and BM present low power in all cases. 

5. General results 

5.1 Dichotomous outcomes 

Τhe behavior of heterogeneity estimators is getting worse for all assessment criteria as 

the value of heterogeneity increases or the number of studies decreases (Figures 1-3). 

Table 2 shows a general visualization for the heterogeneity estimators’ behavior when 

the type of outcome is dichotomous. The majority of heterogeneity estimators has 

similar performance for all heterogeneity values (Table 2). More analytically, Table 2 

provides that RBp has the worst behavior compared to the others for all the 

assessment criteria. HM has the best behavior than other estimators for heterogeneity 

values close to 0.07 and SJ presents good behavior only for high heterogeneity. In 

general, 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 and DLp have small bias and good behavior in terms of type 

error I and power.  

General results from Figures 1-3 and Table 2, show that the behavior of the PM 

estimator is similar to the majority of estimators in all of the assessment criteria. 

Results provide that positive estimators BM, RBp, SJ and HM perform better in the 

presence of heterogeneity, as it is expected. SJgho presents moderate behavior in 

terms of bias and power, as it has medium values considering the other estimators. We 

found that 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒  performs better than 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 in all cases (except the case of 

𝜃 = 0, 𝑘 = 10 when the type of outcome is dichotomous) while 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 

presents very smaller bias (Table 3). For example, as shows Table 3, bias of 

𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 is 0.043 while bias for 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 is 0.094 in case with 𝜏2 = 0.07, 𝜃 =

0.5, 𝑘 = 10 (dichotomous outcome). Moreover, 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 is the most appropriate 

choice while it has the smallest bias in the most cases and it presents good 

performance in terms of type error I and power. Finally, DLb estimator has generally 

low bias in the presence of heterogeneity and provides very high power. Also, it is 

located within the nominal interval of empirical type error I except for some cases 

with high or zero heterogeneity. 



5.2 Continuous outcomes 

Τhe behavior of heterogeneity estimators is getting worse for all assessment criteria as 

the value of heterogeneity increases or the number of studies decreases (Supporting 

Information Figures 1-3). Table 2 shows a general visualization for the overall 

heterogeneity estimators’ behavior when the type of outcome is continuous. The 

majority of heterogeneity estimators have similar performance for all heterogeneity 

values (Table 2). In general, SJ, RBo, BM and RBp present bad performance. The  

𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 estimator performs better than 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 (Table 3) but its bias ranges 

with the majority of heterogeneity estimators. General results from Supporting 

Information Figures 1-3 and Table 2, show that the behavior of REML estimator 

which was suggested by Novianti et al. [26] presents a good performance for all 

heterogeneity values but not the ideally. DLb and secondly DLp present the best 

behavior in all cases. Moreover, HM has the best performance for medium values of 

heterogeneity (𝜏2 = 0.01, 0.05). Finally, for the fixed effect meta-analysis scenarios, 

RBo and ML are the most preferable.  

6. Conclusion 
Conclusions from this simulation study pertain to the scenarios considered. There is 

no guarantee that estimators would have a similar behavior with small event rates and 

small sample sizes. Our simulation study shows that Knapp and Hartung method 

presents better behavior than Wald type method in terms of empirical type error I (or 

the similar measure of coverage probability) which comes in agreement with IntHout 

et al. [36]. In addition, the usage of Knapp and Hartung method needs caution while it 

performs worse than Wald-type method for zero heterogeneity in same cases [37]. 

Several simulations suggest using the well-known PM estimator because it is less 

biased compared to DL and REML estimators [15, 24, 26, 38]. Although PM seems to 

be the best estimator so far, it has not been compared with the recently recommended 

heterogeneity estimators suggested by Kontopantelis et al. [8] and Rukhin et al. [18]. 

Our simulation study (after a comparison of PM with more heterogeneity estimators) 

presents that PM has a good performance but not markedly better than the majority of 

heterogeneity estimators.  

In general, we found that the majority of heterogeneity estimators have similar 

performance for all heterogeneity values for the two types of outcome (Table 2). The 

FB with the suggested prior from Turner et al. [34] (𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒) performs well for 

dichotomous outcome in the presence of heterogeneity, while it has the smallest bias 

compared to all other estimators. We found that the FB with the suggested prior from 

Turner et al. [34] provides the best performance for dichotomous outcome but FB 

with the suggested prior from Rhodes et al. [35] for continuous outcome is not 

markedly better than the majority of the heterogeneity estimators. We selected these 

two above recommended priors and the Uniform prior as an indicative application of 

FB estimator. The values of heterogeneity considered in this study are not unlikely 

under the empirical distributions used for dichotomous and continuous outcomes. If 

true heterogeneity is much larger and its value has a small likelihood under the 

suggested empirical distributions, the 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 will underestimate it. However, 

empirical work of thousands of published meta-analyses shows that these distributions 

cover the plausible range of values for heterogeneity. A Bayesian framework is more 

flexible for more complex meta-analyses and it also allows the estimation of the 



uncertainty in heterogeneity. Further simulation studies, using several priors, are 

needed to properly evaluate the FB estimator. 

We found that the DLb estimator performs well in all assessment criteria for both 

dichotomous and continuous outcomes and it can be an alternative choice for 

dichotomous outcome. A limitation of the DLb estimator is that it is time consuming, 

while it is an iterative estimator and according to Kontopantelis et al. [8] DLb 

performs best despite its higher bias that he found for small number of studies (𝑘 <
5). 

Moreover, DLp can be an alternative choice for the two types of outcome and HM for 

dichotomous outcome, when the heterogeneity values are close to 0.07, and for 

continuous outcome, when the heterogeneity values are close to (0.01, 0.05) interval. 

In addition, this recommendation of DLp and HM can be based on the fact that these 

two estimators present better performance from the suggested by Novianti et al. [26] 

REML estimator. Finally, ML estimator provides the best performance for both types 

of outcome for the application of fixed effect meta-analysis’ model.  

 

Acknowledgements 

The work of MP and DM is supported by the OPERAM project from the European 

Union’s Horizon 2020 research and innovation programme under the grant agreement 

No 634238. 

 

References 

1. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews 

of Interventions Version 5.1.0 [updated March 2011]. The Cochrane 

Collaboration, 2011. Available from www.cochrane-handbook.org. 

2. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Front Matter, in: 

Introduction to Meta-Analysis. Wiley: New York, 2009. 

3. Nikolakopoulou A, Mavridis D, Salanti G. Demystifying fixed and random 

effects meta-analysis. Evidence-Based Mental Health 2014; 17(2), 53–57.  

4. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, 

Kuss O, Higgins JPT, Langan D, Salanti G. Methods to estimate heterogeneity 

variance and its uncertainty in meta-analysis. Research Synthesis Methods 

2015; 7(1), 55–79. 

5. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical 

Trials 1986; 7(3): 177–188.  

6. Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. Orlando: 

Academic Press, 1985. 

7. Paule RC, Mandel J. Consensus values and weighting factors. Journal of 

Research of the National Bureau of Standards 1982; 87, 377 – 385.  

8. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane 

Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS 

One 2013; 8(7), e69930.  

9. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical 

trials: An update. Contemporary Clinical Trials 2007; 28(2), 105–114.  

http://www.cochrane-handbook.org/


10. Hartung J, Makambi KH. Reducing the number of unjustified significant 

results in meta-analysis. Communications in Statistics - Simulation and 

Computation 2003; 32(4), 1179–1190.  

11. Hartung J, Makambi KH. Positive estimation of the between-study variance in 

meta-analysis. South African Statistical Journal 2002; 36(1), 55–76. 

12. Hunter JE, Schmidt FL. Methods of Meta-Analysis: Correcting Error and Bias 

in Research Findings. Thousand Oaks, CA: SAGE Publications, 2004. 

13. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with 

random effects. Statistics in Medicine 1996; 15(6), 619–629.  

14. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a 

comparison of methods. Statistics in Medicine 1999; 18(20), 2693–2708. 

15. Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in 

combining results of studies. Statistics in Medicine 2007; 26(9), 1964–1981.  

16. Morris CN. Parametric Empirical Bayes Inference: theory and applications. 

Journal of the American Statistical Association 1983; 78(381), 47–55.  

17. Sidik K, Jonkman JN. Simple heterogeneity variance estimation for meta-

analysis. Journal of the Royal Statistical Society: Series C: Applied Statistics 

2005; 54(2), 367–384.  

18. Rukhin AL. Estimating heterogeneity variance in meta-analysis. Journal of the 

Royal Statistical Society, Series B: Statistical Methodology 2013; 75(3), 451–

469.  

19. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS -- a Bayesian 

modelling framework: concepts, structure, and extensibility. Statistics and 

Computing 2000; 10, 325-337. 

20. Chung Y, Rabe-Hesketh S, Choi I-H. Avoiding zero between-study variance 

estimates in random-effects meta-analysis. Statistics in Medicine 2014; 32(23), 

4071–4089.  

21. Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A Nondegenerate 

Penalized Likelihood Estimator for Variance Parameters in Multilevel Models. 

Psychometrika 2013; 78(4), 685–709.  

22. Malzahn U, Böhning D, Holling H. Nonparametric estimation of heterogeneity 

variance for the standardised difference used in meta-analysis. Biometrika 

2000; 87(3), 619–632.  

23. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: 

The Nordic Cochrane Centre, The Cochrane Collaboration, 2014. 

24. Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and 

accounting for heterogeneity in the meta-analysis of RCTs using standard and 

generalised Q statistics. BMC Medical Research Methodology 2011; 11, 41. 

25. Knapp G, Hartung J. Improved tests for a random effects meta-regression with 

a single covariate. Statistics in Medicine 2003; 22(17), 2693–2710. 

26. Novianti PW, Roes KCB, van der Tweel I. Estimation of between-trial 

variance in sequential meta-analyses: a simulation study. Contemporary 

Clinical Trials 2014; 37(1), 129–138.  

27. Viechtbauer W. Bias and Efficiency of Meta-Analytic Variance Estimators in 

the Random-Effects Model. Journal of Educational and Behavioral Statistics 

2005; 30(3), 261–293. 

28. Hartung J. An Alternative Method for Meta-Analysis. Biometrical Journal 

1999; 41(8), 901–916.  



29. Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. 

Statistics in Medicine 2002; 21(21), 3153–3159. 

30. Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its 

modification for random-effects meta-analysis with few studies. BMC Medical 

Research Methodology 2015; 15, 99. 

31. R Development Core Team. R: A language and environment for statistical 

computing. Version 3.2.3, R Foundation for Statistical Computing, Vienna, 

Austria, 2015. http://www.R-project.org. 

32. Viechtbauer W. Metafor: meta-analysis package for R, 2013. 

33. Sturtz S, Ligges U, Gelman A. R2WinBUGS: A Package for Running 

WinBUGS from R. Journal of Statistical Software 2005; 12(3), 1-16. 

34. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the 

extent of heterogeneity in meta-analysis, using empirical data from the 

Cochrane Database of Systematic Reviews. International Journal of 

Epidemiology 2012; 41(3), 818–827. 

35. Rhodes KM, Turner RM, Higgins JPT. Predictive distributions were 

developed for the extent of heterogeneity in meta-analyses of continuous 

outcome data. Journal of Clinical Epidemiology 2015; 68(1), 52–60. 

36. IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman 

method for random effects meta-analysis is straightforward and considerably 

outperforms the standard DerSimonian-Laird method. BMC Medical Research 

Methodology 2014; 14(1), 25. 

37. Sánchez-Meca J, Marín-Martínez F. Confidence intervals for the overall effect 

size in random-effects meta-analysis. Psychological Methods 2008; 13(1), 31–

48.  

38. Panityakul T, Bumrungsup C, Knapp G. On estimating residual heterogeneity 

in random-effects meta-regression: a comparative study. Journal of Statistical 

Theory and Applications 2013; 12(3), 253.   

 

Supporting information 
Additional supporting information may be found in the online version of this article at 

the publisher’s web site. 

 

 

 

 

 

 

 

 

 

 

http://www.r-project.org/


 

 

 

 

 

 

 

 

 

 

 



Table 1. A presentation of all the investigated heterogeneity estimators.    

 

Estimator                                                                Abbreviation                                                                                                              Iterative / Non- 

iterative                      

Positive/ Non-

negative 

Generalized method of moments  

DerSimonian and Laird DL Non-iterative Non-negative 

General Hedges-Olkin GHO Non-iterative Non-negative 

Paule-Mandel (or empirical Bayes) PM (or EB)  Iterative Non-negative  

Positive DerSimonian and Laird DLp Non-iterative  Positive 

Two-step DerSimonian and Laird DL2 Non-iterative Non-negative  

Two-step General Hedges-Olkin GHO2 Non-iterative Non-negative 

Hartung-Makambi HM Non-iterative Positive 

Hunter-Schmidt 

 

HS Non-iterative Non-negative 

Maximum likelihood methods 

Maximum likelihood ML Iterative Non-negative 

Restricted maximum likelihood REML Iterative Non-negative 

Approximate restricted maximum likelihood  AREML Iterative Non-negative 

 

Least squared methods  

Sidik- Jonkman SJ Non-iterative Positive 

Alternative Sidik-Jonkman (SJgho) (the same 

estimator with Sidik-Jonkman with a GHO 

estimator for a priori estimate)  

 

SJgho Non-iterative Positive 

Bayes methods 

Rukhin Bayes RB Non-iterative Non-negative 

Positive Rukhin Bayes RBp Non-iterative Positive 

Fully Bayesian FB Iterative Non-negative 

Bayes Modal 

 

BM Iterative Positive 

Non-Parametric methods 

Non-Parametric bootstrap DerSimonian and 

Laird 

DLb Non-iterative Non-negative 

Malzahn, B�̈�hning and Holling MBH Non-iterative Non-negative 





Table 2. Overall behavior of the bellow heterogeneity estimators in terms of the assessment criteria. 

 Type of outcome 

Dichotomous Outcome Continuous Outcome 

            Criteria                                   

Estimators 

Absolute bias Empirical type 

error I 

Power Absolute bias Empirical type 

error I 

Power 

DL       

PM       

DLp       

GHO ×      

DL2       

GHO2       

HM       

HS       

ML       

REML       

SJ × × × × ×  

SJgho ×      

DLb       

RBο  ×  × ×  

RBp × × × × ×  

𝑭𝑩𝒊𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒗𝒆      × 

BM ×   ~  × 

DLknha   ×   × 

GHOknha   ×   × 

MLknha   ×   × 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REMLknha   ×   × 

MBH - - -    

Legend 

    good performance for all heterogeneity values ×    bad performance for the heterogeneity values until the value of 0.07 

    good performance only for medium heterogeneity close to the value of 0.07 ×    bad performance for heterogeneity values until 0.01  

      (similar performance for larger 𝜏2) 

    good performance only for medium heterogeneity close to the value of 0.01 ×    bad performance for heterogeneity values until 0.07 

       (good performance for larger 𝜏2) 

   good performance while number of studies increased ×    bad performance for all heterogeneity values 

~    bad performance for heterogeneity (𝜏2 > 0) 
 

-     estimator exist only for continuous outcome 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison the bias values of FB estimator between the uniform prior 𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏𝟎𝟎) and the 

informative priors suggested by Turner et al [34]  and  Rhodes et al. [35]. 

                                        Type of outcome 

Dichotomous Outcome  Continuous Outcome 

Scenarios                   𝜏2                         

            

FB 

 

0 

 

0.025 

 

0.07 

 

0.3 

 

0  

 

0.01 

 

0.05 

 

0.5 

𝜽 = 𝟎, 𝒌 = 𝟏𝟎 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 0.013 0.025 0.035 0.042 0.013 0.015 0.044 0.336 

 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 0.043 0.032 0.041 0.142 0.009 0.009 0.031 0.236 

𝜽 = 𝟎, 𝒌 = 𝟑𝟎 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 0.039 0.043 0.044 0.055 0.003 0.006 0.016 0.127 

 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 0.020 0.014 0.029 0.085 0.003 0.005 0.015 0.112 

𝜽 = 𝟎. 𝟓, 𝒌 = 𝟏𝟎 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 0.066 0.076 0.094 0.251 0.013 0.015 0.047 0.353 

 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 0.042 0.034 0.043 0.141 0.010 0.010 0.033 0.244 

𝜽 = 𝟎. 𝟓, 𝒌 = 𝟑𝟎 𝐹𝐵𝑣𝑎𝑔𝑢𝑒 0.018 0.019 0.039 0.092 0.004 0.006 0.017 0.126 

 𝐹𝐵𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 0.019 0.014 0.031 0.083 0.003 0.005 0.015 0.111 

𝑭𝑩𝒗𝒂𝒈𝒖𝒆: FB with 𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏𝟎𝟎) prior; 𝑭𝑩𝒊𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒗𝒆: FB with informative prior 𝒍𝒐𝒈𝑵(−𝟐. 𝟓𝟔, 𝟏. 𝟕𝟒𝟐) on the 

untransformed 𝝉𝟐 scale for dichotomous outcome [34] and 𝒍𝒐𝒈(𝝉𝟐)~𝒕(−𝟑. 𝟒𝟒, 𝟐. 𝟓𝟗𝟐, 𝟓) for continuous outcome 

[35]. 


