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1 Introduction 

1.1 General aims of this thesis 

Meta-analysis of randomized control trials (RCTs) is a key ingredient in today’s 

comparative effectiveness research in evidence-based medicine. International health 

organizations such as the World Health Organization or the Cochrane Collaboration 

recognize their value and use meta-analyses routinely while Agencies such as the Canadian 

Agency for Drugs and Technologies in Health (CADTH), the Agency for Healthcare 

Research and Quality (AHRQ) and the National Institute for Health and Clinical Excellence 

(NICE) use them to produce guidelines for clinical practice. The institute of Medicine in the 

United States set a goal that, by the year 2020, 90 percent of clinical decisions will be 

evidence-based (1). 

Traditional meta-analytical techniques, however, can only compare two treatments 

(i.e. can only perform a ‘pairwise’ comparison) and thus their usefulness is limited when 

three or more competing treatments for the same condition are present. In addition, even 

though the interests of policy-makers lie in the comparison of active agents, new treatments 

are commonly compared only to placebo. In such cases pairwise meta-analysis cannot give 

a definite answer as to which treatment works best for a specific condition, setting hurdles 

to the decision-making process (2).  

This situation drove the interest of researchers and funding bodies towards a new 

framework for synthesizing information from studies comparing different subsets of 

competing treatments. Network Meta-Analysis (NMA, sometimes also called ‘multiple 

treatment meta-analysis’ or ‘mixed-treatment comparison’) was developed to address this 

issue (2–6). NMA is a statistical tool which can combine information across a network of 

randomized trials, and which produces inferences concerning the relative effectiveness of 

multiple interventions.  

In the last few years NMA has become increasingly popular (7–12) and its usefulness 

has been recognized by various organizations. For example, the Decision Support Unit of 

NICE provides extensive guidance on performing an NMA (13) and the Cochrane 

Collaboration has established the ‘Comparing Multiple Interventions Group’ for promoting 

the methodology for comparing multiple interventions, http://cmimg.cochrane.org/. 

Moreover, there have been many papers discussing the advantages and limitations of the 

http://cmimg.cochrane.org/
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method (14–30), which have also been explored in empirical assessments (31–35) and 

simulation studies (9,34,36). The advantages include a potential increase in the precision 

from the estimates of an NMA compared to an estimate based on direct evidence alone and 

that it allows comparing treatments that have never been compared in head-to-head 

experiments. This is particularly valuable when active agents are only compared to placebo 

or standard care for regulatory purposes but not to each other (37). In addition, NMA can be 

used to answer policy-relevant questions by providing a ranking of all competing treatments 

(38) and to reduce the uncertainty in cost-effectiveness analyses (39).  

Despite the aforementioned advantages, the implementation of NMA in practice may 

be hindered because of several reasons. First, the methodology of NMA rests on the 

assumption of transitivity, i.e. that different sources of evidence (direct and indirect evidence 

for the same treatment comparison) are in agreement. This assumption is often viewed as an 

important limitation of the method because it may be difficult to assess its plausibility in 

practice, and because if it does not hold NMA results may be invalid. Moreover, the field of 

NMA is swiftly evolving; during the last few years there has been an abundance of published 

methodological articles presenting alternative approaches to deal with issues related to 

NMA.  

The first objective of this thesis is to give a comprehensive account of the currently 

available methods for NMA and discuss in depth conceptual and statistical ways for 

evaluating the underlying assumptions of the model while providing guidance for 

researchers that set out to perform an NMA. To this end we performed a systematic review 

of the methodology, to ensure that interested researchers use state-of-the-art methods for 

practical applications and when conducting further methodological research. 

The second objective of this PhD thesis is the extension of NMA methods to the case 

of multiple correlated outcomes. Studies typically report on more than one outcome, and 

multiple outcomes can be correlated. For example, a study on antihypertensives may report 

systolic and diastolic blood pressure. These two outcomes are correlated because they are 

measured in the same patients. Moreover, on the meta-analysis level, there may be between-

study correlations of the true outcome effects across studies. These correlations will reflect 

the way that the true outcome effects depend on each other when measured in different 

settings.  

Currently available models for performing a multiple-outcomes meta-analysis of 

randomized trials are limited to the case of studies that compare only two treatments. In this 



3 

 

thesis we present new methods for performing an NMA for the case of multiple, correlated 

outcomes. We discuss a range of different modeling approaches to perform such an analysis, 

depending on the nature of the outcomes (e.g. binary/continuous) and the availability of 

information regarding the correlations.  

In the next section of this introductory chapter we give a brief account of the basic 

concepts and statistical models used in simple (pairwise) meta-analysis. In the following 

chapters we will see how these methods are generalized for the case of NMA, and also 

multiple outcomes NMA.  

1.2 A brief outline of methods for pairwise meta-analysis 

1.2.1 General concepts in meta-analysis 

Let us start by considering a collection of 𝑁𝑆 studies, which compare two interventions 

for the same disease in terms of a specific outcome. Let us also assume that the populations 

of patients are similar across the studies. Each study provides an estimate of the magnitude 

of relative treatment effect (𝑦𝑖), along with the corresponding measure of the uncertainty of 

this estimate (e.g. this could be the observed variance 𝑠𝑖
2 of 𝑦𝑖). Relative effects can be 

expressed for example in terms of odds ratio, risk ratio, risk difference (for binary outcomes), 

mean difference, standardized mean difference (for continuous outcomes), hazard ratios (for 

time-to-event outcomes), etc.  

The basic assumption behind all meta-analysis methods is that these distinct – but 

conceptually similar – studies aim to estimate a common underlying truth regarding relative 

treatment effects. Thus, the scope of meta-analysis is to synthesize the 𝑁𝑆 different answers 

into a single, pooled estimate of this treatment effect. There are several different statistical 

approaches to meta-analysis, but most are variations of a weighted average, where the result 

obtained in each study is assigned a study-specific weight (40). These weights usually relate 

to the precision of the studies, where more precise studies receive larger weights. The 

advantage of this pooling is that it leads to a higher statistical power, an increase in precision 

as compared to the individual studies’ results, and the chance to settle controversies arising 

from conflicting results in the individual studies (40,41).  

The two most popular approaches to meta-analysis are the fixed (or common) effect 

and the random effects models, and we describe them in brief in the following paragraph. 
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1.2.2 Fixed vs. random effects meta-analysis 

Fixed effects models assume that there is a single true treatment effect that underlies 

all studies in the analysis. Observed differences between the estimates of the studies are only 

due to random (sampling) error. This implies that the studies are similar in all aspects that 

might potentially modify the relative treatment effect. These include population 

characteristics (e.g. age of the participants), study design characteristics (e.g. duration of 

follow-up), intervention characteristics (e.g. dose) etc. (42). If we denote the true treatment 

effects in study 𝑖 by 𝜃𝑖 (where 𝑖 = 1,2, …𝑁𝑆), under the fixed effect assumption all 𝜃𝑖 are 

equal, i.e. 𝜃𝑖 = 𝜇. The observed effects in each study are 𝑦𝑖 = 𝜇 + 𝜀𝑖, where 𝜀𝑖 is the random 

error.  

By contrast, random effect models assume that the true effect size is different in each 

study. For example effect sizes might be larger in studies with older or more severely ill 

patients, or when more intensive variants of the treatment were used (43). In most cases 

studies are expected to have at least some variability in terms of patient or care-taker 

characteristics, implementations of the treatments etc., so that there may be different true 

effect sizes in each of the different studies. If 𝑁𝑆 was infinitely large we could reconstruct 

the distribution of the study-specific effect sizes. In a random effects model the observed 

effect sizes in the studies are assumed to be a random sample of this underlying distribution 

(43). The variability of this distribution of effects is typically termed heterogeneity. Thus, in 

a random effects meta-analysis model the observed differences of the estimates of the studies 

can be attributed to two factors: random (sampling) error, and random effects (due 

heterogeneity). The most common assumption used to model the distribution of study-

specific true effects is to assume a normal distribution. The observed effects in each study 

are 𝑦𝑖 = 𝜇 + 𝛿𝑖 + 𝜀𝑖, where 𝜀𝑖 are is the random effect. We will denote the standard deviation 

of random effects by 𝜏 in this dissertation. Setting 𝜏 = 0 corresponds to assuming no 

variation in the study-specific effects, and in that case the random effects meta-analysis 

models simplifies to a fixed effects model.  

Regarding the choice between the two models, fixed effect vs. random effects: if  

researchers expect the identified studies to share a common effect size and also they are only 

interested in identifying the treatment effect for a specific population, then a fixed effect 

meta-analysis is more appropriate to use. In all other circumstances the random effects 

assumption is much more suitable (41) and should be considered. 
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1.2.3 Inverse variance meta-analysis 

Perhaps the most common approach to defining weights in a meta-analysis is the 

inverse variance method. According to this method each study 𝑖 is assigned a weight 𝑤𝑖, 

where, for a fixed effects meta-analysis we assume: 

𝑤𝑖 =
1

𝑠𝑖
2 (1) 

The pooled treatment effect is estimated to be:  

�̂� =
∑ 𝑤𝑖 𝑦𝑖𝑖

∑ 𝑤𝑖𝑖
 , (2) 

and the corresponding variance: 

𝑣𝑎𝑟(�̂�) =
1

∑ 𝑤𝑖𝑖
, (3) 

For a random effects meta-analysis the weights are defined in a way similar to 

Equation (1), but they now also include the heterogeneity variance: 

𝑤𝑖
∗ =

1

𝑠𝑖
2 + 𝜏2

 (4) 

The pooled estimate and corresponding variance is still given by Equations (2) and (3), 

with the only change being the replacement of 𝑤𝑖 with 𝑤𝑖
∗. 

In order to use Equation (4) one first needs to obtain an estimate of heterogeneity, 𝜏2. 

The most widely used approach to estimating  𝜏2 is the DerSimonian and Laird method (44). 

In recent years, however, a plethora of alternative method have been proposed. Among these, 

an estimator proposed by Paule and Mandel (for both continuous and dichotomous 

outcomes) and the restricted maximum likelihood estimator (for continuous outcomes) have 

been shown to perform better (45). 

1.2.4 Estimating pairwise meta-analysis in a Bayesian framework 

Meta-analysis can also be formulated in the form of a hierarchical model, and then be 

fitted using Bayesian machinery. For a random effects meta-analysis, we assume: 

𝑦𝑖~𝑁(𝜃𝑖 , 𝑠𝑖
2) 

𝜃𝑖~𝑁(𝜇, 𝜏
2) 

(5) 

Prior distributions then need to be assigned to 𝜇 and 𝜏. The pooled treatment effects follow 

from the posterior distribution of 𝜇. Note that equation (5) can be used for meta-analysing 
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continuous outcomes, but also for dichotomous or time-to-event outcomes, if one uses 

measures that can be assumed to follow a normal distribution, e.g. log-odds ratio, log-risk 

ratio, log-hazard ratio etc. 

A better approach would be to take into account the exact likelihood of the data. Note 

that this requires arm-level data to be available from the original studies. Let us focus on the 

case of a dichotomous outcome. Let us assume that we have a number of studies comparing 

treatments A to B, and that study 𝑖 reports the number of events and number of randomized 

patients per treatment arm, i.e. 𝑟𝑖,𝐴, 𝑟𝑖,𝐵 and 𝑛𝑖,𝐴, 𝑛𝑖,𝐵. These are assumed to follow a binomial 

distribution: 

𝑟𝑖,𝐴~𝐵𝑖𝑛(𝑝𝑖,𝐴, 𝑛𝑖,𝐴) 

𝑟𝑖,𝐵~𝐵𝑖𝑛(𝑝𝑖,𝐵, 𝑛𝑖,𝐵) 

The arm-specific probabilities 𝑝𝑖,𝐴 and 𝑝𝑖,𝐵 can be used to estimate the treatment 

effects in that study. For instance, in order to use log-odds ratios we set 𝑙𝑜𝑔𝑂𝑅𝑖 =

𝑙𝑜𝑔 (
𝑝𝑖,𝐴(1−𝑝𝑖𝐵)

(1−𝑝𝑖,𝐴)𝑝𝑖,𝐵
). These study-specific effects can then be assumed exchangeable across 

studies, e.g. by setting 𝑙𝑜𝑔𝑂𝑅𝑖~𝑁(𝜇, 𝜏
2). A detailed account of the various hierarchical 

models one can use depending on the likelihood of the data can be found in a paper by Dias 

et al. (46). 

In the next, final section of this introductory chapter, we provide a brief outline of this 

dissertation. 

1.3 Outline of the dissertation 

In Chapter 2 we present the results of the systematic review on the methodology of 

NMA. We present our search strategy in Section 2.1. In Section 2.2 we provide an in-depth 

discussion of some conceptual issues and assumptions that underlie NMA. We discuss 

statistical methods for fitting NMA in Section 2.3. We present approaches for evaluating the 

underlying assumptions of NMA in Section 2.4. We summarize the currently available 

methods for fitting NMA in Section 2.6 and we discuss the use of alternative effect measures 

in Sections 2.7 and 2.8. We then present extensions of the model for adding covariates in the 

analysis (Section 2.9), and for investigating potential sources of bias 2.10. In Section 2.11 

we discuss the reporting of NMA results. In Section 2.12 we review methods for 

synthesizing repeated measurements and multiple outcomes in NMA. In Section 2.13 we 
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discuss the issue of deciding which treatments to include in a NMA. In Sections 2.14 and 

2.15 we summarize recent advances in incorporating individual patient data (IPD) and non-

randomised studies in NMA. In Section 2.16 we discuss the issue of planning future studies.  

In Chapter 3 we propose a new model for performing a joint network meta-analysis, 

for the case of multiple, correlated, dichotomous outcomes. In Section 3.2 we describe a 

motivating clinical example, borrowed from a systematic review aiming to compare 14 

different drugs and placebo for acute mania, in terms of efficacy and acceptability. In Section 

3.3 we present our model in detail. One of the important features of the model is that it 

requires external input in the form of information elicited from clinical experts. There we 

discuss methods that can be employed for obtaining such information. In Section 3.4 we 

apply our methods to the network of treatments for acute mania, and obtain relative treatment 

effects for all comparisons in the network, for both outcomes. In Section 3.5 we summarize 

our findings. 

In Chapter 4 we present two additional models that can be used for the network meta-

analysis of multiple correlated outcomes, for the general case of analyzing either 

dichotomous, continuous, or time-to-event correlated outcomes. In Section 4.2 we present 

the mathematical details models. In Section 4.3 we apply the two models to the acute mania 

dataset and we present our results. In Section 4.4 we compare the two models and we discuss 

how to choose between the two in real-life clinical applications 

Finally, in Chapter 5 we present the most important findings of this dissertation. We 

start by summarizing our recommendations for performing NMA as they emerged from our 

systematic review. We discuss the best practices and highlight the most appropriate methods 

for NMA, aiming to provide guidance to future researchers. We also give an overview of the 

new models we propose for performing NMA for multiple outcomes. We summarize the 

advantages and limitations of each model and discuss how to choose between them in 

practical applications. We also highlight some areas of future research.  

  



8 

 

 

 

 

  



9 

 

2 Systematic review of the methodology of network meta-

analysis 

2.1 Search strategy 

For the purposes of our review of the methodology we have searched for published 

articles that presented new methods for NMA or articles evaluating existing methodology. 

We based our search on a previous review of the literature in NMA performed by the 

‘Comparing Multiple Interventions Methods Group’ of the Cochrane Collaboration. We also 

used the results from a recent literature review performed by Donegan et al. (47) where 116 

papers on methods for assessing the homogeneity and consistency assumptions of NMA 

were identified (referred to as “key paper” in Figure 1) In addition, we searched the 

PUBMED database for relevant hits using the following terms: 

(network OR mixed treatment* OR multiple treatment* OR mixed comparison* OR 

indirect comparison* OR umbrella OR simultaneous comparison*) AND (meta-analysis). 

This query produced 1789 hits (14 March 2014), 88 of which were deemed relevant. 

Articles that have appeared in two methodological journals, namely Journal of Research 

Synthesis Methods (RSM) and Journal of the Royal Statistical Society (JRSS), series A, B 

and C, are not indexed by the PUBMED database; for this reason we performed a hand-

search for relevant publications in these two journals. 

Inclusion criteria 

We included articles that contribute to the methodology of network meta-analysis by 

introducing new methods and models; articles that review the existing methodology and 

articles that provide recommendations or give guidance on how to perform an NMA. We 

also included papers that discuss the conceptual issues and the assumptions behind NMA 

and articles that provide some sort of empirical assessment for the conduct of network meta-

analyses in general.  

Exclusion Criteria 

We excluded publications for which one of the following criteria was met: 

 full text of the publication was not available 

 published in a language other than English 

 conference posters 
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 applications of NMA without a methodological focus 

In Figure 1 we present the flow chart of the papers identified in our search. The 

identified articles were organized according to their context and are discussed in the relevant 

sections of this review. An online database of all included articles tagged by topic can be 

found at https://www.zotero.org/groups/wp4_-_network_meta-analysis/items. This database 

has been shared with experts in the field to identify missing relevant articles.  

Aiming to make our results more accessible to the interested reviewers, each identified 

article was assigned one or more tags according to the type of research presented, one or 

more tags according to the methodological topics addressed and one or more tags according 

to the software it used to implement the methods it presented. 

We used 5 contribution tags: 

 Methodology development: this will be assigned to papers presenting a novel 

methodology.  

 Didactical/good practice/recommendations: for papers giving guidance or advice.  

 Methodology overview: to be assigned to papers presenting a summary of the 

existing methodology for NMA 

 Simulation: for papers using a simulated dataset to make assessments 

 Empirical assessment: for papers presenting an assessment based on published 

NMAs. 

There were 14 methodology tags: 

 Basic Methodology: for papers presenting novel methodology for addressing 

fundamental issues of NMA  

 Definition of nodes: which will be assigned to articles presenting methodology 

regarding the definition of treatment nodes included in an NMA 

 Effect Sizes: for papers addressing issues on the different effect sizes that can be 

used in an NMA 

 Conceptual issues/Assumptions underlying NMA: to be assigned to papers that 

elucidate the conceptual issues of an NMA and discuss the assumptions that need 

to hold in order for an NMA to give valid results.   

 Statistical inconsistency: for papers discussing methods for quantifying statistical 

inconsistency in NMA, for papers presenting ways for addressing inconsistency or 

for papers examining the prevalence of inconsistency in published networks. 

https://www.zotero.org/groups/wp4_-_network_meta-analysis/items
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 Risk of Bias: for papers presenting methods for addressing the risk of bias in an 

NMA  

 Non-randomized and observational studies: assigned to papers suggesting ways to 

include data from non-randomized and observational studies in an NMA 

 Publication Bias: for papers presenting methods for addressing the risk of 

publication bias in an NMA 

 Multiple outcomes/repeated measures/survival analysis: for papers presenting 

methods for the joint analysis of multiple correlated outcomes, repeated measures 

and analysis of survival data 

 NMA meta-regression: for papers discussing the use of covariates in an NMA 

 IPD in NMA studies: for papers presenting ways to include evidence from studies 

reporting individual patient data in an NMA 

 Sensitivity analyses: for papers presenting some form of sensitivity analysis 

 Planning future studies: for papers discussing methods for planning future trials 

 Reporting NMA: for papers discussing methods for reporting the results of an NMA 

Finally we used 4 software implementation tags: 

 BUGS: for papers using either WinBUGS or OpenBUGS 

 R: to be assigned to papers using the R programming language 

 STATA: for papers using the STATA software package  

 SAS: for papers using the SAS software package 

Since our focus is on methodology, completeness of the search is less of an issue: a 

more extensive search might provide some additional articles, but it is unlikely that it will 

provide any new insights or further methodological perspectives. This effect is termed 

theoretical saturation (48).  

In the remainder of this Chapter we provide an overview of best practices and methods 

for NMA, as they were identified by our systematic review. 
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Figure 1: Flow chart of included and excluded methodological papers for the systematic 

review 
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2.2 Conceptual issues and assumptions underlying network meta-

analysis 

The key feature of NMA is that it allows the synthesis of direct and indirect estimates 

for the relative effects of many competing treatments for the same health condition. Two 

treatments A and B may have been directly compared in head-to-head (A vs. B) studies. An 

indirect estimate may also be obtained from studies comparing these two treatments with a 

common comparator treatment C, i.e. AC and BC studies (49), as shown in the left panel of 

Figure 2. If both direct and indirect estimates are available, they can be combined into a 

mixed treatment effect.  

In practice, for most health conditions there is a plethora of interventions being 

compared in randomized control trials, forming a network of evidence. For a given treatment  

comparison within such a network there may be direct and many different indirect estimates, 

obtained via many different comparators, as shown in the example of the right panel of 

Figure 2. Using NMA one can synthesize all these different pieces of information to produce 

an internally consistent overall estimate of all treatments’ relative effects.  

Despite the benefits of NMA discussed in the Introduction Chapter, there is still 

controversy among the scientific community about the validity of using indirect treatment 

comparisons (indirect evidence) for decision making. The use of such evidence may be 

particularly challenged when direct treatment comparisons (direct evidence) are also 

available (50–52). One focal point of criticism is the nature of evidence NMA provides. 

Even though patients within an RCT are randomized to receive one of the treatments being 

compared, the treatments are not randomized across the included trials. Therefore, indirect 

comparisons are non-randomized comparisons. In fact, indirect comparisons provide 

observational, rather than randomized, evidence. As a consequence indirect treatment 

comparisons may be more subject to biased treatment effect estimates, due, for example, to 

confounding, when randomized AB and AC studies are systematically different than BC (3); 

also, due to selection bias, when the choice of comparator in a study is dependent on the 

relative treatment effect (53). Such considerations are also closely related to the underlying 

assumptions of NMA; in what follows we discuss these assumptions in detail. 
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Figure 2: Each circle represents an intervention. A line connecting two interventions 

represents the availability of studies performing the corresponding comparison. Left 

panel: Three interventions A, B, and C form a simple triangular network. The indirect AB 

comparison is estimated via C, i.e. using the direct AC and BC comparisons. The mixed 

relative treatment effect for AB is estimated by combining the direct comparison and the 

indirect comparison. Right panel: A network of five interventions and eight direct 

comparisons. Overall, one direct comparison and four indirect comparisons contribute 

evidence to A versus B (indirect comparisons are via C, via E, via C and D, and via E and 

D). 

 

2.2.1 Transitivity 

The aim of a NMA is to enhance the decision-making process regarding the choice 

among alternative treatments for a certain disease and a target population. NMA adopts the 

same set of assumptions as a pairwise meta-analysis (54) but it also employs one additional 

assumption which can be hard to assess (55) called transitivity (56) (also termed similarity 

(11,32) or exchangeability (57)). Transitivity implies that information for the comparison 

between treatment A and B can be obtained via another treatment C, using the comparisons 

A vs. C and B vs. C. This assumption cannot be tested statistically, but its validity can be 

evaluated in a conceptual and epidemiological manner (24). 

The transitivity assumption implies that we can combine the direct evidence from AC 

and BC studies to learn (indirectly) about the comparison AB. This, however, will be 

questionable if there are important differences in the distribution of the effect modifiers 
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(variables or characteristics which modify the observed relative effects, e.g. mean age of the 

participants, treatment dosage etc.) across the AC and BC trials which inform the indirect 

comparison (56,58). An effect modifier might differ across studies of the same comparison 

(e.g. mean participant age might be different across the AC trials) but if it has a similar 

distribution across comparisons (AC and BC) the transitivity assumption may still be valid 

(24). Consequently, the plausibility of the transitivity assumption can be evaluated by putting 

the collection of studies under scrutiny for important differences in the distribution of effect 

modifiers. If the studies are deemed to be similar then the transitivity assumption might be 

realistic, provided that there are no unknown modifiers of the relative treatment effect (59). 

Obviously, such an evaluation of transitivity may be impossible when the effect modifiers 

are not reported or when there are few studies per treatment comparison (60). If important 

differences are identified and there are enough data available, a network meta-regression can 

be used to improve the transitivity of the network (see also Section 2.9). 

This implies, for example, that the common comparator treatment C must be similar 

in the AC and in the BC studies in terms of dose, modes of administration, duration etc. In 

an NMA of studies comparing fluoride treatments for the prevention of dental carries, the 

definition of placebo was different between studies of fluoride toothpaste and studies of 

fluoride rinse (61), casting doubt about the plausibility of the transitivity assumption and 

thereby challenging the reliability of NMA results. In another example, Julious and Wang 

(62) discussed how the use of placebo as an intermediate comparator might bias the results 

of indirect comparisons due to changes in the placebo response of the population over the 

years; for example, when studies comparing treatment A to placebo are older than studies 

comparing B to placebo the indirect estimate for A vs. B via placebo may be biased.  

Other ways of formulating the transitivity assumption is to assume that regardless of 

the treatments being compared in each study the true relative effect of A vs. B is the same in 

a fixed effects model or exchangeable across studies in a random effects model (57,63), that 

the ‘missing’ treatments in each trial are missing at random (64) or, equivalently, that the 

choice of treatment comparisons in the trials is not associated either directly or indirectly 

with the relative effectiveness of the interventions (24). Finally, an alternative way of 

postulating this assumption is to state that the included patients could in principle be 

randomized to any of the treatments included in the network (24). 
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2.2.2 Consistency 

The statistical manifestation of transitivity is called consistency (60). Checking the 

network for consistency constitutes an additional method of inferring indirectly about the 

plausibility of the transitivity assumption. Consistency refers to the statistical agreement 

between the observed direct and the (possibly many) indirect sources of evidence. A simple 

network may only include three treatments A, B and C. The transitivity assumption then 

implies that 𝜇𝐴𝐵 = 𝜇𝐴𝐶 − 𝜇𝐵𝐶 (also termed consistency equation), where 𝜇𝐴𝐵 denotes the 

true relative effect of treatment B over C; likewise for 𝜇𝐴𝐶, 𝜇𝐵𝐶. When this equation does 

not hold for the (direct) estimates, the network is said to be inconsistent (64) or incoherent 

(65). If this is the case, results from an NMA will be more difficult to interpret and become 

less reliable. In a following section we review various statistical methods and models that 

have been suggested for identifying inconsistency and thus assessing the transitivity 

assumption in NMA.  

Statistical inconsistency can be thought of as another form of heterogeneity: 

heterogeneity results from the variation of effect modifiers within a treatment comparison, 

while inconsistency results from the variation of effect modifiers across treatment 

comparisons (58). Researchers should keep in mind, though, that the consistency of a 

network can only be assessed statistically when there is both direct and indirect evidence for 

one or more treatment comparisons. This situation only occurs when there are closed loops 

in the network (i.e. when three or more interventions are connected by a polygon, the edges 

of which represent head-to-head comparisons between the corresponding treatments). When 

there are no closed loops present in the network, a statistical assessment of inconsistency 

will not be possible. In these situations there cannot be inconsistency by definition. This, 

however, does not imply that the transitivity assumption will necessarily hold. It should also 

be noted that the absence of statistical inconsistency does not provide proof for the validity 

of the transitivity assumption, which, as discussed in the previous section is essentially an 

untestable assumption. Thus, next to statistical tests for inconsistency, a 

conceptual/theoretical assessment of the transitivity assumption should always take place 

before an NMA is conducted (60) and the studies included in an NMA should always be 

scanned for important differences in terms of patients, interventions, outcomes, study design, 

methodological characteristics and reporting biases (3,7,9,15,19,26,28,35,49,59,66–70).  
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2.3 Statistical models for network meta-analysis 

A simple network may include three treatments of interest, A, B and C. An estimate 

of the indirect   treatment effect of A vs. B can then be obtained by utilizing the direct 

observations A vs. C and B vs. C as  �̂�𝐴𝐵
𝐼𝑛𝑑 = �̂�𝐴𝐶

𝐷𝑖𝑟 − �̂�𝐵𝐶
𝐷𝑖𝑟 (49). This result is sometimes also 

referred to as “adjusted indirect comparison”. The variance of the indirect estimate is the 

sum of the variances of the two direct ones. When direct evidence is also available for the A 

vs. B comparison it can be combined with the indirect estimate using the usual inverse 

variance method to produce a mixed estimate. Note that this method for obtaining indirect 

estimates is only valid for ‘triangular networks’, where three treatments have been compared 

in a number of two-arm trials and for ‘star-shaped’ networks, where all treatments are 

compared to a common comparator (e.g. placebo) but not to each other. For complex 

networks there will be multiple sources of indirect information, and thus more advanced 

models need to be used. 

Popular implementations of NMA models adopt meta-regression (Section 2.3.1), 

hierarchical modelling (Section 2.3.2) or a multivariate meta-analysis approach (Section 

2.3.3). A common feature of all of these models is that the use of the consistency equations 

minimizes the number of parameters that need to be estimated. The minimum set of 

parameters needed to model the relative treatment effects is usually termed as the set of 

“basic parameters” or “basic contrasts”; these parameters are in number equal to the number 

of treatments minus one and can be used to generate estimates for all possible treatment 

comparisons, via the consistency equations. The basic parameters can be chosen arbitrarily 

as long as they form a “spanning tree” of the evidence (64); if this condition is satisfied the 

actual choice of basic parameters does not affect the NMA results. These parameters are 

commonly taken to be the relative effects of each treatment versus a reference (e.g. the 

placebo, if present in the network). For example, for a network of four treatments A, B, C 

and D three basic parameters are needed. These can be chosen to correspond to the relative 

treatment effects of all other treatments versus A, i.e. AB, AC and AD. All other treatment 

effects can be generated from these 3 parameters, e.g. the relative treatment effect for BD 

can be estimated using the AB and AD parameters. Choosing instead BA, BC and BD as the 

basic parameters would have no impact on the NMA results.  

In what follows we describe the most popular approaches for performing an NMA. 
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2.3.1 Network meta-analysis as a meta-regression 

In the meta-regression approach, first proposed by Lumley (65) the various treatment 

comparisons are treated as covariates in a meta-regression model (6). The usual ΝΜΑ meta-

regression model can be summarized in the following equation: 𝒚 = 𝜲𝝁 + 𝜺 + 𝜹, with 𝒚 

being the vector of observed relative treatment effects, 𝝁 the vector of basic parameters, 𝜺 

the vector of random errors, and 𝜹 the vector of random effects. Note that for a study 

𝑖 comparing 𝑇𝑖 different treatments, only 𝑇𝑖 − 1 observations on treatment comparisons need 

to enter the model. For a parallel randomized three-arm ABC trial, for example, we only 

need to include two of the three comparisons, e.g. AB and AC; the BC comparison is just a 

linear function of the other two. This means that 𝒚, 𝜺 and 𝜹 have a length equal to ∑(𝑇𝑖 − 1). 

Random errors are assumed to follow a multivariate normal distribution, 𝜺~𝛮(0, 𝜮), with 𝜮 

being the (block-diagonal), within-study variance covariance matrix. A study 𝑖 with 𝑇𝑖 

treatments arms will contribute a (𝑇𝑖 − 1) × (𝑇𝑖 − 1) matrix to 𝜮; a two-arm AB study, for 

example, will only contribute to 𝜮 the variance of the relative treatment effect of A vs. B. A 

three-arm trial ABC will contribute to 𝜮 a 2 × 2 matrix with the variances and the covariance 

of the 2 relative treatment effects chosen to be included in 𝒚, eg. AB and AC. Similarly, 

𝜹~𝛮(0, 𝜟) for the random effects, with 𝜟 being the heterogeneity variance-covariance 

matrix. Matrix 𝑿, the design matrix, has as elements 1, –1 and 0 and describes the structure 

of the network, providing information on which comparison is being performed in each study 

(6). If for example the network is built by an AB study (study 1), an AC study (study 2) and 

a BC study (study 3), the model would be written as: 

(

𝑦1𝐴𝐵
𝑦2𝐴𝐶
𝑦3𝐵𝐶

) = (
1 0
0 1
−1 1

) (
𝜇𝛢𝛣
𝜇𝐴𝐶

) + (

𝜀1𝐴𝐵
𝜀2𝐴𝐶
𝜀3𝐵𝐶

) + (

𝛿1𝐴𝐵
𝛿2𝐴𝐶
𝛿3𝐵𝐶

). 

The basic parameters can be estimated as �̂� = (𝜲𝜯𝑾𝑿)−1𝑿𝑻𝑾𝒚, with variance 

𝑣𝑎𝑟(�̂�) = (𝜲𝜯𝑾𝑿)−1, where 𝑾 is the weight matrix, 𝑾 = (𝜮 + 𝜟)−1. The within-study 

variance-covariance matrix 𝜮 can be estimated from the observed data (4,71), while for the 

between-study variance-covariance matrix 𝜟 one can use various ways of estimation 

including likelihood methods or the methods of moments (72–74). Estimating 𝜟 may be 

difficult especially when the data are sparse or in the presence of multi-arm studies. For this 

reason, it is common to introduce additional assumptions to reduce the number of parameters 

in 𝜟 and simplify the estimation. The most common approach is to assume equal 
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heterogeneity variances across comparisons, i.e. the between-study heterogeneity of the 

relative treatment effects is the same for all treatment comparisons (4,65). This assumption 

is, however, quite strong and may often be unrealistic. Lu & Ades (63) discussed how the 

consistency equations impose restrictions in the heterogeneity of each comparison, based on 

the (different) heterogeneity variances of each of the basic parameters. Thorlund et al. (75) 

presented models for exchangeable heterogeneity variances and also discussed the use of 

informative prior distributions in the context of a Bayesian analysis.  

In a different approach, Lu et al. proposed a two-stage method for performing an NMA 

as a meta-regression (76). At the first stage a meta-analysis is performed in each group of 

trials comparing the same treatments, e.g. all two-arm trials that compare A vs. B, all three-

arm trials that compare A vs. B vs. C, etc. This provides the direct estimates on treatment 

comparisons. At the second stage of the meta-analysis, a weighted linear regression is 

performed with the direct estimates as dependent variables.  This provides inference for the 

basic parameters. This two-stage method can be used to investigate how the first-stage 

(direct) evidence influences the network estimates and may therefore help to assess the 

consistency of the network (see next section).  

2.3.2 Network meta-analysis as a hierarchical model 

Hierarchical NMA models (5,6) seem to be implemented most often (7,8). An 

important advantage of this approach is that if arm-level data are available, their exact 

likelihood can be used (46).  

The likelihood of the arm-level data is defined in terms of a set of unknown parameters 

𝛾 and a link function, 𝑔(𝛾) which is used to map these parameters in the (−∞,∞) range. 

For a study 𝑖 comparing treatments A and B we set: 

𝑔(𝛾𝑖𝐴) = 𝑢𝑖, 

𝑔(𝛾𝑖𝐵) = 𝑢𝑖 + 𝜃𝑖𝐴𝐵. 

For the case of binary data, for example, we can choose 𝑔 to be the 𝑙𝑜𝑔𝑖𝑡 function and 

𝛾 the probability of observing an event. We set:  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝐴) = 𝑢𝑖, 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝐵) = 𝑢𝑖 + 𝜃𝑖𝐴𝐵. 

Here 𝑢 represents the log-odds of the outcome for treatment A and 𝜃𝑖𝐴𝐵 the log-odds 

ratio of A versus B; the event probabilities for each arm parameterize the binomial 
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likelihood, 𝑟𝑖𝑇~𝐵𝑖𝑛(𝑝𝑖𝑇 , 𝑛𝑖𝑇), with 𝑟𝑖𝑇 denoting the events and 𝑛𝑖𝑇 the total number of 

randomized patients in each treatment arm (𝑇 = 𝐴, 𝐵). We then allow 𝜃𝑖𝐴𝐵~𝑁(𝜇𝐴𝐵, 𝜏𝐴𝐵
2 ) for 

a random-effects meta-analysis. If two non-reference treatments are compared in a study, 

e.g. treatments B and C, we utilize the consistency equations by setting 𝜃𝑖𝐵𝐶~𝑁(𝜇𝐴𝐶 −

𝜇𝛢𝛣 , 𝜏𝐵𝐶
2 ).  In the presence of multi-arm studies multivariate normal distributions should be 

used instead, where the within- and between-study variances are replaced by the 

corresponding variance-covariance matrices 𝑺𝒊 and 𝜟𝒊. Details on how to model other types 

of data can be found in (46). Note that the issues discussed in the previous section regarding 

the estimation of the between-trial heterogeneity hold for the hierarchical models as well. 

NMA can be fitted as a hierarchical model also if only contrast-level data are available 

from the studies (i.e. when the reported data is on the relative treatment effects of the 

treatments being compared, but not on the specific arms). For a two-arm study 𝑖 comparing 

A (reference treatment) and B the model is written as 𝑦 𝑖𝐴𝐵~𝑁(𝜃𝑖𝐴𝐵, 𝑠𝑖
2). Note here that the 

normality assumption can be justified even if the underlying patient-level distributions are 

skewed, due to the central limit theorem (46).  

Hierarchical models can also be fitted when a combination of arm-level and contrast-

level data is available, using the exact likelihood for the arm-level data and the normal 

approximation for the contrast-level data in a so-called shared parameter model (46).  

2.3.3 Network meta-analysis as a multivariate meta-analysis mode 

White et al. (77) suggested a method of performing NMA as a multivariate meta-

analysis by treating the basic comparisons as different outcomes and by employing standard 

multiple-outcome meta-analytical techniques (78). For this model to work all studies need 

to report on the reference treatment; if this is not the case for some studies, a data-

augmentation technique is required to impute a minimally informative reference treatment 

arm. The model is written as 𝒚 =  𝜲∗𝝁 + 𝜺 + 𝜹, with 𝜲∗ being a matrix with all elements 

either 0 or 1, depending on which ‘outcomes’ are reported in each study.  

Assume for example that treatments A, B and C are compared in a number of studies, 

and also assume that treatment A is taken to be the reference treatment. In this approach 𝝁 

will be a 2 × 1 vector of the basic parameters, AB and AC. A study comparing A vs. B will 

contribute an element 1 in the first column of 𝜲∗ and 0 in the second, since in this study only 

the first ‘outcome’ is reported. An A vs. C study will report the second outcome only, thus 
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the relevant elements in 𝜲∗ will be 0 and 1 respectively. For a B vs. C study, however, an A 

arm must be imputed; this study becomes three-arm, and reports on both ‘outcomes’. The 

model for these three studies is as follows: 

(

𝑦1𝐴𝐵
𝑦2𝐴𝐶
𝑦3𝐴𝐵
𝑦3𝐴𝐶

) = (

1 0
0 1
1 0
0 1

)(
𝜇𝛢𝛣
𝜇𝐴𝐶

) + (

𝜀1𝐴𝐵
𝜀2𝐴𝐶
𝜀3𝐴𝐵
𝜀3𝐴𝐶

) + (

𝛿1𝐴𝐵
𝛿2𝐴𝐶
𝛿3𝐴𝐵
𝛿3𝐴𝐶

) 

Note that the two random errors and also the two random effects that were included 

for the third study will be correlated. Also note that in this approach the vector of 

observations, 𝒚 has been modified to account for the imputed arms. Standard methods for 

multiple-outcome meta-analysis can now be used to fit the model. 

The models described in this section should be considered equivalent; the choice 

between them should be primarily dictated by the availability of software packages for 

implementing them and by the technical expertise of the researchers. We discuss the 

currently available software options for fitting all models presented in this review in a 

following section. Alternative models for performing an NMA have also been recently 

proposed in the literature. Rucker (79) described the analogy between network meta-analysis 

and electrical networks and applied graph-theoretical methods to perform a fixed-effects 

NMA. Also, Yang et al. (80) introduced a confidence distribution approach for performing 

an NMA. In this approach, instead of combining point estimates from each study, the authors 

combine confidence distributions.    

For more in-depth reviews of the methodology that include the statistical details of the 

models we presented we refer the reader to (15,81,82). 

2.4 Detecting inconsistency in networks of interventions 

As we have previously discussed (Section 0), transitivity is a central assumption of 

NMA. A statistical assessment of this assumption can be made by checking whether the 

various sources of evidence fit together in a coherent way. This assessment is vital for 

ensuring that the NMA results are valid and interpretable for clinical decision making (83), 

but may be difficult to do in practice, especially in the case of complex networks or when 

multi-arm studies are included in the network. 

Statistical consistency can be assessed only in closed loops of evidence; there are two 

general approaches to do this: either locally (by focusing on the inconsistency of a specific 

treatment comparison) or globally (by checking for inconsistency in the entire network of 
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evidence). In what follows we discuss methods and models that have been proposed for both 

of these approaches. 

2.4.1 Local methods to detect inconsistency 

A straightforward approach for evaluating the presence of inconsistency in a network 

is to apply a loop-specific approach; in this approach we examine each loop of the network 

in isolation with the rest of the network. For an ABC loop in the network, for example, we 

choose one of the comparisons (e.g. B vs. C) and compute the direct (�̂�𝐵𝐶
𝐷𝑖𝑟) and indirect 

estimates (�̂�𝐵𝐶
𝐼𝑛𝑑). Their absolute difference measures inconsistency and is usually termed 

inconsistency factor (64): �̂�𝐴𝐵𝐶 = |�̂�𝐵𝐶
𝐼𝑛𝑑 − �̂�𝐵𝐶

𝐷𝑖𝑟|, with variance 𝑣𝑎𝑟(�̂�𝐴𝐵𝐶) = 𝑣𝑎𝑟(�̂�𝐵𝐶
𝐼𝑛𝑑) +

𝑣𝑎𝑟(�̂�𝐵𝐶
𝐷𝑖𝑟). A 95% confidence interval can be obtained as �̂�𝐴𝐵𝐶 ± 1.96√𝑣𝑎𝑟(�̂�𝐴𝐵𝐶) and a 

Z-statistic for the null hypothesis of consistency, i.e. �̂�𝐴𝐵𝐶 = 0, can be constructed as 𝑧𝐴𝐵𝐶 =

�̂�𝐴𝐵𝐶/√𝑣𝑎𝑟(�̂�𝐴𝐵𝐶); this can be compared with the standard normal distribution to obtain a 

p-value (49). Inconsistency is a property of the loop, in the sense that choosing a different 

treatment comparison of the loop and repeating the computations would give the exact same 

results (57,64); thus we denote the inconsistency factor with an ABC subscript.  

The loop-specific approach can be applied for each loop in a network to point out 

hotspots for inconsistency. The major advantage of this approach is that it is easy to 

implement, it suffers however from important limitations: when a treatment comparison is a 

part of more than one loop this method does not compare direct evidence for this comparison 

to all available indirect information, but to evidence from only one loop at a time; also in 

this case the tests for different loops sharing this comparison will not be independent. In 

addition, for networks with many loops there are multiple-testing issues.  

 It is possible to extend the loop-specific approach by accounting for more than one 

indirect estimates for a treatment comparison (composite test for inconsistency (57,84)). 

Suppose that there are 𝐿 loops that provide independent indirect information for the A vs. B 

comparison; these can be combined with the direct information using the usual inverse 

variance method to obtain a pooled, overall estimate of the relative treatment effect of A vs. 

B. Under the null hypothesis that the 𝐿 + 1 different estimates are in agreement, a test 

statistic following a chi-squared distribution with 𝐿 degrees of freedom can be constructed 

to check for inconsistency. One should keep in mind, however, that the presence of multi-
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arm studies induces correlations among the estimates for the treatment effects, which this 

method, as well as the loop-specific approach, fail to account for.  

Dias et al. also proposed two additional methods for locally checking inconsistency 

(54). The first method (“back-calculation”) can be applied when the only available data are 

the pooled summaries of the pairwise meta-analyses. In the first step, the data is used to 

obtain a network estimate for each pairwise comparison in the network. It is then assumed 

that this estimate is a weighted average of the direct and the indirect evidence, coming from 

the rest of the network. This allows a back-calculation of the indirect estimate and its 

variance, which in turn can be used to construct a Z-test for the difference of direct and 

indirect evidence. Note that this method is problematic for a random-effects meta-analysis, 

as the posterior distribution of the heterogeneity variance will in general be different between 

the NMA model and the model for the pairwise meta-analysis.  

The second method proposed by Dias et al. (54), the node-splitting approach, can be 

used when trial-level data are available. In this method the direct evidence for a specific 

treatment comparison is excluded from the rest of the network and is used to obtain a direct 

estimate. The remaining information in the network is used to obtain an indirect estimate for 

this comparison, after fitting an NMA model. The two estimates, direct and indirect are then 

used to evaluate inconsistency with a Z-test. The main drawbacks of this approach (as well 

as the back-calculation approach) are that they might be computationally intensive, 

especially for large networks with many treatment comparisons, and that they cannot 

properly handle multi-arm studies. 

2.4.2 Global methods to detect inconsistency 

Lu and Ades introduced a model (64), in which the consistency equations are ‘bent’ 

by including extra terms, the inconsistency factors. For an ABC loop, for example, the 

consistency equation is written as 𝜇𝐵𝐶 = 𝜇𝐴𝐶 − 𝜇𝐴𝐵 + 𝑤𝐴𝐵𝐶, where the 𝑤 parameter 

measures the discrepancy of direct and indirect evidence. For networks comprising many 

loops a different inconsistency factor needs to be included in each loop. When the network 

only includes two-arm studies the number of independent inconsistency factors (the 

‘inconsistency degrees of freedom’, 𝐼𝐶𝐷𝐹) is 𝐼𝐶𝐷𝐹 = 𝐶 − 𝑇 − 1, with 𝐶 being the number 

of available pairwise comparisons in the data and 𝑇 the number of different treatments. The 

inconsistency factors can be assumed to follow a common distribution in order to increase 

the power in their estimation. A 𝜒2 test can be used to assess the inconsistency of the whole 
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network, under the null assumption that all inconsistency factors are zero. In the presence of 

multi-arm studies, however, this model is problematic (85). Higgins et al. (86) showed that 

different parameterizations of the model may lead to different results. Thus, when multi-arm 

studies are present, the use of the Lu and Ades model should be avoided.  

Higgins et al. (86) and White et al. (77) introduced an alternative inconsistency model, 

the ‘design-by-treatment’ interaction model, which encompasses both loop and design 

inconsistencies. The latter corresponds to the possible discrepancies in the treatment effects 

across designs, where ‘design’ refers to the treatments being compared in a study. For 

example, a study comparing treatments A and B is considered to be an AB design. The A 

vs. B estimate coming from such a study may be different than the A vs. B estimate coming 

from a three-arm study comparing treatments A, B and C (ABC design); this difference is 

referred to as design inconsistency. In the absence of multi-arm studies the Lu and Ades 

model is equivalent to the design-by-treatment model. Similarly to the Lu and Ades model, 

when multi-arm studies are present, the estimates of the inconsistency factors depend on the 

parameterization. Unlike the Lu and Ades model, however, the global statistic for 

inconsistency in the design-by-treatment interaction model is invariant under re-

parameterization. The main drawback of this approach is that the definition of inconsistency 

seems artificial, as it is mainly dictated by methodological rather than clinical considerations. 

A model similar to the design-by-treatment was also proposed by Piepho et al. (87). 

An alternative method was introduced by Dias et al. (57). In this model the consistency 

equations are completely removed, and the network meta-analysis model is equivalent to a 

series of separate, independent meta-analyses for each pairwise contrast, sharing, however, 

a common heterogeneity variance (88). The fit of the model is then compared to the standard 

consistency NMA model using the posterior deviance and the deviance information criterion 

(DIC) (89). In the presence of multi-arm studies, however, a re-parameterization will affect 

the results of a random-effects meta-analysis. In addition, estimating the contribution to 

posterior mean deviance for each data point can help identify possibly ‘problematic’ studies, 

i.e. studies not fitting well with the rest of the evidence. Each data point is expected to have 

a contribution of about 1 to the posterior mean deviance. A larger value will suggest a poor 

fit to the model, pointing out possibly inconsistent pieces of evidence; also, the use of 

leverage plots was suggested as a diagnostic tool for identifying inconsistency (54). 

A different approach for globally assessing inconsistency is by using the 𝑄 statistic for 

inconsistency (90), which is analogous to the  𝑄 statistic for heterogeneity in simple meta-
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analysis. This approach is based on the two-stage method for fitting NMA (76). On the first 

stage we perform a pairwise meta-analysis for the studies of each design available in the 

dataset, and obtain the direct relative treatment effect. From the AB studies, for example, we 

estimate �̂�𝛢𝛣; this can be used to compute the 𝑄𝐴𝐵
ℎ𝑒𝑡 statistic for heterogeneity as  𝑄𝐴𝐵

ℎ𝑒𝑡 =

∑
1

𝑠𝑖
2 (𝑦𝑖 − �̂�𝛢𝛣)𝑖

2
, where 𝑖 runs through all AB studies. Similarly, on the second stage of the 

analysis we obtain network estimates for all pairwise comparisons; using these estimates and 

the direct estimates of the first stage, a 𝑄 statistic for the inconsistency of the whole network 

can be obtained and the null hypothesis of consistency in the network can be tested using a 

𝜒2 distribution with 𝐶 − 𝑇 − 1 degrees of freedom. This approach can be generalized to 

account for the presence of multi-arm studies. Rucker has also suggested a 𝑄 statistic for 

inconsistency (79), but it is only applicable for fixed-effects NMA and cannot handle multi-

arm studies.  

In a another, graphical approach proposed by Chung and Lumley (91) the 

multidimensional scaling method is used to infer about inconsistency in a network. For each 

pairwise comparison a usual inverse variance meta-analysis is performed; the magnitude of 

the relative treatment effects is considered to be a measure of the observed pairwise 

‘dissimilarity’ of the treatments. The pairwise estimates are summarized in a dissimilarity 

matrix, to which a weighted multidimensional scaling is applied in order to obtain the ‘fitted 

dissimilarities’. Important differences between observed and fitted dissimilarities are an 

indicator of possible inconsistencies. Note that this method cannot properly handle multi-

arm studies. 

2.4.3 Empirical studies and simulations on inconsistency 

Empirical studies show that the prevalence of inconsistency in published networks is 

non-trivial. Song et al. (92) performed a meta-epidemiological study that included 112 

published triangular networks, 16 of which were found to be statistically inconsistent. 

Veroniki et al. (93) evaluated inconsistency in 40 published networks including a total of 

303 loops. They found that 2-9% of the loops were inconsistent, depending on the effect 

measure used and the assumptions for heterogeneity; also, approximately one eighth of the 

networks were found to be inconsistent using the design-by-treatment method. 

The various methods for assessing inconsistency have been rarely and poorly applied 

in published NMAs (11). In a meta-epidemiological study by Nikolakopoulou et al. (8) it 
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was found that in 24% of the published NMAs the authors did not use appropriate methods 

to evaluate inconsistency, while in 44% the authors did not report using any method at all. 

Song et al. (36) performed simulations in order to evaluate the statistical properties of 

various methods for inferring about network inconsistency. They explored the use of the 

loop-specific approach, the node-splitting technique and the Lu & Ades model. They found 

that even though all methods are unbiased, they have little power in detecting inconsistency. 

It is also important to note that inferences on inconsistency heavily depend on the extent of 

heterogeneity and the method used to evaluate it (93). Thus, analysts should keep in mind 

that a statistically non-significant estimate for inconsistency should not be interpreted as 

proof of consistency. In addition, even when statistically significant inconsistency is found, 

its magnitude should be interpreted in terms of clinical relevance; thus, a statistically-

significant inconsistency in a certain loop might be clinically unimportant. 

2.5 Choosing between the methods for evaluating inconsistency  

If the network structure allows it, i.e. if there are closed loops in the network, a 

statistical assessment of inconsistency should always take place after fitting the NMA model. 

In the previous paragraphs we presented a variety of methods and models currently available 

for statistically checking the network for consistency and we discussed the advantages and 

limitations of each approach. In Table 1 we provide an overview of these approaches, 

including a brief summary of the limitations of each one. 

An assessment of inconsistency may start with the loop-specific approach which, 

despite its shortcomings, is the easiest one to implement and can pinpoint possibly 

problematic loops. Afterwards, if all studies in the network are two-armed, all presented 

strategies are valid choices for checking for inconsistencies. We generally recommend the 

application of both local and global methods to gain a better understanding of the source of 

possible discrepancies between direct and indirect evidence and the plausibility of the 

consistency assumption in the network as a whole. If the network includes multi-arm studies 

only the design-by-treatment model and the 𝑄 statistic approach will lead to results that are 

independent of the parameterization of the model (i.e. the choice of the basic parameters). 

Researchers may still choose to implement some of the other methods as well, as exploratory 

analyses; they should bear in mind, however, that their results might not be robust.  
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Approaches for evaluating inconsistency can also be selected based on the available 

technical expertise and/or software packages. In Table 2 we provide a summary of the 

currently available software solutions for implementing the various approaches. 

If statistically significant inconsistency is detected, researchers are advised to explore 

potential sources of it and try to explain it. Local methods for assessing inconsistency can 

indicate outlying studies, which should be checked for data extraction errors, important 

differences in the distribution of effect modifiers or other possible biases. In Section 2.9 we 

present various models for adding covariates and adjusting for suspected biases in the 

analysis. If sufficient studies are available, such models can be applied to explain and 

possibly eliminate inconsistencies, while, if inconsistency persists, researchers can consider 

splitting up the network (see discussion in Section 2.13). Finally, in the case of unexplained 

inconsistency, researchers may choose not to synthesize the evidence in an NMA at all, or 

to present the results from the appropriate inconsistency model (Lu & Ades model when all 

studies are two-armed; design-by-treatment model when multi-arm trials are present) along 

with the direct evidence and a warning to the readers of the limitations of the analysis).  
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Table 1: An overview of the methods for assessing statistical inconsistency along with the 

limitations of each method 

Approach to 

inconsistency 
Method Limitations 

Local methods 

Loop-specific 

 Does not compare direct 

to all indirect evidence 

for each comparison 

 Different loops sharing a 

comparison are not 

independent  

 Multiple-testing issues 

Composite test 
Fails to account for 

correlations induce by 

multi-arm studies 

Back-calculation 

 Problematic for a 

random-effects meta-

analysis 

 Cannot properly handle 

multi-arm studies 

Node splitting 

 Computationally 

intensive 

 Cannot properly handle 

multi-arm studies 

Global methods 

Lu and Ades model 

Depends on 

parameterization when 

multi-arm studies are 

included  

Design-by-treatment model Non-intuitive definition 

of inconsistency.  

Unrelated mean effects 

model 

Depends on 

parameterization when 

multi-arm studies are 

included 

𝑄 statistic for inconsistency 

Based on the notion of 

design-by-treatment 

inconsistency model 

(non-intuitive definition 

of inconsistency) 

Multidimensional scaling Cannot properly handle 

multi-arm studies 
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2.6 Software options for fitting network meta-analysis and statistically 

evaluating inconsistency 

Our literature search showed that BUGS software is a popular choice for implementing 

new methods in NMA, the majority of the articles included in our database reported using 

WinBUGS, OpenBUGS (94,95) or JAGS (96): (3–5,14,19,26–28,31,34–

36,38,46,54,57,59,61,63,64,67,68,71,75,77,82,84,88,97–147). An alternative option for 

implementing Bayesian statistical inference is Stan, a recently developed programming 

language (148). However, we did not identify any articles using Stan. 

Also, there were many articles that reported the use of R (149): 

(36,54,61,63,65,69,76,79,83,90,91,93,111,122,129,135–137,139,141,147,150–154); some 

papers used STATA (155): (34,35,71,77,86,93,140,142,156–158) and a few papers reported 

using SAS software (159): (100,115,34,118,87,160–162). Finally, Van Valkenhoef et al. 

(141) presented GeMTC, a freely-available, open-source program for performing NMA.  

Neupane et al. performed a review of the available automated packages for performing 

an NMA in R aiming to summarize the key features and functionality of each package (163). 

In Table 2 we describe possible software solutions for some of the models presented in this 

review.  
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Table 2: Available software solutions for NMA 

Method Software 

NMA as meta-

regression 

 BUGS 

 Stata (metareg) 

 R (rma command from  metaphor; netmeta package) 

Hierarchical NMA 

model 

 BUGS codes available at: http://www.mtm.uoi.gr and  

http://www.bris.ac.uk/social-community-

medicine/projects/mpes/ 

 GeMTC software 

NMA as a 

multivariate meta-

analysis 

 Stata (mvmeta, network) 

 BUGS 

 R (mvmeta) 

Loop-specific 

approach for 

inconsistency 

 BUGS 

 R (routines available at 

http://mtm.uoi.gr/index.php/how-to-do-an-mtm) 

 Stata (network_graphs, available at  

http://mtm.uoi.gr/index.php/stata-routines-for-

network-meta-analysis) 

Node splitting 

approach 

 BUGS (codes available at 

http://www.bristol.ac.uk/cobm/research/mpes) 

 GeMTC software 

 Stata (mvmeta; network) 

Lu & Ades model 

 BUGS 

 Stata (mvmeta) 

 GeMTC software 

Design-by-

treatment model 

 BUGS  

 Stata (mvmeta; network) 

Q-statistics in NMA 

 R (routine available at http://www.unimedizin-

mainz.de/fileadmin/kliniken/imbei/Dokumente/Biome

trie/Software/netheat.R) 

 R (netmeta)  

 Stata (mvmeta; network) 

Graphical 

presentation 

 Stata (network_graphs, available at 

http://mtm.uoi.gr/index.php/stata-routines-for-

network-meta-analysis) 

 

  

http://www.mtm.uoi.gr/
http://www.bris.ac.uk/social-community-medicine/projects/mpes/
http://www.bris.ac.uk/social-community-medicine/projects/mpes/
http://mtm.uoi.gr/index.php/how-to-do-an-mtm
http://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
http://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/Biometrie/Software/netheat.R
http://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
http://mtm.uoi.gr/index.php/stata-routines-for-network-meta-analysis
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2.7 The use of different measures of effect size 

There is a wide choice of summary effect measures that can be used for the meta-

analysis of evidence on a binary outcome. The most common choices are the odds ratio 

(OR), risk ratio for harmful or beneficial outcomes (RRH and RRB), risk difference (RD) and 

hazard ratio (HR) for time-to event data. Donegan et al. (11) reported that the majority of 

the published NMAs of dichotomous data used OR and RR (50% and 40% respectively), 

with RD being used in only 10% of the analyses. Veroniki et al. (93) analyzed 40 published 

networks and showed that the choice of effect measure may have an impact on the inferences 

about the statistical inconsistency. This was also discussed by Coory and Jordan (66); using 

information from published networks they concluded that the use of OR and RR is preferable 

over RD. In addition, it has been demonstrated that the choice of the scale may have an 

impact on the results of an NMA (164). In particular, Eckermann et al. (165) showed that 

the use of RR may lead to inferential fallacies and advocate the use of OR. Norton et al. 

(158) discussed that different choices of scale may lead to differences in the ranking of the 

treatments in an NMA. They propose that researchers should explore how sensitive the NMA 

results are in the choice of effect measure. Van Valkenhoef and Ades (166) on the other hand 

discuss that a rank reversal is unlikely to take place unless the assumptions underlying NMA 

do not hold, or the data is very sparse.  

Caldwell et al. (88) proposed the use of the posterior mean deviance and the deviance 

information criterion (DIC) to evaluate the model fit of the different effect measures in an 

NMA. The choice of the effect measure can also be guided by considering the estimates of 

between-study heterogeneity, with lower values being preferable; however this might be 

problematic when there are not enough data available, in which case the choice of scale may 

be driven by the ease of interpretation and the epidemiological understanding of the disease 

process (46,88). HR should be always considered as a suitable choice of scale for the case 

there is an underlying time-to-event process and the proportional hazards assumption is 

deemed plausible (88,133) (see following Section).  

Note that the discussion of this paragraph pertains to the analysis of a binary outcome. 

When continuous data is available the analysts should avoid dichotomization since it 

translates into a loss of power and also because the choice of cut-off point may impact on 

the inferences of NMA (132).  
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2.8 Modelling time-to-event data in network meta-analysis 

In many RCTs the outcome measured is the time to the occurrence of an event (e.g. 

death, disease progression etc.). Welton et al. (143) described a method for simultaneously 

synthesizing survival and disease progression outcomes in a single NMA analysis; also, 

Woods et al. (146) provided guidance on how to perform an NMA on the log-hazard scale 

when studies report different survival statistics.  

Analysts, however, should keep in mind that the synthesis of time-to-event data in 

terms of hazard ratios relies on the proportional hazards assumption; treatment effects, 

however, may vary over time and this might threaten the validity of the meta-analysis results. 

For NMA this might have an extra impact, on the consistency of the results. Ouwens et al. 

(124) and Jansen (116) modeled the hazard functions using parametric survival curves and 

fractional polynomials respectively; in these models the hazard ratio is allowed to vary over 

time. Jansen and Cope (117) discussed methods for extending these models by including 

covariates that can reduce possible inconsistencies and bias. In another paper by the same 

authors (104), various alternative summaries were presented for summarizing the estimates 

of the relative treatment effects obtained from an NMA of survival data. 

2.9 Extension of network meta-analysis to account for effect modifiers 

In a pairwise meta-analysis a meta-regression on important effect modifiers 

(covariates) can explain the presence of between-study heterogeneity, which may hinder the 

interpretation of the results and may have important implications in decision making (106). 

In NMA interpreting results will be even more problematic in the presence of evidence 

inconsistency; meta-regression techniques in NMA adjust the treatment effects for possible 

effect-modifiers and can reduce heterogeneity and inconsistency in the results that may be 

present when these covariates are distributed unevenly among studies 

(28,34,61,81,97,103,106,123). The effect modifiers can be either categorical or continuous 

variables, and may represent either patient-level or trial-level characteristics.  

2.9.1 General model for including covariates in network meta-analysis 

Nixon et al. (123) first combined NMA and meta-regression techniques to develop 

models that allow the simultaneous comparison of multiple competing treatments while 

adjusting for study-level covariates, in an attempt to investigate and explain heterogeneity. 
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Salanti et al. (61) and Cooper et al. (103) proposed the use of meta-regression as a tool for 

eliminating inconsistency as well as heterogeneity in NMA. As an example of adding 

covariates in NMA, Salanti et al. (61) considered the year of randomization in each trial as 

a covariate in an NMA for topical fluoride treatments for the prevention of dental carries. 

The covariate adjusted for possible time trends in the placebo-controlled comparisons, and 

relative treatment effects were estimated for a pre-defined year of randomization (the year 

of the most recent study).  

In general, there are three main approaches in the meta-regression of study-level 

covariates for NMA (103,106): using different and unrelated interaction terms (coefficients), 

using exchangeable interaction terms and using a common interaction term.  

Unrelated interaction terms 

In this approach there are a number of interaction terms for each covariate equal to the 

number of the basic parameters of the model. Let us assume for simplicity that we are only 

interested in one study-level covariate 𝑥𝑖. We can augment the hierarchical random-effects 

model previously presented as follows: for a study 𝑖, comparing treatments B versus C, we 

allow 𝜃𝑖𝐵𝐶~𝑁(𝜇𝐵𝐶 + 𝑥𝑖𝛽𝐵𝐶 , 𝜏
2), assuming a common heterogeneity variance 𝜏2 for the 

treatment effects. If treatment A is chosen to be the reference treatment, we can utilize the 

consistency equations to write 𝜃𝑖𝐵𝐶~𝑁(𝜇𝐴𝐶 − 𝜇𝛢𝛣 + 𝑥𝑖(𝛽𝛢𝛣 − 𝛽𝐴𝐶), 𝜏
2); in a Bayesian 

analysis the 𝛽𝐴𝑇 ‘basic’ coefficients (where T≠A) can be assigned unrelated vague prior 

distributions. 

Exchangeable interaction terms 

The model has the same structure as the model for unrelated interaction terms, but now 

the basic coefficients are drawn from a common distribution, 𝛽𝛢𝛵~𝛮(𝑏, 𝜏𝑏
2) where index T 

runs through all treatments except reference treatment A. The mean 𝑏 and the variance 𝜏𝑏
2 of 

the common distributions can be assigned vague priors. 

Common interaction term 

The common interaction term model is the same as the exchangeable interaction model 

described in the previous paragraph, but now all basic interaction terms are assumed equal, 

𝛽𝛢𝛵 = 𝛽, for all treatments T≠A. A vague prior is then assigned to 𝛽. This model implies 

that the relative treatment effects between the non-reference treatments are independent of 
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the covariate, since the interaction terms cancel out. In this case the choice of the reference 

treatment becomes important, as it might change the meta-regression results (106). 

2.9.2 Network meta-analysis meta-regression for baseline risk 

The underlying risk of the disease, usually termed as ‘baseline risk’, is a proxy for 

important patient characteristics that may be possible modifiers of the treatment effects and 

it can be included as a covariate in an NMA; however, care should be taken to account for 

its correlation with the treatment effects (97,106). Achana et al. (97) proposed a random-

effects meta-regression model in which the effect of the reference treatment was used as a 

measure of the baseline risk. In order to include studies not reporting the reference treatment 

the authors proposed three alternative distributional assumptions for the ‘true’ unobserved 

baseline risk. Following Cooper et al. (103), the interaction terms were taken to be 

independent, exchangeable or common. The authors recommended that the goodness of fit 

of the various alternative configurations can be based on residual deviance. 

2.9.3 Limitations of network meta-analysis meta-regression models  

Dias et al. (106) advocate that even though the use of the models with exchangeable 

coefficients seems attractive, they are likely to lead to statistically insignificant interaction 

terms; when this is the case decision-making may be based in non-robust results. Therefore, 

even though the exchangeable coefficient model – or even more complex models – can be 

fitted, the authors suggest that their use should be limited to exploratory analyses. Also, 

analysts should keep in mind that NMA meta-regression inherits all the interpretation 

difficulties from regular meta-regression, most importantly the inability to infer causal 

relationships (106), and the risk of ecological bias if study-level covariates are used to infer 

about individuals. An additional drawback of meta-regression models for decision-making 

in general is that in order to assess the relative treatment effects the analyst must choose a 

value of the covariate at which to make the comparison (28).  

2.10 Investigating potential sources of bias in network meta-analysis 

When combining results from different studies researchers always run the risk of 

obtaining biased pooled estimates. This may be the case when some of the studies provide 

biased evidence (‘internal bias’); for example when treatment effects are overestimated in 

studies of low methodological quality. The pooled result may be biased even if the estimates 
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of the included studies are not, (‘external bias’); e.g. when studies without statistically 

significant results have not been published (167).  

Dias et al. (106) discussed that when confronted with studies of mixed quality, 

researchers have three options: they can choose to analyze only the high-quality studies, thus 

ignoring a possibly important amount of information, they can choose to analyze all 

evidence, thus risking a bias in the pooled estimates, or they can include all studies after 

taking into account and adjusting for possible biases in the studies. In what follows we focus 

on the latter, presenting various available approaches for adjusting for suspected internal 

biases in the included studies, and also for adjusting for various forms of external bias.  

2.10.1 Accounting for study limitations in network meta-analysis 

A conceptually straightforward way to adjust for possible biases in the included studies 

is by eliciting bias distributions (167). In this approach a number of independent experts 

evaluate each study separately in terms of some predefined criteria and provide information 

that is used in order to construct an overall bias distribution. The parameters of this 

distribution are combined with the estimates of the studies in order to produce a bias-adjusted 

estimate of the treatment effect in each study. These estimates are then synthesized using 

standard NMA techniques. A disadvantage of this approach is that it is rather difficult and 

time-consuming to implement (106). 

A class of models assumes that biased studies estimate 𝜇 + 𝛽, where 𝜇 is the unbiased 

treatment effect and 𝛽 is a bias parameter. If the study-specific bias parameters are assumed 

to be exchangeable across studies the unbiased treatment effects and the mean bias can be 

estimated from the network (106,109). Dias et al. (109) presented a model where 

exchangeable bias parameter with non-zero mean were included in studies that compared an 

active versus an inactive treatment and were considered to be of a high risk of bias (according 

to some predefined measure such as allocation concealment, blinding or other trial 

characteristics). They also explored the use of two different bias parameters, one for active 

versus inactive, and one for active versus active comparisons; note that in this approach some 

assumption on the direction of bias in the active versus active trials is necessary to be made. 

Salanti et al. (127) considered a similar model in which the newest treatments were favored, 

thus adjusting the treatment effects for possible ‘optimism’ or ‘novelty’ bias (108). Study 

size can be a proxy for the study’s risk of bias and Chaimani and Salanti (102) presented a 

method for adjusting for the ‘small study effects’, the exaggeration of treatment effects in 
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smaller trials. This exaggeration might be due to methodological differences between 

smaller and larger trials that affect treatment effectiveness, due to publication bias or due to 

reporting bias. They proposed a network meta-regression model, where the bias parameter 

is multiplied with the observed variance of the treatment effects in each study; the standard 

error or the precision (inverse variance) can be used alternatively. Their model can also 

adjust for suspected ‘sponsorship’ bias, for the case when interventions are sponsored in 

some of the studies.  A similar model was also presented by Trinquart et al. (139). 

2.10.2 Selection model to account for publication bias 

Mavridis et al. (121) proposed a Bayesian implementation of the Copas selection 

model (168) for addressing for possible publication bias in NMA. The idea behind selection 

models is that the observed set of published studies is considered to be a ‘biased’ sample, 

due to the nature of the publication process. This is addressed by introducing a latent variable 

for each study, the ‘propensity of publication’, which is assumed to be correlated with the 

study’s effect size. Mavridis et al. (121) modeled propensity via a regression model, where 

it was assumed to be inversely proportional to the standard error of the effect size. They 

considered alternative scenarios of how the selection model parameters depend on the 

treatments being compared in each study. Trinquart et al. also presented a selection model 

(139) which modeled the propensity score of a trial as a linear function of the standard error. 

The effect sizes of the studies were weighted according to their propensity. Their model was 

shown to yield similar results to the model by Mavridis et al. 

2.10.3 Accounting for ecological bias 

The meta-analysis of aggregated data can lead to ecological bias. This refers to a bias 

that may arise when using aggregated data in order to make inferences about patient-level 

interactions. Govan et al. (113) proposed an NMA model to control for ecological bias by 

specifically modeling the effects of the covariates. Their model allows the inclusion of 

studies that provide information on all covariates, studies that report marginal data on some 

of the covariates and also studies not providing any covariate information at all. The model 

allows the joint estimation of both the treatment and the covariate effects. 
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2.10.4 Graphical approaches to assessing bias in network meta-analysis 

In a different approach Salanti et al. (53) discussed how the geometry of the network 

can offer insight on the presence of a ‘comparator preference’ bias, i.e. when head-to-head 

comparisons between effective treatments are deliberately avoided, which in turn would 

imply that the treatment effects versus the reference treatments might be exaggerated. The 

authors utilized two indices from ecological literature: diversity, which is a measure of the 

number of treatments present in the network and how often they were tested, and co-

occurrence, which measures whether specific treatment comparisons were preferred in the 

network while others were avoided. Limited diversity and statistically significant co-

occurrence in a network is an indicator of possible preference bias in the network (18). 

Jansen et al. (169) discussed the use of directed acyclic graphs (DAGs) as a graphical 

tool for conceptually evaluating the consistency assumption and also identifying possible 

sources of bias in indirect and mixed treatment estimates. By means of DAGs they showed 

that NMA estimates can be biased when relative treatment effect modifiers vary across 

comparisons and are not adjusted for in the analysis. They also showed that adjusting for 

covariates that are not effect modifiers is not only unnecessary, but that it can introduce bias. 

2.10.5 Empirical assessments of the impact of bias in network meta-

analysis 

Chaimani et al. (101) performed a network meta-epidemiological study to explore the 

effect of trial characteristics and study precision in NMA. They analyzed 32 networks and 

found evidence that imprecise studies (studies reporting broader confidence intervals for 

their estimates) tend to report larger effects compared to more precise studies, thus altering 

the results of the NMA. However, they found no evidence of association between effect size 

and previously identified indicators of bias, including blinding, allocation concealment and 

random sequence generation. Trinquart et al. (138) used data from 74 FDA-registered 

placebo-controlled studies on 12 antidepressants along with 51 corresponding publications 

in order to assess the impact of publication bias. They found that the effect sizes derived 

from published studies differed from the ones derived from the FDA data by at least 100% 

for almost half of the pairwise comparisons. They concluded that reporting bias alters NMA 

estimates and changes the treatments’ ranking. They also noted that the impact of reporting 

bias may be more important in NMA compared to classical meta-analyses, in the sense that 
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reporting bias in one treatment comparison may have an effect in the ranking of all 

treatments in NMA.  

2.11 Reporting results from network meta-analysis 

Although the implementation of NMA is increasingly gaining popularity, the quality 

of reporting has been rather low. Various meta-epidemiological studies of published NMAs 

showed that the methods used and the assumptions made were not routinely reported 

(8,11,170,171). Ohlssen et al. (82) presented a checklist of items that should be reported in 

a drug-safety Bayesian NMA while Ades et al. (172) and Mills et al. (173) give guidelines 

for those reviewing an NMA for the purposes of decision making. 

One possible hurdle in the reporting of an NMA is that presenting all results can be a 

challenging task, especially for networks with many treatments and multiple outcomes. The 

literature offers a plethora of graphical and tabular methods for visualizing the evidence base 

(91,157,174), the assumptions made (90,157) and the results obtained from an NMA 

(38,91,154,157,174–176). In a meta-epidemiological study on the presentational approaches 

used, Tan et al. (177) examined NMAs published in the UK and found that there is no 

standardized presentational approach for reporting the results of NMA. The authors 

concluded that a standardization of reporting is required. 

2.12 Modelling repeated measures and multiple outcomes 

In some cases, studies may report on a single outcome for multiple time points, which 

leads to a series of correlated observations. Lu et al. (119) proposed a hierarchical NMA 

model for synthesizing repeated measures of a discrete outcome. Dakin et al. (105) suggested 

a model for a continuous outcome, but did not include in the analysis the correlations 

between the observations. Ding and Fu (110) also presented a model for a continuous 

outcome that automatically modeled the correlations between the observations at different 

time points. Madan et al. (120) presented methods for analyzing two dichotomous outcomes 

reported on multiple time points, for studies comparing complex interventions.  

As we discussed in the Introduction chapter, RCTs commonly report on more than one 

outcome. These outcomes may be correlated within a study (due to the fact that observations 

come from the same set of patients) and in addition the true treatment effects on the outcomes 

can be correlated across studies (reflecting the way outcomes are related when measured in 

different settings). The usual meta-analytical approach on multiple outcomes is to analyze 
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each one separately, ignoring all possible correlations. On the other hand, a joint meta-

analysis of all outcomes which incorporates possible correlations can increase precision by 

‘borrowing of strength’ across outcomes and may reduce the impact of outcome reporting 

bias (178,179).  

Welton et al. (145) described a method for performing an NMA of two correlated 

outcomes, but it can only be used for the case when all studies are two-armed. Schmid et al. 

(129) proposed a model for unordered categorical data that also allows the inclusion of 

studies with partially observed data Hong et al. (114) presented a model for multiple 

outcomes that does not take into account within-study correlations. Competing risks is a 

special case of multiple-outcome structure where the outcomes are mutually exclusive; Ades 

et al. (99) presented methods for performing a competing-risks NMA. Price et al. (125) 

discussed methods for an NMA in multi-state Markov models; a model averaging technique 

was also proposed (126) for combining estimates from alternative multi-state models. More 

details regarding methods for jointly synthesizing multiple outcomes in NMA can be found 

in Chapters 3 and 4 of this dissertation. There we also present a range of new models that 

we developed for the purposes of this PhD. 

Using NMA results to decide which of all available treatments is optimal for a specific 

condition might be a non-trivial issue, when the treatments are compared for more than one 

outcome. In order to facilitate decision making in the presence of multiple outcomes, Van 

Valkenhoef et al. (69) proposed a method for multiple criteria benefit-risk assessment of all 

competing treatments in an NMA; also, Hong et al. (115) described a similar method for 

producing an overall ranking of the treatments in the network using a scoring system for 

combining efficacy and safety outcomes.   

2.13 Definition of nodes in the treatment network 

One important decision that analysts must make in the onset of an NMA regards the 

number of nodes (treatments) to be included in the network. A simple choice would be to 

include all relevant treatments; alternatively researchers might want to focus on just a subset 

of the treatments, the ones that are deemed to be clinically relevant (e.g. newer/more 

effective treatments). This, however, poses a dilemma, since including in the evidence-base 

studies that compare treatments that are not clinically interesting might provide additional 

indirect evidence for the clinically interesting ones, which in turn may increase the precision 

of the results (24,180). 
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Hawkins et al. (181) performed an empirical study that supported the use of all 

potentially relevant data; in another empirical study Mills et al. (122) concluded that the 

exclusion of treatments in an NMA might have an important effect on the results and might 

limit its usefulness, if important comparisons are excluded. On the other hand, obtaining all 

relevant evidence, including clinically uninteresting treatments, may be very time 

consuming and inefficient. To address this issue Hawkins et al. (182) presented two 

alternative iterative search strategies for identifying an efficient set of evidence, where the 

comparators included in each search is determined by the results of the previous iteration. In 

addition, Cooper et al. (14) showed that extending the network to include more treatments 

might lead to increased heterogeneity, which in turn will increase the uncertainty in the 

results despite the inclusion of additional information.  

An additional issue that analysts might face regards the definition of treatments across 

studies. It is not uncommon for a treatment to be administered in different ways in the 

included studies, for example in different doses. This differential definition of the nodes will 

make the transitivity assumption less easy to defend and might cause inconsistency and/or 

heterogeneity in the results (24,67). Del Giovane et al. (112) and also Warren et al. (142) 

presented various alternative models to account for variability in treatment definition due to 

differences in the dose. In another frequently encountered scenario in which the definition 

of nodes can be of importance is when interventions are administered as a combination of 

more than one treatment; the simplest approach would be to analyze each combination as a 

different node in the NMA. Welton et al. (144) and Mills et al. (183) proposed possible 

scenarios for modeling how interventions interact with each other when combined into a 

complex intervention, with one of the approaches being the assumption of additive treatment 

effects. Thorlund et al. (137) performed a simulation study which showed that when the 

treatment effects are truly additive, the conventional NMA model performs poorly in 

comparison to the additive effects model.  

In summary, even though there is no exact recipe available for setting up the network 

and defining the nodes, the choice should be guided by considerations of the transitivity 

assumption, the presence of statistical inconsistency, the possibility of bias and also practical 

constraints on the resources available for setting up the database. Ideally, whenever possible 

such decisions should be described a priori in the protocol in order to avoid selective use of 

data (24). 
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2.14 Incorporating individual patient data in network meta-analysis 

The NMA models we have discussed so far can be used only for the analysis of 

aggregated data (AD) while the meta-regression approaches presented in Section 2.9.1 allow 

the exploration of the effects of only study-level covariates to the relative treatment effects. 

On the other hand the use of individual patient data (IPD) in an NMA (either exclusively or 

in combination with AD) is expected to increase precision and also allows the distinction 

between within-study from across-study associations to be made, so as to avoid possible 

ecological bias (150). Debray et al. extensively discuss the statistical methodology and the 

potential advantages of an IPD-MA when pooling head-to-head trials (184). These 

advantages also apply to NMA, and access to IPD is particularly relevant when the number 

of included studies is small and the validity of using meta-regression of study-level 

covariates becomes increasingly questionable. The use of patient-level covariates will allow 

a better evaluation of the heterogeneity and inconsistency in the network  (19,28,81,185).  

A few models for including IPD in an NMA have been recently proposed. Saramago 

et al. (128) developed a series of NMA models set in a Bayesian background that can be 

used for the simultaneous synthesis of IPD and AD while incorporating both study and 

individual-level covariates. Their models also allow the inclusion of studies with different 

designs (cluster and individual allocation). The authors found that the incorporation of IPD 

in the network resulted in an increase in the precision compared to an AD-only analysis, 

even when IPD are available only for a fraction of the studies. Donegan et al. (83,111) 

presented  a model for combining IPD and AD in a single analysis with three alternative 

specifications (unrelated, exchangeable and common interactions; see also Section 2.9.1). 

The inclusion of both IPD and AD in the analysis was shown to lead to an increased precision 

of the estimates of the regression coefficients and a better assessment of the consistency 

assumption. A similar model was proposed by Jansen (150). In the same paper a second, 

alternative model was also suggested for the case of a binary covariate. The author performed 

a simulation study indicating that the second model is less affected by bias at the cost of 

larger uncertainty in the results. Finally Ali et al. (186) discussed the use of IPD in order to 

identify possible interactions between treatment effects and potential effect modifiers; when 

such modifiers are found to be unevenly distributed among studies, the authors suggest that 

NMA models need to account for these differences. 
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2.15 Utilizing data from non-randomized and observational studies  

Ades and Sutton (187) discuss that results obtained from RCTs may not be necessarily 

generalizable to a wide population and that randomized studies’ results could be combined 

with information from observational studies or patient registries, by adjusting for potential 

biases. Randomized and non-randomized evidence can be regarded as being complimentary, 

in the sense that observational studies can be considered to be reliable sources of information 

regarding the population baseline, while RCTs regarding intervention effects data. Dias et 

al. (107) describe how non-randomized studies can be used to inform a ‘baseline natural 

history model’. Evidence from such studies can be used to estimate the absolute effect for a 

reference treatment. This can in turn be combined with NMA results for the relative effects 

of active treatments, in order to obtain an estimate of the absolute treatment effects.  

Schmitz et al. (131) proposed three alternative models for jointly synthesizing 

information from RCTs as well as non-randomized studies: the simplest approach presented 

was be to perform a naïve pooling, disregarding differences in study design; the second  

approach was to utilize non-randomized studies as prior information, while adjusting for bias 

due to study design; the third was a three-level hierarchical model which accounts for bias 

and for heterogeneity between trial designs. The first of the models (naïve pooling) should 

only be used as the first step of the analysis, since it disregards potential biases in non-

randomized trials. The second model (using observational evidence as prior information) 

allows adjusting for biases, but between-trial design heterogeneity is not taken into account, 

and it is not possible to include more than two different trial designs. The third model (three-

level hierarchical model) addresses these issues and should be preffered.  

Finally, Soares et al. (133) discussed the use of observational data for the case that 

there are sparse and few data in an NMA. In their approach such data were used to inform 

the baseline effects, but did not directly contribute to the relative treatment effects.   

2.16 Planning future studies 

The issue of planning future studies based on the results of an existing NMA has 

received little attention in the literature. Thorlund and Mills (188) and also Snapinn and Jiang 

(189) provided sample size considerations for determining the statistical power of indirect 

evidence and Mills et al. (151) performed a simulation study to estimate the power of indirect 

comparisons; however,  there is to our knowledge currently little guidance on the design (i.e. 
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treatments to be compared) and the sample size needed for updating an existing NMA in an 

optimal manner. 

Naci and O’ Conor (190) alternatively suggest the design and conduct of prospective 

NMAs; this would go against the current practice of retrospective NMA, where each 

individual study is planned in isolation from others. They also suggest that the regulatory 

agencies should have an active role in the design of future trials, especially in the selection 

of comparators and in ensuring that the patient populations are comparable in terms of 

treatment effect modifiers.  

2.17 Concluding remarks 

The popularity of NMA has been increasing over the last few years; however, NMA 

is still a subject of controversy. Many concerns focus on the assumptions underlying the use 

of indirect evidence. These assumptions can be difficult to understand, hard to test, and may 

challenge the validity of the NMA results. Moreover, the mathematical and statistical 

complexity of the model and the lack of user-friendly software may deter researchers from 

using it. Even worse, it has been shown that a non-trivial amount of published reviews 

employed inappropriate methods, although the percentage has been decreasing over the 

years (8,191). 

In our review we summarized the state-of-the-art in the field aiming to provide 

guidance to researchers interested in applying network meta-analytical techniques. We tried 

to shed light to the assumptions behind NMA and to present the statistical aspects of the 

model. We also discussed extensions of the basic NMA model and we summarized the 

currently available software options for fitting NMA.   

Our review has several limitations. Pragmatic decisions needed to be made given the 

lack of a widely accepted terminology referring to network meta-analysis, the abundance of 

recently published articles and the complexity of new methods in order to ensure a timely 

publication of this review. Thus, there may have been articles that presented methodological 

advances for NMA which we failed to identify by not including in our search more online 

databases and by not hand-searching additional journals. We believe, however, that even if 

the identified set of articles might not be complete, it is representative of the currently 

available methods for NMA and that the most important methodological aspects, challenges 

and solutions of NMA are covered. Moreover, although we present some of the mathematical 
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features of the various models and methods, we do it in a descriptive manner and we do not 

provide all relevant details. Hence, this review serves as a roadmap for researchers: the keen 

reader should refer to the original articles for details, keeping also in mind that NMA is still 

an active, rapidly developing research field. 

The results of the research presented in this Chapter were published in the Research 

Synthesis Methods journal (192) .  
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3 Modelling correlated binary outcomes in network 

meta-analysis using odds ratios 

3.1 Introduction 

As we discussed in Chapter 1 of this dissertation, RCTs typically report on multiple 

outcomes, and these outcomes may be correlated. There are two types of correlations to 

consider:  

i. within-study correlations of the multiple outcome effect estimates, reflecting the 

fact that the same patients report on each of the analyzed outcomes 

ii. between-study correlations of the true outcome effects across studies, reflecting the 

way the true outcome effects depend on each other when measured in different 

settings. 

For the case of simple (pairwise) meta-analysis, researchers typically disregard these 

correlations and perform a series of independent, univariate meta-analyses for each outcome. 

Ignoring the correlations between outcomes, however, has been shown to lead to a loss in 

precision for the estimated effect sizes and an increase in bias in the presence of selective 

outcome reporting (178,193–195).  

A multiple outcomes meta-analysis (MOMA) model can account for the correlations 

between treatment effects on different outcomes. In the recent years, MOMA has gained in 

popularity and several methodological developments have taken place (73,196–202). Two 

recent papers offer a comprehensive review of multivariate meta-analysis methods (78,179).  

A practical constraint frequently encountered in a MOMA framework is that the correlations 

between the effect sizes observed in the same study (within-study correlations) are rarely 

reported (78,179,194). Wei and Higgins (202) estimated the within-study correlations from 

the correlation coefficient between the outcomes, while Bujkiewicz et al.(203)  used external 

evidence to inform correlations between dichotomous and continuous outcomes. While 

expert opinion could inform the unknown within-study correlation coefficients, it is not an 

easy task to elicit quantitative estimates for correlations from clinical experts (204,205). 

Focusing on dichotomous outcomes, in this chapter we suggest an alternative approach for 

eliciting expert opinion in a straightforward and easily understood manner. 

In addition, most available MOMA models are applicable only for the case of pairwise 

treatment comparisons. However, as we discussed in Chapters 1 and 2 of this thesis, NMA 
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constantly gains in popularity and is often used to compare more than two interventions for 

the same outcome. It would be desirable to combine both methods (MOMA and NMA), so 

as to jointly synthesize data about multiple competing interventions on multiple outcomes 

(multiple outcomes network meta-analysis, MONMA).  

There have been few attempts for a MONMA model (see also Section 2.12 of the 

previous Chapter). Welton et al. (145) described a MONMA model but is limited to the case 

of two armed studies. However, the majority of applications of NMA include at least one 

multi-armed study (8). Schmid et al. (129) proposed a MONMA model for analysing 

unordered categorical outcomes. This model also allows the inclusion of studies with 

partially observed data. However, it cannot be applied for the more frequent cases of meta-

analyses of binary or continuous outcomes. Hong et al. (114) presented a model for multiple 

outcomes which, however, does not take into account within-study correlations. Madan et 

al. presented an approach for modeling multiple outcomes reported over multiple follow-up 

times; their models are applicable only for repeated measurements (120). 

The primary aim of the research we present in this Chapter is to develop a model for 

synthesizing multiple dichotomous outcomes over a network of studies. In Section 3.2 we 

describe a clinical example from acute mania (206) which we use to illustrate our methods. 

In Section 3.3 we present a method for estimating the within-study correlation coefficients 

by utilizing a set of conditional probabilities. We show how these probabilities can be 

elicited from clinical experts through easily understood questions. We then present a new 

MONMA model. In Section 3.4 we discuss the application of our methods to the network of 

treatments for acute mania. In Section 3.5 we summarize our findings. 

3.2 Example: the acute mania dataset 

The dataset includes a network of 65 randomized controlled trials comparing 14 active 

antimanic drugs and placebo for acute mania, Cipriani et al. (206). Most of the studies have 

two arms (47 studies) and there are 18 three-arm studies.  

The primary outcomes of interest were efficacy and treatment discontinuation 

(acceptability, or “dropout”) after 3 weeks. Acceptability was estimated as the number of 

patients leaving the study early for any reason, before or after having a response to the 

treatment, out of the total number of randomized patients. All-cause discontinuation from 

allocated treatment may be due to a number of reasons, such as: adverse effects, inefficacy, 

other reasons not related to treatment (e.g. moving away, protocol violation), or a 
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combination of the above. Efficacy was reported either as dichotomous outcome (number of 

patients who responded to treatment, defining response as a reduction of at least 50% in 

manic symptoms from baseline to week 3) or as continuous outcome (mean change scores 

on a standardized rating scale for mania after 3 weeks). Although we recognize that outcome 

dichotomization may lose some information, we used data on efficacy as a dichotomous 

outcome as it may be easier to interpret clinically and allows us to illustrate our methodology 

for two related binary outcomes, a frequent scenario encountered by researchers. Only a few 

patients did not provide data for response to treatment and their outcome was coded as 

treatment failure; an imputation assumption that has been shown to be sensible when the 

missing rates are low (134). Among the included studies, only 65 contributed with data for 

at least one of the outcomes of interest: 18 studies (28%) did not report usable data on 

response, while only one study did not report information on the number of dropouts (1.5%). 

Efficacy and acceptability outcomes are generally expected to be negatively correlated; 

although early full response to the treatment may be a cause for leaving the study 

prematurely, more often it is reasonable to assume that more efficacious treatments are 

associated with a lower dropout rate. Within-study correlations were not reported in any of 

the studies and individual patient data (IPD) which could be used to estimate within-study 

correlations were not available. The dataset included a total of 69 head-to-head comparisons 

for response and 100 for dropout. In Section I of the Supplementary Material we provide a 

table with all head to head comparisons for each outcome, along with the odds ratios and 

their 95% confidence interval. The initial analysis consisted of two independent network 

meta-analyses, one for each outcome (206). As both outcomes are crucially important for 

clinical decision making, the ranking of the treatments was presented for both efficacy and 

acceptability in a two-dimensional scatter plot (Figure 6 in Cipriani et al.) so that efficacious 

treatments with high tolerability could be identified. This is a suboptimal approach and the 

rankings of the treatments for each outcome can be better estimated jointly in a MONMA 

model to account for the correlation in the outcomes. This is especially important here as 19 

studies provide data on only one of the two outcomes, and MONMA can 'borrow strength' 

from these studies even for the missing outcomes. 

In Figure 3 and Figure 4 we present the network of evidence for response and dropout.  
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Figure 3: Network of pharmacological treatments for acute mania, for the response 

outcome. Nodes and edges are weighted according to the number of studies involved in 

each treatment or comparison respectively.  

 

Figure 4: Network of pharmacological treatments for acute mania, for dropout.  
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3.3 Statistical methods 

Here we start by revising and extending a MOMA model when only two treatments 

are compared. Emphasis is placed on estimating the within-study correlation coefficients. 

Subsequently we generalize the approach to a network meta-analysis with multi-arm studies. 

3.3.1 Pairwise meta-analysis models for multiple outcomes 

Suppose we have a total of 𝑁𝑆 studies comparing two treatments with respect to two 

different, correlated outcomes, denoted by 𝑅 and 𝐷. These two outcomes are identified as 

the response to the treatment (𝑅) and dropout rate (𝐷) in the acute mania example. Note that 

some studies may not report on both outcomes. We denote the observed treatment effects in 

study 𝑖 for outcomes 𝑅 and 𝐷 with 𝑦𝑖,𝑅 and 𝑦𝑖,𝐷 respectively. A bivariate random effects 

meta-analysis model can be written as follows: 

(
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 (6) 

Equation (6) can be compactly written as 𝒀 = 𝑿𝝁 + 𝜺 + 𝜹, where 𝒀 is the (2𝑁𝑆-

dimensional) vector of the observed effects, 𝝁 is the vector of the true relative effects for 

each outcome, 𝝁 = (𝜇𝑅 , 𝜇𝐷)′, 𝑿 is the (𝑁𝑆 × 2) ‘design matrix’, 𝜺 and 𝜹 are the vectors of 

random errors and random effects respectively. We assume multivariate normal distributions 

for 𝜺 and 𝜹, so that 𝜺~𝛮(0, 𝜮) and 𝜹~𝛮(0, 𝜟), with 𝜮 and 𝜟 denoting the within and 

between-study variance-covariance matrices. Note that letters in bold denote vectors and 

matrices. 

The random errors within a study and the random effects across studies are in principle 

correlated, and this correlation is incorporated in 𝜮 and 𝜟 respectively. More specifically, 

the variance-covariance matrix for the random effects takes a block-diagonal form:  

𝜟 =

(

  
 

𝜏𝑅
2 𝜌𝜏𝜏𝑅𝜏𝐷 0 0 ⋯

𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2 0 0 ⋯
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2 𝜌𝜏𝜏𝑅𝜏𝐷 ⋯

0 0 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2 ⋯
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= (

𝜟(2×2) 0 ⋯

0 𝜟(𝟐×𝟐) ⋯

⋮ ⋮ ⋱

) 
(7) 

The above  2𝑁𝑆 × 2𝑁𝑆 matrix involves the heterogeneity standard deviations for each 
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outcome, 𝜏𝑅 and 𝜏𝐷, and the between-study correlation coefficient, 𝜌𝜏. Note that this 

between-study variance-covariance matrix is block-diagonal with identical 𝜟(2×2) matrices 

in its diagonal. The parameters 𝜌𝜏, 𝜏𝑅 and 𝜏𝐷 need to be estimated from the data: this can be 

done either within a frequentist setting. using approaches like maximum likelihood, 

restricted maximum likelihood method and the generalized method of moments (72–

74,198,207), or in a Bayesian setting using Markov Chain Monte Carlo. Similarly, the 

within-study variance-covariance matrix is also block diagonal: 

𝜮 =

(
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0 0 𝜌2𝜎2,𝑅𝜎2.𝐷 𝜎2,𝐷
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⋮ ⋮ ⋮ ⋮ ⋱)

 
 
 
= (

𝜮𝟏 0 ⋯
0 𝜮𝟐 ⋯
⋮ ⋮ ⋱

) (8) 

In this matrix 𝜌𝑖 is the within-study correlation coefficient and 𝜎𝑖,𝑅
2, 𝜎𝑖,𝐷

2 are the 

variances of the effect sizes in every study 𝑖. All entries in 𝜮 can be estimated from the data. 

Sample estimates for the 𝜎𝑖,𝑅
2, 𝜎𝑖,𝐷

2 are often available, but few studies, if any, provide 

enough information to estimate the within-study correlation coefficient 𝜌𝑖. In the absence of 

sample estimates for 𝜌𝑖, a range of plausible values can be used in a sensitivity analysis, or 

one could try to elicit prior distributions for the correlation coefficient from clinical experts. 

However, obtaining a prior for the correlation coefficient is not straightforward. In the 

following sections we discuss how partial information reported in studies can be combined 

with external information to obtain estimates of 𝜌𝑖 and incorporate them in the MOMA 

model. 

3.3.2 Estimation of within-study correlation coefficient for two dichotomous 

outcomes 

Studies that report on two or more dichotomous outcomes typically provide the number 

of successes and failures for every outcome in each arm. For two outcomes the data can be 

summarized in two independent 2×2 tables which we refer to as ‘collapsed’ tables. We refer 

to a ‘full cross’ table as the table that gives information about the cross-classification of the 

patients in both outcomes. Let us consider for example a study reporting on response and 

dropout: a full cross table provides information on the number of successes and failures 

among those who drop out as well as the number of successes and failures among those who 
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do not drop out for each arm. In a recent paper Bagos (208) showed how to compute the 

covariance of two correlated log odds ratios (logOR)  when the full cross tables are available. 

Consequently, if all studies in a meta-analysis provide the full cross tables, the within 

variance-covariance matrix of Equation (8) can be estimated and a multivariate analysis can 

be readily performed. However, outcomes are routinely analyzed separately and only the 

row and column margins of the full cross tables are usually provided in the studies. 

In this section we show how to reconstruct the full cross tables for every study given the 

usual 2×2 collapsed tables and external evidence. Having reconstructed the full cross tables 

we can then use the methods described in (208) and compute the correlation coefficient 

needed for the multivariate analysis.  

3.3.2.1 Reconstruction of the full cross table and estimation of the correlation 

coefficient 

Consider a study 𝑖 comparing two treatments 𝐴 and 𝐵 for response (𝑅) and dropout (𝐷). 

The data are 𝑒𝑖,𝑇,𝑅 , 𝑓𝑖,𝑇,𝑅 , 𝑒𝑖,𝑇,𝐷 , 𝑓𝑖,𝑇,𝐷 for treatments 𝑇 = 𝐴, 𝐵, where 𝑒𝑖,𝑇,𝑅 denotes the 

number of patients that responded positively (𝑅+) to treatment 𝑇 and  𝑓𝑖,𝑇,𝑅 the ones that did 

not (𝑅−); likewise 𝑒𝑖,𝑇,𝐷 denotes the patients randomized in group 𝑇 that dropped out of the 

study early (𝐷+). Similarly, 𝑓𝑖,𝑇,𝐷 denotes those who did not drop out (𝐷−).  

Let us denote by 𝜑𝑖,𝑇 = 𝑃(𝐷
+|𝑅+)𝑖,𝑇 the probability that a patient who responded to the 

treatment would drop out; also let 𝜁𝑖,𝑇 = 𝑃(𝐷
+|𝑅−)𝑖,𝑇 denote the probability of a non-

responder to drop out. Table 3 shows how to compute the elements of the full cross table 

from the elements of the collapsed table (𝑒𝑖,𝑇,𝑅 , 𝑓𝑖,𝑇,𝑅 , 𝑒𝑖,𝑇,𝐷 , 𝑓𝑖,𝑇,𝐷) for every treatment. For 

example �̂�𝑖,𝛢𝑒𝑖,𝐴,𝑅 patients received treatment 𝐴, had a positive response to the treatment but 

dropped out of the study and (1 − �̂�𝑖,𝐵)𝑒𝑖,𝐵,𝑅 who received treatment 𝐵 had a positive 

response and stayed in the study. 
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Table 3: Reconstructing the full cross table from the collapsed table for a study 𝑖 

comparing treatments A and B for response (R) and dropout (D). �̂�𝑖,𝑇  denotes the 

proportion of dropouts among responders and 𝜁𝑖,𝑇 the proportion of dropouts among non-

responders. R+ (R-) denotes a positive (negative) response to the treatment while D+(D-)  

denotes dropping out of (staying in) the study. 

 

 

It can be shown that 𝜁𝑖,𝑇 is dependent on �̂�𝑖,𝛵 given the marginal counts: 

𝜁𝑖,𝑇 =
1

𝑓𝑖,𝑇,𝑅
(𝑒𝑖,𝑇,𝐷 − 𝑒𝑖,𝑇,𝑅�̂�𝑖,𝛵) (9) 

Thus, information about only one of �̂�, 𝜁 is needed for every arm in order to reconstruct 

the table. Note that Equation (9) holds when the total sample size is the same for the two 

outcomes, that is 𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅 = 𝑒𝑖,𝑇,𝐷 + 𝑓𝑖,𝑇,𝐷.  

Having reconstructed the full cross tables, the correlation coefficient between the two 

log-odd ratios 𝑦𝑖,𝑅 and 𝑦𝑖,𝐷 can be estimated using the formula produced by Bagos (208), 

which after some algebra can be shown to be equal to: 

𝜌�̂� =
1

�̂�𝑖,𝑅�̂�𝑖,𝐷
∑

�̂�𝑖,𝛵(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)
2
− 𝑒𝑖,𝑇,𝐷(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)

𝑒𝑖,𝑇,𝐷𝑓𝑖,𝑇,𝑅𝑓𝑖,𝑇,𝐷
𝑇=𝐴,𝐵

 (10) 

Equation (10) allows us to estimate the correlation coefficient between log odds ratios of the 

different outcomes in study 𝑖, given the data typically reported (𝑒𝑖,𝑇,𝑅 , 𝑓𝑖,𝑇,𝑅 , 𝑒𝑖,𝑇,𝐷 , 𝑓𝑖,𝑇,𝐷) 

and �̂�𝑖,𝑇 for every treatment (assumed known), under the restriction that both outcomes were 

reported for every patient within the same study.  

 

 

Treatment A 𝑹+ 𝑹− TOTAL 

𝑫+ �̂�𝑖,𝛢𝑒𝑖,𝐴,𝑅 𝜁𝑖,𝛢𝑓𝑖,𝐴,𝑅 𝑒𝑖,𝐴,𝐷 

𝑫− (1 − �̂�𝑖,𝛢)𝑒𝑖,𝐴,𝑅 (1 − 𝜁𝑖,𝛢)𝑓𝑖,𝐴,𝑅 𝑓𝑖,𝐴,𝐷 

TOTAL 𝑒𝑖,𝐴,𝑅 𝑓𝑖,𝐴,𝑅 𝑁𝑖,𝐴 

Treatment B 𝑹+ 𝑹− TOTAL 

𝑫+ �̂�𝑖,𝐵𝑒𝑖,𝐵,𝑅 𝜁𝑖,𝐵𝑓𝑖,𝐵,𝑅 𝑒𝑖,𝐵,𝐷 

𝑫− (1 − �̂�𝑖,𝐵)𝑒𝑖,𝐵,𝑅 (1 − 𝜁𝑖,𝐵)𝑓𝑖,𝐵,𝑅 𝑓𝑖,𝐵,𝐷 

TOTAL 𝑒𝑖,𝐵,𝑅 𝑓𝑖,𝐵,𝑅 𝑁𝑖,𝐵 
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Table 4: Data from a two-arm study comparing Aripiprazole to placebo for response (R) 

and drop-out (D) (209). eT,R , eT,D denote the number of patients who were positive in 

outcomes R and D, while fT,R , fT,D  denote the number of patients negative in outcomes R 

and D respectively. 

Treatment (𝑻) 𝒆𝑻,𝑹 𝒇𝑻,𝑹 𝒆𝑻,𝑫 𝒇𝑻,𝑫 

Aripiprazole 155 98 54 199 

Placebo 63 68 20 111 

 

 

Equation (10) suggests that if the proportion of dropouts in the responders equals the 

proportion of dropouts in the total number of patients, i.e. �̂�𝑖,𝛵 = 𝑒𝑖,𝑇,𝐷/(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅), then 

the two outcomes are independent and the correlation coefficient in (10) becomes zero. If 

both �̂�𝑖,𝛵 are equal to zero, which suggests that all responders stayed in the study, we get 

𝜌𝑖 = −1. In the contrary, if both �̂�𝑖,𝑇 are equal to one (all responders dropped out) Equation 

(10)  gives 𝜌𝑖 = 1. 

Note here that �̂�𝑖,𝛵 in each study can only take values that ensure 0 ≤ 𝜁𝑖,𝑇 ≤ 1, that is: 

𝑒𝑖,𝑇,𝐷 − 𝑓𝑖,𝑇,𝑅
𝑒𝑖,𝑇,𝑅

 ≤ �̂�𝑖,𝑇 ≤ 
𝑒𝑖,𝑇,𝐷
𝑒𝑖,𝑇,𝑅

 (11) 

Of course, 0 ≤ �̂�𝑖,𝑇 ≤ 1  must also hold. In Table 4 we present data from a two-arm 

study comparing Aripiprazole with Placebo for both response and drop-out rate (Vieta et al. 

(209)). We have dropped study index 𝑖 since we refer to a single study.  

Equation (11) implies that 0 ≤ �̂�𝐴𝑅𝐼 ≤ 0.34  and 0 ≤ �̂�𝑃𝐿 ≤ 0.31, with �̂�𝐴𝑅𝐼 and �̂�𝑃𝐿 

denoting the proportion of dropouts among responders for the Aripiprazole and the placebo 

arm respectively. This means that less than 34% of those who responded positively to 

Aripiprazole could have dropped out. Using Equation (10) we plot 𝜌 for various values of 

𝜑𝐴𝑅𝐼 and 𝜑𝑃𝐿 in Figure 5, in order to explore how the correlation coefficient depends on 

these proportions. We assume four different values for 𝜑𝑃𝐿, and plot the correlation 

coefficient versus 𝜑𝐴𝑅𝐼. We also plot the corresponding 𝜌 if the two proportions are assumed  

to be equal. Figure 5 suggests that the correlation coefficient for the logOR for response and 
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Figure 5: Within-study correlation coefficient ρ between the log odds ratios for response 

and dropout versus the φARI for a study (209) comparing Aripiprazole vs Placebo. Four 

different values for  φPL are presented and the line φARI = φPL 

 

 

drop-out rate remains negative for small values of both 𝜑 parameters, something which is 

readily understood: the smaller the proportion of responders dropping out, the more 

negatively correlated are the log odds ratios for response and drop-out rate.  

In a recent paper Wei and Higgins (210) have also produced a formula for estimating 

the covariance between the logORs of two correlated outcomes. Their formula requires the 

correlation coefficient between the two dichotomous outcomes to be known. The motivation 

for their approach was that the value for the correlation between the outcomes is more likely 

to be available (or easier to guess) than the correlation between the treatment effects. It can 

be shown that our formula in Equation (10) is equivalent to the formula (8) derived by Wei 

and Higgins in (210), under the assumption that all patients report on all outcomes (the 

mathematical details can be found in Section II of the Appendix). However, we think it is 

more useful to express the correlation coefficient (or the covariance) of the log odds ratios 
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in terms of the parameters �̂�𝑖,𝑇. This is because, as we will show in the following section, 

these parameters are flexible in modeling and prior distributions can be obtained from 

clinical experts through easily understood questions. 

3.3.2.2 Modeling the φ parameters, eliciting priors and synthesizing prior distributions 

Assuming that the proportions �̂�𝑖,𝑇 are not reported in the studies we can use expert 

opinion to inform the ‘true’ conditional probabilities 𝜑𝑖,𝑇 they estimate. Then we can 

compute the correlations of the logORs using Equation (10). The parameters 𝜑𝑖,𝑇 can be 

assumed to be: 

  study and treatment-specific 𝜑𝑖,𝑇  

  fixed 𝜑𝑖,𝑇 = 𝜑  

  treatment-specific 𝜑𝑖,𝑇 = 𝜑𝑇 

  study-specific 𝜑𝑖,𝑇 = 𝜑𝑖 

  or we can assume group-specific probabilities 𝜑𝑖,𝑇 = 𝜑𝐺𝑟𝑜𝑢𝑝(𝑇), by identifying 

groups of treatments that share some common characteristic. For example we may 

assume that there are two parameters; one common for all active treatments and one 

for placebo. 

Investigators could choose between these options after considering the nature of the 

clinical condition under investigation, the types of interventions and the outcomes of interest.  

The decision about the number of different 𝜑 parameters and their plausible values should 

be specified after consulting with clinicians experienced in randomized controlled trials in 

the field.  

Having assigned a value to every 𝜑𝑖,𝑇, the full cross table for each study can be 

reconstructed, the within-study correlation coefficient can be estimated and the full 

multivariate analysis can be performed. Alternatively, we can treat 𝜑 as a random variable 

and elicit information about its distribution. Then the reconstruction of the full cross tables 

is carried out stochastically. For the acute mania example, we use the following question to 

elicit information about 𝜑𝑇, which is assumed to be treatment-specific: 

“If a number of people randomized to treatment 𝑇 responded to the treatment, what 

proportion of them do you expect to leave the study early? Please provide a 95% confidence 

interval for this proportion.” 
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Once external evidence is collected from experts, we need to combine their input into a 

single distribution of 𝜑𝑇. To this end we will use an approach described in (204) which 

attributes a different weight to each expert’s input.   

Suppose we have a number 𝑁𝐸 of clinical experts. The 𝑘-th expert (𝑘 = 1, . . , 𝑁𝐸) 

provides an estimate for the 95% confidence interval of 𝜑𝑇. Assuming the expert’s opinion 

to be a beta distribution we can construct a prior 𝜋𝑘(𝜑𝑇) = 𝐵𝑒𝑡𝑎(𝜑𝑇; 𝑎𝑘, 𝑏𝑘) from the 

provided confidence interval. 

An overall prior can then be obtained as a combination of the individual expert opinions: 

𝑓(𝜑𝑇) ∝ (𝜋1(𝜑𝑇))
𝑤1
(𝜋2(𝜑𝑇))

𝑤2
⋯(𝜋𝑁𝐸(𝜑𝑇))

𝑤𝑁𝐸
=∏(𝜋𝑘(𝜑𝑇))

𝑤𝑘

𝑘

 (12) 

The 𝑤𝑘 parameters are weights (∑ 𝑤𝑘 = 1)
𝑁𝐸
𝑘=1  assigned to experts, and reflect the 

credibility attached to their opinions. In the acute mania example we define the weights 

based on the years of relevant clinical experience of each expert and the number of clinical 

trials he/she has been involved with.   

Equation (12) suggests that the prior distribution for 𝜑𝑇 is a beta distribution: 

𝜑𝑇~𝐵𝑒𝑡𝑎 (∑𝑤𝑘𝑎𝑘 ,∑𝑤𝑘𝛽𝑘) 
(13) 

If the parameter 𝜑 is believed to be trial-specific, experts should also be given 

information about relevant study characteristics (such as trial duration) and then synthesis of 

their opinions could be done as described above. Note that the prior distribution for 𝜑 might 

need to be truncated within each study to account for the plausible range of values as 

explained in Equation (11). In the infrequent case that the prior distribution for a φ parameter 

provided by the experts lies outside the permissible range of values for a study as given in 

Equation  (11) a uniform uninformative distribution in the allowed values can be employed. 

Obtaining priors outside the permitted area could be prevented if the experts were provided 

with the range of permitted values for φ; however we do not recommend this as prior 

elicitation should not include any consideration of the data.  

Instead of eliciting expert opinion one could assume both study- and treatment-specific 

φ parameters and employ vague priors for each, such as with a uniform distribution in the 

allowed range given by Equation (11). This would substantially increase the uncertainty 

about the parameters (as neither data nor informative priors would inform the correlation 

coefficients) but could be considered as a sensitivity analysis to complement the analysis 

with informative priors. 
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3.3.3 Network meta-analysis for two correlated outcomes 

In the previous sections we presented a method for performing a pairwise meta-

analysis for two outcomes. We now extend the method to network meta-analysis. We restrict 

our analysis to networks that contain only two-arm and three-arm studies and a maximum of 

two different dichotomous outcomes. We allow for random effects and we assume 

consistency in the network, i.e. there is no discrepancy between direct and indirect evidence 

(24). 

Consider a network of studies reporting on outcomes 𝑅 and 𝐷 for a number 𝑁𝑇 of 

different treatments. Assuming consistency, we need to estimate 𝑁𝑇 − 1 independent (basic) 

parameters for every outcome. The model is a generalization of the simple meta-analysis 

model of Section 3.3.1, 𝒀 = 𝑿𝝁 + 𝜺 + 𝜹, with 𝒀 the vector of the observed log odd ratios, 

𝑿 the design matrix, 𝝁 the vector of the basic parameters, 𝜺 the vector of random errors, and 

𝜹 the vector of random effects (6,46). The design matrix 𝑿 describes the structure of the 

network, and the consistency assumption is embedded within it.  

For a two-arm study 𝑖 that compares treatments 𝐴 and 𝐵 the random errors are assumed 

to follow a multivariate normal distribution, i.e. (𝛿𝑖,𝐴𝐵,𝑅 , 𝛿𝑖,𝐴𝐵,𝐷)
′ ~ 𝑁(0, 𝜟(2×2)). In 

network meta-analysis it is often assumed that the amount of heterogeneity is independent 

of the treatment comparison; that is, for any two random treatments 𝑋 and 𝑌 it is 𝜏𝑋𝑌,𝑅
2 = 𝜏𝑅

2 

and 𝜏𝑋𝑌,𝐷
2 = 𝜏𝐷

2  (4,6). Under this assumption, the variance-covariance matrix of a two-arm 

study is exactly as in the case of a pairwise meta-analysis. 

 For a three-arm study 𝑖 that compares treatments 𝐴, 𝐵 and 𝐶, the random effects are 

assumed to follow a multivariate normal distribution: 

(𝛿𝑖,𝐴𝐵,𝑅 , 𝛿𝑖,𝐴𝐵,𝐷 ,  𝛿𝑖,𝐴𝐶,𝑅 , 𝛿𝑖,𝐴𝐶,𝐷)
′ ~ 𝑁(0, 𝜟(4×4)). The assumption of consistency on the 

random effects (e.g. 𝛿𝑖,𝐴𝐵,𝑅 = 𝛿𝑖,𝐴𝐶,𝑅 +  𝛿𝑖,𝐶𝐵,𝑅 ) and the equal heterogeneity parameters 

across comparisons suggest that the covariance between logOR of different comparisons for 

response is 𝜏𝑅
2/2 and for dropout is 𝜏𝐷

2/2. Consequently the (4 × 4) variance-covariance 

matrix is: 

𝜟(4×4) =

(

 
 

𝜏𝑅
2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝑅

2/2 𝜒1𝜏𝑅𝜏𝐷
𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷

2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝐷
2/2

𝜏𝑅
2/2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝑅

2 𝜌𝜏𝜏𝑅𝜏𝐷
𝜒1𝜏𝑅𝜏𝐷 𝜏𝐷

2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2
)

 
 

 (14) 
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We further assume that the correlations 𝑐𝑜𝑟𝑟(𝛿𝑖,𝐴𝐵,𝑅 , 𝛿𝑖,𝐴𝐶,𝐷) = 𝜒1 and 

𝑐𝑜𝑟𝑟(𝛿𝑖,𝐴𝐵,𝐷 , 𝛿𝑖,𝐴𝐶,𝑅 ) = 𝜒2 between logORs of different comparisons-different outcomes 

are all equal to 𝜒. This is a plausible assumption to make if treatments 𝐵 and 𝐶 are 

comparable in terms of both efficacy and acceptability. For example, in a three-arm study 

with two active treatments and placebo, the assumption will be a plausible one as long as we 

identify placebo as treatment 𝐴. Although this assumption might be difficult to defend in 

practice, it will often be necessary to reduce the number of parameters to be estimated.  In 

Section III of the Appendix we show that this assumption simplifies the 𝛥(4×4) matrix to: 

𝜟(4×4) = 𝜏𝑅
2 (

1 0 1/2 0
0 0 0 0
1/2 0 1 0
0 0 0 0

) + 𝜏𝐷
2 (

0 0 0 0
0 1 0 1/2
0 0 0 0
0 1/2 0 1

)

+ 𝜌𝜏𝜏𝑅𝜏𝐷 (

0 1 0 1/2
1 0 1/2 0
0 1/2 0 1
1/2 0 1 0

) 

(15) 

Under these three assumptions (consistency, heterogeneities equal across comparisons 

and equal correlations between effects of different comparisons and different outcomes)  

there are only three between-study parameters to estimate: the heterogeneity for response 

(𝜏𝑅
2) and dropout (𝜏𝑅

2) and the between-study correlation coefficient (𝜌𝜏) just like in the case 

of pairwise comparison, Equation (7).  

When a considerable amount of data is available and the network is very dense (that is 

many studies connecting pairs of interventions) then the assumptions we used to reduce the 

number of model parameters in 𝚫 might not be necessary, e.g. if there are at least three studies 

per comparison, then different heterogeneity variances can be used. However, real-life 

networks of interventions tend to be poorly connected and the median number of studies per 

comparison has been found to be low, equal to two studies (8). In Section III of the Appendix 

we present how 𝚫 is modelled when correlations between different treatments and different 

outcomes are not equal. Note that the variance-covariance matrix as defined above is always 

positive-definite.  

For a three-arm study 𝑖 that compares 𝐴, 𝐵 and 𝐶 the random errors are assumed to be 

distributed as (𝜀𝑖,𝐴𝐵,𝑅 , 𝜀𝑖,𝐴𝐵,𝐷 , 𝜀𝑖,𝐴𝐶,𝑅 , 𝜀𝑖,𝐴𝐶,𝐷)
′ ~ 𝑁(0, 𝜮𝑖), with the variance-covariance 

matrix 𝜮𝑖: 
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𝜮

=

(

 
 

𝜎𝑖,𝐴𝐵,𝑅
2 . . .

𝜌𝑖,𝐴𝐵𝑅𝐴𝐵𝐷𝜎𝑖.𝐴𝐵,𝑅𝜎𝑖.𝐴𝐵,𝐷 𝜎𝑖,𝐴𝐵,𝐷
2 . .

𝜅𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝑖,𝐴𝐵𝐷𝐴𝐶𝑅𝜎𝑖.𝐴𝐵,𝐷𝜎𝑖.𝐴𝐶,𝐷 𝜎𝑖,𝐴𝐶,𝑅
2 .

𝜌𝑖,𝐴𝐵𝑅𝐴𝐶𝐷𝜎𝑖.𝐴𝐵,𝑅𝜎𝑖.𝐴𝐶,𝐷 𝜅𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝑖,𝐴𝐶𝑅𝐴𝐶𝐷𝜎𝑖.𝐴𝐶,𝑅𝜎𝑖.𝐴𝐶,𝐷 𝜎𝑖,𝐴𝐶,𝐷
2

)

 
 

 
(16) 

There are four different correlation coefficients entering this study-specific variance-

covariance matrix. Two of them, 𝜌𝑖,𝐴𝐵𝑅𝐴𝐵𝐷  and 𝜌𝑖,𝐴𝐶𝑅𝐴𝐶𝐷  correlate logORs of the same 

treatment comparisons for different outcomes, while the other two, 𝜌𝑖,𝐴𝐵𝑅𝐴𝐶𝐷  and 𝜌𝑖,𝐴𝐶𝑅𝐴𝐵𝐷, 

correlate different comparisons for different outcomes. The quantities σ and κ in 𝜮𝑖 can be 

readily estimated from the data, e.g. the variance for the 𝐴𝐵 comparison for response (𝑅) 

can be estimated as �̂�2𝑖,𝐴𝐵,𝑅 =
1

𝑒𝑖,𝐴,𝑅
+

1

𝑓𝑖,𝐴,𝑅
+

1

𝑒𝑖,𝐵,𝑅
+

1

𝑓𝑖,𝐵,𝑅
 and also �̂�𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 =

1

𝑒𝑖,𝐴,𝑅
+

1

𝑓𝑖,𝐴,𝑅
. 

The data needed to compute these two quantities are typically available from the published 

articles while the four correlation coefficients can be estimated from the collapsed tables and 

using external evidence about the 𝜑 parameters as in Section 3.3.2. More specifically 

Equation (10) can be employed to estimate coefficient 𝜌𝑖,𝐴𝐵𝑅𝐴𝐵𝐷  of Equation (16) as: 

�̂�𝑖,𝐴𝐵𝑅𝐴𝐵𝐷 =
1

�̂�𝑖,𝐴𝐵,𝑅�̂�𝑖,𝐴𝐵,𝐷
∑

�̂�𝑖,𝛵(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)
2
− 𝑒𝑖,𝑇,𝐷(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)

𝑒𝑖,𝑇,𝐷𝑓𝑖,𝑇,𝑅𝑓𝑖,𝑇,𝐷
𝑇=𝐴,𝐵

 (17) 

and an analogous formula can be used to estimate 𝜌𝑖,𝐴𝐶𝑅𝐴𝐶𝐷. We show in Appendix, section 

IV that:  

�̂�𝑖,𝐴𝐵𝑅𝐴𝐶𝐷 =
1

�̂�𝑖,𝐴𝐵,𝑅�̂�𝑖,𝐴𝐶,𝐷

�̂�𝑖,𝐴(𝑒𝑖,𝐴,𝑅 + 𝑓𝑖,𝐴,𝑅)
2
− 𝑒𝑖,𝐴,𝐷(𝑒𝑖,𝐴,𝑅 + 𝑓𝑖,𝐴,𝑅)

𝑒𝑖,𝐴,𝐷𝑓𝑖,𝐴,𝑅𝑓𝑖,𝐴,𝐷
 (18) 

A similar formula holds for 𝜌𝑖,𝐴𝐶𝑅𝐴𝐵𝐷 . Using Equations (17) and (18) we can use prior 

information on 𝜑𝑖,𝑇 to estimate all correlation coefficients in a three-arm study and perform 

a full MOMA. As we have already seen in Section 3.3.2.1the values of these parameters are 

bounded for every study according to Equation (11), which means that the values for the 

correlation coefficients of Equations (17) and (18) are bounded as well.   
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3.4 Application to acute mania dataset: network meta-analysis for 

response and dropout 

3.4.1 Prior distributions and model fit  

In Figure 6 we present the informative prior distributions we used for the conditional 

probabilities 𝜑𝛵 of dropping out given a positive response to the treatment 𝛵. These 

distributions were elicited from experts in the field following the method presented in 

Section 3.3.2.2. Experts were not provided access to the actual data with an aim to get 

unprejudiced results. In Section V of Appendix we provide details about the individual prior 

distribution elicited from each expert. Then, by using Equation (10) for the two-arm studies, 

and Equations (17) and (18) for the three-arm studies, we computed all within-study 

correlations. In Section VI of the Appendix we present a table with the estimated correlation 

coefficients for all two arm-studies. 

After inspecting the data we could divide the treatments in categories according to 

their efficacy and dropout, and assume a common 𝜑 in each category. We chose, however, 

to assume a different 𝜑 for every treatment in order to present the most general case.  

We used OpenBUGS software (94,95) to fit our model. When studies did not report 

on one of the outcomes we imputed data with very large variances and zero within-study 

covariances (179).  

The heterogeneity standard deviations  𝜏𝑅 and 𝜏𝐷 were assigned a minimally 

informative prior distribution (211,212), 𝜏𝑅 , 𝜏𝐷~𝑈(0,1). For the between-study correlation 

coefficient 𝜌𝜏, an uninformative prior distribution 𝑈𝑛𝑖𝑓(−1,1) can be used if there is no 

information about the correlation between the outcomes. In our example expert opinion 

suggested that the outcomes are expected to be negatively correlated, therefore a 

𝑈𝑛𝑖𝑓(−1,0) was chosen. 

In order to assess the relative ranking of the treatments, we computed the surface under 

the cumulative ranking curve (SUCRA) for each treatment and outcome (38).    

The R routine needed to estimate beta priors based on expert opinion can be found in 

Section V of the Appendix. The OpenBUGS code used to fit the model can be found in 

Section XI of the Appendix. All results pertain to 1,000,000 cycles and a thinning of 100 

after a 5,000 burn-in period.   
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Figure 6: Prior distributions for the treatment-specific probability φ, as elicited from the 

experts. 

 

 

3.4.2 Results 

Figure 7 shows the odds ratios (ORs) for response and dropout for all active versus 

placebo comparisons as estimated in two independent NMAs and the MONMA model. The 

results from NMA and MONMA were comparable for the dropout outcome. This happened 

because all but one studies reported dropout and, consequently, the joint analysis of both 

outcomes did not have much impact on the dropout estimates. On the other hand, the ORs 

for response were estimated with higher precision due to the fact that 28% of the studies did 

not report on response. The relative decrease in the width of the OR confidence intervals 

with the MONMA model was 4% on average. The maximum relative decrease in the width 

of the confidence intervals was 15% and was observed for the case of Lithium. This can be 

attributed to the fact that more than half of the studies comparing Lithium (8 out of 15) did 

not report on efficacy. All results should be interpreted in the light of the high between-

studies correlation coefficient, which was estimated to be -0.84 (credible interval -0.98 to -

0.52). 
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Figure 7: Odds ratios for response and dropout for Treatment vs. Placebo. The thick lines 

present results from two independent NMA models (one for each outcome) and the thin 

lines from the MONMA model. 

 

 

In Table 5 we present the point estimates and the 95% credible intervals for the 

heterogeneities and the between-study correlation parameter. Figure 8 shows the relative 

ranking of the treatments for both outcomes, based on their surface under the cumulative 

ranking curve (“SUCRA”, (38)). For treatment 𝐴, outcome 𝑅, SUCRA is defined as 

∑ 𝑐𝑢𝑚𝑘
𝐴,𝑅𝑁𝑇−1

𝑘=1 /(𝑁𝑇 − 1), with 𝑐𝑢𝑚𝑘
𝐴,𝑅

 denoting the probability of 𝐴 ranking among the 

best 𝑘 treatments for outcome 𝑅. SUCRA values lie between 0 (when the treatment is certain 

to be the worst for the outcome) and 1 (when the treatment is certain to be the best for the 

outcome). It is a transformation of the mean rank which takes uncertainty of estimation into 

account. Treatments lying at the upper right corner of Figure 8 are the best in both 

acceptability and efficacy; those in the bottom left corner are the ‘worst’ treatments. The 

small changes in the point estimates and the precision of the ORs for response had also an 

effect on the relative ranking of the treatments. For instance, Carbamazepine ranked as the 

most efficacious treatment with the usual NMA model, while it fell to the third place for the 

MONMA model. The change in the OR, however, was not clinically important. 
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Table 5: Model parameters for the outcome-specific NMA model, and the MONMA model 

 𝝉𝑹
𝟐 𝝉𝑫

𝟐 𝝆𝝉 

ΝΜΑ 0.08 (0.02,0.17) 0.13 (0.06, 0.24) - 

ΜΟΝΜΑ 0.08 (0.03,0.17) 0.14 (0.07, 0.24) -0.84 (-0.98, -0.52) 

 

3.5 Concluding remarks 

In this Chapter, we have presented a model for performing data synthesis in a network 

of competing interventions, with multi-arm studies reporting on multiple dichotomous 

outcomes. Both within and between-study correlations between the outcomes were taken 

into account. We proposed a method for eliciting expert opinion to inform within-study 

correlations. Motivated by the fact that questions about probabilities are better understood 

compared to questions about correlations, we proposed the use of a set of conditional 

probabilities to elicit information for the correlations. We showed how to construct prior 

distributions for these probabilities based on expert opinion and how to use these priors in 

order to estimate the within-study correlation coefficients needed. For between-study 

correlations we proposed a method of simplifying the variance-covariance matrix by making 

a set of assumptions. Our method was applied to the case of two correlated dichotomous 

outcomes in the presence of two-arm and three-arm studies. The methods presented can be 

extended for more than two outcomes and for networks that include studies with more than 

three arms. A generalization of our model is presented in Section VII of the Appendix.  

We fitted our model within a Bayesian framework which allows for a direct 

incorporation of prior information and an easy way of including studies that report on some, 

but not all of the outcomes. Another advantage of the Bayesian approach is that it is free of 

the convergence problem often encountered in likelihood based methods when the number 

of studies is small or the within-study variation relatively large (213,214). 
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Figure 8: Ranking for antimanic drugs for response and dropout.  Treatments located in 

the darker (brighter) areas of the plots have the lowest (highest) rankings. ARI = 

aripiprazole, ARI = aripiprazole. ASE = asenapine. CBZ = carbamazepine. VAL = 

divalproex. HAL = haloperidol. LAM = lamotrigine. LIT = lithium. OLZ = olanzapine, 

PBO = placebo. QTP = quetiapine. PAL = paliperidone. TOP = topiramate. ZIP = 

ziprasidone. Gabapentin does not feature in the graphs as its efficacy has not been studied 

in any of the trials.   

 

 

We implemented our model for the case of a network of treatments for acute mania and 

two (negatively) correlated outcomes: response to the treatment and all-cause 

discontinuation (dropout rate). Our model gave similar results with the simple univariate 

model for the mean estimated treatment effects. However, it produced narrower confidence 

intervals, especially for response, since almost one third of the studies did not report on this 

outcome, thus allowing for a ‘borrowing of strength’ between the two outcomes. The 

precision gain for the dropout was marginal, since all studies except one reported the number 

of patients dropping out. In this particular example the change in the precision of the 

estimates for response had a small impact on the relative ranking of the treatments. 

Our model is suitable for dichotomous outcomes but requires arm-level data and it is 

also subject to the assumptions we have made for the structure of the between-study 

variance-covariance matrix. Our method considered the case of correlated odd ratios; 
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however it can be extended to analyze risk ratios. Following the methodology presented in 

this Chapter one can derive formulas for correlated log risk ratios. 

The research presented in this Chapter was published in the Statistics in Medicine journal 

(215).
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4 Joint synthesis of multiple correlated outcomes in 

network meta-analysis 

4.1 Introduction 

In Chapter 3 of this dissertation we presented a new model that can be used to perform 

a network meta-analysis for the case of multiple dichotomous outcomes. In this chapter we 

describe two additional MONMA models, that can be used to synthesize multiple binary, 

continuous or time-to-event outcomes. The first model is based on making a set of 

simplifying assumptions for the within and between-studies variance-covariance matrices. 

The second model is a generalization of a bivariate pairwise meta-analysis model initially 

proposed by Riley et al. (213). This model includes a single correlation coefficient, which is 

used to model the overall correlation, i.e. an amalgam of the within-study and between-study 

correlations. In order to exemplify our methods we use the acute mania dataset, which was 

introduced in Section 3.2. We fit the two new MONMA models in a Bayesian framework, 

which offers flexibility in incorporating prior beliefs and allows for a straightforward 

inclusion of studies that do not report on all outcomes, as well as accounting for uncertainty 

in parameter estimates.  

This chapter is organized as follows: in Section 4.2.1 we start by presenting a brief 

outline of the general framework for jointly meta-analyzing multiple outcomes for the case 

of two competing treatments. This framework was presented in detail in Section 3.3.1, but 

we also summarize it here in brief, for the reader’s convenience. Then, in Section 4.2.2 we 

present an alternative MOMA model introduced by Riley et al. (213), which can be used for 

the pairwise meta-analysis, for the case of two outcomes. In Section 4.2.3 we generalize both 

these approaches for a network of interventions in the presence of multi-arm studies. In that 

section we also discuss the technicalities of fitting these models. In Section 4.3 we apply the 

new models to our data, in order to produce estimates for outcome-specific relative treatment 

effects, and evaluate the relative ranking of the treatments for each outcome. In Section 4.4 

we summarize our findings. All mathematical and statistical details, as well as the software 

codes that were used for the analyses are presented in the Appendix. 
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4.2 Statistical methods 

4.2.1 General framework for pairwise meta-analysis of multiple outcomes 

Here we start by providing a brief account of a MOMA model. More details can be 

found in Section 3.3.1 of this thesis. Assume 𝑁𝑆 studies comparing two treatments (for 

example a new treatment versus a placebo) with respect to two different but correlated 

outcomes, denoted with 𝑅 and 𝐷. We use 𝒀 to denote the 2𝑁𝑆-dimensional vector of the 

observed effects; in our example, these are the log odds ratio for 𝑅 and 𝐷, but in other 

situations they could be mean difference or log hazard ratio estimates, for example. The 

bivariate random effects meta-analysis model can be written, using matrix notation, as 𝒀 =

𝑿𝝁 + 𝜹 + 𝜺, where 𝑿 is the design matrix, 𝝁 the vector of true mean relative treatment 

effects and 𝜹  and 𝜺 are the vectors of random effects (reflecting between-study variability) 

and random errors (reflecting within-study sampling variability) respectively. 

 For a joint meta-analysis of both outcomes we must incorporate the correlations 

between the outcomes, both within as well as between-studies. We assume multivariate 

normal distributions for 𝜺 and 𝜹, so that 𝜺~𝛮(0, 𝜮) and 𝜹~𝛮(0, 𝜟), with 𝜮 and 𝜟 being the 

within and between study variance-covariance matrices. The variance-covariance matrix for 

the random effects takes a block-diagonal form, with identical 𝜟(2×2) matrices in its diagonal 

(Equation (7), Section 3.3.1), and incorporates three parameters, 𝜌𝜏, 𝜏𝑅 and 𝜏𝐷. More 

specifically: 

𝜟(2×2) = (
𝜏𝑅
2 𝜌𝜏𝜏𝑅𝜏𝐷

𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2 ) 

Note that this matrix is always positive-definite for −1 < 𝜌𝜏 < 1. The corresponding 

parameters need to be estimated from the model. In a frequentist framework options include 

restricted maximum likelihood and methods of moments; here we focus on a Bayesian 

framework estimated using Markov Chain Monte Carlo (described in Section 4.3.1 later). 

The random errors variance-covariance matrix 𝜮 is also block diagonal, see Equation (8), 

Section 3.3.1. In this matrix, 𝜌𝑖 is the within-study correlation coefficient and 𝜎𝑖,𝑅
2 , 𝜎𝑖,𝐷

2  are 

the variances of the effect sizes in each study 𝑖. All entries in 𝜮 are estimated from the data. 

Sample estimates for 𝜎𝑖,𝑅
2  and 𝜎𝑖,𝐷

2  are often available, but few studies, if any, would provide 

enough information to estimate the within-study correlation coefficient 𝜌𝑖 and the majority 

of meta-analyses do not have access to IPD that would enable its estimation.  

Within a Bayesian framework we can give prior distributions to all the correlation 
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coefficients in order to perform a full multivariate meta-analysis. One can model these 

coefficients in a variety of ways, e.g. assume all 𝜌𝑖 to be equal (𝜌𝑖 = 𝜌 ∀𝑖), assume a 

different coefficient depending on study characteristics, place a vague or informative prior 

on each 𝜌𝑖 etc. 

4.2.2 Riley’s alternative multiple outcomes meta-analysis model 

Following a different approach, Riley et al. proposed an alternative model for a 

bivariate, random-effects pairwise meta-analysis. The model allows for a single coefficient 

to model the overall correlation. This plays the role of an amalgam of the correlations within 

and between studies (213). Instead of modeling 𝜮 and 𝜟 separately, in this model the authors 

assume an overall variance-covariance matrix 𝜴, so that 𝒀 = 𝑿𝝁 + 𝜼, where 𝜼 ~ 𝛮(0, 𝜴). 

This matrix 𝜴 is again block diagonal, with each block corresponding to a study, so that 𝜴 =

𝐷𝑖𝑎𝑔(𝜴𝟏, 𝜴𝟐, … , 𝜴𝑵𝑺).  

For a study 𝑖 this matrix takes the following form: 

𝜴 =

(

 
𝜓𝑅
2 + 𝜎𝑖,𝑅

2 𝜌𝑖
ℎ√𝜓𝑅

2 + 𝜎𝑖,𝑅
2 √𝜓𝐷

2 + 𝜎𝑖,𝐷
2

𝜌𝑖
ℎ√𝜓𝑅

2 + 𝜎𝑖,𝑅
2 √𝜓𝐷

2 + 𝜎𝑖,𝐷
2 𝜓𝐷

2 + 𝜎𝑖,𝐷
2

)

  (19) 

The 𝜌𝑖
ℎ coefficient in Equation (19) is the overall correlation in study 𝑖, a hybrid of the 

within-study and between-study correlation coefficients.  

We can again model the different 𝜌𝑖
ℎ in a variety of ways, depending on the nature of 

the data, e.g. 𝜌𝑖
ℎ = 𝜌 ∀ 𝑖. The 𝜓 parameters model for the variation additional to the sampling 

error that enters due to heterogeneity, and they are similar to the 𝜏 parameters that enter the 

𝜟(2×2). But they are not directly equivalent, unless the within-study variances are small 

relative to the between-study variances.  The clear advantage of model (19) is that the within-

study correlations are no longer needed. 

4.2.3 Network meta-analysis for two correlated outcomes 

The models described in the two previous Sections cannot handle the case when studies 

comparing more than two treatments. Moreover, the model described in Chapter 3 of this 

dissertation focused on the case of binary outcomes.  

In this section we present two models for performing a network meta-analysis of studies 
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with multiple arms reporting on two correlated outcomes. The outcomes can be binary (and 

relative treatment effect can be measured as log odds ratios or log risk ratios), continuous 

(effects measured as mean differences or standardized mean differences) or time-to-event 

(effects measured as log hazard ratios). Note that in order to use standardized mean difference 

for a continuous outcome a large sample approximation is required. For more details see 

Section III of the Appendix.  

In the acute mania example the outcomes are identified as the binary response to the 

treatment (𝑅) and dropout rate (𝐷). We exemplify the methodology for the case of networks 

containing studies with a maximum of three arms. We assume a random effects model and 

that the consistency equations (𝛽𝑋𝑌,𝑅 = 𝛽𝑋𝑍,𝑅 − 𝛽𝑌𝑍,𝑅) hold for all treatments 𝑋, 𝑌, 𝑍; similarly 

for outcome 𝐷. 

4.2.3.1 Model 1: Simplifying the variance-covariance matrices 

The first MONMA model we present is based on making assumptions that simplify the 

within and between-study variance-covariance matrices. These assumptions are needed in 

order to minimize the number of parameters that need to be estimated, thus easing the 

computational burden and potential estimation difficulties. Some of the considerations 

presented in this section were also discussed in Chapter 3, but they are also briefly 

summarized here for completeness. 

Let us start by considering a network of studies reporting on the correlated outcomes 

𝑅 and 𝐷 for a network of 𝑁𝑇 different treatments. The model is 𝒀 = 𝑿𝝁 + 𝜹 + 𝜺 with 𝒀 the 

vector of the observed effects, 𝑿 the design matrix, 𝝁 the vector of the basic parameters i.e. 

the 𝑁𝑇  − 1 parameters for the comparison of each treatment versus the reference (6,64), 𝜹 

the vector of random effects and 𝜺 the vector of random errors (6,46). The design matrix 𝑿 

describes the structure of the network and embeds the consistency equations (6); it maps the 

observed comparisons into the basic parameters. For example, if A is chosen to be the 

reference treatment, a study comparing B to C for outcome R provides information for a linear 

combination of two basic parameters as 𝛽𝐵𝐶,𝑅 = 𝛽𝐴𝐶,𝑅 − 𝛽𝐴𝐵,𝑅. 

For a two-arm study 𝑖 that compares treatments 𝐴 and 𝐵 the random errors are assumed 

to follow a multivariate normal distribution, (𝛿𝑖,𝐴𝐵,𝑅 , 𝛿𝑖,𝐴𝐵,𝐷)
′ ~ 𝑁(0, 𝜟(2×2)). In network 

meta-analysis it is often assumed that the heterogeneity is independent of the comparison 

being made, i.e. 𝜏𝐴𝐵,𝑅
2 = 𝜏𝑅

2 and 𝜏𝐴𝐵,𝐷
2 = 𝜏𝐷

2  for every pair of treatments 𝐴, 𝐵, and we also 
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assume this here. For a three-arm study 𝑖 that compares treatments 𝐴, 𝐵 and 𝐶, the random 

effects are again assumed to follow a multivariate normal distribution 

(𝛿𝑖,𝐴𝐵,𝑅  , 𝛿𝑖,𝐴𝐵,𝐷 ,  𝛿𝑖,𝐴𝐶,𝑅 , 𝛿𝑖,𝐴𝐶,𝐷)
′ ~ 𝑁(0, 𝜟(4×4)). Assuming equal heterogeneities between 

treatment comparisons and equal correlations between random effects of different 

comparisons and different outcomes, i.e. (𝛿𝑖,𝐴𝐵,𝑅 , 𝛿𝑖,𝐴𝐶,𝐷) = 𝑐𝑜𝑟𝑟(𝛿𝑖,𝐴𝐵,𝐷  𝛿𝑖,𝐴𝐶,𝑅  ), as we 

show in Section III of the Appendix, the 𝜟(4×4) matrix takes the form presented in Equation 

(15): 

𝜟(4×4) = 𝜏𝑅
2 (

1 0 1/2 0
0 0 0 0
1/2 0 1 0
0 0 0 0

) + 𝜏𝐷
2 (

0 0 0 0
0 1 0 1/2
0 0 0 0
0 1/2 0 1

)

+ 𝜌𝜏𝜏𝑅𝜏𝐷 (

0 1 0 1/2
1 0 1/2 0
0 1/2 0 1
1/2 0 1 0

) 

The random errors are also assumed to follow a multivariate normal distribution. For a 

three-arm study 𝑖 that compares treatments 𝐴, 𝐵 and 𝐶 for response (𝑅) and dropout (𝐷) we 

assume (𝜀𝑖,𝐴𝐵,𝑅 , 𝜀𝑖,𝐴𝐵,𝐷 ,  𝜀𝑖,𝐴𝐶,𝑅 , 𝜀𝑖,𝐴𝐶,𝐷)
′ ~ 𝑁(0, 𝜮𝑖). The variance-covariance matrix 𝜮𝑖 is 

given by Equation (16). As we discuss in Section 3.3.3, the σ and κ coefficients in 𝜮𝑖 can be 

readily estimated if arm level data are available.  

In what follows we present a method for dealing with the remaining correlation terms 

within 𝜮𝑖. We start by assuming that there are two different types of within-study correlation 

coefficient for every study 𝑖. The first we denote by 𝜌𝑖
∗, and corresponds to the correlation of 

relative treatment effects of different outcomes for the same treatment comparison. This 

enters the variance-covariance matrices for both two-arm and three-arm studies. The second 

we denote by 𝜌𝑖
∗∗ and correlates the relative treatment effects for different comparisons and 

different outcomes within the same study. This enters only the (4 × 4) matrices of the three-

arm studies. This means that: 

𝜌𝑖,𝐴𝐵𝑅𝐴𝐵𝐷 = 𝜌𝑖,𝐴𝐶𝑅𝐴𝐶𝐷 ≡ 𝜌𝑖
∗,

  
𝜌𝑖,𝐴𝐶𝑅𝐴𝐵𝐷 = 𝜌𝑖,𝐴𝐵𝑅𝐴𝐶𝐷 ≡ 𝜌𝑖

∗∗,
  
   (Assumption 1) 

The within-study variance-covariance matrix for a two-arm study 𝑖 comparing 

treatments 𝐴 and 𝐵 for two outcomes is: 

𝜮𝑖 = (
𝜎𝑖,𝐴𝐵,𝑅
2 𝜌𝑖

∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐵,𝐷

𝜌𝑖
∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐵,𝐷 𝜎𝑖,𝐴𝐵,𝐷

2 ) (20) 

For a three-arm study comparing treatments 𝐴, 𝐵 and 𝐶 for two outcomes the 𝜮𝑖 matrix 
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of Equation (16) now becomes:  

𝜮𝑖 =

(

 
 

𝜎𝑖,𝐴𝐵,𝑅
2 . . .

𝜌𝑖
∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐵,𝐷 𝜎𝑖,𝐴𝐵,𝐷

2 . .

𝜅𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝑖
∗∗𝜎𝑖,𝐴𝐵,𝐷𝜎𝑖,𝐴𝐶,𝑅 𝜎𝑖,𝐴𝐶,𝑅

2 .

𝜌𝑖
∗∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐶,𝐷 𝜅𝑖,𝐴𝐵𝐷𝐴𝐶𝐷 𝜌𝑖

∗𝜎𝑖,𝐴𝐶,𝑅𝜎𝑖,𝐴𝐶,𝐷 𝜎𝑖,𝐴𝐶,𝐷
2

)

 
 

 

It is very often the case that study arms are balanced in numbers of patients randomized. 

Then, for treatments that are not very different in efficacy and dropout (e.g. drugs from the 

same class) we can assume that: 

𝜎𝑖,𝐵𝐶,𝑅 = 𝜎𝑖,𝐴𝐵,𝑅 = 𝜎𝑖,𝐴𝐶,𝑅  and  𝜎𝑖,𝐵𝐶,𝐷 = 𝜎𝑖,𝐵𝐴,𝐷 = 𝜎𝑖,𝐴𝐶,𝐷   (Assumption 2) 

This assumption will not be reasonable if trials are imbalanced or compare very 

different treatments. Insight on the validity of this assumption can be obtained from the data 

after scanning for important differences among the estimated variances across studies. If we 

choose to employ this assumption the model is considerably simplified as it implies that 

𝜌𝑖
∗∗ = 1 2⁄ 𝜌𝑖

∗ (see Section VIII of the Appendix). Consequently, an estimate of the variance-

covariance matrix for the three-arm study 𝑖 after Assumptions 1 and 2 is as follows:  

𝜮𝑖 =

(

 
 

�̂�𝑖,𝐴𝐵,𝑅
2 . . .

0 �̂�𝑖,𝐴𝐵,𝐷
2 . .

�̂�𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 0 �̂�𝑖,𝐴𝐶,𝑅
2 .

0 �̂�𝑖,𝐴𝐵𝐷𝐴𝐶𝐷 0 �̂�𝑖,𝐴𝐶,𝐷
2

)

 
 

+ 

𝜌𝑖

(

 

0 . . .
�̂�𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐵,𝐷 0 . .

0 �̂�𝑖,𝐴𝐵,𝐷𝜎𝑖,𝐴𝐶,𝑅/2 0 .

�̂�𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐶,𝐷/2 𝜅𝑖,𝐴𝐵𝐷𝐴𝐶𝐷 �̂�𝑖,𝐴𝐶,𝑅𝜎𝑖,𝐴𝐶,𝐷 0)

 ≡ �̂�𝑖,1 + 𝜌𝑖�̂�𝑖,2 

(21) 

In the last line we have renamed 𝜌𝑖
∗ to 𝜌𝑖, in order to simplify notation and to highlight 

that the correlation coefficient is equivalent to the one presented in Equation (16). It is 

important to note that Assumption 2 does not mean that we force all study variances to be 

equal: the diagonal elements of �̂�𝒊 are distinct and are estimated from the studies. We employ 

this assumption only for the off-diagonal elements of the variance-covariance matrix so that 

all correlations are functions of a single parameter 𝜌𝑖. Consequently all elements of �̂�𝒊,𝟏 and 

�̂�𝒊,𝟐 in equation (23) can be estimated when arm-level data are available. The assumption of 

equal variances within a multi-arm study can be omitted, if it is deemed inappropriate. In 

Section VIII of the Appendix we present the most general form of the variance-covariance 

matrix for different variances, and compute general relations between the correlation 
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coefficients it contains. This, however, results in a rather complicated structure for the 𝜮𝒊 

matrix and we will not consider any further. 

To summarize, we have expressed all within-study variance-covariance matrices 

utilizing a set of correlation coefficients 𝜌𝑖, one for every study 𝑖, that measure the correlation 

between the relative treatment effects of the two outcomes 𝑅 and 𝐷 for the same treatment 

comparison. These coefficients might be available in study reports. Alternatively, they can 

be deducted from empirical evidence (194) or expert opinion; in Chapter 3 we discussed how 

this can be achieved for the case of MONMA for binary outcomes. If IPD are available then 

the correlation coefficient can be estimated (203). A joint network meta-analysis of the two 

outcomes can be performed within a Bayesian framework after assigning prior distributions 

to the 𝜌𝑖. These priors can be either uninformative or can be defined after consulting with 

clinicians (210). We have a number of options on how to model these coefficients. The 

simplest one is to assume 𝜌𝑖 = 𝜌, common correlation for all studies. We could alternatively 

assume correlation coefficients across studies to share a common distribution. Another 

choice would be to have different 𝜌𝑖’s for different group of studies. For example we could 

assume a coefficient 𝜌𝐴𝑐𝑡−𝑃𝑙 for placebo-controlled studies, and another 𝜌𝐴𝑐𝑡−𝐴𝑐𝑡 for head-

to-head studies that compare only active treatments; this would be based on the assumption 

that the two relative effect measures are differently correlated when one of the treatments 

compared is the placebo. 

One technical implication that comes up is that the positive-definiteness of the within-

study variance-covariance matrix is not guaranteed for three-arm studies. The estimated 

matrix �̂�𝒊 for the random errors in Equation (21) is not always positive-definite, as it depends 

on the data and on an arbitrary parameter 𝜌𝑖.  One way to overcome this problem is to 

compute the four eigenvalues 𝜆𝑖,𝑗 of �̂�𝒊 for every study 𝑖, with 𝑗 = 1, 2, 3, 4, and truncate 

them to zero, replacing �̂�𝒊 = ∑ max (0, 𝜆𝑖,𝑗)𝒗𝒊,𝒋𝒗𝒊,𝒋
′

𝑗 , with 𝒗𝒊,𝒋 the corresponding eigenvectors 

as in Jackson et al. (73). This, however, might be difficult to implement, particularly if a 

Bayesian software is used. Here we propose a different way of dealing with this problem: we 

can truncate the correlation coefficient for every study so that the positive-definiteness of the 

variance-covariance matrix is ensured. If for example we assume a uniform (−1,1) prior 

distribution for each 𝜌𝑖, we must truncate:𝜌𝑖~𝑈𝑛𝑖𝑓(−1,1)𝐼(𝑙𝑖, 𝑢𝑖). The limits 𝑙𝑖  and 𝑢𝑖 are 

the lowest and highest values of 𝜌𝑖 that lead to a positive definite matrix. That means that we 

need to compute those values for all three-arm studies: it can be easily achieved by checking 



74 

 

the corresponding eigenvalues of the variance-covariance matrix, as a positive-definite 

matrix has only positive eigenvalues. In Section 4 of the Supplementary Material we provide 

a program in R software that computes the limits 𝑙𝑖 and 𝑢𝑖 for every three-arm study. Wei 

and Higgins discuss other approaches to ensure positive-definite matrices including Cholesky 

paramaterisation and spherical decomposition (202). 

4.2.3.2 Model 2: Extending the alternative MOMA model 

In this Section we discuss a second method for performing a multiple-outcomes 

network meta-analysis, by extending Riley’s et al alternative model (213). The model 

described in Section 4.2.2 is 𝒀 = 𝑿𝝁 + 𝜼, with 𝜼 ~ 𝛮(0, 𝜴), where, as in the case of pairwise 

meta-analysis the matrix 𝜴 is block diagonal. For a two-arm study the variance-covariance 

matrix is as given in Equation (19). As we show in Section X of the Appendix, if we are 

willing to employ Assumption 2 for a three-arm study 𝑖 comparing treatments 𝐴, 𝐵 and 𝐶 for 

two outcomes, then its variance - covariance matrix 𝜴𝒊 is given by: 

𝜴𝒊 =

(

 
 
 
 

𝜁𝑖,𝐴𝐵,𝑅 . . .

𝜌𝑖
ℎ√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐵,𝐷 𝜁𝑖,𝐴𝐵,𝐷 . .

1

2
√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐶,𝑅

𝜌𝑖
ℎ

2
√𝜁𝑖,𝐴𝐵,𝐷𝜁𝑖,𝐴𝐶,𝑅 𝜁𝑖,𝐴𝐶,𝑅 .

𝜌𝑖
ℎ

2
√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐶,𝐷

1

2
√𝜁𝑖,𝐴𝐶,𝑅𝜁𝑖,𝐴𝐶,𝐷 𝜌𝑖

ℎ√𝜁𝑖,𝐴𝐶,𝑅𝜁𝑖,𝐴𝐶,𝐷 𝜁𝑖,𝐴𝐶,𝐷)

 
 
 
 

 (22) 

Here we have defined 𝜁𝑖,𝐴𝐵,𝑅 = 𝜎𝑖,𝐴𝐵,𝑅
2 + 𝜓𝑅

2 , 𝜁𝑖,𝐴𝐵,𝐷 = 𝜎𝑖,𝐴𝐵,𝐷
2 + 𝜓𝐷

2 , etc. Equation (22) 

extends the model presented by Riley et al. for three-arm studies with two outcomes. The 𝜎 

parameters can again be estimated from the data as the standard errors of the effect sizes, and 

assuming a common correlation coefficient across studies there are three parameters left to 

estimate: 𝜓𝑅, 𝜓𝐷 and 𝜌ℎ. One of the advantages of this approach is that the variance-

covariance matrix is always positive-definite, so a multivariate meta-analysis can be readily 

performed without further complications. As described in the previous Section, the equal 

variance assumption (Assumption 2) can be omitted if the studies are imbalanced or the 

treatments have significant differences in the measured effects, leading, however, to a much 

more complicated 𝜴𝒊 variance-covariance matrix. 
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4.3 Application to the acute mania example 

4.3.1 Description of the analyses and model fit 

We fit the two models we presented in Section 4.2.3 in a Bayesian framework, using 

the OpenBUGS software (94,95). Prior distributions need to be assigned to all model 

parameters. The parameters 𝜏𝑅, 𝜏𝐷 of the first model and 𝜓𝑅, 𝜓𝐷 of the second can be 

assigned minimally informative prior distributions. If there is no prior information on the 

correlation of the outcomes, an uninformative 𝑈(−1,1) prior can be used on all correlation 

coefficients. If external information is available on these coefficients, e.g. elicited from 

experts in the field, it can be used to inform 𝜌 or 𝜌ℎ. In the acute mania example, the 

correlation between response and dropout rate is expected to be negative so we assigned 

appropriate negative priors to parameters 𝜌𝑖 (the within-study correlations between 

outcomes, assumed equal across studies), 𝜌𝜏 (the between-study correlation in outcomes) 

and  𝜌ℎ (the overall correlation). However, the robustness of conclusions to this assumption 

could be checked if desired. In order to rank the treatments with respect to the response and 

the dropout rate, we computed the surface under the SUCRA value (38), for each treatment 

and for each outcome. All results pertain to 1,000,000 iterations and thinning of 100 after a 

5,000 burn-in period; the thinning was deemed necessary since a preliminary analysis 

showed a high auto-correlation in the chains. The code we used is provided in Sections XII 

and XIII of the Appendix. We explored the following analysis scenarios: 

I. Univariate (independent) NMA of response and dropout rate separately, 

assuming 𝜏𝑅 , 𝜏𝐷~𝑈(0,1). This corresponds to setting all correlations equal to 

zero. 

II. Multiple outcome network meta-analysis (MONMA) following the approach of 

Section 4.2.3.1. We used minimally informative priors for the heterogeneity 

parameters: 𝜌𝜏~𝑈(−1,0),  𝜏𝑅 , 𝜏𝐷~𝑈(0,1), and: (a) we assumed a negative 

common 𝜌𝑖 = 𝜌 with 𝜌~𝑈(−1,0); (b) we assumed a strongly informative, 

negative, common 𝜌~𝑈(−0.7, −0.5); (c) we assumed a common fixed 𝜌𝑖 = 𝜌 

with 𝜌 = −0.7; (d) we assumed two different within-studies correlation 

coefficients 𝜌𝑖: one for the studies comparing two active treatments, which we 

denote as 𝜌𝐴𝑐𝑡−𝐴𝑐𝑡, and another for the studies comparing active treatments to 

placebo, 𝜌𝐴𝑐𝑡−𝑃𝑙. This distinction could be based on the assumption that the two 
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relative treatment effects are differently correlated when one of the treatments 

compared is the placebo. For both parameters we used a uniform negative, 

𝑈(−1,0), prior distribution  

III. MONMA following the approach in Section 4.2.3.2, assuming a common 

correlation coefficient and the following prior distributions for the parameters 

of the model: 𝜌ℎ~𝑈(−1,0), 𝜓𝑅~𝑈(0,1), 𝜓𝐷~𝑈(0,1). 

In order to evaluate our assumption of a negative correlation coefficient within and 

across studies we fitted MONMA model following the approach of Section 4.2.3.1. with 

𝜌𝑖 = 𝜌 with 𝜌~𝑈(−1,1) and 𝜌𝜏~𝑈(−1,1). 

4.3.2 Results 

The median posterior values for 𝜌 and 𝜌𝜏 when non-informative 𝑈(−1,1) priors are 

used were -0.33 and -0.84 with 95% credible intervals [-0.66; 0.14] and [-0.99; -0.38] 

respectively. These values corroborate our prior belief of a negative association between 

dropout and efficacy. In Table 6 we present the median posterior estimates and 95% credible 

intervals for the parameters in each model. An interesting observation is that the 

heterogeneity variances 𝜏𝑅
2 and 𝜏𝐷

2  are invariant across the different models. This may be due 

to the large number of studies available in this meta-analysis. The mean estimates for the 

correlation coefficients are well below zero (e.g. the between-study correlation ranges from 

0.56 for scenario II.c up to -0.82 for scenario II.a). The posterior median value for the 

overall correlation 𝜌ℎ in model III is -0.51 (95% Cr.I. [-0.68; -0.29]), a value lying between 

the estimates of the two correlation coefficients for the multivariate model II.a (-0.34 for 𝜌 

and -0.82 for 𝜌𝜏 ). This is reasonable since 𝜌ℎ is an overall correlation coefficient that 

amalgamates the within and between-studies correlations measured by 𝜌 and 𝜌𝜏.  
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Table 6: Median posterior estimates and 95% credible intervals for the heterogeneity 

variance and correlation parameters in MONMA models. 

Scenario 𝝉𝑹
𝟐 𝝉𝑫

𝟐 𝝆 𝝆𝝉 

I 0.08 [0.02;0.17] 0.13 [0.06;0.24] - - 

II.a 0.07 [0.02;0.16] 0.13 [0.06;0.24] -0.34 [-0.66;-0.04] -0.82 [-0.99;-0.38] 

II.b 0.07 [0.02;0.15] 0.13 [0.06;0.23] -0.56 [-0.68;-0.50] -0.68 [-0.93;-0.23] 

II.c 0.07 [0.02;0.16] 0.13 [0.06;0.24] - -0.56 [-0.83;-0.12] 

II.d 0.08 [0.02;0.16] 0.13 [0.06;0.23] 

𝜌𝐴𝑐𝑡−𝐴𝑐𝑡: -0.31 

[-0.71;-0.02] 
-0.80 [-0.99;-0.33] 

𝜌𝐴𝑐𝑡−𝑃𝑙: -0.39 

[-0.77;-0.04] 

 𝝍𝑹
𝟐
 𝝍𝑫

𝟐
 𝝆𝒉 

III 0.07 [0.02;0.16] 0.12 [0.04;0.22] -0.51 [-0.68;-0.29] 

 

 

In Figure 9 we present the summary odds ratios for both outcomes for each treatment vs. 

placebo and for models I, II.b and III.  In XI of the Appendix we present the results from 

fitting each model in detail. The multivariate approach has a minimal effect on the summary 

results for the dropout outcome compared to the univariate. That is expected (200) since this 

outcome was reported in all studies except one, and thus inferences do not gain much through 

the joint analysis in terms of the posterior estimates and precision for this outcome. In 

contrast, the posterior summary ORs for the response to treatment outcome have 

considerable gain in precision when we use a multivariate rather than univariate model. This 

gain arises because 28% of the studies did not report on response, and thus the multivariate 

models additionally borrow strength from the correlated dropout outcome in these studies 

(200). The gain in precision is larger as within-study correlation coefficient moves away 

from zero; the decrease in the width of the confidence intervals of the ORs compared to the 

results from the univariate approach is on average 8.4%  for analysis II.a, 12% for II.b, 12.1% 

for II.c, 8.2% for II.d, and 10.8% for model III. Note that apart from differences in precision 

gain there are small changes in the point estimates for most odds ratios among the MONMA 

models (see Section XI of the Appendix). 
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Figure 9: Summary odds ratios for response and dropout, for active treatment vs. placebo. 

The thick lines correspond to scenario I (univariate model), the slim lines to scenario II.b 

(MONMA model assuming strong correlation coefficient ρ~U(-0.7,-0.5)) and the dashed 

lines to scenario III (alternative MONMA model assuming ρh~U(-1,0)) 

 

 

In Figure 10 we present the relative ranking of treatments for response and dropout, for 

models I, II.b and III, based on the SUCRA value for each outcome. Treatments near the 
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upper right corner are the best when both acceptability and efficacy outcomes are considered 

jointly important; those near the bottom left corner (dark areas of the plots) are the worst. 

Note that Gabapentin is not present in the graph, since it was only reported for dropout. 

Regardless of the choice of model, OLA has the highest ranking across both outcomes jointly. 

However, the ranking of some other treatments is affected by the choice of multivariate rather 

than univariate, especially in regard the response outcome which (through correlation) is able 

to borrow strength from the more complete acceptability outcome. This use of additional 

information leads to (small) differences in the multivariate and univariate mean posterior 

estimates and precision of the summary ORs for response, and this has an impact on the 

relative ranking of the treatments for this outcome. For example, Carbamazepine ranks as the 

best treatment in terms of response with the univariate model  but it falls to the fourth place 

when we consider a within-study correlation coefficient 𝜌 = −0.7.  

4.4 Concluding remarks 

In this Chapter we have presented two models for meta-analyzing evidence from 

multi-arm studies reporting multiple correlated outcomes in a network of interventions. Our 

models require minimum aggregated-level information and are applicable to any NMA with 

multiple continuous, dichotomous or time-to-event outcomes; that is the majority of the 

NMA applications (8). The set of models we present provides a unified way of handling 

multiple outcomes in the presence of multi-arm studies using only a handful of parameters. 

Choice between the two models may be informed by various factors. The first MONMA 

model accounts for within-study variances (sampling error), between-study variance 

(heterogeneity) as well as within and between-studies correlation. 
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Figure 10: Ranking of antimanic drugs for response and acceptability. Treatments located 

in the darker (brighter) areas of the plots have the lowest (highest) rankings. ARI = 

aripiprazole, ARI = aripiprazole. ASE = asenapine. CBZ = carbamazepine. VAL = 

divalproex. HAL = haloperidol. LAM = lamotrigine. LIT = lithium. OLZ = olanzapine, 

PBO = placebo. QTP = quetiapine. PAL = paliperidone, TOP = topiramate. ZIP = 

ziprasidone 
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The second (alternative) model includes both within-study and between-study 

variances, but uses a single correlation parameter 𝜌ℎ. Thus, the second model can be viewed 

as an approximation of the first MONMA model, with the latter having a more detailed 

likelihood structure. The second model can be used in the common situation when within-

study covariances (the 𝜅 parameters of 𝜮𝑖, Equation (16) in Section 3.3.3) are not available 

from all studies or cannot be reliably obtained from external data or expert opinion.  

Ease of application is another consideration when choosing between the two models. 

The first model is more difficult to implement as it has a richer structure and investigators 

need to ensure the positive-definiteness of the variance-covariance matrix. Our models 

perform better than the univariate one in terms of precision; this gain, however, does not 

come without a cost. The complexity of the multivariate analysis is an important limitation, 

and the difficulty in implementing the models rises as the number of outcomes of interest or 

the number of arms of the studies in the network grows. When only a small number of studies 

do not report on all outcomes the gain in precision can be trivial, rendering the use of 

multivariate methods redundant. The models are also limited by the assumptions we used to 

simplify the structure of the variance-covariance matrices; in the Appendix we offer guidance 

for the case the analyst is unwilling to employ these assumptions.  

Despite their limitations, the two presented models are to our knowledge the first 

attempts for meta-analyzing data from networks of interventions comprising multi-arm 

studies that report on multiple, correlated outcomes. In Chapter 3 we have presented a 

framework that utilizes expert clinical opinion about quantities easily understood by 

clinicians (such as proportions) to impute unreported correlation parameters. However, that 

method is only applicable for binary outcomes measured with odds ratios. In the present 

approach we provide two general models for all types of outcomes assuming that the within-

study correlations are known or directly informed by external evidence (model 1) or 

completely unknown (model 2).  

The research presented in this Chapter was published in the Biostatistics journal (216). 
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5 Summary 

Standard methods for meta-analysis are limited to the case of comparing two 

interventions. In real life clinical practice, however, there are usually many alternative 

competing interventions that can be used to treat the same disease, while studies may contrast 

different sets of these interventions, thus forming a network of evidence. In such complicated 

cases of data availability pairwise meta-analyses cannot give a definite answer as to which 

intervention works best for the target condition. NMA is an extension of the standard, 

pairwise meta-analysis, and can be used to jointly analyze evidence regarding multiple 

interventions in order to produce clinically relevant estimates. It does so by utilizing the 

totality of the available information. For each comparison of two interventions there may be 

direct evidence (obtained from studies that compare the two interventions head-to-head) 

and/or indirect evidence (coming from the rest of the network). NMA combines these two 

types of information in a single analysis, which results in increased precision as compared 

to the usual pairwise meta-analysis. In addition, NMA allows the comparison of 

interventions that have never been compared in a clinical trial directly. 

For these reasons, NMA methods are becoming increasingly popular, and there is an 

almost exponential growth in the number of published applications during the last few years. 

However, the underlying assumptions of the model may sometimes be difficult to assess 

while the mathematical complexity of the model, combined with the lack of easy-to-use 

computer software often result in researchers using suboptimal or even inappropriate 

methods (8,191). 

In Chapter 2 of this dissertation we described an updated review of methods for NMA, 

which we performed in order to summarize the state-of-the-art in the field. Our scope was 

to provide a comprehensive account of the currently available methods, which can be used 

by researchers interested in assessing the quality of published NMAs, in applying NMA to 

answer new clinical questions, or in conducting further methodological research. In this final 

section of the dissertation we also provide a brief summary of recommendations regarding 

the implementation of NMA, as they emerged from our review.  

When setting off to perform an NMA, researchers should start by considering whether 

the treatments they plan to compare can be thought to be ‘jointly randomizable’. This means 

that in principle any patient could be randomized to receive any of the treatments in the 

network. This is a key assumption and should always be considered when setting up the 
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network.  

Next, researchers need to perform a systematic review to identify studies that address 

the clinical question at hand. This should be followed by a critical appraisal of all the 

available evidence. After identifying relevant studies to be included in the NMA, researchers 

should check whether there are differences in the definition of the treatments across 

comparisons in terms of dosage, duration, means of administration (e.g. pill vs. injection) 

etc. The existence of systematic differences in the definition of treatments in the studies may 

shed doubts regarding the validity of the transitivity assumption, which is a fundamental 

assumption of NMA. 

Then researchers need to check the distribution of potential effect modifiers across 

comparisons, to make sure there are no important differences. Effect modifiers are study 

characteristics that may influence the relative effectiveness of interventions. Checking for 

differences in the effect modifiers, however, might be hindered by limited accessibility to 

information on relevant covariates or by the small number of studies contributing to the 

analysis. All these considerations should be described in detail in the review, to allow readers 

to conceptually evaluate the validity of the assumptions of NMA on their own.  

Researchers then need to decide on the model they will use to perform the NMA. In 

Chapter 2 of this dissertation we discussed a range of alternative (but equivalent) models 

that can be employed. The choice between the different models should be primarily driven 

by the availability of technical expertise in the research team regarding the various software 

packages. If a Bayesian framework is adopted, it is important to discuss the choice of prior 

distributions. Particular caution is warranted when modelling variance parameters (such as 

heterogeneity), as they typically cannot be assigned non-informative prior distributions. This 

implies that the estimated heterogeneity may vary depending on the chosen prior 

distribution, and thereby influence network consistency and precision of relative treatment 

effects. Sensitivity analyses are crucial to understand the potential impact of key assumptions 

in the modelling process, and a minimal set of sensitivity analyses should be always pre-

specified, to avoid data dredging. 

If the network structure allows it, i.e. if there are closed loops in the network, a statistical 

assessment of inconsistency should follow the fitting of the model. Inconsistency refers to 

the statistical difference between direct and indirect information for a given treatment 

comparison. Evaluating inconsistency may be a challenging task, especially in the presence 

of multi-arm studies. In Chapter 2 we have presented a variety of methods and models 
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currently available for statistically checking the network for consistency and we have 

discussed the advantages and limitations of each method. We recommend the application of 

as many of the presented methods and models as possible in order to gain a better 

understanding on the validity of the consistency assumption and possible sources of 

inconsistencies. Researchers should bear in mind, however, that the absence of a statistically 

significant finding for inconsistency does not necessarily mean that the transitivity 

assumption holds: all tests for inconsistency are expected to have low power, while large 

values of heterogeneity may mask important inconsistency.  

If statistically significant inconsistency is detected, researchers are advised to explore 

potential sources of it and try to explain it. Local methods for assessing inconsistency can 

point out possibly problematic studies, which should then be checked for data extraction 

errors, important differences in the distribution of effect modifiers or other possible biases. 

We have also presented various models for adding covariates and adjusting for suspected 

biases in the analysis. If sufficient studies are available, such models can be applied to 

explain and possibly eliminate inconsistencies. If however inconsistency persists, 

researchers can consider splitting up nodes in the network (e.g. high dose – low dose) or they 

can present the results from the appropriate inconsistency model (Lu & Ades model when 

all studies are two-armed; design-by-treatment model when multi-arm trials are present) 

along with the direct evidence.  

Even though a statistical significant finding for inconsistency will imply that the NMA 

results may not be valid, observing such an inconsistency may provide additional insight and 

generate additional research questions about modifiers of the relative treatment effects. It 

can motivate further analyses, such as combining individual participant data and aggregated 

data or including information from observational studies. Thus, for the purposes of the 

decision-making process, NMA may be used not only as a method for comparing treatments, 

but may also serve as a tool for gaining insight on the drivers of real-life effectiveness. 

The second aim of this dissertation was to advance the statistical methodology for jointly 

analyzing multiple correlated outcomes in NMA. In Chapter 3 we introduced a MONMA 

model which focused on the case of analyzing multiple dichotomous outcomes while 

accounting for the correlations between them. The model synthesizes information from 

RCTs augmented by external evidence, which can be obtained from expert clinicians. We 

highlighted the mathematical details of this model and we discussed in depth the elicitation 

process for obtaining expert information. In Chapter 4 we presented two additional MONMA 
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models. Both models can be used to synthesize multiple dichotomous, continuous, or time-

to-event outcomes. The first of them has a richer structure. The second model is an 

approximation of the first, and can be used in cases of limited data availability. We provided 

the software codes needed to run all models and discussed possible extensions in the 

Appendix. 

In order to illustrate our methods, we applied all our MONMA models to a network of 

antimanic drugs, where 15 drugs and placebo were compared in terms of efficacy and 

acceptability. We found that our models provided more precise estimates for most treatment 

comparisons, for both outcomes. This increase in precision was more pronounced when 

larger correlation was assumed between the outcomes. In addition, multivariate meta-

analysis might provide more powerful and less biased results in the presence of selective 

outcome reporting in the original studies (178). This refers to the case when in some studies 

researchers choose to not present results that were statistically non-significant, or that were 

deemed to be clinically not so interesting.   

Although our MONMA models were shown to perform well and might be preferable to 

a series of independent univariate analyses, they also have their drawbacks and limitations. 

The complexity of the analyses increases as the number of outcomes or the number of arms 

in the included studies increases. The gain in precision may be small if the correlation 

coefficients are close to zero. In such instances, the added benefit of joint modeling of 

correlated outcomes might be too small to justify the increased modeling complexity (195). 

The benefit of a performing a joint analysis of multiple outcomes will also depend on the 

fraction of studies not reporting one of the outcomes. There is a critical balance of having 

enough studies reporting both outcomes to capture the correlation, and having enough 

studies not reporting both outcomes, in order to benefit from the borrowing of strength that 

could result from the model. A future simulation study may help explore the gains in 

precision for different values of the correlation coefficients, for different numbers of studies 

not reporting some of the outcomes, in order to pinpoint the cases where complicated 

modeling will result in considerably more precise estimates.  

A limitation of our models is that they make the assumption that there are no missing 

outcome data in the studies. In the acute mania example response data were not available for 

a small proportion of patients (less than 10%) and the missing entries were imputed as 

failures. This imputation analysis has been shown to not materially impact the result from 

network meta-analysis when the total missing rate is small (134). When imputations are 
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needed for multiple, correlated outcomes, the impact of the imputation process on the 

correlation between the outcomes should be considered. For example, if the same strategy 

(e.g. to impute missing data as failures) is followed for two efficacy outcomes, then this is 

expected to increase their correlations.  

To summarize, based on our findings we recommend researchers to consider both 

univariate and multivariate approaches when possible, to ascertain if clinical conclusions 

about the ranking of treatments for each outcome remain consistent under different model 

assumptions. Finally, since multiple outcomes network meta-analysis is a new, largely 

unexplored area, there are still many open areas for research. A possible extension would be 

to include IPD, either exclusively or in a combination with aggregated data. Furthermore, 

our models could be implemented in popular statistical software making MONMA more 

easily accessible to review authors. 

As a final, concluding remark, we believe that the research presented in this 

dissertation is an important advancement in the field of NMA. We also think that our models 

constitute the best available method for the network meta-analysis of multiple correlated 

outcomes, and that their implementation is in practice straightforward. 

  



88 

 

 

 

 

  



89 

 

6 Περίληψη 

Οι κλασικές μέθοδοι μετά-ανάλυσης περιορίζονται στην περίπτωση της σύγκρισης δύο 

θεραπευτικών παρεμβάσεων. Στην κλινική πράξη, ωστόσο, υπάρχουν συνήθως πολλές 

εναλλακτικές παρεμβάσεις που μπορούν να χρησιμοποιηθούν για τη θεραπεία της ίδιας 

νόσου. Παράλληλα, όταν προσπαθήσει κάποιος να απαντήσει στο ερώτημα ποια από αυτές 

τις παρεμβάσεις δουλεύει καλύτερα για την αντιμετώπιση της συγκεκριμένης νόσου, μπορεί 

να εντοπίσει μια πληθώρα τυχαιοποιημένων κλινικών δοκιμών που έχουν συγκρίνει 

διαφορετικά υποσύνολα αυτών των παρεμβάσεων. Σε τέτοιες τις περιπτώσεις, στις οποίες 

τα διαθέσιμα τεκμήρια σχηματίζουν ένα δίκτυο θεραπευτικών παρεμβάσεων, η 

συνηθισμένη μετά-ανάλυση δεν μπορεί να δώσει μια σαφή απάντηση ως προς το ποια 

παρέμβαση είναι προτιμότερη. Η μετά-ανάλυση δικτύου (ΜΑΔ) είναι μια επέκταση της 

κλασικής μετά-ανάλυσης, και μπορεί να χρησιμοποιηθεί για να αναλύσει από κοινού 

δεδομένα για πολλαπλές παρεμβάσεις, προερχόμενα από πολλές διαφορετικές κλινικές 

μελέτες, με σκοπό την παραγωγή κλινικά χρήσιμων εκτιμήσεων. Η ΜΑΔ συνθέτει το 

σύνολο της πληροφορίας σε μία ενιαία ανάλυση. Η υπάρχουσα πληροφορία για την 

σύγκριση δύο συγκεκριμένων παρεμβάσεων μπορεί να είναι είτε άμεση (από κλινικές 

μελέτες που συγκρίνουν τις εν λόγω παρεμβάσεις) είτε έμμεση (μέσω του δικτύου). 

Συνδυάζοντας άμεση και έμμεση πληροφορία η ΜΑΔ επιτυγχάνει μια αύξηση της ακρίβειας 

σε σύγκριση με την κλασσική μετά-ανάλυση, ενώ επιτρέπει και την σύγκριση θεραπειών 

που δεν έχουν συγκριθεί ποτέ σε κάποια κλινική μελέτη.  

Για αυτούς τους λόγους η ΜΑΔ γίνεται ολοένα και πιο δημοφιλής. Μάλιστα τα 

τελευταία χρόνια, έχει παρατηρηθεί μια σχεδόν εκθετική αύξηση του αριθμού των 

δημοσιευμένων εφαρμογών της ΜΑΔ. Παρόλα αυτά, για ένα αριθμό ερευνητών 

εξακολουθεί να μην είναι ξεκάθαρο το πως μπορεί κάποιος να αξιολογήσει τις βασικές 

παραδοχές του μοντέλου. Αυτό το γεγονός, σε συνδυασμό με την έλλειψη εύχρηστου 

λογισμικού για ΜΑΔ συχνά έχει ως αποτέλεσμα οι ερευνητές να χρησιμοποιούν ανεπαρκείς 

ή ακόμη και ακατάλληλες μεθόδους στις αναλύσεις τους (8,191). 

Στο Κεφάλαιο 2 της παρούσας διατριβής περιγράψαμε μια συστηματική ανασκόπηση 

των μεθόδων για ΜΑΔ, η οποία πραγματοποιήθηκε με σκοπό να συνοψίσει τις σύγχρονες 

μεθόδους. Σκοπός μας ήταν να προσφέρουμε μια ολοκληρωμένη εικόνα για την σύγχρονη 

μεθοδολογία της ΜΑΔ, συνοψίζοντας την υπάρχουσα τεχνογνωσία. Το προϊόν αυτής της 

ανασκόπησης μπορεί να φανεί χρήσιμο σε ερευνητές που ενδιαφέρονται για την αξιολόγηση 
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της ποιότητας των δημοσιευμένων ΜΑΔ, για την εφαρμογή της ΜΑΔ στην απάντηση νέων 

κλινικών ερωτημάτων, ή και στη διεξαγωγή περαιτέρω μεθοδολογικής έρευνας σε μεθόδους 

για ΜΑΔ. Σε αυτό το σημείο θα παρουσιάσουμε ένα περίγραμμα των βέλτιστων πρακτικών 

για την εφαρμογή της ΜΑΔ, όπως αυτές προέκυψαν από την συστηματική ανασκόπηση της 

βιβλιογραφίας.  

Το πρώτο βήμα σε μια ΜΑΔ έγκειται στο οι ερευνητές να εξετάσουν το αν και κατά 

πόσο οι θεραπείες που σκοπεύουν να εξετάσουν μπορούν να θεωρηθούν «από κοινού 

τυχαιοποιήσιμες». Αυτό σημαίνει ότι θα πρέπει ο κάθε ασθενής να μπορούσε – κατ’ αρχήν 

– να έχει τυχαιοποιηθεί να λάβει οποιαδήποτε από τις παρεμβάσεις στο δίκτυο. Αυτή είναι 

μια βασική παραδοχή και θα πρέπει να λαμβάνεται πάντα υπόψη κατά την δημιουργία του 

δικτύου.  

Στη συνέχεια, οι ερευνητές καλούνται να κάνουν μια συστηματική ανασκόπηση της 

βιβλιογραφίας ώστε να εντοπίσουν τις υπάρχουσες κλινικές μελέτες που απαντούν στο υπό 

εξέταση κλινικό ερώτημα. Στην συνέχεια πρέπει να λάβει χώρα μια κριτική αξιολόγηση της 

ποιότητας των μελετών αυτών. Αφού καταλήξουν στις μελέτες που θα περιληφθούν στην 

μετά-ανάλυση, οι ερευνητές θα πρέπει να ελέγξουν αν υπάρχουν διαφορές στο πως 

ορίζονται οι θεραπείες ανά ζεύγος συγκρίσεων όσον αφορά την δοσολογία, τη διάρκεια, τον 

τρόπο χορήγησης (π.χ. χάπι/ένεση) κλπ. Η ύπαρξη συστηματικών διαφορών στον ορισμό 

των θεραπειών μπορεί να δημιουργήσει αμφιβολίες σχετικά με την εγκυρότητα της 

υπόθεσης μεταβατικότητας (transitivity). Αυτή η υπόθεση είναι θεμελιώδους σημασίας για 

την ΜΑΔ, και όταν αυτή καταστρατηγείται τα αποτελέσματα μιας ΜΑΔ θα περιέχουν εν 

γένει μεροληψίες. 

Στη συνέχεια, οι ερευνητές πρέπει να ελέγξουν την κατανομή των εν δυνάμει 

τροποποιητών επίδρασης στις μελέτες, για να βεβαιωθούν ότι δεν υπάρχουν σημαντικές 

διαφορές. Τροποποιητής επίδρασης ονομάζεται μια μεταβλητή (σε επίπεδο μελέτης) η οποία 

επηρεάζει την σχετική επίδραση των θεραπειών που συγκρίνονται. Πολλές φορές ο εν λόγω 

έλεγχος μπορεί να αποδειχτεί στην πράξη δύσκολος, ειδικά όταν δεν υπάρχει η σχετική 

πληροφορία σε όλες τις δημοσιευμένες μελέτες ή όταν ο αριθμός των μελετών που 

συμβάλλουν στην ανάλυση είναι μικρός. Όλες οι σχετικές λεπτομέρειες θα πρέπει να 

περιγράφονται λεπτομερώς σε τυχόν δημοσιεύσεις ή αναφορές των αποτελεσμάτων της 

ΜΑΔ, ώστε να μπορούν οι αναγνώστες να αξιολογήσουν την εγκυρότητα των υποθέσεων 

της ανάλυσης. 

Το επόμενο στάδιο είναι να αποφασιστεί το ακριβές μοντέλο που θα χρησιμοποιηθεί 



91 

 

για την εφαρμογή της ΜΑΔ. Στο Κεφαλαιο  2 αυτής της διατριβής παρουσιάσαμε ένα 

σύνολο διαφορετικών (αλλά παραπλήσιων) μοντέλων που μπορούν να χρησιμοποιηθούν για 

αυτόν τον σκοπό. Η επιλογή μεταξύ των διαφόρων μοντέλων θα πρέπει να βασιστεί  κυρίως 

στην υπάρχουσα τεχνογνωσία της ερευνητικής ομάδας σχετικά με τα διάφορα πακέτα 

λογισμικού που μπορούν να χρησιμοποιηθούν για την ανάλυση. Αν υιοθετηθεί ένα 

Μπαεζιανό πλαίσιο, είναι σημαντικό να συζητηθεί η επιλογή των εκ των προτέρων  

κατανομών (prior distributions) που χρειάζεται να χρησιμοποιηθούν για τις παραμέτρους. 

Ιδιαίτερη προσοχή απαιτείται κατά την μοντελοποίηση των παραμέτρων διασποράς (όπως 

η ετερογένεια), δεδομένου ότι γενικά για αυτού του είδους τις παραμέτρους οι εκ των 

προτέρων κατανομές πάντα συνεισφέρουν πληροφορία στο μοντέλο. Αυτό συνεπάγεται ότι 

η εκτιμώμενη ετερογένεια μπορεί να ποικίλει ανάλογα με την επιλογή της εκ των προτέρων 

κατανομής, και με τον τρόπο αυτό να επηρεάσει τη συνοχή του δικτύου και την εκτιμώμενη 

σχετική αποτελεσματικότητα των θεραπειών. Οι αναλύσεις ευαισθησίας είναι ζωτικής 

σημασίας ώστε να κατανοήσει κάποιος τον ενδεχόμενο αντίκτυπο τέτοιων υποθέσεων στη 

διαδικασία μοντελοποίησης. Ένας ελάχιστος αριθμός αναλύσεων ευαισθησίας πρέπει πάντα 

να προκαθορίζεται, ιδανικά σε δημοσιευμένο πρωτόκολλο.  

Αν η δομή του δικτύου το επιτρέπει, αν δηλαδή υπάρχουν στο δίκτυο κλειστοί βρόχοι,  

μια στατιστική εκτίμηση της ασυνέπειας (inconsistency) θα πρέπει να λάβει χώρα. Η 

στατιστική ασυνέπεια αναφέρεται σε διαφορές ανάμεσα σε εκτιμήσεις που βασίζονται στην 

άμεση και την έμμεση πληροφορία στο δίκτυο. Η σωστή εκτίμηση της ασυνέπειας μπορεί 

να είναι δύσκολη, ειδικά όταν στην βάση δεδομένων υπάρχουν μελέτες που συγκρίνουν 

πολλαπλές θεραπείες. Στο Κεφάλαιο 2 αυτής της διατριβής παρουσιάσαμε μια ποικιλία 

μεθόδων και μοντέλων που μπορούν να χρησιμοποιηθούν για τον στατιστικό έλεγχο του 

δικτύου σε σχέση με την συνέπεια. Παράλληλα, συζητήσαμε τα πλεονεκτήματα και τους 

περιορισμούς της κάθε μεθόδου. Προτείνουμε την εφαρμογή όσο το δυνατό περισσότερων 

μοντέλων ή μεθόδων για την διερεύνηση της συνέπειας του δικτύου. Με αυτόν τον τρόπο 

διευκολύνεται ο εντοπισμός πιθανών πηγών ασυνέπειας. Οι ερευνητές θα πρέπει να έχουν 

κατά νου, ωστόσο, ότι η απουσία στατιστικά σημαντικών ευρημάτων για την ασυνέπεια δεν 

σημαίνει κατ’ ανάγκη ότι η υπόθεση της μεταβατικότητας ισχύει: όλες τα στατιστικά τεστ 

για ασυνέπεια αναμένεται να έχουν χαμηλή ισχύ, ενώ μεγάλες τιμές της ετερογένειας μπορεί 

να κρύψουν τυχόν ασυνέπειες στα δεδομένα. 

Εάν ανιχνευθεί στατιστικά σημαντική ασυνέπεια, οι ερευνητές καλούνται να 

διερευνήσουν πιθανές πηγές της και να προσπαθήσουν να τις εξηγήσουν. Τοπικές μέθοδοι 
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για την αξιολόγηση της ασυνέπειας μπορούν να επισημάνουν ενδεχομένως προβληματικές 

μελέτες, οι οποίες θα πρέπει στη συνέχεια να ελεγχθούν για πιθανά σφάλματα στην εξόρυξη 

δεδομένων, για τυχόν σημαντικές διαφορές στην κατανομή των τροποποιητών επίδρασης ή 

άλλα πιθανά σφάλματα. Επίσης, παρουσιάσαμε διάφορα μοντέλα που μπορούν να 

χρησιμοποιηθούν για την προσαρμογή της ΜΑΔ για μεροληψία, με την προσθήκη 

πληροφορίας σχετικής με τους τροποποιητές επίδρασης. Τέτοια μοντέλα μπορούν να 

εφαρμοστούν για να εξηγήσουν –  και ενδεχομένως να εξαλείψουν – τυχόν ασυνέπειες στο 

δίκτυο. Αν η στατιστική ασυνέπεια δεν είναι δυνατόν να εξαλειφτεί με αυτόν τον τρόπο, οι 

ερευνητές μπορούν να εξετάσουν την κατάτμηση κόμβων (=θεραπειών) του δικτύου, π.χ. 

υψηλή δόση / χαμηλή δόση. Εναλλακτικά, μπορούν να παρουσιάσουν τα αποτελέσματα από 

το κατάλληλο μοντέλο ασυνέπειας (μοντέλο Lu&Ades όταν όλες οι μελέτες συγκρίνουν δύο 

θεραπέιες και μοντέλο design-by-treatment όταν υπάρχουν μελέτες που συγκρίνουν 

πολλαπλές θεραπείες) σε συνδυασμό με την άμεση πληροφορία που προκύπτει από 

κλασσικές μετά-αναλύσεις.  

Παρόλο που ένα στατιστικά σημαντικό τεστ για την ασυνέπεια συνεπάγεται ότι τα 

αποτελέσματα μιας ΜΑΔ πιθανώς δεν είναι έγκυρα, μια τέτοια παρατήρηση μπορεί να 

αποτελέσει κίνητρο για την διατύπωση πρόσθετων ερευνητικών υποθέσεων σχετικά με 

πιθανούς τροποποιητές επίδρασης. Μπορεί να παρακινήσει περαιτέρω αναλύσεις, όπως η 

περίληψη ατομικών δεδομένων των ασθενών ή πληροφορίες από μελέτες παρατήρησης. 

Έτσι, για τους σκοπούς της διαδικασίας λήψης αποφάσεων, η ΜΑΔ μπορεί να 

χρησιμοποιηθεί όχι μόνο ως μέθοδος για τη σύγκριση θεραπειών, αλλά μπορεί επίσης να 

χρησιμεύσει ως εργαλείο για την διερεύνηση των συνθηκών που επηρεάζουν την 

αποτελεσματικότητα των θεραπειών σε συνηθισμένες κλινικές συνθήκες. 

Ο δεύτερος στόχος της παρούσας διατριβής ήταν η ανάπτυξη στατιστικής μεθοδολογίας 

για την από κοινού ανάλυση πολλαπλών συσχετισμένων εκβάσεων με ΜΑΔ. Στο Κεφάλαιο 

3 εισαγάγαμε ένα μοντέλο το οποίο επικεντρώθηκε στην περίπτωση της ανάλυσης 

πολλαπλών διχότομων εκβάσεων το οποίο μοντελοποιεί τις συσχετίσεις ανάμεσά τους. Το 

μοντέλο συνθέτει πληροφορίες από τυχαιοποιημένες μελέτες, στις οποίες προστίθενται 

εξωτερικά δεδομένα που προέρχονται από εμπειρογνώμονες κλινικούς γιατρούς. 

Παρουσιάσαμε τις μαθηματικές λεπτομέρειες αυτού του μοντέλου και συζητήσαμε σε βάθος 

τη διαδικασία εκμαίευσης πληροφοριών από τους εμπειρογνώμονες. Στο Κεφάλαιο 4 

παρουσιάσαμε δύο επιπλέον μοντέλα πολλαπλών συσχετισμένων εκβάσεων με ΜΑΔ. Και 

τα δύο μοντέλα μπορούν να χρησιμοποιηθούν για να συνθέσουν πολλαπλές διχότομες ή 
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συνεχείς εκβάσεις, ή και εκβάσεις που καθορίζονται από τον χρόνο μέχρι να εμφανιστεί το 

υπό εξέταση συμβάν. Το πρώτο από αυτά τα μοντέλα έχει πιο πλούσια δομή. Το δεύτερο 

μοντέλο είναι μια προσέγγιση του πρώτου, και μπορεί να χρησιμοποιηθεί σε περιπτώσεις 

περιορισμένης διαθεσιμότητας δεδομένων. Ο κώδικας λογισμικού που απαιτείται για να 

χρησιμοποιήσει κανείς όλα τα μοντέλα καθώς και  πιθανές επεκτάσεις τους συζητούνται στο 

Παράρτημα της παρούσας διατριβής.  

Για να δώσουμε ένα παράδειγμα πρακτικής εφαρμογής των μεθόδων μας εφαρμόσαμε 

όλα τα μοντέλα που παρουσιάστηκαν σε αυτήν την διατριβή σε ένα δίκτυο αντιμανιακών 

φαρμάκων. Σε αυτό το δίκτυο συγκρίνονται 15 φαρμακολογικές θεραπείες για την οξεία 

μανία καθώς και το εικονικό φάρμακο (placebo), ως προς την αποτελεσματικότητα 

(efficacy) και την δεκτικότητα (acceptability). Βρήκαμε ότι τα μοντέλα μας παρέχουν πιο 

ακριβείς εκτιμήσεις για τις περισσότερες συγκρίσεις ανάμεσα στις θεραπείες, και για τις δύο 

εκβάσεις. Αυτή η αύξηση της ακρίβειας ήταν πιο έντονη όταν υποθέσαμε μεγαλύτερη 

συσχέτιση μεταξύ των εκβάσεων. Επιπλέον, έχει δειχθεί ότι η πολύ-μεταβλητή μετα-

ανάλυση μπορεί να μειώσει την μεροληψία των εκτιμήσεων όταν κάποιες από τις αρχικές 

μελέτες έκαναν επιλεκτική αναφορά των αποτελεσμάτων (178), π.χ. αποκρύβοντας 

αποτελέσματα που δεν έπιασαν το όριο στατιστικής σημαντικότητας ή δεν κρίθηκαν αρκετά 

ενδιαφέροντα. 

Παρά το γεγονός ότι τα μοντέλα μας έδειξαν να αποδίδουν καλά και μπορεί να είναι 

προτιμότερα από μια σειρά ανεξάρτητων, μόνο-παραγοντικών αναλύσεων, έχουν κάποια 

μειονεκτήματα και περιορισμούς. Η πολυπλοκότητα των αναλύσεων αυξάνει με τον αριθμό 

των υπό ανάλυση εκβάσεων ή όταν στις συμπεριλαμβανόμενες μελέτες υπάρχουν κάποιες 

που συγκρίνουν μεγάλο αριθμό θεραπειών. Επίσης, το κέρδος στην ακρίβεια από την χρήση 

των μοντέλων μας μπορεί να είναι μικρό αν οι συντελεστές συσχέτισης ανάμεσα στις 

εκβάσεις είναι κοντά στο μηδέν. Σε τέτοιες περιπτώσεις, τα πλεονεκτήματα της κοινής από 

κοινού μοντελοποίησης των συσχετιζόμενων εκβάσεων μπορεί να είναι πολύ λίγα για να 

δικαιολογήσουν την αυξημένη πολυπλοκότητα της ανάλυσης (195). Το κέρδος σε ακρίβεια 

επίσης εξαρτάται από το ποσοστό των μελετών που δεν παρέχουν πληροφορίες για όλες τις 

εκβάσεις. Υπάρχει μια κρίσιμη ισορροπία στο να έχει κανείς αρκετές μελέτες που να δίνουν 

πληροφορίες και για τις δύο εκβάσεις ώστε να μπορεί να εκτιμήσει με ακρίβεια τον 

συσχετισμό τους, αλλά και αρκετές μελέτες που  να μην παρέχουν πληροφορία για κάποια 

(ή κάποιες) από τις εκβάσεις, προκειμένου να επωφεληθεί κανείς από την αύξηση της 

ακρίβειας  που μπορεί να προκύψει από το μοντέλο. Μια μελλοντική μελέτη προσομοίωσης 
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μπορεί να βοηθήσει στο να ερευνηθούν τα πιθανά οφέλη σε σχέση με την ακρίβεια των 

εκτιμήσεων από τα μοντέλα μας, για διαφορετικές τιμές των συντελεστών συσχέτισης, για 

διαφορετικούς αριθμούς μελετών και για διαφορετικά σενάρια επιλεκτικής αναφοράς των 

αποτελέσματα στις πρωτότυπες μελέτες, προκειμένου να εντοπιστούν οι περιπτώσεις κατά 

τις οποίες η χρήση πιο εξελιγμένων μοντέλων θα οδηγήσει σε πολύ πιο ακριβείς εκτιμήσεις. 

Ένας περιορισμός των μοντέλων μας είναι ότι κάνουν την υπόθεση ότι δεν υπάρχουν 

ελλείπουσες τιμές στις μελέτες. Στο παράδειγμα της οξείας μανίας, δεδομένα για την 

αποτελεσματικότητα της θεραπείας δεν ήταν διαθέσιμα για ένα μικρό ποσοστό των ασθενών 

(λιγότερο από 10%). Σε αυτές τις περιπτώσεις, οι ελλείπουσες τιμές είχαν καταλογιστεί ως 

αποτυχίες. Αυτή η στρατηγική έχει δειχθεί ότι δεν επηρεάζει σημαντικά το αποτέλεσμα της 

ΜΑΔ, όταν το συνολικό ποσοστό ελλειπουσών τιμών είναι μικρό (134).  Στην περίπτωση 

που υπάρχει μεγάλο ποσοστό ελλειπουσών τιμών για πολλαπλές συσχετισμένες εκβάσεις 

τότε ορισμένες μέθοδοι στρατηγική αντιμετώπισης των ελλειπουσών τιμών μπορεί να 

οδηγήσει σε σφάλματα. Για παράδειγμα, αν η ίδια στρατηγική να καταλογιστούν τα 

δεδομένα που λείπουν ως αποτυχίες ακολουθηθεί και για δύο εκβάσεις 

αποτελεσματικότητας, τότε αυτό αναμένεται να αυξήσει ψευδώς τις εκτιμώμενες 

συσχετίσεις ανάμεσά τους. 

Γενικά, και με βάση τα ευρήματά της έρευνάς μας, συνιστούμε στους ερευνητές να 

χρησιμοποιούν όταν είναι δυνατόν και την μονοπαραγοντική και πολυπαραγοντική 

προσέγγιση, ώστε να διαπιστωθεί εάν τα κλινικά συμπεράσματα σχετικά με την κατάταξη 

των θεραπειών για κάθε έκβαση παραμένουν συνεπή κάτω από διαφορετικές επιλογές 

μοντέλου. 

Δεδομένου ότι η ΜΑΔ πολλαπλών εκβάσεων αποτελεί μια νέα, σε μεγάλο βαθμό 

ανεξερεύνητη περιοχή, εξακολουθούν να υπάρχουν πολλά θέματα ανοικτά προς περεταίρω 

έρευνα. Μια πιθανή επέκταση των μοντέλων που παρουσιάστηκαν θα ήταν να 

συμπεριληφθούν προσωπικά δεδομένα στο επίπεδο των ασθενών, είτε αποκλειστικά είτε σε 

συνδυασμό με συγκεντρωτικά δεδομένα ανά μελέτη. Επιπλέον, θα ήταν σημαντικό για τα 

μοντέλα μας να εφαρμοστούν σε δημοφιλή λογισμικά ώστε να γίνει η ΜΑΔ πολλαπλών 

εκβάσεων πιο προσιτή στους ερευνητές. 

Εν τέλει, πιστεύουμε ότι η έρευνα που παρουσιάστηκε στην παρούσα διατριβή είναι μια 

σημαντική εξέλιξη στον τομέα της ΜΑΔ. Πιστεύουμε επίσης ότι τα μοντέλα που 

παρουσιάστηκαν αποτελούν επί του παρόντος την καλύτερη διαθέσιμη μέθοδο για την μετα-

ανάλυση δικτύου παρουσία  πολλαπλών συσχετισμένων εκβάσεων.  
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Appendix 

I. The acute mania dataset 

In this Section we provide the data used in the analyses of Chapters 3 and 4. The data 

originates from a network of treatments for acute mania (206). It comprises 65 studies (47 

two-arm and 18 three-arm) reporting on response to the treatment and dropout. Eighteen of 

the included studies did not provide data for response while one did not report data on dropout. 

Table 7: The acute mania dataset 

      Response Dropout 

Study 

ID 
Treatment 1 Treatment 2 OR 

95% 

C.I. 

(lower) 

95% 

C.I. 

(upper) 
OR 

95% 

C.I. 

(lower) 

95% 

C.I. 

(upper) 

1 Aripiprazole Placebo 0.59 0.38 0.90 0.66 0.38 1.17 

2 Aripiprazole Placebo 0.41 0.25 0.67 1.12 0.70 1.81 

3 Aripiprazole Haloperidol 0.70 0.46 1.06 2.65 1.67 4.20 

4 Aripiprazole Placebo 0.35 0.20 0.62 2.64 1.53 4.55 

5 Aripiprazole Placebo 0.82 0.54 1.26 1.04 0.68 1.58 

6 Quetiapine Placebo 0.44 0.24 0.79 1.67 0.94 2.96 

7 Quetiapine Placebo 0.67 0.39 1.15 1.41 0.80 2.47 

8 Quetiapine Lithium 0.45 0.22 0.89 3.53 1.21 10.27 

9 Quetiapine Placebo 0.44 0.28 0.69 0.98 0.60 1.60 

10 Ziprasidone Placebo 0.56 0.31 1.03 1.41 0.79 2.51 

11 Ziprasidone Placebo 0.49 0.26 0.93 1.29 0.71 2.33 

12 Ziprasidone Placebo 0.91 0.52 1.57 0.86 0.47 1.56 

13 Ziprasidone Olanzapine - - - 3.00 0.48 18.93 

14 Ziprasidone Placebo 0.96 0.69 1.33 0.61 0.41 0.91 

15 Olanzapine Lithium - - - 3.50 0.32 38.23 

16 Olanzapine Placebo 0.32 0.15 0.66 2.99 1.50 5.96 

17 Olanzapine Placebo 0.38 0.18 0.81 2.27 1.07 4.79 

18 Olanzapine Divalproex 0.59 0.36 0.97 1.23 0.72 2.07 

19 Olanzapine Placebo 0.43 0.27 0.68 1.07 0.65 1.75 

20 Olanzapine Haloperidol 1.04 0.69 1.56 1.35 0.91 2.00 

21 Olanzapine Placebo 1.05 0.50 2.24 1.23 0.55 2.75 

22 Risperidone Placebo 0.21 0.13 0.35 3.43 1.82 6.43 

23 Risperidone Placebo 0.57 0.30 1.09 1.98 1.03 3.79 

24 Risperidone Placebo 0.43 0.25 0.74 1.78 1.09 2.92 

25 Risperidone Olanzapine 1.20 0.78 1.86 0.55 0.33 0.90 

26 Divalproex Lithium 6.67 0.66 67.46 -  -  - 

27 Divalproex Placebo 0.56 0.37 0.84 1.27 0.85 1.91 

28 Divalproex Placebo 0.12 0.02 0.67 0.86 0.25 2.98 

29 Carbamazepine Divalproex 2.41 0.52 11.10 1.00 0.17 5.98 

30 Divalproex Placebo 0.38 0.19 0.76 1.74 0.63 4.80 

31 Haloperidol Carbamazepine - - - 1.07 0.06 18.62 

32 Carbamazepine Placebo 0.32 0.22 0.48 1.40 0.96 2.03 

33 Lithium Lamotrigine 0.76 0.18 3.24 0.62 0.09 4.34 

34 Placebo Topiramate - - - 1.76 1.05 2.95 

35 Placebo Topiramate - - - 2.19 1.23 3.89 

36 Lithium Olanzapine 2.44 1.01 5.85 0.36 0.13 0.98 
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37 Placebo Paliperidone 1.14 0.75 1.73 0.88 0.58 1.35 

38 Haloperidol Carbamazepine 0.80 0.12 5.40 0.10 0.01 0.90 

39 Haloperidol Lithium - - - 3.33 0.36 30.70 

40 Haloperidol Carbamazepine - - - 6.00 0.53 67.65 

41 Lithium Carbamazepine - - - 0.20 0.02 1.94 

42 Olanzapine Lithium 1.89 0.38 9.27 0.63 0.09 4.24 

43 Divalproex Placebo - - - 0.94 0.46 1.93 

44 Topiramate Placebo 1.29 0.72 2.29 0.47 0.23 0.96 

45 Gabapentin Placebo - - - 0.57 0.27 1.20 

46 Lithium Carbamazepine - - - 2.16 0.71 6.57 

47 Olanzapine Placebo 0.64 0.36 1.16 0.92 0.53 1.61 

48 Aripiprazole Lithium 0.92 0.59 1.43 0.94 0.60 1.46 

48 Aripiprazole Placebo 0.59 0.38 0.93 0.99 0.64 1.54 

48 Lithium Placebo 0.64 0.41 1.01 1.06 0.69 1.64 

49 Aripiprazole Haloperidol 1.07 0.70 1.65 1.12 0.68 1.83 

49 Aripiprazole Placebo 0.70 0.45 1.09 1.24 0.75 2.04 

49 Haloperidol Placebo 0.65 0.41 1.01 1.11 0.68 1.81 

50 Quetiapine Lithium 0.99 0.57 1.72 1.62 0.68 3.83 

50 Quetiapine Placebo 0.32 0.18 0.58 4.34 1.99 9.48 

50 Lithium Placebo 0.32 0.18 0.59 2.69 1.32 5.47 

51 Quetiapine Haloperidol 1.72 0.98 3.00 0.52 0.28 0.98 

51 Quetiapine Placebo 0.73 0.41 1.28 1.20 0.68 2.12 

51 Haloperidol Placebo 0.42 0.24 0.75 2.30 1.24 4.26 

52 Ziprasidone Haloperidol 2.05 1.33 3.14 0.84 0.55 1.28 

52 Ziprasidone Placebo 0.45 0.25 0.82 1.75 1.01 3.04 

52 Haloperidol Placebo 0.22 0.12 0.40 2.09 1.20 3.63 

53 Olanzapine Divalproex 0.97 0.65 1.44 0.94 0.60 1.46 

53 Olanzapine Placebo 0.68 0.41 1.12 1.03 0.61 1.75 

53 Divalproex Placebo 0.70 0.42 1.17 1.10 0.64 1.88 

54 Risperidone Haloperidol - - - 2.12 0.96 4.64 

54 Risperidone Placebo - - - 1.82 0.82 4.01 

54 Haloperidol Placebo - - - 0.86 0.40 1.85 

55 Risperidone Haloperidol - - - 1.63 0.23 11.46 

55 Risperidone Lithium - - - 0.46 0.04 5.75 

55 Haloperidol Lithium - - - 0.29 0.03 3.12 

56 Risperidone Haloperidol 0.95 0.60 1.51 0.87 0.41 1.83 

56 Risperidone Placebo 0.53 0.32 0.86 1.42 0.72 2.82 

56 Haloperidol Placebo 0.56 0.34 0.91 1.64 0.80 3.37 

57 Asenapine Olanzapine 1.46 0.97 2.18 0.42 0.27 0.67 

57 Asenapine Placebo 0.49 0.29 0.83 1.09 0.67 1.77 

57 Olanzapine Placebo 0.34 0.20 0.57 2.56 1.51 4.35 

58 Asenapine Olanzapine - - - 0.56 0.35 0.87 

58 Asenapine Placebo - - - 1.46 0.88 2.42 

58 Olanzapine Placebo - - - 2.63 1.56 4.43 

59 Divalproex Lithium 0.97 0.43 2.17 1.71 0.76 3.89 

59 Divalproex Placebo 0.31 0.15 0.64 1.90 0.97 3.71 

59 Lithium Placebo 0.32 0.14 0.75 1.11 0.49 2.52 

60 Lamotrigine Placebo - - - 0.92 0.50 1.69 

60 Lamotrigine Lithium - - - 2.07 0.94 4.56 

60 Placebo Lithium - - - 2.24 1.03 4.89 

61 Lamotrigine Placebo - - - 0.67 0.35 1.28 

61 Lamotrigine Lithium - - - 0.37 0.19 0.72 

61 Placebo Lithium - - - 0.55 0.28 1.08 

62 Placebo Topiramate - - - 1.21 0.73 2.02 
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62 Placebo Lithium - - - 0.98 0.54 1.78 

62 Topiramate Lithium - - - 0.81 0.48 1.34 

63 Placebo Topiramate - - - 1.04 0.48 2.27 

63 Placebo Lithium - - - 1.49 0.71 3.12 

63 Topiramate Lithium - - - 1.43 0.69 2.96 

64 Paliperidone Quetiapine 0.80 0.54 1.19 1.05 0.64 1.71 

64 Paliperidone Placebo 0.44 0.27 0.72 2.48 1.47 4.19 

64 Quetiapine Placebo 0.55 0.34 0.90 2.38 1.41 4.00 

65 Olanzapine Haloperidol 1.82 0.67 4.93 3.27 1.22 8.76 

65 Olanzapine Placebo 0.75 0.43 1.31 1.97 1.11 3.49 

65 Haloperidol Placebo 0.41 0.15 1.13 0.60 0.23 1.60 
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II. Equivalence between different formulas for estimating the 

correlation of two log odds ratios. 

In this section of the appendix we prove the equivalence between different formulas for 

estimating the correlation of two log odds ratios: equation (8) in Wei and Higgins (210), 

equation (10) in this dissertation and equation (4) in Bagos (208).  

First we show the equivalence between equation (8) in (210) and equation (10) in this 

thesis. The covariance between two log odds ratios for a study comparing treatments 𝐴 and 𝐵 

for outcomes 𝑅 and 𝐷,following Wei and Higgins is (after dropping the study index): 

𝑐𝑜𝑣(𝑙𝑛𝑂𝑅𝑅 , 𝑙𝑛𝑂𝑅𝐷)

=
𝜌𝑊𝑚𝐴,𝑅𝐷

√𝑚𝐴,𝑅𝑚𝐴,𝐷 
 √

1

𝑒𝐴,𝑅
+
1

𝑓𝐴,𝑅
√
1

𝑒𝐴,𝐷
+
1

𝑓𝐴,𝐷

+
𝜌𝑊𝑚𝐵,𝑅𝐷

√𝑚𝐵,𝑅𝑚𝐵,𝐷 
 √

1

𝑒𝐵,𝑅
+
1

𝑓𝐵,𝑅
√
1

𝑒𝐵,𝐷
+
1

𝑓𝐵,𝐷
 

(23) 

In this equation: 

 𝑂𝑅𝑅, 𝑂𝑅𝐷 are the log odds ratios of the comparison 𝐴𝐵 for outcomes 𝑅, 𝐷. 

 𝑚𝐴,𝑅, 𝑚𝐴,𝐷, 𝑚𝐴,𝑅𝐷 are  the number of patients that reported on outcome 𝑅, 𝐷 or both in 

group 𝐴; similarly for 𝐵. 

 𝑒𝐴,𝑅, 𝑓𝐴,𝑅 are the number of successes and failures for outcome 𝑅, arm 𝐴. Similarly for 

outcome 𝐷 and treatment 𝐵. 

 𝜌𝑊 is the correlation coefficient between the two outcomes.  

Wei and Higgins used a fixed correlation coefficient independent of the treatment 

arm. Alternatively, correlation can be treatment-specific. Let us consider the data of Table 

8. The correlation coefficient between the two binary outcomes 𝑅 and 𝐷 in arm 𝐴 can be 

estimated as (217): 

�̂�𝑊,𝐴 =
𝑛11𝑛00 − 𝑛01𝑛10

√𝑒𝐴,𝑅𝑓𝐴,𝑅𝑒𝐴,𝐷𝑓𝐴,𝐷
 (24) 
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Table 8: Full cross-classified table for a study reporting on treatment A for response (R) 

and dropout (D). 

Treatment 𝑨 𝑫+ 𝑫− Total 

𝑹+ 𝑛11 𝑛10 𝑒𝐴,𝑅 

𝑹− 𝑛01 𝑛00 𝑓𝐴,𝑅 

Total 𝑒𝐴,𝐷 𝑓𝐴,𝐷 𝑁 

 

 

Following the methods for reconstructing the full cross tables when only the collapsed 

information is available (presented in Section 3.3.2 of this dissertation), we use the 𝜑 and 𝜁 

parameters to rewrite this coefficient as follows:  

 

�̂�𝑊,𝐴 =
𝑒𝐴,𝑅�̂�𝐴(1 − 𝜁𝐴)𝑓𝐴,𝑅 − (1 − 𝜁𝐴)𝑒𝐴,𝑅𝑓𝐴,𝑅𝜁𝐴

√𝑒𝐴,𝑅𝑓𝐴,𝑅𝑒𝐴,𝐷𝑓𝐴,𝐷
=
𝑒𝐴,𝑅𝑓𝐴,𝑅(�̂�𝐴 − 𝜁𝐴)

√𝑒𝐴,𝑅𝑓𝐴,𝑅𝑒𝐴,𝐷𝑓𝐴,𝐷
 (25) 

If we substitute 𝜁𝐴 =
1

𝑓𝐴,𝑅
(𝑒𝐴,𝐷 − 𝑒𝐴,𝑅�̂�𝐴) we get: 

�̂�𝑊,𝐴 =
𝑒𝐴,𝑅�̂�𝐴𝑓𝐴,𝑅 − 𝑒𝐴,𝑅𝑒𝐴,𝐷 + �̂�𝐴𝑒𝐴,𝐷

2

√𝑒𝐴,𝑅𝑓𝐴,𝑅𝑒𝐴,𝐷𝑓𝐴,𝐷
 (26) 

We can now use Equation (23) to compute the covariance of the log odd ratios. In case that 

all patients report on both outcomes we have 𝑚𝑇,𝑅 = 𝑚𝑇,𝐷 = 𝑚𝑇,𝑅𝐷 = 𝑁𝑇 for each treatment 

𝑇. Thus, we get: 

𝑐𝑜𝑣(𝑙𝑛𝑂𝑅𝑅 , 𝑙𝑛𝑂𝑅𝐷)

= ∑
𝑒𝑇,𝑅�̂�𝑇𝑓𝑇,𝑅 − 𝑒𝑇,𝑅𝑒𝑇,𝐷 + �̂�𝑇𝑒𝑇,𝐷

2

√𝑒𝑇,𝑅𝑓𝑇,𝑅𝑒𝑇,𝐷𝑓𝑇,𝐷𝑇=𝐴,𝐵

 √
1

𝑒𝑇,𝑅
+
1

𝑓𝑇,𝑅
√
1

𝑒𝑇,𝐷
+
1

𝑓𝑇,𝐷
 

(27) 

After some algebra, and substituting 𝑒𝑇,𝑅 + 𝑓𝑇,𝑅 = 𝑒𝑇,𝐷 + 𝑓𝑇,𝐷 = 𝑁𝑇 we get: 

𝜌�̂� =
1

�̂�𝑖,𝑅�̂�𝑖,𝐷
∑

�̂�𝑖,𝛵(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)
2
− 𝑒𝑖,𝑇,𝐷(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)

𝑒𝑖,𝑇,𝐷𝑓𝑖,𝑇,𝑅𝑓𝑖,𝑇,𝐷
𝑇=𝐴,𝐵

 (28) 

This is Equation (10) in our thesis.  
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We now show the equivalence between formula (8) of Wei and Higgins and formula (4) in 

Bagos. Using the notation of (208) for a study comparing treatment 𝐴 with treatment 𝐵, we 

denote 𝑒𝐴,𝑅 = 𝑛11+, 𝑓𝐴,𝐷 = 𝑛1+0, 𝑒𝐵,𝑅 = 𝑛01+, 𝑓𝐵,𝐷 = 𝑛0+0 etc. In this notation Equation (23) 

by Wei and Higgins, after using Equation (24) for the correlation coefficient between the two 

outcomes for each treatment, can be written as follows: 

𝑐𝑜𝑣(𝑙𝑛𝑂𝑅𝑅 , 𝑙𝑛𝑂𝑅𝐷) = 𝜌𝑊,𝐴√
1

𝑒𝐴,𝑅
+
1

𝑓𝐴,𝑅
√
1

𝑒𝐴,𝐷
+
1

𝑓𝐴,𝐷
+ 𝜌𝑊,𝐵√

1

𝑒𝐵,𝑅
+
1

𝑓𝐵,𝑅
√
1

𝑒𝐵,𝐷
+
1

𝑓𝐵,𝐷
= 

∑ 𝜌𝑊,𝑖√
1

𝑛𝑖1+
+

1

𝑛𝑖0+
√
1

𝑛𝑖+1
+

1

𝑛𝑖+0
𝑖=0,1

= ∑
𝑛𝑖11𝑛𝑖00 − 𝑛𝑖01𝑛𝑖10

√𝑛𝑖1+𝑛𝑖+1𝑛𝑖0+𝑛𝑖+0
√

𝑁𝑖
𝑛𝑖1+𝑛𝑖0+

√
𝑁𝑖

𝑛𝑖+1𝑛𝑖+0
=

𝑖=0,1

 

∑
𝑛𝑖11𝑛𝑖00 − 𝑛𝑖01𝑛𝑖10
𝑛𝑖1+𝑛𝑖+1𝑛𝑖0+𝑛𝑖+0

𝑖=0,1

𝑁𝑖 = ∑
𝑛𝑖11𝑛𝑖00 − 𝑛𝑖01𝑛𝑖10
𝑛𝑖1+𝑛𝑖+1𝑛𝑖0+𝑛𝑖+0

𝑖=0,1

(𝑛𝑖11 + 𝑛𝑖00 + 𝑛𝑖01+𝑛𝑖10) 

 

After some algebra this can be shown to be equivalent to Equation (4) of the paper by Bagos: 

𝐶𝑜𝑣(𝑙𝑛𝑂𝑅𝑅 , 𝑙𝑛𝑂𝑅𝐷) = ∑ ∑ ∑ (−1)𝑗−𝑘 (
𝑛𝑖𝑗𝑘

𝑛𝑖𝑗+𝑛𝑖+𝑘
)

𝑘=0,1

= 

𝑗=0,1𝑖=𝐴,𝐵

 

∑ (
𝑛𝑖11

𝑛𝑖1+𝑛𝑖+1
−

𝑛𝑖10
𝑛𝑖1+𝑛𝑖+0

−
𝑛𝑖01

𝑛𝑖0+𝑛𝑖+1
+

𝑛𝑖00
𝑛𝑖0+𝑛𝑖+0

)

𝑖=𝐴,𝐵

  

Thus, we conclude that the three different formulas for the covariances between two log odd 

ratios (formula (10) in this thesis, formula 4 in Bagos (208) and formula 8 from Wei and 

Higgins (210)) are equivalent. 
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III. The variance-covariance matrix for heterogeneity 

As we discuss in 3.3 of this thesis, for a three-arm study 𝑖, comparing treatments 𝐴, 𝐵 and 

𝐶 the (4 × 4) the variance-covariance matrix is assumed to have the following structure:  

𝜟(4×4) =

(

 
 

𝜏𝑅
2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝑅

2/2 𝜒1𝜏𝑅𝜏𝐷
𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷

2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝐷
2/2

𝜏𝑅
2/2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝑅

2 𝜌𝜏𝜏𝑅𝜏𝐷
𝜒1𝜏𝑅𝜏𝐷 𝜏𝐷

2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2
)

 
 

 (29) 

We can now make the extra assumption that 𝜒1 = 𝜒2 = 𝜒. Let us pick a pair of the random 

effects 𝛿𝑖,𝐴𝐵,𝑅, 𝛿𝑖,𝐴𝐶,𝑅 and compute the variance of their difference: 

𝑉𝑎𝑟(𝛿𝑖,𝐴𝐶,𝐷 − 𝛿𝑖,𝐴𝐵,𝑅) = 𝑉𝑎𝑟(𝛿𝑖,𝐴𝐶,𝐷) + 𝑉𝑎𝑟(𝛿𝑖,𝐴𝐵,𝑅) − 2𝐶𝑜𝑣(𝛿𝑖,𝐴𝐶,𝐷 , 𝛿𝑖,𝐴𝐵,𝑅) = 

= 𝜏𝑅
2 + 𝜏𝐷

2 − 2 𝜒 𝜏𝑅 𝜏𝐷 

(30) 

The consistency assumption implies that:  

𝛿𝑖,𝐴𝐶,𝐷 − 𝛿𝑖,𝐴𝐵,𝑅 = (𝛿𝑖,𝐵𝐶,𝐷 − 𝛿𝑖,𝐵𝐴,𝐷) − 𝛿𝑖,𝐴𝐵,𝑅 = 𝛿𝑖,𝐵𝐶,𝐷 − 𝛿𝑖,𝐵𝐴,𝐷 + 𝛿𝑖,𝐵𝐴,𝑅 

and by taking the variances we obtain: 

𝑉𝑎𝑟(𝛿𝑖,𝐴𝐶,𝐷 − 𝛿𝑖,𝐴𝐵,𝑅)

= 𝑉𝑎𝑟(𝛿𝑖,𝐵𝐶,𝐷) + 𝑉𝑎𝑟(𝛿𝑖,𝐵𝐴,𝐷) − 2𝐶𝑜𝑣(𝛿𝑖,𝐵𝐶,𝐷 , 𝛿𝑖,𝐵𝐴,𝐷)

+ 2𝐶𝑜𝑣(𝛿𝑖,𝐵𝐶,𝐷 , 𝛿𝑖,𝐵𝐴,𝑅) − 2𝐶𝑜𝑣(𝛿𝑖,𝐵𝐴,𝐷 , 𝛿𝑖,𝐵𝐴,𝑅) 

After using Equation (30)we get: 

𝜏𝑅
2 + 𝜏𝐷

2 − 2𝜒𝜏𝑅𝜏𝐷 = 𝜏𝑅
2 + 𝜏𝐷

2 + 𝜏𝑅
2 − 2

𝜏𝐷
2

2
+ 2𝜒𝜏𝑅𝜏𝐷 − 2𝜌𝜏𝜏𝑅𝜏𝐷 → 

𝜒 =
1

2
𝜌𝜏 

 

 

(31) 

So the simplified form of the variance-covariance matrix 𝛥(4×4) is:  

𝜟(4×4) =

(

 
 

𝜏𝑅
2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝑅

2/2 𝜒1𝜏𝑅𝜏𝐷
𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷

2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝐷
2/2

𝜏𝑅
2/2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝑅

2 𝜌𝜏𝜏𝑅𝜏𝐷
𝜒1𝜏𝑅𝜏𝐷 𝜏𝐷

2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2
)

 
 

 (32) 

 

This can be conveniently decomposed as follows: 
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𝜟(4×4) = 𝜏𝑅
2 (

1 0 1/2 0
0 0 0 0
1/2 0 1 0
0 0 0 0

) + 𝜏𝐷
2 (

0 0 0 0
0 1 0 1/2
0 0 0 0
0 1/2 0 1

)

+ 𝜌𝜏𝜏𝑅𝜏𝐷 (

0 1 0 1/2
1 0 1/2 0
0 1/2 0 1
1/2 0 1 0

) 

 

(33) 

𝜟(4×4) = 𝜏𝑅
2𝜟𝟏 + 𝜏𝐷

2𝜟𝟐 + 𝜌𝜏𝜏𝑅𝜏𝐷𝜟𝟑 (34) 

  

If we choose not to employ the 𝜒1 = 𝜒2 = 𝜒 assumption, then instead of (31) we get that 

𝜒1 + 𝜒2 = 𝜌
𝜏 and Equation (34) can be expressed in terms of two correlation parameters. 

Note that the analysis in this section holds for all type of outcomes. 𝑅 and 𝐷 may be 

binary (in which case we analyze the log odds ratios, log risk ratios or log hazard ratios), 

continuous (and we can use  mean difference or standardized mean difference) or a mixture of 

binary and continuous, e.g. 𝑅 can be binary and 𝐷 continuous.  
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IV. Computing within-study correlations from a full cross table 

Consider the case of a three-arm study 𝑖 for which we have the full cross-classified 

information presented in Table 9. 

 

Table 9: Full cross table for a study i comparing treatments A,B and C for outcomes R and 

D. 

Treatment A 𝑹+ 𝑹− TOTAL 

𝑫+ 𝑛𝑖,𝐴(11) 𝑛𝑖,𝐴(01) 𝑛𝑖,𝐴(+1) 

𝑫− 𝑛𝑖,𝐴(10) 𝑛𝑖,𝐴(00) 𝑛𝑖,𝐴(+0) 

TOTAL 𝑛𝑖,𝐴(1+) 𝑛𝑖,𝐴(0+) 𝑁𝑖,𝐴 

Treatment B 𝑹+ 𝑹− TOTAL 

𝑫+ 𝑛𝑖,𝐵(11) 𝑛𝑖,𝐵(01) 𝑛𝑖,𝐵(+1) 

𝑫− 𝑛𝑖,𝐵(10) 𝑛𝑖,𝐵(00) 𝑛𝑖,𝐵(+0) 

TOTAL 𝑛𝑖,𝐵(1+) 𝑛𝑖,𝐵(0+) 𝑁𝑖,𝐵 

Treatment C 𝑹+ 𝑹− TOTAL 

𝑫+ 𝑛𝑖,𝐶(11)  𝑛𝑖,𝐶(01)  𝑛𝑖,𝐶(+1) 

𝑫− 𝑛𝑖𝐶(10) 𝑛𝑖,𝐶(00)  𝑛𝑖,𝐶(+0) 

TOTAL 𝑛𝑖,𝐶(1+)  𝑛𝑖,𝐶(0+)  𝑁𝑖,𝑐 

 

 

For the margins we have used the notation of Bagos (208), so that a plus sign in an index 

denotes a sum, e.g. 𝑛𝑖,𝐵(+0) = 𝑛𝑖,𝐵(00) + 𝑛𝑖,𝐵(10), 𝑛𝑖,𝛢(0+) = 𝑛𝑖,𝛢(00) + 𝑛𝑖,𝐵(01) etc; this notation 

significantly simplifies the expressions for the correlation coefficient.  

In that paper it was shown that for the covariance of two log odds ratios of the same 

comparison it holds: 

𝐶𝑜𝑣(𝑦𝐴𝐵𝑅 , 𝑦𝐴𝐵𝐷) = ∑ ∑ ∑ (−1)𝑗−𝑘 (
𝑛𝑖𝑗𝑘

𝑛𝑖𝑗+𝑛𝑖+𝑘
)

𝑘=0,1

 

𝑗=0,1𝑖=𝐴,𝐵

 

So that the correlation coefficient is estimated as: 
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𝜌𝑖,𝐴𝐵𝑅,𝐴𝐵𝐷 =
1

�̂�𝑖,𝑅�̂�𝑖,𝐷
∑ ∑ ∑ (−1)𝑗−𝑘 (

𝑛𝑖𝑗𝑘

𝑛𝑖𝑗+𝑛𝑖+𝑘
)

𝑘=0,1

 

𝑗=0,1𝑖=𝐴,𝐵

 (35) 

Following the same methods we show how to compute the covariance of different 

outcomes of different comparisons. Let us focus for example in the covariance of the log odds 

ratio of 𝐴𝐵 comparison for outcome 𝑅 and 𝐵𝐶 comparison for outcome 𝐷. After dropping the 

study index 𝑖 and setting 𝑐𝑜𝑣(ln 𝑛𝑇𝑗𝑘 , ln 𝑛𝑇΄𝑙𝑚) = 0, ∀ 𝑇 ≠ 𝑇
′ we obtain 

𝑐𝑜𝑣(𝑦𝐴𝐵,𝑅 , 𝑦𝐵𝐶,𝐷) = 𝑐𝑜𝑣(ln 𝑛𝐵0+ , ln 𝑛𝐵+1) −  𝑐𝑜𝑣(ln 𝑛𝐵0+ , ln 𝑛𝐵+0) 

−𝑐𝑜𝑣(ln 𝑛𝐵1+ , ln 𝑛𝐵+1)+ 𝑐𝑜𝑣(ln 𝑛𝐵1+ , ln 𝑛𝐵+0) 

and consequently: 

 𝐶𝑜𝑣(𝑦𝐴𝐵𝑅 , 𝑦𝐴𝐵𝐷) = ∑ ∑ (−1)𝑗−𝑘 (
𝑛𝐵𝑗𝑘

𝑛𝐵𝑗+𝑛𝐵+𝑘
)𝑘=0,1  𝑗=0,1   

Note that this method implies 𝑐𝑜𝑣(𝑦𝐴𝐵,𝑅 , 𝑦𝐴𝐶,𝐷) = 𝑐𝑜𝑣(𝑦𝐴𝐶,𝑅 , 𝑦𝐴𝐵,𝐷), etc. From this 

formula, after restoring the study index 𝑖, the correlation coefficient is easily computed as: 

𝜌𝑖,𝐴𝐵𝑅,𝐴𝐵𝐷 =
1

�̂�𝑖,𝑅�̂�𝑖,𝐷
∑ ∑ (−1)𝑗−𝑘 (

𝑛𝐵𝑗𝑘

𝑛𝐵𝑗+𝑛𝐵+𝑘
)

𝑘=0,1

 

𝑗=0,1

 (36) 

When only the collapsed tables are available we can reconstruct the full cross tables in the 

way described in Section 3.3.2.1 of this thesis. With the full cross tables at our disposal we can 

use Equations (35) and (36) to estimate all the correlation coefficients needed.  

Switching to the notation used in this dissertation, i.e. 𝑒𝑇,𝑅 = 𝑛𝑇(1+), 𝑓𝑇,𝑅 = 𝑛𝑇(0+),  𝑒𝑇,𝐷 =

𝑛𝑇(+1) and  𝑓𝑇,𝐷 = 𝑛𝑇(+0) and after some algebra we get: 

�̂�𝑖,𝐴𝐵𝑅𝐴𝐵𝐷 =
1

�̂�𝑖,𝐴𝐵,𝑅�̂�𝑖,𝐴𝐵,𝐷
∑

�̂�𝑖,𝛵(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)
2
− 𝑒𝑖,𝑇,𝐷(𝑒𝑖,𝑇,𝑅 + 𝑓𝑖,𝑇,𝑅)

𝑒𝑖,𝑇,𝐷𝑓𝑖,𝑇,𝑅𝑓𝑖,𝑇,𝐷
𝑇=𝐴,𝐵

 (37) 

 

 and 

�̂�𝑖,𝐴𝐵𝑅𝐴𝐵𝐷 =
1

�̂�𝑖,𝐴𝐵,𝑅�̂�𝑖,𝐴𝐶,𝐷

�̂�𝑖,𝐴(𝑒𝑖,𝐴,𝑅 + 𝑓𝑖,𝐴,𝑅)
2
− 𝑒𝑖,𝐴,𝐷(𝑒𝑖,𝐴,𝑅 + 𝑓𝑖,𝐴,𝑅)

𝑒𝑖,𝐴,𝐷𝑓𝑖,𝐴,𝑅𝑓𝑖,𝐴,𝐷
 

(38) 
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V. Eliciting prior distribution for the φ parameters from the experts 

In this section we present the details of the elicitation process for the prior distributions 

for the 𝜑 parameters, using the method described in Section 3.3.2.2 of this thesis. The 

following program in R can be used to construct a beta distribution for the 𝜑 parameter based 

on expert opinions for the 95% confidence interval of 𝜑: 

 

betaparameters<-function(CIb,CIu){ 

ff=c(rep(0,1000000)) 

aaa=matrix(ff,1000) 

for (i in 1:1000) 

{a=i*0.1 

for (k in 1:1000) 

{b=k*0.1 

aaa[i,k]=(abs(pbeta(CIb,a,b)-0.025)+abs(pbeta(CIu,a,b)-0.975)) 

}} 

a1=which.min(aaa) 

parameters=c(0,0) 

parameters[1]=(a1 %% 1000)*0.1 

parameters[2]=(a1%/%1000)*0.1 

return(parameters)} 

 

    The inputs of this routine are CIu and Cib, the upper and lower limits of the 95% 

confidence interval. The outputs are a and b, the parameters of the beta distribution. 

For the application of our methods to the acute mania example, we assigned a weight 

to each expert according to the years of his/her experience plus the number of randomized 

control trials he/she has participated in. For each expert 𝑘 the two parameters 𝛼𝑘, 𝛽𝑘 of the 

beta distribution were computed for each treatment that he/she gave information about. 

These parameters were then combined into a weighted average for 𝛼 and 𝛽. Details are 

presented in Table 10. 
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Table 10: Parameters of the individual prior distribution for each expert and their 

weighted average 

  Aripiprazole Placebo Lithium Haloperidol Quetiapine Ziprasidone Olanzapine 

ID weight α β α β α β α β α β α β α β 

1 0.08 16.8 52.3 23.1 55.1 17 52.3 19.2 53.5 16.8 52.3 23.1 55.1 14.2 49.8 

2 0.04 6.7 22 12 116 6.6 13.1 6.6 13.1 10.9 46.4 10.9 46.4 10.9 46.4 

3 0.06 8.3 12.9 10.1 17.4 14 15.6 15.7 14 14.1 15.6 15.6 23.8 12.4 15.3 

4 0.10 4.8 12.5 11.3 11.3 8.3 12.9 8.3 12.9 6.6 13.1 6.6 13.1 3 11 

5 0.08 10.9 46.4 8.3 12.9 23 55.1 36 54.4 25.5 90.1 47.6 99.8 71.5 215 

6 0.02 23.1 55.1 4.8 12.5 11 46.4 4.8 12.5 10.9 46.4  – –  23.1 55.1 

7 0.04 3.9 18.6 4.9 19.6 9.6 23.6 4.8 12.5 10.9 46.4  – –  10.9 46.4 

8 0.01 4.8 12.5 10.9 46.4 4.5 4.5 8.3 12.9 8.3 12.9  – –  8.3 12.9 

9 0.02 0.9 7.7 5.3 3 0.4 7.98 0.68 10.6 3.9 18.6 4.1 36.2 0.42 7.98 

10 0.03 12 116 12 116 12 116 10.9 46.4 27.8 161.9 12 115.6 27.8 162 

11 0.11 11.3 11.3 6.9 6.9 11 11.3 6.9 6.8 9.9 12.2 6 7.5 4.9 7.8 

12 0.07 4.8 12.5 10.9 46.4 11 46.4 6.6 13.1 4.8 12.5 4.8 12.5 4.8 12.5 

13 0.15 3.4 5.1 2.2 1.5 23 55.1 11.3 11.3 3.1 5.2 8.3 12.9 96.3 225 

14 0.03 18.3 22.5 23.1 55.1 4.8 12.5 11.3 11.3 23.1 55.1 11.3 11.2 23.1 55.1 

15 0.04 13.2 32 9.8 71 345 982 46.9 87.8 35.4 176.4 42.2 143.4 80.4 157 

16 0.05 24.5 73.3 79.5 362 57 85.6 45.4 49.2 29.8 76.1 54.6 131.7 42.4 43.2 

17 0.04 11.2 27.4 9.8 71 8.3 12.9 5.5 8.7 13.3 27.9 11.6 31.3 21.8 31.7 

18 0.04 31.6 43.9 6.9 34.8 8.7 9.4 15.7 11.5 24.3 45.9 6.9 11.8 15.6 23.8 

19 0.02 42.1 51.6 10.9 46.4 7.6 5.9 13 8.2 9.9 26.9 14.4 24 11.9 27.6 

Weighted 

average 
11.2 27.4 12.9 47.4 28.3 72.0 15.2 23.4 13.7 40.9 16.7 40.6 32.1 78.3 
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  Lamotrigine Divalproex Risperidone Asenapine Carbamazepine Topiramate  Gabapentin 

ID weight α β α β α β α β α β α β α β 

1 0.08 23.1 55.1 16.8 52 19.2 53.5 16.8 52.3 19.2 53.5 25.7 55.6 25.7 55.6 

2 0.04  – –  6.7 22 6.7 22 10.9 46.4 6.7 22  – –   – –  

3 0.06 15.6 35 16.1 24 17.7 22.7 16.6 27.6 14.8 32.5 20.9 23.1 15.5 19.9 

4 0.10 9.9 12.2 9.9 12 4.8 12.5 8.3 12.9 8.3 12.9 8.3 12.9 9.9 12.2 

5 0.08 23.1 55.1 71.5 215 36.3 97.2 23.1 55.1 12.6 24.2 47.3 47.2 47.3 47.2 

6 0.02 4.8 12.5  – –   – –   – –   – –   – –   – –  

7 0.04 3.8 7.9 12.3 34 4.2 9.8  – –  12.6 24.2  – –   – –  

8 0.01  – –  4.8 13 8.3 12.9  – –  8.3 12.9  – –   – –  

9 0.02 8.3 12.9 0.42 8 0.42 7.95 2.6 22 3.9 18.6 6.7 22 6.7 22 

10 0.03 12 116 27.8 117 27.8 161.9 12 115.6 12 115.6 12 115.6 12 115.6 

11 0.11 55.2 23 8.3 13 11.3 11.3 6.9 6.8 6.9 6.8 23.7 9.5 11.3 11.3 

12 0.07 10.9 46.4 16.8 52 4.8 12.5 4.8 12.5 16.8 52.3  – –  10.9 46.4 

13 0.15 54.5 35.9 10.9 46 23.1 55.1 8.3 12.9 4.5 4.4 54.5 35.9 5.3 3 

14 0.03 54.5 35.9 23.1 55 10.9 46.4 36 54.4 36 54.4 47.3 47.2 54.5 35.9 

15 0.04 20.8 59.3 28.9 84 82.1 131.6 29.7 93.4 21.2 71.1 21.2 71.1 21.5 104.8 

16 0.05 55.7 152 41.7 111 52.9 86.8 102 186.7 81 185.7 100 256.8 45.7 113.2 

17 0.04 16.6 61.2 41.6 68 6.3 13.1 10.4 21 42.8 87.8 18 62.4 16.6 61.2 

18 0.04 9.6 18.6 9.7 14 12.6 24.2 22.3 25.2 11.3 15.9 9.6 23.6 12.6 24.2 

19 0.02 42.1 51.6 17.2 23 11.2 27.4 15.6 23.8 9.7 10.5 12.6 24.2 18.6 27.1 

Weighted 

average 
29.5 43.5 20.4 55.2 19.2 43.4 17.8 38.8 16.3 37.6 32.6 48.8 20.6 39.9 
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VI. Estimated values of the within-study correlation coefficients 

In Table 11 we give the within-study correlation coefficients for the log odd ratios in 

two-arm studies reporting both response and dropout, as estimated using the elicited experts’ 

opinion for the 𝜑 parameters and Equation (6) from the main paper.   

Table 11: Within-study correlation coefficients estimated for two-arm studies reporting 

both outcomes. 

Study ID 𝝆 
95% C.I. 

(lower) 

95% 

C.I. 

(upper) 

1 0.15 -0.05 0.36 

2 -0.36 -0.51 -0.20 

3 0.03 -0.17 0.27 

4 -0.58 -0.69 -0.47 

5 -0.58 -0.70 -0.44 

6 -0.33 -0.45 -0.19 

7 -0.28 -0.44 -0.11 

8 0.18 0.09 0.23 

9 -0.10 -0.24 0.06 

10 -0.45 -0.56 -0.33 

11 -0.28 -0.39 -0.17 

12 -0.11 -0.26 0.05 

14 0.02 -0.19 0.25 

16 -0.37 -0.46 -0.27 

17 -0.43 -0.57 -0.28 

18 -0.10 -0.22 0.03 

19 -0.63 -0.63 -0.63 

20 0.07 -0.22 0.33 

21 -0.09 -0.27 0.11 

22 0.07 0.02 0.14 

23 -0.32 -0.47 -0.17 

24 -0.34 -0.44 -0.23 

25 0.08 -0.06 0.23 

27 -0.34 -0.45 -0.22 

28 -0.15 -0.23 -0.07 

29 0.24 0.03 0.38 

30 0.17 0.07 0.28 

32 -0.28 -0.40 -0.15 

33 0.30 0.19 0.38 

36 0.15 0.05 0.18 

37 -0.30 -0.43 -0.16 
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38 -0.16 -0.30 -0.01 

42 0.25 0.16 0.35 

43 0.24 0.13 0.36 

47 -0.25 -0.34 -0.15 
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VII. Extending the model presented in Chapter 3 

In this section of the appendix we discuss how to extend the model discussed in Chapter 3, 

for the case of studies with more than three arms and for more than two outcomes of interest.  

i. Handling studies with four arms or more 

The models described so far can be extended when multi-arm studies with more than three 

arms are present. Suppose a four-arm study compares treatments 𝐴, 𝐵, 𝐶 and 𝐸 for efficacy (𝑅) 

and dropout (𝐷). If we choose the basic parameters to be the comparisons 𝐴𝐵, 𝐴𝐶 and 𝐴𝐸 for 

both 𝑅 and 𝐷, the random effects can be assumed to follow a multivariate normal distribution 

with variance-covariance matrix: 

𝜟(6×6) =

(

 
 
 
 

𝜏𝑅
2 . . . . .

𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2 . . . .

𝜏𝑅
2/2 𝜒2𝜏𝑅𝜏𝐷 𝜏𝑅

2 . . .

𝜒1𝜏𝑅𝜏𝐷 𝜏𝐷
2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷

2 . .

𝜏𝑅
2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝑅

2/2 𝜏𝐷
2/2 𝜏𝑅

2 .

𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷
2/2 𝜌𝜏𝜏𝑅𝜏𝐷 𝜏𝐷

2/2 𝜏𝐷
2/2 𝜏𝐷

2)

 
 
 
 

 

This matrix is analogous to the one in Equation (33) and the parameters 𝑃, 𝜏𝑅, 𝜏𝐷 need to 

be estimated from the data. The random errors are also assumed to follow a multivariate normal 

distribution, the variance covariance-matrix is of the following form (the * represent the 

standard errors that multiply the 𝜌’s, and we dropped the study index 𝑖 for simplicity): 

𝜮 =

(

 
 
 
 
 

𝜎𝐴𝐵,𝑅
2 . . . . .

𝜌𝐴𝐵𝑅𝐴𝐵𝐷 ∗ 𝜎𝐴𝐵,𝐷
2 . . . .

𝜅𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝐴𝐵𝐷𝐴𝐶𝑅∗ 𝜎𝛢𝐶,𝑅
2 . . .

𝜌𝐴𝐵𝑅𝐴𝐶𝐷 ∗ 𝜅𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝐴𝐶𝑅𝐴𝐶𝐷 ∗ 𝜎𝐴𝐶,𝐷
2 . .

𝜅𝐴𝐵𝑅𝐴𝐸𝑅 𝜌𝐴𝐵𝐷𝐴𝐸𝑅 ∗ 𝜅𝐴𝐶𝑅𝐴𝐸𝑅 𝜌𝐴𝐸𝑅𝐴𝐶𝐷 ∗ 𝜎𝛢𝛦,𝑅
2 .

𝜌𝐴𝐵𝑅𝐴𝐸𝐷 ∗ 𝜅𝐴𝐵𝐷𝐴𝐸𝐷 𝜌𝐴𝐶𝑅𝐴𝐸𝐷 ∗ 𝜅𝐴𝐶𝐷𝐴𝐸𝐷 𝜌𝐴𝐸𝑅𝐴𝐸𝐷 ∗ 𝜎𝛢𝛦,𝐷
2

)

 
 
 
 
 

 

The 𝜅’s can be readily estimated from the data and, as in the case of three-arm studies, we 

can use the 𝜑 parameters to reconstruct the full cross tables and then use formulas analogous to 

(37) and (38) to estimate all correlations needed. It is easy to see that this method can be applied 

without complications to multi-arm studies with any number of arms. 

ii. Handling more than two correlated outcomes 

Assume we have studies reporting on a specific comparison 𝐴 versus 𝐵, for the correlated 

outcomes 𝑅, 𝐷 and 𝑉. The random errors for every study can be assumed to follow a multivariate 
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normal distribution (after dropping the i study index): 

(

𝛿𝐴𝐵,𝑅
𝛿𝐴𝐵,𝐷
𝛿𝐴𝐵,𝑉

)~𝑁(0,(

𝜏𝑅
2 . .

𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜏𝐷
2 .

𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜌𝜏,𝐷𝑉𝜏𝑉𝜏𝐷 𝜏𝑉
2

)) (39) 

Note that there are in principal three heterogeneity variances and three different between-

study correlation coefficients. The random errors follow a normal distribution: 

(

𝜎𝐴𝐵,𝑅
𝜎𝐴𝐵,𝐷
𝜎𝐴𝐵,𝑉

)~𝑁(0,(

𝜎𝑅
2 . .

𝜌𝑅𝐷𝜎𝑅𝜎𝐷 𝜎𝐷
2 .

𝜌𝑅𝑉𝜎𝑅𝜎𝑉 𝜌𝐷𝑉𝜎𝑉𝜎𝐷 𝜎𝑉
2

)) 

We can again reconstruct the full cross tables from the collapsed ones, but in this case we 

will need information on three different conditional probabilities, e.g. 𝛲(𝐷+|𝑅+), 𝑃(𝑉+|𝑅+) 

and  𝑃(𝑉+|𝐷+) for every treatment. We can then use Equation (35) and compute every 

coefficient needed. For the case of a network meta-analysis with three correlated outcomes the 

between-study variance-covariance matrix for a three-arms trial is a (6 × 6) generalization of 

the matrix in Equation (34). The within-study correlations can again be estimated after eliciting 

the conditional probabilities 𝛲(𝐷+|𝑅+), 𝑃(𝑉+|𝑅+) and  𝑃(𝑉+|𝐷+). 

A generalization for more arms or more outcomes follows the same principles. 
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VIII. The variance-covariance matrix for random errors 

In this section we describe how we can simplify the within-study variance-covariance 

matrix for multi-arm studies, by employing a set of assumptions. The results of this section 

are then employed in Section 4.2.3.1 of this dissertation. 

For a three-arm study 𝑖 that compares treatments 𝐴, 𝐵 and 𝐶 we assume that there are 

two different correlation coefficients, 𝜌∗ that correlates same comparisons-different 

outcomes, and 𝜌∗∗ for different comparisons different outcomes, i.e: 

𝜌𝑖,𝐴𝐵𝑅𝐴𝐵𝐷 = 𝜌𝑖,𝐴𝐶𝑅𝐴𝐶𝐷 ≡ 𝜌𝑖
∗,

  
𝜌𝑖,𝐴𝐶𝑅𝐴𝐵𝐷 = 𝜌𝑖,𝐴𝐵𝑅𝐴𝐶𝐷 = 𝜌𝑖,𝐵𝐶𝑅𝐵𝐴𝐷 ≡ 𝜌𝑖

∗∗ 

The variance-covariance matrix for the random errors in this study is the following: 

𝜮𝑖 =

(

 
 

𝜎𝑖,𝐴𝐵,𝑅
2 . . .

𝜌𝑖
∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐵,𝐷 𝜎𝑖,𝐴𝐵,𝐷

2 . .

𝜅𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 𝜌𝑖
∗∗𝜎𝑖,𝐴𝐵,𝐷𝜎𝑖,𝐴𝐶,𝑅 𝜎𝑖,𝐴𝐶,𝑅

2 .

𝜌𝑖
∗∗𝜎𝑖,𝐴𝐵,𝑅𝜎𝑖,𝐴𝐶,𝐷 𝜅𝑖,𝐴𝐵𝐷𝐴𝐶𝐷 𝜌𝑖

∗𝜎𝑖,𝐴𝐶,𝑅𝜎𝑖,𝐴𝐶,𝐷 𝜎𝑖,𝐴𝐶,𝐷
2

)

 
 

 (40) 

The 𝜎 and 𝜅 parameters in the matrix above can be estimated from the data provided 

in the studies using well-known formulas.  

Following a similar method to the one presented in Section III of Appendix 1, after 

assuming consistency we get: 

𝑦𝑖,𝐴𝐶,𝑅 − 𝑦𝑖,𝐵𝐶,𝐷 = 𝑦𝑖,𝐵𝐶,𝑅 − 𝑦𝑖,𝐵𝐴,𝑅 − 𝑦𝑖,𝐵𝐶,𝐷 (41) 

Taking the variance in both arms of Equation (41) we get: 

𝑉𝑎𝑟(𝑦𝑖,𝐴𝐶,𝑅) + 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝐷) − 2𝜌
∗∗𝜎𝑖,𝐴𝐶,𝑅𝜎𝑖,𝐵𝐶,𝐷

= 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝑅) + 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐴,𝑅) + 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝐷) − 2𝜅𝑖,𝐵𝐶𝑅𝐵𝐴𝑅

− 2𝜌∗𝜎𝑖,𝐵𝐶,𝑅𝜎𝑖,𝐵𝐶,𝐷 + 2𝜌
∗𝜎𝑖,𝐵𝐴,𝑅𝜎𝑖,𝐵𝐶,𝐷 

(42) 

If we use 𝑒𝑖,𝑌,𝑊 to denote the number of successes and 𝑓𝑖,𝑌,𝑊 the number of failures 

reported in every treatment arm 𝑌, for outcome 𝑊 of the study 𝑖, the left-hand side of 

Equation (42) can be written as follows: 

𝐿𝐻 = (
1

𝑒𝑖,𝐴,𝑅
+

1

𝑓𝑖,𝐴,𝑅
+

1

𝑒𝑖,𝐶,𝑅
+

1

𝑓𝑖,𝐶,𝑅
) + (

1

𝑒𝑖,𝐵,𝐷
+

1

𝑓𝑖,𝐵,𝐷
+

1

𝑒𝑖,𝐶,𝐷
+

1

𝑓𝑖,𝐶,𝐷
)

− 2𝜌∗∗𝜎𝑖,𝐴𝐶,𝑅𝜎𝑖,𝐵𝐶,𝐷 
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The right-hand side can be written as: 

𝑅𝐻 = (
1

𝑒𝑖,𝐵,𝑅
+

1

𝑓𝑖,𝐵,𝑅
+

1

𝑒𝑖,𝐶,𝑅
+

1

𝑓𝑖,𝐶,𝑅
) + (

1

𝑒𝑖,𝐴,𝑅
+

1

𝑓𝑖,𝐴,𝑅
+

1

𝑒𝑖,𝐵,𝑅
+

1

𝑓𝑖,𝐵,𝑅
)

+ (
1

𝑒𝑖,𝐵,𝐷
+

1

𝑓𝑖,𝐵,𝐷
+

1

𝑒𝑖,𝐶,𝐷
+

1

𝑓𝑖,𝐶,𝐷
) − 2(

1

𝑒𝑖,𝐵,𝑅
+

1

𝑓𝑖,𝐵,𝑅
) − 2𝜌∗𝜎𝑖,𝐵𝐶,𝑅𝜎𝑖,𝐵𝐶,𝐷

− 2𝜌∗∗𝜎𝑖,𝐵𝐴,𝑅𝜎𝑖,𝐵𝐶,𝐷 

By equating, we get: 

𝜌𝑖
∗∗ =

𝜌𝑖
∗𝜎𝑖,𝐵𝐶,𝑅

𝜎𝑖,𝐵𝐴,𝑅 + 𝜎𝑖,𝐴𝐶,𝑅
 (43) 

If we also assume that the standard deviations of different comparisons of the same 

outcome are equal within every study, i.e. 𝜎𝑖,𝐵𝐶,𝑅 = 𝜎𝑖,𝐵𝐴,𝑅 = 𝜎𝑖,𝐴𝐶,𝑅, we get that  

𝜌𝑖
∗∗ =

𝜌𝑖
∗

2
 

(44) 

Note that in order for this to be a consistent result we must also assume 𝜎𝑖,𝐵𝐶,𝐷 =

𝜎𝑖,𝐵𝐴,𝐷 = 𝜎𝑖,𝐴𝐶,𝐷.  

Even though we have assumed equal variances to simplify the variance-covariance 

matrix of Equation (40), in the end of the day the 𝜎 and 𝜅 parameters are still left distinct 

and are estimated from the data. Equation (44) is just used to minimize the number of 

correlation parameters needed for the matrix in Equation (40). 

The two assumptions we used (equal correlations, equal variances) are a justified 

approximation when all treatments in each study are comparable and the arms are balanced. 

This, however, may not always be the case. We can repeat the whole analysis without making 

any assumptions of equality in either the correlation coefficients or the variances. By taking 

analogous relations to the one in Equation (41) we get the following set of equations, after 

dropping the study index 𝑖 for simplicity: 

𝜌𝛢𝐶𝑅𝐴𝐶𝐷𝜎𝛢𝐶𝑅 = 𝜌𝛢𝛣𝑅𝐴𝐶𝐷𝜎𝛢𝐶𝐷 + 𝜌𝐵𝐶𝑅𝐴𝐶𝐷𝜎𝐵𝐶𝑅  

𝜌𝛢𝐶𝑅𝐴𝐶𝐷𝜎𝛢𝐶𝐷 = 𝜌𝛢𝐶𝑅𝐴𝐵𝐷𝜎𝛢𝐵𝐷 + 𝜌𝐴𝐶𝑅𝐵𝐶𝐷𝜎𝐵𝐶𝐷 

𝜌𝛢𝐵𝑅𝐴𝐵𝐷𝜎𝛢𝐵𝑅 = 𝜌𝛢𝐶𝑅𝐴𝐵𝐷𝜎𝛢𝐶𝑅 − 𝜌𝐵𝐶𝑅𝐴𝐵𝐷𝜎𝐵𝐶𝑅  

𝜌𝛢𝐵𝑅𝐴𝐵𝐷𝜎𝛢𝐵𝐷 = 𝜌𝛢𝐵𝑅𝐴𝐶𝐷𝜎𝛢𝐶𝐷 − 𝜌𝐴𝐵𝑅𝐵𝐶𝐷𝜎𝐵𝐶𝐷 

𝜌𝐵𝐶𝑅𝐴𝐵𝐷𝜎𝐵𝐶𝑅 = 𝜌𝛢𝐶𝑅𝐵𝐶𝐷𝜎𝛢𝐶𝑅 − 𝜌𝐴𝐵𝑅𝐵𝐶𝐷𝜎𝐴𝐶𝑅  

(45) 
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By cycling through the treatment and outcome indices we can produce more equations 

of this form, but it turns out they are linearly dependent to the ones above. Thus, out of the 

nine different correlation coefficients entering the five Equations (45) only four of them are 

independent. This set of equations is the most general solution to the problem of finding the 

correlation coefficients in a three-arm study. 

Depending on the nature of the problem one can now make extra assumptions to 

simplify these equations. If for example out of the three treatments 𝐴, 𝐵 and 𝐶 being 

compared in a study, 𝐴 is the placebo, while the other two are active treatments with similar 

results in both outcomes, it would be justifiable to assume 𝜌𝐴𝐶𝑅𝐴𝐵𝐷 = 𝜌𝐴𝐵𝑅𝐴𝐶𝐷 = 𝜌
∗∗. If we 

also set 𝜌𝐴𝐵𝑅𝐴𝐵𝐷 = 𝜌𝐴𝐶𝑅𝐴𝐶𝐷 = 𝜌𝐵𝐶𝑅𝐵𝐶𝐷 = 𝜌
∗, we find: 

𝜌∗∗ = 𝜌∗∗
𝜎𝛢𝐵𝑅𝜎𝛢𝛣𝐷 + 𝜎𝐴𝐶𝑅𝜎𝐴𝐶𝐷 − 𝜎𝐵𝐶𝑅𝜎𝐵𝐶𝐷

𝜎𝛢𝐵𝑅𝜎𝛢𝐶𝐷 + 𝜎𝛢𝐵𝐷𝜎𝛢𝐶𝑅
 

This equation allows a simplification of the variance-covariance matrix without the 

need of any assumption on the variances of the treatment effects. Also note that this equation 

further reduces to Equation (44) by employing the equal variance assumption. 
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IX. Ensuring the positive-definiteness of variance-covariance matrices 

The correlation coefficient parameter 𝜌𝑖 of the model described in Section 4.2.3.1 

needs to be truncated separately for each three-arm study in order to ensure the positive-

definiteness of the variance-covariance matrix of  Equation (8) of the main paper. The 

following R (149) program can be used to compute the (study-specific) upper limits 𝑢𝑖 for 

the correlation coefficient is the: 

rho=c(rep(0,N))    

ff=function(r,m){  

 s=s1+r*s2         

 ss=eigen(s[m,,],only.values = TRUE) 

 mineg=min(ss[[1]]) 

 mineg} 

 for(m in 1:N){ 

  for(i in 1:100){ 

 if (ff(0.01*i,m)*ff(0.01*i+0.01,m)<0) 

  {rho[m]=0.01*i}}} 

rho   

  

The program utilizes the fact that a positive-definite matrix has only positive 

eigenvalues. The inputs needed are the number 𝑁 of the three-arm studies and two arrays s1 

and s2 which are (𝑁 × 4 × 4)-dimensional and contain the 𝑁 in number (4 × 4)-

dimensional matrices 𝜮𝒊,𝟏 and 𝜮𝒊,𝟐 of Equation (21) of the paper. These are estimated from 

the data. A similar program can be used to compute the lower values. This, however, is 

redundant, because the limits are symmetrical around zero. The results for the 18 three-arm 

studies of the acute mania dataset are given in Table 12. 
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Table 12: Upper limit for the correlation coefficient in the three-arm studies 

Study 𝒖𝒊  

48 0.99 

49 0.96 

50 0.96 

51 0.98 

52 0.54 

53 0.65 

54 0.81 

55 0.86 

56 0.99 

57 0.68 

58 0.84 

59 0.95 

60 0.78 

61 0.80 

62 0.83 

63 0.82 

64 0.75 

65 0.85 
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X. Generalizing the alternative model by Riley et al.  

As we discuss in Section 4.2.2, Riley et al. (213) proposed a model for bivariate 

pairwise meta-analysis in which a single correlation coefficient models all correlations; this 

hybrid coefficient incorporates both within and between-study correlation.  

For a two-arm study 𝑖 reporting on outcomes 𝑅 and 𝐷 a bivariate normal distribution 

is assumed: 

(
𝑦𝑖,𝑅
𝑦𝑖,𝐷

)~𝑁 ((
𝛽1
𝛽2
) , 𝜴𝒊) 

With the variance-covariance matrix given by:  

𝜴𝒊 =

(

 
𝜓𝑅
2 + 𝜎𝑖,𝑅

2 𝜌ℎ√𝜓𝑅
2 + 𝜎𝑖,𝑅

2 √𝜓𝐷
2 + 𝜎𝑖,𝐷

2

𝜌ℎ√𝜓𝑅
2 + 𝜎𝑖,𝑅

2 √𝜓𝐷
2 + 𝜎𝑖,𝐷

2 𝜓𝐷
2 + 𝜎𝑖,𝐷

2

)

  (46) 

The 𝜓 parameters model for the additional variation apart from the sampling error that 

enters due to heterogeneity.  

In this section of the Appendix we show how to extend the model for the case of a 

network of interventions. We restrict to the case of networks with two-arm and three-arm 

studies only. For a two-arm study 𝑖 comparing treatments 𝐴 and 𝐵 for outcomes 𝑅 and 𝐷, 

the variance-covariance matrix is again of the form of Equation (46). For a three-arm study 

comparing treatments 𝐴, 𝐵 and 𝐶 the variance-covariance matrix of Equation (46) can be 

generalized as follows: 

𝜴𝒊 =

(

 
 

𝜁𝑖,𝐴𝐵,𝑅 . . .

𝜌ℎ√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐵,𝐷 𝜁𝑖,𝐴𝐵,𝐷 . .

𝜌1√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐶,𝐷 𝜌2√𝜁𝑖,𝐴𝐵,𝐷𝜁𝑖,𝐴𝐶,𝑅 𝜁𝑖,𝐴𝐶,𝑅 .

𝜌2√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐶,𝐷 𝜌3√𝜁𝑖,𝐴𝐵,𝐷𝜁𝑖,𝐴𝐶,𝐷 𝜌ℎ√𝜁𝑖,𝐴𝐶,𝑅𝜁𝑖,𝐴𝐶,𝐷 𝜁𝑖,𝐴𝐶,𝐷)

 
 

 (47) 

 

In the above we have set 𝜁𝑖,𝐴𝐵,𝑅 = 𝜎𝑖,𝐴𝐵,𝑅
2 + 𝜓𝑅

2  and 𝜁𝑖,𝐴𝐵,𝐷 = 𝜎𝑖,𝐴𝐵,𝐷
2 + 𝜓𝐷

2 , similarly 

for the 𝐴𝐶 comparison. In Equations (46) and (47) we have assumed that the correlation 

coefficient 𝜌ℎ correlates treatment effects of the same treatment comparison but different 

outcomes (e.g. comparison 𝐴𝐵 for outcomes 𝑅 and 𝐷), 𝜌1 correlates different treatment 

comparisons of the 𝑅 outcome, 𝜌2 correlates different outcomes of different comparison and 

𝜌3 correlates different comparisons of the 𝐷 outcome.  In order to simplify this matrix we 

also assume that the variances of the treatment effects for comparisons of the same outcome 
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are equal within a study, irrespectively of the comparison being made: 

𝜎𝑖,𝐴𝐵,𝑅
2 = 𝜎𝑖,𝐴𝐶,𝑅

2 = 𝜎𝑖,𝐵𝐶,𝑅
2  and 𝜎𝑖,𝐴𝐵,𝐷

2 = 𝜎𝑖,𝐴𝐶,𝐷
2 = 𝜎𝑖,𝐵𝐶,𝐷

2 . 

This assumption, with the use of the consistency equations leads to 𝜌1 = 𝜌3 = 1/2, as 

it is easy to prove. For example, consistency states that 𝑦𝑖,𝐴𝐵,𝑅 = 𝑦𝑖,𝐴𝐶,𝑅 − 𝑦𝑖,𝐵𝐶,𝑅. By taking 

the variance on both sides we get: 

𝜁𝑖,𝐴𝐵,𝑅 = 𝜁𝑖,𝐴𝐶,𝑅 + 𝜁𝑖,𝐵𝐶,𝑅 − 2𝜌1√𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐵𝐶,𝑅 → 𝜌1 = 1/2 

In the above we use 𝜁𝑖,𝐴𝐵,𝑅 = 𝜁𝑖,𝐴𝐶,𝑅 = 𝜁𝑖,𝐵𝐶,𝑅, which holds by virtue of the equal 

variance assumption we make. A similar proof holds for 𝜌3. 

 Also, as we proved in Equation (42)  the consistency equations give: 

𝑉𝑎𝑟(𝑦𝑖,𝐴𝐶,𝑅) +  𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝐷) − 2𝐶𝑜𝑣(𝑦𝑖,𝐴𝐶,𝑅 , 𝑦𝑖,𝐵𝐶,𝐷)

= 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝑅) +  𝑉𝑎𝑟(𝑦𝑖,𝐵𝐴,𝑅) + 𝑉𝑎𝑟(𝑦𝑖,𝐵𝐶,𝐷) − 2𝐶𝑜𝑣(𝑦𝑖,𝐵𝐶,𝑅 , 𝑦𝑖,𝐵𝐴,𝑅)

− 2𝐶𝑜𝑣(𝑦𝑖,𝐵𝐶,𝑅 , 𝑦𝑖,𝐵𝐶,𝐷) + 2𝐶𝑜𝑣(𝑦𝑖,𝐵𝐴,𝑅 , 𝑦𝑖,𝐵𝐶,𝐷) → 

𝜁𝑖,𝑅 + 𝜁𝑖,𝐷 − 2𝜌2√𝜁𝑖,𝑅𝜁𝑖,𝐷

= 𝜁𝑖,𝑅 + 𝜁𝑖,𝐷 + 𝜁𝑖,𝐷 − 2𝜌1√𝜁𝑖,𝑅𝜁𝑖,𝐷 − 2𝜌
ℎ√𝜁𝑖,𝑅𝜁𝑖,𝐷 + 2𝜌2√𝜁𝑖,𝑅𝜁𝑖,𝐷 

In the above we have set 𝜁𝑖,𝐴𝐵,𝑅 = 𝜁𝑖,𝐴𝐶,𝑅 = 𝜁𝑖,𝐵𝐶,𝑅 = 𝜁𝑖,𝑅 and 𝜁𝑖,𝐴𝐵,𝐷 = 𝜁𝑖,𝐴𝐶,𝐷 =

𝜁𝑖,𝐵𝐶,𝐷 = 𝜁𝑖,𝐷. By substituting 𝜌1 = 1/2, and after some algebra we get: 

𝜌2 =
1

2
𝜌ℎ 

The variance-covariance matrix takes the following form (after dropping the study 

index for simplicity): 

𝜴 =

(

 
 
 
 

𝜁𝐴𝐵,𝑅 . . .

𝜌ℎ√𝜁𝐴𝐵,𝑅𝜁𝐴𝐵,𝐷 𝜁𝐴𝐵,𝐷 . .

1

2
√𝜁𝐴𝐵,𝑅𝜁𝐴𝐶,𝐷

𝜌ℎ

2
√𝜁𝐴𝐵,𝐷𝜁𝐴𝐶,𝑅 𝜁𝐴𝐶,𝑅 .

𝜌ℎ

2
√𝜁𝐴𝐵,𝑅𝜁𝐴𝐶,𝐷

1

2
√𝜁𝐴𝐵,𝐷𝜁𝐴𝐶,𝐷 𝜌ℎ√𝜁𝐴𝐶,𝑅𝜁𝐴𝐶,𝐷 𝜁𝐴𝐶,𝐷)

 
 
 
 

 (48) 

 

The 𝜎 parameters entering the 𝜁 can be estimated from the data. This variance-

covariance matrix is always positive-definite. 
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XI. Detailed results from fitting models of Chapter 4 

In this Section we present the detailed results from all scenarios discussed Chapter 4, 

Section 4.3.1. As a reminder, the scenarios explored were the following: 

I. Univariate (independent) NMA of response and dropout rate separately, assuming 

𝜏𝑅 , 𝜏𝐷~𝑈(0,1). This corresponds to setting all correlations equal to zero. 

II. Multiple outcome network meta-analysis (MONMA) following the approach of 

Section 4.2.3.1. with minimally informative priors for the heterogeneity 

parameters: 𝜌𝜏~𝑈(−1,0),  𝜏𝑅 , 𝜏𝐷~𝑈(0,1), and: (a) assuming a negative 

common 𝜌𝑖 = 𝜌 with 𝜌~𝑈(−1,0), (b) assuming a strongly informative, 

negative, common 𝜌~𝑈(−0.7, −0.5), (c) assuming a common fixed 𝜌𝑖 = 𝜌 

with 𝜌 = −0.7, (d) assuming two different within-studies correlation 

coefficients 𝜌𝑖: one for the studies comparing two active treatments, which we 

denote as 𝜌𝐴𝑐𝑡−𝐴𝑐𝑡, and another for the studies comparing active treatments to 

placebo, 𝜌𝐴𝑐𝑡−𝑃𝑙. This distinction could be based on the assumption that the two 

relative treatment effects are differently correlated when one of the treatments 

compared is the placebo. For both parameters we used a uniform negative, 

𝑈(−1,0), prior distribution  

III. MONMA following the approach in Section 4.2.3.2, assuming a common 

correlation coefficient and the following prior distributions for the parameters 

of the model: 𝜌ℎ~𝑈(−1,0), 𝜓𝑅~𝑈(0,1), 𝜓𝐷~𝑈(0,1). 

In Figure 11 we present the odds ratios for the response outcome, for the comparison 

of active drugs vs. placebo.  In Figure 12 we present the results for the acceptability outcome 

(dropout). In Table 13 we present the rankings for all treatments based on their SUCRA 

values (38) for each model. 
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Figure 11: Summary odds ratios for response, Treatment vs. Placebo for all scenarios 

presented in Section 4.3.1 
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Figure 12: Summary odds ratios for dropout, Drug vs. Placebo for all scenarios presented 

in Section 4.3.1.. 
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Table 13: Treatment ranking for all models in Section 4.3.1.based on the SUCRA values 

for response (R) and dropout (D). 

I II.a 

SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) 

Carbamazepine 79.6 Olanzapine 91.7 Haloperidol 76.6 Olanzapine 91.2 

Haloperidol 75.8 Paliperidone 86.3 Olanzapine 76.5 Paliperidone 87.5 

Olanzapine 72.1 Quetipaine 80.3 Carbamazepine 75.2 Quetipaine 81.4 

Paliperidone 69.0 Divalproex 68.8 Paliperidone 74.9 Divalproex 68.1 

Quetipaine 60.4 Aripiprazole 65.6 Aripiprazole 62.4 Aripiprazole 65.9 

Aripiprazole 60.1 Carbamazepine 57.6 Quetipaine 61.5 Carbamazepine 53.3 

Divalproex 59.6 Haloperidol 52.9 Asenapine 54.4 Haloperidol 52.5 

Lithium 47.1 Ziprasidone 45.1 Divalproex 54.0 Ziprasidone 46.5 

Asenapine 45.2 Asenapine 39.7 Lithium 40.8 Asenapine 40.1 

Lamotrigine 39.1 Placebo 34.1 Ziprasidone 27.9 Placebo 34.1 

Ziprasidone 25.5 Lithium 32.7 Lamotrigine 26.5 Lithium 33.5 

Placebo 9.7 Lamotrigine 23.5 Topiramate 9.9 Lamotrigine 24.3 

Topiramate 6.9 Gabapentin 12.7 Placebo 9.4 Gabapentin 12.6 

 Topiramate 9.1  Topiramate 9.0 

II.b II.c 

SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) 

Olanzapine 77.9 Olanzapine 91.3 Haloperidol 78.5 Olanzapine 91.0 

Haloperidol 77.0 Paliperidone 87.3 Olanzapine 78.4 Paliperidone 87.1 

Paliperidone 76.4 Quetipaine 81.5 Paliperidone 77.1 Quetipaine 81.3 

Carbamazepine 72.0 Aripiprazole 66.0 Carbamazepine 66.5 Aripiprazole 66.1 

Aripiprazole 63.2 Divalproex 65.2 Aripiprazole 64.4 Divalproex 62.6 

Quetipaine 61.8 Carbamazepine 57.1 Quetipaine 62.2 Carbamazepine 61.6 

Asenapine 56.0 Haloperidol 51.7 Divalproex 56.6 Haloperidol 52.1 

Divalproex 54.4 Ziprasidone 46.9 Asenapine 56.3 Ziprasidone 45.6 

Lithium 42.2 Asenapine 39.9 Lithium 43.0 Asenapine 39.6 

Ziprasidone 27.7 Placebo 34.1 Ziprasidone 28.3 Placebo 34.4 

Lamotrigine 21.5 Lithium 33.7 Lamotrigine 17.8 Lithium 33.7 

Topiramate 10.2 Lamotrigine 23.8 Topiramate 10.9 Lamotrigine 23.7 

Placebo 9.7 Gabapentin 12.6 Placebo 10.0 Gabapentin 12.3 

 Topiramate 9.0  Topiramate 9.1 

II.d III 

SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) SUCRA – 𝑹 (%) SUCRA – 𝑫 (%) 

Olanzapine 76.5 Olanzapine 91.2 Haloperidol 78.1 Olanzapine 92.8 

Haloperidol 75.4 Paliperidone 87.6 Olanzapine 74.1 Paliperidone 86.6 

Carbamazepine 75.3 Quetipaine 81.7 Paliperidone 73.0 Quetipaine 80.6 

Paliperidone 75.1 Divalproex 67.3 Carbamazepine 71.4 Aripiprazole 66.1 

Aripiprazole 62.4 Aripiprazole 66.2 Aripiprazole 63.4 Divalproex 65.8 

Quetipaine 61.8 Carbamazepine 53.0 Quetipaine 63.2 Carbamazepine 58.7 

Asenapine 55.1 Haloperidol 52.7 Asenapine 56.0 Haloperidol 52.2 

Divalproex 53.6 Ziprasidone 46.8 Divalproex 55.4 Ziprasidone 45.4 

Lithium 41.5 Asenapine 39.4 Lithium 44.5 Asenapine 42.9 

Ziprasidone 27.4 Placebo 34.3 Ziprasidone 29.1 Lithium 36.1 

Lamotrigine 26.7 Lithium 33.9 Lamotrigine 21.6 Placebo 34.6 

Topiramate 9.9 Lamotrigine 23.9 Placebo 10.1 Lamotrigine 15.1 

Placebo 9.4 Gabapentin 12.8 Topiramate 10.1 Gabapentin 13.3 

 Topiramate 9.2  Topiramate 9.9 
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XII. Generalizing the models of Chapter 4 

In this section of the Appendix we present methods for extending the two new models 

proposed in Chapter 4 for the case of studies with more than three arms, reporting on more 

than two correlated outcomes of interest. 

a. Generalizing the first model 

We start from the case of pairwise meta-analysis, when only two treatments are 

compared for three outcomes. Suppose there are studies reporting on a single comparison 𝐴 

versus 𝐵, for three correlated outcomes 𝑅, 𝐷 and 𝑉. The random errors for every study are 

assumed to follow a multivariate normal distribution (𝛿𝑅  𝛿𝐷  𝛿𝑉)′ ~ 𝑁(0,  𝜟(𝟑×𝟑)), with 

variance-covariance matrix:  

 𝜟(𝟑×𝟑) = (

𝜏𝑅
2 . .

𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜏𝐷
2 .

𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜌𝜏,𝐷𝑉𝜏𝑉𝜏𝐷 𝜏𝑉
2

) (49) 

Note that there are in principle three heterogeneities and three different between-study 

correlation coefficients that need to be estimated.  

The random errors of study 𝑖 are also assumed to follow a multivariate normal 

distribution (𝜀𝑖,𝑅  𝜀𝑖,𝐷  𝜀𝑖,𝑉)′ ~ 𝑁(0, 𝜮𝒊). The within-study variance-covariance matrix is: 

𝜮𝒊 = (

𝜎𝜄,𝑅
2 . .

𝜌𝑖,𝑅𝐷𝜎𝑖,𝑅𝜎𝑖,𝐷 𝜎𝜄,𝐷
2 .

𝜌𝑖,𝑅𝑉𝜎𝑖,𝑅𝜎𝑖,𝑉 𝜌𝑖,𝐷𝑉𝜎𝑖,𝑉𝜎𝑖,𝐷 𝜎𝜄,𝑉
2

) (50) 

Thus, there are also three different within-study correlation coefficients to estimate.  

We now extend the method for the case of multi-arm studies reporting on three 

correlated outcomes for a multiplicity of treatments. If we focus on a three-arm study, the 

heterogeneity variance-covariance matrix will be a (6 × 6) generalization of the matrix of 

Equation (49): 
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 𝜟(𝟔×𝟔) =

(

 
 
 
 

𝜏𝑅
2 . . . . .

𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜏𝐷
2 . . . .

𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜌𝜏,𝐷𝑉𝜏𝑉𝜏𝐷 𝜏𝑉
2 . . .

𝜏𝑅
2/2 𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜏𝑅

2 . .

𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜏𝐷
2/2 𝜌𝜏,𝐷𝑉𝜏𝐷𝜏𝑉 𝜌𝜏,𝑅𝐷𝜏𝑅𝜏𝐷 𝜏𝐷

2 .

𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜌𝜏,𝐷𝑉𝜏𝐷𝜏𝑉 𝜏𝑉
2/2 𝜌𝜏,𝑅𝑉𝜏𝑅𝜏𝑉 𝜌𝜏,𝐷𝑉𝜏𝐷𝜏𝑉 𝜏𝑉

2)

 
 
 
 

 (51) 

The within-study variance-covariance matrix for this study, after making the same 

simplifying assumptions as in Section III of this Appendix, can be estimated as follows: 

𝜮𝒊 =

(

 
 
 
 
 

𝑠𝑖,𝐴𝐵,𝑅
2 . . . . .

𝜌𝑖,𝑅𝐷 𝑠𝑖,𝐴𝐵,𝐷
2 . . . .

𝜌𝑖,𝑅𝑉 𝜌𝑖,𝐷𝑉 𝑠𝑖,𝐴𝐵,𝑉
2 . . .

𝜅𝑖,𝐴𝐵𝑅𝐴𝐶𝑅 0.5𝜌𝑖,𝑅𝐷 0.5𝜌𝑖,𝑅𝑉 𝑠𝑖,𝐴𝐶,𝑅
2 . .

0.5𝜌𝑖,𝑅𝐷 𝜅𝑖,𝐴𝐵𝐷𝐴𝐶𝐷 0.5𝜌𝑖,𝑉𝐷 𝜌𝑖,𝑅𝐷 𝑠𝑖,𝐴𝐶,𝐷
2 .

0.5𝜌𝑖,𝑅𝑉 0.5𝜌𝑖,𝑉𝐷 𝜅𝑖,𝐴𝐵𝑉𝐴𝐶𝑉 𝜌𝑖,𝑅𝑉 𝜌𝑖,𝑉𝐷 𝑠𝑖,𝐴𝐶,𝑉
2

)

 
 
 
 
 

 (52) 

In the above we have dropped the standard errors that multiply the correlation 

coefficients for simplicity. We now have three different within-study correlation coefficients 

to estimate for every three-arm study. As before, we can model these coefficients to be 

common across studies or among group of studies. 

Extending for more arms or more outcomes is straightforward. For example, a four-

arm study in the case of three outcomes of interest will require a 9 × 9 generalization of the 

above matrices.  

b. Generalizing the second model 

In this subsection we will show how to extend the second model presented in Section 

3.2.2 of the main paper for the case of more than two correlated outcomes, or in the presence 

of studies than more than three arms. Let us start by assuming a network of studies reporting 

on three outcomes 𝑅, 𝐷 and 𝑉. For a two-arm study the variance-covariance matrix can be 

estimated as: 

𝜴𝒊 = (

𝜁𝑖,𝐴𝐵,𝑅 . .

𝜌𝑅𝐷
ℎ √𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐵,𝐷 𝜁𝑖,𝐴𝐵,𝐷 .

𝜌𝑅𝑉
ℎ √𝜁𝑖,𝐴𝐵,𝑅𝜁𝑖,𝐴𝐵,𝑉 𝜌𝐷𝑉

ℎ √𝜁𝑖,𝐴𝐵,𝐷𝜁𝑖,𝐴𝐵,𝑉 𝜁𝑖,𝐴𝐵,𝑉

) (53) 
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Note that we now need three different hybrid correlation coefficients to be estimated from 

the model. For a three-arm study comparing treatments 𝐴, 𝐵 and 𝐶 for three outcomes 𝑅, 𝐷 

and 𝑉 a (6 × 6) variance-covariance matrix is needed instead: 

𝜴𝒊 =

(

 
 
 
 
 

𝜁𝑖,𝐴𝐵,𝑅 . . . . .

𝜌𝑅𝐷
ℎ 𝜁𝑖,𝐴𝐵,𝐷 . . . .

𝜌𝑅𝑉
ℎ 𝜌𝐷𝑉

ℎ 𝜁𝑖,𝐴𝐵,𝑉 . . .

1/2 𝜌𝑉𝐷
ℎ /2 𝜌𝑅𝑉

ℎ /2 𝜁𝑖,𝐴𝐶,𝑅 . .

𝜌𝑅𝐷
ℎ /2 1/2 𝜌𝑉𝐷

ℎ /2 𝜌𝑅𝐷
ℎ /2 𝜁𝑖,𝐴𝐶,𝐷 .

𝜌𝑅𝑉
ℎ /2 𝜌𝑉𝐷

ℎ /2 1/2 𝜌𝑅𝑉
ℎ /2 𝜌𝑉𝐷

ℎ /2 𝜁𝑖,𝐴𝐶,𝑉)

 
 
 
 
 

 (54) 

In the above matrix we have dropped the 𝑧 parameters in the elements off the diagonal, for 

simplicity. We can generalize for the case of studies with more arms, and for multiple 

outcomes by following the same pattern. Note that care should be taken so that all the 

variance-covariance matrices presented in this section remain definite-positive. In Section 

4.2.3.1 and Section IX of this Appendix we discussed ways to ensure the positive-

definiteness of these matrices. 
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XI. OpenBUGS code for fitting the model of Section 3.3.3 

model{ 

## CONTROL for missing outcomes 

for (i in 1:Ns){ 

      cR[i]<-step(e1r[i]-0.2) 

      cD[i]<-step(e1d[i]-0.2) 

      control[i]<-cR[i]*cD[i] 

} 

## truncate the φ’s for every study 

for (i in 1: Ns){ 

      p10[i]<-max((e1d[i]-f1r[i])/e1r[i],0)*control[i] 

      p11[i]<-min(e1d[i]/(f1r[i]+e1r[i]),1) 

      p20[i]<-max((e2d[i]-f2r[i])/e2r[i],0)*control[i] 

      p21[i]<-min(e2d[i]/(f2r[i]+e2r[i]),1) 

      zero1[i] <- 0 

      phi1trunc[i] ~ dunif(p10[i],p11[i]) 

cc1[i]<-step(abs(phi1trunc[i])-p10[i])*step(p11[i]-

abs(phi1trunc[i]))+0.0001 

phi1[i] <- -(a[T1[i]]-1)*log(phi1trunc[i])-(b[T1[i]]-

1)*log(1-phi1trunc[i])-log(cc1[i])+1000000 

      zero1[i] ~ dpois(phi1[i]) 

      zero2[i] <- 0 

      phi2trunc[i] ~ dunif(p20[i],p21[i]) 

cc2[i]<-step(abs(phi2trunc[i])-p10[i])*step(p21[i]-

abs(phi2trunc[i]))+0.0001 

phi2[i] <- -(a[T2[i]]-1)*log(phi2trunc[i])-(b[T2[i]]-

1)*log(1-phi2trunc[i])-log(cc2[i])+1000000 

     zero2[i] ~ dpois(phi2[i])} 

 

for (i in (N2h+1):Ns){ 

      p30[i]<-max((e3d[i]-f1r[i])/e3r[i],0)*control[i] 

      p31[i]<-min(e3d[i]/(f3r[i]+e3r[i]),1) 

      zero3[i] <- 0 

      phi3trunc[i] ~ dunif(p30[i],p31[i]) 

 cc3[i]<-step(abs(phi3trunc[i])-p30[i])*step(p31[i]-

abs(phi3trunc[i]))+0.0001 

phi3[i] <- -(a[T3[i]]-1)*log(phi3trunc[i])-(b[T3[i]]-

1)*log(1-phi3trunc[i])-log(cc3[i])+1000000 

      zero3[i] ~ dpois(phi3[i])} 

 

## two-arm studies 

for (i in 1:N2h){ 

test1[i]<-(phi1trunc[i]*(e1r[i]+f1r[i])*(e1r[i]+f1r[i])-

e1d[i]*(e1r[i]+f1r[i]))/(e1d[i]*f1r[i]*f1d[i]) 

      +(phi2trunc[i]*(e2r[i]+f2r[i])*(e2r[i]+f2r[i])- 

 

 e2d[i]*(e2r[i]+f2r[i]))/(e2d[i]*f2r[i]*f2d[i]) 

 rho2h[i]<-

test1[i]/(sqrt(1/e1r[i]+1/f1r[i]+1/e2r[i]+1/f2r[i])*sqrt(1/e1

d[i]+1/f1d[i]+1/e2d[i]+1/f2d[i])) 

      rho22h[i]<-max(min(rho2h[i],0.98),-0.98)*control[i] 

      s2[i,1,1]<-1/e1r[i]+1/f1r[i]+1/e2r[i]+1/f2r[i] 
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      s2[i,2,2]<-1/e1d[i]+1/f1d[i]+1/e2d[i]+1/f2d[i] 

      s2[i,1,2]<-sqrt(s2[i,1,1]*s2[i,2,2])*rho22h[i] 

      s2[i,2,1]<-s2[i,1,2]} 

 

for( i in 1:N2h){prec2A[i,1:2,1:2]<-inverse(s2[i,,])} 

 

for (i in 1:N2h) 

 {y[(2*i-1):(2*i)]~dmnorm(theta[(2*i-1):(2*i)],prec2A[i,,])} 

 

for(i in 1:2){ 

      for (j in 1:2){ 

D2[i,j]<-

tau1.sq*t1[i,j]+tau2.sq*t2[i,j]+sqrt(tau1.sq*tau2.sq)*(rhotau

)*t3[i,j]}} 

 

prec2B[1:2,1:2]<-inverse(D2[,]) 

 

for (i in 1:N2h) 

 {theta[(2*i-1):2*i]~dmnorm(mean[(2*i-1):2*i],prec2B[,]) } 

 

## three-arm studies 

for (i in 1:(Ns-N2h)) 

 {s4[i,1,1]<- 

1/e1r[N2h+i]+1/f1r[N2h+i]+1/e2r[N2h+i]+1/f2r[N2h+i] 

 s4[i,2,2]<-

1/e1d[N2h+i]+1/f1d[N2h+i]+1/e2d[N2h+i]+1/f2d[N2h+i] 

s4[i,3,3]<-

1/e1r[N2h+i]+1/f1r[N2h+i]+1/e3r[N2h+i]+1/f3r[N2h+i] 

s4[i,4,4]<-

1/e1d[N2h+i]+1/f1d[N2h+i]+1/e3d[N2h+i]+1/f3d[N2h+i] 

      s4[i,1,3]<-(1/e1r[N2h+i]+1/f1r[N2h+i])*cR[i] 

      s4[i,3,1]<-(1/e1r[N2h+i]+1/f1r[N2h+i])*cR[i] 

      s4[i,2,4]<-(1/e1d[N2h+i]+1/f1d[N2h+i])*cD[i] 

      s4[i,4,2]<-(1/e1d[N2h+i]+1/f1d[N2h+i])*cD[i] 

 

## rho(AB-R,AB-D) 

tests112[i]<-

(phi1trunc[N2h+i]*(e1r[N2h+i]+f1r[N2h+i])*(e1r[N2h+i]+f1r[N2h

+i])-

e1d[N2h+i]*(e1r[N2h+i]+f1r[N2h+i]))/(e1d[N2h+i]*f1r[N2h+i]*f1

d[N2h+i]) 

 +(phi2trunc[N2h+i]*(e2r[N2h+i]+f2r[N2h+i])*(e2r[N2h+i]+f2r[

N2h+i])-

e2d[N2h+i]*(e2r[N2h+i]+f2r[N2h+i]))/(e2d[N2h+i]*f2r[N2h+i]*f2

d[N2h+i]) 

      tests212[i]<-tests112[i]/sqrt(s4[i,1,1]*s4[i,2,2]) 

      rhos12[i]<-max(-0.98,min(0.98,tests212[i]))*control[i] 

      s4[i,1,2]<-rhos12[i]*sqrt(s4[i,1,1]*s4[i,2,2]) 

      s4[i,2,1]<-rhos12[i]*sqrt(s4[i,1,1]*s4[i,2,2]) 

 

## rho(AC-R,AC-D) 

 test134[i]<-

(phi1trunc[N2h+i]*(e1r[N2h+i]+f1r[N2h+i])*(e1r[N2h+i]+f1r[N2h

+i])-
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e1d[N2h+i]*(e1r[N2h+i]+f1r[N2h+i]))/(e1d[N2h+i]*f1r[N2h+i]*f1

d[N2h+i]) 

 +(phi3trunc[N2h+i]*(e3r[N2h+i]+f3r[N2h+i])*(e3r[N2h+i]+f3r[

N2h+i])-

e3d[N2h+i]*(e3r[N2h+i]+f3r[N2h+i]))/(e3d[N2h+i]*f3r[N2h+i]*f3

d[N2h+i]) 

      test234[i]<-test134[i]/(sqrt(s4[i,1,1]*s4[i,3,3])) 

      rhos34[i]<-max(-0.98,min(0.98,test234[i]))*control[i] 

      s4[i,3,4]<-rhos34[i]*sqrt(s4[i,1,1]*s4[i,3,3]) 

      s4[i,4,3]<-rhos34[i]*sqrt(s4[i,1,1]*s4[i,3,3]) 

 

## rho(AB-R,AC,D), rho(AB-D,AC-R) 

 test114[i]<-

(phi1trunc[N2h+i]*(e1r[N2h+i]+f1r[N2h+i])*(e1r[N2h+i]+f1r[N2h

+i]) 

 -

e1d[N2h+i]*(e1r[N2h+i]+f1r[N2h+i]))/(e1d[N2h+i]*f1r[N2h+i]*f1

d[N2h+i]) 

      test214[i]<-test114[i]/(sqrt(s4[i,1,1]*s4[i,4,4])) 

      rhos14[i]<-min(max(test214[i],-0.98),0.98)*control[i] 

      s4[i,1,4]<-rhos14[i]*sqrt(s4[i,1,1]*s4[i,4,4]) 

      s4[i,4,1]<-rhos14[i]*sqrt(s4[i,1,1]*s4[i,4,4]) 

      s4[i,3,2]<-rhos14[i]*sqrt(s4[i,1,1]*s4[i,4,4]) 

      s4[i,2,3]<-rhos14[i]*sqrt(s4[i,1,1]*s4[i,4,4])} 

 

for (k in 1:(Ns-N2h)){ 

      prec3A[k,1:4,1:4]<-inverse(s4[k,,]) 

y[2*N2h+4*k-3:2*N2h+4*k]~dmnorm(theta[2*N2h+4*k-

3:2*N2h+4*k],prec3A[k,,])} 

 

for (i in 1:4){ 

      for (j in 1:4){ 

D3[i,j]<-

tau1.sq*delta1[i,j]+tau2.sq*delta2[i,j]+sqrt(tau1.sq*tau2.sq)

*(rhotau)*delta3[i,j]}} 

 

for (k in 1:(Ns-N2h)) 

 {prec4A[k,1:4,1:4]<-inverse(D3[,]) 

 theta[2*N2h+4*k-3:2*N2h+4*k]~dmnorm(mean[2*N2h+4*k-

3:2*N2h+4*k],prec4A[k,,])} 

 

#Parameterization of the means# 

for(i in 1:N2h) {                    

 mean[2*i-1] <- -dR[T2[i]] + dR[T1[i]] 

 mean[2*i] <- -dD[T2[i]]+ dD[T1[i]]} 

 

for(i in 1:(Ns-N2h)) {                    

 mean[2*N2h+4*i-3] <- -dR[T2[N2h+i]] + dR[T1[N2h+i]] 

       mean[2*N2h+4*i-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]         

      mean[2*N2h+4*i-1] <- -dR[T3[N2h+i]]+ dR[T1[N2h+i]] 

      mean[2*N2h+4*i] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]]} 

  

#Priors# 

for(k in 1:(ref-1)) { 
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 dR[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) { 

 dR[k] ~ dnorm(0,.01)}   

for(k in 1:(ref-1)) {  

 dD[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) { 

 dD[k] ~ dnorm(0,.01)}   

 

tau1.sq<-tau1*tau1 

tau1~dunif(0,1) 

tau2.sq<-tau2*tau2 

tau2~dunif(0,1) 

rhotau~dunif(-0.99,0) 

#Estimated  Effect Sizes# 

dR[ref]<- 0 

for (c in 1:(ref-1)) { Eff.refR[c]<- exp(dR[c] - dR[ref])}  

for (c in (ref+1):NT) {Eff.refR[c]<- exp(dR[c] - dR[ref])}  

 

for (c in 1:(NT-1)) { 

      for (k in (c+1):NT) { EffR[c,k] <- exp(dR[k] - dR[c])}} 

dD[ref]<- 0 

for (c in 1:(ref-1)) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}  

for (c in (ref+1):NT) {Eff.refD[c]<- exp(dD[c] - dD[ref] )}  

for (c in 1:(NT-1)) {   

 for (k in (c+1):NT) {EffD[c,k] <- exp(dD[k] - dD[c])}}  

 

# Ranking of treatments - R 

for (k in 1:13){ddR[k]<-dR[k]} 

for(k in 1:13) { 

      orderR[k]<-14- rank(ddR[],k) 

 most.effectiveR[k]<-equals(orderR[k],1) 

 for(j in 1: 13) { 

      effectivenessR[k,j]<- equals(orderR[k],j) 

  cumeffectivenessR[k,j]<- 

sum(effectivenessR[k,1:j])}}   

for(k in 1:13) {SUCRAR[k]<- sum(cumeffectivenessR[k,1:(13-1)]) 

/(13-1)} 

#Ranking of treatments - D 

for(k in 1:14) { 

 orderD[k]<- rank(dD[],k)   

      most.effectiveD[k]<-equals(orderD[k],1) 

for(j in 1: 14) { 

      effectivenessD[k,j]<- equals(orderD[k],j) 

 cumeffectivenessD[k,j]<- 

sum(effectivenessD[k,1:j])}}   

for(k in 1:NT) {SUCRAD[k]<- sum(cumeffectivenessD[k,1:13]) /(13)}} 

 

The inputs required for this program are the following: 

N2h:  the number of two-arm studies. 

Ns:  the total number of studies. 

NT:  the number of treatments. 
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ref:  the treatment number for the reference treatment (e.g. placebo). 

a, b: the parameters of the Beta prior distributions for the φ. 

y:  the 2(N2h+2Ns)- dimensional vector of observed effects (2 for every two-arm study, 4 

for every three-arm). Odd positions correspond to R comparison, even to D. 

varr:  the (N2h+2Ns)- dimensional vector of the variance for every R comparison (one for 

each odd position in y). For studies with missing data impute a  large variance (e.g. 

100000). 

vard:  the (N2h+2Ns)- dimensional vector of the variance for every D comparison (one for 

each even position in y). For studies with missing data impute a large variance (e.g. 

100000). 

T1,T2,T3:  the Ns – dimensional vector  of treatments for every study. For two arm studies  

set T3=0. 

e1r,f1r,e2r,f2r,e3r,f3r:  the Ns – dimensional vectors containing  the number of successes 

(e) and failures (f) of every arm for the R outcome. For studies with missing data impute 

small a number (e.g. 0.1). 

e1d,f1d,e2d,f2d,e3d,f3d:  the same for the D outcome. 

t1,t2,t3:  the (2?2) matrices needed for constructing the heterogeneity variance-covariance 

matrix for the two-arm studies,   Ä_((2?2)) of Equation (2): 

t1 = structure(.Data=c(1, 0, 0, 0),.Dim=c( 2 , 2 )) 

t2 = structure(.Data=c(0, 0, 0, 1),.Dim=c( 2 , 2 )) 

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2 , 2 ))  

delta1,delta2,delta3:  the (4x4) matrices needed for constructing the heterogeneity 

variance-covariance matrix   for the three-arm studies. 

delta1 = structure(.Data=c(1,0,0.5 0,0,0,0,0,0.5,0,1,0,0,0,0,0),.Dim=c(4,4 )) 

delta2 =  structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1),.Dim=c(4 ,4)) 

delta3=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0),.Dim=c(4,4)) 

 

For the acute mania example the data are as follows: 

 

list( N2h = 49, Ns=67, NT=14, ref=2, 

 

y  =c(5.34831E-01, 4.09477E-01, 8.97209E-01, -1.16246E-01, 

3.62793E-01, -9.74196E-01, 1.05322E+00, -9.70437E-01, 

1.95066E-01, -3.72771E-02, -8.29426E-01, 5.10009E-01, -

3.99240E-01, 3.41398E-01, -8.09319E-01, 1.26194E+00, -
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8.28099E-01, -2.15871E-02, -5.71553E-01, 3.43985E-01, -

7.05038E-01, 2.52997E-01, -9.69115E-02, -1.54010E-01,     NA, 

-1.09861E+00, -4.37973E-02, -4.89940E-01,     NA, 

1.25276E+00, -1.14054E+00, 1.09397E+00, -9.65081E-01, 

8.18310E-01, 5.29278E-01, -2.02999E-01, -8.48977E-01, 

6.91444E-02, 3.84200E-02, 3.00429E-01,     NA,     NA, 

5.26437E-02, 2.05852E-01, -1.55186E+00, 1.23117E+00, -

5.38997E-01, 6.80725E-01, -8.34938E-01, 5.79166E-01, 

1.84498E-01, -6.00690E-01, 1.89712E+00,     NA, -5.87877E-01, 

2.39369E-01, -2.10191E+00, -1.54151E-01, 8.78070E-01, 

0.0E+00, -9.68826E-01, 5.53768E-01,     NA, -6.45385E-02, -

1.13197E+00, 3.34935E-01, 2.71934E-01, 4.85508E-01,     NA, -

5.66183E-01,     NA, -7.84831E-01, -8.90315E-01, 1.03407E+00, 

-1.28437E-01, 1.23193E-01,     NA,     NA, 2.23144E-01, 

2.35138E+00,     NA, 1.20397E+00,     NA, -1.79176E+00,     

NA, 1.60944E+00, 6.35989E-01, -4.62624E-01,     NA, -

6.53195E-02, 2.51314E-01, -7.58439E-01,     NA, -5.59162E-01,     

NA, -7.71790E-01, -4.39488E-01, -8.15296E-02, -5.23822E-01, -

7.06051E-03, -4.40040E-01, 5.91889E-02, -3.61506E-01, 

2.15552E-01, -4.32809E-01, 1.04443E-01, -1.12719E+00, 

9.88264E-01, -1.13561E+00, 1.46863E+00, -8.57450E-01, 

8.30769E-01, -3.17969E-01, 1.84141E-01, -1.52128E+00, 

7.37673E-01, -8.05123E-01, 5.60758E-01, -3.86448E-01, 

3.19516E-02, -3.51284E-01, 9.36559E-02,     NA, -1.52549E-01,     

NA, 5.96768E-01,     NA, -1.25276E+00,     NA, -7.67255E-01, 

-5.86445E-01, 4.93876E-01, -6.37310E-01, 3.52167E-01, -

1.09030E+00, 9.40983E-01, -7.14470E-01, 8.20439E-02,     NA, 

9.67736E-01,     NA, 3.79929E-01, -1.13498E+00, 1.02326E-01, 

-1.16397E+00, 6.41322E-01,     NA, -8.07657E-01,     NA, -

7.99573E-02,     NA, 6.03875E-01,     NA, -3.94654E-01,     

NA, 2.40976E-02,     NA, -1.92126E-01,     NA, -3.98348E-01,     

NA, -3.88398E-02, -5.98762E-01, 8.64997E-01, -8.25390E-01, 

9.09235E-01, -8.83191E-01, -5.06561E-01, -2.83200E-01, 

6.79062E-01) 

, 

a=c(11.2,12.9,28.3,15.2,13.7,16.7,32.1,29.5,20.4,19.2,17.8,16

.3,32.6,20.6), 

b=c(27.4,47.4,72,23.4,40.9,40.6,78.3,43.5,55.2,43.4,38.8,37.6

,48.8,39.9), 

T1=c( 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 6, 2, 3, 2, 2, 7, 

2, 4, 7, 2, 2, 2, 2, 7,3, 2, 2, 9 ,2, 4 ,2, 3, 2, 2, 3, 2, 2, 

4 ,3, 4, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 

2, 2, 2, 2, 2, 2, 2, 2, 2), 

T2=c(2,2,4,2,2,5,5,5,5,6,6,6,7,6,7,7,7,9,7,7,9,7, 10 ,10 ,10, 

10,9,9,9 ,12,9, 12, 12,8 ,13 ,13,7,10, 10, 12,4 ,12 ,12,7,9 

,13 ,14 ,12,7,1,1,3,4,4,7,4,4,4,7,7,3,3,3,3,3,5,4), 

T3=c( 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  

0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  

0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  



137 

 

0,  0,  0,  0,  0,  3 , 4,  5,  5,  6,  9, 10, 10, 10, 11 ,11 

, 9 , 8 , 8 ,13 ,13 ,10,  7), 

e1r=c(1.55000E+02, 7.20E+01, 8.90E+01, 4.90E+01, 1.10E+02, 

2.90E+01, 4.80E+01, 4.60E+01, 5.30E+01, 2.30E+01, 1.90E+01, 

4.80E+01,     0.1, 1.29000E+02,     0.1, 1.60E+01, 2.40E+01, 

6.80E+01, 5.10E+01, 1.58000E+02,     0.1, 3.90E+01, 5.10E+01, 

3.00E+01, 2.90E+01, 8.00E+01, 1.20E+01, 6.00E+01, 2.00E+00, 

1.10E+01, 3.00E+01,     0.1, 5.40E+01, 9.00E+00,     0.1,     

0.1, 5.20E+01, 5.10E+01,     0.1, 5.00E+00,     0.1,     0.1,     

0.1, 5.00E+00,     0.1, 3.20E+01,     0.1,     0.1, 3.00E+01, 

5.60E+01, 5.80E+01, 2.60E+01, 3.50E+01, 18, 3.10E+01,     

0.1,     0.1, 3.90E+01, 2.60E+01,     0.1, 1.80E+01,     0.1,     

0.1,     0.1,     0.1, 3.60E+01, 4.30E+01), 

e2r=c(6.3E+01, 4.2E+01, 7.2E+01, 2.3E+01, 4.9E+01, 4.4E+01, 

5.9E+01, 6.0E+01, 8.2E+01, 6.5E+01, 6.3E+01, 5.0E+01,     

0.1, 2.71000E+02,     0.1, 3.4E+01, 3.5E+01, 5.2E+01, 

1.49000E+02, 1.67000E+02,     0.1, 3.7E+01, 1.05000E+02, 

4.0E+01, 5.5E+01, 7.2E+01, 9.0E+00, 8.9E+01, 9.0E+00, 

8.0E+00, 4.7E+01,     0.1, 1.12000E+02, 8.0E+00,     0.1,     

0.1, 6.0E+01, 1.56000E+02,     0.1, 4.0E+00,     0.1,     

0.1,     0.1, 3.0E+00,     0.1, 2.6E+01,     0.1,     0.1, 

4.0E+01, 7.2E+01, 7.8E+01, 5.2E+01, 5.5E+01, 9.3E+01, 

8.2E+01,     0.1,     0.1, 5.9E+01, 9.4E+01,     0.1, 

1.8E+01,     0.1,     0.1,     0.1,     0.1, 9.4E+01, 

1.3E+01), 

e3r=c(    0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1, 7.10000E+01, 8.00000E+01, 5.70000E+01, 4.30000E+01, 

6.50000E+01, 7.50000E+01,     0.1,     0.1, 6.50000E+01, 

7.80000E+01,     0.1, 3.50000E+01,     0.1,     0.1,     0.1,     

0.1, 1.06000E+02, 5.30000E+01), 

f1r=c(9.8E+01, 6.5E+01, 8.6E+01, 8.1E+01, 1.57000E+02, 

7.1E+01, 5.7E+01, 3.1E+01, 1.08000E+02, 4.7E+01, 4.7E+01, 

5.5E+01,     0.1, 9.3E+01,     0.1, 5.3E+01, 3.6E+01, 

5.7E+01, 6.4E+01, 6.1E+01,     0.1, 2.1E+01, 9.4E+01, 

4.5E+01, 9.6E+01, 8.5E+01, 1.0E+00, 1.25000E+02, 2.0E+01, 

4.0E+00, 3.7E+01,     0.1, 1.66000E+02, 6.0E+00,     0.1,     

0.1, 1.9E+01, 7.1E+01,     0.1, 4.0E+00,     0.1,     0.1,     

0.1, 1.5E+01,     0.1, 1.12000E+02,     0.1,     0.1, 

7.1E+01, 1.09000E+02, 9.5E+01, 7.1E+01, 6.6E+01, 7.0E+01, 

7.4E+01,     0.1,     0.1, 1.01000E+02, 7.9E+01,     0.1, 

5.6E+01,     0.1,     0.1,     0.1,     0.1, 6.9E+01, 

5.6E+01), 

f2r=c(6.80000E+01, 9.30000E+01, 1.00000E+02, 1.09000E+02, 

8.50000E+01, 4.70000E+01, 4.70000E+01, 1.80000E+01, 



138 

 

7.30000E+01, 7.50000E+01, 7.70000E+01, 5.20000E+01,     0.1, 

1.87000E+02,     0.1, 3.60000E+01, 2.00000E+01, 7.40000E+01, 

8.00000E+01, 6.70000E+01,     0.1, 2.10000E+01, 4.10000E+01, 

3.50000E+01, 7.90000E+01, 9.20000E+01, 5.00000E+00, 

1.03000E+02, 1.10000E+01, 7.00000E+00, 2.20000E+01,     0.1, 

1.11000E+02, 7.00000E+00,     0.1,     0.1, 9.00000E+00, 

1.91000E+02,     0.1, 4.00000E+00,     0.1,     0.1,     0.1, 

1.70000E+01,     0.1, 1.17000E+02,     0.1,     0.1, 

6.10000E+01, 8.30000E+01, 8.90000E+01, 4.60000E+01, 

4.40000E+01, 7.90000E+01, 1.33000E+02,     0.1,     0.1, 

8.50000E+01, 9.60000E+01,     0.1, 1.80000E+01,     0.1,     

0.1,     0.1,     0.1, 9.90000E+01, 7.00000E+00), 

f3r=c(    0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1, 8.90000E+01, 8.50000E+01, 5.00000E+01, 5.90000E+01, 

1.13000E+02, 1.26000E+02,     0.1,     0.1, 8.90000E+01, 

1.16000E+02,     0.1, 3.40000E+01,     0.1,     0.1,     0.1,     

0.1, 8.90000E+01, 5.20000E+01), 

e1d=c(5.4E+01, 6.2E+01, 4.1E+01, 7.6E+01, 1.57000E+02, 

5.1E+01, 4.3E+01, 1.5E+01, 4.5E+01, 3.9E+01, 3.0E+01, 

2.9E+01, 1.0E+01, 4.3E+01, 3.0E+00, 4.5E+01, 3.5E+01, 

3.9E+01, 8.2E+01, 7.8E+01,     0.1, 1.8E+01, 4.3E+01, 

4.0E+01, 7.3E+01, 3.5E+01,     0.1, 8.9E+01, 8.0E+00, 

3.0E+00, 1.1E+01, 1.5E+01, 1.1E+02, 3.0E+00, 2.8E+01, 

2.8E+01, 1.5E+01, 5.0E+01,     0.1, 7.0E+00, 4.0E+00, 

1.0E+00, 5.0E+00, 2.0E+00, 6.4E+01, 1.3E+01, 2.1E+01, 

1.0E+01, 4.1E+01, 8.7E+01, 4.4E+01, 3.0E+01, 4.0E+01, 

6.3E+01, 2.8E+01, 2.5E+01, 1.0E+00, 2.1E+01, 4.1E+01, 

4.1E+01, 4.7E+01, 3.4E+01, 3.1E+01, 2.9E+01, 1.4E+01, 

4.1E+01, 4.7E+01), 

e2d=c(2.0E+01, 6.5E+01, 7.7E+01, 1.04000E+02, 8.0E+01, 

3.5E+01, 3.5E+01, 5.0E+00, 4.4E+01, 6.6E+01, 5.5E+01, 

3.2E+01, 1.2E+01, 1.29000E+02, 1.0E+00, 2.7E+01, 2.1E+01, 

4.5E+01, 1.6E+02, 6.8E+01,     0.1, 1.5E+01, 1.6E+01, 

2.7E+01, 5.9E+01, 5.4E+01,     0.1, 8.1E+01, 8.0E+00, 

3.0E+00, 7.0E+00, 1.6E+01, 9.3E+01, 2.0E+00, 8.7E+01, 

4.8E+01, 6.0E+00, 1.32000E+02,     0.1, 2.0E+00, 2.0E+00, 

4.0E+00, 1.0E+00, 3.0E+00, 1.22000E+02, 2.5E+01, 2.9E+01, 

1.4E+01, 4.3E+01, 8.2E+01, 4.1E+01, 1.4E+01, 2.2E+01, 

9.4E+01, 5.6E+01, 2.8E+01, 3.0E+00, 1.4E+01, 3.8E+01, 

4.4E+01, 2.2E+01, 2.0E+01, 2.1E+01, 2.9E+01, 2.0E+01, 

4.1E+01, 1.2E+01), 

e3d=c(    0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     
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0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1, 8.20000E+01, 4.40000E+01, 1.00000E+01, 3.60000E+01, 

1.05000E+02, 5.00000E+01, 1.80000E+01, 2.00000E+00, 

1.70000E+01, 7.20000E+01, 6.10000E+01, 3.30000E+01, 

3.20000E+01, 3.70000E+01, 6.60000E+01, 1.50000E+01, 

4.00000E+01, 3.30000E+01), 

f1d=c(1.99000E+02, 7.50000E+01, 1.34000E+02, 5.40000E+01, 

1.10000E+02, 4.90000E+01, 6.20000E+01, 6.20000E+01, 

1.16000E+02, 3.10000E+01, 3.60000E+01, 7.40000E+01, 

5.00000E+00, 1.79000E+02, 1.20000E+01, 2.40000E+01, 

2.50000E+01, 8.60000E+01, 3.30000E+01, 1.41000E+02,     0.1, 

4.20000E+01, 1.02000E+02, 3.60000E+01, 5.20000E+01, 

1.30000E+02,     0.1, 9.60000E+01, 1.40000E+01, 1.20000E+01, 

5.60000E+01, 1.00000E+00, 1.10000E+02, 1.20000E+01, 

7.20000E+01, 7.80000E+01, 5.60000E+01, 7.20000E+01,     0.1, 

2.00000E+00, 3.00000E+00, 9.00000E+00, 1.40000E+01, 

1.80000E+01, 1.40000E+01, 1.31000E+02, 3.80000E+01, 

1.70000E+01, 6.00000E+01, 7.80000E+01, 1.09000E+02, 

6.70000E+01, 6.10000E+01, 2.50000E+01, 7.70000E+01, 

2.60000E+01, 1.40000E+01, 1.19000E+02, 6.40000E+01, 

5.70000E+01, 2.70000E+01, 6.10000E+01, 4.60000E+01, 

8.20000E+01, 9.80000E+01, 6.40000E+01, 5.20000E+01), 

f2d=c(1.11000E+02, 7.00000E+01, 9.50000E+01, 2.80000E+01, 

5.40000E+01, 5.60000E+01, 7.10000E+01, 7.30000E+01, 

1.11000E+02, 7.40000E+01, 8.50000E+01, 7.00000E+01, 

2.00000E+00, 3.29000E+02, 1.40000E+01, 4.30000E+01, 

3.40000E+01, 8.10000E+01, 6.90000E+01, 1.66000E+02,     0.1, 

4.30000E+01, 1.30000E+02, 4.80000E+01, 7.50000E+01, 

1.10000E+02,     0.1, 1.11000E+02, 1.20000E+01, 1.20000E+01, 

6.20000E+01, 1.00000E+00, 1.30000E+02, 1.30000E+01, 

1.27000E+02, 6.10000E+01, 6.30000E+01, 2.15000E+02,     0.1, 

6.00000E+00, 5.00000E+00, 6.00000E+00, 1.40000E+01, 

1.70000E+01, 2.50000E+01, 1.18000E+02, 3.00000E+01, 

1.10000E+01, 5.80000E+01, 7.30000E+01, 1.26000E+02, 

8.40000E+01, 7.70000E+01, 7.80000E+01, 1.59000E+02, 

2.50000E+01, 1.20000E+01, 1.30000E+02, 1.52000E+02, 

1.61000E+02, 1.40000E+01, 1.60000E+01, 5.70000E+01, 

8.40000E+01, 9.40000E+01, 1.52000E+02, 8.00000E+00), 

f3d=c(    0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     0.1,     

0.1, 7.80000E+01, 1.21000E+02, 9.70000E+01, 6.60000E+01, 

7.30000E+01, 1.51000E+02, 3.40000E+01, 1.30000E+01, 
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1.37000E+02, 1.22000E+02, 1.24000E+02, 3.60000E+01, 

5.30000E+01, 3.70000E+01, 1.54000E+02, 1.01000E+02, 

1.55000E+02, 7.20000E+01), 

t1 = structure(.Data=c(1, 0, 0, 0),.Dim=c( 2 , 2 )), 

t2 = structure(.Data=c(0, 0, 0, 1),.Dim=c( 2 , 2 )), 

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2 , 2 )), 

delta1 = structure(.Data=c(1, 0, 0.5, 

0,0,0,0,0,0.5,0,1,0,0,0,0,0),.Dim=c( 4 , 4 )), 

delta2 =  

structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1),.Dim=c

( 4 , 4 )), 

delta3 

=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0),.

Dim=c( 4 , 4 ))) 
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XII. OpenBUGS code for the model in Section 4.3.2.1  

model{ 

# this controls for studies with one outcome not reported by 

setting the correlation equal to zero 

 

for (k in 1:(2*Ns-N2h)) 

{control[k]<-step(9999-varr[k])*step(9999-vard[k])} 

 

# two-arm studies 

for( k in 1:N2h){ 

s[k,1,1]<-varr[k] 

s[k,2,2]<-vard[k] 

s[k,1,2]<-control[k]*rhosigma*sqrt(varr[k]*vard[k]) 

s[k,2,1]<-control[k]*rhosigma*sqrt(varr[k]*vard[k]) 

 

prec2A[k,1:2,1:2]<-inverse(s[k,,]) 

y[(2*k-1):(2*k)]~dmnorm(theta[(2*k-

1):(2*k)],prec2A[k,,]) 

for(i in 1:2){ 

for (j in 1:2){ 

D2[k,i,j]<-

tau1.sq*t1[i,j]+tau2.sq*t2[i,j]+sqrt(tau1

.sq*tau2.sq)*control[k]*(rhotau)*t3[i,j]}

} 

prec2B[k,1:2,1:2]<-inverse(D2[k,,]) 

theta[(2*k-1):2*k]~dmnorm(mean[(2*k-

1):2*k],prec2B[k,,]) } 

 

# three-arm studies 

for (k in 1:(Ns-N2h)){ 

rhosigma1T[k]<-max(rhosigma,-ul[k]) 

rhosigmaT[k]<-min(rhosigma1T[k],ul[k]) 

for (i in 1:4){ 

for (j in 1:4){ 

S[k,i,j]<-

sigma1[k,i,j]+control[k]*rhosigmaT[k]*sigma2[k

,i,j]}} 

prec3A[k,1:4,1:4]<-inverse(S[k,,]) 

y[2*N2h+4*k-3:2*N2h+4*k]~dmnorm(theta[2*N2h+4*k-

3:2*N2h+4*k],prec3A[k,,]) 

for (i in 1:4){ 

for (j in 1:4){ 

D3[k,i,j]<-

tau1.sq*delta1[i,j]+tau2.sq*delta2[i,j]+sqrt(t

au1.sq*tau2.sq)*(control[k]*rhotau)*delta3[i,j

]}} 

prec4A[k,1:4,1:4]<-inverse(D3[k,,]) 

theta[2*N2h+4*k-3:2*N2h+4*k]~dmnorm(mean[2*N2h+4*k-
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3:2*N2h+4*k],prec4A[k,,])} 

 

# Parameterization of the means 

for(i in 1:N2h) {                    

 mean[2*i-1] <- -dR[T2[i]] + dR[T1[i]] 

mean[2*i] <- -dD[T2[i]]+ dD[T1[i]]} 

for(i in 1:(Ns-N2h)) {                    

 mean[2*N2h+4*i-3] <- -dR[T2[N2h+i]] + dR[T1[N2h+i]] 

mean[2*N2h+4*i-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]         

 mean[2*N2h+4*i-1] <- -dR[T3[N2h+i]]+ dR[T1[N2h+i]] 

 mean[2*N2h+4*i] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]] }  

   

# Priors   

  

for(k in 1:(ref-1)) {dR[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) {dR[k] ~ dnorm(0,.01)}   

for(k in 1:(ref-1)) {dD[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) {dD[k] ~ dnorm(0,.01)}   

tau1.sq<-tau1*tau1 

tau1~dunif(0,1) 

tau2.sq<-tau2*tau2 

tau2~dunif(0,1) 

rhosigma<-0 

rhotau<-0 

 

# Estimated  Effect Sizes 

dR[ref]<- 0 

for (c in 1:(ref-1)) {Eff.refR[c]<- exp(dR[c] - dR[ref] )}  

for (c in (ref+1):NT) {Eff.refR[c]<- exp(dR[c] - dR[ref] )}  

for (c in 1:(NT-1)) { 

for (k in (c+1):NT) {EffR[c,k] <- exp(dR[k] - dR[c])}} 

dD[ref]<- 0 

for (c in 1:(ref-1)) {Eff.refD[c]<- exp(dD[c] - dD[ref] )}  

for (c in (ref+1):NT) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}  

for (c in 1:(NT-1)) {   

 for (k in (c+1):NT) {EffD[c,k] <- exp(dD[k] - dD[c])}}  

 

# SUCRA rankings 

# Ranking of treatments for response. This part is customized 

# for the acute mania dataset,  

# where one of the treatments was not compared for response.  

 

for(k in 1:13) {ddR[k]<-dR[k]} 

for(k in 1:13) { 

orderR[k]<-14- rank(ddR[],k) 

 most.effectiveR[k]<-equals(orderR[k],1) 

for(j in 1: 13) { 

effectivenessR[k,j]<- equals(orderR[k],j) 

  cumeffectivenessR[k,j]<- 

sum(effectivenessR[k,1:j])}} 



143 

 

for(k in 1:13) { 

 SUCRAR[k]<- sum(cumeffectivenessR[k,1:(13-1)]) /(13-1)} 

 

#Ranking of treatments for dropout 

for(k in 1:NT) { 

 orderD[k]<- rank(dD[],k)   

most.effectiveD[k]<-equals(orderD[k],1) 

for(j in 1: NT) { 

effectivenessD[k,j]<- equals(orderD[k],j) 

 cumeffectivenessD[k,j]<- sum(effectivenessD[k,1:j])}} 

 for(k in 1:NT) { 

 SUCRAD[k]<- sum(cumeffectivenessD[k,1:(NT-1)]) /(NT-

1))}} 
 

 

The inputs required for this program are the following: 

N2h:  the number of two-arm studies. 

Ns:  the total number of studies. 

NT:  the number of treatments. 

ref:  the treatment number for the reference treatment (e.g. placebo). 

y:  the 2(𝑁2ℎ + 2𝑁𝑠)-dimensional vector of observed effects (two for every two-arm 

study, four for every three-arm). Odd positions correspond to 𝑅 comparison, even to 𝐷. 

Impute NA when in a study an outcome is missing. 

varr:  the (𝑁2ℎ + 2𝑁𝑠)-dimensional vector of the variance for every 𝑅 comparison (one 

for each odd position in y). For studies with missing data impute a large variance (10,000). 

vard:  the (𝑁2ℎ + 2𝑁𝑠)- dimensional vector of the variance for every 𝐷 comparison (one 

for each even position in y). For studies with missing data impute a large variance 

(10,000). 

T1, T2, T3:  these are 𝑁𝑠 – dimensional vector of treatments for every study. T1 refers to 

the first treatment of every study (chosen arbitrarily), T2 to the second. For two arm-

studies set T3 = 0. 

t1, t2, t3:  the (2 × 2) matrices needed for constructing the heterogeneity variance-

covariance matrix for the two-arm studies,  𝛥(2×2) in Equation (2) of the paper: 
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t1 = structure(.Data=c(1, 0, 0, 0),.Dim=c( 2 , 2 )) 

t2 = structure(.Data=c(0, 0, 0, 1),.Dim=c( 2 , 2 )) 

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2 , 2 ))  

delta1, delta2, delta3: the (4 × 4) matrices needed for constructing the heterogeneity 

variance-covariance matrix   𝛥(4×4)  for the three-arm studies, Equation (5) of the paper. 

delta1 = structure(.Data=c(1,0,0.5 0,0,0,0,0,0.5,0,1,0,0,0,0,0),.Dim=c(4,4 )) 

delta2 =  structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1),.Dim=c(4 ,4)) 

delta3=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0),.Dim=c(4,4)) 

sigma1, sigma2:  the (𝑁𝑠 − 𝑁2ℎ) × 4 × 4 – dimensional arrays entering Equation (8) for 

every three-arm study, as computed from the data. 
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XIII. OpenBUGS code for the model in Section 4.2.3.2 

model{ 

 

# this controls for studies with one outcome not reported by 

setting the correlation equal to zero 

 

for (k in 1:(2*Ns-N2h)){control[k]<-step(9999-

varr[k])*step(9999-vard[k])} 

 

# two-arm studies 

for( i in 1:N2h){ 

s[i,1,1]<-varr[i]+psiR.sq 

s[i,2,2]<-vard[i]+psiD.sq 

s[i,1,2]<-

control[i]*rho1*sqrt(varr[i]+psiR.sq)*sqrt(vard[i]+psiD.

sq) 

s[i,2,1]<-s[i,1,2] 

prec2A[i,1:2,1:2]<-inverse(s[i,,]) 

y[(2*i-1):(2*i)]~dmnorm(mean[(2*i-

1):(2*i)],prec2A[i,,])} 

 

# three-arm studies 

for (i in 1:(Ns-N2h)){ 

S[i,1,1]<- varr[N2h+2*i-1]+psiR.sq 

S[i,2,2]<-vard[N2h+2*i-1]+psiD.sq 

S[i,3,3]<- varr[N2h+2*i]+psiR.sq 

S[i,4,4]<-vard[N2h+2*i]+psiD.sq 

    

S[i,1,2]<- control[i]*rho1*sqrt(S[i,1,1])*sqrt(S[i,2,2]) 

S[i,2,1]<- S[i,1,2] 

S[i,1,3]<- control[i]*sqrt(S[i,1,1])*sqrt(S[i,3,3])/2 

S[i,3,1]<- S[i,1,3] 

S[i,1,4]<- 

control[i]*rho1*sqrt(S[i,1,1])*sqrt(S[i,4,4])/2 

S[i,4,1]<- S[i,1,4] 

S[i,2,3]<- 

control[i]*rho1*sqrt(S[i,2,2])*sqrt(S[i,3,3])/2 

S[i,3,2]<- S[i,2,3] 

S[i,2,4]<- control[i]*sqrt(S[i,2,2])*sqrt(S[i,4,4])/2 

S[i,4,2]<- S[i,2,4] 

S[i,4,3]<- control[i]*rho1*sqrt(S[i,4,4])*sqrt(S[i,3,3]) 

S[i,3,4]<- S[i,4,3] } 

for (k in 1:(Ns-N2h)){ 

prec3A[k,1:4,1:4]<-inverse(S[k,,]) 

y[2*N2h+4*k-3:2*N2h+4*k]~dmnorm(mean[2*N2h+4*k-

3:2*N2h+4*k],prec3A[k,,])} 

 

# Parameterization of the means 
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for(i in 1:N2h) {                    

 mean[2*i-1] <- -dR[T2[i]] + dR[T1[i]] 

mean[2*i] <- -dD[T2[i]]+ dD[T1[i]]} 

for(i in 1:(Ns-N2h)) {                    

 mean[2*N2h+4*i-3] <- -dR[T2[N2h+i]] + dR[T1[N2h+i]] 

mean[2*N2h+4*i-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]         

 mean[2*N2h+4*i-1] <- -dR[T3[N2h+i]]+ dR[T1[N2h+i]] 

 mean[2*N2h+4*i] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]] }  

   

# Priors   

for(k in 1:(ref-1)) { dR[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) {dR[k] ~ dnorm(0,.01)}   

for(k in 1:(ref-1)) { dD[k] ~ dnorm(0,.01)} 

for(k in (ref+1):NT) {dD[k] ~ dnorm(0,.01)}   

psiR.sq<-psi1*psi1 

psi1~dunif(0,1) 

psiD.sq<-psi2*psi2 

psi2~dunif(0,1) 

rho1~dunif(-1,0) 

 

#Estimated  Effect Sizes 

dR[ref]<- 0 

for (c in 1:(ref-1)) { Eff.refR[c]<- exp(dR[c] - dR[ref] )}  

for (c in (ref+1):NT) { Eff.refR[c]<- exp(dR[c] - dR[ref] )

 }  

for (c in 1:(NT-1)) { 

 for (k in (c+1):NT) {  

EffR[c,k] <- exp(dR[k] - dR[c])}} 

dD[ref]<- 0 

for (c in 1:(ref-1)) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}  

for (c in (ref+1):NT) { Eff.refD[c]<- exp(dD[c] - dD[ref] )

 }  

for (c in 1:(NT-1)) {   

 for (k in (c+1):NT) {  

  EffD[c,k] <- exp(dD[k] - dD[c]) }}  

 

# SUCRA rankings 

# Ranking of treatments for response. This part of the code is 

# adjusted for the acute mania dataset  

for (k in 1:13){ddR[k]<-dR[k]} 

for(k in 1:13) { 

orderR[k]<-13- rank(ddR[],k) 

 most.effectiveR[k]<-equals(orderR[k],1) 

for(j in 1: 13) { 

effectivenessR[k,j]<- equals(orderR[k],j) 

 cumeffectivenessR[k,j]<- sum(effectivenessR[k,1:j])}} 

  

for(k in 1:13) {SUCRAR[k]<- sum(cumeffectivenessR[k,1:(13-

1)]) /(13-1)} 
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#Ranking of treatments for dropout 

 

for(k in 1:NT) { 

 orderD[k]<- rank(dD[],k)   

most.effectiveD[k]<-equals(orderD[k],1) 

for(j in 1: NT) { 

effectivenessD[k,j]<- equals(orderD[k],j) 

  cumeffectivenessD[k,j]<- 

sum(effectivenessD[k,1:j])}}  

for(k in 1:NT) { 

SUCRAD[k]<- sum(cumeffectivenessD[k,1:( NT-1)]) /(NT-

1)}} 

 

The data needed as inputs for this program are y, varr, vard and T1, T2, T3, described in 

the end of the previous Section.
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