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Περίληψη

Σήμερα, υπάρχουν αναμφισβήτητα στοιχεία για την ύπαρξη σκοτεινής ύλης, πιθανότατα

με τη μορφή ηλεκτρικά ουδέτερων, σταθερών σωματιδίων. Ωστόσο, παρά την αυξανόμενη

πειραματική και θεωρητική δραστηριότητα, η ακριβής φύση των σωματιδίων της σκοτεινής

ύλης παραμένει άγνωστη. Στην παρούσα εργασία παρουσιάζουμε τρία μοντέλα που προβλέπουν

ένα σωματίδιο σκοτεινής ύλης. Σε κάθε μοντέλο, εστιάζοντας στις πιο φυσικές περιπτώσεις,

μελετάμε τις φαινομενολογικές επιπτώσεις του σωματιδίου σκοτεινής ύλης καθώς επίσης και

των συνοδών σωματιδίων.

Στο πρώτο κεφάλαιο, συζητούμε εν συντομία το Καθιερωμένο Πρότυπο της φυσικής των

στοιχειωδών σωματιδίων, την κοσμολογία και την σκοτεινή ύλη. Ξεκινάμε επιδεικνύοντας

τη μορφή της συμμετρίας βαθμίδας του Καθιερωμένου Προτύπου. Στη συνέχεια εισάγουμε

το σωματιδιακό περιεχόμενο και την προέλευση των διαφόρων μαζών μέσω του μηχανισμο-

ύ Higgs. Στη συνέχεια, συζητάμε τη βασική διατύπωση του Καθιερωμένου Κοσμολογικού

Μοντέλου. Εισάγουμε τη μετρική Friedman-Roberson-Walker, και συζητήστε την επέκτα-

ση και τη θερμική ιστορία του Σύμπαντος. Τέλος, συζητάμε το πρόβλημα της σκοτεινής

ύλης. Παρουσιάζουμε τα στοιχεία για την ύπαρξη της σκοτεινής ύλης καθώς και τα γενικά

χαρακτηριστικά του αντίστοιχου υποθετικού σωματιδίου. Στη συνέχεια, παρουσιάζουμε δύο

μηχανισμούς που εξηγούν την εξέλιξη της αριθμητικής πυκνότητας του σωματιδίου αυτού.

Κλείνοντας αυτό το κεφάλαιο, συζητούμε εν συντομία διάφορα πειράματα και παρατηρησιακές

προσπάθειες που επικεντρώνονται στην ανίχνευση σωματιδίων σκοτεινής ύλης.

Στο δεύτερο κεφάλαιο, παρουσιάζουμε το απλούστερο φερμιονικό μοντέλο σκοτεινής ύλης,

που αποτελείται από ένα σωματίδιο Majorana (S) το οποίο είναι singlet κάτω απο τη συμμετρία

βαθμίδας του Καθιερωμένου Προτύπου. Δεδομένου ότι δεν υπάρχουν πιθανές επανακανονι-

κοποιήσιμες αλληλεπιδράσεις μεταξύ του σωματιδίου αυτού και του Καθιερωμένου Προτύπου

(λόγω μίας συμμετρίας Z2), παρουσιάσαμε τον μοναδικό d = 5 μη-επανακανονικοποιήσιμο

τελεστή που περιγράφει την αλληλεπίδραση μεταξύ του σωματιδίου S και του μποζονίου H-
iggs. Στη συνέχεια, εξετάζουμε την παραγωγή της αφθονίας των σωματιδίων S, μέσω των

μηχανισμών freeze-out και freeze-in, σε δύο διαφορετικές περιοχές μάζας.

Στο τρίτο κεφάλαιο, μελετάμε μια επέκταση του Καθιερωμένου Προτύπου που αποτελείται

από έναν φερμιονικό σκοτεινό τομέα. Αυτός ο σκοτεινός τομέας αποτελείται από δυο Weyl
doublets με αντίθετο υπερφορτίο και ένα Majorana triplet. Υπό την υπόθεση μιας συμμετρίας

Z2, αυτά τα σωματίδια αλληλεπιδρούν πάντα ανά ζεύγη, επομένως το ελαφρύτερο ουδέτερο

σωματίδιο είναι υποψήφιο σωματίδιο σκοτεινής ύλης. Δείχνουμε ότι οι όροι Yukawa αυτού

του σκοτεινού τομέα είναι συμμετρικοί κάτω από μία συμμετρία που είναι υπεύθυνη για την

καταστολή της ενεργού διατομής της ελαστικής σκέδασης νουκλεονίων-σκοτεινής ύλης, δε-

δομένου ότι οι αλληλεπιδράσεις μεταξύ του σωματιδίου σκοτεινής ύλης και του Higgs καθώς

και του Z δεν υπάρχουν σε πρώτη προσέγγιση. Εστιάζοντας σε αυτό το συμμετρικό όριο,

το ελαφρύτερο ουδέτερο φερμιόνιο αυτού του σκοτεινού τομέα μπορεί να εξηγήσει φυσικά

την παρατηρούμενη πυκνότητα σκοτεινής ύλης, με μάζα στην κλίμακα των ασθενών φορέων.
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Επιπλέον, δείχνουμε ότι τα νέα φορτισμένα φερμιόνια είναι υπεύθυνα για την καταστολή του

πλάτους διάσπασης του μποζονίου Higgs σε δύο φωτόνια. Τέλος, δείχνουμε ότι το σωματίδιο

σκοτεινής ύλης αυτού του μοντέλου μπορεί να παραχθεί και να ανιχνευθεί στο LHC στο εγγύς

μέλλον.

Στο Κεφάλαιο 4, θεωρούμε έναν σκοτεινό τομέα που αποτελείται από ένα ζεύγος Weyl
SU(2)L-doublets με αντίθετα υπερφορτία. Αντιμετωπίζοντας αυτόν τον σκοτεινό τομέα ως

όριο χαμηλής ενέργειας ενός ολοκληρωμένου μοντέλου με μια ενέργεια αποκοπής στην κλίμα-

κα TeV, εκτελούμε μια λεπτομερή φαινομενολογική ανάλυση, συμπεριλαμβανομένων όλων

των επανακανονικοποιήσιμων και μη-επανακανονικοποιήσιμων τελεστών d = 5 μεταξύ των

σωματιδίων του σκοτεινού τομέα και του Καθιερωμένου Προτύπου. Διαπιστώνουμε ότι το

σωματίδιο σκοτεινής ύλης μπορεί να έχει μια μάζα κοντά στην ηλεκτρασθενή κλίμακα, υπακο-

ύοντας σε όλους τους πειραματικούς και παρατηρησιακούς περιορισμούς, υπό την προϋπόθεση

ότι υπάρχουν σημαντικές διπολικές αλληλεπιδράσεις μεταξύ των σωματιδίων του σκοτεινο-

ύ τομέα και των μποζονίων βαθμίδας. Τέλος, συζητούμε πιθανή ανίχνευση του σωματιδίου

σκοτεινής ύλης στις έρευνες ‘χαμένης’ ενέργειας του LHC. Δείχνουμε ότι οι ενεργές διατομές

για τις τρέχουσες αναζητήσεις mono-X είναι αρκετά μικρές, με το κανάλι mono-jet να είναι

το πιο πιθανό για μελλοντική ανίχνευση.

Στη συνέχεια, στο πέμπτο κεφάλαιο, εισάγουμε ένα ελάχιστο μοντέλο που προβλέπει ένα

σωματίδιο σκοτεινής ύλης που αποκτά με φυσικό τρόπο μάζα κάτω απο τη GeV κλίμακα.

Το μοντέλο αυτό είναι ένα two Higgs doublet model συμμετρικό κάτω από μια συμμετρία

Peccei-Quinn (PQ), το οποίο αποτελείται από δύο Weyl φερμιόνια SU(2)L-doublets και ένα

singlet. Οι doublets είναι ουδέτερες κάτω από την συμμετρία PQ και είναι αποσυνδεδεμένες

απο το πλάσμα καθ ΄όλη την ιστορία του Σύμπαντος. Το σωματίδιο σκοτεινής ύλης είναι το

singlet, το οποίο είναι φορτισμένο κάτω από την συμμετρία PQ, και επομένως άμαζο. Η

μάζα του σωματιδίου αυτού δημιουργείται κυρίως μέσω κβαντικών διορθώσεων, λόγω ενός

όρου που σπάει την PQ. Δείχνουμε ότι η παραγωγή μάζας είναι συμβατή με την παραγωγή

σκοτεινής ύλης μέσω του μηχανισμού freeze-in, χωρίς να βασίζεται στην λεπτομερή ρύθμιση

των παραμέτρων.

Τέλος, συνοψίζουμε τα αποτελέσματα αυτής της εργασίας και συζητούμε πιθανές μελλον-

τικές κατευθύνσεις του έργου που παρουσιάστηκε.
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Nowadays, there is irrefutable evidence for the existence of dark matter (DM), probably
in the form of electrically neutral, stable particles. However, despite the increasing ex-
perimental and theoretical efforts, the exact nature of the dark matter particle(s) remains
unknown. In this thesis, we present three models predicting a dark matter particle. In each
model, focusing on the most natural cases, we study the phenomenological implications of
the DM candidate particle as well as its parters.

In the first chapter, we briefly discuss the Standard Model (SM) of particle physics,
cosmology and dark matter. We start by demonstrating the form of the SM gauge invari-
ance. Then we introduce its particle content and explain the origin of the various masses
via the Higgs mechanism. Afterwards, we discuss the basic formulation of the Standard
Cosmological Model. We introduce the Friedman-Roberson-Walker metric, and discuss
the expansion and thermal history of the Universe. Finally, we discuss the dark matter
problem. We present the evidence for the existence of dark matter as well as the general
characteristics of the hypothetical corresponding particle. Then, we present two mech-
anisms that explain the evolution of the DM number density. Closing this chapter, we
briefly discuss various experimental and observational efforts that focus on the detection
of DM signatures.

In the second chapter, we present the simplest fermionic DM model, which consists of
one Majorana gauge singlet (S). Since there are no possible interactions between the DM
particle and the SM at the renormalizable level (due to a Z2 symmetry), we introduced
the only d = 5 non-renormalizable operator available, describing the interaction between
the DM particle and the Higgs boson. Then, we examine the production of the relic
abundance for the S-particle, via the freeze-out and freeze-in mechanism, in two distinct
mass regions.

In the third chapter, we study an extension of the SM that consists of a fermionic dark
sector. This dark sector is composed of two Weyl iso-doublets with opposite hypercharge
and a Majorana iso-triplet. Under the assumption of a Z2 symmetry, these particles always
interact in pairs, therefore the lightest neutral particle is a DM candidate. We show that
the Yukawa terms of this dark sector are symmetric under a custodial symmetry, which is
responsible for the suppression of the DM-nucleon cross section, since the tree-level inter-
actions between the DM particle and the Higgs as well as the Z-boson vanish. Focusing on
this symmetric limit, the lightest neutral fermion of this dark sector can naturally explain
the observed DM density, with a mass at the electroweak scale. Furthermore, we show
that the new charged fermions are responsible for a suppression of the branching ratio of
the Higgs boson to two photons. Finally, we show that the DM particle of this model can
be produced and detected at the LHC in the near future.

In Chapter 4, we consider a dark sector consisting on a pair of Weyl SU(2)L-doublets
with opposite hypercharges. Treating this dark sector as a low-energy limit of a UV-
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complete model with a cutoff energy at the TeV scale, we perform a detail phenomeno-
logical analysis, including both renormalizable and non-renormalizable d = 5 interactions
between the dark sector particles and the SM. We find that the DM particle can have
a mass near the electroweak scale, while evading all experimental and observational con-
straints, provided that sizeable dipole interactions between the dark sector particles and
the gauge bosons are present. We, then, discuss potential detection of the DM particle
at missing energy searches at the LHC. We show that the cross sections for the current
mono-X searches are suppressed, with the mono-jet channel being the most promising
probe for future detection.

Next, in the fifth chapter, we introduce a minimal model that predicts a DM particle
with a naturally obtained sub-GeV mass. This model is a Peccei-Quinn (PQ)-symmetric
two-Higgs doublet model, which consists of two Weyl fermionic SU(2)L-doublets and a
majorana gauge singlet. The iso-doublets are neutral under the PQ-symmetry and as-
sumed to be decoupled throughout the history of the Universe. The DM particle is the
gauge singlet, which is charged under the PQ-symmetry, and therefore massless at tree
level. The mass of the DM particle is generated predominantly at one-loop level, by a soft
PQ-braking term in the scalar potential. We show that the mass generation is compatible
with DM production via the freeze-in mechanism at the early Universe, without relying
on parameter fine tuning.

In closing, we summarise the results of this thesis and discuss possible future directions
of the work presented.
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1 Introduction

1.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics [1–6] describes interactions between the
known particles as a renormalizable Quantum Field Theory (QFT). In this section we are
going to briefly discuss the structure and formulation of the SM while introducing the
various conventions that are going to be useful throughout this thesis1.

The gauge symmetry of the SM is an SU(3)c×SU(2)L×U(1)Y gauge group broken down
to SU(3)c × U(1)EM.2 The SM particles are either fermions (spin-1/2) or bosons (spin-0
or 1). The fermions constitute the matter sector while the vector bosons (spin-1) are
responsible for the mediation of forces. Furthermore, the recently discovered [23,24] Higgs
boson (spin-0), as we shall see later, is responsible for the masses of the particles [25–27].

There are three generations of fermions in the SM which consist of leptons and quarks.
Leptons are neutral (singlets) under the SU(3)c symmetry and charged under the elec-
troweak one, SU(2)L×U(1)Y . This leads to particles that are charged only under U(1)EM,
where e, µ, τ are negatively charged while the corresponding neutrinos νe, νµ, ντ are neu-
tral. The quarks are charged (triplets) under SU(3)c as well as SU(2)L × U(1)Y . The
charges of the quarks are as follows: Q = 2/3 for u, c, t and Q = −1/3 for d, s, b.

The boson content of the SM consists of the gauge and Higgs bosons. The gauge
bosons are associated with the generators of the corresponding Lie algebra of the gauge
group. The gluons are responsible for the mediation of the strong interactions (SU(3)c)
interaction, hence there are eight of them. The electroweak gauge bosons are W 1,2,3 and
B associated with SU(2)L and U(1)Y , respectively. After electroweak symmetry breaking
the gauge bosons mix resulting to the weak gage bosons W±, Z and the photon A.

In any QFT the fundamental object is the Lagrangian. In this section we’ll construct
the Lagrangian which describes the interactions between the particles. Furthermore, we
will discuss the Higgs mechanism which gives masses to the SM particles.

The Free Dirac Lagrangian

In order to introduce the interactions between the particles of the SM, it would be helpful
to discuss first the Lagrangian which describes the free fermions. This Lagrangian is

L = ψ̄(i/∂ −m)ψ, (1.1)

where ψ is the fermion field, /∂ ≡ γµ∂µ, ψ̄ ≡ ψ†γ0. The γ matrices obey {γµ, γν} = 2gµν .
A common representation for these matrices is

1There is a vast number of reviews and textbooks on the subject of gauge theories and QFT, among them
refs. [7–22].

2The meaning of the indices will be apparent in the following analysis.
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1.1. The Standard Model of Particle Physics

γµ =

(
0 σµ

σ̄µ 0

)
, (1.2)

with 0 being 2× 2 matrix with vanishing components and

σµ ≡ (1, σi) and σ̄µ ≡ (1,−σi), (1.3)

where σi=1,2,3 are the Pauli matrices and 1 the 2× 2 unit matrix.

This is the 4-component spinor notation, which is the most widely used notation when
dealing with fermions. There is another notation available which is usually helpful for
fermions where the particle and the antiparticle are identical (these are referred as Ma-
jorana fermions). This notation emerges from further decomposing the one shown above,
i.e. decomposing3 γµ to σµ and σ̄µ. In this notation the fermion field is written as

ψ =

(
ψL
ψR

)
, (1.4)

where ψL (ψR) is the left- (right-) handed component of the spinor field. We define here
an additional γ-matrix

γ5 =

(
−1 0
0 1

)
, (1.5)

which can be used to construct left and right projection operators

PL ≡
1

2
(1− γ5) and PR ≡

1

2
(1 + γ5), (1.6)

which can be used to isolate the left- and right-handed spinor components. The left-
and right-handed fermion fields transform independently under two-dimensional nontrivial
irreducible representations of the Lorentz algebra, i.e. the left- (right-) handed component
transform under SU(2)L (SU(2)R) in the fundamental representation. The left and right
components can be conveniently written as

ψL = χ and ψR = η†, (1.7)

where we omit the SU(2) Lorentz indices for simplicity. It is worth noting that in this
notation the right-handed fermions are just the conjugate fields of the left-handed ones.
Thus, particles can be defined only by their left-handed components.

With this definition, the Dirac Lagrangian (1.1) becomes

L = iχ†σ̄µ∂µχ+ iη†σ̄µ∂µη −m(χη + χ†η†). (1.8)

It is clear that χ and η describe different particles with the same mass. It will become clear
in the following paragraph that χ and η have also opposite charges, hence they describe
the particle-antiparticle system.

As mentioned above, the 2-component notation is very useful when dealing with Majo-
rana fermions. These fermions are described by only one field, ξ, and the corresponding
free Lagrangian is

3For a complete description of this notation see ref. [28].
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L = iξ†σ̄µ∂µξ −
1

2
m(ξξ + ξ†ξ†). (1.9)

It is noteworthy that the Dirac Lagrangian of eq. (1.8) describes two particles (χ and
η) with the same mass, while the Majorana Lagrangian describes only one fermion (ξ).
As it turns out, Majorana fermions are neutral (more general, transform under real or
pseudo-real representation of a group) under all transformations, i.e. a Majorana fermion
is its own antiparticle. On the other hand, Dirac fermions are charged, which means that
χ and η describe a particle-antiparticle pair.

Quantum Electrodynamics

To construct the Lagrangian of Quantum Electrodynamics (QED) we start with the Dirac
Lagrangian, describing free electrons

L = ψ̄(i/∂ −me)ψ , (1.10)

where me is the electron mass.

The Lagrangian (1.10) is symmetric under the global transformation ψ(x) → eiαψ(x).
To introduce interactions we start from the Dirac Lagrangian and require invariance under
a local gauge transformation ψ(x)→ eieα(x)ψ(x). Then ∂µ is replaced with the covariant
derivative Dµ = ∂µ − ieAµ(x), with Aµ(x) a vector field with transformation Aµ(x) →
Aµ(x) + ∂µα(x). Here we identify Aµ(x) as the electromagnetic 4-potential. Thus we
introduce to the Lagrangian an invariant (kinetic) term that describes this field. This
term is −1

4(FµνF
µν), where Fµν = ∂µAν(x)− ∂νAµ(x). Finally, the Lagrangian for QED

is:

LQED = ψ̄(iγµ∂µ −me)ψ −
1

4
(FµνF

µν) + eψ̄γµψAµ , (1.11)

where e is the absolute value of the electron charge. From the above, it is clear that apart
from the kinetic terms of the electron and photon fields, there is an interaction term.
Although QED is the minimal example of a gauge theory, the procedure to generate the
interaction and the form of the Lagrangian is rather generic.

In the 2-component notation, and using identities given in [28], the interaction term of
the QED Lagrangian becomes

Lint = eχ†σ̄µχAµ − eη†σ̄µηAµ , (1.12)

where it is clear that the χ and η spinors describe particles with opposite electric charge
and the same mass as in eq. (1.8), i.e. electron-positron system.

In closing, Noether’s theorem states that there is a conserved current, associated with
this symmetry. For the gauge transformation ψ → ψ + ieα(x)ψ, the conserved (electro-
magnetic) current is

JµQED = ψ̄γµψ . (1.13)

The vanishing of the derivative of the current eq. (1.13) leads to electric charge conserva-
tion.
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1.1. The Standard Model of Particle Physics

SU(2) Yang-Mills

Consider the Dirac Lagrangian (1.1) with ψ being an SU(2) doublet. The free Dirac

Lagrangian is invariant under the transformation ψ → eig
~T ·~αψ, ~T satisfies the SU(2) Lie

algebra

[Ti, Tj ] = iεijkTk , (1.14)

where εijk is the total antisymmetric tensor and T1,2,3 are the SU(2) generators. In the
fundamental representation these are

T1 =
1

2

(
0 1
1 0

)
, T2 =

1

2

(
0 −i
i 0

)
, T3 =

1

2

(
1 0
0 −1

)
. (1.15)

As in QED we promote this symmetry to a local one, i.e. a transformation law ψ →
eig

~T ·~α(x)ψ. The covariant derivative for this SU(2) case is

Dµ = ∂µ + ig ~T · ~Wµ , (1.16)

where ~W is the gauge boson associated with the SU(2) symmetry and transforms as
T iW i

µ → T i ·W i
µ − gεijkαiW jT k + Ti(∂µα

i(x)). The invariant kinetic term for the vector
fields W i

µ is

L(kin)
YM = −1

4
(W i

µνW
iµν) , (1.17)

with
W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν . (1.18)

Since SU(2) is non-Abelian, this kinetic term includes also self-interaction of theW bosons.
Finally, the gauge invariant Lagrangian, which describes the fields ψ, W i

µ and their inter-
actions, becomes now

LYM = ψ̄(iγµ∂µ −m)ψ − 1

4
(W i

µνW
iµν) + gψ̄γµ ~T · ~Wµψ . (1.19)

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that describes the strong interactions.
The gauge symmetry of QCD is SU(3) and conventionally we refer to this symmetry as
SU(3)c, where c refers to color. The Lagrangian is similar to eq. (1.19) with

εijk → fabc, ~Wµ → Gaµ ,
~T → ta and g → gs , (1.20)

where fabc is the structure constant of SU(3), G is the gluon field, a, b, c = 1, 2...8, ta are
the SU(3) Lie algebra generators and gs is the strong gauge coupling.

Electroweak interactions

The gauge symmetry of the electroweak (EW) interactions is SU(2)×U(1) with covariant
derivative

Dµ = ∂µ − ig ~T · ~Wµ − ig′
1

2
Y Bµ , (1.21)
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Chapter 1. Introduction

where Y is the hypercharge, g and g′ are the SU(2) and U(1) gauge couplings, respectively.
Conventionally, we refer to the EW gauge symmetry as SU(2)L×U(1)Y , where L indicates
that only the left-handed components of the SM fermions transform under the SU(2), and
Y referring to the hypercharge.

It is convenient to rotate the fields W3µ and Bµ to Zµ and Aµ, so that they do not mix
after symmetry breaking. This can be achieved by the rotation(

W3µ

Bµ

)
=

(
cW sW
−sW cW

)(
Zµ
Aµ

)
, (1.22)

where sW and cW are sin(θW ) and cos(θW ), respectively and using

T1W1µ + T2W2µ = T+W+
µ + T−W−µ , (1.23)

where W±µ =
1√
2

(W1µ ∓ iW2µ), T± =
1√
2

(T1 ± iT2) the covariant derivative becomes

Dµ = ∂µ − ig(T+W+
µ + T−W−µ )− i g

cW
(T3 +Qs2

W )Zµ − iQeAµ , (1.24)

with e = sW g = g′cW and Q = T3 +
1

2
Y is the electric charge of each particle in units

of the electron charge, e. The kinetic terms for the gauge bosons are as in QED and the
SU(2) Yang-Mills. Thus, the covariant derivative of the SM finally becomes

Dµ = ∂µ − igstaGaµ − ig(T+W+
µ + T−W−µ )− i g

cW
(T3 +Qs2

W )Zµ − iQeAµ . (1.25)

Fermions of Standard Model

As already explained, there are three generations of fermions, each containing quarks and
leptons. Each fermion is described only by it’s charges (representations) under the SM
gauge group. The representation under the SU(3)c is quite straightforward. Quarks are
SU(3)c triplets, while leptons are singlets. The case is more involved for the electroweak
gauge group, since the left- and right-handed components transform in a differed way
(chiral fermions) under SU(2)L × U(1)Y . The left-handed fields are doublets under the
SU(2)L, while the right-handed ones are singlets.

Table 1.1: Representations of one fermion generation under the SM gauge group.

fermion SU(3)c SU(2)L U(1)Y
LL 1 2 -1
lR 1 1 -2

qL 3 2 1/3
uR 3 1 4/3
dR 3 1 -2/3

In Table 1.1 we show the representations of a fermion generation under the SM gauge
group. Notice that there is one right-handed lepton while there are two right-handed
quarks. This, as we shall see next leads to massless neutrinos. Following the proce-
dure shown in the previous paragraphs, all the interactions between the fermions and the
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1.1. The Standard Model of Particle Physics

gauge bosons can be computed. The compact form of the quark and lepton interaction
Lagrangian (in 4-component notation), suppressing the gauge indices, is

L = − 1

4
GaµνGaµν −

1

4
W iµνW i

µν −
1

4
BµνBµν

+ i
∑

i=1,2,3

[
L̄iL /DLiL + l̄iR /DliR + q̄iL /DqiL + ūiR /DuiR + d̄iR /DdiR

]
, (1.26)

where /D = γµDµ with Dµ being the covariant derivative of the SM given in eq. (1.25).

Table 1.2: Representations of one fermion generation under the SM gauge group in 2-
component notation. Note that the “bars” above the SU(2)L singlets are part
of the fermion names.

fermion SU(3)c SU(2)L U(1)Y
L 1 2 -1
l̄ 1 1 2

q 3 2 1/3
ū 3̄ 1 -4/3
d̄ 3̄ 1 2/3

One can make use of the 2-component notation by defining only the charges of left-
handed fermions and antifermions as in Table 1.2. Then the fermion part of the La-
grangian, again suppressing the gauge indices, becomes

Lfermion = i
∑

i=1,2,3

[
L†i σ̄

µDµLi + l̄†i σ̄
µDµ l̄i + q†i σ̄

µDµqi + ū†i σ̄
µDµūi + d̄†i σ̄

µDµd̄i

]
, (1.27)

Notice the absence of masses in the SM Lagrangian. This is because there are no allowed
mass terms, by the gauge symmetry. Masses of particles are generated by breaking the
gauge symmetry via the Higgs mechanism.

The Higgs mechanism

We saw that interactions emerge from gauge symmetries. But in the SM gauge symmetry
there are no gauge invariant mass terms for the known fermions and vector bosons. Thus,
somehow, we would like to break this symmetry in order to give masses to these particles.
The discovery of the Higgs boson showed that this can be done by breaking the EW
symmetry SU(2)L × U(1)Y to the electromagnetic one, i.e. U(1)EM . In the following we
briefly discuss this mechanism and show how the masses of the SM particles are generated.

The field responsible for the spontaneous symmetry breaking of the EW gauge symme-
try, is the Higgs field, H. This field is neutral under the strong interactions and SU(2)L
doublet with U(1)Y charge = 1. The EW symmetric Lagrangian describing this field is

L = |DµH|2 + µ2|H|2 − λ

2
|H|4 , (1.28)
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Chapter 1. Introduction

The first term of this Lagrangian contains the interactions between H and the gauge
bosons as well as the kinetic term. The last two terms are related to the potential

V (H,H†) = −µ2|H|2 +
λ

2
|H|4 . (1.29)

The EW symmetry is broken when the ground state of the potential is non-zero. Since our
goal is to break this symmetry, in order to allow for masses to be generated, we assume

that µ2 > 0 and λ > 0. Thus the potential is minimized for 〈H〉 =
√

µ2

λ . The EW gauge

group breaks to the U(1)EM if the field H is expanded as

H =

(
G+

H0

)
→


G+

v +
h+ iG0

√
2

 , (1.30)

where v ≡ 〈H〉 is the vacuum expectation value (VEV) of the Higgs field, G+ and G0

are the goldstone bosons (in the unitary gauge these are rotated away by an SU(2) trans-
formation), and h the Higgs boson. With this expansion and eq. (1.25), we find various
interaction terms and the following mass terms for W±, Z and h

Lmass =
1

2
g2v2W+µW−µ +

1

4

(
g

cW
v

)2

ZµZ
µ + λv2h2 . (1.31)

Thus the masses are mW =
g√
2
v, mZ =

g√
2cW

v =
mW

cW
and mh =

√
2λv. Note that

there is no photon mass term, so the U(1)EM subgroup of the EW gauge group remains
unbroken.

Fermion masses

The fermions of SM are ordered in generations, each generation contains one lepton and
one quark family. Each lepton family consists of one left handed SU(2)L doublet LiL =(
νi
li

)
L

and one right handed singlet, liR. Neutrinos do not have right handed components,

therefore remain massless.4 In the same way, left handed quarks are SU(2)L-doublets

qiL =

(
ui
di

)
L

, and the right handed ones, uiR and diR, are iso-singlets.

In order to generate fermion masses we need to find gauge invariant (Yukawa) terms of
the form (ψ̄LHψR + H.c.). After EW symmetry breaking, expanding H around its VEV,
the fermion masses will appear proportional to v(ψ̄LψR+H.c.). That is, the Yukawa terms
for the leptons are

LLepton
y = −

∑
i=1,2,3

Y
(l)
i L̄iLHliR + H.c. , (1.32)

where Y
(l)
i is a Yukawa coupling, i = 1 corresponds to the electron (e), i = 2 the muon

(µ) and i = 3 the tau (τ). Expanding H around its VEV, the Lagrangian (1.32) gives us
the lepton mass terms

4This assumption can be relaxed.
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1.2. Basics of Cosmology

LLepton
mass = −

∑
i=1,2,3

Y
(l)
i vL̄iLliR + H.c. (1.33)

That is, the lepton masses are mi = Y
(l)
i v. It is clear that, as mentioned above, neutrinos

remain massless.

Quarks acquire masses in the same way. The invariant Yukawa terms for quarks are

LQuark
y = −

∑
i,j=1,2,3

Y
(u)
ij q̄Li(2i T2H

∗)uRj −
∑

i,j=1,2,3

Y
(d)
ij q̄LiH dRj + H.c. , (1.34)

where Y
(u, d)
ij are Yukawa coupling represented by 3× 3 (complex) matrices, qLi =

(
ui
di

)
L

and the singlets qRj = uRj , dRj . Thus, the mass terms are

LQuark
mass = −

∑
i,j=1,2,3

Y
(u)
ij v ūLiuRj −

∑
i,j=1,2,3

Y
(d)
ij v d̄LidRj + H.c. (1.35)

Finally, we can see that the mass matrices for quarks are

M
(u)
ij = Y

(u)
ij v and M

(d)
ij = Y

(d)
ij v . (1.36)

These matrices are not necessarily diagonal. We can diagonalize them by multiplying with
some unitary matrices,5 VL,R and UL,R defined by the following relations:

V †LM
(u)VR =

 mu 0 0
0 mc 0
0 0 mt

 and U †LM
(d)UR =

 md 0 0
0 ms 0
0 0 mb

 . (1.37)

The interaction terms of the SM Lagrangian eq. (1.26) can be written in the basis where
the mass matrices are diagonal, as: u1

u2

u3


L,R

= VL,R

 u
c
t


L,R

and

 d1

d2

d3


L,R

= UL,R

 d
s
b


L,R

, (1.38)

where the mass of the up-quark (u) is mu, the mass of the charm-quark (c) is mc, etc.

Closing, we note that the same procedure can be followed in the 2-component spinor
notation, resulting to the same mixing matrices and masses. This has been carried out in
ref. [28].

1.2 Basics of Cosmology

The Universe seems to be isotropic and homogeneous at large scales (∼ 10Mpc) and
has been expanding for about 13.7 billion years. Currently, observations show that the
Universe consists [29] of the known particles (∼ 5%), Dark Matter (∼ 25%) and Dark

5 This is the so-called “singular value decomposition” (SVD), which ensures that the resulting diagonal
matrix has non-negative real elements. SVD is explained in ref. [28].
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Energy (∼ 70%). In this section we will discuss the basic formulation of the Standard
Cosmological Model.6

1.2.1 Geometry of the Expanding Universe

The Metric of the Universe

The geometry of an expanding isotropic Universe is described by the Friedman-Roberson-
Walker (FRW) metric defined by the invariant line element squared (in polar coordinates)

ds2 = dt2 − a(t)2
[ dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

]
, (1.39)

where a(t) is an expansion parameter called the scale factor and k is the curvature pa-
rameter. This metric has the consequence that the velocity of an object depends on the
distance between the object and the observer as

~v = a(t)
d~r

dt
+
da(t)

dt
~r = a(t)

(
~̇r +H~r

)
, (1.40)

where H is the Hubble parameter defined as the expansion rate of the Universe:

H(t) ≡ ȧ(t)

a(t)
. (1.41)

Redshift

At first approximation, the particles follow a free-falling path described by the geodesic
equation

duµ

ds
+ Γµαβu

αuβ = 0 , (1.42)

where uµ ≡ dxµ

ds is the four velocity of a particle with xµ its spacetime path and s the
proper time. Also Γµαβ are the Christoffel-symbols

Γµαβ ≡
1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) , (1.43)

with ∂µ ≡
∂

∂xµ
and gµν the FRW metric defined by eq. (1.39).

The geodesic equation (1.42) can be alternatively written in terms of the particle’s
momentum, Pµ = muµ, as 7

Pα
∂Pµ

∂xα
= −ΓµαβP

αP β . (1.44)

Since in a homogeneous gravitational background ∂iP
0 = 0, the µ = 0 component of

eq. (1.44) becomes

P 0dP
0

dt
= −Γ0

αβP
αP β . (1.45)

6See also refs. [30–32].
7If m = 0 the parameter s is some affine parameter defined from Pµ = dxµ

ds
. As a result eq. (1.44) still

holds.
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This equation results in the evolution of the energy of free-falling particles. From eq. (1.43)
for the FRW metric, the energy (P 0) follows

E
dE

dt
= −H|~p| 2 , (1.46)

where |~p| 2 = a2|~P | 2, with |~p| 2 = E2 −m2. This shows us that (using EdE = pdp)

|~̇p|
|~p| = −H , (1.47)

which in turn means that the momentum |~p| falls as

|~p| ∼ 1

a
. (1.48)

One important result from eq. (1.48) is the redshift. Since the wavelength of a photon
is λ ∼ 1/|~p|, if a photon of wavelength λ1 is emitted at t = t1, today (at t = t0 ) its
wavelength (λ0) would be

λ0 =
a(t0)

a(t1)
λ1 . (1.49)

Therefore, since the Universe expands (a(t0) > a(t1)), photons redshift (λ0 > λ1).

We define here the redshift parameter as

z ≡ λ0 − λ1

λ1
=
a(t0)

a(t1)
− 1 . (1.50)

For nearby light sources, the redshift parameter can be expanded as

z = (t0 − t1)H0 . (1.51)

where H0 ≡ H(t = t0) is called the Hubble constant (today), which is parametrized as

H0 ≈ 2.1h× 10−42GeV , (1.52)

with h being a dimensionless expansion parameter.

Eq. (1.51) shows that the light gets redshifted proportionally to the source-observer
distance and so by measuring the redshift we can determine the distance that light travelled
d ≡ |t1 − t0| (in c = 1 units).

Dynamics of the Expansion

The evolution of the Universe is described by the Einstein equation

Rµν −
1

2
Rgµν = 8πG(Tµν + TΛ

µν) , (1.53)

where, Tµν the energy-momentum tensor, TΛ
µν the dark energy part of the energy-momentum

tensor, Rµν the Ricci tensor and R ≡ Rµµ. The Ricci tensor is defined as

Rµν ≡ ∂αΓαµν − ∂νΓαµα + ΓααβΓβµν − ΓαµβΓβνα . (1.54)
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Homogeneity and isotropy dictate that the energy-momentum tensor is of the form

Tµν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 , (1.55)

where ρ is the total (matter and radiation, i.e. ρr+ρm) energy density and P the pressure,
which are going to be defined in the next paragraph.

The dark energy part of the energy-momentum tensor is defined as

TΛ
µν ≡ ρΛgµν , (1.56)

with ρΛ ≡ Λ
8πG being the dark energy density (Λ is the so-called the cosmological constant).

The energy-momentum tensor obeys the conservation equation

∂µT
µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α = 0 , (1.57)

which leads to the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 . (1.58)

The continuity equation can be written in a more familiar form as

dU = −PdV , (1.59)

with U ≡ ρV (total energy) and V ∼ α3 (volume).

After some algebra, the Einstein equation (1.53) give us the so-called “Friedman equa-
tions”8:

H2 =
8πG

3
(ρ+ ρΛ)− k

a2
, (1.60)

ä

a
= −4πG

3
(ρ+ 3P − 2ρΛ) . (1.61)

We define the critical density as

ρcr ≡
3H2

0

8πG
, (1.62)

which is the total energy density at t = t0 for a flat Universe (k = 0). We also define
dimensionless density parameters today for the various components (radiation, matter,
dark energy) of the Universe

Ωi ≡
ρ0, i

ρcr
, (1.63)

where i is r for radiation, m for matter, Λ for dark energy.

We note that, from eq. (1.48), the energy density of relativistic particles (radiation)
scales as ρr = E/V ∼ 1/a4, while the energy density of non-relativistic (matter) particles

8Two of Eqs.(1.58), (1.60) and (1.61) are independent.
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ρm = m/V ∼ 1/a3. Furthermore, the density of dark energy is conserved (Λ is a constant).
Thus, the first Friedman equation (1.60) can be written as

H2

H2
0

= Ωra
−4 + Ωma

−3 + ΩΛ + Ωka
−2 , (1.64)

where we have also defined Ωk ≡ − k
(a0H0)2 and a0 ≡ 1.

Today we are able to observationally determine [29] the various density parameters,
resulting to Ωr ≈ 9.4 × 10−5, Ωm ≈ 0.32, ΩΛ ≈ 0.68. That is, Ωr + Ωm + ΩΛ ≈ 1 and
Ωk ≈ 0 . Also, since a(t) < 1 and k does not depend on time, Ωk is negligible throughout
the history of the Universe. Therefore, throughout this thesis we assume that the Universe
is flat (k = 0), without loss of generality.

1.2.2 Thermodynamics of the Early Universe

At early times, the Universe was (approximately) in thermal equilibrium. This means
that the interactions between the particles were faster than the expansion of the Universe,
i.e. the interaction rate was larger than the Hubble parameter Γ > H. At later times, as
the Universe expanded and cooled, particles started to decouple giving rise to the various
cosmological abundances, including dark matter (DM) which is the focus of this thesis.

There are some events that took place in the early Universe which have affected its
present state (see refs. [30–34]), namely

• Inflation, T ∼ 1015GeV (?).9 The small temperature fluctuations of the Cosmic
Microwave Background (CMB), show that the Universe started in thermal equilib-
rium. However, it is impossible that the entire Universe was in thermal (causal)
contact, since the speed of light is finite. This is the so-called horizon problem (see
ref [31, 32, 35, 36] for more information). Also, the origin of the observed tempera-
ture fluctuations of the CMB is unknown. If we assume that there was an epoch
of exponential expansion of the Universe (inflation), these problems are resolved.
Inflation explains how all the regions of Universe were at first in causal contact as
well as the magnification of quantum (zero-point) fluctuations to the ones measured
today. At the end of this epoch, the field responsible for the rapid expansion of the
Universe (inflaton) decayed to the known particles. The temperature at the end of
the inflaton decay is called the reheating temperature of the Universe, TRH .

• Radiation dominated Universe, T = TRH − 1eV. After the decay of the inflaton, the
energy content of the Universe was dominated by relativistic particles in equilibrium.
The Universe remained radiation dominated up to T ∼ 1eV, where most of the
content of the Universe became non-relativistic.

• EW phase transition, T ∼ 100GeV. As the temperature of Universe dropped below
∼ 100GeV , the Higgs field developed a VEV, resulting to the known particle masses.

• Baryogenesis, T ∼ 100GeV (?). In the SM it is impossible to create a particle
without creating its antiparticle. This means that the Universe as we know shouldn’t
exist, because every particle would find an antiparticle and annihilate to photons.
Therefore it is natural to assume that at some point the number of particles became
larger then the number of antiparticles (this procedure is described in ref. [37]).
One attractive scenario is electroweak baryogenesis (for a review see ref. [38]), where

9The temperature of the inflation era is unknown, hence the question mark.
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baryogenesis happens at the temperature where the Higgs develops a VEV, i.e.
T ∼ 100GeV.

• DM relic abundance, T = ?. At some point, probably during the radiation dom-
inated phase, the number of DM particles stabilized, resulting to the current DM
abundance.

• Quark confinement, T ∼ 1GeV. At low energies, the QCD coupling becomes strong
enough. Therefore quarks and gluons form bound states.

• Neutrino decoupling, T ∼ 1MeV. The temperature where the interactions between
neutrinos and the rest of the plasma, became slower than the expansion rate of the
Universe.

• Electron–positron annihilation, T ∼ 0.5MeV. Electrons and positrons annihilate to
photons, increasing the temperature of the photons, thus creating a small deviation

between the photon and neutrino temperature (
Tγ
Tν
≈
(

11
4

)1/3
).

• Neucleosynthesis, T ∼ 0.1MeV. After electron-positron annihilation, light elements
formed during a process called Big Bang Neucleosynthesis (BBN).

• Matter-radiation equality, T ≈ 1eV. As the Universe cooled, radiation redshifted to
the point where the Universe started to be dominated by its matter content.

• Recombination and photon decoupling, T ∼ 0.3 − 0.2eV. the available energy is
smaller than the ionising energy of the hydrogen atom, Therefore, the remaining
free electrons, combined with hydrogen, which lead to the photon decoupling. The
photons remained free until today form the CMB.

• Reionization, T ∼ 2.5 − 7meV. After recombination, structure formation started.
In dense regions, stars started to form and the resulting radiation ionised their
surrounding hydrogen.

• Dark Energy dominated Universe, T ∼ 0.3meV. The matter energy density became
equal to the dark energy density. Until today the Universe is dominated by the dark
energy content.

• Today. The current temperature of the photons is T0 = 0.24meV.

Basic Quantities

Before moving to the discussion of DM, it would be helpful to introduce various quantities
that are necessary to describe the thermal history of the Universe. The number density
(n), the energy density (ρ) and the pressure (P ) of a particle species (i) are defined as

ni = gi

∫
d3~p

(2π)3
fi(E) , (1.65)

ρi = gi

∫
d3~p

(2π)3
fi(E)E , (1.66)

Pi =

∫
gi

d3~p

(2π)3
fi(E)

|~p|2
3E

, (1.67)

where fi(E) is the (homogeneous and isotropic) phase space distribution function and gi
the number of internal degrees of freedom.10 The equilibrium distribution function at
temperature T and chemical potential µ is

10For example, g = 2 for the electron, g = 1 for the neutrinos (they are massless), etc.
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fi(E) =
[
e(E−µ)/T ± 1

]−1
, (1.68)

with + for fermions and − for bosons.

Entropy

The second law of thermodynamics (for vanishing chemical potential) implies that

TdS = dU + PdV =
∂U

∂T
dT +

[
∂U

∂V
+ P

]
dV , (1.69)

where S is the entropy of the system. In equilibrium dS = 0 (i.e. eq. (1.59)). Entropy
obeys the integrability condition

∂2S

∂T∂V
=

∂2S

∂V ∂T
. (1.70)

By this integrability condition and the definition of the energy density (ρ ≡ ∂U
∂V ), the

second law of thermodynamics obtains the form

dS = d
[ρ+ P

T
V
]
. (1.71)

Thus we can define the entropy density in terms of ρ, T and P as

s ≡ ρ+ P

T
. (1.72)

At equilibrium a3s is constant, which means that the entropy density scales as

s ∼ a−3 . (1.73)

Useful Relations

In the relativistic limit (T � m), for vanishing chemical potential, the number density,
energy density and pressure for a particle species (i) become [30–32]

ni = gi
ζ(3)

π2
T 3 ×

{ 1, for bosons
3/4, for fermions

, (1.74)

ρi = gi
π2

30
T 4 ×

{ 1, for bosons
7/8, for fermions

, (1.75)

Pi =
ρi
3
, (1.76)

where ζ(3) ≈ 1.2. The total entropy density in this limit, from eqs. (1.72), (1.75) and
(1.76), becomes

s =
2π2

45
g?ST

3, (1.77)

with g?S referred as the effective relativistic degrees of freedom, defined as
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g?S ≡
∑

i=bosons

gi

(
Ti
T

)3

+
∑

i=fermions

7

8
gi

(
Ti
T

)3

, (1.78)

where we have also allowed for particles to be decoupled from the thermal bath with
temperatures Ti.

Observe that if the Universe is in equilibrium and its energy content is dominated by
relativistic particles, eqs. (1.73) and (1.75) indicate that the temperature would scale as
T ∼ 1/a.

In the non-relativistic limit (T � m) of the n, ρ and P are [30–32]:

ni = gi

(
mT

2π

)3/2

e−m/T , (1.79)

ρi = mi ni , (1.80)

Pi = T ni , (1.81)

which show that, compared to the relativistic ones, all these quantities are negligible.
Thus the contribution of non-relativistic particles to the entropy density is exponentially
suppressed. This means that if a particle becomes non-relativistic while at equilibrium,
its entropy is transferred to the relativistic ones, e.g. via decays or annihilations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
70

80

90

100

110

Log
T

GeV

g *
S

Figure 1.1: The effective relativistic degrees of freedom of the SM as a function of the
logarithm of the temperature.

The dependence of effective relativistic degrees of freedom (1.78) of the SM particles on
the logarithm of temperature, from T = MPl to T = 1 GeV, is shown in Fig. 1.1. Observe
that for temperatures above ∼ 100 GeV, g?S is constant, while for smaller temperatures
and near mass thresholds, g?S decreases exponentially. This helps to understand the
decoupling process of a particle species. At T near mass thresholds, particles start to
become non-relativistic (i.e. g?S decreases), thus annihilating to lighter particles. The
decoupling of these particles (usually) happens while they are in equilibrium. This means
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that during the decoupling of a particle species, the temperature scaling departs from the
usual T ∼ a−1, in order to take into account these annihilations while keeping the entropy
constant. Therefore, from eqs. (1.73), (1.75) and (1.78), the temperature scales as

T ∼ g−1/3
?S a−1. (1.82)

Finally, if the energy of the Universe is dominated by relativistic particles, the first
Friedman equation (1.60) becomes

H =

(
8π3

90M2
Pl

g?

)1/2

T 2 ≈ 1.66g
1/2
?

T 2

MPl
, (1.83)

where we have used MPl ≡ G−1/2 with MPl ≈ 1.22 × 1019GeV the “Planck mass”. Also
we have defined g? as

g? ≡
∑

i=bosons

gi

(
Ti
T

)4

+
∑

i=fermions

7

8
gi

(
Ti
T

)4

. (1.84)

If all relativistic particles are in equilibrium, then g? = g?S .

Boltzmann Equation

The evolution of the distribution functions fi(E) of the particle species of the Universe is
described by the Boltzmann equation. The Boltzmann equation for a particle i is written
as

dfi
dt

=
∂xα

∂t

∂fi
∂xα

+
∂pα

∂t

∂fi
∂pα

=

(
∂

∂t
−H |~p|

2

E

∂

∂E

)
fi = I(coll) , (1.85)

where we have used eq. (1.46) and the assumptions of homogeneity and isotropy. The
r.h.s. of eq. (1.85) is the collision integral which, for all possible processes i+X ↔ Y , is
given by

I
(coll)
i =

1

2Ei

∑
X,Y

∫
dΠX dΠY (2π)4δ(4)(p+

∑
pX −

∑
pY )× (1.86)[

〈|MY→i+X |2〉
∏
Y

fY
∏
X

(1± fX) (1± fi)− 〈|Mi+X→Y |2〉fi
∏
X

fX
∏
Y

(1± fY )

]
,

with + for bosons (Bose enhancement effect), − for fermions (Fermi blocking effect), fi,X,Y
the various distributions functions, 〈|Mi+X↔Y |2〉 the matrix elements squared, averaged
over all internal degrees of freedom (divided by appropriate symmetry factors for identical
particles). The integration is performed over the Lorentz invariant phase space of X and
Y , with dΠX,Y defined as

dΠX,Y ≡ gX,Y
∏
X,Y

d3~pX,Y
(2π)32EX,Y

. (1.87)

The Boltzmann equation in this form is rarely useful in calculations relevant to DM. Since
DM is assumed to be non-relativistic today, its energy density is given by eq. (1.80). The
evolution of the number density (of a particle species i) is given by the integrating the
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Boltzmann equation over the momentum of i and multiplying with its internal degrees of

freedom (gi
∫ d3~p

(2π)3 )

dni
dt

+ 3Hni = gi

∫
d3~p

(2π)3
I

(coll)
i . (1.88)

Noting that away from mass thresholds the entropy is conserved (dsdt = −3Hs), the l.h.s.
can be written as

dni
dt

+ 3Hni = s
dYi
dt

+ 3HsY + Y
ds

dt
= s

dYi
dt

, (1.89)

with Y being the yield defined as

Yi ≡
ni
s
. (1.90)

The Boltzmann equation cannot be solved analytically in general, but under approxi-
mations (and assumptions) can be greatly simplified. Assuming that the quantum statis-
tical effects are negligible (which holds for most cases), the distribution functions follow
Maxwell-Boltzmann statistics and we can ignore the Bose enhancement and Fermi blocking
effects, which simplifies the Boltzmann equation to

s
dYi
dt

= gi

∫
d3~p

(2π)3
I

(coll)
i =gi

∑
X,Y

∫
d3~p

(2π)32E
dΠX dΠY (2π)4δ(4)(p+

∑
pX −

∑
pY )×

(1.91)[
〈|MY→i+X |2〉

(∏
Y

fY

)
− 〈|Mi+X→Y |2〉fi

(∏
X

fX

)]
.

For specific processes, we can further simplify this Boltzmann equation to a more useful
form.

The Boltzmann Equation for 1↔ 2 Processes

Lets assume that we would like to find the evolution of the distribution function of a
particle ψ that interacts only with plasma particles, B, through processes B ↔ ψψ, with
|MB→ψψ|2 = |Mψψ→B|2 = |M |2. The Boltzmann equation for Yψ, then, is

s
dYψ
dt

=

∫
gBd

3~pB
(2π)32EB

∏
i=1,2

(
gψd

3~ki
(2π)32Ei

)
(2π)4δ(4)(p− k1 − k2)× (1.92)

〈|M |2〉
(
feqB (EB)− fψ(E1)fψ(E2)

)
,

where ~ki are the momenta of the ψ particles, feqB (EB) = e−EB/T the equilibrium distribu-
tion function for vanishing chemical potential11 of B.

The Boltzmann equation can be further simplified by assuming that the distribution
function of ψ is of the form

11In general, chemical potentials are unimportant in cosmology as explained in [31,32].
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fψ(E1,2) = A(T )e−E1,2/T , (1.93)

with A(T ) a function of the plasma temperature. Since A(T ) does not depend on the
particle energy, it can be expressed in terms of the number density (1.65) of ψ as

A(T ) =
nψ
neqψ

, (1.94)

which leads to

fψ(E1)fψ(E2) = feqB (EB)

(
nψ
neqψ

)2

. (1.95)

Also from the definition of the decay rate [13]

2

gB
mBΓB→ψψ =

d3~k1

(2π)32E1

d3~k2

(2π)32E2
(2π)4δ(4)(p− k1 − k2)〈|M |2〉 , (1.96)

the Boltzmann equation becomes

s
dYψ
dt

=2g2
ψ MB Γψ→B1B2

1−
(
nψ
neqψ

)2
∫ d3~pB

(2π)32EB
e−EB/T =

=
g2
ψ

2π2
M2
B T ΓB→ψψ K1

(
MB

T

)1−
(
Yψ
Y eq
ψ

)2
 , (1.97)

where K1

(
MB
T

)
is the first modified Bessel function of the second kind. Since we have

assumed that the entropy is conserved (i.e. T ∼ 1/a), the Boltzmann equation can be
expressed as

dYψ
dT

= −
g2
ψ

2π2

M2
B ΓB→ψψ
Hs

K1

(
MB

T

)1−
(
Yψ
Y eq
ψ

)2
 . (1.98)

The Boltzmann Equation for 2↔ 2 Processes

Consider a particle ψ that interacts only with plasma particles, B1,2, through processes
ψψ ↔ B1B2, with |Mψψ→B1B2 |2 = |MB1B2→ψψ|2 = |M |2. Similarly to the previous case
the Boltzmann equation is

dYψ
dT

= − 1

HsT

∫ ∏
i=1,2

gψd
3~pψi

(2π)32Eψi

gid
3~ki

(2π)32Ei
(1.99)

(2π)4δ(4)(pψ1 + pψ2 − k1 − k2)〈|M |2〉feqψ (Eψ1)feqψ (Eψ2)

1−
(
Yψ
Y eq
ψ

)2
 ,

where ~ki (Ei) is the momentum (energy) of Bi, ~pψi (Eψi) is the momentum (energy) of
the ψ-pair.
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We define the thermal average of the total annihilation cross-section , multiplied by the
relative velocity of the incoming ψ pair

〈σψψ→B1B2v〉 ≡
1

neq 2
ψ

∫ ∏
i=1,2

d3~pψi
(2π)3

σψψ→B1B2 v f
eq
ψ1f

eq
ψ2 , (1.100)

with [13]

σψψ→B1B2 v =
g2
ψ

4Eψ1Eψ2

∫ ∏
i=1,2

gid
3~ki

(2π)3
(2π)4δ(4)(pψ1 + pψ2 − k1 − k2)〈|M |2〉 =

=
g2
ψ

4Eψ1Eψ2

∫
dΩ(CM)

|~p (CM)
ψ |

(2π)24E
(CM)
ψ

〈|M |2〉 , (1.101)

where the superscript (CM) indicates the center of mass of the two annihilating ψ particles.
The Boltzmann equation, then, obtains the final form

dYψ
dT

= − 1

Y eq
ψ T

neqψ 〈σψψ→B1B2v〉
H

1−
(
Yψ
Y eq
ψ

)2
 . (1.102)

1.3 Dark Matter

1.3.1 Why Dark Matter?

Historically, evidence for the existence of dark matter were discovered by measurements of
the velocities of galaxies in the Coma cluster [39] in the early 1930’s. This study showed
that in order for the galaxies to be bounded in this cluster, the total mass should be
about two orders of magnitude larger that the luminous mass. Later, measurements of
the velocity distributions of stars in spiral galaxies, showed that, away from the galactic
center the rotational velocities reach a (approximately) constant value (e.g. [40]). However,
standard gravitational calculations, applied for the luminous matter, showed that these
velocities should decrease. Therefore, either our understanding of gravity is incorrect (at
large scales) or there exists non-luminous matter in the Universe. The case is similar with
various gravitational measurements (such as [41–43]) indicate that DM is the main mass
component of galaxies with a halo structure. Today, direct evidence of the existence of DM
come from the co-called “Bullet Cluster” [44], which is a system of two sub-clusters that
collided sometime in the past. Measurements of the X-ray emission of the hot gas (left
behind by the collision), show that the luminous mass of this system is spatially separated
from the mass as measured by weak gravitational lensing. This shows conclusively that
DM is responsible for the missing mass of the Universe12. The latest measurements by
the Planck collaboration [29] of the CMB show that the relic abundance of DM is

ΩDMh
2 = 0.1186± 0.0020 . (1.103)

12This does not exclude the possibility that General Relativity might need corrections.
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1.3.2 General Remarks on Dark Matter

In order to explain the observed DM content of the Universe, usually we assume that there
is a particle with the following attributes:

• Electrically Neutral. The only known interaction between DM and the SM particles
is gravitational. If there is an interaction between DM and the photon, it should
be suppressed, since until today no evidence of irregular light emission has been
detected. For example, measurements of the monochromatic photon flux from the
center of our galaxy( [45,46]), limit the annihilation cross section times the relative
velocity of the DM particles for processes DM DM → γγ to ∼ 10−28cm−3s−1, for
photon energy at 100 GeV. In general, the upper limit of the electric charge of the
DM particle is [47]: QDM

e < 10−14mDM
GeV , with QDM the charge of the DM particle and

mDM its mass. However, usually the DM particle is assumed to interact with the
SM particles through other interactions, in order to explain the origin of its current
density. The most common are weak and Yukawa interactions, which open the
possibility of detection in various experiments (DM-nucleon experiments, colliders,
etc.).

• Stable. Since DM exists, we assume that the corresponding particle is stable (or
has a lifetime larger than the age of the Universe). From the particle physics point
of view, this is ensured by a symmetry. Usually we assume that the Dark Sector
particles are odd under a Z2 parity, while the SM particles are even. Therefore the
lightest Dark Sector particle remains stable, since the Dark Sector particles cannot
decay to SM ones.

• Cold/Warm and non-relativistic today. The DM usually is classified by its behaviour
at the time the galactic scale perturbations enter the horizon, which happens at
temperature of a few keV. Hot DM is relativistic, Cold DM is non-relativistic, and
Warm DM starts to behave as non-relativistic at this temperature. In order for the
structure of the Universe to be as observed today, DM is necessary. Hot DM does not
reproduce current observational status. Cold or Warm DM allow for the Universe
to be formed as it is today. The current lower limit [48] for the mass of the DM
particle is ∼ O(1− 10keV). This fact also points out to that DM is non-relativistic
today, since its momentum decreases with the expansion of the Universe (see 1.48).

• Non-baryonic. If DM was baryonic, one would expect that it would radiate, thus
contributing to the baryonic mass as measured from CMB anisotropies. Also, as for
the known baryons, baryonic DM would be concentrated near the center of galaxies
and also form a disc around them. However, as we have already mentioned, DM
seems to form spherical halos around galaxies, which also show that DM is non-
baryonic (see ref. [49]).

1.3.3 Dark Matter Production Mechanisms

The Freeze-out Mechanism

The conventional way to produce non-relativistic (cold) DM relic particle abundance, is
the so called “freeze-out mechanism” [50, 51]. Although this mechanism is well reviewed
in the literature [31,32,52–56], it would be helpful to outline the main steps here, since it
is the production mechanism of the models studied in chapters 3 and 4 .

In the early Universe, when the temperature was much higher than the mass of the
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would-be DM particles (χ), these particles were in equilibrium, which means that it was
equally possible to create and destroy pairs of them due to the Z2-symmetry. As tempera-
ture of the Universe was dropping, the thermal production of DM pairs became inefficient.
Thus, χ pairs started to annihilate into lighter SM particles. As the number of these
would-be DM particles was dropping, it became increasingly rare for them to interact
with each other and annihilate. This yielded an almost constant number of χ’s, which
corresponds to DM relic density observed today.

Assuming that χ is the lighter particle of the dark sector, one can evaluate the relic
density accurately13 by solving the corresponding Boltzmann eq. (1.102), which can be
expressed as

dnχ
dt

+ 3Hnχ = −〈σv〉
[
n2
χ −

(
neqχ
)2]

, (1.104)

Also, since we are interested in non-relativistic particles, neqχ is given by eq. (1.79).

The thermal average of the total annihilation cross section of χ-pairs to all allowed
particles (k, l), multiplied by the relative velocity of the incoming particles, is usually
expanded as

〈σv〉 =
∑
k,l

〈σχχ→k,lv〉 = a+ b
〈
v2
〉

+ ... (1.105)

It should be noted, that the second term on the r.h.s. of eq. (1.104) is responsible for
creating χ-pairs, while the first term for annihilating them. According to our description
above, at high temperatures, much higher than mχ, the r.h.s of eq. (1.104) vanishes. This
results to a constant particle number density since

dnχ
dt

+ 3Hnχ =
1

α3

d(α3nχ)

dt
= 0 . (1.106)

For lower temperatures than mχ, the term 〈σv〉 (neqχ )
2

in eq. (1.104) should vanish, since
the χ-pairs are not produced effectively (neqχ is exponentially suppressed as shown in
eq. (1.79)). Then the Boltzmann equation can be approximated as

dnχ
dt
≈ − (〈σv〉 nχ + 3H)nχ . (1.107)

The freeze-out temperature, TFO, is defined as the temperature at which the annihilation
rate becomes comparable to the expansion rate of the Universe

〈σv〉 nχ ≈ H . (1.108)

The freeze-out temperature can be evaluated iteratively, through14

xFO = log

[
c(c+ 2)

√
45

8

mχMPl (a+ 6b/xFO)

2π3g
1/2
?S x

1/2
FO

]
, (1.109)

where xFO ≡ mχ/TFO. The parameter c is usually chosen c ∼ 0.5, to get into agreement
with precise numerical solutions of the Boltzmann equation. Furthermore, g?S counts the
relativistic degrees of freedom of the Standard Model at TFO = mχ/xFO. Generally, from
numerical calculations (see for example [32,54]), it turns out that xFO ' 25 (see Fig. 1.2).

13Extensive discussion on the solution of the Boltzmann equation including coannihilation effects can be
found in [57].

14 The freeze-out temperature can be calculated approximately from eq. (1.108) for nχ = neqχ .
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Since after the freeze-out the number of particles remains constant, the yield also re-
mains constant (as long as the entropy is conserved). Then, by calculating the freeze-out
temperature, we find the present yield

Yχ(T0) ≈ Y eq
χ (T = TFO) , (1.110)

which results to the present relic abundance15 for χ [57]

Ωχh
2 ≈ 2.8× 108 mχ

GeV
Yχ(T0) ≈ 1.07× 109 GeV−1

MPl

xFO

g
1/2
?S (a+ 3 b x−1

FO)
. (1.111)

Figure 1.2: Typical evolution of Y during the freeze-out. Note that the freeze-out occurs
at x ≈ 20 − 30, while the corresponding values of Y (x = xFO) span several
orders of magnitude. Figure obtained from ref. [55].

The typical evolution of the Yχ is shown in Fig. 1.2. It is apparent that as the cross section
increases the Yχ becomes smaller, therefore Ωχ decreases (this can be seen from eq. (1.111)).
Also, due to the logarithmic dependence of xFO on the cross section (1.109), larger values
of the cross section do not greatly affect the freeze-out temperature.

An interesting implication of eq. (1.111) arises from the unitarity bound of the annihi-
lation cross section16(see ref. [58]), where in order to obtain Ωχh

2 ∼ 0.1, the mass of DM
particles, produced via freeze-out, has an upper limit:

15 Usually, near mass thresholds (an resonances), we use Ωχh
2 ≈ 1.07×109 GeV−1

MPl

xFO

g
1/2
?S
〈σv〉

, where 〈σv〉 is

given in eq. (1.100).
16 The cross section, roughly, satisfies 〈σv〉 . 4π

m2
χ

.
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mχ . 105GeV . (1.112)

If other particles are almost degenerate with the χ, then there could be extra contri-
butions (coannihilation effects) to the total annihilation cross-section due to them. Thus,
the annihilation cross section is modified in order to incorporate these coannihilation ef-
fects [59]. Following [54,59], this change in the cross section is∑
k,l

σχχ→k,l → σeff =
∑
k,l

∑
i,j

σi,j→k,l
gigj

g2
eff (x)

(1+∆i)
3/2 (1+∆j)

3/2 e−x(∆i+∆j) , (1.113)

where indices i, j run over all the co-annihilating particles with ∆i =
mi −mχ

mχ
. 0.1 and

geff (x) is defined as

geff (x) ≡
∑
i

gi (1 + ∆i)
3/2 e−x∆i . (1.114)

We note that in the case where the DM particle decouples while being relativistic, which
can happen if the interactions become small due to a decoupled mediator, eq. (1.111)
cannot be applied. For a relativistic particle the number density is given by eq. (1.74),
which gives a yield today

Yχ(T0) ≈ Yχ(TFO) ∼ 2

45 g?S
. (1.115)

This results to a relic abundance of

Ωχh
2 ∼ mχ

g?S eV
. (1.116)

Since g?S . 100, even the lowest allowed DM mass O(keV) would give a relic abundance
much greater than the observed one. This shows that neutrinos, with [60]

∑
mν . 0.1 eV,

cannot account for the DM content of the Universe.

The Freeze-in Mechanism

Another way to produce DM is the “freeze-in mechanism” described in ref. [61]. The
key assumption is that the DM particles, χ, were absent in the early Universe (Yχ ≈
0) and produced later from the annihilation and decay of plasma particles, B1,2. The
corresponding Boltzmann equation for 2 → 2 processes is given in eq. (1.102). Following
ref. [62], the Boltzmann equation can be expressed as

dYχ
dT
≈− 1

Hs

1

1024π5

∫ 1

−1
dcosθ

∫ ∞
ŝmin

dŝK1

(
ŝ

T

)
|MB1B2→χχ|2√

ŝ− 4m2
χ

√
ŝ− (MB1 +MB2)2

√
ŝ− (MB1 −MB2)2

ŝ
, (1.117)

where |MB1B2→χχ|2 is the matrix element squared summed over all internal degrees of
freedom , θ is the angle between the momenta of an initial and final state particle, ŝ is the
center of mass energy squared (Mandelstam ŝ−variable), ŝmin = (MB1 +MB2)2, MB1,2 are
the masses of the bath particles. Furthermore, assuming that the interactions between the
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1.3. Dark Matter

χ’s and plasma particles are described by non-renormalizable dimension−(4+n) operators,
the matrix element squared is

|MB1B2→χχ|2 ∼
ŝn

Λ2n
, (1.118)

where Λ is the cutoff energy scale of the interactions. Ignoring all masses the Boltzmann
equation becomes

dYχ
dT
∼ −4n+1n!(n+ 1)!

1.66 1024π7

45

g
3/2
?S

MPlT
2n−2

Λ2n
. (1.119)

It is worth pointing out that this holds for n ≥ 1, which means that the yield would
be dominated by the production rate at high temperatures for any non-renormalizable
operator. This high temperature contribution comes from the temperature where the
plasma particles reached equilibrium, conventionally referred as the reheating temperature
of the Universe (TRH)17. Therefore, integrating eq. (1.119) from TRH up to T0 ≈ 0, and
setting g?S = g?S(T = TRH), the present yield becomes

Yχ(T0) ∼ 4n+1n!(n+ 1)!

1.66 1024π7

45

(2n− 1)g
3/2
?S (TRH)

MPlT
2n−1
RH

Λ2n
. (1.120)

The Boltzmann equation for DM production via a decay of a heavier bath particle
(B → χχ) is given in eq. (1.98). Assuming that the initial number density of χ is negligible,
the Boltzmann equation becomes

dYχ
dT
≈ −

g2
χ

2π2

M2
BΓB→χχ
Hs

K1

(
MB

T

)
. (1.121)

Then we integrate over T to obtain the yield today. It should be noted that this integral

is dominated from the contribution at18 T ∼ Mbath

5
, which is the temperature where the

production of χ reaches its maximum value, or freeze-in temperature (TFI). Thus setting
g?S = g?S(T = TFI), the yield at T = T0 is

Yχ(T0) ∼ 3

8

45

1.66 1024π3

1

g?S(TFI)3/2

MPl ΓB→χχ
M2
B

. (1.122)

Having solved the Boltzmann equation for 1→ 2 and 2→ 2 processes, the corresponding
relic abundance is given by [57]

Ωχh
2 ≈ 2.8× 108 mχ

GeV
Yχ(T0) . (1.123)

Both 1 → 2 and 2 → 2 processes are going to be important in the model we examine in
Chapter 5.

17 Note that Λ has to be well bellow this temperature, otherwise the corresponding effective field theory
would not hold.

18Note that this temperature is larger than the expected freeze-out temperature of the bath particle

TFO ∼
MBath

20
. This allows us to approximate their distribution with the equilibrium one.
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Chapter 1. Introduction

1.3.4 Dark Matter Candidates

As we have seen, there are various independent evidence for the existence of dark matter.
Therefore, one natural question arises: What is the particle nature of dark matter? There
is a great number of studies trying to answer this question. Some popular particle DM
candidates include the QCD axion [63–65], Fuzzy DM [66], gravitino [67], strongly inter-
acting massive particle (SIMP) [68], weakly interacting slim particle (WISP) [69], weakly
interacting massive particle (WIMP) [70], super heavy weakly interacting massive particle
(WIMPzilla) [71], etc.

WIMPs

The WIMP is one of the most well studied particle class of DM. WIMPs are particles
which are neutral, stable, with masses usually from O(GeV) up to O(10 TeV). In most
cases WIMPs interact via weak interactions (or interactions with similar strength) with
the known particles, which makes them phenomenologically attractive, since they may be
within reach of current searches (including the LHC).

Consider a DM particle with a mass around the EW scale (mDM ∼ 100 GeV), which
is non-relativistic at its freeze-out temperature. From eq. (1.111), in order to get the
observed ΩDMh

2 ∼ 0.1, the required cross-section is of order 10−8 GeV−2, which is a
typical EW cross section. This shows that the EW scale is connected, for no apparent
reason, to a cosmological particle abundance. This property is called [54] the “WIMP
miracle”, hence WIMPs became very attractive DM candidates. WIMPs usually appear
in models beyond the SM, such as MSSM [52, 72], Kaluza-Klein [73, 74], GUTs [75], etc.
However, the phenomenological analysis of such complete models is difficult and case
specific. One way to study more general properties of DM is to analyse simplified models
or effective field theories (EFT).

In simplified models, one introduces a relatively small number of particles (Dark Sector)
and the relevant (renormalizable) interactions between the Dark Sector and the SM. Such
simple models include Higgs portal [76,77], Minimal Dark Matter [78], singlet-doublet [79,
80], and more (see ref. [81] for more simplified models in the context of LHC searches). The
simplified “Doublet-Triplet Fermionic Dark Matter” model [82] is studied in Chapter 3.

A more general approach is to introduce higher dimensional non-renormalizable opera-
tors between the Dark Sector and the SM. This is the EFT approach [83–87]. The general
feature of this approach is the assumption that the Dark Sector is the low-energy limit
of a UV-complete model. The effects of the heavy degrees of freedom (heavy particles)
of all possible UV-complete models are encoded in a set of non-renormalizable operators,
with coupling parameters (Wilson coefficients) suppressed by the inverse of a cutoff energy
scale. We perform a detailed phenomenological analysis of the bi-doublet EFT DM [88],
in Chapter 4.

Light Dark Matter

As mentioned, WIMPs are well-motivated and attractive candidates. However, there is no
observation of a WIMP in dedicated experimental searches. Therefore, we have to explore
other possibilities. One possible explanation for the lack of WIMP signal, is the light dark
matter (LDM) scenario, where the mass of the dark matter particle is well bellow the
EW scale. For example, light dark matter candidates are sterile neutrinos [89, 90] with
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1.3. Dark Matter

masses around O(10 keV). Other LDM models include light scalar DM [91], milli-charged
DM [92], dark photons [93], etc. In Chapter 5 we study an LDM model, based on ref. [94],
with a radiatively induced sub-GeV mass.

1.3.5 Dark Matter Searches

Direct Detection

Since DM form a halo around galaxies, it is expected that as the Earth moves in the
Milky Way some of the DM particles would interact with known matter. The basic idea
behind DM direct detection experiments is that DM particles can be observed by elastic
scattering with nuclei, such that the recoil energy of the nuclei can be measured. Current
experimental efforts include CDMS [95], SuperCDMS [96] PandaX [97], DarkSide [98],
XENON [99], and LUX [100].

Qualitatively, the event rate per unit detector mass is [52]

R ≈ nDM σ

mN
〈v〉 , (1.124)

where 〈v〉 is the average velocity of the DM particles relative to the Earth, mN is the mass
of the target nucleus, σ is the cross section for the elastic DM N → DM N scattering,
nDM is the number density of DM particles.

The elastic cross section, can be decomposed into a zero momentum transfer cross
section (σ0), which contains the particle physics input and depends on the DM-proton
and DM-neutron interactions, and a nuclear form factor F (q) encoding the momentum
(q) dependence. Furthermore, σ0 can be broken down to spin-independent and spin-
dependent parts [101].19 In general, the spin-independent part of cross section increases
with the mass of the target nucleus (which is proportional to the number of nucleons), while
the spin-dependent is proportional to a total spin factor (not the number of nucleons).
Therefore, the spin-independent interactions dominate over the spin-dependent ones in
heavy target experiments.20

Currently, the limits on the spin-independent cross section are set by LUX [100] and
XENON [105] (see Fig. 1.3). The future sensitivity of the XENON experiment is expected
to lower the current bound on the spin-independent cross section by about two orders of
magnitude [106] (or observe a DM particle).

It is worth pointing out that in an elastic scattering between a DM particle and a target
(T), the maximum recoil energy of the target is

Emax = 2
m2
DM

(mDM +mT )2
mT v

2 , (1.125)

where mT is the mass of the target and v ∼ 10−3 the local velocity of the DM particles.
Most detectors have a threshold at O(keV ), therefore only particles with mDM & 1GeV
can be detected in DM-nucleus direct detection experiments, which makes them ideal for
WIMP searches. However, for smaller DM masses (sub-GeV), DM-electron scattering may
deposit a detectable amount of energy [108, 109]. Results from XENON [110], show that

19For discussions and examples of the calculation of these cross sections see refs. [52, 78,102,103].
20 This can bee seen in the latest results from LUX, where the spin-independent [100] cross section is

limited to . 10−46cm2, while the spin-dependent [104] is . 10−41cm2 (for DM mass at 100GeV).
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Figure 1.3: Bounds on spin-independent WIMP-nucleon cross section as a function of the
WIMP mass. The black curve shows the results from XENON1T [105]. The
other curves correspond to limits from LUX [100] (red), PandaX-II [97] (brown)
and XENON100 [107] (gray). The green (yellow) band shows the 1σ (2σ)
sensitivity. Figure obtained from ref. [105].

the bound of the elastic DM-electron cross section is at 10−38cm2 for a DM mass around
100 MeV.

We calculate the spin-independent cross section, in the context of EW scale WIMPs, is
Chapters 3 and 4. Also, in Chapters 2 and 5, we show that for a frozen-in sub-GeV DM
particle, the DM-electron cross section is extremely suppressed.

Indirect Detection

Apart from interactions with the SM particles, DM particles can interact with each other
resulting to SM particles via pair annihilation processes DM DM → SM SM . The
resulting SM particles, then, can contribute to photon, neutrino and antiparticle fluxes
measured by various telescopes and detectors. Collectively, these experiments are referred
to as indirect-detection experiments. Although, these searches are extensively reviewed in
the literature [52,56,111–116], it is useful for what follows to briefly discuss some of them.

1. Gamma-rays. Annihilation (or decay) of DM particles can lead to gamma-ray flux ei-
ther in the form of continuous or monochromatic photons. Gamma-ray telescopes search-
ing for DM include Fermi-LAT [46, 117, 118], H.E.S.S. [119, 120], VERITAS [121] and
HAWC [122,123].

Continuous gamma-rays are the result of annihilation of DM to SM particles, which
then emit photons with various energies. The potential astrophysical regions for DM
annihilation are regions with a large DM concentration. One such region is the Galactic
Center (GC), which unfortunately is not fully understood (see for example refs. [124–126]),
therefore continuous gamma-ray signals may not be connected to DM. However, there
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1.3. Dark Matter

are DM dense regions in the form of Dwarf spheroidal galaxies (dSphs), which have low
baryonic density, i.e. low background, thus providing us with more reliable limits on the
DM DM → SM SM rates. However, usually the bounds on the cross sections provided
by dSphs, are comparable to the cross sections needed to obtain the observed DM relic
abundance (see, for example, Chapter 4).

Monochromatic gamma-rays are the product of pair annihilation (or decays) of DM
particles directly to at least one photon, i.e. DM DM → γ X, where X can be γ, Z or a

Higgs boson. The resulting energy of the photon is Eγ = mDM

(
1− m2

X

4m2
DM

)
, therefore a

signal of monochromatic photons could lead to a direct measurement of the mass of the
DM particle. In Chapter 4, we have calculated such cross sections and discussed relevant
bounds, in the context of an EFT.

2. Solar Neutrino Flux. Another interesting indirect signal could come from solar
neutrino flux as measured by telescopes, such as IceCube [127,128], ANTARES [129] and
Super-Kamiokande [130]. As the Sun moves in the Milky Way, DM particles scatter off
the Sun’s nuclei (e.g. hydrogen). Then, depending on the resulting DM velocity, some
of these DM particles are captured by the Sun, where they start to annihilate into SM
particles. This results to a potentially observable contribution to the neutrino flux as
measured by neutrino telescopes on Earth [131, 132]. After some time the DM capture
and annihilation processes reach equilibrium [132–134]. This results in neutrino production
rates, proportional to the DM-nucleon cross section [132,133]. Therefore, such searches are
complementary to the direct detection experiments. We briefly discuss the implications of
solar neutrino flux to an EFT, in Chapter 4.

3. Antiparticles. Products of the DM DM → SM SM annihilations can be particle-
antiparticle pairs. Although charged particles are everywhere, antiparticles are much less
frequent. Therefore an excess on antiparticle (e.g. positrons) fluxes may help identify
the DM particle. Currently there seems to be a positron excess from AMS [135] and
PAMELA [136], but its origin is also explained by other astrophysical sources [137–141].
Therefore, such searches do not give any conclusive results for dark matter (for the time
being).

Collider Searches

There are dedicated DM searches at the LHC, usually through searches that involve miss-
ing energy in the final state [142–146]. The most common of these include the mono-Z,
mono-W, mono-photon and mono-jet searches, collectively referred to as mono-X searches.
One example is the mono-jet channel, where one jet is produced alongside DM particles
(usually a pair), which are registered as missing energy. Although such missing energy
searches would only be an indirect hint of DM, combined LHC and astrophysical searches
can provide enough information for the nature of the DM particle. We extensively discuss
LHC searches in chapters 3 and 4. Furthermore, in Chapter 4, we examine the validity of
EFTs in LHC searches.

Apart from the various dedicated DM searches, there are other indirect, potentially
observable effects. For example, the so-called oblique corrections [147–149] can be affected
by the presence of heavy particles in loop diagrams. Furthermore, processes such as h→
γγ and h→ γZ can indicate the presence of heavy charged (Dark Sector) particles through
deviations from the SM expected value [150, 151]. Such indirect effects are calculated in
chapters 3 and 4.
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2 A Warming up Example

In the previous chapter we discussed the evidence for the existence of dark matter, probably
in the form of particles. Also, we described DM production mechanisms, used to explain
the DM abundance we observe today. In this chapter, we will study the simplest fermionic
DM model, which is the Singlet Dark Matter model [152], which consists only of a Majorana
fermion gauge singlet, S. If we assume that S is odd under a Z2-symmetry while the SM
particles are even, this particle is a DM candidate. However, under this assumption, there
are no renormalizable (d = 4) interactions with the SM particles. Therefore, in the lowest
order approximation, it interacts only with the Higgs-boson at the d = 5 level. Assuming
also CP-invariance (real parameters), the dark sector Lagrangian is

LDM = − 1

2Λ
H†HSS − 1

2
mSSS + H.c. , (2.1)

where Λ is the cut-off scale of the EFT and mS is a mass parameter. After symmetry
breaking, the above Lagrangian, in the unitary gauge, reads

LDM = − 1

4Λ
hhSS − v√

2Λ
hSS − 1

2
MSSS + H.c. , (2.2)

where MS = mS +
v2

Λ
is the mass of S.

As we discussed in the introduction, two possible ways to produce the DM relic abun-
dance are the freeze-out and the freeze-in mechanism. We distinguish two possibilities,
MS ≤ 1 GeV (“light DM”) and MS > 10 GeV (“WIMP”),1 which serves as a first, “hands-
on”, calculation of the relic abundance, using these two mechanisms. In Section 2.1 we
employ the freeze-in mechanism to calculate ΩSh

2, for the sub-GeV case. Furthermore,
since this case is similar to the analysis presented in Chapter 5, we are going to examine
carefully the production of the singlets in the early Universe. Then, in Section 2.2, we
examine the second case (MS > 10 GeV), and we calculate the relic abundance for S via
the freeze-out mechanism.

2.1 Freeze-in

Before moving on to the calculation of the relic abundance, it would be helpful to discuss
the reason that the freeze-out mechanism fails to produce the DM relic abundance for
light DM particles.

Since the mass of the S-particle is well below mh/2, the Higgs boson would decay to
a pair of these particles, which would then contribute to the decay of the Higgs boson to
invisible final states. The current bound on the branching ratio for this decay is [153]

BR(h→ inv.) < 0.28 . (2.3)

1 It will be apparent (see Fig 2.5) that the freeze-out mechanism can produce the observed relic abundance
only for MS & 50 GeV. Furthermore, if we use the freeze-in mechanism the S-particle may be non-
relativistic at its freeze-in, which makes the calculations more involved.
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2.1. Freeze-in

In terms of the EFT at hand, this bound translates to

Λ & 104 GeV . (2.4)

This bound means that interactions between the S-particle and the SM particles are sup-
pressed. Therefore, if we assume that the singlets were initially in equilibrium, we expect
that their freeze-out temperature would be comparable to the decoupling temperature of
the Higgs-boson, i.e. well above their mass. Thus, their relic abundance would be

ΩSh
2 ∼ MS

g?S eV
, (2.5)

which, as discussed in Section 1.3.3, overcloses the Universe for MS > O(10 keV).
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Figure 2.1: Annihilation rate over the Hubble parameter as a function of the plasma tem-
perature for different values of the cut off. The horizontal line shows the
freeze-out temperature, i.e. ΓSS→h = H.

In Fig. 2.1 we show the ratio of the (dominant) annihilation rate, ΓSS→h = 〈σSS→h〉neqS ,
over the Hubble parameter as a function of the plasma temperature for various values of the
cut-off energy, assuming that the Higgs-boson remains in equilibrium below T = 10 GeV.2

It is apparent that, even for the lowest possible cut-off (Λ & 104 GeV), the freeze-out
would happen at T & 3 GeV. Consequently, for masses MS . 1 GeV, the singlets would
be relativistic at their freeze-out. If we take into account that the Higgs decouples at higher
temperatures (i.e. nH � neqH ), the S-particles would also decouple at higher temperatures.
Therefore, for this light DM case, the freeze-out mechanism cannot produce the observed
relic abundance. One possible solution to this problem is to assume that the singlets were
absent and out of thermal equilibrium in the early Universe, and they were produced later
from the plasma, i.e. employ the freeze-in mechanism, the observed relic abundance can
be obtained.

2The Higgs boson decays, and at such temperatures is absent. However, assuming that it is in thermal
equilibrium below T = 10 GeV, gives us a lower bound of the freeze-out temperature of S-particles.
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Chapter 2. A Warming up Example

Calculation of the Relic Abundance

The calculation of the yield is discussed in Section 1.3.3. However, this case is somewhat
more involved, since there are both annihilation and decay production channels operating
at different temperatures. These channels are3

h→ SS, ZZ → SS, W+W− → SS, tt̄→ SS, hh→ SS for T < TC ,

H†H → SS for T ≥ TC ,

where TC ≈ 130 GeV is the critical temperature [154] of EW symmetry breaking. Fol-
lowing the discussion of Section 1.3.3, the Boltzmann equation in terms of YS , before
symmetry breaking, is

dYS
dT
≈− 1

Hs

1

1024π5

∫ 1

−1
dcosθ

∫ ∞
4M2

H

dŝ K1

(√
ŝ

T

)√
ŝ− 4M2

H |MH†H→SS |2 , (2.6)

where we take into account the thermal mass of the Higgs, with M2
H ≈ m2

h + T 2

2 , and

|MH†H→SS |2 =
4ŝ

Λ2
. (2.7)

After symmetry breaking (T < TC), the Boltzmann equation obtains the following form:

−HsdYS
dT
≈ 1

1024π5

∫ 1

−1
dcosθ

[
1

2

∫ ∞
4m2

h

dŝ K1

(√
ŝ

T

)√
ŝ− 4m2

h|Mhh→SS |2+

1

2

∫ ∞
4m2

Z

dŝ K1

(√
ŝ

T

)√
ŝ− 4m2

Z |MZZ→SS |2+

∫ ∞
4m2

W

dŝ K1

(√
ŝ

T

)√
ŝ− 4m2

W |MW+W−→SS |2+

∫ ∞
4m2

t

dŝ K1

(√
ŝ

T

)√
ŝ− 4m2

t |Mtt̄→SS |2
]

+
m3
h

8π3

v2

Λ2
K1

(
−mh

T

)
, (2.8)

where the last term comes from the annihilation process h→ SS, and the various matrix
elements are

|Mtt̄→SS |2 =
12m2

t

Λ2

ŝ(ŝ− 4m2
t )

(ŝ−m2
h)2

, |Mhh→SS |2 =
2ŝ3

Λ2(ŝ−m2
h)2

,

|MV V→SS |2 =

(
2m2

V

Λ(ŝ−m2
V )

)2

2ŝ

(
3 +

ŝ(ŝ− 4m2
V )

4m4
V

)
, (2.9)

3 The contribution of the decay h→ SS dominates the production of the singlets (as we will also see in
Fig. 2.2), so we do not include the light quark and lepton production channels, ll̄→ SS and qq̄ → SS.
However, we include the top-quark contribution because of its large Yukawa coupling.
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2.1. Freeze-in

with V = Z and W . We note, that the thermal corrections to the masses are not numeri-
cally significant for T < TC , so we use the masses at T = 0, to obtain the numerical values
for the YS .

In order to calculate the yield today, we integrate eq. (2.6) from4 TRH up to TC , and
eq. (2.8) from TC to the temperature where the production of S-particles stops (T ≈
10 GeV).5 Since the latter is independent of the reheating temperature, the integrals can
be calculated numerically. The result for the yield, for T < TC , is

YS(T < TC) ≈ 6.6× 1016 GeV2

Λ2
. (2.10)

The contribution to YS before symmetry breaking is more complicated, since the corre-
sponding integral is more involved. However, if we assume that TRH � TC , we can obtain
the approximate analytical result

YS(T & TC) ≈ 1013 GeV TRH

Λ2
for TRH � TC . (2.11)
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Figure 2.2: The various contributions to YS as a function of TRH. Observe that the decay
of the higgs boson to SS is more efficient than the combined hh, ZZ, W+W−

and tt̄→ SS.

In Fig. 2.2, we show the contributions of the various channels to YS , as a function
of the reheating temperature. Note, that the approximate result (2.11) is accurate for
TRH & 400 GeV. Also, it is worth pointing out that the dominant contribution in eq. (2.8)

4 We assume the TRH & TC , to allow for low-scale baryogenesis (e.g. [155–158], see also discussion in
Section 5.1).

5 A particle starts to decouple when the temperature becomes comparable to its mass. After that it starts
to decay into lighter particles, until its number density approximately vanishes. For the top-quark, and
the Higgs and gauge bosons, this happens at T ≈ 10 GeV (qualitatively this can be sees in Fig. 1.1).
Therefore, the production of S-particles stops around this temperature.
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Chapter 2. A Warming up Example

comes from the decay of the Higgs boson to a pair of S-particles. This will be an important
simplification in the analysis of Chapter 5.

Finally, from eqs. (2.10), (2.11) and (1.123), the relic abundance obtains the form

Ωh2 ≈ 0.12×
(

MS

10−5 GeV

)(
4.5× 1010 GeV

Λ

)2(
1 +

TRH

104 GeV

)
, (2.12)

for TRH � TC . We observe that for TRH & 104 GeV the S production is completely
dominated by the production T = TRH. For Ωh2 ≈ 0.12, we can solve (2.12) and find the
relation between Λ, MS and TRH:

Λ2 ≈ (4.5× 104 GeV)2 ×
(

MS

10−5 GeV

)(
1 +

TRH

104 GeV

)
. (2.13)
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Figure 2.3: The cut-off Λ as a function of TRH that gives the observed relic abundance for
the singlets, for MS = 10 keV − 1 GeV.

The exact numerical calculation of eqs. (2.6) and (2.8) is also performed, and the result
for various values of MS is shown in Fig.2.3. It is apparent that the observed relic abun-
dance can be obtained for a sub-GeV DM particle, provided a cut-off6 Λ ≈ 1011 GeV up
to the Planck scale, for every value of the reheating temperature (TRH & TC). Moreover,
as we noted previously, it is evident that the production of the S-particles at T ≈ TRH

becomes significant at and above T ≈ 104 GeV (see also Fig.2.2). Finally, we should note
that the above calculation holds only for Λ > TRH, otherwise, the EFT framework would
break down.7

6This is a general result of frozen-in DM, i.e. extremely suppressed interactions [77].
7 This is the reason why the curve for MS = 10−5GeV (MS = 10−4GeV ) stops at Λ ∼ 1017 GeV

(Λ ∼ 1018 GeV).
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2.1. Freeze-in

Sanity Check

The calculation of the yield is valid only if the dark matter particles remain out of equi-
librium, throughout their production epoch. Thus, we should make sure that YS is well
below its equilibrium value before it freezes-in. For the case of interest, where Ωh2 ≈ 0.12,
the yield today should be 1.123

YS(T > TFI) ∼ 4.3× 10−10GeV

MS
. (2.14)

Therefore, as long as we consider masses larger than ∼ 10−7 GeV, the S-particles seem
unable to reach equilibrium. This can also be seen by following the evolution of YS

Y eqS
throughout the production of the S-particles. This can be done, by solving the Boltzmann
equation including the annihilation term. Assuming there are no particle thresholds (g?S =
const.), from eqs. (1.98), (1.102) and (1.74), the corresponding Boltamann equation is

dx

dT
= − n

eq
S

HT
< σv >

(
1− x2

)
, (2.15)

where x ≡ nS
neqS

, and

〈σv〉 ≈ 7

128πΛ2
, for T & TC ,

〈σv〉 ≈ π v2

32 Λ2

m3
h

T 5
K1

(mH

T

)
, for T < TC , (2.16)

which can be solved analytically. The solution is

x =
nS
neqS

= − tanh

[∫ T

TRH

dT ′
neq(T ′)
H(T ′)T ′

< σv > (T ′)

]
. (2.17)
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Figure 2.4: The dependence of nS
neqS

= YS
Y eqS

on the temperature, for various values of Λ and

TRH ≈ 103 GeV. The mass of the singlet is irrelevant as long as T �MS .
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Chapter 2. A Warming up Example

In Fig.2.4, we show nS
neqS

= YS
Y eqS

as a function of the temperature, for T = TRH ≈ 103 GeV–

10 GeV (where the production of S-particles stops), and various values of Λ. For Λ =
109 GeV, the DM particles reach equilibrium almost immediately after their production
begins. For larger values of the cut-off energy, nS does not reach its equilibrium value,
and since at low temperatures (T . 10 GeV) the annihilation rate ΓSS→h is well below
the expansion rate of the Universe (see Fig. 2.1), we do not expect the equilibration of
the S-particles. Therefore, since the lowest possible value of the cut-off (see Fig. 2.3) is
Λ ≈ 1011 GeV, we conclude that our initial assumption holds.8

Direct Detection

As mentioned in Section 1.3.5, direct detection experiments for such light DM particles
focus on their interactions with electrons. The cross section for the process S e→ S e is

σ̄Se ≈
1

4π

1

Λ2

(
me

mh

)4

. (2.18)

Even for the lowest allowed cut-off energy (Λ ≈ 1011 GeV), becomes σ̄Se ∼ 10−72 cm2,
while the current experimental reach is σ̄exp

Se ' 10−38 cm2. Therefore, this singlet DM
scenario is allowed. However, the question of the origin of the small DM mass arises. We
are going to answer this question in Chapter 5.

2.2 Freeze-out

The case where the S-particles were initially in thermal equilibrium is quite straight-
forward. The relic abundance is given in eq. (1.111), so we only need to calculate the
coefficients a and b of the expansion of the total annihilation cross section (1.105). The
possible annihilation channels are:9

S S →W+W−, S S → Z Z, S S → hh, S S → b b̄ and S S → t t̄.

For every channel, the a-terms of the expansion (1.105) vanish, while the b-terms are

bh =
1

4π

1

Λ2

M4
S(

m2
h − 4M2

S

)2
√

1− m2
h

M2
S

, (2.19a)

bV =
1

SV 8π

1

Λ2

(
4M4

S − 4M2
Sm

2
V + 3m2

V

)(
m2
h − 4M2

S

)2
√

1− m2
V

M2
S

, (2.19b)

bf =
3

4π

1

Λ2

m2
f M

2
S(

m2
h − 4M2

S

)2
+ Γ2

hm
2
h

(
1−

m2
f

M2
S

)3/2

, (2.19c)

where V denotes W and Z gauge bosons in the final states, with SW = 1 and SZ = 2, and
f denotes the fermionic final states b and t. We also included the total decay width of the

8For larger values of the reheating temperature, the singlets can reach equilibrium for Λ ∼ 1011 GeV.
However, since Λ ∼

√
TRH [see eq. (2.13)], larger values of TRH correspond to larger values of Λ.

Therefore our assumption that the S-particles remain out of equilibrium always holds.
9We ignore the light quark and lepton contributions, since they are suppressed due to their small masses.

35



2.2. Freeze-out

Higgs, Γh, in the denominator of bf , to take into account the on-shell production of the
Higgs boson in the process S S → b b̄. The relic abundance, then, is given in eq. (1.111)
and the freeze-out temperature can be calculated by eq. (1.109).
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Figure 2.5: MS versus Λ that give us ΩSh
2 ≈ 0.12.

We solve for ΩSh
2 ≈ 0.12, which gives the relation between Λ and MS shown in Fig. 2.5.

Observe that for MS > mW , the cut-off is at O(1 TeV). In fact, this is the case, even for
DM mass above 200 GeV. This happens because the cross section remains almost constant
at large masses. Of course, this violates unitarity [14, 147], which indicates that the EFT
breaks down for energies above Λ. Moreover, for MS . mW , the cut-off becomes very
small10 (with one exception, see below), since there are no available annihilation channels.
Furthermore, there is a sharp peak of Λ ≈ 106 GeV at MS ≈ mh/2, corresponding to
the on-shell production of the Higgs-boson. As we have already mentioned (Chapter 1,
footnote 15), near particle thresholds and resonances, a more accurate estimate for the
relic abundance is given by

ΩSh
2 ≈ 1.07× 109 GeV−1

MPl

xFO

g
1/2
?S 〈σv〉

. (2.20)

This can modify our result for the cut-off near the on-shell production of the Higgs, by an
order of magnitude [152]. However, for the purpose of this introductory example, a more
careful calculation is not needed.

10Bellow MS ≈ 50 GeV, the value of the cut-off becomes comparable to MS , so we do not show this region.
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Chapter 2. A Warming up Example

Direct Detection

In Section 1.3.5, we explained that the direct detection experiments for WIMPs focus
on the DM-nucleon cross section, which is decomposed in spin-independent and spin-
dependent parts. In our case, since the only interaction is via the Higgs boson, the S-
nucleon cross section is purely spin-independent. In the limit that the S-particle is much
heavier than nucleon, this cross section is [159]

σSI = 8× 10−45

(√
2

0.1

v

Λ

)2

cm2 . (2.21)

The current bound on this cross section for the DM mass we show in Fig. 2.5, is about [100,
105] 10−46 GeV (see Fig. 1.3), which translates to

Λ & 2× 104 GeV . (2.22)

It is apparent that this only holds near the on-shell production of the Higgs, which is an
extreme case of parameter fine tuning.11 One possible way to avoid such fine tuning, is to
assume that there are also other particles with masses near the mass of S. Then, one has
to study other simplified models, e.g. singlet-multiplet fermionic dark matter [79,80,160].
Then, apart from the renormalizable Yukawa interaction, the DM particle is allowed to
be a mixture of the singlet and other neutral components of a multiplet. This opens-up
new annihilation channels, which change entirely the phenomenology of the singlet DM
scenario. In chapters 3 and 4, we examine other ways to reduce parameter fine tuning, by
exploiting some (custodial) symmetric limits of fermionic DM models.

11 This is the case even for the more accurate result of ref. [152].
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3 Doublet-Triplet Fermionic Dark Matter

We extend the Standard Model (SM) by adding a pair of fermionic SU(2)-doublets with
opposite hypercharge and a fermionic SU(2)-triplet with zero hypercharge. We impose a
discrete Z2-symmetry that distinguishes the SM fermions from the new ones. Then, gauge
invariance allows for two renormalizable Yukawa couplings between the new fermions and
the SM Higgs field, as well as for direct masses for the doublet (MD) and the triplet (MT ).
After electroweak symmetry breaking, this model contains, in addition to SM particles, two
charged Dirac fermions and a set of three neutral Majorana fermions, the lightest of which
contributes to dark matter. We consider a case where the lightest neutral fermion is an
equal admixture of the two doublets with mass MD close to the Z-boson mass. This state
remains stable under radiative corrections thanks to a custodial SU(2)-symmetry and is
consistent with the experimental data from oblique electroweak corrections. Moreover, the
amplitudes relevant to spin-dependent or independent nucleus-DM particle scattering cross
section both vanish at tree level. They arise at one loop at a level that may be observed
in near future DM direct detection experiments. For Yukawa couplings comparable to the
top-quark, the DM particle relic abundance is consistent with observation, not relying on
co-annihilation or resonant effects and has a mass at the electroweak scale. Furthermore,
the heavier fermions decay to the DM particle and to electroweak gauge bosons making
this model easily testable at the LHC. In the regime of interest, the charged fermions
suppress the Higgs decays to diphoton by 45-75% relative to SM prediction. This chapter
is based on ref. [82].

3.1 Introduction

Motivated by astrophysical observations that suggest the existence of dark matter [115],
we would like to propose a model with a fermionic WIMP (χ0

1) whose mass and couplings
are directly associated to electroweak scale providing the universe with the right thermal
relic density abundance, not “tuned” by co-annihilation or resonance effects. Today, as
opposed to five years ago, attempts of this sort immediately face difficulties due to strong
experimental bounds [161,162]1 from direct searches on nucleus recoiling energy in WIMP-
nucleus scattering processes [101]. As a result, Z- and Higgs- boson couplings to χ0

1-pairs
are strongly constrained and usually come into conflict with values of couplings required
from the observed [164] DM relic abundance. We therefore seek for a model at which,
at least at tree level, these couplings vanish by a symmetry and at the same time the
observed relic density is reproduced. We then discuss further consequences of this idea at
Large Hadron Collider (LHC).

We consider a minimal model which realises this situation, hence, in addition to Stan-
dard Model (SM) particles, we add a pair of Weyl-fermion doublets D̄1 ∼ (1c,2)−1 and

1There are of course tantalising hints from DAMA, CoGeNT, CRESST-II and CDMS-Si experiments but
these face stringent constraints from recent null result experiments like XENON100 and LUX making
puzzling any theoretical interpretation of them all. For a recent review, see ref. [163].
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3.1. Introduction

D̄2 ∼ (1c,2)+1 with opposite hypercharges, and a Weyl-fermion triplet T ∼ (1c,3)0 with
zero hypercharge. The new Yukawa interactions allowed by gauge invariance and renor-
malizability are given by2

LYuk ⊃ Y1 T H τ D̄1 + Y2 T H† τ D̄2 − MD D̄1 D̄2 −
1

2
MT T T , (3.1)

with τ being the Pauli matrices. A Z2-discrete parity symmetry has been employed to
guarantee that the new fermions interact always in pairs. Clearly, LYuk is invariant under
the interchange symmetry H↔ H† and D̄1 ↔ D̄2 when Y1 = Y2 ≡ Y . Then, it is very
easy to see that in this limit, one eigenvalue with mass MD, of the neutral (3× 3) mixing
mass matrix, decouples from the two heavier ones and the latter is degenerate with the
two eigenvalues of the (2× 2) charged fermion mass matrix. At tree level approximation,
except for the lightest neutral fermion (χ0

1), all other masses are controlled by the Yukawa
coupling Y . The state with mχ0

1
= MD is our DM candidate particle. This particle state

contains an equal admixture of the two doublets but has no triplet component,

|χ0
1〉 = 0 · |T〉 +

1√
2
|D̄1〉 +

1√
2
|D̄2〉 . (3.2)

Because the neutral component of the triplet does not participate in |χ0
1〉, the latter does

not couple to the Higgs boson at tree level. It does not couple to the Z-gauge boson
neither because of its equal admixture of neutral particles with opposite weak isospin. The
situation here is analogous to the custodial symmetry [165] imposed in strongly coupled
EW scenarios, where the “custodian” new particles are inserted in a similar way to protect
certain quark-gauge boson couplings to obtain large radiative corrections [166–169].

The couplings hχ0
1χ

0
1 and Zχ0

1χ
0
1 vanish at tree level, and as a result there are no

s-channel amplitudes contributing to the annihilation cross section. However, there are
off-diagonal interactions such as e.g., Zχ0

1χ
0
2 which render the t, u-channel amplitudes non-

zero but yet suppressed enough to obtain the right relic density Ωχ for MD ≈ 100 GeV
and Y ≈ 1. Roughly speaking, the spectrum of the model where this happens is shown
schematically in Fig. 3.1. Typically, the lightest stable new particle (mχ0

1
≈ 110 GeV)

is in the vicinity of the EW scale while all other neutral and charged fermions are above
m ≡ Y v which is taken around the top quark mass. The splitting of the charged fermions
is also controlled by the triplet mass (MT ). Therefore, the parameters of the model are
just three: MD,MT and m.

Naively, one may think that this model is similar to the “wino-higgsino” sector of the
MSSM [170] or it is an extended variant of the singlet-doublet DM model of refs. [75,79,171,
172]. Another obvious question is, why does one want to introduce several new fermions,
since a single one (for example the triplet, as in minimal DM [78] models) suffices? The
answer to these questions arise from our wish to construct a model with WIMP mass at
the EW scale, and hides inside the model building details, namely:

1. The off-diagonal entries of the “chargino” or “neutralino” mass matrix contain
general Yukawa couplings (Y1 and Y2) that can be enhanced as opposed to the
fixed-value gauge couplings of the MSSM. Evenmore, they can be equal here i.e.,
Y1 = Y2 ≡ Y ∼ g, satisfying a custodial symmetry, a realisation which is only phe-
nomenologically allowed in the so called Split-SUSY scenarios [173,174]. Therefore,
this fermionic doublet-triplet DM sector generalises the corresponding DM sector of
the Minimal Supersymmetric Standard Model (MSSM).

2All gauge group indices are suppressed in this equation. Its detailed form is given below in eq. (3.9).
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Figure 3.1: A sketch for the mass spectrum and decays of the new physical doublet and
triplet fermions. The lightest neutral particle, χ0

1 is an equal admixture of
the two doublets and has mass MD. Particles χ0

2 (χ0
3) and χ±1 (χ±2 ) are mass

degenerate. For the spectrum masses written to the right we have chosen
MD = 110 GeV, MT = 100 GeV and m = Y v = 200 GeV. It provides
the correct relic density abundance for dark matter [see Section 3.4] and is
currently about ∼ 10 times less sensitive to current direct detection searches
[see Section 3.5].

2. In the region where the common Yukawa coupling is comparable, say, to the top
Yukawa coupling there are heavy charged leptons decaying to the lightest new
fermion χ0

1. This mass pattern, shown in Fig. 3.1, is different from the singlet-doublet
DM model (at least from the minimal version) where the lightest neutral particle is,
up to radiative corrections, degenerate with the charged particle a situation which
is highly constrained from long lived charged particle searches at LHC [175].

3. In the limit of equal Yukawa couplings (Y ) in eq. (3.1), there is a custodial SU(2)-
symmetry that guaranties vanishing couplings at tree level between the lightest neu-
tral particle and the Z-boson (Zχ0

1χ
0
1) and also to the Higgs-boson (hχ0

1χ
0
1). This is a

certain “pass” for this model, at least to leading order, from the current strong direct
detection experimental contraints [161, 162, 176]. Moreover, as we shall see below,
hχ0

1χ
0
1-coupling arises radiatively at one-loop order providing us with certain model

predictions. Note that “blind spots” of this kind have been studied in ref. [159] for
Split-SUSY and in ref. [177] for the singlet-doublet and singlet-triplet fermionic DM
models.

4. Similar to the case here, the dominant annihilation channel in the higgsino DM-phase
of MSSM [178], is into gauge bosons. But in the higgsino case and due to smallness
of the gauge coupling, the lightest charged and neutral fermion states are degenerate
so co-annihilation effects [59] are very important. It turns out that, that for higgsino
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3.2. Model Details

mass µ ∼ 100 GeV the cross section < σv >≈ g4

16πµ2 is large which results in ΩDM

that is too low unless µ is in the TeV range. In the doublet-triplet fermonic DM
model we consider here, the lightest neutral state decouples from the heavy ones,
and in the limit of large m = Y v the difference in mass between the lightest neutral
fermion and the lightest charged or the second lightest neutral one is normally of
the order of 100 GeV (see Fig. 3.1 for an example). The annihilation cross section
now goes through the t, u-channels and, relative to higgsino case, is suppressed by a
factor (mχ/mχj )

4 ∼ 10 − 100 where mχj are the heavy fermion masses (χ0
2,3, χ

±
1,2),

allowing a WIMP mass, mχ, naturally of the order of 10-100 GeV.3

5. Our attempt here is to find a DM candidate particle consistent with the astrophysi-
cal and collider data but with mass around the electroweak scale. Vector-like gauge
multiplets that are engaged here have also been used to construct minimal DM Mod-
els (MDM) in Ref. [78]. It has been found that the masses MD or MT should lie in
the few-TeV region. In our scenario, it is the chiral (Dirac) mass terms in eq. (3.1)
that play the most important role. The latter are constrained from perturbativity
to be several hundreds of GeV while the lower vector-like masses, MD and MT ,
are protected by an accidental symmetry. Finally, the production and decay phe-
nomenology of the new fermions is very distinct from the ones in MDM models and
it is relatively easy to be tested with current and near future LHC data.

Within this framework of Doublet-Triplet Fermionic DM model that we describe in Sec-
tion 3.2, and in particular in the region where the custodial symmetry is applied, we
discuss and check constraints that include:

• An estimate of oblique corrections to electroweak observables (S, T, U parameters)
[Section 3.3].

• DM thermal relic density calculation at tree level [Section 3.4].

• Direct DM detection prospects through nucleus-DM particle scattering at 1-loop
[Section 3.5]

• Decay rate of the Higgs boson to two photons (h→ γγ) [Section 3.6]

• Vacuum stability and perturbativity [Section 3.7]

• LHC signatures, production and decays of the new fermions[Section 3.8].

Our conclusions and various ways to extend this work are discussed in Section 3.9. An
appendix with the explicit one-loop corrections to the hχ0

1χ
0
1-vertex is given. Beyond the

articles we have already mentioned, there is a reach literature regarding minimal DM
extensions of the SM. A partial list is given in refs. [152,179–198].

3.2 Model Details

As a result of what we have already mentioned in the introduction, we scan chiral fermion
matter extensions of the SM gauge group according to the following, rather obvious,
assumptions for the new set of fermions:

1. they must have vectorial electromagnetic interactions,

2. they must be colour singlets with integer charges,

3. their interactions must be gauge (and gravitational) anomaly free,

3In this study, we are only interested in DM mass of the order of the electroweak scale.
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Chapter 3. Doublet-Triplet Fermionic Dark Matter

4. their masses are obtained after SU(2)L×U(1)Y gauge symmetry breaking, with only
the SM Higgs doublet, and if gauge symmetry allows, directly, and

5. there is a parity symmetry, Z2, under which the SM fermions transform as +1 while
the new fermions as −1.

The most minimal model, not containing pure singlet fields,4 consists of three fields ar-
ranged in colour singlets and representations of SU(2)L, with quantum numbers denoted
as (1c,2I + 1)YL,R, where I is the weak SU(2)L isospin and Y is the hypercharge related

to the electric charge by Q = I3 + Y
2 . These new fields are5:

T ∼ (1c,3)0L , D1 ∼ (1c,2)+1
R , D2 ∼ (1c,2)−1R . (3.3)

One can easily check that this is a gauge and gravitational anomaly free set of chiral
fermions. They sit in adjacent representations of SU(2)L with weak isospin difference
∆I = 1

2 . This matches with the only spinless field of the SM, the Higgs field, with gauge
labels H ∼ (1c,2)+1.

It is convenient to represent all fermions, i.e. SM quarks and leptons plus new fermions
that belong to the DM sector, with two component, left handed, Weyl fields [28], namely6

SM quarks : Q =

(
u
d

)
∼ (3c,2)+1/3 , ū ∼ (3c,1)−4/3 , d̄ ∼ (3c,1)+2/3 ,

(3.4)

SM leptons : L =

(
ν
e

)
∼ (1c,2)−1 , ν̄ ∼ (1c,1)0 , ē ∼ (1c,1)+2 , (3.5)

DM fermions : T =

 T1

T2

T3

 ∼ (1c,3)0 ,

D̄1 =

(
D̄1

1

D̄2
1

)
∼ (1c,2)−1 , D̄2 =

(
D̄1

2

D̄2
2

)
∼ (1c,2)+1 . (3.6)

SM fermions come in three copies of (3.4) and (3.5) sets of fields. We have added a left-
handed antineutrino Weyl field in the SM field content in order to account for light neutrino
masses via the seesaw mechanism. Although there may be interesting links between the
neutrino and DM sector fields we shall scarcely refer to neutrinos in this work. We assume
only one copy of the DM-sector fields in (3.6). Of course, we could also add more singlet
fermions either in the SM or in the DM-sector but our intention is to keep the model as
minimal as possible.

Physical masses are obtained from the gauge invariant form of Yukawa interactions.
Under the assumption-5 above, the whole Yukawa Lagrangian of the model is

LYuk = L SM
Yuk + L DM

Yuk , (3.7)

4However, see comments below.
5 As it was shown in ref. [199], the doublet-triplet fermionic dark matter model can be embedded in an
SO(10) GUT.

6The bar symbol over the Weyl fields is part of their names.
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3.2. Model Details

where the SM part reads (flavour indices are suppressed):

L SM
Yuk = Yuε

abHaQbū− YdH† aQad̄− YeH† aLaē

+ Yνε
abHaLbν̄ −

1

2
MN ν̄ν̄ + H.c. , (3.8)

and the available DM-sector interactions are

L DM
Yuk = Y1 ε

ab TAHa (τA)cb D̄1 c − Y2 T
AH† a (τA)ca D̄2 c

−MD ε
abD̄1 aD̄2 b −

1

2
MT T

ATA + H.c. . (3.9)

By choosing appropriate field redefinitions and without loss of generality we can make the
parameters Y1, Y2, and MT real and positive, while leaving MD to be a general complex
parameter. This is the only source of CP -violation7 arising from the DM-sector in this
model. If not stated otherwise, we consider real MD values in our numerical results. The
parity symmetry assumption-5 removes the following renormalizable operators:

H† D̄2 ν̄ , H D̄1 ν̄ , L D̄2 , H T L and H† D̄1 ē . (3.10)

Note that apart from the first two, the rest will not be allowed under the custodial sym-
metry. Finally, we assume that possible non-renormalizable operators that are allowed by
the discrete symmetry are Planck scale suppressed and do not play any particular role in
what follows.

3.2.1 The spectrum

Since there is no-mixing between the mass terms of the SM fermions and the DM sector
ones, we solely concentrate on the non-SM Yukawa interactions of eq. (3.9). After elec-
troweak symmetry breaking and the shift of the neutral component of the only Higgs field,
H0 = v + h/

√
2, we obtain the following mass terms

L DM
Y (mass) = −

(
τ1 D̄1

2

)T MC

(
τ3

D̄2
1

)
− 1

2

(
τ2 D̄1

1 D̄2
2

)TMN


τ2

D̄1
1

D̄2
2

 + H.c.

= −
2∑
i=1

mχ±i
χ−i χ

+
i −

1

2

3∑
i=1

mχ0
i
χ0
iχ

0
i + H.c. , (3.11)

where τ1 ≡ (T1 − iT2)/
√

2, τ3 ≡ (T1 + iT2)/
√

2 and τ2 ≡ T3. The charged (MC) and the
neutral (MN ) fermion mass matrices in eq. (3.11) are given by

MC =

(
MT

√
2m1

√
2m2 −MD

)
, MN =

 MT m1 −m2

m1 0 MD

−m2 MD 0

 , (3.12)

7Electron and Neutron EDMs will arise first at two-loop level. Similarly for the anomalous magnetic
moments of SM leptons. See relevant discussion in ref. [200].
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Chapter 3. Doublet-Triplet Fermionic Dark Matter

where m1,2 ≡ Y1,2 v. Matrices MC and MN are diagonalized following the singular
value decomposition and the Takagi factorisation theorems [201] into mχ± = (2× 2) and
mχ0 = (3× 3) diagonal matrices,

UTL MC UR = mχ± , OT MN O = mχ0 , (3.13)

respectively, after rotating the current eigenstate fields into their mass eigenstates χ±i , χ
0
i

with unitary matrices, UL, UR and O, as

(
τ3

D̄2
1

)
= UR

(
χ−1

χ−2

)
,

(
τ1

D̄1
2

)
= UL

(
χ+

1

χ+
2

)
,


τ2

D̄1
1

D̄2
2

 = O


χ0

1

χ0
2

χ0
3

 .

(3.14)
Therefore the spectrum of this model contains, apart from the SM masses for quarks and
leptons, two additional charged Dirac fermions and three neutral Majorana particles. It
is the lightest Majorana particle χ0

1 with mass mχ0
1
, that, perhaps, supplies the universe

with cold dark matter.

It is crucial for what follows and also enlightening, to discuss the decoupling of the
MD-eigenvalue from the particle spectrum. First,MN , is a real symmetric matrix, under
the assumption of real MD. Then, consider the following unitary matrix Σ, having as
columns orthonormal vectors,

Σ =
1√
2

 √2 0 0
0 1 1
0 −1 1

 , (3.15)

which by a similarity transformation, brings the lower right 2× 2 sub-block ofMN into a
diagonal form,

M′N = Σ†MN Σ =

 MT (m1 +m2)/
√

2 (m1 −m2)/
√

2

(m1 +m2)/
√

2 −MD 0

(m1 −m2)/
√

2 0 MD

 . (3.16)

Note that since Σ is unitary matrix, the eigenvalues of MN and M′N are equal. We
therefore obtain, that for m1 = m2 the charged fermion mass matrix MC becomes the
upper-left sub-block of the M′N in eq. (3.16). Therefore the eigenvalue, MD, decouples
from the neutral fermion mass matrix i.e. it is independent of any mixing and therefore
any v.e.v, while the rest of eigenvalues of both matrices, MC and MN , are one to one
degenerate.

3.2.2 The interactions

We now turn to the interactions between the new fermions and the SM gauge-bosons or the
SM Higgs-boson. The latter can be read from eq. (3.9) after rotating fields by exploiting
the relations in (3.14). After a little bit of algebra we obtain8

L DM
Y(int) = −Y hχ−i χ

+
j h χ−i χ

+
j −

1

2
Y hχ0

iχ
0
j h χ0

i χ
0
j + H.c. , (3.17)

8We use Weyl notation for fermions [28] throughout.
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where

Y hχ−i χ
+
j ≡ 1

v
(m1 UR 2i UL 1j +m2 UR 1i UL 2j) , (3.18)

Y hχ0
iχ

0
j ≡ O1i√

2 v
(m1 O2j −m2 O3j) + (i↔ j) . (3.19)

For completeness and especially for loop calculations, we append here the interactions
between Goldstone bosons and the new fermions:

LGχχ = − i O1i√
2v

(m1 O2j +m2 O3j)G
0χ0

iχ
0
j −

i

v
(m1 UR 2i UL 1j −m2 UR 1i UL 2j)G

0χ−i χ
+
j

+
m1

v
(
√

2 UR 1i O2j − UR 2i O1j)G
+χ−i χ

0
j −

m2

v
(
√

2 UL 1i O3j + UL 2i O1j)G
−χ+

i χ
0
j

+ H.c . (3.20)

Interactions among the new fermions and gauge bosons arise from the respective fermion
kinetic terms. Interactions between χ± and the photon are purely vectorial,

L γ−χ±
KIN(int) = −(+e) (χ+

i )†σ̄µχ+
i Aµ − (−e) (χ−i )†σ̄µχ−i Aµ , (3.21)

where Aµ is the photon field and (−e) the electron electric charge. The Z-gauge boson
couplings to both charged and neutral fermions can be read from9,

L Z−χ
KIN(int) =

g

cW
O′Lij (χ+

i )†σ̄µχ+
j Zµ−

g

cW
O′Rij (χ−j )†σ̄µχ−i Zµ+

g

cW
O′′Lij (χ0

i )
†σ̄µχ0

jZµ , (3.22)

where

O′Lij = −U∗L1i UL1j −
1

2
U∗L2i UL2j + s2

W δij , (3.23)

O′Rij = −UR1i U
∗
R1j −

1

2
UR2i U

∗
R2j + s2

W δij , (3.24)

O′′Lij =
1

2
(O∗3i O3j −O∗2i O2j) , (3.25)

with sW , cW the sin and cos of the weak mixing angle and g the SU(2)L gauge coupling.
Finally, interactions between χ’s and W -bosons are described by the terms

LW±−χ0−χ∓
KIN(int) = g OLij (χ0

i )
† σ̄µ χ+

j W
−
µ − g ORij (χ−j )† σ̄µ χ0

i W
−
µ

+ g OL∗ij (χ+
j )† σ̄µ χ0

i W
+
µ − g OR∗ij (χ0

i )
† σ̄µ χ−j W

+
µ , (3.26)

where the mixing matrices OL and OR are given by

OLij = O∗1i UL1j −
1√
2
O∗3i UL2j , (3.27a)

ORij = O1i U
∗
R1j +

1√
2
O2i U

∗
R2j . (3.27b)

9Our notation resembles closely the one in Appendix E of ref. [28] i.e. U → U†L, V → U†R and N → O†.
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Chapter 3. Doublet-Triplet Fermionic Dark Matter

We open a parenthesis here to discuss a comparison with MSSM: mass matrices for
neutral and charged fermion in eq. (3.12) remind those of neutralinos and charginos in
the MSSM. It is of course trivially understood why this happens: the doublet and the
triplet fields possess the same gauge quantum numbers as the higgsino and wino fields,
respectively. However, there are two crucial differences: first there is no restriction to add
a bino singlet and therefore the minimalMN is a 3×3, instead of 4×4, simpler matrix and
second, and more important, the off-diagonal entries inMN andMC , are not proportional
to gauge couplings but to, Yukawa couplings, Y1 and Y2. The latter entries (∼ Y v) can be
substantially bigger than the corresponding ones (∼ gv) in the neutralino mass matrix of
MSSM. Furthermore, since tanβ = 1 is not, in general, a phenomenologically viable case
in MSSM, there should always be a factor of hierarchy between the off diagonal entries.
This is not necessarily the case here. In fact, the tanβ = 1 “blind spot” [159], is a point
in parameter space protected by a custodial symmetry.

3.2.3 A custodial symmetry

It is well known that the Higgs sector in the SM obeys, in addition to the standard
electroweak gauge symmetry, a custodial SU(2)R global symmetry. This symmetry is
broken explicitly by the hypercharge gauge coupling g′, and by the difference between the
top- and bottom-quark Yukawa couplings. Similarly, the fermionic DM sector, described
by eq. (3.9), obeys also such a symmetry if Y1 = Y2 ≡ Y . More explicitly, eq. (3.9) can
be written in a SU(2)L × SU(2)R × U(1)X invariant form as

L DM
Yuk = −Y TA H x,a (τA)ba D̄x,b−

1

2
MD ε

xy εab D̄x,a D̄y,b−
1

2
MT T

A TA + H.c. , (3.28)

where x, y denote SU(2)R group indices and

H x,a =

(
Ha

H† a

)
, D̄x,a =

(
D̄1a

D̄2a

)
, (3.29)

with Ha = εabHb. This extra global symmetry stands for the rotations between H ↔ H†

and D̄1 ↔ D̄2. Although this symmetry is broken by the hypercharge gauge symmetry,
it is natural to study interactions among extra fermions (D̄ , T ) and SM-bosons under the
assumption that SU(2)R is approximately preserved in the DM sector, that is,

Y1 = Y2 ⇒ m1 = m2 . (3.30)

In addition, eq. (3.29) is invariant under a global U(1)X fermion number symmetry, under
which only D̄ and T fields are charged with [D̄ ] = [D1] = [D2] = −[T ] = 1. In that case
MD and MT are not allowed. We therefore conclude that the limit where Y ≡ Y1 = Y2

and MD = MT → 0 is radiatively stable and this fact motivates us to study it in more
detail. Note again that, both SU(2)R and U(1)X symmetries are broken explicitly by
hypercharge symmetry.

3.2.4 Lightest Neutral fermion interactions under the symmetry

Let’s introduce the mass difference, ∆m ≡ m1 − m2, between the chiral masses (or be-
tween Yukawa couplings, Y1 and Y2, if you wish). If SU(2)R symmetry is approximately
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3.2. Model Details

preserved, i.e. eq. (3.30) approximately holds, ∆m must be treated as perturbation com-
pared to m1 or m2 masses, which collectively denoted by m = m1, i.e. ∆m� m. We can
then write the neutral fermion mass matrix in a suggestive perturbative form

MN = M(0)
N +Q , (3.31)

where

M(0)
N =

 MT m −m
m 0 MD

−m MD 0

 , Q =

 0 0 ∆m
0 0 0

∆m 0 0

 . (3.32)

The zeroth order eigenvalues of M(0)
N read

mχ0
1

= MD , (3.33a)

mχ0
2

=
1

2

[
MT −MD −

√
8m2 + (MT +MD)2

]
, (3.33b)

mχ0
3

=
1

2

[
MT −MD +

√
8m2 + (MT +MD)2

]
, (3.33c)

and the corresponding eigenvectors are

|1〉(0) =
1√
2

 0
1
1

 , |2〉(0) =
−1√

2 + a2

 a
1
−1

 , |3〉(0) =
1√

2 + a2


√

2
− a√

2
a√
2

 ,

(3.34)
where the parameter a is given by

a =
mχ0

1
+mχ0

2

m
. (3.35)

The parameter a, varies in the interval [−
√

2, 0] for positive MD. A little examination
of the eigenvalues show that unless, MD � MT > 0 where the Lightest Particle (LP)
becomes the triplet, in the rest of the parameter space the LP is a “very well tempered”
mixed doublet fermion, |χ0

1〉 = 1√
2
(|D̄1

1〉+ |D̄2
2〉), with mass mχ0

1
= MD.10 The DM particle

(χ0
1) has then vanishing coupling to the Higgs boson because in eq. (3.19) it is O11 = 0.

Note that, every neutral fermion has always vanishing diagonal couplings to Z-gauge
boson, |O2i| = |O3i|, since the two doublets, D̄1 and D̄2 couple to Z with opposite weak
isospin. It is therefore worth examining how eigenvalues and eigenvectors are corrected
after switching on to ∆m 6= 0.

Obviously, in order to find how χ0
1 couples to Z or h non-trivially, i.e. to find the

couplings Y hχ0
1χ

0
1 and gZχ

0
1χ

0
1 = gO′′L11 /cW in eqs. (3.19) and (3.25), respectively, we need

to know the O(∆m) corrections, in the eigenvector Oi1. The corrected eigenvector, |1〉 =
|1〉(0) + |1〉(1) + O[(∆m)2], which is nothing else but the first column of the matrix O
in eq. (3.13) is found to be,

Oi1 = |1〉 =
1√
2

 x∆m
1 + y ∆m
1− y ∆m

+O[(∆m)2] , (3.36)

10It is easy to show that since (0)〈1|Q|1〉(0) = 0, there is no correction, up to (∆m)2, on mχ0
1

= MD LP
mass.
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where

x ≡ 1

(2 + a2)

[
a2

mχ0
1
−mχ0

2

+
2

mχ0
1
−mχ0

3

]
, (3.37)

y ≡ a

(2 + a2)

[
1

mχ0
1
−mχ0

2

− 1

mχ0
1
−mχ0

3

]
. (3.38)

Simple substitution of eq. (3.36) into eqs. (3.19) and (3.25) gives

Y hχ0
1χ

0
1 =

(∆m)2

√
2v

x (1 + 2my) + O[(∆m)2/m2] , (3.39)

gZχ
0
1χ

0
1 ≡ g

cW
O′′L11 = − g

cW
y ∆m+ O[(∆m)2/m2] . (3.40)

Obviously, for sufficiently small mass difference ∆m, the Spin-Independent (SI) coupling
(Y hχ0

1χ
0
1) is suppressed by (∆m)2/m2 while the Spin-Dependent (SD) one (gZχ

0
1χ

0
1) is

suppressed by ∆m/m relative to their values away from the SU(2)R-symmetric limit.
This maybe the reason why we have not detected DM-nucleon interactions so far. A
question arises immediately about the stability of ∆m under radiative corrections. A
quick RGE analysis [202,203] shows that the β-function for ∆m at 1-loop is

d∆m

d ln(Q)
=

∆m

16π2

[
29

4
Y 2 + 3Y 2

t −
9

20
g2

1 −
33

4
g2

2

]
, (3.41)

where Yt is the top-Yukawa coupling, Y ≡ Y1 ' Y2, and g1,2 the hypercharge and weak
gauge couplings, respectively. Eq. (3.41) means that ∆m is only multiplicatively renor-
malized. Therefore, setting ∆m to zero at tree level stays zero at 1-loop and possibly
at higher orders11 because this is a parameter point protected by the global symmetry.
From eqs. (3.39) and (3.40) we conclude that for ∆m = 0, only finite (threshold) and
calculable quantum corrections will affect the couplings Y hχ0

1χ
0
1 and gZχ

0
1χ

0
1 which are rel-

evant to Direct DM searches. We confirm this consequence with a direct calculation of
δY hχ0

1χ
0
1 in Section 3.5 and in Appendix A.

Note that x vanishes in the limit MD → 0 while (1 + 2my) vanishes at both MD → 0
and MD → MT limits. However, eq. (3.39) is not accurate since (∆m)2/m2-terms are
missing in our perturbative expansion. It turns out that the MD → MT limit is violated
by those and higher terms, but the limit MD → 0 is protected because of the U(1)X -
symmetry that we discussed in Section 3.2.3. In contrast, eq. (3.40) is within 1% of its
exact numerical outcome. It is also worth noticing that in the case where the Majorana
masses are dominant, MD,MT � m, then y → 0 and therefore gZχ

0
1χ

0
1 → 0, up to higher

order terms.

It will be useful for the discussion, especially on the relic density, to show the mass
difference between the next-to-lightest (|mχ0

2
|) and the lightest (|mχ0

1
|) neutral fermion

states. This is depicted as contour lines in Fig. 3.2(a,b) on the MD −MT plane (left plot)
and on the MD − m plane with MT = MD (right plot). Note that MD coincides with
the LP mass i.e. MD = mχ0

1
, everywhere in these graphs. For m = 200 GeV, the mass

difference is nowhere smaller than approximately 80 GeV, and typically, it is as large as
the parameter m with the maximum value at MD = MT . Subsequently, in Fig. 3.2b, we

11We confirm that this result remains unchanged at two-loop level.
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Figure 3.2: The mass difference, |mχ0
2
|−|mχ0

1
|, between the next-to-lightest and the lightest

neutral particle state in the Doublet-Triplet Fermionic DM model on (a) MD

vs. MT with m = 200 GeV, and (b) on MD vs. m with MT = MD, plane. For
both plots and for the rest to come, it is always, mχ0

1
= MD.

plot the maximum values of the mass difference on MD−m plane. Alternatively, it is easy
to read from Fig. 3.2, the parameter a defined in eq. (3.35), because for the MD values
taken throughout, it is a = −(|mχ0

2
| − |mχ0

1
|)/m. For instance, in the plots shown, this

parameter varies, approximately, in the region, a ∈ [−1,−0.3].

3.2.5 Analytical expressions for the new interactions under the symmetry

As we have already discussed in Section 3.2.1, in the symmetric SU(2)R limit of (3.30),
two of the eigenvalues from the charged fermion mass matrix are degenerate respectively
with those of the neutral fermion masses given in eqs. (3.33b) and (3.33c),

mχ±1
= mχ0

2
, mχ±2

= mχ0
3
. (3.42)

In addition, it is useful for further reference to present analytical expressions for all new
interactions appear in the model. All these new interactions can be simply written in
matrix forms containing (at most) one parameter, the real parameter a of eq. (3.35). For
example, rotation matrices defined in eq. (3.13) read

U = UL = UR =
1√

2 + a2

(
a −

√
2√

2 a

)
,

O =

 0 − a√
2+a2

√
2√

2+a2

1√
2
− 1√

2+a2
− a√

2
√

2+a2

1√
2

1√
2+a2

a√
2
√

2+a2

 . (3.43)
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The couplings between χ0
1, W and χ± given in eq. (3.27) become explicitly:

OL1j = −OR ∗1j ,

OL =


− 1√

2
√

2+a2
− a

2
√

2+a2

−1+a2

2+a2
a√

2(2+a2)
a√

2(2+a2)
− 4+a2

4+2a2

 , OR =


1√

2
√

2+a2
a

2
√

2+a2

−1+a2

2+a2
a√

2(2+a2)
a√

2(2+a2)
− 4+a2

4+2a2

 , (3.44)

while those in eqs. (3.23), (3.24) and (3.25),

O′L(R) =

 −1−a2+(2+a2)s2W
2+a2

a√
2(2+a2)

a√
2(2+a2)

−4+a2−2(2+a2)s2W
2(2+a2)

 ,

O′′L =

 0 1√
2
√

2+a2
a

2
√

2+a2

1√
2
√

2+a2
0 0

a
2
√

2+a2
0 0

 . (3.45)

Finally, the Higgs couplings to neutral and charged fermions in eqs. (3.19) and (3.18) are
respectively:

Y hχ0χ0
=
m

v


0 0 0

0 2
√

2a
(2+a2)

(−2+a2)
(2+a2)

0
(−2+a2)
(2+a2)

− 2
√

2a
(2+a2)

 , Y hχ−χ+
=
m

v

 2
√

2a
(2+a2)

(−2+a2)
(2+a2)

(−2+a2)
(2+a2)

− 2
√

2a
(2+a2)

 ,

(3.46)
while those to Goldstone bosons given in eq. (3.20), can now be simply written as

Y G0χ0χ0
=
im

v


0 − a√

2+a2

√
2√

2+a2

− a√
2+a2

0 0
√

2√
2+a2

0 0

 , Y G0χ−χ+
=
im

v

(
0 −1
1 0

)
∀a ,

(3.47)
and

Y G+χ−χ0
=
m

v

(
a√

2+a2
0 −1

−
√

2√
2+a2

1 0

)
, Y G−χ+χ0

=
m

v

(
− a√

2+a2
0 −1

√
2√

2+a2
1 0

)
.

(3.48)

Depending on whether the chiral mass m or the vectorial masses MD and MT are
dominant, and for MD > 0, there are two extreme limits for the model at hand

“Majorana dominance′′ : MT ≈MD � m⇒ a ≈ 0 , m2
χ0

1
≈ m2

χ0
2
≈M2

D , m2
χ0

3
≈M2

T .

(3.49)

“Dirac dominance′′ : MT ≈MD � m⇒ a ≈ −
√

2 , m2
χ0

2
≈ m2

χ0
3
≈M2

D + 2m2 .

(3.50)

The “Majorana dominance” limit corresponds more or less to the “higgsino-wino” scenario
of the MSSM where the first two neutral particle masses are degenerate, while the “Dirac
dominance” limit is the imprint of a large Yukawa coupling in eq. (3.9). It is the latter
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case that in addition to SU(2)R-symmetry, it is protected by the global U(1)X symmetry.
For example, plugging in a = −

√
2 into eq. (3.46), we immediately see that the Higgs

couplings to new fermions become diagonal resulting in a vanishing, as long as MD → 0,
one loop corrections to the h−χ0

1−χ0
1 vertex, as we qualitatively confirmed in Section 3.2.4

below eq. (3.39), and as we shall see below in Section 3.5.

3.2.6 Composition of the lightest Neutral Fermion

As we showed in eqs. (3.33) and (3.34), in the symmetric limit m1 = m2, the neutral
fermion mass matrix MN , can be diagonalized analytically into three mass eigenstates

|χ0
i 〉 = Oi1 |1〉+Oi2 |2〉+Oi3 |3〉 . (3.51)

Following conventional MSSM nomenclature [52], lets define the “Doublet” composition
of the χ0

i as
F iD = |Oi2|2 + |Oi3|2 . (3.52)

Then we say that a state of χ0
i is (D)oublet-like if F iD > 0.99, it is (T)riplet like if F iD < 0.01

and it is (M)ixed state if 0.01 < F iD < 0.99.
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Figure 3.3: The composition of the WIMP in terms of (D)oublet, (T)riplet and (M)ixed
states following the definition given in the paragraph below eq. (3.52), on a
MD vs. MT plane and for fixed (common) Yukawa coupling, Y = m/v '
200/174 ' 1.15.

In Fig. 3.3 we present the composition of the DM candidate particle χ0
1 on a MD vs.

MT plane for fixed mass, m = 200GeV . Both Z and Higgs-boson couplings to pairs of χ0
1’s

vanish at tree level only in the region denoted by (D) (for Doublet) where MD is (most of
the time) positive and equal to, or less, than MT . It is mostly in this region we are focusing
on in this study, because in this region the model evades, without further tweaks, direct
DM detection experimental bounds. Note also that for light MD = χ0

1 . 150 GeV << m,
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Chapter 3. Doublet-Triplet Fermionic Dark Matter

the WIMP composition satisfies (D) condition for every value of MT . For negative values
of MD, χ0

1 is a pure doublet only in the region |MD| ≤ m but shrinks down to unacceptably
small MD for large values of MT ; otherwise it is a mixed state everywhere in Fig. 3.3. For
large MD �MT , the χ0

1-composition consists of mainly a triplet.

Note that when the lightest state is pure (D)oublet the heavier states are exactly an
equal admixture of doublets and the triplet i.e. F 2,3

D = 0.5.

3.3 Estimate of Electroweak Corrections

In the limit of large Yukawa couplings, Y = Y1 = Y2 ' 1, we generally expect large
contributions from the new fermions, χ0, χ±, to (Z,W )-gauge boson self-energy one-loop
diagrams. In this section we investigate constraints on the doublet-triplet fermion model
parameter space, {MD,MT ,m}, from the oblique electroweak parameters S, T and U [147].

Due to Z2-parity symmetry, at one-loop level, there is no mixing between the extra
fermions, χ0, χ±, and the SM leptons. Therefore corrections to electroweak precision
observables involving light fermions arise only from gauge bosons vacuum polarisation
Feynman diagrams i.e. there are only oblique electroweak corrections. In order to estimate
these corrections it is convenient to calculate the S, T and U parameters, in the limit where
mχ0 ,mχ± & mZ . This is true when the doublet mass MD, is greater than mZ and m is
much greater than mZ (see Fig. 3.2). We shall not consider the case of a light dark matter
particle, mχ0

1
. mZ .

Following closely the notation by Peskin and Takeuchi in ref. [147], we write,

αS ≡ 4e2 d

dp2

[
Π33(p2)−Π3Q(p2)

] ∣∣∣∣
p2=0

, (3.53a)

αT ≡ e2

s2
W c

2
Wm

2
Z

[Π11(0)−Π33(0)] , (3.53b)

αU ≡ 4e2 d

dp2

[
Π11(p2)−Π33(p2)

] ∣∣∣∣
p2=0

, (3.53c)

where α = e2/4π. In numerics we use input parameters from ref. [204], the bare value at
lowest order s2

W = g
′2/(g

′2 + g2) ' 0.2312 and the Z-pole mass mZ = 91.1874 GeV. We
calculate corrections arising only from the extra fermions, χ0

i=1..3, χ
±
i=1..2, to the gµν part

of the gauge boson self energy amplitudes, ΠIJ ≡ ΠIJ(p2), where I and J may be photon
(γ), W or Z,

Πγγ = e2 ΠQQ , (3.54a)

ΠZγ =
e2

cW sW

(
Π3Q − s2ΠQQ

)
, (3.54b)

ΠZZ =
e2

c2
W s

2
W

(
Π33 − 2s2Π3Q + s4ΠQQ

)
, (3.54c)

ΠWW =
e2

s2
W

Π11 , (3.54d)
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where sW = sin θW , cW = cos θW . We find,

ΠQQ = − p2

8π2

2∑
i=1

[
2

3
E − 4 b2(p2,m2

χ±i
,m2

χ±i
)

]
, (3.55a)

Π3Q =
p2

16π2

2∑
i=1

(ZLii + ZRii )

[
2

3
E − 4 b2(p2,m2

χ±i
,m2

χ±i
)

]
, (3.55b)

Π11 =
1

16π2

3∑
i=1

2∑
j=1

[
(|OLij |2 + |ORij |2)G(p2,m2

χ0
i
,m2

χ±j
)−

− 2<e(OL ∗ij ORij)mχ0
i
mχ±j

I(p2,m2
χ0
i
,m2

χ±j
)

]
, (3.55c)

Π33 =
1

16π2

2∑
i,j=1

[
(ZLijZ

L
ji + ZRijZ

R
ji)G(p2,m2

χ±i
,m2

χ±j
)− 2ZLijZ

R
jimχ±i

mχ±j
I(p2,m2

χ±i
,m2

χ±j
)

]

+
1

16π2

3∑
i,j=1

[
O′′Lij O

′′L
ji G(p2,m2

χ0
i
,m2

χ0
j
) + (O′′Lij )2 mχ0

i
mχ0

j
I(p2,m2

χ0
i
,m2

χ0
j
)

]
,

(3.55d)

where Z
L(R)
ij ≡ O

′L(R)
ij − s2

W δij . In addition, E ≡ 2
ε − γ + log 4π − logQ2 is the infinite

part of loop diagrams. The various one-loop functions in eqs. (3.55) are given by

G(p2, x, y) = −2

3
p2 E + (x+ y) E + 4 p2 b2(p2, x, y)− 2

[
y b1(p2, x, y) + x b1(p2, y, x)

]
,

(3.56)

I(p2, x, y) = 2 E − 2 b0(p2, x, y) , (3.57)

b0(p2, x, y) =

∫ 1

0
dt log

∆

Q2
, b1(p2, x, y) =

∫ 1

0
dt t log

∆

Q2
, (3.58)

b2(p2, x, y) =

∫ 1

0
dt t (1− t) log

∆

Q2
, ∆ = ty + (1− t)x− t(1− t) p2 − iε . (3.59)

There are numerous useful identities,

b0(p2, x, y) = b0(p2, y, x) , b2(p2, x, y) = b2(p2, y, x) , (3.60)

G(p2, x, y) = G(p2, y, x) , I(p2, x, y) = I(p2, y, x) , (3.61)

b1(p2, x, y) = b0(p2, y, x)− b1(p2, y, x) , b1(p2, x, x) =
b0(p2, x, x)

2
, (3.62)

that will help us to simplify our expressions below.
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Figure 3.4: Contour plots of the S-parameter on the MD vs. MT plane (left) for m =
200GeV and on MD vs. m plane (right) for MT = MD.

Furthermore, in the exact SU(2)R limit where m1 = m2, there is no isospin break-
ing in D̄-components and therefore T = 0, while the S-parameter receives non-zero,
non-decoupled, contributions due to the enlarged particle number of the SU(2)-sector.
Specifically, in the limit where MD = MT � m = m1 = m2, there is a light neutral
fermion (mχ0

1
) and heavy degenerate other four (two neutral and two charged) fermions,

with squared mass x, resulting in

Π′3Q(0) ≈ 1

16π2

[
−2E + 2 ln(

x

Q2
)

]
, (3.63a)

Π′33(0) = Π′11(0) ≈ 1

16π2

[
−2E + 2 ln(

x

Q2
) +

1

18

]
, (3.63b)

Π33(0) = Π11(0) ≈ 1

16π2

[
3x

2
E − 3x

2
ln(

x

Q2
) +

x

4

]
. (3.63c)

Plugging in eqs. (3.63) into eqs. (3.53) we arrive at the approximate values expressions

S ≈ 1

18π
, T ≈ U ≈ 0 . (3.64)

This result is also confirmed numerically in Fig. 3.4 where we draw contours of the S-
parameter on MD vs. MT plane (left plot) and on MD vs. m plane (right plot). As it is
shown, for large m we obtain S → 1/18π ' 0.0177 while for m → 0 we obtain S → 0, as
expected because in this case only vector-like masses will exist in L DM

Yuk of eq. (3.9), that
make no contribution to parameter S. Experimentally, we know [204] that when the U -
parameter is zero, the parameters S and T which fit the electroweak data are constrained
to be 12

S = 0.04± 0.09 , (3.65a)

T = 0.07± 0.08 . (3.65b)

12 Note added: Updated constraints [60] for the S and T parameters (with fixed U = 0), show a 1.5 σ
deviation for the T -parameter. However, relaxing U = 0, vanishing T is well within limits.
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Figure 3.5: Lower level Feynman diagrams contributing to annihilation cross section for
the process χ+ χ→ V + V for V = W,Z.

Predictions for the S-parameter shown in Fig. 3.4a,b comfortably fall within the bound
of (3.65a). In addition, even though it is not shown, the T,U -parameters are always
negligibly small13.

3.4 The Thermal Relic Dark Matter Abundance

As we have seen, V χ0
1χ

0
1 with V = W,Z and hχ0

1χ
0
1 are forbidden at tree level if χ0

1 is a
pure doublet i.e. mχ0

1
= MD, in the exact SU(2)R-limit. Therefore, the annihilation cross

section for the lightest neutral fermion results solely from the following t− and u−channel
tree level Feynman diagrams, shown in Fig. 3.5, with neutral or charged fermion exchange,
collectively shown as χi, with axial-vector interactions

χ0
1 + χ0

1 →W+ + W− , (3.66a)

χ0
1 + χ0

1 → Z + Z . (3.66b)

All other processes vanish at tree level. This can easily be understood by looking at the
matrix forms of O′′L and Y hχ0χ0

in eqs. (3.45) and (3.46). Before presenting our results
for the annihilation cross section it is helpful to (order of magnitude) estimate the thermal
dark matter relic density for χ0

1s. Consequently, by expanding the total cross section as in
eq. (1.105) and keeping only the zero-relative-velocity a-terms we find (for MD = MT ):

aW =
g4 β3

W

32π

m2
χ

(m2
χ +m2

χj −m2
W )2

mχj�mχ−−−−−−→
m�MD

g4 β3
W

32π

(
mχ

mχj

)4 1

m2
χ

, (3.67a)

aZ =
g4 β3

Z

64π c4W

m2
χ

(m2
χ +m2

χj −m2
W )2

mχj�mχ−−−−−−→
m�MD

g4 β3
Z

64π c4W

(
mχ

mχj

)4 1

m2
χ

, (3.67b)

where g ≈ 0.65 is the electroweak coupling, βV =
√

1−m2
V /m

2
χ for V = W,Z, and in

order to simplify notation, we take mχ ≡ mχ0
1

to denote the DM particle mass and mχj ≡
mχ0

j
= mχ±j−1

≥ mχ for j = 2, 3 [see eq. (3.42)] the heavier neutral and charged fermions

of the DM-sector. In the case where MD = MT , the heavier fermions are degenerate with
mass, m2

χj = 2m2 + M2
D, and the mass spectrum pattern is similar to the one shown in

13 This result has been also confirmed by ref. [205]. Furthermore, it was found that T increases quickly
beyond the SU(2)R symmetric limit, i.e. as Y1 deviates from Y2.
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Figure 3.6: Sketch of the resulting annihilation cross section.

Fig. 3.1. Following this pattern in eq. (3.67) we have taken the limit of m � MD or
alternatively, mχj � mχ.

Obviously, eqs. (3.67a) and (3.67b) viewed as functions of MD, exhibit a maximum
extremum since both a’s vanish in the limits of MD → 0 and MD →∞ and, in addition,
they are positive definite. The maximum cross section is obtained approximately at MD ≈√

2m. The situation is clearly sketched in Fig. 3.6. Once again, we assume that particle-
χ is a cold thermal relic, and that its mass is about few tens bigger than its freeze-out
temperature (see relevant discussion in Section 1.3.3). Then, the relic abundance (1.111)
is

Ωχ h
2 ∼ 0.1

10−8 GeV−2

σv
. (3.68)

Therefore, if the correct cross section, σv ≈ 10−8 GeV−2, that produces the right relic
density, Ωχ h

2 ∼ 0.1, happens to be below the maximum of σv in Fig. 3.6 then there are two
of its points crossing the observed relic density: one for low MD and one for high MD with
the single crossing point being at MD ≈

√
2m. The mass spectrum of new fermions with

high MD exhibits nearly degeneracy in the first two states i.e. mχ = mχ2 ' MD. This
shares similarities with the MSSM (or more precisely with the Split SUSY with tanβ = 1
“wino-higgsino” scenario) for higgsino dark matter which is well studied and we are not
going to pursue further here. The other case, on the other hand, with low MD . m,
exhibits a mass hierarchy between the DM candidate particle (χ) and all the rest (χj)
particles. It is the suppression factor (mχ/mχj ) to the fourth power in eqs. (3.67a) and
(3.67b) that prohibits the cross section from taking on very large values. It is therefore
evident that this low MD scenario can provide the SM with a DM candidate particle
with mass MD that lies “naturally” at the EW scale as this suggested by the observation
σ ≈ 10−8 GeV−2, and is accompanied by heavy fermions, few to several times heavier
(depending on the value of m) than MD.

Before proceeding further, it is worth looking back at Fig. 3.2, the mass difference
between the first two neutral states. For m & 100GeV the mass difference is always
more than 50% than the lightest mass mχ. This in turn suggests that no significant
contributions to Ωχh

2 are anticipated from co-annihilation effects [59].
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Figure 3.7: (Left) Contour plots on the plane MD vs MT for the observed relic density
Ωχh

2 [see eq. (3.69)] of the lightest neutral fermion with m = 200 GeV. (Right)
The same on MD vs. m plane for MD = MT . Recall that for both plots it is
mχ = MD.

In the end, we have calculated the today’s relic density of the neutral, stable, and there-
fore, DM-candidate particle χ. Our calculation is a tree level one; see however comments
below. Within the context of the (spatially flat) six-parameters standard cosmological
model, Planck experiment [164]14 reports a density for cold, non-baryonic, dark matter,
that is

ΩDM h2 = 0.1199± 0.0027 . (3.69)

The 2-σ value is satisfied only in the area between the two lines in both plots in Fig. 3.7.
This happens for rather low mχ = MD in the region 92 . mχ0

1
. 110 GeV and for

MT . 420 GeV on the MD −MT plane with fixed m = 200 GeV, in Fig. 3.7a.15 We
also observe that the result for Ωχh

2 is not very sensitive to the triplet mass, MT . Even
vanishing MT -values are in accordance with the observed Ωχh

2, with mass values mχ

laying nearby the EW scale. (If MD is in the region mW < MD < mZ , and if we neglect
three body decays, then the cross section becomes about half the one for MD > mZ . This
means that Ωh2 is doubled and therefore larger MT (about twice as large) masses may be
consistent with the observed Ωh2 values in eq. (3.69).

We also consider the effect on Ωχh
2 from varying m and MD, with MD = MT , in

Fig. 3.7b. Obviously, the lower the m is the lower the MD should be. For mχ ' 91 GeV
the correct density is obtained for m ' 140 GeV. As we move to heavier values i.e.
m ≈ 300 GeV, MD (which is equal to mχ), is required to be heavier, but not much
heavier, than MZ . However, as we shall discuss in Section 3.7, those heavy values of m
are not accepted by the vacuum stability constraint without modifying the model.

14 Note added: Although the Planck collaboration has updated the results [29] [see eq. (1.103)], the
observed DM relic abundance remains almost unchanged.

15We have not considered the case MD < MZ as this would require further three body decay analysis
which is beyond the scope of this analysis.
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Figure 3.8: Same as Fig. 3.7a but for negative values of MD.

Consistent Ωχh
2 with observation is also achieved for negative values of MD in the same

region as for positive MD as it is shown in Fig. 3.8. (This is the small area for negative MD

shown in Fig. 3.3 where χ0
1 is Doublet). The MT values where this happens are limited

in the mass region smaller than about 120 GeV. The EW S parameter in this region is
slightly moved upwards but is still consistent with eq. (3.65a). However, as we shall see
below, the MD < 0 region suffers from huge suppression relative to SM in the h → γγ
decay rate.

One loop corrections to the annihilation cross section contribute only to the bV -parameter
i.e. they are p-wave suppressed, if mχ . (mZ + mh)/2. Our estimate, using the crude
formula of eq. (3.76) below, shows that one loop induced bV -terms are, numerically, about
10 times smaller than the tree level ones. However, if the above limit is not hold, then
(s-wave) a-terms are coming into the final σAnnv. These terms could be of the same order
as for the tree level b-terms and, in principle, for a precise Ωχh

2 prediction, they have to
be included in the calculation.

We therefore conclude that, DM particle mass around the EW scale is possible and this
requires large couplings of the heavy fermions to the Higgs boson i.e. large m = Y v with
Y ≈ 1, and secondarily, relatively low values of triplet mass i.e., MT 'MD. This scenario
can be hinted or completely excluded at the LHC because the couplings of the heavy new
fermions (both neutral and charged) to the Higgs and gauge bosons are, in general, not
suppressed in the symmetry limit [see discussion in Section 3.8].

3.5 Direct DM Detection

Following the notation of Drees and Nojiri in ref. [206], the Higgs boson mediated part
of the effective Lagrangian for light quark (u, d, s) - WIMP (i.e. the neutral fermion χ0

1)
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interaction is given by
Lscalar = f (h)

q χ̄0
1χ

0
1 q̄q . (3.70)

Note that in this model there are no tensor contributions (at 1-loop level) since χ0
1 does

not interact directly with coloured particles (as opposed to supersymmetric neutralino for
example). The next step is to form the nucleonic matrix elements for the q̄q operator
in eq. (3.70) and we write

〈n|mq q̄q|n〉 = mnf
(n)
Tq , (3.71)

where mn = 0.94 GeV, is the nucleon mass. The form factors f
(n)
Tq are obtained within

chiral perturbation theory and the experimental measurements of pion-nucleon interaction

term, and they are subject to significant uncertainties. f
(n)
Tq for q = u, d [207] are generically

small by, say, a factor of O(10) compared to fTs = 0.14 obtained from ref. [208] value
which we adopt into our numerical findings here. However, bear in mind that fTs is
subject to large theoretical errors [52, 207]. For instance, the average value quoted from
lattice calculations [209] is 0.043±0.011, which is smaller by a factor of three from the one
obtained from chiral perturbation theory. This will result in, at least, a factor of O(10)
reduction in the WIMP-nucleon cross section results, presented in Fig. 3.9, below.

The Higgs boson couples to quarks and then to gluons through the one-loop triangle
diagram. Subsequently, the gluons (G) couple to the heavy quark current through the
heavy quarks (Q = c, b, t) in loop. The analogous (q → Q) matrix element in eq. (3.70)
for mQQ̄Q can be replaced by the trace anomaly operator −(αs/12π)G ·G to obtain

〈n|mQQ̄Q|n〉 =
2

27
mn

[
1−

∑
q=u,d,s

fnTq

]
≡ 2

27
mnfTG . (3.72)

We are ready now to write down the effective couplings of χ0
1 to nucleons (n = p, n):

fn
mn

=
∑
q

f
(h)
q

mq
f

(n)
Tq +

2

27

∑
Q

f
(h)
Q

mQ
fTG . (3.73)

Note that the bigger the fTs is, the bigger the fn becomes. Also note that f
(h)
q ∝ mq.

Furthermore, for fTs ' 0.14 the second term in eq. (3.73), which is formally a two loop
contribution to fn, is about a factor of two smaller than the first one. Under the above
assumption for the fTs dominance we obtain fp = fn. In this case, the Spin Independent
(SI) elastic scattering cross section at zero momentum transfer, of the WIMP χ0

1 scattering
off a given target nucleus with mass mN in terms of the coupling fp is

σ0(scalar) =
4

π

m2
χ0

1
m4
N

(mχ0
1

+mN )2

(
fp
mn

)2

. (3.74)

The perturbative dynamics of the model is contained in the factor fp and therefore,

from eq. (3.73), in f
(h)
q and f

(h)
Q . In this particular model the form factor f

(h)
q reads,

f
(h)
q

mq
=

g [<e(Y hχ0
1χ

0
1)− δY hχ0

1χ
0
1 ]

4mW m2
h

. (3.75)

The Higgs coupling to lightest neutral fermions is given in eq. (3.19). In particular, un-
der the custodial symmetry consideration we adopt here, it is obvious from eq. (3.46),

60



Chapter 3. Doublet-Triplet Fermionic Dark Matter

Figure 3.9: Feynman diagrams (in unitary gauge) related to spin independent (SI) elastic
cross section χ0

1 + q → χ0
1 + q where q = u, d, s – light quarks. Particle V

represents W or Z and χ represents χ±i=1..2 or χ0
i=1..3, respectively. One loop

self energy corrections are absent in the particular scenario we have chosen.

that Y hχ0
1χ

0
1 = 0, at tree level. Generic one-loop corrections will be proportional to,

g2Y/4π ≈ 0.03, which can easily fall in the experimental exclusion region from cur-
rent direct experimental DM searches for large Y ∼ 1 coupling (see for instance eq.(3)
in ref. [159]). We therefore need to calculate the one loop corrections, δY hχ0

1χ
0
1 ≡ δY to

the hχ0
1χ

0
1-vertex.

There is a fairly quick way to get an order of magnitude reliable calculation of δY
through the Low Energy Higgs Theorem (LEHT) [150,210–212]. Application of LEHT in
the region of our interest i.e. , mχ0

1
≈ mW ≈ mh � mχ±i

or MD ≈ MT ≈ mW � m,

and considering only Goldstone boson contributions to χ0
1 one-loop self energy diagrams,

results in

δY =
∂

∂v
δMD(v) ≈ Y 3

4π2

MDm

M2
D + 2m2

, MD ≈MT ≈ mW ≈ mh � m . (3.76)

Let’s inspect eq. (3.76). First, the middle term explains trivially why the Higgs coupling
is zero at tree level: the lightest eigenvalue of the neutral mass matrix is MD which is
independent on any vacuum expectation value. Then because at one loop, the χ0

1 self-
energies involve only the heavy fermion masses (both charged and neutral) which depend
on the v.e.v through m = Y v or through mW ,mZ in the propagators of χ±i , χ

0
i=2,3 and W,Z

respectively, the one loop correction δY does not in general vanish. Second, the third term
of the equality eq. (3.76) shows that the effect increases by the third power of the Yukawa
coupling Y [recall eq. (3.28)] and vanishes when MD → 0 [the U(1)X symmetry limit]. As
for the numerical approximation, eq. (3.76) is always less than 20% of the exact calculation
(see below) even though we have completely neglected the non-Goldstone diagrams that
are proportional to gauge couplings. It is however a crude approximation which is only
relevant when the new heavy fermions are far heavier than the Z,W, h-bosons as well as
from the lightest neutral fermion.

In Appendix A, we calculate the exact one-loop amplitude for the vertex h − χ0
1 − χ0

1

with physical external χ0
1 particles at a zero Higgs-boson momentum transfer. A similar

calculation has been carried out in ref. [102] for the MSSM and in ref. [103] for minimal
DM models. However, due to peculiarities of this model that have been stressed out in the
introduction with respect to the aforementioned models, a general calculation is needed.
The one-loop corrected vertex amplitude arises from (a) and (b) diagrams16 depicted in
Fig. 3.9 involving vector bosons (W or Z) and new charged (χ±i=1,2) or neutral (χ0

i=1..3)

16Note that, Eq. (3.46) implies that there are no self energy contributions to - i δY - at one-loop.
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fermions, as

i δY =
∑

j=(a),(b)

(i δY χ±
j + i δY χ0

j ) . (3.77)

Detailed forms, not resorting to CP -conservation, for δY ’s are given in Appendix A. We
have proven both analytically and numerically that when the external particles χ0

1 are
on-shell, infinities cancel in the sum of the two vertex diagrams in Fig. 3.9a,b without the
need of any renormalization prescription, and the resulting amplitude - i δY - is finite and
renormalization scale invariant.

We have also carried out the one-loop calculation of the box diagrams in Fig. 3.9c. The

effective operators for box diagrams consist of scalar, f
(box)
q [like the fq in eq. (3.70)] and

twist operators, g
(1)
q and g

(2)
q written explicitly for example in ref. [206]. In the parameter

space of our interest where MD � m, the f
(box)
q contributions to f

(h)
q in eq. (3.73), are in

general two orders of magnitude smaller than the vertex ones arising from Fig. 3.9(a,b),
and they are only important in the case where the latter cancel out among each other.
Moreover, it has recently been shown in refs. [213–215] that, the full two-loop17 gluonic
contributions are relevant for a correct order of magnitude estimate of the cross section in
the heavy WIMP mass limit, especially when adopting the “lattice” value for fTs . We are
not aware, however, of any study dealing with those corrections and WIMP mass around
the electroweak scale which is the case of our interest. Such a calculation is quite involved
and is beyond the scope of the present work.

In Fig. 3.10 we present our numerical results for the SI nucleon-WIMP cross section.
The current LUX [162] (XENON100 [161]) experimental bounds for a 100 GeV WIMP

mass is 18 σ
(SI)
0 . 1(2)× 10−45 cm2 at 90% C.L.

From the left panel of Fig. 3.10 we observe that in the region where MT �MD � m the
cross section is by one to two orders of magnitude smaller than the current experimental
bound. More specifically, in the region where we obtain the right relic density [see Fig. 3.7a]

the prediction for the σ
(SI)
0 is about to be observed only for large values of MT (MT ≈

500 GeV), while it is by an order of magnitude smaller for low values of MT (MT .
100 GeV). There is a region, around MT ≈ 25 GeV, where box corrections, that arise from
the diagram in Fig. 3.9c, on scalar and twist-2 operators become important because the
vertex corrections mutually cancel out. However, in this region the cross section becomes
two to four orders of magnitude smaller than the current experimental sensitivity. We also

remark that σ
(SI)
0 reaches a maximum value, indicated by the closed contour line in the

upper left corner of Fig. 3.10a, and then starts decreasing for larger MT and MD values,
a situation that looks like following the Appelquist-Carazzone decoupling theorem [217].
However, even at very large masses, MD and MT , not shown in Fig. 3.10, there is a

constant piece of δY , and hence of σ
(SI)
0 , that does not decouple. This can be traced

respectively in the second and the first terms of integrals IV4 , and IV5 of eq. (A.7), in the
limit MD = MT → ∞. This non-decoupling can also been seen in the heavy particle,
effective field theory analysis of ref. [213] and also in refs. [78,103]. We have also checked

numerically that σ
(SI)
0 vanishes at MD → 0 as expected from eq. (3.76) and from the

U(1)X global symmetry.19

17 The next to leading order in αS calculation has been carried out for the Wino DM scenario in ref. [216].
18 Note added: The current bound ( [100] and [105]) for a DM mass at 100 GeV is σ

(SI)
0 . 10−46 cm2

(see Fig. 1.3). From Fig 3.10, it is apparent that MD &MT is favoured, for m ≈ 200 GeV.
19Because only D̄1,2 are charged under U(1)X (not the Higgs boson), and χ0

1 is a linear combination of
only D̄’s.
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Figure 3.10: Results (in boxed labels) for the Spin-Independent (SI) scattering cross sec-
tion for the nucleon - WIMP (n-χ0

1) in units of 10−47 cm2 on a MD vs. MT

plane for fixed parameter m = Y v = 200 GeV (left) and on MD vs. m plane
for fixed MT = MD GeV (right).

In Fig. 3.10b, we also plot predictions for the Doublet-Triplet Fermionic model on SI

cross section σ
(SI)
0 on MD vs. m plane for MT = MD. As we recall from eq. (3.76), the

cross section increases with m (or Y ) as m2 ∝ Y 2. It becomes within current experimental

sensitivity reach for m & 400 GeV while for low m ≈ 100 GeV, σ
(SI)
0 is about 100 times

smaller. Besides, for heavy MD and m (upper right corner), σ
(SI)
0 becomes excluded

by current searches although vacuum stability bounds hit first. If we compare with the
corresponding plot for the relic density in Fig. 3.7b, we see that the observed Ωχh

2 is

allowed by current experimental searches on σ
(SI)
0 but it will certainly be under scrutiny

in the forthcoming experiments [163].

Finally, for negative values of MD consistent with the observed density depicted in

Fig. 3.8, it turns out that σ
(SI)
0 is by a factor of about ∼ 10 bigger than the corresponding

parameter space for MD > 0 given in Fig. 3.10a. In fact, the region of 1-loop cancellations
happened for MT ≈ 20 GeV, do not take place for MD < 0. However, within errors
discussed at the beginning of this section, this is still consistent with current experimental
bounds.

3.6 Higgs boson decays to two photons

In the Doublet-Triplet Fermionic model there are two pairs of electromagnetically charged
fermions and antifermions, namely, χ±1 , χ

±
2 . They have electromagnetic interactions with

charge Q = ±1 and interactions with the Higgs boson, Y hχ−χ+
, given in general by

eqs. (3.17) and (3.18), or in particular, in the symmetry limit, by eq. (3.46). These latter
interactions are of similar size as of the top-quark-antiquark pairs with the Higgs boson
i.e. Y ∼ 1. Hence, we expect a substantial modification of the decay rate, Γ(h → γγ)
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relative to the SM one20 Γ(h→ γγ)SM , through the famous triangle graph [150],

R = Γ(h --> γ γ) / Γ(SM)
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Figure 3.11: Contour lines for the ratio, R = Γ(h→ γγ)/Γ(h→ γγ)SM, for the decay rate
of Higgs boson decays into two photons over the SM prediction on (a) MD vs.
MT plane with m = 200 GeV and (b) on MD vs. m plane with MT = MD.

involving W -gauge bosons, the top-quark (t) and the new fermions χ±i . Under the

assumption of real MD, Y hχ−i χ
+
i is also real, and we obtain:

R ≡ Γ(h→ γγ)

Γ(h→ γγ)(SM)
=

∣∣∣∣ 1 +
1

ASM

∑
i=χ±1 ,χ

±
2

√
2
Y hχ−i χ

+
i v

mχ+
i

A1/2(τi)

∣∣∣∣2 , (3.78)

where ASM ' −6.5 for mh = 125 GeV, is the SM result dominated by the W -loop [218],
with τi = m2

h/4m
2
i and A1/2 is the well known function given for example in ref. [151].21

The χ±i -fermion contribution (Q = 1, Nc = 1), is also positive because the ratio, Y
hχ−
i
χ+
i

m
χ+
i

, is

always positive whenmχ0
1

= MD, as can be seen by inspecting eqs. (3.46), (3.50) and (3.33).

After using the simplified (by symmetry) eq. (3.46) with a ≈ −
√

2, we approximately
obtain ∑

i

√
2m

mχ+
i

A1/2(τχ+
i

) ≈ +
8

3
, (3.79)

which means that Γ(h→ γγ) is smaller than the SM expectation. But how much smaller?
In Fig. 3.11 we plot contours of the ratio R ≡ Γ(h → γγ)/Γ(h → γγ)(SM) on (MD vs.
MT )-plane for m = 200 GeV (Fig 3.11a) and MD vs. m-plane for (MT = MD) (Fig 3.11b).

20The Higgs boson production cross section is the same with the SM because the new fermions are un-
coloured.

21The Higgs-fermion vertex is parametrized here as L ⊃ −Y h f̄ f + h.c. and therefore for the top-quark

Yukawa we obtain Yi → Yt/
√

2 from eq. (3.8) while for the new charged fermions Yi → Y hχ
−
i χ

+
i

from eqs. (3.17) and (3.18).
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Our numerical results plotted in Fig. 3.11 are exact at one-loop. We observe that the new
charged fermions render the ratio less than unity

R . 1 , (3.80)

everywhere in the parameter space considered. Let’s look at this in a more detail. The
contribution of fermions χ±i in eq. (3.78), depends on the quantity22

∼ 2m2

2m2 +MDMT
, (3.81)

which is always positive for MD,MT > 0 i.e. it adds to the top-quark contribution and
subtracts from the large and negative W -boson one resulting in a suppressed R-ratio. If
instead we choose MD < 0, then for |MDMT | >

√
2|m|, one can obtain R & 1, a situation

which is explored in ref. [203]. As can be seen from Fig. 3.3 however, in this case the DM
candidate particle (χ0

1) is not a pure doublet. It is instead a mixed state. (In fact the
states |1〉 and |2〉 are interchanged in eq. (3.34)). As a consequence, there is a non-zero
(and generically large) hχ0

1χ
0
1-coupling already present at tree level, and, bear in mind fine

tuning, it is excluded by direct DM search bounds.

By comparing areas with the observed relic density in Figs.3.7(a,b) we see that, the re-
sults for 0.35 . R . 0.5 shown in Figs. 3.11(a,b) are within 1σ-error compatible with cur-
rent central values of CMS measurements [220] (0.78± 0.27) but are highly “disfavoured”
by those from ATLAS [24] ones, 1.65 ± 0.24(stat)+0.25

−0.18(syst). The forthcoming second
LHC run will be decidable in favour or against this outcomes here.23

Fig. 3.11(a) or eq. (3.81), shows also that when MT becomes heavy the ratio R ap-
proaches the current CMS central value. This happens because one of the two charged
fermion eigenvalues becomes very heavy, mχ+

2
≈ MT , and therefore it is decoupled from

the ratio. As we discussed in Section 3.4, large MT ∼ 1 TeV values, may be consistent
with the observed Ωχh

2 for mW < MD < mZ . We have found that even in this case, R is
always smaller than 0.65.

If we assume that MD < 0 and χ0
1 pure doublet as shown in Fig. 3.3, then it is always

R < 1. In fact, using the input values from Fig. 3.8 for the correct relic density, the
suppression of R is even higher, 0.25 . R . 0.35. Alternatively, if we assume that MD is

a general complex parameter, then the coupling, Y hχ−1 χ
+
1 , is complex too. In this case one

has to add the CP-odd Higgs contribution into eq. (3.78) which is always positive definite.
For large phases relatively large MT the ratio R may be greater than one, however, again
the direct detection bounds are violated by a factor of more than 10-1000.

Of course, if we increase MD, the parameter space may be compatible with the observed
relic density seen in the right side of “heavy” MD-branch in Fig. 3.6. However, following
our motivation for “only EW scale DM” we do not discuss this region further which is
anyhow very well known from MSSM studies.

We therefore conclude that in the doublet triplet fermionic model thermal DM relic
abundance for low DM particle mass mχ0

1
≈ MZ , consistent with observation [164] and

with direct DM searches [161,162] leads to a substantial suppression (45-75%) for the rate
Γ(h→ γγ) relative to the SM expectation.

22This quantity is obtained also by using the low energy Higgs theorem as in ref. [219] for the singlet-
doublet DM-case.

23 Note added: The latest results from ATLAS and CMS measurements, show that the h→ γγ branching
ratio is close to the SM prediction with [221] R(h→ γγ) = 1.14+0.19

−0.18 (at 1σ).
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Figure 3.12: The vacuum stability plot: ΛUV against m = Y υ.

We have also calculated the ratio R for the Higgs boson decay into Zγ. The results
are similar to the case of R(h → γγ). In particular, in the parameter space explored
in Fig. 3.11(a), we observe exactly the same shape of lines with a ratio slightly shifted
upwards in the region, 0.4 . R(h → Zγ) . 0.7. This suppression is due to the same
reason discussed in the paragraph below eq. (3.81).

3.7 Vacuum Stability

The stability of the Standard Model vacuum is an important issue, so we need to find
an energy scale (ΛUV ) where new physics is needed, in order to make the vacuum stable
or metastable (unstable with lifetime larger than the age of the universe). To make an
estimate about the ΛUV of the theory, one needs to calculate the tunnelling rate between
the false and the true vacuum and impose that the SM vacuum has survived until today24.
Following ref. [223], we can see that the bound for the Higgs self coupling, λ, becomes25:

λ(ΛUV ) =
4π2

3 ln

(
H0

ΛUV

) , (3.82)

where ΛUV is the cut-off scale and H0 is the Hubble constant H0 = 1.5× 10−42 GeV. In
order to impose the contstraint (3.82), we also need to find the running parameter λ by
solving the renormalization group equations. The one-loop beta functions for the model
at hand are given in ref. [202, 203, 224]26, and we solve this set of differential equations

24The probability of the tunnelling has been calculated at tree level in ref. [222].
25This bound can also be found in ref. [203].
26We need to make the substitutions g̃2d → −Y1 and g̃2u → −Y2 because of different conventions with

ref. [202].
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using as initial input parameters:

α3(MZ) = 0.1184 , α2(MZ) = 0.0337 , α1(MZ) = 0.0168 , (3.83)

λ(MZ) = 0.1303 , yt(MZ) = 0.9948 , MZ = 91.1876 GeV. (3.84)

The result for the cut-off scale as a function of m = Y υ is given in Fig. 3.12. As we
can see, ΛUV ≈ 600 GeV for m ≈ 200 GeV which is quite small while ΛUV ≈ 20 TeV
for m ≈ 130 GeV. The result for ΛUV in Fig. 3.12 is only approximate. Threshold
effects, from the physical masses of the doublet, triplet and even the top-quark, together
with comparable two-loop corrections to β-functions, which can be found for example in
refs. [202, 224], are missing in Fig. 3.12. These effects may change the outcome for ΛUV
by a factor of two or so but they will not change the conclusion, that extra new physics
is required already nearby the TeV-scale for m ≈ 200 GeV. The form of new physics will
probably be in terms of new scalar fields since extra new fermions will make ΛUV even
smaller. These scalars may be well within reach at the second run of the LHC [203] but
it is our assumption here that they do not intervene with the DM sector.

As far as the (1-loop) perturbativity of the Yukawa couplings Y ∼ 1.2 (for m = 200)
and Yt, is concerned, these exceed the value 4π at around the respective scales, 109 and
1010 GeV. Given the modifications of the model that must be performed at ΛUV ∼ TeV
scale, the perturbativity bound is of secondary importance here.

3.8 Heavy fermion production and decays at LHC

The unknown new fermions that have been introduced into this model to accompany the
DM mechanism can be searched for at the LHC in a similar fashion as for charginos and
neutralinos of the MSSM. Multilepton final states associated with missing energy may
arise in three different ways from the decays of new fermion pairs: χ+

i χ
−
j , χ±i χ

0
j , and

χ0
iχ

0
j .

3.8.1 Production

A recent study at LHC [225,226] has presented upper limits in the signal production cross
sections for charginos and neutralinos, in the process

p + p → W ∗ → χ+
1 + χ0

2 , (3.85)

which is mediated by the W -gauge boson. One can use Fig. 9b from ref. [225] to set
limits to the cross section and therefore to constrain the parameter space. This figure
fits perfectly into our study since it assumes a) 100% branching ratio for the χ+

1 and χ0
2

decays as it is the case here [see Section 3.8.2 below] b) degenerate masses for χ+
1 and

χ0
2 as it is exactly the case here as shown in eq. (3.42). The production cross section has

been calculated in ref. [227] also including next to leading order QCD corrections. The
parton-level, tree level, result is

dσ̂

dt̂
(u+ d† →W ∗ → χ+

i + χ0
j ) =

1

16πŝ2

 1

3 · 4
∑
spins

|M|2
 , (3.86)
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Figure 3.13: Contours of the production cross section for the new fermions, σ(pp→ χ±1 χ
0
2)

[in pb], on MD vs. MT plane, at LHC with
√
s = 8 TeV.

where the factors 1/3 and 1/4 arise from colour and spin average of initial states, ŝ, t̂, û
are the Mandelstam variables at the parton level, and∑

spins

|M|2 = |c1|2(û−m2
χ+
i

)(û−m2
χ0
j
)+|c2|2(t̂−m2

χ+
i

)(t̂−m2
χ0
j
)+2<e[c1c

∗
2]mχ+

i
mχ0

j
ŝ , (3.87)

with the coefficients ci being

c1 = −
√

2 g2

ŝ−m2
W

OL ∗ji , c2 = −
√

2 g2

ŝ−m2
W

OR ∗ji .

We let the indices i = 1, 2 and j = 1, 2, 3 free as there is a situation of a complete mass
degeneracy between the heavy neutral and charged fermions when MD = MT . Our result
in eqs. (3.86) and (3.87) are in agreement with refs. [28, 227].

By convoluting eq. (3.86) with the proton’s pdfs and integrating over phase space we
obtain in Fig. 3.13, the production cross section for σ(pp → χ±1 χ

0
2) [in pb]. In the

region with correct DM relic density, we obtain typical values varying in the interval
(0.07 − 0.2) pb for

√
s = 8 TeV. This is about 1400-4000 events at LHC before any

experimental cuts assuming 20 fb−1 of accumulated luminosity. This is within current
sensitivity search and analysis has been performed by ATLAS [225] and CMS [226] for
simplified supersymmetric models. Looking for example in Fig. 9b in ATLAS [225], for
the same parameter space as in our Fig. 3.13, the observed upper limit on the signal cross
section varies in the interval (0.14-1.2) pb. In the region where MD = MT , all heavy
fermions are mass degenerate. In this case the total cross section is the sum of all possible
production modes χ±1,2χ

0
2,3, and the total cross section is about 0.15 pb which is on the

spot of current LHC sensitivity (0.14 pb) [225].
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3.8.2 Decays

Just by looking at a typical spectrum of the model in Fig. 3.1, we see that the heavy
fermions can decay on-shell to two final states with a gauge boson and the lightest neutral
stable particle. Therefore, the lightest charged and the next to lightest neutral fermions
decay like

χ±1 → χ0
1 + W± , (3.88a)

χ0
2 → χ0

1 + Z . (3.88b)

In our case where χ0
1 is a “well tempered doublet” there are no-off diagonal couplings to

the Higgs boson, like for example hχ0
1χ

0
2. Therefore, particles χ±1 and χ0

2 decay purely to
final states following (3.88a) and (3.88b) with 100% branching fractions. The signature at
hadron colliders is the well known from SUSY searches, trileptons plus missing energy.

Analytically we find the decay widths [28,228]:

Γ(χ+
i → χ0

j +W+) =
g2mχ+

i

32π
λ1/2(1, rW , rj)

{
(|OLji|2 + |ORji|2)

[
1 + rj − 2rW +

(1− rj)2

rW

]

− 12
√
rj <e(OL ∗ji ORji)

}
,

Γ(χ0
i → χ0

j + Z) =
g2mχ0

i

16πc2
W

λ1/2(1, rZ , rj)

{
|O′′Lij |2

[
1 + r0

j − 2rZ +
(1− r0

j )
2

rZ

]

+ 6
√
r0
j <e[(O′′Lij )2]

}
, (3.89)

where

rW ≡ m2
W /m

2
χ+
i
, rZ ≡ m2

Z/m
2
χ0
i
, rj ≡ m2

χ0
j
/m2

χ+
i
, r0

j ≡ m2
χ0
j
/m2

χ0
i

(3.90a)

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz . (3.90b)

Numerical results for the decay widths for the processes (3.88a) and (3.88b) in the area
of interest are depicted in Fig. 3.14(a) and (b), respectively.

Both decay widths behave similarly. In the area MD ≈ MT ≈ 100 GeV we observe
maximum values Γ ≈ 3 GeV. As MT increases or decreases, the widths get smaller than
1 GeV. This is easily understood if we look back at the mass difference |mχ0

2
| − |mχ0

1
| in

Fig. 3.2(a) and recall that for the parameter considered in Fig. 3.14, it is mχ0
1

= MD and
mχ0

2
= mχ±1

.

For heavier charged fermions, new decay channels include

χ+
2 → χ+

1 + Z , (3.91a)

χ+
2 → χ+

1 + h , (3.91b)

that are mostly kinematically allowed in the low MD ≈ 100 GeV but high MT & 220 GeV
regime. For the heavier neutral particles, if kinematically allowed they would decay to
W,Z-gauge bosons and/or the Higgs boson, through

χ0
3 → χ±1 +W∓ , (3.92a)

χ0
3 → χ0

2 + Z , (3.92b)

χ0
3 → χ0

2 + h . (3.92c)
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Figure 3.14: Contour plots for the decay rates [in GeV] for the processes χ+
1 → χ0

1 +W+

(left) and χ0
2 → χ0

1 + Z (right). We assume m = 200 GeV.

3.9 Conclusions

Our motivation for writing this paper was to import a simple DM sector in the SM with
particles in the vicinity of the electroweak scale responsible for the observed DM relic
abundance, preferably not relying on co-annihilations or resonant effects, and capable
of escaping current detection from nucleon-recoil experiments. Meanwhile, we studied
consequences of this model in EW observables and Higgs boson decays (h→ γγ, Zγ) and
other possible signatures at LHC.

This SM extension consists of two fermionic SU(2)L-doublets with opposite hyper-
charges and a fermionic SU(2)L-triplet with zero hypercharge. The new interaction La-
grangian is given in eq. (3.9), and contains both Yukawa trilinear terms together with
explicit mass terms for the doublets and triplet fields. Under the assumption of a certain
global SU(2)R-symmetry, discussed in Section 3.2.3, that rotates H to H† and D̄1 to D̄2,
the two Yukawa couplings become equal with certain consequences that capture our in-
terest throughout this work. After electroweak symmetry breaking this sector widens the
SM with two charged Dirac fermions and three neutral Majorana fermions, the lightest
(χ0

1) of which plays the role of the DM particle. Under the symmetry assumption and for
Yukawa couplings comparable to top-quark, the lightest neutral particle (χ0

1) may have
mass equal to the vector-like mass of the doublets, MD, and its field composition contains
only an equal amount of the two doublets [see Fig. 3.3]. As a result, the couplings of the
Higgs and the Z-bosons to the lightest neutral fermion pair vanish at tree level.

Within this framework we observe in Fig. 3.7, that Ωχh
2, is in accordance with observa-

tion [eq. (3.69)] provided that the parameters of the model, MD,MT and m, lie naturally
at the EW scale i.e. without the need for resonant or co-annihilation effects. Moreover,
the χ0

1-nucleon SI cross section (which appears at one-loop), at the time of publication of
this analysis, was around 1-100 times smaller than the experimental sensitivity from LUX
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and XENON as it is shown in Fig. 3.10. However, latest results are able to exclude the
region of the parameter space where MD . MT (for m = 200 GeV). In addition, we find
that the oblique electroweak parameters S, T and U are all compatible with EW data fits
as it is shown in Fig. 3.4, a result which is partly a consequence of the global symmetry
exploited.

We also look for direct implications at the LHC. We find that the existence of the extra
charged fermions reduces substantially the ratios of the Higgs decay to di-photon and to
Zγ w.r.t the SM. At the time of publication of this work, this was a certain prediction
of this scenario. For very large Yukawa coupling, this reduction maybe of up to 65%
relative to the SM expectation (which is excluded as we discuss below) as we obtain from
Fig. 3.11. Furthermore, the production and decays of the new charged/neutral fermion
states, is within current and forthcoming LHC reach. Decay rates for some of these states
are shown in Fig. 3.14.

We should notice here that the minimality of the Higgs sector together with the Z2-
parity symmetry preserves the appearance of new flavour changing or CP-violating effects
beyond those of the SM, for up to two-loop order (for a nice discussion of effects on EDMs
from the charged fermions, see ref. [200]).

On top of collider/astrophysical constraints, we made an estimate of the consequences
of the new states to vacuum stability of the model. The 1-loop result for the UV cut-off
scale, above which the model needs some completion, is given in Fig. 3.12. We see that
for the parameter space of interest, new physics, probably in the form of new, supersym-
metric, scalars is needed already nearby the TeV or multi-TeV scale to cancel fermionic
contributions in the quartic Higgs coupling. For example, this solution may take the form
of an MSSM extension with D̄1,2 and T superfield (extensions with a triplet superfield
have been explored in ref. [229]).

Note added: In summary, in this work we basically studied the synergy between
Ωχh

2, σSI0 , and R(h→ γγ), in a simple fermionic DM model. The original findings of this
analysis can be summarized in the following:

If R(h→ γγ) was found to be suppressed, then charged fermion states could be discovered
at the second run of LHC compatible with Ωχh

2 with mχ ≈ mZ . If instead R(h→ γγ) was
found to be enhanced, then the DM particle would be heavy, mχ ∼ 1 TeV, or otherwise
excluded by direct DM detection bounds. If R ∼ 1, then one would have to go to large MT

values where, however, Ωχh
2 is only barely compatible with mχ ≈ mZ .

As it turns out, latest results from LHC show that the branching ratio of h→ γγ is close
to the SM prediction (see footnote 23). Furthermore, direct detection experiments seem to
favour small values of MT for m ≈ 200 GeV. Therefore, the mχ0

1
≈ mZ realization of the

Doublet-Triplet Fermionic DM model is excluded (or new physics has to be introduced),
which is also noted in subsequent studies of this model.

Following our publication of the Doublet-Triplet Fermionic DM model, a more general
analysis was performed in ref. [230] for Y1, |Y2| ∈ [0, 1.5], arg(Y2) ∈ [0, π] and MD,MT ∈
[0, 400] GeV. There, it was found that although the observed relic abundance can be
obtained, the h → γγ branching ratio is always suppressed, with R(h → γγ) . 0.8 in
the entire parameter space. In a more recent analysis [231], this result was once again
confirmed. In addition, it was shown that the observed relic abundance can be obtained
for a DM mass above 1 TeV, relying on strong coannihilation effects due to the radiative
mass splitting between the DM and the lightest charged fermion. However, this region
was not further explored since it cannot be probed at the LHC.
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3.9. Conclusions

The Doublet-Triplet Fermionic Dark Matter model was also studied in the case of an
extended scalar sector in ref. [232], where, an SU(2)L-doublet scalar is added along with an
SU(2)L-triplet scalar. It was shown that the lightest fermion can be the DM particle either
near the EW scale or the TeV scale. In the heavy DM scenario, the coannihilation effects
are strong, resulting to lowest DM mass at ∼ 1 TeV for the pure fermion doublet DM
and ∼ 2.8 TeV for the pure triplet case. The more appealing EW region for fermion DM
was extensively analysed. As it was shown, the correct relic abundance can be obtained
for large Yukawa coupling (in the custodial limit) and DM mass mχ0

1
∼ 80 GeV, while

avoiding relevant direct and indirect detection bounds. Moreover, it was shown that the
charged scalars can affect R(h → γγ) to be within the LHC limits, with scalar masses
above the DM mass (up to ∼ 300 GeV) and moderate couplings between the Higgs and the
new scalars ensuring perturbativity and vacuum stability (at tree level). It was also argued
that the new heavy scalars are not going to affect the potential LHC signal (discussed in
Section 3.8). Therefore, based on the analysis of ref. [231] regarding future LHC reach,
the Doublet-Triplet Fermionic Dark Matter model may still be detectable in the 300 fb−1

phase of the LHC.

Apart from studying possible extensions of this model, this work can be extended in
several ways as for example, to investigate the role of CP -violating phases of MD on
baryogenesis. Also, indirect DM searches, e.g. photon flux due to χ0

1χ
0
1 → γγ, could be

also an interesting avenue. We postpone all these interesting phenomena for future study.
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4 Effective Theory for Electroweak Doublet
Dark Matter

In the previous chapter we studied the Doublet-Triplet Fermionic Dark Matter model. We
showed that the DM content of the Universe can be explained by a relatively simple model.
Furthermore, by imposing a global (custodial) symmetry in the Yukawa sector, we found
that the DM particle can have a mass at the electroweak scale, without coannihilations or
resonant effects, i.e. fine tuning. Moreover, this imposed symmetry is responsible for the
vanishing of the DM-Higgs interaction at tree-level, which helps avoid the bounds from
direct-detection experiments. However, from the LHC results regarding the branching ra-
tio of the Higgs boson to two photons, became evident that this model needs completion.
The need for completion of this model was further indicated by studying the stability of
the SM vacuum. We showed that in order for the SM vacuum to be stable, heavy particles
have to be introduced, probably near the TeV scale. In general, the number of possible
completions of this model is practically infinite. One possible completion would be the
extension of the scalar sector, which can be done by adding heavy scalar weak singlets,
doublets, etc. Another possibility may be the extension of the gauge sector, which again
can be realized in a number of different ways. However, regarding the dark matter phe-
nomenology around the electroweak scale, the exact nature of the heavy degrees of freedom
is not important. This is because, the particle content well above the electroweak scale,
can be simply integrated out. Therefore, we do not have to find the correct completion(s),
we only have to study an effective field theory (EFT) based on the particle content of
the doublet-triplet model. This would allow us to study all possible completions in a
model-independent way, with a minimal Dark Sector.

In this chapter, we perform a detailed study of an effective field theory which includes
the Standard Model particle content extended by a pair of Weyl fermionic SU(2)-doublets
with opposite hypercharges. A discrete symmetry guarantees that a linear combination of
the doublet components is stable and can act as a candidate particle for dark matter. The
dark sector fermions interact with the Higgs and gauge bosons through renormalizable
d = 4 operators, and non-renormalizable d = 5 operators that appear after integrating
out extra degrees of freedom above the TeV scale. We study collider, cosmological and
astrophysical probes for this effective theory of dark matter. We find that a WIMP with a
mass nearby the electroweak scale, and thus observable at LHC, is consistent with collider
and astrophysical data only when fairly large magnetic dipole moment transition operators
with the gauge bosons exist, together with moderate Yukawa interactions. In this chapter
we present the analysis of ref. [88].

4.1 Introduction and Motivation

There is convincing evidence for the existence of dark matter from observation of gravita-
tional effects at astrophysical and cosmological scales but not yet confirmed at Earth’s col-
liders, where interactions between the hypothetical DM particle (WIMP) is probed through
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4.1. Introduction and Motivation

its interactions with the Standard Model particles (for recent reviews see [56,111,115,233]).
Out of all energy density in the universe, approximately 25% seems to consist of DM, prob-
ably in the form of WIMPs, with its relic density today with respect to the critical density,
to be precisely known by the Planck collaboration [164,234] [see eq. (3.69)].1 Out of many
WIMP candidates one of the most studied is the lightest higgsino particle [178, 235], a
fermion which is a linear combination of the neutral components of the SU(2)L-bi-doublet
superpartners of the Minimal Supersymmetric Standard Model (MSSM) scalar Higgs dou-
blets. A higgsino WIMP fulfilling the constraint of eq. (3.69), which concurrently escapes
the direct DM search bounds, must be heavier than the TeV scale, and therefore difficult
to be reached at the Large Hadron Collider (LHC).

In this work, we shall consider a “higgsino like” DM sector of the Standard Model
(SM) gauge structure, with mass as close to the electroweak scale as possible, supplied
also by related effective operators of dimension less than or equal to five. Since SU(2)L
fermionic doublets are not singlets under the SM gauge group, there are important inter-
actions already at the renormalizable level, providing annihilation processes of WIMP to
SM particles or interactions between the WIMP and the nucleons. Other, what we call
“Earth” detectable effects, include contributions to the Electroweak (EW) parameters,
to the Higgs boson decay into diphotons, and to other LHC processes, like mono-jets,
mono-Z, etc. [145].

Apart from MSSM and its variants, there are many simple models for DM that contain
bi-doublets,2 in their low energy spectrum. For instance, there are models with SU(2)L
doublets+singlet(s) [75, 79, 80, 171, 172, 219, 230, 236] or doublets+triplet [82, 231]. For
EW scale DM at work in most of these models, the need of low energy cut off, of the
order of 1 TeV, is sometimes unavoidable.3 In addition, recent attempts to investigate
low energy DM-models arising from Grand Unified Theories (e.g., from an SO(10) GUT),
seem to incorporate bi-doublets, often in association with other particles, in their low
energy particle content [199, 237, 238]. This low energy content, may also be part of a
non-GUT extension of the Standard Model, as for instance a subgoup of SO(10), such
as the left-right symmetric model [239]. There are also Effective Field Theory (EFT)
approaches with the SM+χ, or simply SMχ, where χ is the SM-singlet, up to dimension
six effective operators [85,240]. One should remark however, that a light singlet fermionic
dark matter is not favoured by SO(10)–GUT constructions consistent with a unification
and intermediate symmetry breaking scale at the TeV scale [237,241].

Motivated by all the above we would like to study the phenomenology of a SM with
SU(2)L-bi-doublets with electroweak mass. In terms of physical masses, this model con-
tains a charged Dirac fermion and two Majorana (or Pseudo-Dirac) neutral fermions with
their masses splitted with mass differences in the vicinity of tens of GeV due to the pres-
ence of d = 5 non-renormalizable operators. We study the implications of all the related
to dark matter d = 5 operators for the relic abundance, for direct as well as indirect
searches. A general study of Majorana fermionic dark matter based on SM-extensions of
the bi-doublets has been discussed in ref. [242]. Our EFT can be viewed as a decoupling
limit of all extra fermion states but not those arising from the SU(2)L bi-doublet system.

1 Note added: The updated results from the Planck collaboration [29] show a slightly different value
for the DM relic abundance [see eq. (1.103)] .

2By the name “bi-doublets” we mean two Weyl fermion SU(2)L-doublets with opposite hypercharge.
3It has been shown in ref. [82] that for EW scale DM particle mass one needs relatively large Yukawa

couplings between the extra vector-like fermions and the Higgs boson. These lead in turn to vacuum
instabilities of the Higgs potential [203], that arise already at the TeV scale, depending on the largeness
of the Yukawa couplings and the particle content of the model.
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Chapter 4. Effective Theory for Electroweak Doublet Dark Matter

The EFT at hand, generalizes the phenomenology of Standard Models with additional
SU(2)L multiplets, sometimes called Minimal Dark Matter models [78,152,243]. The most
basic of these models is just a Dirac mass term, c.f. eq. (4.1), for the bi-doublet fermion
multiplet. However, without the imposition of a symmetry the WIMP will not be stable
(although higher spin SU(2)-reps will be “accidentally” stable). We discuss in the next
section available symmetries that not only protect the WIMP for decaying, like a Z2 or
lepton number, but also forbid potentially dangerous couplings to the Z-boson like charge
conjugation or custodial symmetry.

A similar to our EFT, has been studied in ref. [86] for higgsino DM scenario in high scale
supersymmetry breaking, using a mass splitting of O(. 1 GeV) originated through d = 5
Yukawa interactions and radiative corrections. For higgsino mass parameter . O(1) TeV,
the parameter space is constrained from direct detection and Electric Dipole Moment
searches. The EFT employed here is complementary to ref. [86]. We assume that the
cut-off scale is of order Λ = O(1 TeV) and for this reason, we introduce a complete set
of d = 5 operators, i.e. Yukawa and dipole transition operators. We later use all these
operators to calculate different observables and constrain the parameter space accordingly.
Furthermore, the Yukawa couplings are not restricted by supersymmetry. This, in turn,
allows us to focus on larger mass differences and therefore different phenomenology.

As we show in this work, a viable WIMP with mass nearby the electroweak scale ac-
quires fairly large non-zero magnetic dipole moments. Magnetic dipole interacting DM
has already been studied in refs. [87, 244, 245], a scenario called Magnetic Inelastic Dark
Matter (MiDM). In MiDM, the WIMP (χ) is supplemented by a “excited WIMP state”,
(χ?), with mχ? − mχ = O(100) KeV. A consequence of this, is a large nucleus-WIMP
cross section, comparable to experimental limits for inelastic nucleus-WIMP scattering.
Moreover, in ref. [87], a connection between direct detection and Gamma-ray line signals
pointed out, for such small mass splitting. Our work is more general than this scenario,
simply because the fermions we introduce are doublets under the SU(2)L. Apart from
this, we focus on relatively large mass difference, of order O(1 − 10) GeV, between the
two neutral fermion states. These facts lead to qualitatively different phenomenology. In
particular, the direct detection scattering, in our case, is elastic. Also, due to a symmetry
the lightest fermion does not interact directly with Z-boson and the dominant annihila-
tion channels in the early universe are different. Although the EFT studied here is more
general from the one suggested previously in the literature, the dipole moments that are
responsible for the observed DM relic abundance, provide also enough monochromatic
photon flux from the center of our galaxy, to bound considerably (but not to exclude) the
parameter space of the model. It is therefore understood that our model could provide an
explanation for a possible signal in the near future.

The outline of this chapter is the following: in Section 4.2 we describe the effective theory
and associated possible accidental symmetries and in Appendix B we list the effective d = 5
and d = 6 operators, that may be present in this extension of the SM. In Section 4.3 we
describe the interactions and the mass spectrum. Consequently, in Section 4.4 various
collider and direct DM detection constraints are analysed. In addition, in Section 4.5 the
DM relic density is calculated, and we study the corresponding cosmological constraints.
Moreover, we discuss the phenomenology of possible indirect signals for DM searches, from
gamma-rays, and briefly, from neutrino fluxes. In Section 4.6 we study possible signals of
this model at LHC at 8 and 13 TeV. Finally, in Section 4.7 we summarise our findings.
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4.2. Symmetries and the effective theory

4.2 Symmetries and the effective theory

In the SM particle content we add a fermionic bi-doublet, that is a pair of Weyl fermion
SU(2)-doublets with opposite hypercharges, D1, that transform under (SU(3), SU(2)L)Y
like (1c,2)−1 and D2, that transform as (1c,2)+1.4 The doublet D2 has exactly the same
gauge quantum numbers as the SM Higgs field H, while D1 carries the quantum numbers
of the SM lepton doublet but not necessarily sharing lepton number. Then the model
under study includes gauge invariant kinetic terms like5 D†xaσ̄µDµDxa, with (x = 1, 2)
the number of doublets and (a = 1, 2) their SU(2)L-quantum numbers. These fields have
renormalizable couplings with the SM electroweak gauge bosons through Dµ, the covariant
derivative for the SM gauge group SU(2)L × U(1)Y .

4.2.1 Custodial symmetry

In addition to gauge invariant kinetic term, an invariant Dirac-type mass term for the
bi-doublets is

LDM ⊃ −MD ε
abD1 aD2 b + H.c. = −MD detD + H.c. , (4.1)

where εab is the antisymmetric tensor, with ε12 = −ε21 = 1 and, for later notational use,
we define D1a ≡ (D0

1, D
−
1 )T , D2a ≡ (D+

2 , D
0
2)T . In order to make things clearer below,

in the second equality of eq. (4.1) we used the definition of the determinant to write the
matrix

Dxa = (D1a D2a) =

(
D0

1 D+
2

D−1 D0
2

)
. (4.2)

Written in this form it is now transparent thatD is invariant not only under the SU(2)L but
also under another SU(2), say SU(2)R. The transformation rule under SU(2)L×SU(2)R
with corresponding unitary matrices UL and UR is

D → ULDUR , (4.3)

where UL acts on the rows and UR acts on the columns of D, respectively. On the
other hand, it is well known [165] that, the SM Higgs sector is also invariant under a
global SU(2)R symmetry. In this case we can write the Higgs field in (2,2) form of
SU(2)L × SU(2)R as

Hax = (H∗a Ha) =

(
−Φ0∗ Φ+

Φ− Φ0

)
. (4.4)

Similarly, the Higgs field is invariant under SU(2)L × SU(2)R with a transformation law
H → ULHUR. Obviously, we can now write down a SU(2)L×SU(2)R non-renormalizable
d = 5 Yukawa operator as

L ⊃ y

Λ
[Tr(H†D)]2 + H.c. (4.5)

where Λ is the scale of masses that are being integrated out. EW symmetry breaking breaks
SU(2)L × SU(2)R down to its diagonal subgroup, SU(2)L+R. The latter symmetry is the
well known custodial symmetry [165]. Most pronouncedly it is broken by the difference
in magnitude between the top and bottom Yukawa couplings and by the U(1)Y gauge
symmetry but, importantly, keeps radiative EW corrections under control. One of our
study benchmarks below arises from eq. (4.5).

4Note that D1,2 correspond to D̄1,2 of Chapter 3.
5Throughout this chapter, we adopt the convenient two-component Weyl spinor notation of ref. [28].
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Chapter 4. Effective Theory for Electroweak Doublet Dark Matter

4.2.2 Charge conjugation symmetry

The new D1- and D2-fermion fields form a pseudo-real representation of SU(2). In order
to make the presentation transparent, we redefine the Weyl fields as

ξb = εab D1a , ηb = D2b , (4.6)

where we can easily arrive at a Dirac fermion field Lagrangian written in terms of the two,
two-component Weyl spinor fields, ξ and η, as

LDM = iξ†aσ̄
µDµξ

a + iη†aσ̄µDµηa −MD (ηaξ
a + ηa†ξ†a) . (4.7)

The bi-doublets-mass term, MD, can be taken real and positive. In eq. (4.7), we have
suppressed all spinor indices, but have left the gauge group indices intact to show our
covariant notation (to be used below). Now, it is well known that the Lagrangian (4.7),
beyond SU(2)L-symmetry, accommodates a O(2)-symmetry which, apart from making
the usual phase invariance transformation SO(2) ∼ U(1) group ξ → e−iθξ and η → eiθη,
it contains a discrete symmetry under which

C−1 ηaC = ξa . (4.8)

This discrete symmetry is a charge conjugation symmetry (c.c.), associated to the charge
conjugation operator C with C2 = (C−1)2 = I. This symmetry simply exchanges the two
Weyl fields ξ ↔ η or to a “free” notation, D1 ↔ D2. There is a similar symmetry in the
Higgs sector, where another explicit bi-doublet mass term exists, that of the Higgs field.
Then the corresponding charge conjugation symmetry for the Higgs field, which leaves
invariant the kinetic terms as well as the Higgs potential in the Standard Model, reads
accordingly as,

C−1HaC = H† a , (4.9)

where Ha is the SM Higgs doublet, Ha ≡ (Φ+,Φ0)T . What basically c.c. symmetry does,
is to exchange the columns of matrices D and H in eqs. (4.2) and (4.4), respectively. For
the Higgs field, charge conjugation becomes somewhat trivial for the following reason. In
order to read physical masses we have to expand the Lagrangian in terms of fields that
vanish at the minimum. There are many SU(2)L×U(1)Y equivalent Higgs representations,
but the most known is the so-called Kibble parametrization [246],

H = U H0 = U

(
0

v + h√
2

)
, (4.10)

where U is any 2 × 2 unitary matrix describing a unitary gauge transformation, v is the
vacuum expectation value [c.f. eq. (4.18)], and h is the real -valued Higgs field. The matrix
U is absorbed in gauge boson, lepton, quark field redefinitions, and, in particular model
at hand, in the dark sector fields ξ and η (or D1 and D2). Therefore, c.c. symmetry,
(4.9), has no effect on H0. On the other hand, the discrete c.c. symmetry in (4.8), acts
in a non-trivial way in the dark sector of the model after EW symmetry breaking. We
will assume that this is a symmetry of the Lagrangian and examine implications from this
hypothesis.
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4.2.3 The discrete Z2-symmetry

Unfortunately, the c.c. or the custodial symmetries alone can not account for the stability
of DM lightest particle and an extra discrete Z2-symmetry that distinguishes SM-particles
from DM-particles is needed. To “throw away” dangerous d = 4 operators that are
responsible for WIMP decay, like D1H

†ē or higher [see Appendix B for assignments and in
particular eq. (B.4)], it could be enough to impose a lepton number symmetry for example.
It is safer however, to impose an external Z2-discrete symmetry under which the SM
fermions are odd while the dark matter fermions and the Higgs boson are even eigenstates.
Such a discrete symmetry, or equivalently, its variant known from MSSM as R-parity, is
preserved in SO(10) with the Higgs field in a 126 representation [247] and are common in
Grand Unified Theories (GUTs) with low mass dark matter particles [199, 237, 238, 248].
We shall therefore assume such a Z2-symmetry in what follows.

4.2.4 Symmetric limits used in the analysis

Our model, is based on an effective theory described by the following Lagrangian:

L = LSM + LDM + L d=5
SM+DM . (4.11)

LSM is the SM renormalizable Lagrangian, LDM is the DM sector renormalizable La-
grangian given by eq. (4.7) and L d=5

SM+DM is the Lagrangian that contains the dimension-5
operators relevant to DM interactions. We assume that higher dimensional operators
(d ≥ 6) are suppressed and throughout this work we are focusing on up-to d = 5 effective
operators. For the sake of completeness, however, in Appendix B we construct all relevant
operators for both dimensionalities d = 5 and d = 6.

We show below that by using the c.c. symmetry of eq. (4.8), or the custodial symmetry
or just the U(1) phase symmetry we can arrive at four distinct choices in the parameter
space. Moreover, this is very convenient for the phenomenological study that follows. First,
L d=5

SM+DM contains effective operators that after spontaneous EW symmetry breaking split
the masses of the neutral particles from their original common mass MD. The most
general, linearly independent set of operators, is

−L d=5
SM+DM ⊃ y1

2Λ
(Haξ

a) (Hbξ
b) +

y2

2Λ
(H† aηa) (H† bηb) −

y12

Λ
(Haξ

a) (H† bηb)

+
ξ12

Λ
(ξaηa) (H† bHb) + H.c. , (4.12)

where Λ is the cut-off of the effective, SM+bi-doublet, theory.6 If the c.c. symmetry (4.8)
is imposed the last two terms of eq. (4.12) are unaffected, but the first two terms must be
the same. This means that under c.c. symmetry the relation

y1 = y2 ≡ y , (4.13)

holds. We always follow this symmetry condition in the analytical expressions as well in
the numerical results throughout this work. Even more, one can write the independent
c.c. symmetry invariant d = 5 operators

y (Haξ
a −H†aηa)2 or y (Haξ

a +H†aηa)2 , (4.14)

6In eq. (B.1) we give examples of what sort of heavy particle mass the Λ might be.
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in addition to the operators multiplying y12 and ξ12 in eq. (4.12). Based on symmetries
discussed above, there are additional restrictions on Yukawa couplings

(1) y = y12 , (2) y = −y12 , (3) y12 = 0 , (4) y = y12 = 0 , ∀y , ∀ξ12 .
(4.15)

Cases (1) and (2) above, may correspond to the SU(2)L×SU(2)R symmetry limit of eq. (4.5).
Case (3) is not really supported by any symmetry consideration, in fact it violates the cus-
todial symmetry, and is only adopted here for covering the mass spectrum phenomenology
(c.f. Fig. 4.1). In choosing the benchmark for case (4) we are motivated by the following:
in a full gauge invariant theory, y12 and ξ12 may have certain relations with y. For exam-
ple, in the fermionic doublet-triplet DM model of ref. [82] one finds ξ12 = −2y = 2y12

after decoupling the heavy triplet in the custodial limit. If the continuous U(1)-phase
symmetry is employed (or if the two SU(2)R symmetries for D and H are different) then
y = 0 for all y12 and ξ12. In this case there are two, mass degenerate, Dirac fermions in
the spectrum: one neutral and one charged. This completes our study benchmark points
which are mostly based upon the underlying global symmetries of the model rather on a
random choice of the model parameters.

There are also d = 5 magnetic and electric dipole operators related to the dark sector
particles. A detailed form of these operators is given in Appendix B. In this work we shall
focus on the magnetic dipole operators

−L d=5
SM+DM ⊃ dγ

Λ
ξa σµν ηa Bµν +

dW
Λ

ξb σµν (τA) c
b ηcW

A
µν + H.c. , (4.16)

where Bµν and WA
µν are the U(1)Y and SU(2)L field strength tensors respectively and

τA the Pauli matrices with A = 1, 2, 3 and σµν ≡ i
4(σµσ̄ν − σν σ̄µ) . These operators are

invariant under (4.8) since C−1 ξσµνη C = ησµνξ = −ξσµνη, C−1WA
µνC = (−1)2−AWA

µν

(no sum in A) and C−1BµνC = −Bµν . We shall see below that both moments dγ and dW ,
play an important role in achieving the correct relic density.

As promised earlier in this section, the new, beyond the SM parameters needed to
describe the dark sector are the following six:

MD , Λ , y , ξ12 , dγ , dW . (4.17)

Throughout, we assume them all to be real. More importantly, we assume that the mass
MD is around or below the EW-scale, that is of the order of O(100) GeV. The mass scale
Λ for extra scalars and fermions, are far above the EW scale, possibly at the TeV-scale.
As a result, we assume that this EFT contains three (but two distinct) mass scales,

MD ' v ' 174 GeV , Λ ' O(1) TeV . (4.18)

4.3 Phenomenology

4.3.1 Mass Spectrum

After electroweak symmetry breaking and the shift of the neutral component of the Higgs
field H0 = (0, v + h/

√
2)T , in eqs. (4.7) and (4.12), we obtain

L DM
(mass) = −mχ± χ

− χ+ − 1

2

2∑
i=1

mχ0
i
χ0
iχ

0
i + H.c. , (4.19)
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Figure 4.1: Mass hierarchies of the dark fermions χ0
1, χ± and χ0

2 (bottom to top) for y < 0,
following the c.c. symmetry of eq. (4.15) for the cases (a) y = y12, (b) y = −y12,
(c) y12 = 0 and (d) y = y12 = 0. The mass spectrum for y > 0 is obtained
from this figure by exchanging χ0

1 ↔ χ0
2.

where, under the c.c. symmetry restrictions (4.13), the physical fields are two neutral
Majorana fermions (χ0

1, χ
0
2) and one pair of Dirac charged fermions (χ±)

χ0
1 =

1√
2

(D0
1 +D0

2) , χ0
2 = − i√

2
(D0

1 −D0
2) , (4.20a)

χ+ = i D+
2 , χ− = i D−1 , (4.20b)

with masses,

mχ± = MD + ξ12 ω , (4.21a)

mχ0
1

= mχ± + ω (y − y12) , ω ≡ v2

Λ
, (4.21b)

mχ0
2

= mχ± − ω (y + y12) . (4.21c)

Without loss of generality, our natural choice for field redefinitions is such that MD > 0.
Under the c.c. symmetry the state χ0

1 is even, while the states χ0
2, χ
± are odd, i.e.

C−1 χ0
1C = +χ0

1 , C−1 χ0
2C = −χ0

2 , (4.22)

C−1 χ+C = −χ− , C−1 χ−C = −χ+ . (4.23)

However, in general and far from custodial symmetry limits, only χ+ and χ− are particle-
antiparticle states with common mass, mχ± .

In what follows, we sort the masses so that the lightest particle is χ0
1. Also, we assume

MD + ξ12 ω > 0, for otherwise the contribution from d = 5 operators to the masses, i.e.
the term ξ12 ω would be unnaturally large, in order to satisfy the LEP bound [249–251]
mχ± & 100 GeV. There are two equivalent set of mass spectra: one with y ≤ 0 where
mχ0

1
≤ mχ0

2
and the other y ≥ 0 where mχ0

2
≤ mχ0

1
. In Fig. 4.1, we show the spectrum

for the y ≤ 0 case. The mass spectrum for y > 0 is exactly the same after exchanging
χ0

1 ↔ χ0
2. We note that the mass hierarchies between χ±, χ0

1 and χ0
2 displayed in Fig. 4.1

do not depend on MD and ξ12, although their central mass values are all shifted uniformly
upon their variation. Therefore, following eq. (4.15), we distinguish four mass spectra:
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(a) y = y12 < 0 : the lightest neutral DM fermion χ0
1 is almost degenerate with the

charged one χ± (see Fig. 4.1a) with

mχ0
1

= mχ± , mχ0
2

= mχ± + 2ω|y| . (4.24)

(b) y = −y12 < 0 : the heavy neutral fermion χ0
2 is degenerate with the charged fermion

χ± (Fig. 4.1b) with

mχ0
1

= mχ± − 2ω|y| , mχ0
2

= mχ± . (4.25)

(c) y12 = 0 , ∀y < 0 : all χ0
1 and χ0

2 are split from χ± by an equal amount ω|y| with
(Fig. 4.1c)

mχ0
1

= mχ± − ω|y| , mχ0
2

= mχ± + ω|y| . (4.26)

(d) y12 = y = 0 : all four particles and antiparticles are degenerate in mass (Fig. 4.1d)

mχ0
1

= mχ± = mχ0
2
. (4.27)

This case describes two Dirac fields: one neutral and one charged. It can be viewed as
a limit of case (c) when y → 0. All these mass relations have been derived at tree level.
However, it is known that these mass differences are altered by a finite piece of O(100 –
1000 MeV), when radiative corrections are taken into account [252]. Even in the custodial
symmetry limit, these corrections should be proportional to the U(1)Y gauge coupling.
They are small compared to ω|y| contributions to the masses from the d = 5 operators
when the scale Λ is low, e.g., O(1) TeV. As a result, the mass hierarchies depicted in
Fig. 4.1 will survive beyond tree level in all cases apart from case (d).

4.3.2 Dark Matter Particle Interactions

Our notation follows closely that of ref. [82]. We calculate the Higgs interactions with the
extra fermions from eq. (4.12). We find,

L DM
Y(int) =− Y hχ−χ+

h χ− χ+ − 1

2
Y hχ0

iχ
0
j h χ0

i χ
0
j

− 1

2
Y hhχ−χ+

h h χ− χ+ − 1

4
Y hhχ0

iχ
0
j h h χ0

i χ
0
j + H.c. ,

(4.28)

where

Y hχ−χ+
=
√

2 ξ12
ω

v
, Y hhχ−χ+

= ξ12
ω

v2
, (4.29a)

Y hχ0
1χ

0
1 =

√
2ω

v
(ξ12 + y − y12), Y hhχ0

1χ
0
1 =

ω

v2
(ξ12 + y − y12), (4.29b)

Y hχ0
2χ

0
2 =

√
2ω

v
(ξ12 − y − y12), Y hhχ0

2χ
0
2 =

ω

v2
(ξ12 − y − y12), (4.29c)

Y hχ0
1χ

0
2 = 0, Y hhχ0

1χ
0
2 = 0. (4.29d)

The 4-point h2χ2 vertices are proportional to 3-point hχ2 vertices. Interestingly enough,
off-diagonal couplings to h in (4.29d), vanish identically due to the c.c. symmetry of
eqs. (4.22) and (4.23), using that C−1 hC = h.
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4.3. Phenomenology

Since D1 and D2 carry SU(2)L × U(1)Y quantum numbers, there are renormalizable
interactions involving gauge bosons and the dark fermions, χ0

1,2 and χ±. For instance, the
interaction between χ± and the photon reads

L γ−χ±
KIN(int) = −(+e) (χ+)†σ̄µχ+ Aµ − (−e) (χ−)†σ̄µχ− Aµ , (4.30)

where Aµ is the photon field and (−e) the electron electric charge. Similarly, the Z-gauge
boson couplings to charged and neutral dark fermions are

L Z−χ
KIN(int) =

g

cW
O′L(χ+)†σ̄µχ+Zµ−

g

cW
O′R(χ−)†σ̄µχ−Zµ+

g

cW
O′′Lij (χ0

i )
†σ̄µχ0

jZµ , (4.31)

where

O′L = O′R = −1

2
(1− 2s2

W ) , (4.32a)

O′′Lij =
1

2
(O∗2i O2j −O∗1i O1j) , (4.32b)

O =
1√
2

(
1 i
1 −i

)
, O′′L = − i

2

(
0 1
−1 0

)
. (4.32c)

With sW (cW ) we denote the sin θW (cos θW ) of the weak mixing angle and with g the
SU(2)L gauge coupling. The coupling Z χ0

i χ
0
j is non-zero only for i 6= j due to the

c.c. symmetry with C−1ZµC = −Zµ. The O′′L is an antisymmetric matrix due to the
Majorana nature of χ0

i fermions and the hermiticity of the Lagrangian.

Interactions between χ’s and W–bosons are described by the following terms

LW±−χ0−χ∓
KIN(int) = g OLi (χ0

i )
† σ̄µ χ+ W−µ − g ORi (χ−)† σ̄µ χ0

i W
−
µ

+ g OL∗i (χ+)† σ̄µ χ0
i W

+
µ − g OR∗i (χ0

i )
† σ̄µ χ−W+

µ , (4.33)

where the mixing column matrices OL and OR are given by

OLi =
i√
2
O∗2i =

1

2

(
i
−1

)
, ORi =

i√
2
O1i =

1

2

(
i
−1

)
, (4.34)

with the identity ORi = OLi being again a consequence of the c.c. symmetry. Using the
same matrices we can write the three-point dipole interactions of eq. (B.5) in the diagonal
basis 7

L 3−point
dipole =− ω

v2
(dγ sW + dW cW )O′′Lij χ

0
i σµν χ

0
j F

µν
Z

− ω

v2
(dγ sW − dW cW )χ− σµν χ+ FµνZ

+
ω

v2
(dγ cW − dW sW )O′′Lij χ

0
i σµν χ

0
j F

µν
γ

+
ω

v2
(dγ cW + dW sW )χ− σµν χ+ Fµνγ

− 2
ω

v2
dW OR ∗i χ− σµν χ0

i F
µν
W+

+ 2
ω

v2
dW OLi χ

+ σµν χ
0
i F

µν
W− + H.c. , (4.35)

7We are not concerned here about CP-violating phenomena and we set eγ,W = 0 .
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where FµνV = ∂µV ν − ∂νV µ, V = Z,A and W±. Interestingly enough, EFT dipole
d = 5 operators, generate photon interactions with the neutral dark particles, with a
coupling that vanishes in the limit dγcW ' dW sW . There is also an alignment of couplings
in eq. (4.35) with the those in eqs. (4.31) and (4.33), that is important for achieving a
“natural” cancellation of two different contributions in the cross section for χ0

1χ
0
1 → V V ,

where V can be Z,W or γ. Moreover, the four-point interactions involving dipole operators
are

L 4−point
dipole =− 2 i g

ω

v2
dW O′′Lij χ

0
i σµν χ

0
j W

+µW−ν + 2 i g
ω

v2
dW χ− σµν χ+W+µW−ν

+ 4 i g
ω

v2
dW cW OR ∗i χ− σµν χ0

i W
+µZν + 4 i g

ω

v2
dW cW OLi χ

+ σµν χ
0
i W

−µZν

+ 4 i g
ω

v2
dW sW OR ∗i χ− σµν χ0

i W
+µAν + 4 i g

ω

v2
dW sW OLi χ

+ σµν χ
0
i W

−µAν

+ H.c. (4.36)

In Section 4.5, we will see that these EFT dipole interactions are important for making
the annihilation and coannihilation cross section of the WIMP dark matter particle χ0

1,
compatible with the measurement (3.69) for the DM relic density.

4.4 “Earth” constraints in the Dark Sector

In this section we study constraints imposed on the parameter space, from WIMP(χ0
1)-

nucleon scattering experiments searching directly for DM, from direct and oblique LEP
electroweak observables and from the LHC data for the Higgs boson decay to two photons.

4.4.1 Nucleon-WIMP direct detection experimental bounds

In the limit that the DM particle χ0
1 is much heavier than nucleon, the spin independent

(SI) and spin dependent (SD) cross sections are given by [159]

σSI = 8× 10−45 cm2

(
Y hχ0

1χ
0
1

0.1

)2

, σSD = 3× 10−39 cm2

(
gZχ

0
1χ

0
1

0.1

)2

. (4.37)

From the interactions in eq. (4.31), we see that gZχ
0
1χ

0
1 = 0 at tree level and therefore

σSD ≈ 0. For the SI cross section the current bound from LUX [253, 254] is σSI '
{1− 3.5} × 10−45 cm2, for mDM ' {100− 500} GeV, respectively.8 This gives

|Y hχ0
1χ

0
1 | . {0.04, 0.06} , (4.38)

which through the r.h.s. of eq. (4.29b) yields a constraint for the combination ξ12+y−y12.
The one-loop contributions have been calculated in refs. [82, 231]. We have worked out
the formula given in Appendix A, for zero Yukawa couplings and MD � MW,Z , and we
find

δY hχ0
1χ

0
1 =

(
3g

8π

)2 √2MZ

v

MD −MZ

MD
' 4× 10−3 . (4.39)

8 Note added: The updated bounds from LUX [100] and XENON [105] for this mass range is σSI '
{1 − 6} × 10−46 cm2 (see Fig. 1.3). Therefore, it is expected that |Y hχ

0
1χ

0
1 | would be shifted towards

smaller values (by a factor of ∼ 3), resulting to a more restricted parameter space.
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4.4. “Earth” constraints in the Dark Sector

This is an order of magnitude smaller9 than the current10 LUX bound in eq. (4.38). In
the limit MD → ∞, the model exhibits a non-decoupling behaviour, as expected from
the EFT analysis of refs. [78, 103, 213]. On the other hand, for MD → 0 the one-loop
contribution vanishes.

Based upon eqs. (4.29b) and (4.38) we obtain the inequality

|ξ12 + y − y12| ≤
1√
2

(
Λ

v

)
Y bound(mχ0

1
) , (4.40)

where Y bound(mχ0
1
) is the bound of eq. (4.38). Eq. (4.40) sets strong bounds on the

couplings ξ12 and/or y. Relevant to the cases depicted in Fig. 4.1 we obtain, for Λ = 1 TeV
and mχ0

1
∼ 100 GeV the following constraints:

(a,d) : −0.16 . ξ12 . 0.16 ,

(b) : −16 + 200 y

100
. ξ12 .

16− 200 y

100
, (4.41)

(c) : −16 + 100 y

100
. ξ12 .

16− 100 y

100
.

d

b

c

a
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2

Figure 4.2: Yukawa couplings y vs. ξ12 compatible with the bound of eq. (4.38) related to
the LUX DM detection experiment, for the four cases of the mass spectrum
and Λ = 1 TeV.

9It is shown in ref. [216] that for next to leading order corrections in αs, the SI cross section is even
smaller.

10 Note added: With the updated limits, the one-loop correction seems to be about 3–7 times below
current sensitivity.
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Therefore, for y ∼ −1, the parameter ξ12 is always positive with a small variation band
of about 10% w.r.t. the |y| value due to the LUX bound. An example for the case (c) is
shown in Fig. 4.2. For even bigger values of |y|, we obtain, ξ12 as big as |y| for case (c) or
as big as 2|y| in case (b). The band of the allowed values for ξ12, e.g., the shaded area in
Fig. 4.2, expands if we increase Λ.

Apparently, from eq. (4.21), if y = 0 we get mχ0
1

= mχ0
2
. In addition, if dipole operators

of eq. (4.35) are present, severe bounds on dγ and dW can be set based on contribution
to WIMP-nucleon cross section from γ , Z-exchange graphs [255–257]. In our case these
bounds are avoided because we choose always mχ0

2
−mχ0

1
& 2 GeV [244].

It is worth repeating here, that ξ12 is in principle positive everywhere for the cases
(b,c), which means that essentially the charged particle χ± is behaving as an extra lepton
circulating in the h→ γγ loop decay process. Therefore, we expect that Rh→γγ will be in
general smaller than in the SM.

4.4.2 LEP bounds

Next we examine constrains from LEP, that although have been derived particularly for
the MSSM, they can easily be adapted to this model. From Fig. 4.1 we observe that always,
the next-to-lightest particle is the charged dark fermion χ± with mass mχ± = MD + ξ12 ω
that, as explained before, is assumed to be positive.

Depending on the mass difference between the lightest neutral particle mχ0
1

and the

charged one mχ± , the bound on mχ± varies within ∼ 90 GeV to ∼ 100 GeV [249–251].
We will use the most conservative choice

mχ± & 100 GeV , (4.42)

which in terms of ξ12, ω and MD becomes:

ξ12 &
100−MD

ω
, ∀ y12 . (4.43)

As we have seen, the bound from direct detection experiments implies a positive value on
ξ12 for the cases (b,c). Thus, the LEP bound (4.43) is always satisfied if MD & 100 GeV.
In the case where MD . 100 GeV one may evade the LEP bound with a large positive
ξ12. For example, for Λ = 1 TeV and MD = 50 GeV, we need, ξ12 & 1.7. Interestingly,
this may be compatible with (4.41) only in cases (b) and (c) with Λ = 1 TeV and certain
values of y.

4.4.3 h→ γγ

For the model under study, the ratio Rh→γγ ≡ Γ(h→γγ)
Γ(h→γγ)(SM)

is given by [82] [see eq. (3.78)].

The ratio R is currently under experimental scrutiny at LHC. The current11 combined
value is Rh→γγ = 1.15+0.28

−0.25 [258]. Note that the gluon fusion channel gg → h, involved
in the Higgs boson production at LHC, is not affected in the context of this model,
since χ0

i , χ
± are uncoloured particles. In principle, there are d = 6 operators, such as

H†H Gµν G
µν , but we assume that these are quite suppressed in comparison to the SM

11 Note added: The updated result [221] is Rh→γγ = 1.14+0.19
−0.18. From Fig 4.3, it seems that the minimum

and maximum allowed values of ξ12 are slightly affected. As a result, y is restricted to be somewhat
smaller (see Fig. 4.4), but our final results remain mostly unaffected.
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4.4. “Earth” constraints in the Dark Sector

contribution. An analogous operator exists in the case of h→ γγ, just replacing Gµν with
the photon field strength tensor, Fµν when integrated out heavy (of order bigger than Λ)
particles. These operators arise at loop level and are suppressed by the scale Λ. Therefore,
for the process h→ γγ, the effect is dominated by the SM charged particles and the new
χ± circulating in the triangle diagram.

Below we study the ratio R in two complementary regions for MD: a) MD . 100 GeV
and b) MD & 100 GeV.

• MD . 100 GeV

From eq. (4.29a) we expect that ξ12 would be restricted to small values from the loop
induced h → γγ bound, where we should also expect that, for MD below 100 GeV, the
bound from LEP will be important as we explained previously in Section 4.4.2.
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Figure 4.3: Combination of the constraints from negative LEP “chargino” searches applied
to χ± and the ratio Rh→γγ from LHC (Run I), for (a) MD . 100 GeV and
(b) MD & 100 GeV. The shaded region is compatible to the LEP χ± bound,
while the contours show the values of Rh→γγ from eq. (3.78) on ξ12 ω −MD

plane.

When MD . 100 GeV, ξ12 should always be positive or zero in order to satisfy the
LEP bound (4.43). Then the charged fermion behaves as an extra lepton and lowers the
ratio R. This is clear from eqs. (4.29a) and (3.78). In addition, one can easily observe
that, since LEP restricts mχ± to be above 100 GeV, the function A1/2(τ = m2

h/4mχ±) lies
within the interval ∼ 1.5 − 1.3. These observations lead us to another improved bound
between ξ12, ω and MD, for the combined constraints from LEP and Rh→γγ :

100−MD . ξ12 ω . 0.1MD , ∀ y12. (4.44)
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Therefore, if MD . 100 GeV, we obtain a minimum allowed value for MD, which is around
90 GeV, as illustrated in Fig. 4.3(a). As a consequence, the case MD . 100 GeV is dis-
favoured.

• MD & 100 GeV

If ξ12 > 0, then eq. (4.44) still holds. The only difference from the previous case arises
from eq. (4.43), which now allows ξ12 to be also negative. Consequently, for ξ12 < 0, the
Rh→γγ can be greater than unity and we obtain

ξ12 ω & −0.3MD , or ξ12 ω & 100−MD , ∀y12 and ξ < 0. (4.45)

Therefore, the combined result for MD & 100 GeV is:

− 0.3MD . ξ12 ω . 0.1MD and ξ12 ω & 100−MD , ∀y12. (4.46)

This inequality is illustrated in Fig. 4.3(b). We notice that eq. (4.46) results in a very
weak bound for ξ12 < 0 compared to the constraints from direct detection experiments,
as can be seen in Fig. 4.2. Eq. (4.46) may nicely be combined in terms of the physical
charged fermion mass mχ± and the “doublet” mass MD as

0.7MD . mχ± . 1.1MD . (4.47)
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Figure 4.4: y vs. ξ12 regions allowed by combining LEP, Rh→γγ and DM direct detection
constraints, for Λ = 1 TeV and MD = 300 GeV for the four cases studied.
Notice that case (d) is the intersection of the three other cases.

Before moving on to the calculation of the relic density, we summarize the phenomeno-
logical constraints imposed to this model by LEP χ± searches, the h→ γγ decay and the
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q k +
q

2
q

k −

q
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f1
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f2
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V1V1

Figure 4.5: The Feynman diagram contributing to the oblique parameters. V1,2 represent
the gauge bosons Z,W , or γ, while f1,2 are χ0

1,2 and/or χ±.

direct DM detection experiments. As can be seen from Fig. 4.4, these constraints confine
the parameters y and ξ12 in small regions for given MD and the cut-off of the theory. As
discussed previously, MD is always & 90 GeV which is independent of the cut off. A gen-
eral comment is that the bound imposed by the direct detection experiments in eq. (4.38)
binds y and ξ12 together (and also forces ξ12 to be mostly positive).

4.4.4 Electroweak oblique corrections

In general, when one adds new matter into the SM particle content, with non-trivial gauge
quantum numbers, severe bounds arise from the so-called oblique electroweak corrections.
These loop corrections to electroweak precision observables are commonly parametrised
by three parameters, S, T and U , introduced long ago in refs. [147,259]. Even though the
new matter fields D1 and D2 have common, vectorlike, mass MD from eq. (4.1), there are
mass splittings amongst the two doublets as well amongst their components themselves.
These mass splittings arise from d = 5 operators in eq. (4.12) as discussed in the previous
section.

In order to calculate the S, T and U parameters in the EFT at hand, we need to calculate
vacuum polarization diagrams like the one depicted in Fig. 4.5, for all relevant interactions
arisen from d = 4 and d = 5 operators given in Section 4.3.2. The general form of this
diagram is

iΠµν
V1V2

=

∫
ddkµε

(−1)

(2π)d
1[

(k +
q

2
)2 −m2

1

] [
(k − q

2
)2 −m2

2

]×
Tr

[(
a21γ

µ +
b21

4Λ
[/q, γ

µ]

)(
/k +

/q

2
+m1

)(
a12γ

ν − b12

4Λ
[/q, γ

ν ]

)(
/k − /q

2
+m2

)]
,

(4.48)

where µ is the renormalization scale, ε ≡ 4 − d, a12,21 and b12,21 are the gauge and the
dipole couplings for every possible {f1,2 , V1,2} combination, where V1,2 can be the gauge
bosons Z,W , or γ and f1,2 are χ0

1,2 and/or χ±.

If we express the fermion masses circulating in the loop as m1,2 = MD + c1,2 v
2/Λ

and expand eq. (4.48) up to the order O(Λ−1) 12, the term proportional to gµν and its

12 By doing so, one avoids the introduction of involved d = 6 operators. Their inclusion would lead to
weak bounds on the corresponding Wilson coefficients (a related discussion can be found in ref. [260]).
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derivative w.r.t. q2 at q2 = 0, read as

ΠV1V2(q2 = 0) = ε
a12a21

8π2Λ
(c1 + c2)v2 MD log

(
M2
D

µ2

)
ε→0−−→ 0 , (4.49a)

d

dq2
ΠV1V2(q2 = 0) =

a12a21

12π2

[
log

(
M2
D

µ2

)
+

2

ε
− γ + log(4π)

]
+

1

48π2 ΛMD

{
6M2

D (a21b12 + a12b21)

[
log

(
M2
D

µ2

)
+

2

ε
− γ + log(4π)

]
(4.49b)

+ 4a12a21(c1 + c2)v2

}
.

Using these equations and substituting for every combination of {f1,2, V1,2}, the a12, a21,
b12, b21 and c1, c2 in the expressions for the parameters S, T , and U [147], with the inter-
actions given in Section 4.3.2, one obtains up to terms of O(1/Λ2), that

S = − 2

3π

v2 y12

ΛMD
, T = 0 , U = 0 . (4.50)

These results have been checked independently using the analytical expressions of ref. [82]
[see eq. (3.63)] and interactions from Section 4.3.2 keeping terms up to 1/Λ. In addition,
they have been verified numerically by taking the decoupling limit of the fermion triplet
mass MT �MD in ref. [82].

The parameter S measures the size of the new fermion sector i.e. the number of the
extra SU(2)L irreducible representations that have been added in the model. In general,
the contribution of degenerate fermions to the S-parameter is

S ∼
∑

new fermions

(T 3
(R) − T 3

(L)) , (4.51)

where T 3
(L,R) is the isospin of the left- and right-handed fermions. So, in a case similar to

ours, where the fermions are nearly degenerate, the S-parameter takes the form

S ∼
∑

new fermions

(T 3
(R) − T 3

(L)) + f(mχ0
1
,mχ0

2
,mχ+) , (4.52)

where f(mχ0
1
,mχ0

2
,mχ+) is a function that vanishes if the three masses are equal. There-

fore, in our case, the S−parameter for two vector-like doublets would arise only from
the mass differences, which means that S-parameter is proportional to the Yukawa cou-
plings 13. After performing the calculation, it turns out that

f(mχ0
1
,mχ0

2
,mχ+) ∝ ∆m1+ + ∆m2+

MD
, (4.53)

where ∆mi+ ≡ mχ0
i
−mχ± . This is proportional to y12, as can been seen in eq. (4.50).

Furthermore, no magnetic dipole parameters dγ or dW are involved in S-parameter in
(4.50) up to O(1/Λ2), as also expected from dimensional arguments.

13The coupling ξ12 is just a universal shift to MD and thus it does not contribute to the mass difference.

Also, as it turns out, y does not appear in
d

dq2
ΠV1V2(q2 = 0) (for every V1 and V2 combination). Only

y12 contributes to the oblique EW parameters at the approximation in 1/Λ.
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Figure 4.6: Contours of the S-parameter on y12 −MD plane for Λ = 1 TeV.

The U−parameter, on the other hand, measures the size of the isospin breaking contri-
bution from the new fermions. So, it should be suppressed due to the c.c. (or custodial)
symmetry (which limits the isospin breaking) and the fact that we are keeping only terms
up to 1/Λ. Up to this order, the parameter T is zero too, because ΠV1V2(q2 = 0) = 0, a re-
sult which is independent of the symmetric limits for y12. Usually, the parameters T and U

are proportional to the ratio
∆m2

M2
Z or M2

D

, where ∆m2 is some mass-squared difference aris-

ing from isospin breaking. In our model this should be the case when y 6= 0 and y12 6= 0,
which means that higher order terms could give a non-vanishing (but suppressed by terms
∝ Λ−2) contribution. Experimentally, S, T and U -parameters fit the electroweak data for
U = 0 with values14 [234]:

S = 0.00± 0.08 , T = 0.05± 0.07 . (4.54)

In Fig. 4.6, we present a contour plot for the S-parameter obtained from eq. (4.50) as a
function of y12 and MD for Λ = 1 TeV. As expected, stronger (1σ) bounds from eq. (4.54)
are obtained in the region MD ≈ 100 GeV, where it must be |y12| . 1. On the other hand,
relaxed bounds on |y12| are obtained for higher values of MD and/or Λ.

Apparently the result of eq. (4.50), does not interfere with the bounds discussed before
for the cases (b) and (c), since the allowed values of y12, obtained from (4.54), are equivalent
to those obtained by the combination of the DM direct searches, the h → γγ decay and
LEP χ± bounds. On the contrary, in case (a) where y = y12, the bounds on y arise only
from the S−parameter.

14 Note added: Updated constraints [60] for the S and T parameters (with fixed U = 0), show that the
T -parameter deviates from zero at 1.5 σ. However, if we allow for non-vanishing U -parameter, T = 0
is allowed.
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4.5 Cosmological and astrophysical constraints

In the context of this model, it is essential to calculate the DM relic density Ωh2 of the
dark fermion χ0

1, in order to impose the cosmological constraint related to the Planck
satellite measurements [234], as expressed in eq. (3.69). Assuming that χ0

1 constitutes the
DM of the universe, we are able to set severe constraints on the parameters of eq. (4.17), in
conjunction to those found previously in Section 4.4. From now on we focus on benchmark
cases (b) and (c) mainly because there is more freedom to move around the parameter
space as compared to cases (a) and (d).

In this Section 1.3.3 we described briefly the freeze-out mechanism and discussed the
solution of the Boltzmann equation. Here, we present general, analytical, predictions for
Ωχh

2, aiming to understand its dependences, and then numerical solutions are discussed.
Additionally, we study the constraints imposed by the gamma fluxes produced by DM
annihilations in the galactic center (GC) [45, 46] and in various dwarf spheroidal satellite
galaxies (dSph) [117]. Finally, at the end of this section, we briefly discuss neutrino fluxes
from the Sun, which are constrained from IceCube experiment [127,261].

4.5.1 A close look at the relic density

Before discussing the bounds imposed by the data on Ωh2, it would be helpful to study the
numerical values of the annihilation cross section that are used to calculate the relic abun-
dance. As discussed in Section 4.4.3, ifMD & 90 GeV, then the coupling to the Higgs boson
is approximately zero. Therefore, the most important annihilation channels, assuming for
the time being that coannihilation effects are irrelevant, are χ0

1χ
0
1 →W+W−, ZZ, γZ and

γγ. There are no final states with fermions, since their corresponding interaction vertices
are absent. There are no χ0

1χ
0
1Z/γ terms in the Lagrangian of eqs. (4.31) and (4.35), or

they are restricted because of bounds by direct detection experiments Y hχ0
1χ

0
1 ≈ 0.

Keeping only the first term in the expansion of eq. (1.105) we obtain

aV V =
β

3/2
V m2

χ0
1

32π SV v2

[
g2v4 − 4 g v2ωKV

(
mχ0

1
+mχ

)
+ 4K2

V ω
2
(

2mχ0
1
mχ +M2

V

)]2

v6
(
m2
χ0

1
+m2

χ −M2
V

)2 ,

(4.55)
where V denotes W and Z gauge bosons in the final states for the processes χ0

1χ
0
1 →

W+W− or χ0
1χ

0
1 → ZZ. Also, we abbreviate, βV ≡ 1 −M2

V /m
2
χ0

1
, KW ≡ dW , SW ≡ 1,

KZ ≡ cW (cWdW + sWdγ) and SZ ≡ 2 c4
W . The mass mχ denotes mχ± for V = W and

mχ0
2

for V = Z.

For the channels γZ and γγ, we find

aγZ =
β3
γZ m

2
χ0

1

2π c2W v2

C2
γ ω

2
[
g v2

(
mχ0

1
+mχ0

2

)
− ωKZ

(
4mχ0

1
mχ0

2
+M2

Z

)]2

v6
[
2
(
m2
χ0

1
+m2

χ0
2

)
−M2

Z

]2 , (4.56a)

aγγ =
m4
χ0

1
m2
χ0

2
ω4C4

γ

π (m2
χ0

1
+m2

χ0
2
)2 v8

, (4.56b)

with βγZ ≡ 1 − M2
Z/4m

2
χ0

1
and Cγ ≡ (cWdγ − sWdW ). These channels γγ and γZ,

contribute to the monochromatic gamma fluxes from the GC. Thus, in conjunction to the
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Figure 4.7: The dependence of different annihilation channels on dW for MD = 400 GeV,
Λ = 1 TeV, y = −y12 = − ξ12

2 = −0.8 and dγ = 0. Notice that, in a certain
range of dW values, there is at least one dip for each channel cross section.

corresponding bounds from Fermi-LAT experiment, one gets severe constraints for the
coupling Cγ . Due to absence of χ0

1 couplings to Z and γ and the nearly vanishing Higgs
mediated ŝ-channel, all the above processes arise from t̂ and û channels.

Eqs. (4.55), (4.56a) and (4.56b), contain one or more solutions with respect to dW . This
means that dW could act as a regulator that minimizes the total annihilation cross section
as the (required) low mass MD tends to amplify it (generally the cross section scales as
M−2
D if we ignore magnetic dipole interactions). This minimization, will be proved essential

when trying to obtain cosmologically acceptable relic abundance at the electroweak scale.

Qualitatively, concerning the minimum of the total annihilation cross section as a func-
tion of the dipole couplings one anticipates that each cross section should be minimized
for almost the same value of dW , in order for the total annihilation cross section to be
at its minimum. In addition, dγ ≈ sW

cW
dW so that Cγ is quite small. This keeps dγ from

obtaining large negative values, because aWW can be minimized only for dW > 0.

A numerical example is shown in Fig. 4.7. We observe that there are two minima for
the annihilation cross sections to ZZ, W+W− and γZ and one minimum for γγ. The first
minimum of aZZ and aWW coincides with the vanishing point of Cγ , which gives small
cross sections for χ0

1χ
0
1 → γγ and γZ. On the other hand, the second minimum of aZZ

and aWW is in a region where the annihilation to γγ and γZ blows up. Furthermore,
for negative dW , there are no such minima and, as can be seen from Fig. 4.7, every cross
section becomes quite large.

Since eq. (1.111) is an approximation which could lead to an error up to ∼ 10% (as
discussed in ref. [59]), the Boltzmann equation must be solved numerically. To do this we
implement the d = 4 and d = 5 operators to the computer program microOMEGAs [262]
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Chapter 4. Effective Theory for Electroweak Doublet Dark Matter

via the LanHEP [263] package15 in order to obtain more accurate results for the relic
abundance.

(a) (b)

(c)

Figure 4.8: Relic abundance dependence on the parameters (a) dW , (b) dγ , and (c)MD,
for Λ = 1 TeV and y12 = −y. The cosmologically allowed (shaded) region
corresponds to the variation of the other parameters in (4.17) not shown in
the plot. The horizontal line stands for Ωh2 = 0.12.

In Figs. 4.8a, 4.8b and 4.8c we examine the dependence of the relic abundance Ωh2

on the parameters, dW , dγ and MD, respectively. Because all parameters in (4.17), run
freely, the corresponding plots are given as shaded areas in Fig. 4.8. We remark that:
a) The minimization effects on the various cross sections discussed before, are evident in
the numerical results too. b) As expected, when MD increases, Ωh2 increases too. c) For
acceptable Ωh2 and MD of a few hundred GeV, dW must lie in the region 0.1 . dW . 0.5,
which does not include the zero node. The dipole moment to photon dγ should be in the
region −0.2 . dγ . 0.5, which includes the zero node. d) The minimization of the
total annihilation cross section, is not enough to produce the observed DM density for
MD . 200 GeV.

15More information about these packages can be found in https://lapth.cnrs.fr/micromegas/ and
http://theory.sinp.msu.ru/∼semenov/lanhep.html.
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Figure 4.9: ZZ annihilation cross section dependence on dW for different values of y =
−y12 = − ξ12

2 , Λ = 1 TeV, MD = 400 GeV, dγ = 0 and v2 = 0.1. At the
minimum, the values of the cross section decreases as we lower the values of
|y|. The behaviour of the W+W− annihilation channel is similar.

(a) (b)

Figure 4.10: y vs. Ωh2, for Λ = 1 TeV and (a)MD = 200 GeV and (b)MD = 400 GeV.
Other parameters from the list (4.17) vary in the range constrained from
“Earth” constraints and for y12 = −y. The dependence of the relic density
on y changes for different values of MD.

The dependence of the relic density on the parameter y is complicated due to the
following competing effects: The coannihilation channels, increase the total annihilation
cross section as |y| tends to zero, since the mass differences of the initial particles involved
become smaller and smaller. But, as shown in Fig. 4.9, the b−term in the expansion
of eq. (1.105), tends to decrease the value of the cross sections (around the minimum), at
least for the annihilation to ZZ and W+W−.

Moreover, in Fig. 4.10 we study the dependence of Ωh2 on y, for various values of
the mass MD. In the region MD . 260 GeV, the relic abundance becomes smaller for

94



Chapter 4. Effective Theory for Electroweak Doublet Dark Matter

Figure 4.12: Ωh2 versus y, for y12 = −y, Λ = 1 TeV and MD ≤ 500 GeV. The shaded
area and the curves are as in Fig. 4.8.

smaller y (an example for MD = 200 GeV is shown in Fig. 4.10a), which means that the
coannihilation effects dominate over the b−term, and vice-versa for larger values of MD

(Fig.4.10b).

(a) (b)

Figure 4.11: Turning point as can be seen in (a) y versus Ωh2 and (b) dW versus Ωh2, for
y12 = −y, Λ = 1 TeV and MD = 260 GeV. The shaded area and the curves
are as in Fig. 4.8.

There is a small region at MD ≈ 260 GeV where this dependence is mixed. We call this
value of MD “turning point”. An example of this behavior is shown in Fig.4.11a. As we
can see, the relic abundance rises until y ∼ −0.4 and then decreases, but for y ∼ −0.06
it starts to increase again. Also, as shown in Fig. 4.11b, we obtain two maxima for Ωh2

with respect to dW , as a result of this effect, since the value of dW which minimizes the
annihilation cross section depends on y.

Although y has no definite effect on Ωh2, the relic density increases as MD increases.
Therefore, if we calculate the relic density in the allowed parameter space, the dependence
of the relic on y would be dominated by its dependence for larger MD. In Fig. 4.12, we
show the dependence of Ωh2 on y. The relic density decreases as |y| becomes larger and
for |y| & 0.9 the DM becomes under-abundant.
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Figure 4.13: The plane dW − dγ of the parameter space that gives the observable relic
abundance, for Λ = 1 TeV and y12 = −y. The same region holds also for
y12 = 0. We allow variation of other parameters in (4.17) consistently with
observational data.

Finally, the case where y12 = 0 yields similar results with the case y12 = −y just
discussed, as can be deduced from Figs. 4.8 and 4.12. Also, for other values of the cut-off
scale Λ, the parameters dγ,W and y should be rescaled in order for the ratios dW /Λ, dγ/Λ
and y/Λ to remain unchanged.

4.5.2 Cosmological constraints due to relic density

Having studied the constraints from LEP , Rh→γγ , the direct detection DM experiments
as well as the Planck satellite bound on the relic density for this effective theory, we
are able delineate the cosmologically acceptable regions of the parameter space. For this
reason, we perform a combined scan in the so far allowed parameter space which is also
cosmologically preferred, for the cases y12 = −y and y12 = 0 at Λ = 1 TeV. First, for
Λ = 1 TeV, in Fig. 4.13 we display the part of the dγ − dW plane, that is compatible
to the DM relic density, varying all the other parameters, but keeping MD . 500 GeV.
Apparently the parameter dW is bounded to be positive in order to explain the DM relic
abundance for a WIMP mass at electroweak scale. Also, the region where dγ is positive, is
larger than the region where it is negative, a situation explained in the preceding analysis.
A similar region is also found for y12 = −y and y12 = 0.

(a) MD vs dW , for Λ = 1 TeV and y12 = −y. (b) MD vs dW , for Λ = 1 TeV and y12 = 0.

Figure 4.14: As in Fig. 4.13 but for acceptable values on the plane MD − dW .
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In Fig. 4.14 we observe that MD vastly affects the allowed values for dW that provide the
correct relic abundance. This is due to the fact that the minimum of the total annihilation
cross section depends on the mass MD, as can be seen from eqs. (4.55), (4.56a) and (4.56b)
and also from the fact that the maximum of Ωh2 varies as MD changes, see also Fig. 4.8c.
Moreover, as MD becomes larger, the minimization of the cross section becomes less
necessary. Note that, for y12 = 0 there is a gap for dW at MD ≈ 260 GeV, a result of
the “turning point” discussed at the end of the previous paragraph (see Fig. 4.11b). For
y12 = −y, this “turning point” is ineffective.

(a) MD vs y, for Λ = 1 TeV and y12 = −y. (b) MD vs y, for Λ = 1 TeV and y12 = 0.

Figure 4.15: Values on MD − y plane that provide acceptable DM relic abundance.

(a) y vs ξ12, for Λ = 1 TeV and y12 = −y. (b) y vs ξ12, for Λ = 1 TeV and y12 = 0.

Figure 4.16: As in Fig. 4.15, but for the Yukawa parameters y − ξ12.

In Fig. 4.15 one can see the dependence of MD on y, in the region where the DM
density complies the current cosmological bound. We observe that for large values of MD,
for |y| < 0.85(1.25) for the case y12 = −y (y12 = 0) we obtain the desired Ωh2. On the
contrary, when MD . 300 GeV in both cases for y12, |y| seems to be strongly dependent
on MD. This happens because the bound on |y| from Earth-based experiments becomes
stronger than the one from the relic abundance for smaller masses. In addition to that,
since Ωh2 tends to decrease as |y| becomes smaller for MD . 260 GeV, |y| is also bounded
from below. Furthermore, due to the “oscillation” of the relic abundance (Fig. 4.11a), at
MD ∼ 260 GeV there is a “gap” on the allowed values of y (similar to dW ). Additionally,
in Fig. 4.16, we see that ξ12 follows y, a remaining result from the direct detection bound
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(similar to Fig. 4.2).
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Figure 4.17: (a) The cosmologically allowed mass of the WIMP versus the mass of the
heavy fermions and (b) their mass difference for y12 = −y. Similar regions
can be obtained for y12 = 0.

The Yukawa couplings and the mass parameter MD displayed, fix the masses and their
differences. For the sake of completeness, the masses and their difference from mχ0

1
are

shown in Fig. 4.17 for y12 = −y (similar region holds also for y12 = 0). We observe that
mχ0

1
& 200 GeV, for y12 = −y, which is also what one should expect from Fig. 4.15. In

addition to this, the mass difference mχ0
2
−mχ0

1
is in the region ∼ 2− 50 GeV. Finally, we

note that this mass difference takes slightly larger values (∼ 2 − 70 GeV ) for the other
case of the symmetric limit for y12, while mχ± −mχ0

1
is always half that [see eq. (4.21)].

Accordingly, the smallest possible mass of the WIMP in this case is ∼ 250 GeV (which
again can be seen also from Fig. 4.15).

4.5.3 Gamma-rays

Having delineated the cosmologically acceptable regions concerning the DM abundance,
we will proceed calculating other astrophysical observables, like the gamma-ray fluxes
(monochromatic and continuous) originating from the Milky Way GC and dSphs.

Continuous Gamma spectrum

In our model the DM pair annihilation cross sections have been studied in Section 4.5.1.
In particular, the relevant relations can be found in eq. (4.55). From refs. [117, 264]
we observe that the bounds on the cross sections aZZ and aWW are above the required
∼ 3 × 10−26 cm3s−1 (for masses above 200 GeV) which generally gives the desired relic
abundance. More precisely, for mχ0

1
& 200 GeV, the bound from dSphs is below ∼

5 × 10−26 cm3s−1 for the annihilation χ0
1χ

0
1 → W+W+ (assuming that the branching

ratio is 100%). The same bound holds the annihilation to a pair of Z-bosons, since their
gamma spectra are quite similar. When applied to our model, which generally gives smaller
branching ratios, these bounds should be even weaker.
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Figure 4.18: Allowed region in the parameter space from collider, DM direct detection and
relic density constraints discussed in sections 4 and 5.3, respectively, as a
function of the WIMP mass and the couplings dW and KZ/cW . The contours
show the values of the thermally averaged cross sections (a) for aWW and (b)
for aZZ in cm3s−1 for y12 = −y. Similar for y12 = 0. We take Λ = 1 TeV.

As it is shown in Fig. 4.18, the relevant to continuous emission of photons cross sections,
σχ0

1χ
0
1→W+W−, ZZ are safe with experimental bounds from continuous gamma ray spectrum

discussed in this paragraph.

Constraints from Gamma-ray monochromatic spectrum

As we have seen, this effective theory relies on the various WIMPs magnetic dipole mo-
ment operators in order to give us the observed relic abundance. This could result to
annihilations of pairs of WIMPs into photons which could be detectable from observations
of gamma ray monochromatic spectrum originated from the GC. In this paragraph, we
will calculate the cross sections for processes that could give such gamma rays [eqs. (4.56a)
and (4.56b)]. As input, we use the parameter space that evade all the other, previously
examined, bounds and use the results16 from Fermi-LAT [45,46] to set additional bounds
to the parameters of this model. These bounds depend strongly on the DM halo profile17

(and the region of interest) that one follows. Thus, we study the profile which gives the
strongest bound. This comes from the R3 region which is optimized for the Navarro-Frenk-
White NFWc(γ = 1.3) profile [265] (the relevant discussion on these regions of interest is
found in [45]). So, the annihilation cross section for χ0

1χ
0
1 → γγ for this region of interest

is bounded to be smaller than ∼ 10−28 cm3s−1 for photon energy (Eγ = mχ0
1
) at 200 GeV

up to ∼ 3.5 × 10−28 for Eγ ∼ 450 GeV (and if we extrapolate up to ∼ 5 × 10−28 for
Eγ ∼ 500 GeV). For the process χ0

1χ
0
1 → γZ, we need to rescale this bound by a factor

of two, since there is one photon in the final state instead of two. This process results to
different value of Eγ = mχ0

1
(1−m2

Z/4m
2
χ0

1
).

Fig. 4.19 illustrates that the annihilation to γZ (and less to γγ), violates the Fermi-LAT
bound, mainly for larger values of Eγ . Thus, the values of dW and dγ are constrained so
that Cγ is even smaller than the cosmologically acceptable values.

16 Note added: Results from H.E.S.S. (ref. [120]) are in agreement with the ones from Fermi-LAT.
17The bounds have up to a factor of 15 difference for different profiles and regions.
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(a) (b)

Figure 4.19: The allowed, as in Fig. 4.18, region of the parameter space, in terms of the
photon energy and the coupling Cγ . The contours show the values of the
thermally averaged cross sections aγγ (a) and aγZ (b) in cm3s−1 for y12 = −y.
Again y12 = 0 results in an almost identical plot.
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Figure 4.20: Allowed regions on a) MD − Cγ plane and b) dW − dγ plane for y12 = −y,
consistent with “Earth” constraints, the observed relic abundance and the
bounds from gamma-ray monochromatic spectrum, discussed sections 4, 5.3
and 5.4.2, respectively, in the text. Almost identical regions are allowed for
y12 = 0. The contour lines in (b) show the value of the χ0

1χ
0
2-photon coupling

Cγ .

It is evident from Fig. 4.20a, that in order this model to deceive the current monochro-
matic gamma ray bounds from GC, we should limit the dipole couplings so they sat-
isfy the relation |dW sW − cWdγ | . 0.05 (Λ = 1 TeV) for MD = 200 GeV up to
|dW sW − cWdγ | . 0.15 for MD = 500 GeV. Therefore, one can delineate accordingly
the parameter space on the dW − dγ plane, that evades all bounds and yields the correct
relic density, which is shown in Fig. 4.20b. It should be noted, that the other parameters
remain unchanged as in the previous section, since they do not affect WIMP pair annihi-
lation rates to two photons or to a photon and a Z-boson. Other values of y12 result to
almost identical regions to these in Fig. 4.20.

Concluding this paragraph, we note that the Fermi-LAT data set upper bounds to the
annihilation cross section of two WIMPs into one or two photons, relating strongly the two
dipole couplings, resulting to positive values for dγ . Therefore, the two neutral particles
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of the model have an almost zero coupling to photon (Cγ ≈ 0), while the other parameters
are intact.

It is worth pointing out that there is a non-relativistic non-perturbative effect, known as
“Sommerfeld enhancement” [266], that can boost the annihilation cross section, sometimes
even, by orders of magnitude. For the bi-doublet case here, it has been calculated in the
literature and the results are shown in refs. [267–269]. As it turns out, for the masses
we are considering here, this effect is non-important. It becomes only sizeable for WIMP,
“higgsino-like” masses greater than about 1 TeV or so.

4.5.4 Neutrino flux from the Sun

Another interesting indirect signal could come from solar neutrino flux. The cross section
for neutrino production from WIMP annihilations in the Sun, can be decomposed to
the spin-dependent and spin-independent WIMP-nucleon cross sections. Therefore, such
experiments compete with direct detection ones. Recent results from IceCube [261], show
that the spin-independent cross section bound is relaxed as compared to the one obtained
from direct detection experiments [253]. On the other hand, the latest spin-dependent cross
section bound from solar neutrino flux [127], is much stronger than the one derived from
LUX [270] for mχ0

1
& 200 GeV. In our study, the spin-independent bound from IceCube is

evaded, since the constraints from LUX have been introduced from the beginning of this
analysis. In addition, due to the c.c. symmetry, the spin-dependent cross section vanishes,
since χ0†

1 σ̄
µχ0

1Zµ is odd under the transformation introduced in Section 4.2. Thus, these
bounds, leave the allowed parameter space unaffected18.

4.6 LHC searches

Having found that there is a viable area in the parameter space, which produces the
observed DM relic abundance of the universe while avoiding all the other experimental
and observational constraints, we move on to find out whether this theory can provide
us with observational effects at the LHC. First, we calculate the cross sections for some
channels at

√
ŝ = 8 TeV and compare them to the current bounds from LHC (Run I) and

then we do the same at Run II with
√
ŝ = 13 TeV.

In this section we are looking at the mono-Z channel for which the experimental anal-
ysis is performed by ATLAS [271], the mono-W channel where we use the results from
ATLAS [272] (a weaker bound is obtained from the analysis of CMS [273]), the hadron-
ically decaying W/Z-boson channel searched for by ATLAS [274]. DM interacting with
vector bosons can be probed by dijet searches through vector boson fusion as discussed
in refs. [275, 276]. The analysis has been performed by ATLAS [153]19 (which gives a
somewhat stronger bound than CMS [277]). Furthermore, there are mono-jet searches
from CMS [278]. Finally, there is also the mono-photon channel searches [274, 279], but
in our case it is not very important due to the Fermi-LAT bound discussed previously in
Section 4.5.3.

We note that, for these processes, an extensive study has been performed in ref. [145]

18 Note added: There are updated results for the spin-dependent cross section in ref. [104]. However,
our result still holds, since the corresponding cross section vanishes in our case.

19The fermions considered here, do not contribute to the invisible decays of the Higgs boson, but bounds
from ref. [153] still apply for a dijet + /ET final state.
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with singlet Dirac DM particle and for operators with dimension d = 7. However, in the
analysis we perform here there are differences: a) The set of operators is different, since
we consider Yukawa, dipole and renormalizable operators. These operators produce mass
splittings between the Dark-sector fermions. In addition to this, the interactions with the
gauge bosons come from both 3- and 4-point terms in the Lagrangian with different Lorentz
structure than the d = 7 ones. b) The parameter space in which we calculate the cross
sections for these processes, respects other experimental and observational constraints.
In addition, for the dijet channel and at

√
ŝ = 13 TeV, another dedicated study has

been performed in ref. [280]. Again our case is different because of the inclusion of d =
4 and 5 operators in the calculations of the LHC cross sections, while at the same time
the parameter space is also constrained by all the other bounds discussed in sections 4.4
and 4.5.

4.6.1 LHC constraints at 8 TeV

In this paragraph we calculate the cross sections for the relevant channels at 8 TeV and
compare them to the current bounds from LHC. The bounds we use throughout this
analysis are:

• Mono-Z: pp→ χ0
1χ

0
1 + (Z → l+l−), l = e, µ, with cross section . 0.27 fb [271].

• Mono-W: pp→ χ0
1χ

0
1 + (W → µνµ), with cross section . 0.54 fb [272].

• Hadronically decaying Z/W : pp→ χ0
1χ

0
1 + (W/Z → hadrons), with σ/ET+hadrons .

2.2 fb [274].

• Dijet: pp→ χ0
1χ

0
1 + 2 jets, with . 4.8 fb [153].

• Mono-jet: pp→ χ0
1 (χ0

2 → χ0
1 + νν̄) + jet with σ/ET+jet . 6.1 fb [278].

The cross sections for the first four channels in the allowed parameter space are shown in
Fig. 4.21. It is apparent that the current bounds of LHC for these processes cannot put
any further restrictions to the allowed parameter space. On top of that, as MD becomes
larger, the cross sections decrease. There are two reasons for this. First, as MD increases,
the masses increase, and, second, the dipole moments dW and dγ relevant for the observed
relic abundance, move to smaller values as MD becomes larger (see Fig. 4.14), which
reduces the interaction strength of the WIMP to the gauge bosons.

We should point out that we only calculate the cross sections of the hard processes
(before showering, jet reconstruction, etc.).20 This means that in general, the actual cross
sections should be smaller than the ones we present here, since the cuts we are able to use
for the hard processes are weaker than the cuts used in the experimental analyses.

The cross section for the mono-jet channel21 is shown in Fig. 4.22a. Again, as it can be
seen, the cross section is significantly smaller than the current bound from LHC. Addition-
ally, similar to the other channels discussed here, as MD increases, the cross section tends
to decrease. But, since this cross section depends strongly on both the dipole moments,
dγ and dW , and the Yukawa coupling y (through the branching ratio of χ0

2 → χ0
1 +νν̄), the

shaded area is larger than the areas in Fig. 4.21, because the available values of y do not
depend strongly on MD (see Fig. 4.15). Also, it is apparent from Figs. 4.21 and 4.22(a),
that for future DM searches at the LHC (for the model we study here), the mono-jet
channel seems to be the most promising, since it could result to the largest number of

20For the calculation we use the program CalcHEP v.3.6 of ref. [281].
21We approximate this cross section by σpp→χ0

1χ
0
2
×

∑
i=e,µ,τ

BRχ0
2→χ0

1ν̄iνi
.
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Figure 4.21: The cross sections for the (a) mono-Z, (b) mono-W, (c) hadronically decaying
Z/W and (d) the dijet processes at

√
ŝ = 8 TeV versus the doublet-mass

parameter MD, while all the other parameters run freely and for y12 = −y.
The other case with y12 = 0 gives almost identical results. The “spikes”
appeared is a result of varying a random selection of parameters.

events compared to other channels discussed here.

4.6.2 Mono-jet searches at 13 TeV

For LHC (RunII) with
√
ŝ = 13 TeV, the mono-jet channel provides the biggest number of

events when compared to other channels. From Fig. 4.22b, we observe that the production
of a jet accompanied with missing ET , can reach cross sections up to ∼ 2.5 fb for both cases
y12 = 0 and y12 = −y and for MD ≈ 300 GeV. This means that the number of events that
can, in principle, be observed 22 is around 250 (750) for LHC expected luminosity reach of
100 (300) fb−1.

Before closing this section, we should remark issues about the validity of our calculations
at such high center-of-mass energy. The validity of calculations for such theories at the
LHC depends on the cut-off energy and the couplings. The energy for which the calculation
of an observable becomes invalid is ∼ Λ/C,23 where C is the Wilson coefficient for the
relevant operator. In our case, and for the mono-jet searches, the relevant d = 5 term (a

22Very recently, a mono-jet+photon search has been proposed in ref. [282]. Emphasised for higgsinos, this
final state can often be as competitive as the monojet channel.

23This holds under the assumption that the couplings of the UV complete model are ∼ 1.
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Figure 4.22: As in Fig. 4.21 for the mono-jet channel with (a)
√
ŝ = 8 TeV and (b)√

ŝ = 13 TeV.
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Figure 4.23: A Feynman diagram for the mono-jet process. The time “runs” upwards.

Feynman diagram is shown in Fig.4.23) is C χ0
1 σµν χ

0
2F

µν
Z with C ∼ cWdW +sWdγ . Thus,

if the pair of χ0
1 χ

0
2 particles are produced with energy larger than ∼ Λ(cWdW + sWdγ)−1,

the calculation is considered to be inaccurate. In order to understand this, a numerical
example is given in Fig. 4.24, where the dependence of the differential cross section on
the invariant mass of the dark sector particles (which measures the energy that would
be transferred by the integrated out particle) is shown for MD = 250 GeV, dW = 0.45
and dγ = 0.25. We observe that above ∼ 2 TeV, the mono-jet differential cross section
falls rapidly, and, the main contribution to the inclusive cross section, around 85% for
this particular example, arises for invariant masses with M(χ0

1χ
0
2) . 2 TeV. In addition,

since C ≈ 0.5 and Λ = 1 TeV, the energy scale where this calculation is inaccurate is
Λ
C ∼ 2 TeV, and therefore this calculation is, in principle, reliable.

Furthermore, the limit discussed above could be different, since the expansion of the
UV complete model is generally written in powers of λ

M , where λ is a generic coupling (or
a function of couplings) of this model and M is the mass of the particle which is integrated
out. The convergence of this expansion depends on the value of λ

M which is, in principle,
different from C

Λ . An extensive discussion on the limitations of effective theories at the
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Figure 4.24: The dependence of the mono-jet differential cross section, dσ/dM(χ0
1χ

0
2), on

the invariant mass for the pair of the neutral fermions, for
√
ŝ = 13 TeV,

MD = 250 GeV, dW = 0.45 and dγ = 0.25.

LHC can be found in refs. [283,284]. Finally, as shown in ref. [285], there are cases where
the decay width of the particle that is integrated out vastly affects the cross section. There
are also UV independent bounds coming from unitarity, discussed in refs. [286, 287]. A
detailed study of these effects is beyond the scope of this work.

4.7 Conclusions

We have introduced in the SM particle spectrum a fermionic bi-doublet: a pair of Weyl
fermion SU(2)L-doublets, D1 and D2, with opposite hypercharges. In addition, we as-
sume a discrete Z2-symmetry that distinguishes D1 and D2 from the SM fields. This
anomaly free set of fermions, together with the Z2-symmetry are quite common features
in non-supersymmetric SO(10) GUT constructions for light dark matter. Light SU(2)L
doublets, whose components are parts of the WIMP have been also considered countless
of times in “UV-complete” non-supersymmetric or supersymmetric models (i.e. higgsino
dark matter). Our work is related to these UV models when all other particles but the
doublets have been integrated out in their low energy spectrum.

At the renormalizable level the mass spectrum consists of a electromagnetically neutral,
and a charged Dirac, fermions. Under the presence of d = 5 operators, the neutral
Dirac fermion is split into two Majorana states, the WIMP, χ0

1, and its excited state, χ0
2.

Moreover, the d = 5 operators include magnetic and electric dipole transitions which are,
in principle, generated by a UV-complete theory, possibly at the TeV scale. We ask here
the question whether the dark matter particle χ0

1, with mass (mχ0
1
), around the EW scale,

is compatible to various collider, astrophysical and cosmological data.

In order to reduce fine tuning and extensive scans of the parameter space, in Section 4.3.1
we adopted four scenarios, a,b,c and d, based on well motivated symmetry limits of the
theory such as a charge conjugation or a custodial symmetry that act on D’s and Higgs
field H. These low energy symmetries simplify enough the analytical expressions of the
interactions and possibly help to construct UV-completions of the model. After collecting
all relevant d = 5, and d = 6 (though the latter not used in the analysis), operators in
Appendix B, we went on to investigate their implications into collider and astrophysical
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processes.

In Section 4.4, we performed a constraint analysis based (i) on scattering WIMP-nucleus
recoiling experiments, such as LUX, (ii) on LEP searches for new fermions, as well as (iii)
on LHC searches for the decay h → γγ. Bounds on the model parameters (4.17) are
collected in Fig. 4.4. Only in cases (b) and (c) there is still enough freedom to carry on.
In the same section, we also studied contributions from the new fermion interactions into
oblique electroweak S, T and U parameters. Only the S parameter is affected, and, as a
consequence, only case (a) is further constrained.

Focused on the more interesting cases (b) and (c), in Section 4.5 we calculated the relic
density Ωh2 for χ0

1. In the presence of d = 5 dipole operators there are destructive inter-
ference effects in the (dominant) amplitudes for WIMP annihilations (or co-annihilations)
into SM vector bosons. The minima in the cross sections correspond to certain, usually
non-zero, values for the coefficients of the dipole operators dW and dγ [see eqs. (4.56a) and
(4.56b)]. Nearby these minima the relic density is found to be consistent with observation
[eq. (3.69)] for mχ0

1
& 200 GeV. Although continuous gamma ray spectrum constraints

are harmless, constraints from monochromatic gamma ray spectrum are serious for the
photon dipole coupling as it is shown in Figs. 4.19 and 4.20. The coefficient dW has to
be more than 10% a value which is non-negligible for UV models with dark matter at the
EW scale. dγ on the other hand can be tuned to zero without a problem.

Apart from possible aesthetics, the main reason in insisting for EW dark matter mass,
mχ0

1
≈ MZ , has to do with enhancing the possibility of observing the dark sector at the

LHC (or, in any case, to be as close as visible in the Run II phase). In Section 4.6 we
estimated the cross section for producing χ0

1 at LHC with center of mass energy
√
ŝ = 8

and 13 TeV and in association with a jet (monojet) or 2 jets or a W or a Z. We found that
the monojet process is the most promising with a few hundred of events at

√
ŝ = 13 TeV

and with mχ0
1
' 200− 350 GeV (see Fig. 4.22).
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5 Radiative Light Dark Matter

In previous chapters, we examined two models which predict a dark matter particle with
mass at the electroweak scale. A common feature in both models was a global symmetry in
the Yukawa sector, which is responsible for evading the bounds imposed by direct detection
experiments without fine-tuning, since the so-called blind spots appear naturally. However,
as the sensitivity of direct detection experiments increases, such bind-spots might not be
able explain the lack of dark matter signal, since loop corrections to spin-independent
interactions usually do not vanish. Therefore, if no DM signal is detected, the prospect
of a dark matter particle with mass well bellow the electroweak scale (where the direct
detection experiments are still insensitive) have to be contemplated. In this case, though,
one questions arises: What is the origin of the suppressed DM mass? In this chapter, we
propose an answer to this question. Specifically, we demonstrate that the mass of the
DM particle can be generated in a natural way, along with the observed relic abundance
without parameter fine tuning.

We present a Peccei–Quinn (PQ)-symmetric two-Higgs doublet model that naturally
predicts a fermionic singlet dark matter in the mass range 10 keV–1 GeV. The origin of
the smallness of the mass of this light singlet fermion arises predominantly at the one-
loop level, upon soft or spontaneous breakdown of the PQ symmetry via a complex scalar
field in a fashion similar to the so-called Dine–Fischler–Sredniki–Zhitnitsky axion model.
The mass generation of this fermionic Radiative Light Dark Matter (RLDM) requires the
existence of two heavy vector-like SU(2) isodoublets, which are not charged under the
PQ symmetry. In this chapter show how the RLDM can be produced via the freeze-in
mechanism, thus accounting for the missing matter in the Universe. Finally, we briefly
discuss possible theoretical and phenomenological implications of the RLDM model for
the strong CP problem and the Large Hadron Collider. This chapter is based on the work
of ref. [94].

5.1 Introduction

Ongoing searches for the elusive missing matter component of the Universe, the so-called
dark matter, have offered no conclusive evidence so far. From analyses of the CMB power
spectrum and from pertinent astronomical studies, we now know that about one quarter
of the energy budget of our Universe should be in the form of DM, and so many candidate
theories have been put forward to address this well-known DM problem [115]. Among
the suggested scenarios, those predicting Weakly Interactive Massive Particles (WIMPs)
constitute one class of popular models that may not only account for the DM itself, but
also leave their footprints in low-energy experiments, or even at high-energy colliders,
such as the LHC [142]. In particular, for WIMPs near the electroweak scale, the WIMP-
nucleon scattering cross section is estimated to be somewhat below 10−46 cm2 as measured
by LUX [100].

Projected experiments that lie not very far ahead in future will be capable of reach-
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ing sensitivity in the ballpark 10−47–10−48 cm2 [106], and so they will be getting closer
to the neutrino-nucleon background cross section, the infamous “neutrino floor,” where
disentangling neutrino signals from those of WIMPs will become almost an impossible
task [288]. Therefore, DM models have to be constructed (or revisited) to avoid such
severe constraints, e.g. by contemplating scenarios that either sufficiently suppress the
WIMP-nucleon interaction, or move the DM mass to the sub-GeV or ultra-TeV region.

Several models have been proposed featuring a light DM in the mass range O(keV)–
O(GeV), such as sterile neutrino DM [89, 90, 289–291], light scalar DM [91] and milli-
charged DM [92], including their possible implications for future DM searches [292, 293].
However, one central problem of such models is the actual origin of the small mass for the
light DM, which could be more than six orders of magnitude below the electroweak scale.

In this work we address this mass hierarchy problem, by presenting a new radiative
mechanism that can predominantly account for the smallness in mass for the light DM.
The so-generated Radiative Light Dark Matter (RLDM) is a fermionic singlet S and can
naturally acquire a mass in the desired range: 10 keV–1 GeV. A minimal realization of this
radiative mechanism requires the extension of the Standard Model (SM) by one extra scalar
doublet, resulting in a Peccei–Quinn (PQ)-symmetric two-Higgs doublet model [294,295],
augmented by two fermionic heavy vector-like SU(2) isodoublets D1 and D2, which are
not charged under the PQ symmetry. The mass of the RLDM is predominantly generated
at the one-loop level, upon soft or spontaneous breakdown of the PQ symmetry via a
complex scalar field, e.g. Σ, in close analogy to the so-called Dine–Fischler–Sredniki–
Zhitnitsky (DFSZ) axion model that addresses the strong CP problem [63,64].

We analyse the production mechanisms of the RLDM in the early Universe, and show
that it can account for its missing matter component via the so-called freeze-in mecha-
nism [61]. In fact, we illustrate how the freeze-in mechanism remains effective in the RLDM
model, without the need to resort to suppressed Yukawa couplings. In this context, we
investigate two possible scenarios of both theoretical and phenomenological interest. In
the first scenario, we consider the breaking of the PQ scale fPQ to be comparable to the
one required for the DFSZ model to solve the strong CP problem, i.e. fPQ ∼ 109 GeV. We
find that such PQ scale can exist within this realization, provided an appropriate isodou-
blet mass MD and reheating temperature TRH is considered. In the second scenario, we
relax the constraint of the strong CP problem on fPQ, and investigate its possible lower
limit, with the only requirement that TRH be larger than the critical temperature TC of
the SM electroweak phase transition, thus allowing for the B+L-violating sphaleron pro-
cesses to be in thermal equilibrium. This requirement is introduced here, so as to leave
open the possibility of explaining the cosmological baryon-to-photon ratio ηB via low-scale
baryogenesis mechanisms, such as electroweak baryogenesis [155,156] and resonant lepto-
genesis [157,158,296,297]. In this second scenario, we find that the heavy Higgs bosons of
the two-Higgs doublet model (2HDM) may have masses as low as a few TeV, which are
well within reach of the LHC.

The layout of this chapter is as follows. In Section 5.2, we first introduce the PQ-
symmetric 2HDM, augmented with a singlet fermion S and a fermionic pair of vector-like
doublets D1,2. Then, we describe the radiative mechanism for the RLDM, once the PQ
symmetry is broken softly, and show that a radiative mass in the range 10 keV–1 GeV
can be naturally generated. In Section 5.3, we outline the relevant Boltzmann equation
for computing the relic abundance of the RLDM. Utilising the freeze-in mechanism, we
present in Section 5.4 numerical estimates for the allowed parameter space of our RLDM
model. Based on these results, we explore the possibility whether our model can account
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SU(2)L U(1)Y U(1)PQ Z2

S 1 0 −1 odd

D1 2 −1 0 odd

D2 2 1 0 odd

Φ1 2 1 1 even

Φ2 2 1 −1 even

Table 5.1: Quantum number assignments of particles pertinent to the RLDM Model.

for the strong CP problem within a scenario similar to the DFSZ axion model. Moreover,
we investigate whether an absolute lower limit exists for the heavy Higgs-boson masses in
our effective 2HDM. Indeed, we find that our RLDM model may allow for heavy Higgs
bosons at the TeV scale, whose existence can be probed at the LHC. Finally, Section 5.5
summarises our conclusions and outlines possible new directions for further research.

5.2 Radiative Mechanism

In this section we present a minimal extension of the SM, in which the small mass of
the light DM, in the region 10 keV–1 GeV, can have a radiative origin, generated at
the one-loop level. This radiative mechanism is minimally realised within the context of
a constrained 2HDM obeying a Peccei–Quinn symmetry. In addition, the model under
study contains a singlet fermion S charged under the PQ symmetry and a fermionic pair of
massive isodoublets D1,2 with zero PQ charges. Finally, we delineate the parameter space
for which a viable scenario of Radiative Light Dark Matter can be obtained consistent
with the observed relic abundance.

5.2.1 The Model

In the 2HDM under consideration, we impose a global PQ symmetry U(1)PQ, which forbids
the appearance of a bare mass term for the singlet fermion S at the tree level. This PQ
symmetry will be broken softly or spontaneously which in turn triggers a radiative mass
for S at the one-loop level. The fermion S is stable and receives naturally a small sub-GeV
mass, leading to a RLDM scenario. On the other hand, we note that a candidate for a
light DM would probably be relativistic at its freeze-out (see Section 2.1), resulting in
an extremely large relic abundance (similar to [50]) for the allowed range of DM masses
that are larger than about 3 keV, e.g. see refs. [48, 298]. Therefore, the DM should be
produced out of thermal equilibrium in the early Universe. The mechanism that we will
be utilising here is the so-called freeze-in mechanism [61], described in Section 1.3.3, which
assumes that the DM particles were absent initially and are produced only later from the
plasma.
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The relevant Yukawa and potential terms of our model are given by

−LY = Y1ε
abΦ1aD1b S + Y2Φ†a2 D2a S +MDε

abD1aD2b + H.c. , (5.1)

V (Φ1,Φ2) = m2
11Φ† a1 Φ1a +m2

22Φ† a2 Φ2a −m2
12(Φ† a1 Φ2a + H.c) +

λ1

2
(Φ† a1 Φ1a)

2

+
λ2

2
(Φ† a2 Φ2a)

2 + λ3Φ† a1 Φ1aΦ
† b
2 Φ2b + λ4|Φ† a1 Φ2 a|2 , (5.2)

where a, b = 1, 2 are SU(2)L-group indices (with ε12 = −ε21 = +1), S is a Weyl-fermion
SM singlet, D1,2 are two Weyl-fermion SU(2)L-doublets, and Φ1,2 are two scalar SU(2)L-
doublets. A complete list of the PQ and hypercharge quantum numbers of the aforemen-
tioned particles is given in Table 5.1, including a Z2-parity which excludes the mixing of
dark-sector particles with those of the SM. For simplicity, we assume that the new dark-
sector interactions are CP invariant and so take their respective couplings to be real in
the physical mass basis.

As can be seen from (5.2), we have assumed that the PQ symmetry is broken by the
lowest dimensionally possible mass operator in the scalar potential V , namely by allowing
only the dimension-2 mixing term m2

12 between Φ1 and Φ2. This dimension-2 operator
breaks softly the U(1)PQ-symmetry in the potential, but could result from spontaneous
breaking of the U(1)PQ by a scalar Σ, which acquires a VEV 〈Σ〉 ≡ fPQ ∼ m12 (see
Section 5.4). If the PQ-breaking scale fPQ is high enough, one may neglect, to a good
approximation, the potential quartic couplings λ1,2,3,4, as they do not affect much the
radiative mass mechanism and the DM production rates which we will be discussing in
the next section.

The mass parameters m2
11 and m2

22 of the scalar potential V in eq. (5.2) may be elimi-
nated in favour of the VEVs v1,2 of the Higgs doublets Φ1,2, by virtue of the minimization
conditions on V (for a review on 2HDMs, see [299]). These VEVs are related to the SM
Higgs VEV v, through: v2 = v2

1 + v2
2. In the kinematic region where m2

12 � v2, the mass
parameters m2

11 and m2
22 are approximately given by

m2
11 ≈ m2

12 tβ + O(v2) , (5.3)

m2
22 ≈ m2

12 t
−1
β + O(v2) , (5.4)

where tβ ≡ tanβ = v2/v1.

5.2.2 One-Loop Radiative Mass

Having introduced the minimal model under investigation, we can now discuss the radia-
tive mechanism responsible for the generation of a mass of dimension-3 for the singlet
fermion S. We assume that m12

>∼ 1 TeV, such that the main contribution to the mass
of the S particle comes from the diagram shown in Fig. 5.1. In addition, there will be
a tree-level mass M tree

S generated after the SM electroweak phase transition, given by
M tree
S ' Y1Y2 v

2/MD. Under the assumption that MD is very large, i.e. MD � v, the
tree-level contribution turns out to be sub-dominant compared to the radiatively induced
mass M rad

S , and hence it can be ignored for most of the parameter space. We will return
to this point at the end of this section.

After evaluating the relevant one-loop self-energy graph shown in Fig. 5.1 at zero exter-
nal momentum (p→ 0), we obtain

M rad
S = − 2Y1Y2MDm

2
12 I(MD,m11,m22) , (5.5)
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Φ1 Φ2

q

q + p
S S

p pD1 D2

Figure 5.1: One-loop diagram responsible for the mass generation of the singlet fermion
S.

where

I(MD,m11,m22) =

∫
d4q

(2π)4

1

(q2 −M2
D)(q2 −m2

11)(q2 −m2
22)

. (5.6)

Employing the approximate relations given in (5.3) and (5.4), the one-loop radiative mass
of S is finite and may conveniently be expressed as follows:

M rad
S =

2y2

(4π)2

MD

tβ − t−1
β

[
tβ ln

(
tβ/r

2
)

tβ − r2
−

t−1
β ln

(
t−1
β /r2

)
t−1
β − r2

]
, (5.7)

with y2 ≡ Y1Y2 and r ≡ MD/m12. Observe that the interchange tβ ↔ t−1
β leaves M rad

S

unchanged. Assuming that tβ = 1 for different kinematic regimes of the ratio r, the
following simplified forms for M rad

S are obtained:

M rad
S ' 2y2

(4π)2
MD for r � 1 , (5.8)

M rad
S ' y2

(4π)2
MD for r ∼ 1 , (5.9)

M rad
S ' 2y2

(4π)2

MD ln r2

r2
for r � 1 . (5.10)

Note that for MD � m12 (corresponding to r � 1), the radiative mass M rad
S of the singlet

fermion S is suppressed by the square of the hierarchy factor r. The latter allows for
scenarios, for which the Yukawa couplings are of order 1, i.e. y2 = Y1Y2 = O(1), for
10 keV ≤M rad

S ≤ 1 GeV. On the other hand, for r ∼ 1 and r � 1, one needs either a low
MD of order TeV and y ≈ 0.1, or MD ≈ 108–109 GeV and y ≈ 10−3–10−4.

In Fig. 5.2, we display the values of the coupling parameter y =
√
Y1Y2 , as a function

of MD, which yield a radiatively induced mass M rad
S for the singlet fermion S in the

region 10 keV ≤ M rad
S ≤ 1 GeV, for tβ = 1 and r = 10−2. In particular, we see that

for every set of M rad
S , MD, r, there is an acceptable range of perturbative values for y.

However, if r � 1, the desirable value of y may exceed 10 according to (5.10), and our
perturbative results do no longer apply. Such non-perturbative values of y are excluded
from our numerical estimates for the determination of the relic abundance of S which we
perform in the next section.

In a similar context, we note that a large mass for m11,m12, m22 and MD might seem
to be a huge fine tuning for generating a light sub-GeV radiative mass for S. However,
we may easily convince ourselves that this is not the case. The absence of fine tuning can
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Figure 5.2: Predicted values for MD versus y =
√
Y1Y2 as obtained from (5.7), for MS '

M rad
S ranging from 10 keV to 1 GeV, after setting tβ = 1 and r = 10−2.

be seen in an easier way, if we rotate from the general weak basis spanned by Φ1 and Φ2

to the so called Higgs basis [299,300], H1 and H2, where H1 contains the SM VEV v and
H2 has exactly no VEV. Note that in the Higgs basis, the assignment of the PQ charges
to the fields H1 and H2 is not canonical. Moreover, in this rotated Higgs basis, one has
that the new Higgs-mass parameters obey the relation: m̃2

22 � m̃2
11, m̃

2
12. In addition, the

analogue of the diagram in Fig. 5.1 is now represented by a set of two self-energy graphs,
where the fields H1 and H2 are circulating in the loop. The ultraviolet (UV) infinities
cancel, after the contributions from these two diagrams are added. For tβ = 1 and r = 1,
we then obtain the same result as the one stated in (5.9). Hence, we observe that a small
mass for the singlet fermion S arises naturally in an SM+S effective field theory. This
effective field theory results from integrating out the heavy D1,2 and H2 fields from (5.1)
in the Higgs basis.

Besides the radiative mass M rad
S of S which violates the PQ symmetry by two units

(cf. Table 5.1), there will be a tree-level contribution to the mass of S after the SM
electroweak phase transition. For most r values of interest here, the relative size of the
two contributions can naively be estimated to be

M tree
S

M rad
S

∼ 8π2v2

M2
D

. (5.11)

Thus, for MD �
√

8πv ' 2.2 TeV, the tree-level contribution can be safely ignored. In
our numerical estimates, the tree-level mass term M tree

S is always less than 10% of the
radiative mass term M rad

S . Hence, the total mass MS of the stable fermion S is given
predominantly by the radiative mass term, implying that MS ' M rad

S to a very good
approximation.

We conclude this section by commenting on the possibility of considering a radiative
model alternative to the one discussed here. For instance, one may envisage a scenario
that instead of the single S, one of the neutral components of the doublets D1,2 becomes
the RLDM. In this case, however, the charged component D± from D1,2 will be almost
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degenerate with the light sub-GeV DM particle, which is excluded experimentally. The
general SM+D1,2 effective theory has been studied in [88].

5.3 Dark Matter Abundance

In this section we first describe the relevant effective Lagrangian that governs the pro-
duction of the stable fermions S in the early Universe. We then solve numerically the
Boltzmann equation that determines the yield YS ≡ nS/s of these fermions S, where nS
is the number density of S particles and s is the entropy density of the plasma (1.77).
Having thus estimated the value of YS , we can then use it to deduce the respective relic
abundance ΩSh

2 of the S particles in the present epoch. Finally, we present approxi-
mate analytic results for ΩSh

2 and compare these with the observationally favoured value:
ΩDMh

2 ' 0.12.

As mentioned in the previous section, the stable fermions S will play the role of the
DM, which are produced via the freeze-in mechanism [61]. The key assumption is that
the DM fermions S were absent ( i.e. their number density was suppressed) in the early
Universe and were produced later from annihilations and decays of plasma particles, e.g.
from Φ1,2 and D1,2, according to the model discussed in Section 5.2. Furthermore, we
will assume that D1,2 were also absent in the early Universe, so as to avoid over-closure
of the Universe, unless the Yukawa couplings Y1,2 are taken to be extremely suppressed,
such that decays of the sort D0

1 → hS are made slow and inefficient. The latter results
in a contrived scenario, in which obtaining a viable DM parameter space requires a good
degree of fine tuning. In order for the SU(2)L-doublet fermions D1,2 to be absent, we take
their bare mass MD to be above the reheating temperature TRH of the Universe. This
simplifies considerably our analysis, as the heavy fermions D1,2 can be integrated out.

The effective Lagrangian that determines the production rate of S particles after re-
heating is given by

− Ld=5
eff =

1

2Λ̃

(
Φ†1Φ1 + ãΦ†2Φ2 + b̃Φ†1Φ2 + c̃Φ†2Φ1

)
SS + H.c. , (5.12)

where ã, b̃ and c̃ denote the Wilson coefficients of the dimension-5 operators. The calcu-
lation of the relic abundance is not straightforward in this basis, since Φ1,2 mix and the
identification of the physical fields is obscured, especially after SSB where further mixing
between the scalar fields is introduced. Therefore, according to our discussion at the end
of Section 5.2.2, it would be more convenient to rotate the scalars to the so-called Higgs
basis [299], where only one doublet H1 develops a VEV and is identified with the SM
Higgs doublet. To further simplify calculations, and without much loss of generality, we
assume that the Higgs basis is also the mass eigenstate basis. This assumption is well
justified for relatively large values of m12, as it leads to the so-called alignment limit of
the 2HDM [301–305], which is favoured in the light of global analyses of experimental
constraints [306,307]. In the Higgs basis, the dimension-5 effective Lagrangian reads

− Ld=5
eff =

y2

MD

tβ
1 + t2β

(
H†1H1 −H†2H2 − tβ H†1H2 + t−1

β H†2H1

)
SS + H.c. , (5.13)

where H1 is the SM Higgs doublet and H2 is the heavy scalar doublet with 〈H2〉 = 0.

Note that in the limit of integrated-out H2, eq. (5.13) matches the Lagrangian (2.1),
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with

Λ =
MD

2y2

1 + t2β
tβ

. (5.14)

In fact, as we will see in this section, some of the results of Section 2.1 can be also applied
here.

5.3.1 Boltzmann Equation for YS

In order to determine the relic abundance of S particles, we need to solve the Boltzmann
equation for their yield YS [see Section 1.3.3]. Since we assume that the singlets S remained
out of equilibrium throughout the history of the Universe (at least up to the phase of
reheating), our only concern will then be their production. The main production channels,
depending on the plasma temperature T , are the following:1

H†1H1, H
†
1H2, H

†
2H1 → SS for TC ≤ T < TRH ,

H†2H2 → SS for T < TRH ,

h → SS for T < TC , (5.15)

where h is the Higgs field with mass mh ≈ 125 GeV and TC ≈ 130 GeV is the critical
temperature of the SM electroweak phase transition. For T < TC , one has to add new
channels, for instance W+W− → SS, but their contribution to the production of the DM
particles is negligible compared to h→ SS.

Following [61], the Boltzmann equation for the yield YS becomes

sH
dYS
dT

= − 1

512π5

∑
i,j=H1,H2

[∫ ∞
(mi+mj)2

dŝ Pij |Mij |2K1

(√
ŝ

T

)]

+

(
tβ

1 + t2β

)2 y4

2π3

m3
hv

2

M2
D

K1

(
mh

T

)
, (5.16)

where T is the temperature of the plasma, H is the Hubble parameter, K1 is the first
modified Bessel function of the second kind, Pij ≡

√
ŝ− (mi +mj)2

√
ŝ− (mi −mj)2/

√
ŝ

is a kinematic factor, and |Mij |2 is the squared matrix element, summed over internal

degrees of freedom, for the 2 → 2 annihilation processes: H†iHj → SS. The last term
on the RHS of (5.16) arises from the decay h → SS, upon ignoring the mass of the S
particles. Also, upon ignoring MS , the squared matrix elements |Mij |2 for the various
2→ 2 processes are

|M
H†1H1→SS |

2 = |M
H†2H2→SS |

2 = 16

(
tβ

1 + t2β

)2

y4 ŝ

M2
D

,

|M
H†1H2→SS |

2 = |M
H†2H1→SS |

2 = 8 (t2β + t−2
β )

(
tβ

1 + t2β

)2

y4 ŝ

M2
D

. (5.17)

The solution to the Boltzmann equation is obtained by integrating (5.16) over the temper-
ature T . The limits of integration for the various channels are the ones shown in (5.15).
However, before doing that, we have to make an assumption for the critical temperature

1Note that for T < TC , we only consider the production via h→ SS. This is because the other channels
give negligible contribution to YS , as can be seen from Fig. 2.2.
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and the thermal corrections to the masses of the scalar fields. In what follows, we assume
that the critical temperature TC and the thermal effects on the masses (for T > TC) are
similar to the pure SM Higgs sector and they are given by [154]

TC ∼ mh , m2
H1
≈ m2

h +
1

2
T 2 , m2

H2
≈

1 + t2β
tβ

m2
12 +

1

2
T 2 . (5.18)

Under these assumptions and restricting TRH to be above TC , we can compute the yield YS
at T ≈ 0, which in turn implies the relic abundance (1.123).

5.3.2 Approximate Results for ΩSh
2

In general, the yield YS cannot be calculated analytically, but depending on the reheating
temperature TRH, we are able to present approximate analytic results. We find that for
decoupled D1,2, i.e. TRH > MD, the relic abundance ΩSh

2 derived from YS in (1.123)
takes on the form

ΩSh
2 ≈ 0.12×

(
MS

10−5 GeV

)(
2× 108 GeV

MD

)2( y

4.7× 10−2

)4[( tβ
1 + t2β

)2

+

(
TRH

104 GeV

)]
,

(5.19)
for TRH � m12, and

ΩSh
2 ≈ 0.12×

(
MS

10−3 GeV

)(
2× 105 GeV

MD

)2( y

4.7× 10−4

)4( tβ
1 + t2β

)2[
1+

(
TRH

104 GeV

)]
,

(5.20)
for TRH � m12.2 Equations (5.19 and 5.20) are accurate up to 1%, except for TRH ∼ mH2 ,
where the deviation from the exact result is about 20%. Note that in both the regimes
of TRH, there are two contributions to ΩSh

2, given by the two terms contained in the
last factors of (5.19) and (5.20). The first contribution does not depend on the reheating
temperature TRH and arises from the decay h→ SS, while the second one is proportional
to TRH. This second contribution is a result of the decoupling of the heavy fermionic
doublets D1,2 and indicates that for TRH

>∼ 104 GeV, the production of S particles is
dominated by 2 → 2 annihilation processes given in (5.15). As discussed in [61, 62], the
latter is a general result for the freeze-in production mechanism via non-renormalizable
operators (see also Fig. 2.2). Finally, it is worth pointing out that ΩSh

2 is symmetric
under tβ → t−1

β , as is the expression for MS in (5.7).

5.4 Results

In Section 5.2.2, we have shown that the mass of the singlet S can be generated at the
one-loop level, if the PQ symmetry is softly broken, and in Section 5.3 we have calculated
the relic abundance of the S particles. In this section, we will be exploring the validity of
the parameter space of our minimal model. To this end, one may consider the parameters,

TRH , MD , y2 , tβ and m12 ,

as being independent. However, we prefer to solve the mass formula M rad
S in (5.7) for

y2 and replace it with a physical observable, the S-particle mass MS which is taken in

2For TRH � m12 the heavy scalar (H2) is decoupled. Therefore we can obtain eq. (5.20) from eqs. (2.12)
and (5.14).
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our numerical estimates to be in the region: 10 keV ≤ MS ≤ 1 GeV. Consequently, the
parameters that we allow to vary independently are

TRH , MD , MS , tβ and m12 . (5.21)

We perform a scan over this parameter space, while imposing the perturbativity constraint
on the Yukawa couplings: Y1,2 <

√
4π. In this way, we find the values of these parameters

that satisfy the observed DM relic abundance [29] [see eq. (1.103)]
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Figure 5.3: TRH versus m12 for r = MD/m12 = 10−2, tβ = 1 and several RLDM
masses MS .
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Figure 5.4: The same as in Figure 5.4, but for r = MD/m12 = 105.

In Fig. 5.3 we present contour lines on the TRH–m12 plane for discrete values of the
S-particle mass MS in the region: 1 keV ≤MS ≤ 1 GeV, for tβ = 1 and r = 10−2, which
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give the DM relic abundance (1.103). For m12 ' 1010 GeV, the reheating temperature TRH

can vary between the critical temperature TC ' 130 GeV and 108 GeV. This upper bound
on TRH may be as high as 1014 GeV, if the parameter r = MD/m12 is increased to the
value r = 105, as depicted in Fig. 5.4. Yet, at the same time, m12 increases by one order
of magnitude or so. On the other hand, for m12 ' 1 − 10 TeV, an acceptable DM relic
abundance is reached only for large r and for MS ' 1 keV, as can be seen from Fig. 5.4.
Most remarkably, we notice that the predicted values for ΩSh

2 are compatible with the
observed DM relic abundance ΩDMh

2, for a wide range of values for the parameters m12,
MD and TRH. Interestingly enough, the required Yukawa couplings Y1,2 for a viable RLDM
are sizeable, and always larger than the electron Yukawa coupling.

We recall here that we explore only regions where the fermion doublets D1,2 are de-
coupled after the reheating of the Universe, i.e. we assume MD � TRH. As a working
hypothesis, we assume the decoupling condition: MD > 3TRH. This condition is mo-
tivated by the fact for T ≈ MD/3, the D1,2 particles become non-relativistic and, as a
consequence, its number density is exponentially suppressed by a Boltzmann factor. Cor-
respondingly, for the scenario considered in Fig. 5.3, the heavy scalar H2 will be also
decoupled, because mH2 �MD.

Furthermore, we observe that for TRH
>∼ 104 GeV, m12 becomes linearly dependent

on the reheating temperature (as Fig. 2.3), as expected from the approximate analytic
expression in (5.20). We also obtain a similar behaviour in Fig. 5.4. In this case, however,
the heavy scalar doublet H2 is no longer constrained to be decoupled. As a result, there
is an interface region at TRH ∼ m12 that lies between the two linear regimes, TRH � m12

and TRH � m12. At the interface region, there is a transition caused by the contribution
of the heavy scalar doublet H2 to the production of singlet fermions S [cf. (5.15)], which
can reach equilibrium with the plasma when TRH � m12.

5.4.1 Solving the Strong CP Problem

It is known that in the SM there is an explicit breaking of CP (and P) discrete symmetry
due to the instanton-induced term

Lθ =
θ

32π2
Tr(GµνG̃

µν) . (5.22)

In the above, θ is a CP-odd parameter which can be absorbed into the quark masses.
However, this θ-parameter cannot be fully eliminated, since the combination: θ̄ = θ −
ArgDetMq, where Mq is the quark mass matrix, becomes a physical observable. It con-
tributes to the neutron dipole moment and experimentally, it is severely bounded to
be: |θ̄| <∼ 10−11 [308]. The problem of why θ̄ is much smaller than all other CP-violating

parameters, such as the well-known parameter εK ∼ 10−3 from the K0K
0

system, intro-
duces another hierarchy problem in the SM known as the strong CP problem. A possible
solution, suggested by Peccei and Quinn [294, 295], is to promote the θ-parameter into
a dynamical field which naturally minimizes the energy. This dynamical field, called the
axion [309,310], is a pseudo-Goldstone boson of the global anomalous PQ symmetry.

The SM has no global anomalous U(1)PQ-symmetry. One possible way to realise such
a symmetry is to non-trivially extend its Higgs sector by adding a second Higgs doublet,
resulting in the PQ-symmetric 2HDM. However, charging simply the field doublets Φ1

and Φ2 under the PQ symmetry as done in Table 5.1 does not lead to a healthy model.
Such a model predicts a visible keV-axion with PQ-breaking scale fPQ ∼ 100 GeV, which
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is already excluded by the experiment. A minimal extension suggested by Dine–Fischler–
Sredniki [64]–Zhitnitsky [63] (DFSZ) is to add a SM singlet Σ with charge +1 under
U(1)PQ-symmetry such that the scalar potential term,

λΣ Σ2 Φ†1 Φ2 + H.c. ⊂ V (Φ1,Φ2,Σ) , (5.23)

is invariant. Then, such a Σ-dependent term that occurs in the DFSZ potential V (Φ1,Φ2,Σ)
breaks the PQ symmetry spontaneously, when the electroweak singlet field Σ receives a
large VEV 〈Σ〉 which is not necessarily tied in with that of the electroweak scale v. For
this reason, in this work we have made the identification

〈Σ〉 ≡ fPQ ≈ m12 , (5.24)

with λΣ ≈ 1. From experimental constraints and astrophysical considerations, the PQ-
breaking scale fPQ must be typically larger than 109 GeV [311]. Interestingly, within
the RLDM scenario, there are values for m12 satisfying this constraint and at the same
time are compatible with the observed ΩDMh

2, as discussed in the previous section. An
example is shown in Fig. 5.3 for MS = 1 GeV and TRH � m12. In addition, values where
m12

>∼ 109 GeV can be also obtained for other hierarchies e.g. r ∼ 1 and r � 1, as shown
in Fig 5.4. This seems to be a rather generic feature of the RLDM realization.

Although the above is a strong indication that the DFSZ solution to the strong CP
problem is consistent with the RLDM scenario, a detailed analysis of the UV-complete
DSFZ-extended model lies beyond the scope of this article. In particular, for fPQ ∼
1011 GeV [312], the axion becomes a sizeable DM component resulting in a two-component
DM, consisting of the axion and the S particle, and so a more careful treatment will be
required.

5.4.2 Detection of RLDM

We observe that for small enough reheating temperatures, TRH ∼ 1 TeV, the fermion
doublets D1,2, as well as the heavy scalar doublet H2, can lie at the TeV scale, provided
that MS is of order O(10 keV). This is shown in Figs. 5.3 and 5.4 for light MS , where
MD and m12 lie in the vicinity of the TeV scale. As a result, the DM particle S can be
probed indirectly by looking for its associated “partners” of the heavy Higgs doublet H2.
In general, we expect that at the LHC, the heavy sector of the 2HDM will be efficiently
explored up to the TeV scale [303, 313]. For the RLDM scenario at hand, however, such
exploration may be somehow challenging, when looking for charged Higgs bosons with
masses larger than ∼ 1 TeV for a wide range of tβ values [303,313].

On the other hand, direct detection experiments for sub-GeV DM particles focus on
their interactions with atomic electrons (see Sections 1.3.5 and 2.1). However, in the
RLDM scenario, such a detection of S particles is practically unattainable, because S
interacts feebly with the SM Higgs boson with a coupling proportional to v/MD � 1
yielding a cross section for S e→ S e, which is highly suppressed by fourth powers of the
electron-to-Higgs-mass ratio, i.e.

σ̄Se ≈
y4

π

t2β
(1 + t2β)2

(
me

mh

)4 1

M2
D

≈ 10−50 ×
y4 t2β

(1 + t2β)2

(
1 GeV

MD

)2

cm2 . (5.25)

Hence, a simple estimate shows that σ̄Se is much smaller than its current experimental
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reach: σ̄exp
Se ' 10−38 cm2.3

Another potentially observable effect could originate from the invisible Higgs boson
decay, h → SS. Current LHC analyses report the upper bound [153] given in eq. (2.3),
which for the RLDM scenario translates into

MD
>∼ 104 × y2 tβ

1 + t2β
GeV .

Note that this constraint is comfortably satisfied for the entire range of our parameter
space.4

In summary, at least for the foreseeable future, the RLDM particle S proposed here will
remain elusive. This leaves only a window for the LHC to find indirectly a second heavy
Higgs doublet H2 and/or a pair of heavy fermion doublets D1,2.

5.5 Conclusions

Chapters 3 and 4, were dedicated to the study of EW-scale WIMPs. By carefully studying
symmetric cases (charge conjugation or SU(2)R custodial), we were able to find a way to
avoid the bounds imposed by direct detection experiments, without parameter fine tuning,
while keeping the models as minimal as possible. In this chapter, we dropped the require-
ment of the EW-scale WIMP, thus avoiding current and (possibly) future experimental
constraints, and focused on the case of a sub-GeV DM particle.

One central problem of most electroweak scenarios that require the existence of very
light DM particles in the keV-to-GeV mass range is the actual origin of this sub-GeV scale.
To address the origin of such a small scale, we have presented a novel radiative mechanism
that can naturally generate a sub-GeV mass for a light singlet fermion S, which is stable
and can successfully play the role of the DM.

In order to minimally realize such a Radiative Light Dark Matter, we have considered a
Peccei–Quinn symmetric two-Higgs doublet model, which was extended with the addition
of a singlet fermion S and a pair of massive vector-like SU(2) isodoublets D1,2 that are not
charged under the PQ symmetry. Instead, the singlet fermion S is charged under the PQ
symmetry and so it has no bare mass at the tree level. However, upon soft breaking of the
PQ symmetry, we have shown how the singlet fermion S receives a non-zero mass at the
one-loop level. The so-generated radiative mass for the singlet fermion S lies naturally in
the cosmologically allowed region of ∼ 10 keV–1 GeV.

We have computed the relic abundance of the RLDM S, for different plausible heavy
mass scenarios. Specifically, for all scenarios we have been studying, we have assumed
that the S particles were absent in the early Universe, whilst the fermion isodoublets D1,2

stay out of equilibrium through the entire thermal history of the Universe, because their
gauge-invariant mass MD is taken to be well above the reheating temperature TRH. Then,
we have found that the observationally required relic abundance for the RLDM S can be
produced via decays and annihilations of Higgs-sector particles.

3 As shown in Section 2.1, the minimum value of Λ is obtained for TRH = TC (see Fig. 2.3). This

corresponds to a decoupled H2, which means that the lowest possible value of MD
2y2

1+t2β
tβ

is equal to the

lowest possible value Λ. Therefore, as in the light singlet DM of Section 2.1, the RLDM model has a
maximum S-electron cross section σ̄Se ∼ 10−72 cm2.

4 Again, this can be seen from Fig. 2.3 and eq. (5.14).
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We have analyzed a heavy mass scenario where the PQ-breaking scale fPQ can reach
values ∼ 109 GeV as required by the Dine–Fischler–Sredniki–Zhitnitsky axion model to
explain the strong CP problem. We have found that for appropriate isodoublet masses (
e.g. in Fig. 5.3 MD ∼ 10−2 fPQ), the RLDM particle S in such a scenario can successfully
account for the missing matter component of the Universe. In addition, we have investi-
gated whether a lower mass limit exists for the heavy Higgs scalars, within the context of
a viable RLDM scenario. We have found that the masses of the heavy scalars can be as
low as TeV, which allows for their possible detection at the LHC in the near future.

The PQ-symmetric scenario we have studied here generates a viable RLDM at the one-
loop level. However, one may envisage other extensions of the SM, in which the required
small mass for the light DM could be produced at two or higher loops. For instance, if
the SM is extended by two scalar triplets, a small DM mass can be generated through
their mixing at the two-loop level, in a fashion similar to the Zee model. In this context,
it would be interesting to explore possible models where both the tiny mass of the SM
neutrinos and the small mass of the light DM have a common radiative origin and study
their phenomenological implications.
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6 Conclusions and Future Directions

A great number of independent astrophysical and cosmological observations, indicate that
the total matter content of the Universe is dominated by an unknown component, probably
in the form of electrically neutral, stable particles. However, despite the numerous direct,
indirect, and collider experiments, these particles have not been identified yet. In this
thesis, we studied the phenomenology of three models which contain particle dark matter
candidates.

The first chapter was dedicated to the introduction of the basic formalism we used
throughout this thesis. In the first part of this chapter, we reviewed the Standard Model
of particle physics. Particularly, we discussed its gauge structure, particle content, and
the Higgs mechanism. Next, in the second part, we introduced the basic formalism of
standard cosmology and discussed the thermodynamics of the expanding Universe. In
the third part of this chapter, we reviewed the evidence for the existence of dark matter.
We discussed the features of the hypothetical DM particle, and demonstrated how the
freeze-out and freeze-in mechanism can provide an explanation for the observed DM relic
abundance. Finally, we reviewed some DM-oriented direct, indirect, and collider searches.

Next, in Chapter 2, as an introductory example, we studied the Singlet Dark Matter
model, which consists of a fermion gauge singlet, S. Assuming that this particle does not
mix with the SM fermions, we introduced the only possible S-Higgs interaction, in the form
of a d = 5, non-renormalizable operator. Then we calculated its relic abundance in two
distinct mass regions. Focusing on the sub-GeV scenario, we argued that the freeze-out
mechanism cannot be applied. Then, we calculated the relic abundance for the S-particle
using the freeze-in mechanism. In particular, we examined carefully the production of
these particles in the early Universe, discussing also their possible equilibration, and we
found the values of the parameters that the observed DM relic abundance can be obtained.
Afterwards, we considered the heavier case, with DM mass above 10 GeV, and showed
that the observed relic abundance can be produced via freeze-out mechanism. However,
due to the direct detection bounds, we showed that only a narrow, fine-tuned region of
the parameter space is allowed.

In Chapter 3, we considered the “Doublet-Triplet Fermionic Dark Matter” model, which
consists of two Weyl fermionic iso-doublets, and one Majorana fermion SU(2)L-triplet.
Exploiting a global SU(2)R symmetry in the Yukawa sector we were able to show that the
spin-independent cross section is suppressed, since it appears through loop corrections.
Moreover, we showed that this model accommodates a particle with mass ≈ 90 GeV,
which can account for the dark matter content of the Universe, provided a sizeable Yukawa
coupling. Furthermore, we demonstrated how the WIMP of this model can be produced
(and even detected) at the LHC. Although this model was “quite minimal” (there were
only three free parameters), it showed us how various observables can cooperate towards
the same goal, i.e. a WIMP at the EW scale and detectable at the LHC. However, due
to the requirement of a sizeable Yukawa coupling, the branching ratio of h→ γγ and the
stability of the SM vacuum, indicated that this model needs completion, probably near
the TeV scale.
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Next, in Chapter 4, we studied an EFT model, consisting of a pair of doublets (the same
as in the previous work), which was motivated by the doublet-triplet case. Assuming that
the cut-off energy is at O( TeV), we performed a phenomenological analysis including all
possible renormalizable and non-renormalizable operators up to d = 5. In this EFT, the
non-renormalizable operators are responsible for the mass splitting between the compo-
nents of the two doublets, the interaction between the DM particle and Higgs bosons,
and dipole interactions with the gauge bosons. As in the previous work, the custodial
(or charge conjugation) symmetric limit ensured the reduction of parameter fine tuning
as well as the simplification of the parameter space. The main result of this analysis was
that the dark matter particle can be near the electroweak scale (while evading all direct,
indirect and collider constraints), only in the presence of non-vanishing dipole operators.
This is a certain prediction for the pure doublet fermionic dark matter scenario, which
can help pointing towards the right direction for possible UV-completions. Furthermore,
the non-zero dipole operators indicate possible sizeable cross sections for the processes
DM DM → γγ and DM DM → γZ, which can lead to a potential indirect signal with a
WIMP mass near the electroweak scale. Finally, we showed that the cross sections for the
current mono-X searches at the LHC are somewhat suppressed, but the mono-jet channel
seems to be within reach of the 300fb−1 luminosity phase of the LHC. Although it seems
paradoxical to introduce an EFT motivated by a model which needs completion, we were
able to follow a path which lead to new results, i.e. if the low-energy content consists of
these two doublets, and the mass of the DM particle is near the EW scale, then there are
heavier particles (with masses around 1 TeV) which generate sizeable dipole interactions.

In Chapters 3 and 4, we examined two cases of well motived and natural EW-scale
WIMPs. One of the main issues we encountered was the lack of WIMP-signal, despite the
increased sensitivity of direct detection experiments. In Chapter 5, we tried to explain
this missing signal by assuming that the mass of the DM particle is below the GeV scale,
therefore completely abandoning the WIMP hypothesis. By following the spirit of the
previous chapters, i.e. be as natural as possible, we tried to explain the origin of the sub-
GeV mass of the DM particle. In this chapter, we introduced a two-Higgs doublet model,
symmetric under a global U(1)PQ (Peccei-Quinn) symmetry. In addition to the extended
Higgs sector, we introduced two Weyl iso-doublets with opposite hypercharges (and neutral
under U(1)PQ), with mass well above the reheating temperature of the Universe. The dark
matter particle is a gauge singlet charged under the Peccei-Quinn symmetry, therefore
massless at tree level. Assuming that U(1)PQ breaks due to a two-dimensional term in
the scalar potential, we showed that a mass term for the dark matter particle emerges at
one-loop level. In addition, we showed that the observed relic abundance can be obtained
through the freeze-in mechanism. This was a minimal model which explains, at the same
time, the dark matter density of the Universe and the origin of the smallness of the mass
of the dark matter particle, without the need for parameter fine tuning.

The work presented in this thesis can lead to other studies motivated by the findings
of each model. In particular, the Doublet-Triplet Fermionic Dark Matter model, which
belongs in the family of simplified dark matter models, shows that the electroweak-scale
WIMP scenario is still viable (as the low-energy limit of a complete model). Interestingly,
extensions of this model can be studied in the future, which can be motivated either
phenomenologically, e.g. correcting the branching ratio of the Higgs decay to two photons,
or theoretically, e.g. SO(10) GUTs predicting a doublet-triplet low-energy particle content
supplied by a Z2-symmetry.

As we showed in our EFT analysis in Chapter 4, the phenomenological study of minimal
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dark sectors can lead to interesting results. Generally, by only studying such low-energy
sectors, some characteristics of the complete model can be identified. Therefore, the
study of various EFTs can be used to classify possible completions of simple dark sectors.
The EFT framework, can be used to examine, phenomenologically or theoretically, well-
motivated complete models in a generalized fashion.

Certainly, the sub-GeV dark matter scenario can be realized in a natural way. However,
there are still some open questions that need to be addressed. In particular, the PQ
breaking scale, which is important in the RLDM, may be linked to the strong CP problem.
Moreover, certain values of the PQ scale can provide with a sizeable axion relic abundance.
Therefore, the investigation of the origin of the PQ scale, perhaps by embedding the
RLDM in the DFSZ, can provide interesting insight. Also, since the RLDM was a “proof
of concept” of natural sub-GeV dark matter models, an interesting direction for the future
would be to identify other models with similar attributes.

With particle colliders, constantly pushing the limits of modern technology, ever-increasing
direct detection sensitivity, and satellites able to detect the aftermath of the Big Bang,
the DM particle seems to be within our reach. Theoretical research on dark matter (as
well as other related topics), helps to point towards the right direction in the pursuit of
a complete particle theory. The work presented in this thesis, may steer us closer to that
goal.
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7 Appendix

A One-loop Vertex

The 1-loop corrected vertex amplitude arises from (a) and (b) diagrams depicted in Fig. 3.9
involving vector bosons (W or Z) and new charged (χ±i=1,2) or neutral (χ0

i=1..3) fermions.
It can be written as,

i δY =
∑

j=(a),(b)

(i δY χ±
j + i δY χ0

j ) , (A.1)

where

i δY χ±

(a) = −g2
2∑

i,j=1

{(
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1i Y
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+
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}
, (A.2d)

where the integrals, IV1...5, are defined in terms of Passarino-Veltman (PV) functions [314]
as,

IV ij1 = (D − 1)m2
i C0(−p, p,mi,mV ,mj)−

m2
i

m2
V

B0(0,mi,mj)

+ (D − 1)B0(p,mV ,mj)−
1

m2
V

A0(mj) , (A.3)

IV ij2 = (D − 1)C0(−p, p,mi,mV ,mj)−
1

m2
V

B0(0,mi,mj), (A.4)
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IV ij3 =
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m2
i

m2
V

−
m2
χ0

1

m2
V

)
mχ0

1
[C11(−p, p,mi,mV ,mj)− C12(−p, p,mi,mV ,mj)]

+

(
1 +

m2
i

m2
V

−
m2
χ0

1

m2
V

)
mχ0

1
C0(−p, p,mi,mV ,mj)−

mχ0
1

m2
V

B1(p,mV ,mj)

+
mχ0

1

m2
V

B0(0,mi,mj) , (A.5)

IV i4 =

(
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−
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IV i5 = (D − 1)C0(p,−p,mV ,mi,mV ) +
1

m4
V

A0(mi) , (A.7)

where D ≡ 4 − 2 ε δMS and δMS = 1 for MS and δMS = 0 for DR scheme. All external
particles (i.e., χ0

1) are taken on-shell and mi = mχ0
i

for V = Z and mi = mχ±i
for V = W .

Our notation for PV-functions A,B,C, follows closely the one defined in the Appendix
of ref. [315]. Functions A0, B0, B1 contain both infinite and finite parts while C0, C11, C12

- functions are purely finite. Our calculation has been done in unitary and (for a cross
check) in Feynman gauge. The result for - i δY - is both renormalization scale invariant
and finite.

B Non-renormalizable operators

Apart from the mass term in eq. (4.1), and the renormalizable couplings to gauge bosons
discussed in Section 4.3, the “D”-doublets couple to the bosons of the theory through non-
renormalizable d = 5, 6 interactions. Gauge numbers, denoted as (SU(3)C , SU(2)L)U(1)X ,
for the particles here are: for quarks Q ∼ (3c,2)1

3
, ū ∼ (3c,1)−4

3
, d̄ ∼ (3c,1)+2

3
, for lep-

tons: L ∼ (1c,2)−1, ē ∼ (1c,1)+2, for the Higgs doublet: H ∼ (1c,2)+1 and finally for
the new bi-doublets: D1 ∼ (1c,2)−1 and D2 ∼ (1c,2)+1. Schematically, the possible in-
teractions are: ffHH, ffDH, ffDD , where D is the covariant derivative acting in both
Weyl fermions f or to the Higgs fields. We arrange all Weyl fermions f to be left-handed.

We list below all relevant possible independent d = 5 and d = 6 operators. An analogous
list has been constructed in ref. [316] but for the fermionic singlet extension of the SM.
The complete set of d = 5, 6 Standard Model operators can be read from ref. [317].

B.1 d = 5 non-renormalizable operators

• ffHH : The d = 5 operators alter the DM mass spectrum and the Higgs-boson
interactions with the dark sector obtained for f = D1, D2, when integrating out

126



Chapter 7. Appendix

heavy particles. Examples of possible simplified models that result into these oper-
ators, are obtained by integrating out fermion neutral singlets (S0) and triplets (T ),
fermion charged singlets (S±) and triplets (T±), or scalar singlets, (ΦS0 ,ΦS±) and
triplets, (ΦT 0 ,ΦT±). In fully SU(2)L-invariant form we have

−Ldim=5 ⊃ +
λ2

1

2MS0

(εabHaD1b) (εcdHcD1d) +
λ2

2

2MS0

(H†aD2a) (H†bD2b)

+
λ12

MS0

(εabHaD1b) (H†cD2c) +
λ′12

MS±
(εabHaD2b) (H†cD1c)

+
Y 2

1

2MT
[εabHa(τ

A)cbD1c] [εfgHf (τA)hgD1h] +
Y 2

2

2MT
[H†a(τA)baD2b] [H†c(τA)dcD2d]

+
Y12

MT
[H†a(τA)baD2b] [εcdHc(τ

A)fdD1f ] +
Y ′12

MT±
[H†a(τA)baD1b] [εcdHc(τ

A)fdD2f ]

+
ξ12

MΦ0

(εabD1aD2b)(H
†cHc)

+
k2

1

2MΦ±T

[εabD1a(τ
A)cbD1c] [εfgHf (τA)hgHh] +

k2
2

2MΦ±T

[εabD2a(τ
A)cbD2c] [H†d(τA)fdεfgH

†g]

+
k12

MΦT0

[εabD1a(τ
A)cbD2c] [H†d(τA)gdHg] +

k′12

MΦT0

[εabD2a(τ
A)cbD1c] [H†d(τA)gdHg]

+ H.c. , (B.1)

where the meaning of various mass scales is rather obvious e.g., those suppressed
by MS0 ,MS± and MT,T± are derived from integrating out heavy fermionic neutral
and/or charged singlets and triplets S0, S

± and, T, T± respectively, and so on.

However, not all operators in eq. (B.1) are independent; in fact most of them are
not. Using a standard identity for Pauli matrices, (τA)ab(τ

A)cd = 2(δadδbc− 1
2δabδcd),

one can arrive at the most general form of (B.1) written as

−Ldim=5 ⊃ +
y1

2 Λ
(εabHaD1b) (εcdHcD1d) +

y2

2Λ
(H†aD2a) (H†bD2b)

+
y12

Λ
(εabHaD1b) (H†cD2c) +

ξ12

Λ
(εabD1aD2b)(H

†cHc) + H.c. (B.2)

where we use a common mass scale Λ at which heavy particles are integrated out
and the complex valued Yukawa couplings y1, y2, y12, ξ12. We should also remark
that the last operator in (B.2) is somewhat trivial and it can appear in any powers
of the Higgs polynomial. At EW vacuum it adds a common mass to D1 and D2 as
in eq. (4.1) does. All operators in (B.2) give masses to neutral components of the
WIMPs except from the last one that gives mass also to the charged components.

Furthermore, in this class belongs the famous Weinberg operator for neutrino masses,
with f = L being the SM lepton doublet

yν
2 Λ

(εabHaLb) (εcdHcLd) + H.c. (B.3)
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The origin of this operator is not necessarily related to the DM sector. Note that
the first three terms in eq. (B.2), can also be obtained by integrating out heavy
right-handed neutrino states, ν̄ ∼ (1c,1)0, from renormalizable Yukawa couplings,
H† D2 ν̄ +H D1 ν̄ + H.c. as in the see-saw model for neutrino masses.

Of course there are additional terms, e.g. LD2HH, but these in general, break
the Z2-discrete (or lepton number) symmetry that keeps the DM particle stable.
Interestingly enough, these terms are connecting the DM particle to neutrinos, see
for instance [318]. These independent operators are

η1

2 Λ
(εabHaD1b) (εcdHcLd) +

η12

Λ
(εabHaLb) (H†cD2c)

+
ζ12

Λ
(εabLaD2b)(H

†cHc) + H.c. (B.4)

• ffDH : In this case the fermion bilinear must be a weak doublet with hypercharge
−1. The only such combination, D†2σ̄

µēDµH
† + H.c., is not invariant under the

Z2-symmetry.

• ffDD : Under Z2-symmetry there are three possibilities : D1DDD2,DDD1D2 and
DD1DD2. After some algebra, and taking the equations of motion into account we
find that these lead to dipole operators of the form

dγ
Λ
εabD1a σ

µν D2b Bµν +
dW
Λ

εabD1a σ
µν (τA) c

b D2cW
A
µν +

i eγ
Λ

εabD1a σ
µν D2b B̃µν +

i eW
Λ

εabD1a σ
µν (τA) c

b D2c W̃
A
µν + H.c. , (B.5)

where Bµν and WA
µν are the U(1) and SU(2)L, field strength tensors, respectively,

and B̃µν ≡ ε ρσ
µν Bρσ. These operators are electric and magnetic dipole moments for

the DM particle. They arise directly at d = 5 level, whereas quark and/or lepton
magnetic moments arise at d = 6 level.

We have not found other than the above d = 5 independent operators.

B.2 d = 6 non-renormalizable operators

Focusing only in interactions between f = D1 or D2 and the Higgs field1 there are four
Lorentz and gauge invariant categories: ffH3, ffDH2, ffD2H, ffD3, and of course
ffff .

• ffH3 : There are no such operators which preserve the Z2-symmetry, or, as a matter
of fact, the charge conjugation or custodial symmetry or lepton number , e.g. there
is (H†D1ē)(H

†H) and the one with triplets.

• ffDH2 : There are quite a few invariant operators of this kind. The independent

1All others are identical to standard dimension-6 operators and can be found in [317,319].
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ones are

− Ldim=6 ⊃
( a1

Λ2
D†a1 σ̄µ D1a +

a2

Λ2
D†a2 σ̄µ D2a

) (
iH†b (

←→
Dµ) c

b Hc

)
+

(
a′1
Λ2

D†a1 (τA) b
a σ̄

µ D1b +
a′2
Λ2

D†a2 (τA) b
a σ̄

µD2b

) (
iH†c (

←→
DA
µ ) d

c Hd

)
+
b1
Λ2

(D†a2 σ̄µ D1a) [εbcHb (
←→
Dµ) d

c Hd] +
b2
Λ2

(D†a1 σ̄µ D2a) (εbc H
†b (
←→
Dµ
†)cd H

†d)

(B.6)

where H†
←→
DµH ≡ H†

−→
DµH −H†

←−
DµH and H†

←→
DA
µ H ≡ H† τA

−→
DµH −H†

←−
Dµ τ

AH,
a1,2 and a′1,2 are real numbers, while b2 = b∗1. We can obtain new operators after
changing L ↔ D1 but these would violate Z2 or they would belong to existing SM
operators given in ref. [317].

• ffD2H : Because D1, D2 and the H are SU(2)-doublets only Z2-breaking terms
exist in this category, e.g., (D1σµν ē)F

µνH† or when the Higgs receives VEV they
reduce to d = 5 operators already given in (B.5).

• ffD3 : We found no new operators. Lorentz invariance says that they exist only if
ff transforms as a vector e.g., (D†1σ̄µD1)(DρB

ρµ). By using equations of motion we
get at most the operators of eq. (B.6), or the four fermion operators, ffff , given
below and/or other like previously violating Z2-symmetry. Acting with the covariant
derivative to the left (on fermion current) we obtain operators as in eq. (B.5).

• ffff : we found the following independent operators:

− Ldim=6 ⊃
c12

Λ2
(εabD1aD2b) (εcdD1cD2d) +

2∑
k,`=1

dk`
Λ2

(D†ak σ̄µ Dk a) (D†b` σ̄µ D` b)

+
3∑

i,j=1

2∑
k=1

1

Λ2
(D†ak σ̄µ Dk a)

[
f `kij(`

†
i σ̄µ`j) + f qkij(q

†
i σ̄µqj)

]
+

+
3∑

i,j=1

2∑
k=1

1

Λ2
(D†ak σ̄µ (τA) b

a Dk b)
[
cLkij(L

† c
i σ̄µ(τA) d

c Lj d) + cQkij(Q
† c
i σ̄µ(τA) d

c Qj d)
]

+
c′12

Λ2
(D†a1 σ̄µ (τA) b

a D1 b) (D†c2 σ̄µ (τA) d
c D2 d) + H.c. , (B.7)

not counting operators that violate Z2. Note that ` ≡ L, ē and q ≡ Q, ū, d̄ and i, j
indices stand for lepton or quark flavour. Furthermore, there is only one scalar d = 6
four-fermion operator, the one containing DM-self interactions proportional to c12.
In addition, there are lepton number violating scalar operators like:

(D1aD1b)(L
† aL† b) + εacεbd (D2aD2b)(LcLd) + εabεcd (D2aLb)(D2cLd) . (B.8)

Other four-fermion scalar operators between quarks/leptons and DM fields appear
first at d = 7 level and have the form D1D2(QHū + QH†d̄ + LH†ē). All other
operators in eq. (B.7) are vector-like, and, many of them lead to spin-dependent
interactions in DM-nuclei collisions.
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