
Distance Oracles For Time-Dependent Road
Networks

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Georgia Papastavrou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN COMPUTER SCIENCE THEORY

University of Ioannina

February 2017

Examining Committee:

• Σπύρος Κοντογιάννης, Επίκουρος Καθηγητής, Τμήμα Μηχανικών Η/Υ και
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων (Επιβλέπων)

• Σταύρος Δ. Νικολόπουλος, Καθηγητής, Τμήμα Μηχανικών Η/Υ και Πληροφο-
ρικής, Πανεπιστήμιο Ιωαννίνων

• Λουκάς Γεωργιάδης, Επίκουρος Καθηγητής, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων

Dedication

Το έργο αυτό αφιερώνεται στην οικογένειά μου, που είναι πάντα δίπλα μου, και
στον επιβλέποντα της εργασίας, κ. Σπύρο Κοντογιάννη, που με υποστήριξε με κάθε
μέσο.

Acknowledgements

Η περάτωση της εργασίας αυτής και η απόκτηση του αντίστοιχου τίτλου δε θα ήταν
εφικτή χωρίς την πολύτιμη συμβολή και καθοδήγηση του επιβλέποντος, κ. Σπύρου
Κοντογιάννη, ο οποίος υπήρξε αδιάπαυστα υποστηρικτής της προσπάθειάς μου.
Επιπρόσθετα, θα ήθελα ιδιαίτερα να ευχαριστήσω τον συνάδελφο Ανδρέα Πα-

ρασκευόπουλο, για την άψογη συνεργασία μας και τον κ. Χρήστο Ζαρολιάγκη για
την εμπιστοσύνη του.
Τέλος, ευχαριστώ τα μέλη της τριμελούς επιτροπής, τον κ. Σταύρο Δ. Νικολό-

πουλο και τον κ. Λουκά Γεωργιάδη, για τις εύστοχες παρατηρήσεις και συμβουλές
τους.

Table of Contents

List of Figures iii

List of Tables v

Abstract vi

Εκτεταμένη Περίληψη viii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Related Work . 5
1.3 Objectives and Contribution . 7
1.4 Structure of Thesis . 9

2 Theoretical Background 11
2.1 Preliminaries and Notation . 11
2.2 FIFO Property in Time Dependent Networks 16
2.3 Assumptions on the arc-cost metric. 18
2.4 Landmarks Selection Policies and Preprocessing of Distance Summaries 19
2.5 The Trapezoidal (TRAP) Approximation Method 23

3 Engineering Oracles for Time-Dependent Shortest Paths 27
3.1 The FLAT Oracle . 27

3.1.1 Constant-approximation Query Algorithm 28
3.1.2 (1 + σ)−approximate Query Algorithm 29
3.1.3 The Path Reconstruction . 31
3.1.4 Compressing Preprocessing Space 33

3.2 The HORN Oracle . 38

i

3.3 The CFLAT Oracle . 41
3.3.1 Preprocessing space and time reduction 44
3.3.2 The Query Algorithm . 47
3.3.3 Detailed description of the actual path construction 48

4 Experimental Evaluation 50
4.1 Experimental Setup . 50
4.2 Benchmark Instances . 51
4.3 Experimental Evaluation of FLAT and HORN. 51

4.3.1 FLAT @ Berlin. 51
4.3.2 HORN @ Berlin. 52
4.3.3 Detailed Experimental Results 54
4.3.4 Live Traffic Reporting with FLAT. 56

4.4 Experimental Evaluation of CFLAT. 56
4.4.1 Evaluation of CFLAT @ Berlin . 57
4.4.2 Evaluation of CFLAT @ Germany 60
4.4.3 Preprocessing Statistics for Berlin and Germany 63
4.4.4 Detailed auditing of CFCA(N)’s computational effort 63
4.4.5 Live Traffic Reporting with CFLAT 67

5 Conclusion 69

Bibliography 72

ii

List of Figures

2.1 The upper-approximating function D[ℓ, v] (thic orange, upper pwl line)
of the unknown distance function D[ℓ, v] within the interval [ts, tf).
The lower-approximating function (thic yellow, lower pwl line), of the
unknown distance function within the interval. 26

3.1 The rationale of FCA. The dashed (blue) path P is a shortest od−path
for (o, d, to). The dashed-dotted (green and red) path Q • Π is the via-
landmark od−path indicated by the algorithm, if the destination vertex
is out of the origin’s TDD ball. 29

3.2 The pseudocode describing FCA. 30
3.3 Overview of the execution of RQA. 31
3.4 The recursive algorithm RQA providing (1+σ)−approximate time-dependent

shortest paths. Qk ∈ SP [wk, ℓk](tk) is the shortest path connecting wk
to its closest landmark w.r.t. departure-time tk. P0,k ∈ SP [o, wk](to) is
the prefix of the shortest od−path that has been already discovered, up
to vertex wk. Πk = ASP [ℓk, d](tk+Rk) denotes the (1+ ε)−approximate
shortest ℓkd−path precomputed by the oracle. 37

4.1 Preprocessing requirements for Berlin. 58
4.2 Average query time (in msec) and relative error of CFCA(N), at 1.32sec

resolution, for a query set of 50, 000 random queries in Berlin. 59
4.3 Performance of CFCA(N), w.r.t. the average query times (in msec) and

relative errors, at 1.32sec resolution, for a query set of 50, 000 random
queries in Berlin. 59

4.4 Preprocessing requirements of Germany. 60
4.5 Average query time (in msec) and relative error of CFCA(N), at 1.32sec

resolution, for a query set of 50, 000 random queries in Germany. . . . 61

iii

4.6 Performance of CFCA(N), w.r.t. average query times (in msec) and rel-
ative errors, at 1.32sec resolution, for a query set of 50, 000 random
queries in Germany. 62

4.7 Per step performance of CFCA(N), at 1.32sec resolution, for a query set
of 50, 000 random queries in Berlin. 64

4.8 Per step performance of CFCA(N), at 1.32sec resolution, for a query set
of 50, 000 random queries in Germany. 65

4.9 Tails of error percentages of CFCA(N) for 50, 000 randomly chosen queries
in the instance of Berlin, with the BC4K landmark set. 66

4.10 Tails of error percentages of CFCA(N) for 50, 000 randomly chosen queries
in the instance of Germany, with the BC3K landmark set. 67

iv

List of Tables

4.1 Performance of FCA, FCA+(6) and RQA, w.r.t. the running times and rel-
ative errors, at 2.64sec resolution, for a query set of 10, 000 random
queries in Berlin. 54

4.2 Performance of FCA, FCA+(6) and RQA, w.r.t. Dijkstra ranks, at 2.64sec
resolution, for a query set of 10, 000 random queries in Berlin. 54

4.3 Landmark hierarchies for HORN, based on HR and HSR landmark selec-
tion methods, for the Berlin instance. 55

4.4 Performance of HQA, w.r.t. the running times, relative errors and Di-
jkstra ranks, at 2.64sec resolution, for a query set of 10, 000 random
queries in Berlin. 55

4.5 Landmark hierarchies for HORN, based on HR and HSR landmark selec-
tion methods, for the Berlin instance. 55

4.6 Comparison of HORN and FLAT oracles for the instance of Berlin. 55
4.7 Preprocessing statistics for CFLAT Oracle for Berlin. 63
4.8 Preprocessing statistics for CFLAT in Germany. 63

v

Abstract

Georgia Papastavrou, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, February 2017.
Distance Oracles For Time-Dependent Road Networks.
Advisor: Spyros Kontogiannis, Assistant Professor.

Urban road networks are represented as directed graphs, accompanied by a metric
which assigns cost functions (rather than scalars) to the arcs, e.g. representing time-
dependent arc-traversal-times. In this work, we present oracles for providing time-
dependent min-cost route plans, and conduct their experimental evaluation in two
real-world data sets of large-scale, in particular the road network for the metropoli-
tan area of Berlin, and the national road network of Germany. Our oracles provably
achieve two unique features: (i) subquadratic preprocessing time and space; (ii) sub-
linear query time, in either the network size or the actual Dijkstra-Rank of the query
at hand.
The first step towards a landmark-based oracle is the selection of a subset of

vertices in the graph as landmarks. Then, our oracles are based on precomputing
all landmark-to-vertex shortest travel-time functions, for properly selected landmark
sets. The core of this preprocessing phase is based on a novel, quite efficient and simple
one-to-all approximation method for creating approximations of shortest travel-time
functions, called the Trapezoidal approximation method (TRAP). We then propose
the FLAT oracle and three appropriate query algorithms, to efficiently provide min-
cost route plan responses to arbitrary queries. Apart from the purely algorithmic
challenges, we deal also with several implementation details concerning the digestion
of raw traffic data, and we provide heuristic improvements of both the preprocessing
phase and the query algorithms. We exploit parallelism and lossless compression to
severely reduce preprocessing space and time requirements. We conduct an exten-
sive, comparative experimental study. Our results are quite encouraging, achieving

vi

remarkable speedups (at least by two orders of magnitude) and quite small approx-
imation guarantees, over the time-dependent variant of Dijkstra’s algorithm.
We also implement and experimentally evaluate a novel oracle (HORN), based on a

landmark hierarchy. The implementation and experimental evaluation of HORN is based
on a hierarchy of landmarks, from a few “global” landmarks possessing knowledge
of the entire network towards (many more) “local” landmarks whose knowledge of
the network is restricted to small neighborhoods around them. The advantage of HORN
over FLAT is that it achieves query times sublinear, not just in the size of the network,
but in the actual Dijkstra rank of the query at hand, be it long-range, mid-range, or
short-range, while requiring asymptotically similar preprocessing space and time.
We present a third landmark-based oracle (CFLAT) for providing route plans in

time-dependent road networks, which preprocesses time-varying combinatorial struc-
tures (collections of time-stamped shortest-path trees). Its main novelty is exactly that
it preprocesses only shortest-path trees, ignoring entirely the actual travel-time values,
except for assessing the quality of the currently achieved approximation guarantee
(a.k.a. stretch) ensured by the preprocessed information. We further exploit the repet-
itive appearance of only a few patterns in the preprocessed information, in order to
avoid duplicate records of the same data. This leads to a significant space reduction,
compared with our previous oracles.
For this new kind of time-varying data structure, we also need a novel query

algorithm (CFCA) that will exploit it.
As shown by our experimental evaluation, CFLAT achieves a significant improve-

ment in preprocessing time and space requirements, better approximation guarantees
and also comparable (if not better) query-response times, in comparison to previ-
ous state-of-art landmark-based oracles for time-dependent shortest paths. It also
achieves comparable query-time performance and approximation guarantees, on both
instances, compared to state-of-art speedup heuristic techniques for time-dependent
road networks.
Finally, we implement and experimentally test a dynamic scheme to provide re-

sponsiveness to live-traffic reports of incidents with a small timelife (e.g., a temporary
blockage of a road segment due to an accident). Our experiments also indicate that
traffic information can be updated in seconds.

vii

Ε Π

Γεωργία Παπασταύρου, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2017.
Χρησμοί Εύρεσης Βέλτιστων Διαδρομών σε Χρονοεξαρτώμενα Οδικά Δίκτυα.
Επιβλέπων: Σπύρος Κοντογιάννης, Επίκουρος Καθηγητής.

Για την αναπαράσταση των αστικών οδικών δικτύων χρησιμοποιούμε κατευθυ-
νόμενα χρονοεξαρτώμενα γραφήματα, σε κάθε ακμή των οποίων αντιστοιχεί μια
συνάρτηση η οποία αναθέτει στην ακμή το κόστος της, δηλαδή το χρόνο που χρειά-
ζεται για τη διάσχισή της. Στην παρούσα εργασία, παρουσιάζουμε χρησμούς για την
εύρεση χρονοεξαρτώμενων βέλτιστων διαδρομών σε οδικά δίκτυα. Η συντομότερη
διαδρομή από έναν κόμβο-αφετηρία προς ένα κόμβο-προορισμό στα δίκτυα αυτά
αλλάζει ανάλογα με τη χρονική στιγμή αναχώρησης από την αφετηρία. Αξιολογούμε
πειραματικά τους χρησμούς που προτείνουμε σε δύο ρεαλιστικά στιγμιότυπα με-
γάλης κλίμακας, συγκεκριμένα χρησιμοποιούμε το αστικό δίκτυο της πόλης του
Βερολίνου και το εθνικό οδικό δίκτυο της Γερμανίας.
Οι χρησμοί που προτείνουμε επιτυγχάνουν δύο σημαντικά χαρακτηριστικά: i)

το στάδιο της προεπεξεργασίας απαιτεί πολυπλοκότητα χώρου και χρόνου κάτω
της τετραγωνικής, ii) ο χρόνος απόκρισης των αλγορίθμων εύρεσης της βέλτιστης
διαδρομής για κάθε χρησμό είναι αποδοτικότερος του γραμμικού, τόσο ως προς το
μέγεθος του δικτύου, όσο και ως προς το μέγεθος της εκάστοτε διαδρομής.
Το αρχικό συστατικό των χρησμών που μελετούμε είναι η επιλογή ενός υποσυνό-

λου των κόμβων του γραφήματος, τα οποία ονομάζονται landmarks. Τα σύνολα αυτά
των κόμβων επιλέγονται με κατάλληλο τρόπο ώστε να αξιοποιηθούν αποτελεσμα-
τικά από τους χρησμούς. Στη συνέχεια, οι χρησμοί βασίζονται στην προεπεξεργα-
σία των συναρτήσεων που αποτιμούν τη συντομότερη διαδρομή από κάθε landmark
προς όλους τους πιθανούς προορισμούς του δικτύου. Υπολογίζουμε προσεγγιστικά
τις συναρτήσεις αυτές, αφού ο ακριβής υπολογισμός τους είναι απαγορευτικός σε

viii

απαιτήσεις χώρου και χρόνου σε οδικά δίκτυα μεγάλης κλίμακας με εκατομμύρια
κόμβους και ακμές. Χρησιμοποιούμε την Τραπεζοειδή προσεγγιστική μέθοδο, την
οποία εν συντομία ονομάζουμε TRAP, και που προσεγγιστικά υπολογίζει τις συναρ-
τήσεις απόστασης μεταξύ ενός κόμβου του δικτύου προς όλους τους υπόλοιπους, με
εφικτό τρόπο. Έπειτα, η εργασία παρουσιάζει τον πρώτο χρησμό, που ονομάζουμε
FLAT oracle, και τρεις κατάλληλους αλγορίθμους, οι οποίοι με βάση τα landmarks
και την πληροφορία της προεπεξεργασίας, παρέχουν απόκριση σε αυθαίρετα ερω-
τήματα βέλτιστης διαδρομής μεταξύ κόμβων του γραφήματος.
H εργασία δεν αντιμετωπίζει μόνο τις θεωρητικές και αλγοριθμικές προκλήσεις,

αλλά παρουσιάζει τις διάφορες λεπτομέρειες υλοποίησης και τις ευριστικές μεθό-
δους που χρησιμοποιήθηκαν στην πράξη για τη διαχείριση και τη βελτίωση του
χώρου και χρόνου της προεπεξεργασίας. Περιλάμβάνεται, επίσης, εκτενής πειραμα-
τική αξιολόγηση όλων των μεθόδων και τεχνικών που μελετώνται. Στην πραγματι-
κότητα, τα αποτελέσματα είναι αρκετά ενθαρρυντικά, αφού επιτυγχάνονται τόσο η
επιτάχυνση του χρόνου της απόκρισης των αλγορίθμων όσο και η αξιοπιστία των
προσεγγιστικών λύσεων, όταν αυτές συγκρίνονται με τον αντίστοιχο αλγόριθμο του
Dijkstra σε χρονοεξαρτώμενα γραφήματα.
Επιπρόσθετα, υλοποιούμε και αξιολογούμε πειραματικά ένα νέο χρησμό, το

HORN oracle, ο οποίος αξιοποιεί το υποσύνολο των landmarks όταν αυτό δημιουρ-
γείται ιεραρχικά. Συγκεκριμένα, η ιεραρχία ξεκινά στο πρώτο επίπεδο με κάποια
λίγα (καθολικά) landmarks, που «γνωρίζουν» τις προσεγγιστικές συναρτήσεις από-
στασης προς όλο το υπόλοιπο δίκτυο και καταλήγει στο τελευταίο επίπεδο, όπου
περισσότερα σε πλήθος (τοπικά) landmarks «γνωρίζουν» κατά προσέγγιση τις απο-
στάσεις τους από προορισμούς που βρίσκονται σε μια μικρή γειτονιά γύρω τους.
Το πλεονέκτημα του HORN έναντι του FLAT είναι το γεγονός ότι πετυχαίνει χρό-
νους απόκρισης με πολυπλοκότητα καλύτερη της γραμμικής, όχι μόνο ως προς το
πλήθος των κόμβων του δικτύου, αλλά ως προς το ακριβές μέγεθος της διαδρομής,
είτε το ερώτημα αφορά διαδρομές μεγάλου, μεσαίου ή μικρού μήκους, ενώ απαιτεί
ασυμπτωτικά παρόμοια πολυπλοκότητα χώρου και χρόνου προεπεξεργασίας με το
FLAT.
Παρουσιάζουμε ένα τρίτο χρησμό, που αξιοποιεί όπως και οι παραπάνω, ένα κα-

τάλληλα επιλεγμένο υποσύνολο κόμβων-landmarks, τον οποίο ονομάζουμε CFLAT
oracle. Ο χρησμός αυτός βασίζεται στην προεπεξεργασία χρονοεξαρτώμενων δέ-
ντρων συντομότερων διαδρομών, και όχι συναρτήσεων, χαρακτηριστικό που αποτε-

ix

λεί την πρωτοτυπία του χρησμού αυτού.
Για την υλοποίησή του, καταφέρνουμε να μειώσουμε τον απαιτούμενο χώρο της

προεπεξεργασίας, με τη χρήση ευριστικών τεχνικών, όπως για παράδειγμα η ανα-
ζήτηση και ανακάλυψη επαναλαμβανόμενων μοτίβων στη μορφή των συναρτήσεων
που «κρατούν» τα landmarks (τις οποίες όμως δεν αποθηκεύουμε πια, παρά τα
αντίστοιχα δέντρα), με τελικό σκοπό την εξοικονόμηση χώρου, αφού η πολυπλοκό-
τητα των συναρτήσεων ή δέντρων μειώνεται.
Για αυτό το νέο τύπο χρησμού, ο οποίος προεπεξεργάζεται χρονο-μεταβαλλόμενες

δομές δεδομένων (δέντρα συντομότερων διαδρομών), χρειαζόμαστε ένα κατάλληλο
αλγόριθμο απόκρισης, τον CFCA, ο οποίος και αξιοποιεί τον χρησμό για την εύρεση
της (προσεγγιστικά) συντομότερης διαδρομής σε οποιοδήποτε ερώτημα αφετηρίας-
προορισμού στο γράφημα.
Όπως επιδεικνύει η πειραματική αξιολόγηση που διεξάγουμε στην παρούσα ερ-

γασία, ο χρησμός CFLAT επιτυγχάνει σημαντική βελτίωση όσον αφορά στον χώρο
και χρόνο της προεπεξεργασίας, ξεκάθαρα καλύτερες προσεγγίσεις και επίσης συ-
γκρίσιμους – αν όχι καλύτερους – χρόνους απόκρισης σε σχέση με αντίστοιχους
σύγχρονους χρησμούς βέλτιστων διαδρομών σε χρονοεξαρτώμενα δίκτυα.
Η εργασία ακόμη μελετά την ανταπόκριση των αλγορίθμων σε ζωντανές, συ-

χνά απροσδόκητες, αλλαγές στις κυκλοφοριακές συνθήκες των οδικών δικτύων, οι
οποίες συνήθως έχουν μικρή διάρκεια (π.χ. μια προσωρινή διακοπή της κυκλοφο-
ρίας σε κάποιον δρόμο λόγω ατυχήματος). Στις περιπτώσεις αυτές, η πληροφορία
της προεπεξεργασίας πρέπει να ενημερωθεί ώστε να ενσωματώσει τις απαιτούμε-
νες αλλαγές στις συναρτήσεις απόστασης των landmarks (ή στα αντίστοιχα δέντρα
συντομότερων διαδρομών) προς το υπόλοιπο δίκτυο. Στα πειράματα που παρου-
σιάζει η εργασία φαίνεται ότι οι ενημερώσεις αυτές μπορούν να γίνουν σε μερικά
δευτερόλεπτα.

x

Chapter 1

Introduction

1.1 Motivation and Problem Statement

1.2 Related Work

1.3 Objectives and Contribution

1.4 Structure of Thesis

1.1 Motivation and Problem Statement

Computing shortest paths in graphs is a core task in many real-world applications,
such as route planning in transportation networks, routing in communication in-
frastructures, etc. Typically the underlying graph is accompanied with an arc-cost
function, assigning a fixed cost value to every arc, representing average travel-time,
distance, fuel consumption, etc. The path of a particular cost is then the aggrega-
tion of arc costs along it. The large-scale and real-time response challenges have
been addressed in the last 15 years by means of a new algorithmic trend: the pro-
vision of distance oracles. That is, succinct data structures encoding shortest path
information among a carefully selected subset of pairs of vertices in a graph, which
we call landmarks. The encoding is done in such a way that the oracle can effi-
ciently answer shortest path queries for arbitrary origin-destination pairs, exploiting
the preprocessed data and/or local shortest path searches. A distance oracle is exact
(resp. approximate) if the returned distances by the accompanying query algorithm

1

are exact (resp. approximate). The quality of an oracle is assessed by its preprocess-
ing space and time requirements, the time-complexity of the query algorithm and the
approximation guarantee (stretch).
A bulk of important work is devoted to constructing distance oracles for static

(i.e., time-independent), mostly undirected networks in which the arc-costs are fixed,
providing trade-offs between the oracle’s space and query time and, in case of ap-
proximate oracles, also of the stretch (maximum ratio, over all origin-destination
pairs, between the distance returned by the oracle and the actual distance). For an
overview of distance oracles for static networks, the reader is referred to [1] and
references therein. Considerable experimental work on routing in large-scale road
networks has also appeared in recent years, with remarkable achievements that have
been demonstrated on continental-size road-network instances. The goal is again to
preprocess the distance metric and then propose query algorithms (known as speedup
techniques in this framework) for responding to shortest path queries in time that
is several orders of magnitude faster than a conventional Dijkstra run. An excel-
lent overview of this line of research is provided in [2]. Once more, the bulk of the
literature concerns static distance metrics, with only a few exceptions (e.g., [3, 4, 5]).
However, in real-world applications the cost of each arc should not be considered

as a fixed value, since it undergoes frequent updates. These updates may be instanta-
neous, unpredictable changes (e.g., due to a sudden change of weather conditions, or
a car accident that blocks a road segment or junction), or anticipated updates due to
periodic changes of the network characteristics over time. For example, the traversal-
time of a road segment may depend on the real-time congestion upon traversal, and
thus on the departure time from its tail: In rush hours it is anticipated that it will be
much longer than the free-ride traversal-time which is usually valid only for partic-
ular departure times (e.g., during the weekend, or at night). Such networks in which
the characteristics of the network change in a predictable fashion over time, are called
time-dependent networks.
The temporality of the network characteristics is often depicted by some kind of

predetermined dependence of the metric on the actual time that each resource is used
(e.g., traversal speed in road networks, packet-loss rate in IT networks, arc availability
in social networks, etc). Perhaps the most typical application scenario, motivating also
our work, is route planning in road networks where the travel-time for traversing an
arc a = uv (modeling a road segment) depends on the temporal traffic conditions

2

while traversing uv, and thus on the departure-time from its tail u.
In the present work we focus on such networks in which it is the behavior of

the arc-cost functions that are described by time-dependent functions, whose exact
shape comes from statistical analysis of historical traffic information. For example,
the traversal time of a particular road segment may be sampled at particular times
during a day from the historical traffic information, say per 5 minutes during rush
hours and more rarely for the remaining periods of the day; the corresponding
arc-cost function is then considered to be the (continuous) interpolant of all these
sample points. So, we assume that the cost variation of each arc a is determined by
a continuous, piecewise linear (pwl) and periodic function D[a] of the time at which
a is actually being traversed, as in [6, 7, 8, 9]. Simply taking a snapshot of the entire
network (if possible) and solving the corresponding Static Shortest Path problem is
clearly not the proper way to provide a route plan in this case. In the following we
shall consider as arc-cost functions the traversal-time (or delay) functions when we
start traversing them at particular times.
When providing route plans in time-dependent road networks, arc-costs are con-

sidered as arc-travel-times, and time-dependent shortest paths as minimum-travel-
time paths. The goal is then to determine the cost (minimum-travel-time) of a shortest
path from an origin o to a destination d, as a function of the departure-time to from
o. Due to the time-dependence of the arc-cost metric, the actual arc-cost value of an
arc a = uv is unknown until the exact time tu ≥ to at which uv starts being traversed.
In a time-dependent network model, every arc uv comes with an arc-traversal-time
function D[uv], whereas each path-traversal-time function is simply the composition
of the corresponding arc-traversal-time functions of its constituent arcs.
Thus, to compute a truly shortest path between an origin-vertex and a destination

vertex in the network one has to take into account not only the departure time from
the origin, but also the consequent departure time of any other arc that is to be used
by a shortest path towards the destination. The problem was introduced in [10].
Formally, the Time Dependent Shortest Path (TDSP) problem concerns computing

an o−d path attaining the earliest arrival time at d, for an arbitrary triple (o, d, to) of
an origin-destination pair of vertices (o, d) ∈ V × V and departure-time to ∈ R from
the origin, in a time-dependent network model (G = (V,A), (D[a] : R→ R>0)a∈A) .

The shape of arc-travel-time functions and the waiting policy at vertices may
considerably affect the tractability of the problem [9]. Regarding the waiting policy, a

3

crucial property that makes TDSP (o, d, to) tractable (indeed quasilinear) is that each
arc obeys the FIFO (a.k.a. non-overtaking) property, according to which the earliest-
arrival-time function of an arc uv is an increasing function of its departure time tu
from the tail u, that is delaying the departure-time from the tail of an arc cannot
possibly cause an earlier arrival at its head (i.e., the arcs behave as FIFO queues).
Without the FIFO property the problem can become extremely hard [9]. Non-FIFO
policies may lead to NP−hard cases [11]. On the other hand, in FIFO network models
in which all the arc-travel-time functions possess the FIFO property, there is no need
for waiting at either the origin or at intermediate nodes of the chosen path. Then, the
problem can be solved in polynomial time by a straightforward variant of Dijkstra’s
algorithm (we call it TDD), which relaxes arcs by computing the arc costs “on the fly”,
when settling their tails [12].
For these reasons, we focus here on instances for which the FIFO property holds,

as indeed is the case with most of past and recent works on TDSP (o, d, to).
Two variants of the time-dependent shortest path problem have been consid-

ered in the literature: TDSP (o, d, to) (resp. TDSP (o, ⋆, to)) focuses on the one-to-
one (resp. one-to-all) determination of the scalar cost of a minimum-travel-time
path to d (resp. for all d), when departing from the origin o at time to. TDSP (o, d)
(resp. TDSP (o, ⋆)) focuses on the one-to-one (resp., one-to-all) succinct representa-
tion of the time-dependent minimum-travel-time path function(s) D[o, d] from o to d
(resp. towards all reachable d), and all departure-times from o (for future instanta-
neous evaluations).
The FIFO property may seem unreasonable in some application scenarios, e.g.,

when travellers at the dock of a train station wonder whether to take the very next
slow train towards destination, or wait for a subsequent but faster train. However,
our motivation in this work stems from route planning in urban-traffic road networks
where the FIFO property seems much more natural, since all cars are assumed to
travel according to the same (possibly time-dependent) average speed in each road
segment, and overtaking is not considered as an option when choosing a route plan.
The classical shortest-path techniques (Dijkstra and Bellman-Ford) have their

time-dependent variants [12, 9], in networks were the FIFO property is preserved on
all arcs. However, these are not the choices one should consider as query algorithms,
in case of a route planning service that has to reply in real-time to several dozens, or
even hundreds, of queries within a large-scale road network, providing the customers

4

with fast route plans within milliseconds. In fact, apart from the challenge of scale,
time-dependence is by itself also a quite important degree of complexity, both in space
and in query-time requirements.

1.2 Related Work

In case of huge networks, as is the case for either continental road networks, metropoli-
tan size urban networks, or social networks, it is rather impractical to use Dijkstra or
a label-setting algorithm for every individual shortest path query, even in the stricter
case of planar embedded graphs. For the time-independent case the issue has been
tackled quite successfully both theoretically (using distance oracles) and in practice
(using speed-up techniques). The main idea in both cases is to afford a costly pre-
processing phase, that is nevertheless polynomial-time tractable, space efficient and
amenable to relatively fast updates in case of dynamic changes in the graph, so that
in real-time one can support extremely fast (in sub-linear / polylogarithmic / constant
time theoretically, within microseconds in practice) arbitrary shortest path queries.
Both the theoretical and the practical approaches precompute distance-related

information from / to specific subsets of nodes in the network. This precomputed
information is stored and then used either as part of the direct shortest path calcu-
lations between arbitrary pairs of vertices, or in order to provide good lower bounds
that are used to direct the search of a shortest path in a Dijkstra-like query algo-
rithm. When applied to time-dependent instances, rather than storing shortest-path
distances, one has to keep in memory the earliest-arrival-time / latest-departure-time
functions from / to these particular nodes.
Until recently, most of the previous work on the time-dependent shortest path

problem concentrated on computing an optimal origin-destination path providing the
earliest-arrival time at destination when departing at a given time from the origin, and
neglected the computational complexity of providing succinct representations of the
entire earliest-arrival-time functions, for all departure-times from the origin. Such
representations, apart from allowing rapid answers to several queries for selected
origin-destination pairs but for varying departure times, would also be valuable for
the construction of distance summaries (a.k.a. route planning maps, or search profiles)
from central vertices (e.g., landmarks or hubs) towards other vertices in the network,

5

providing a crucial ingredient for the construction of distance oracles to support
real-time responses to arbitrary queries (o, d, to) ∈ V × V × R.
The complexity of succinctly representing earliest-arrival-time functions was first

questioned in [13, 14, 6], but was solved only recently by a seminal work [8] which,
for FIFO-abiding pwl arc-travel-time functions, showed that the problem of succinctly
representing such a function for a single origin-destination pair has space-complexity
(1+K)·nΘ(logn), where n is the number of vertices and K is the total number of break-
points (or legs) of all the arc-travel-time functions. Polynomial-time algorithms for
constructing point-to-point (1 + ε)-approximate distance functions are provided in
[7, 8], delivering point-to-point travel-time values at most 1+ ε times the true values.
Such approximate distance functions possess succinct representations, since they re-
quire only O(1 +K) breakpoints per origin-destination pair. It is also easy to verify
that K could be substituted by the number K∗ of concavity-spoiling breakpoints
of the arc-travel-time functions (i.e., breakpoints at which the arc-travel-time slopes
increase).
Providing distance oracles for time-dependent networks with provably good ap-

proximation guarantees, small preprocessing-space complexity and sublinear query
time complexity, has only been recently investigated in [15, 16]. In particular, the
first approximate distance oracle for sparse directed graphs with time-dependent
arc-travel-times was presented in [16], providing (1+σ)−approximate travel-times in
query-time that is sublinear in the network size, and preprocessing time and space
that are subquadratic in the network size, when the total number of concavity-spoiling
breakpoints in the instance is sufficiently small, e.g. when K∗ ∈ O(polylog(n)).
The oracle uses a novel one-to-all method (called Bisection – BIS) to produce
(1 + ε)−approximate landmark-to-vertex travel-time summaries, for a randomly se-
lected landmark set. It also guarantees either constant approximation ratio (a.k.a
stretch) via the FCA query algorithm, or stretch at most 1 + σ = 1 + ε (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
via

the RQA query algorithm, where ψ is a fixed constant depending on the characteristics
of the arc-travel-time functions but is independent of the network size, and r ∈ O(1)
is the recursion depth of RQA. In [15], another oracle is proposed, providing both
constant and (1 + σ)−approximate travel-times in query-time that is sublinear in the
network size, and preprocessing time and space that are subquadratic in the net-
work size, independently of the amount of disconcavity K∗ in the network instance
at hand. This is achieved by combining BIS with another one-to-all method (called

6

Trapezoidal – TRAP) to produce (1 + ε)−approximate landmark-to-vertex travel-time
summaries.
A few time-dependent variants of well-known speedup techniques for road net-

works have also appeared in the literature (e.g., [3, 4, 5]). All of them were ex-
perimentally evaluated on synthetic time-dependent instances of the European and
German road networks, with impressive performances. For example, in [3] meth-
ods are provided that respond to arbitrary queries of the German road network (4.7
million vertices and 10.8 million arcs) in less than 1.5ms and preprocessing space
requirements of less than 1GB. A point-to-point travel-time summary (a.k.a. search
profile) can also be constructed in less than 40ms, when the departure times in-
terval is a single day. For point-to-point approximate travel-time summaries, with
experimentally observed stretch at most 1%, the construction time is less than 3.2ms.
Their approach is based on the so-called time-dependent Contraction Hierarchies
[17], along with several heuristic improvements both on the preprocessing step and
on the query method.

1.3 Objectives and Contribution

The main challenge considered in this work is to provide TD-oracles that achieve:
(i) subquadratic preprocessing requirements, for succinctly representing travel-time
functions, (ii) query-times sublinear, not just in the network size n, but in the number
Γ[o, d](to) (a.k.a. Dijkstra-Rank) of settled vertices when executing TDD(o, ⋆, to) until
d is settled, and (iii) small (e.g., close to 1) approximation guarantee (stretch factor).
We engineer and experimentally evaluate three oracles for time-dependent road

networks on two real instances corresponding to qualitatively different cases. The first
one corresponds to a typical weekday of the metropolitan road network of Berlin
(about 4.7K vertices and 1.13M arcs), while the second one corresponds to a typical
weekday of the German road network (about 4.6M vertices and 11.18M arcs).
Our main contributions are summarized as follows: We propose three time-dependent

distance oracles, whose preprocessing phase for computing landmark-to-vertex ap-
proximate travel-time summaries is based on a new approximation technique [15],
the trapezoidal (TRAP) method. We speedup the preprocessing phase of comput-
ing approximate travel-time functions, from properly selected landmarks towards all

7

reachable destinations, by exploiting the inherent parallelism of the entire process. We
significantly reduce the required preprocessing space, by applying advanced lossless
compression techniques.
Our experimentation is based on several carefully chosen landmark sets and more-

over on several refinements and hybrid combinations of them. We deal with the
challenge of large-scale and thus, we present several heuristic improvements towards
reducing the preprocessing space and time of our oracles. Based on TRAP, we propose
the FLAT oracle. At a high level, our approach resembles the typical ones used in
static and undirected graphs (e.g., [18, 19, 20]): Distance summaries from selected
landmarks are precomputed and stored so as to support fast responses to arbitrary
real-time queries by growing small distance balls around the origin and the destina-
tion, and then closing the gap between the prefix subpath from the origin and the
suffix subpath towards the destination. However, it is not at all straightforward how
this generic approach can be extended to time-dependent and directed graphs, since
one is confronted with two highly non-trivial challenges: (i) handling directedness,
and (ii) dealing with time-dependence, i.e., deciding the arrival-times to grow balls
around vertices in the vicinity of the destination, because we simply do not know
the earliest-arrival-time at destination – actually, this is what the original query to
the oracle asks for. A novelty of our query algorithms, contrary to other approaches,
is exactly that we achieve the approximation guarantees by growing balls only from
vertices around the origin. Managing this was a necessity for our analysis since grow-
ing balls around vertices in the vicinity of the destination at the right arrival-time
is essentially not an option. We propose three query algorithms for the FLAT oracle,
called FCA, RQA and FCA+.
Apart from FLAT we implement and experimentally evaluate the novel HORN or-

acle, which is based on a hierarchy of landmarks, from a few “global” landmarks
possessing knowledge of the entire network towards (many more) “local” landmarks
whose knowledge of the network is restricted to small neighborhoods around them.
As was proved in [15], the advantage of HORN over FLAT is that it achieves query times
sublinear, not just in the size of the network, but in the actual Dijkstra rank of the
query at hand, be it long-range, mid-range, or short-range, while requiring asymptot-
ically similar preprocessing space and time. Our experiments on the (harder) Berlin
instance indeed confirm the improved stretch factors, but also better speedups due to
sophisticated early-stopping criteria, compared to the experimentation on FLAT for the

8

same subsets of “global” landmarks. For the HORN oracle, we propose the HQA query
algorithm.
We propose a new approximation method, CTRAP. Its novelty is that, rather than ap-

proximating minimum travel-time functions, it samples and stores only the combina-
torial structures (shortest-path trees) of the solutions at the sampled departure-times
from carefully selected landmark vertices. We then proceed with the preprocessing
phase of our new oracle, CFLAT, which is based on CTRAP. It guarantees a significant
improvement in the space requirements, and it is much faster than the preprocessing
of FLAT. We propose CFCA(N) (Section 3.3.2), the query algorithm of CFLAT, which, for
an arbitrary query (o, d, to), grows a time-dependent Dijkstra (TDD) ball from o at time
to until the N closest landmarks are settled. Then, it proceeds with a second step of
marking a small subset of relevant arcs, using the N settled landmarks as “attractors”
that orient the discovery of certain paths from d back to o. This is reminiscent of
the ARCFLAGS algorithm for static metrics [21], but the choice of the relevant arcs is
doomed to be done “on the fly”, since this information is also time-dependent. A final
step keeps growing the initial TDD ball within the subgraph of marked arcs, returning
the minimum-travel-time od-path in this subgraph.
An experimental study demonstrates the excellent performance of our oracles in

practice, achieving considerable memory savings and query-times about three orders
of magnitude faster than the Time-Dependent Dijkstra TDD.
Finally, we implement and experimentally test a dynamic scheme to provide re-

sponsiveness to live-traffic reports of incidents with a small timelife (e.g., a temporary
blockage of a road segment due to an accident). Our experiments also indicate that
traffic information can be updated in seconds.

1.4 Structure of Thesis

The thesis is organized as follows:
Section 2 prepares the reader for studying the TD-oracles that we propose. It pro-

vides the necessary theoretical background, that is notation, assumptions, analysis of
the importance of the FIFO property in time-dependent networks, description of land-
marks selection and the preprocessing phase and the presentation of the trapezoidal
method that we propose for approximating travel-time functions between landmarks

9

and destinations in the network, which we call TRAP. The main study of the thesis
concerns sections 3 and 4, where the engineering. heuristic improvements and the
experimental evaluation of the proposed oracles are described. In particular, Section
3 presents in detail the implementation of all three oracles, FLAT, HORN and CFLAT. It
describes the appropriate query algorithms for each oracle, which provide the route
responses, and presents in detail all the heuristic improvements we made towards the
reduction of the preprocessing space and time. Section 4 is about the extensive ex-
perimentation that we performed for our oracles. The experimental effort is a strong
component of our work, which proves in practice the performance of our oracles.
Finally, in section 5 we summarize our results and we compare our work with the
most successful state-of-the-art methods.

10

Chapter 2

Theoretical Background

2.1 Preliminaries and Notation

2.2 FIFO Property in Time Dependent Networks

2.3 Assumptions on the arc-cost metric.

2.4 Landmarks Selection Policies and Preprocessing of Distance Summaries

2.5 The Trapezoidal (TRAP) Approximation Method

2.1 Preliminaries and Notation

Consider a directed graph G = (V,A), with nonnegative, continuous, piecewise linear
(pwl) arc-delay functions ∀a ∈ A,−→D [a] : R → R≥ 0 providing the arrival time at the
destination head[a] as a function of the departure time from the origin tail[a]. Such
a function could for example be the interpolant of average arc-delays for particular
departure times from a given time period Π = [0, T], such that ∀k ∈ Z,∀tu ∈ Π,∀a ∈
A,
−→
D [a](tu + k · T) =

−→
D [a](tu). Since is periodic, continuous and pwl, it can be repre-

sented succinctly by a sequence of Ka breakpoints (i.e., pairs of departure-times and

11

arc-cost values) defining. An example of such an arc-delay function is the following:

∀tu ∈ R,
−→
D [uv](tu) =



4
3
tu + 1, 0 ≤ tu mod T ≤ 3

5, 3 ≤ tu mod T ≤ 5

2tu − 5, 5 ≤ tu mod T ≤ 7

− 8
13
tu +

173
13
, 7 ≤ tu mod T ≤ 20

1, 20 ≤ tu mod T ≤ 24

For notational reasons we assume that ∀tu ∈ Π,∀u ∈ V,
−→
D [uu](tu) = 0 and

∀uv /∈ A ⇒
−→
D [uv](tu) = +∞. Moreover, rather than defining the arc-delay functions

as functions of departure-time from the tail, we may also prefer to express them
as functions of arrival-times at the heads. We use the notation ←−D [uv] : R → R≥ 0

for these reverse arc-delay functions. For example, the reverse arc-delay function
corresponding to the forward arc-delay described above is the following:

∀tv ∈ R,
←−
D [uv](tv) =



4
7
tv +

3
7
, 1 ≤ tv mod T ≤ 8

5, 8 ≤ tv mod T ≤ 10

2
3
tv − 5

3
, 10 ≤ tv mod T ≤ 16

−8
5
tv +

173
5
, 16 ≤ tv mod T ≤ 21

1, 21 ≤ tv mod T ≤ 24 ∨ 0 ≤ tv mod T ≤ 1

Note 2.1. It is mentioned that for the reverse expression of the arc-delay function to
exist, it must be the case that the original (forward) arc-delay does not have any leg
of slope less or equal to −1. In particular, when this is the case, we can invert the
(monotone in this case) arrival-time function tv = Arr[uv](tu) = tu +

−→
D [uv](tu) to get

Dep[uv] = (Arr[uv])−1 and then compute ←−D [uv](tv) = tv −Dep[uv](tv) = Arr[uv](tu)−
tu =

−→
D [uv](tu). As we shall explain later, we indeed demand that all the slopes in

any forward arc-delay function have value strictly greater than this value, and this is
not only for the computation of the reverse arc delays.

Analogously,←−G = (V,
←−
A) where←−A = {vu ∈ V ×V : uv ∈ A} is the graph produced

by G if we reverse the directions of all the arcs in it.
For an arbitrary origin-destination pair of vertices, (o, d) ∈ V × V , let Po,d(G) be

the set of all (directed) walks from o to d in G, while P(G) =
∪

(o,d)∈V×V Po,d(G). For
arbitrary vertices u, v, z ∈ V and any walks p ∈ Pu,v and q ∈ Pv,z , p ⊕ q ∈ Pu,z is

12

the walk resulting as the concatenation of p and q at vertex v. Any walk p ∈ P(G)
that does not repeat any vertex is a (sometimes redundantly called simple) path. For
sake of simplicity, we shall skip reference to the graph, when this is clear from the
context. Any particular walk will mostly be considered as an ordered set of arcs such
that for any pair of consecutive arcs, the head of the first arc is identical to the tail of
the second arc. Occassionally we may want to declare a subwalk of p from (the first
appearance in p of) a vertex x ∈ V to (the fist appearance in p of) a vertex y ∈ V .
This subwalk will be denoted by px y.
For a walk (path) p = ⟨a1, · · · ak⟩ ∈ Po,d and ∀1 ≤ i ≤ j ≤ k, let pi,j be the subwalk

(subpath) of p starting with the ith arc ai and ending with the jth arc aj in the order.
We define the walk/path-delay function of p recursively as a function of the departure
time to from its own origin tail(p) = tail(a1), as follows:

∀to ∈ R,∀1 ≤ i ≤ k,
−→
D [pi,i](to) =

−→
D [ai](to)

∀to ∈ R,∀1 ≤ i < j ≤ k,
−→
D [p1,j](to) =

−→
D [p1,i](to) +

−→
D [pi+1,j]

(
to +
−→
D [p1,i](to)

) (2.1)

We may also express a similar recursive definition of the reverse-path-delays:

∀td ∈ R,∀1 ≤ i ≤ k,
←−
D [pi,i](td) =

←−
D [ai](td)

∀td ∈ R,∀1 ≤ i < j ≤ k,
←−
D [pi,k](td) =

←−
D [pj,k](td) +

←−
D [pi,j−1]

(
td −
←−
D [pj,k](td)

)
(2.2)

Similarly, we define the arrival-time function of p at its end-vertex head(p) = head(ak),
as a function of the departure-time to ∈ R from its start-vertex tail(p) = tail(a1):

∀to ∈ R, Arr[p](to) = to +
−→
D [p](to) (2.3)

It is easily seen that the path-arrival-time functions are indeed compositions of the
corresponding arc-arrival-time functions of the arcs comprising them:

Arr[p1,k](to) = to +
−→
D [p1,k](to) = to +

−→
D [p1,1](to) +

−→
D [p2,k](to +

−→
D [p1,1](to)) (2.4)

= Arr[p2,k] (Arr[p1,1](to)) = (Arr[p2,k] ◦ Arr[p1,1]) (to) = · · ·

= (Arr[ak] ◦ · · · ◦ Arr[a1]) (to)

Analogously, the path-departure-time function of p from tail(p) = tail(a1), given the
arrival-time td ∈ R at head(p) = head(ak), is defined as follows:

Dep[p](td) = td −
←−
D [p](td) (2.5)

13

Again, the path-departure-time functions are compositions of the corresponding arc-
departure functions of the arcs comprising them:

Dep[p1,k](td) = td −
←−
D [p1,k](td) = td −

←−
D [pk,k](td)−

←−
D [p1,k−1]

(
td −
←−
D [pk,k](td)

)
(2.6)

= Dep[p1,k−1] (Dep[pk,k](td)) = (Dep[p1,k−1] ◦Dep[pk,k]) (td) = · · ·

= (Dep[a1] ◦ · · · ◦Dep[ak]) (td)

For any pair of vertices (o, d) ∈ V × V , the earliest-arrival-time function from o

to d is defined as follows:

∀to ∈ R, Arr[o, d](to) = min
p∈Po,d

{Arr[p](to)} (2.7)

The shortest-travel-time function from o to d is D[o, d](to) = Arr[o, d](to) − to.
Finally, SP [o, d](to) (resp. ASP [o, d](to)) is the set of shortest (resp., with stretch-factor
at most (1 + ε)) od−paths for a given departure-time to.
For any arc a = uv ∈ A and any departure-times subinterval [ts, tf) ⊆ [0, T), we

consider the free-flow and maximally-congested travel-times for this arc, defined as
follows:

• Free-flow arc-travel-time:

Df [uv](ts, tf) := min
tu∈[ts,tf)

D[uv](tu) .

• Maximally-congested arc-travel-time:

Dc[uv](ts, tf) := max
tu∈[ts,tf)

D[uv](tu) .

We also denote Dc[uv] := Dc[uv](0,T) and Df [uv] := Df [uv](0,T). When [ts, tf) =

[0, T), we refer to the (static) free-flow and full-congestion travel-time metrics Df

and Dc, respectively. These definitions also extend naturally to path-travel-times and
shortest-travel-times between arbitrary origin-destination pairs of vertices.
In case of huge networks, as is the case for either continental road networks,

metropolitan-size urban networks, or social networks, it is rather impractical to use
Dijkstra or a label-setting algorithm for every individual shortest path query, even in
the stricter case of planar embedded graphs. For the time-independent case the issue
has been tackled quite successfully both theoretically (using distance oracles) and in
practice (using speed-up techniques). The main idea in both cases is to afford a costly

14

preprocessing phase, that is nevertheless polynomial-time tractable, space efficient and
amenable to relatively fast updates in case of dynamic changes in the graph, so that
in real-time one can support extremely fast (in sub-linear / polylogarithmic / constant
time theoretically, within microseconds in practice) arbitrary shortest path queries.
Both the theoretical and the practical approaches precompute distance-related

information from / to specific subsets of nodes in the network. This precomputed
information is stored and then used either as part of the direct shortest path calcu-
lations between arbitrary pairs of vertices, or in order to provide good lower bounds
that are used to direct the search of a shortest path in a Dijkstra-like query algorithm.
When applied to time-dependent instances, one has to keep in memory the shortest
travel-time function from/to particular nodes.
The succinct representation of −→D [a] is given by a collection (ordered list, by in-

creasing time values) of triples:

⟨(
−→
λ a
i ,
−→µ a

i ,
−→
t ai) : i ∈ {1, . . . , Ka}⟩

where the linear function describing the i−th leg of −→D [a] is
−→
λ a
i · t+−→µ a

i and its valid
interval is [−→t ai−1,

−→
t ai] (we assume that

−→
t a0 = 0 and −→t aKa = T).

Note 2.2. For simplicity, we shall for now on refer to any forward travel-time function
by the term D[u, v](tu), ∀ u, v ∈ V.

As already mentioned, when the (strict) FIFO property holds, subpath optimality
holds also in time-dependent instances. Simple variants of Dijkstra indeed work also
for the computation of shortest od−paths and earliest-arrival-time values (for given
departure time from origin) in any time-dependent network possessing the FIFO
property [12]. We denote such a time-dependent variant by TDD. To avoid tricky
situations in which the algorithm (even for static networks) might fail, we suppose
that all the arc-delay functions are always non-negative. Put it differently, we consider
as the actual arc-delay to be the maximum of zero and the declared arc-delay function,
for any departure time from the tail.
During the execution of TDD in a FIFO network with (non-negative) arc-delay

functions, the delay value of every arc has to be estimated upon its (unique) relaxation,
when its head is settled. When referring to the description (λ− and µ− values) of
an arc-delay function for the arc a = uv that is currently being relaxed for a given
departure time tu = Arr[o, u](to), the arc-delay evaluation operation is not constant

15

anymore, but costs either O(log(Ka)) (e.g., by maintaining a binary search tree of
breakpoints) or even O(log(log(Ka))) if one employs more advanced data structures
(e.g., fast tries of breakpoints) in order to determine the appropriate leg of the (pwl)
arc-delay function D[a] which is appropriate for tu. Ka is the space-complexity (i.e.,
the number of breakpoints) of D[a]. Since every arc is relaxed at most once, in overall
TDD will have time-complexity O(n log(n) +m · log(log(Kmax))) to solve TDSP, where
Kmax = maxa∈AKa.
A pair of continuous, pwl, periodic functions D[o, d] and D[o, d]), with a (hopefully)

small number of breakpoints, are (1 + ε)-upper-approximation and (1 + ε)-lower-
approximation of D[o, d], if ∀to ≥ 0, D[o,d](to)

1+ε
≤ D[o, d](to) ≤ D[o, d](to) ≤ D[o, d](to) ≤

(1 + ε) ·D[o, d](to) .

TDD Balls. For a point (o, to) ∈ V × [0, T) and β ∈ N, let B[o](to; β) be the set of the
first β vertices settled by TDD, when growing a ball from (o, to). Analogously, B[o](β)

and B[o](β) are the corresponding sets under the free-flow and fully-congested metrics
Dff and Dcg, respectively. When we say that we “grow a TDD ball from (o, to)”, we
refer to the execution of TDD from o ∈ V at departure-time to ∈ [0, T) for solving
TDSP (o, ⋆, to) (resp. TDSP (o, d, to), for a specific destination d). Such a call, denoted
as TDD(o, ⋆, to) (resp. TDD(o, d, to)), takes time O(m+ n log(n)[1 + log log(1 +Kmax)]) =

O(n log(n) log log(Kmax)]), using predecessor search for evaluating continuous pwl
functions [16]. The Dijkstra-Rank, Γ[o, d](to) of (o, d, to), is the number of settled
vertices up to d, when executing TDD(o, d, to).

2.2 FIFO Property in Time Dependent Networks

A fundamental property of time-dependent networks is the FIFO (a.k.a. non-overtaking)
property [9, 12, 8], which states the following:

∀tu, t′u ∈ R,∀uv ∈ A, tu > t′u ⇒ Arr[uv](tu) ≥ Arr[uv](t′u) (2.8)

That is, all the arc-arrival-time functions in the network are non-decreasing. The
following proposition is a characterization of the FIFO property for networks with
continuous arc-delay functions:

Proposition 2.2.1. [22] Assume a graph G = (V,A) with continuous arc-delay func-

16

tions, satisfying the (strict) FIFO property. Then any arc-delay function must have
left and right derivatives with values at least (greater than) −1.

It is also easy to verify that the FIFO property, only assumed for arc-arrival-time
functions, also holds for arbitrary path-arrival-time functions, and earliest-arrival-
time functions in the graph:

Proposition 2.2.2. [22] Assume a graph G = (V,A) with continuous arc-delay func-
tions, satisfying the FIFO property. Then, for any path p = ⟨a1, . . . , ak⟩ ∈ P(G) it
holds that:

∀t1 ∈ R,∀δ > 0, Arr[p](t1) ≤ Arr[p](t1 + δ)

In case of strict FIFO property, the inequality is also strict. FIFO property holds
also for every earliest-arrival-time function in G.

When moving from an origin to a destination in a time-dependent network, a
traveler may possibly have the option to wait at a node for certain amounts of time,
prior to traversing an arc emanating from it. We consider the following cases of
waiting policies (see also [9]).

Unrestricted Waiting (UW) A traveler may wait at any node for an arbitrary amount
of time, prior to traversing an arc emanating from it.

Forbidden Intermediate Waiting (FIW) A traveler may wait only at the origin, for
an arbitrary amount of time, prior to starting the journey towards the destination
(without any other waiting at a node).

Forbidden Waiting (FW) No waiting is allowed, at any node in the network.

The TDSP (o, d) problem was proved to be NP−hard, if the FW-policy is adopted
and arc-delays are allowed not to possess the FIFO property. It may even be the
case that there is no optimal-waiting (i.e., one that minimizes the earliest-arrival-
time at the destination) at a node [9]. On the other hand, it is well known [12]
that TDSP (o, d) is polynomial-time solvable when the UW-policy is adopted and the
optimal-waiting time always exists for every node, independently of the shape of the
arc-delay functions. Indeed, such a scenario is also known [9] to be equivalent to an
appropriate FIFO network with the FW-policy.
For instances in which the FIFO property holds, the crucial property of subpath

optimality holds:

17

Proposition 2.2.3. [22] Assume a graph with arc-delays satisfying the strict FIFO
property. Then, for all vertices u, v ∈ V , any departure-time tu ∈ R from u, and any
optimal path

p∗ ∈ arg min
p∈Pu,v

{Arr[p](tu)}

it holds that every subpath q∗ ∈ Px,y of p∗ is a shortest path between its endpoints
x, y for departure time from x equal to t∗x = Arr[p∗u x](tu).

Therefore, both Dijkstra’s label setting algorithm TDD and label-correcting algo-
rithms for shortest uv−path computations in time-independent graphs, also work in
time-dependent strictly FIFO networks, under the usual conventions that we consider
for the static instances (positivity of arc-delays for the label setting, and inexistence
of negative-delay cycles for the label correcting approaches).

2.3 Assumptions on the arc-cost metric.

The directedness and time-dependence of the TD-instance imply an asymmetric arc-
cost metric, which also evolves with time. To achieve a smooth transition from static
and undirected graphs towards time-dependent and directed graphs, we need a quan-
tification of the degrees of asymmetry and evolution of our metric over time. These are
captured via a set of parameters depicting the steepness of the minimum-travel-time
functions, the ratio of minimum-travel-times in opposite directions, and the relation
between graph expansion and travel-times. Next, we mention some assumptions on
the values of these parameters, which seem quite natural for our main application
scenario (route planning in road networks). The reader is refered to [15], where all
assumptions were originally presented, exactly stated and validated on real-world
road networks.

Assumption 2.3.1 (Bounded Travel-Time Slopes). [23] All the minimum-travel-time
slopes are bounded in a given interval [−Λmin,Λmax], for given constants Λmin ∈ [0, 1)

and Λmax ≥ 0.

Assumption 2.3.2 (Bounded Opposite Trips). [23] The ratio of minimum-travel-
times in opposite directions between two vertices, for any specific departure-time but
not necessarily via the same path, is upper bounded by a given constant ζ ≥ 1.

18

Assumption 2.3.3 (Growth of Free-Flow Dijkstra Balls). [15] ∀F ∈ [n], the free-
flow ball B[v;F] blows-up by at most a polylogarithmic factor, when expanding its
(free-flow) radius up to the value of the full-congestion radius within B[v;F].

Finally, we need to quantify the correlation between the arc-cost metric and the
Dijkstra-Rank metric induced by it. For this reason, inspired by the notion of the
doubling dimension (e.g., [24] and references therein), we consider some scalar λ ≥ 1

and functions f, g : N 7→ [1,∞), such that the following hold: ∀(o, d, to) ∈ V ×V ×[0, T),
(i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))

λ, and (ii) D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ. This
property trivially holds, e.g., for λ = 1, f(n) = n, and g(n) = maxa∈A

{
D[a]

}
. Of

course, our interest is for the smallest possible values of λ and at the same time the
slowest-growing functions f(n), g(n). Our last assumption quantifies the boundedness
of this correlation by restricting λ, f(n) and g(n).

Assumption 2.3.4. [15] There exist λ ∈ o
(

log(n)
log log(n)

)
and f(n), g(n) ∈ polylog(n) s.t.

the following hold: (i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))
λ, and (ii) D[o, d](to) ≤ g(n) ·

(Γ[o, d](to))
1/λ. Analogous inequalities hold for the free-flow and the full-congestion

metrics D and D.

Note that static oracles based on the doubling dimension demand a constant value
for λ. We relax this by allowing λ to be even a (sufficiently slowly) growing function
of n. We also introduce some additional slackness, by allowing divergence from the
corresponding powers by polylogarithmic factors. In the rest of the paper we consider
sparse TD-instances (i.e., m ∈ O(n)), compliant with Assumptions 2.3.1, 2.3.2, 2.3.3,
and 2.3.4.

2.4 Landmarks Selection Policies and Preprocessing of Distance

Summaries

Ingredients of our oracles. A typical landmark-based oracle selects a set L ⊆ V of
landmarks and then preprocesses travel-time related information (called summaries)
between them and all (or some) reachable destinations. Consequently, a query algo-
rithm exploits these summaries, in order to efficiently respond to queries (o, d, to),
from an origin o and departure-time to, to a destination d. Typically the oracle pro-
vides also a theoretically proved approximation guarantee (stretch) of the provided

19

answers. In practice though, quite frequently the observed stretch is significantly
smaller than the theoretical bound.
All our oracles start by selecting a subset L ⊂ V of landmarks. This can be done

either randomly (e.g., by deciding for each vertex i.u.r with probability ρ ∈ (0, 1)

whether it belongs to L), or by exploiting the vertices in the cut sets provided by
some graph partitioning algorithm. In this work we consider the kahip partitioning
software.
After L is determined, a preprocessing phase is performed in which, ∀ℓ ∈ L and

∀v ∈ V , all ℓ-to-v (1 + ε)−upper-approximating travel-time functions (we call them
approximate travel-time summaries) are computed and stored, based on the TRAP

method, to be described later. Consequently, a query algorithm is used for providing
in sublinear time guaranteed approximations of the actual shortest travel time values,
for arbitrary queries (o, d, to) ∈ V × V × [0, T). In a final step, a path-construction
routine is run to provide an od-path with actual path-travel-time at most equal to
the predicted one. In this section, we briefly review the above mentioned ingredients
of our oracles.

Landmark Selection Policies. We now clarify the landmark selection policies that
we consider:
⋄ random (R): Landmarks are chosen independently and uniformly at random, with
no repetitions.
⋄ sparse-random (SR): A variant of R, where each newly chosen landmark excludes a
small (free-flow) neighborhood of vertices around it from being selected as landmarks
in the future.
⋄ important-random (IR): Another variant of R, which moves each randomly selected
landmark to its nearest important vertex within a free-flow neighborhood of size 100.
For such a policy it is important that the underlying instance possesses a characteri-
zation of the road segments’ significance. Only the instance of Berlin provides such
information and we have considered as “important” those vertices which are incident
to road segments of category at most 3.
⋄ kahip (K): We choose either the tail or the head vertex of any boundary arc of a
partition of the graph according to kahip partitioning algorithm. We used the KaFFPa

algorithm of the kahip partitioning software (v1.00).
⋄ hybrid (H): This kind of landmark set consists of about the half vertices to be

20

on the boundary of the kahip partition and the remaining landmarks are chosen
independently and uniformly at random, with no repetitions.
⋄ sparse-kahip (SK): We consider the boundary vertices of a kahip partition of the
graph as candidates for landmarks. We used the KaFFPa algorithm of the kahip parti-
tioning software (v1.00), setting the parameters so that there are many more boundary
vertices than the required number of landmarks. The actual landmarks are chosen
sequentially and randomly. Each new landmark excludes from future selections a
small free-flow neighborhood around it.
⋄ kahip-cells (KC). Starting with a kahip partition, one landmark per cell of the
partition is chosen uniformly at random, excluding a small neighborhood around it
from future selections.
⋄ betweeness-centrality (BC): All the vertices are ordered in decreasing approximate
betweeness centrality (ABC) values, which were computed according to [25]. Then,
we select as landmarks the best vertices w.r.t. their ABC value, excluding a small
free-flow neighborhood from each of them.
⋄ kahip-betweeness (KB): Starting from a kahip partition, we choose as landmark
the vertex with the highest ABC value per cell of the partition, excluding a small
free-flow neighborhood around it.
Finally, for the sake of the HORN oracle, we also construct hierarchical landmark

sets, hierarchical-random (HR) and hierarchical-sparse-random (HSR) of 10, 443 and
20, 886 landmarks.

Preprocessing Phase. In the following, we shall deal with the problem of providing
(the explicit representations of) shortest-travel-time functions in a time-dependent
instance. In particular, we shall deal with the following problem:

21

Definition 2.4.1. Time Dependent Delay Approximation Functions [22]
INPUT : Directed graph G = (V,A).

(o, d) ∈ V × V : An origin-destination pair of vertices.
O ⊆ V : A subset of potential origin vertices.
∀a ∈ A,

−→
D [a] : R→ R≥ 0. The forward arc-delay (pwl) functions.

SOTDDA : Provide (explicit representations of) approximate shortest-travel-
time (delay) functions D[o, v] for all v ∈ V , that will assure the fol-
lowing approximation guarantee: ∀v ∈ V, ∀to ∈ [0, T], D[o, v](to) ≤
D[o, v](to) ≤ (1 + ε) ·D[o, v](to) .

Notation: The representation of the entire output will be denoted by
D[o, ⋆].

The main criteria for the quality of solutions to the above mentioned problem
are: (i) the polynomial-time construction of the required functions, and (ii) the re-
quired storage for the produced representations. Focusing only on (ii), one could
have asymptotically optimal solutions, assuming prior knowledge (or, paying for the
required computational cost and space to construct them) of the exact delay functions.
This is not the case in our setting and it would probably be prohibitively expensive
to construct the exact delay functions before space-optimally approximating them.
Therefore, we have to be based only on (polynomial-time computable) samplings
of the exact functions, in order to produce (as fast as possible) the required upper
approximations, using as little space and assuring as good approximation guarantee
as possible.
Since we wish to avoid computing the exact shape of D[o, d] for a given od-pair,

we need also a lower-bounding point-to-point approximate distance function for the
same time-window:

∀to ∈ [0, T], (1− ε) ·D[o, d](to) ≤ D[o, d](to) ≤ D[o, d](to) (2.9)

Having two (guaranteed upper and lower) approximationsD[o, d] andD[o, d] ofD[o, d]

in the time-window of interest and an approximation guarantee between them:

∀to ∈ [0, T], D[o, d](to) ≤ (1 + ε) ·D[o, d](to) (2.10)

would assure us that D[o, d] ≤ (1+ε)D[o, d] is the required upper-approximation and
D[o, d] ≥

(
1− ε

1+ε

)
D[o, d] is the required lower-approximation of D[o, d], without even

22

knowing (except for the explicitly sampled values) the actual shape of the function
that is approximated.

2.5 The Trapezoidal (TRAP) Approximation Method

We present here the novel preprocessing step of our oracles which, based on the TRAP
method, constructs (1 + ε)−upper-approximations of shortest travel-time functions.
The method is presented in [15].
After the landmark set L is determined, a preprocessing phase is performed in

which all (1+ε)−upper-approximating travel-time functions (travel-time summaries)
from landmarks ℓ ∈ L towards destinations ∀v ∈ V are computed and stored, based
solely on the TRAP method.

TRAP splits the entire period [0, T) into small, consecutive subintervals of length
τ>0 each. It then provides a crude approximation of the unknown shortest-travel-
time functions in each interval, solely based on Assumption 2.3.1 concecning the
boundedness of the shortest travel-time slopes in the instance. As mentioned, a slight
modification of Dijkstra that relaxes vertex labels according to the temporal arc-
travel times of their incoming arcs, depending on the departure-times from their
heads, works perfect in time-dependent networks possessing the FIFO property, for
arbitrary (but given) departure-times to from the origin o. Eventually, the labels of the
vertices reachable from o denote the earliest-arrival-time values, when one departs
from o at the given departure time to. After sampling the travel-time values (by
running TDD) of each destination v ∈ V , for a given origin u ∈ V , we consider each
pair of consecutive sampling times ts < tf and the semilines with slopes Λmax from
ts and −Λmin from tf . The considered upper-approximating function D[u, v] within
[ts,tf) is then (a refinement of) the lower-envelope of these two lines. Analogously,
a lower-approximating function D[u, v] is the upper-envelope of the semilines that
pass through ts with slope −Λmin, and from tf with slope Λmax. Depending on the
value of the absolute error and the minimum possible value of D[u, v] in this interval,
we can decide whether D[u, v] is a (1 + ε)-upper-approximating function of D[u, v].
Any destination vertex that has such a (1+ε)-upper-approximating function for each
subinterval of [0, T), clearly has a (1+ ε)-upper-approximating function for the entire
period as well.

23

The problem with the trapezoidal approximation is that, by construction, it is not
possible to provide (1+ε)-approximate travel-time functions for “nearby” destination
vertices, which are too close to the origin. In [15] these “nearby” vertices of each
landmark are either handled by the BIS method [16], or are left to be handled by local
TDD searches “on the fly”. Here we resolve this issue exclusively with TRAP, starting
with a large subinterval length, and then recursively dividing by 2 the lengths of
those subintervals containing vertices which have not been sufficiently approximated
yet, until all landmark-to-vertex (1+ε)-approximate travel-time summaries have been
successfully created. This proved to be extremely space- and time-efficient in practice.
More precisely, assume having a landmark vertex ℓ ∈ L and a departure-times

subinterval [ts, tf = ts + τ) ⊆ [0,T), for some small departure-time difference value,
compared to the entire period T of departure times. We provide a crude approxima-
tion, which we call TRAP (the trapezoidal method), for creating distance functions from
any landmark ℓ ∈ L towards each posible destination v ∈ V . It is mentioned that,
contrary to the approximation method BIS proposed in [16], no assumption is made
on the shapes of the unknown distance functions to approximate within [ts,tf). In
particular, no assumption is made on them being concave. TRAP will only exploit the
fact that τ is indeed small, along with the Bounded Travel-Time Slopes Assumption
(cf. Assumption 2.3.1). The approximation guarantee for each of these approximate
distance functions actually varies, depending on the minimum (free-flow) travel-
time from ℓ to each of the destinations. In particular, by Assumption 2.3.1, for any
departure-time from ℓ, t ∈ [ts, tf) and any destination vertex v ∈ V , the following
inequalities hold [15]:

−Λmin ≤
D[ℓ, v](t)−D[ℓ, v](ts)

t− ts
≤ Λmax

⇒ −Λmin · (t− ts) +D[ℓ, v](ts) ≤ D[ℓ, v](t) ≤ D[ℓ, v](ts) + Λmax · (t− ts)
/∗ τ≥t−ts ∗/
⇒ −Λmin · τ + D[ℓ,v](ts) ≤ D[ℓ,v](t) ≤ D[ℓ,v](ts) + Λmax · τ

−Λmin ≤
D[ℓ, v](tf)−D[ℓ, v](t)

tf − t
≤ Λmax

⇒ −Λmin · (tf − t) ≤ D[ℓ, v](tf)−D[ℓ, v](t) ≤ Λmax · (tf − t)
/∗ τ≥tf−t ∗/

⇒ Λmin · τ + D[ℓ,v](tf) ≥ D[ℓ,v](t) ≥ D[ℓ,v](tf) - Λmax · τ

24

Combining the two inequalities we get the following bounds: ∀v ∈ V, ∀t ∈ [ts, tf),

min

 D[ℓ, v](ts) + Λmaxτ,

D[ℓ, v](tf) + Λminτ

 ≥ D[ℓ, v](t) ≥ max

 D[ℓ, v](ts)− Λminτ,

D[ℓ, v](tf)− Λmaxτ

 (2.11)

Exploiting the fact that each shortest-travel-time function from ℓ to any destination
v ∈ V and departure time from [ts, tf) respects the above mentioned upper and lower
bounds, one could use a simple continuous, pwl approximation of D[ℓ, v] within this
interval, which is the minimum of four linear functions:

∀t ∈ [ts, tf), D[ℓ, v](t) = min


D[ℓ, v](ts) + Λmaxτ,

D[ℓ, v](tf) + Λminτ

Λmaxt+D[ℓ, v](ts)− Λmaxts,

−Λmint+D[ℓ, v](tf) + Λmintf


(2.12)

I.e., we consider the lines passing via the point (ts, D[ℓ, v](ts)) with the maximum
slope Λmax, until the upper bound in inequality 2.11 is reached, then follow a constant
leg up to the point at which the line passing via (ts, D[ℓ, v](ts)) with the minimum
possible slope of −Λmin is met.
Analogously, we construct a lower-bounding approximation ofD[ℓ, v]within [ts, tf).

∀t ∈ [ts, tf), D[ℓ, v](t) = max


D[ℓ, v](ts)− Λminτ,

D[ℓ, v](tf)− Λmax · τ
Λmaxt+D[ℓ, v](tf)− Λmax · tf ,
−Λmint+D[ℓ, v](ts) + Λmints


(2.13)

Figure 2.1 shows the (upper and lower) approximate distance summaries with
respect to D[ℓ, v] within [ts, tf).
Let (tm, Dm) be the intersection point of the two non-constant legs involved in the

definition of D[ℓ, v]. Then it is easy to observe that:

tm =
D[ℓ, v](ts)−D[ℓ, v](tf)

Λmin + Λmax
+

Λmints + Λmaxtf
Λmin + Λmax

Dm =
ΛmaxD[ℓ, v](ts) + ΛminD[ℓ, v](tf)

Λmin + Λmax
− Λmin · Λmax

Λmin + Λmax
· (tf − ts)

Similarly, let (tm, Dm) be the intersection point of the two non-constant legs in-
volved in the definition of D[ℓ, v]. Then:

tm =
D[ℓ, v](tf)−D[ℓ, v](ts)

Λmin + Λmax
+

Λmintf + Λmaxts
Λmin + Λmax

Dm =
ΛmaxD[ℓ, v](tf) + ΛminD[ℓ, v](ts)

Λmin + Λmax
+

ΛminΛmax
Λmin + Λmax

(tf − ts)

25

Figure 2.1: The upper-approximating function D[ℓ, v] (thic orange, upper pwl line)
of the unknown distance function D[ℓ, v] within the interval [ts, tf). The lower-
approximating function (thic yellow, lower pwl line), of the unknown distance func-
tion within the interval.

The worst-case maximum (additive) error guaranteed for D[ℓ, v] within [ts, tf] is
given by the following closed form:

MAE(ts, tf) = max
t∈[ts,tf)

{
D[ℓ, v](t)−D[ℓ, v](t)

}
= max

t∈{tm,tm}

{
D[ℓ, v](t)−D[ℓ, v](t)

}
(2.14)

The following lemma correlates the value of the maximum absolute error with the
minimum possible distance from ℓ, within [ts, tf).

Lemma 2.1. [15] For a given landmark vertex ℓ ∈ L, any destination vertex v ∈ V
and a given departure-time subinterval [ts, tf) ⊆ [0, T), the following hold:

1. MAE[ℓ, v](ts, tf) ≤ Λmax · (tf − ts).

2. If at least one of the following conditions hold, then the trapezoidal method
guarantees that D[ℓ, v] is a (1 + ε)−approximation of D[ℓ, v] within [ts, tf).

(i) D[ℓ, v](ts) ≥
(
Λmin +

Λmax
ε

)
(tf − ts).

(ii) D[ℓ, v](tf) ≥
(
Λmax +

Λmax
ε

)
(tf − ts).

26

Chapter 3

Engineering Oracles for
Time-Dependent Shortest Paths

3.1 The FLAT Oracle

3.2 The HORN Oracle

3.3 The CFLAT Oracle

3.1 The FLAT Oracle

The main rationale of the FLAT oracle, presented and analysed in [15] is the following:
we somehow select a small subset of landmark vertices L. Then, we compute travel-
time summaries, i.e., (1+ε)−approximations of minimum-travel-time functions, from
landmarks towards all reachable vertices. Finally, we use properly designed query
algorithms that exploit these travel-time summaries in order to provide approximately
minimum-travel-time values for arbitrary queries (o, d, to) ∈ V × V × [0, T).

Preprocessing Phase. After L is determined, a preprocessing phase is performed in
which all (1+ε)−upper-approximating travel-time functions (travel-time summaries)
from landmarks ℓ ∈ L towards destinations ∀v ∈ V are computed and stored, based
solely on the TRAP method.

27

Query Algorithms. We consider three query algorithms FCA, RQA, andFCA+. The
first two were introduced in [16], while the third one was introduced in [26]. All
algorithms can be fine-tuned to run in o(n) time.

FCA grows a ball Bo ≡ B[o](to) = {x ∈ V : D[o, x](to) ≤ D[o, ℓo](to)} from (o, to),
by running TDD until either d or the closest landmark ℓo ∈ argminℓ∈L{D[o, ℓ](to)} is
settled. It then returns either the exact travel-time value, or an (1+ε+ψ)-approximate
travel-time value via ℓo, where ψ is a constant depending on ε, ζ , and Λmax, but not
on n.

RQA is a PTAS, providing an approximation guarantee of 1+σ = 1+ε· (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
, by

exploiting carefully a number r ∈ N (called the recursion budget) of recursive accesses
to the preprocessed information, each of which produces (via calls to FCA) additional
candidate od−paths soli. RQA works as follows. As long as the destination vertex within
the explored area around the origin has not yet been discovered, and there is still
some remaining recursion budget, it “guesses” (by exhaustively searching for it) the
next vertex wk of the boundary set of touched vertices (i.e., still in the priority queue)
along the unknown shortest od−path. Then, it grows an outgrowing TDD ball from
the new center (wk, tk = to +D[o, wk](to)), until it reaches the closest landmark ℓk to
it, at travel-time Rk = D[wk, ℓk](tk). This new landmark offers an alternative od−path
solk by a new application of FCA.

FCA+(N) is a variant of FCA that keeps growing a TDD ball from (o, to) until ei-
ther d, or a given number N of landmarks is settled, and then returns the smallest
via-landmark approximate travel-time value (among all N settled landmarks). The
approximation guarantee is the same as that of FCA, but its practical performance is
impressive (in most cases even better than RQA).
A more detailed presentation of FCA and RQA, along with the proofs of correctness

and their time complexities, are provided in [16]. As for the approximation guarantee
of FCA+, it is straightforward to observe that, at least theoretically, it is as small as that
of FCA, whereas its time complexity is comparable to that of RQA.

3.1.1 Constant-approximation Query Algorithm

A distance oracle needs a fast query algorithm providing constant approximation
to the shortest-travel-time values of arbitrary queries (o, d, to) ∈ V × V × [0, T). The
proposed query algorithm, called Forward Constant Approximation (FCA), grows an

28

outgoing ball

Bo := B[o](to) = {x ∈ V : D[o, x](to) ≤ min{D[o, d](to), D[o, ℓo](to)}}

from (o, to), by running TDD until either d or the closest landmark ℓo ∈ argminℓ∈L{D[o, ℓ](to)}
is settled. We call Ro = min{D[o, d](to), D[o, ℓo](to)} the radius of Bo. If d ∈ Bo, then
FCA returns the exact travel-time D[o, d](to); otherwise, it returns the approximate
travel-time value Ro +D[ℓo, d](to +Ro) via ℓo.
The algorithm was first presented and validated by S. Kontogiannis and C. Zaro-

liagis in [16].
Figure 3.1 gives an overview of the whole idea. Figure 3.2 provides the pseu-

docode.

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Figure 3.1: The rationale of FCA. The dashed (blue) path P is a shortest od−path for
(o, d, to). The dashed-dotted (green and red) path Q •Π is the via-landmark od−path
indicated by the algorithm, if the destination vertex is out of the origin’s TDD ball.

3.1.2 (1 + σ)−approximate Query Algorithm

The Recursive Query Algorithm (RQA) improves the approximation guarantee of the
chosen od−path provided by FCA, by exploiting carefully a number of recursive calls
of FCA, based on a given bound – called the recursion budget r – on the depth of the
recursion tree to be constructed. Each of the recursive calls accesses the preprocessed
information and produces another candidate od−path. The crux of our approach

29

FCA(o, d, to)

1. if o ∈ L then return
(
D[o, d](to)

)
/∗ (1 + ε)−approximate answer ∗/

2. Bo = TDD-ball around (o, to) until either d or the first landmark is settled
3. if d ∈ Bo then return (D[o, d](to)) /∗ exact answer ∗/

4. ℓo = Bo ∩ L;Ro = D[o, ℓo](to);

5. return
(
Ro +D[ℓo, d](to +Ro)

)
/∗ (1 + ε + ψ)−approximation ∗/

Figure 3.2: The pseudocode describing FCA.

is the following: We ensure that, unless the required approximation guarantee has
already been reached by a candidate solution, the recursion budget must be exhausted
and the sequence of radii of the consecutive balls that we grow from centers lying on
the unknown shortest path, is lower-bounded by a geometrically increasing sequence.
We prove that this sequence can only have a constant number of elements until the
required approximation guarantee is reached, since the sum of all these radii provides
a lower bound on the shortest-travel-time that we seek.
A similar approach was proposed for undirected and static sparse networks [18],

in which a number of recursively growing balls (up to the recursion budget) is used
in the vicinities of both the origin and the destination nodes, before eventually apply-
ing a constant-approximation algorithm to close the gap, so as to achieve improved
approximation guarantees.
In our case the network is both directed and time-dependent. Due to our ignorance

of the exact arrival time at the destination, it is difficult (if at all possible) to grow
incoming balls in the vicinity of the destination node. Hence, our only choice is to
build a recursive argument that grows outgoing balls in the vicinity of the origin,
since we only know the requested departure-time from it. This is exactly what we
do: As long as we have not discovered the destination node within the explored
area around the origin, and there is still some remaining recursion budget r − k >
0 (k ∈ {0, . . . , r}), we “guess” (by exhaustively searching for it) the next node wk
along the (unknown) shortest od−path. We then grow a new out-ball from the new
center (wk, tk = to + D[o, wk](to)), until we reach the closest landmark-vertex ℓk to
it, at distance Rk = D[wk, ℓk](tk). This new landmark offers an alternative od−path
solk = Po,k • Qk • Πk by a new application of FCA, where Po,k ∈ SP [o, wk](to), Qk ∈

30

SP [wk, ℓk](tk), and Πk ∈ ASP [ℓk, d](tk+Rk) is the approximate suffix subpath provided
by the distance oracle. Observe that solk uses a longer optimal prefix-subpath Pk which
is then completed with a shorter approximate suffix-subpath Qk • Πk.
The algorithm was first presented and validated by S. Kontogiannis and C. Zaro-

liagis in [16].
Figure 3.3 provides an overview of RQA’s execution.

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

Figure 3.3: Overview of the execution of RQA.

Figure 3.4 provides the pseudocode of RQA.

3.1.3 The Path Reconstruction

Finally, we describe the Path Reconstruction method followed for the generation of
the calculated o-d path, as a sequence of arcs. In the case that the shortest path
returned by the query algorithm is exact, i.e. the destination was discovered during
the TDD-search (which is actually quite possible to occur), the path is constructed
by simply following the predecessors from the destination to the origin, which the
TDD ball provided. However, if the algorithm decides that the destination is to be
reached via an appropriate landmark ℓ, we need a method to retrieve the unknown
sequence of predecessors from the destination up to the landmark, corresponding to
the approximate ℓ-d path. For this purpose, we exploit the preprocessed information.
For every possible destination d and for any departure time from ℓ, the travel-time
function contains the immediate predecessor for d, valid for a specific time interval,
where TRAP performed its sampling. Based on this information and some heuristic
ideas, the path reconstruction method works as follows.

31

Let v denote every node that belongs on the path we want to construct. We start
with v = d. We then obtain the immediate (approximate) predecessor, approxPred(v),
given by the approximate travel-time function D[ℓ,d](t), when departing from ℓ at time
tl = Arr[o,ℓ](to), which denotes the arrival time set by the Dijkstra-ball. We then mark
node v as visited, we set v = approxPred(v) and repeat. The procedure terminates
when we reach the landmark-node ℓ, i.e. v = ℓ. The retrieval of all predecessors is
done by searching the preprocessed data.
In practice we observed the following phenomena which we tackled accordingly.

Firstly, as we reversely approach the landmark ℓ, the sequence of nodes v at some
point enters the area explored by the query algorithm. We decided to collect all those
explored nodes v and calculate the total travel-time D[v,d](tv), exploiting the reverse
arc-travel-time functions on all arcs connecting all nodes v up to that point. When
the main loop of our method terminates, we check which explored node on the path
we constructed (including the landmark ℓ) gives the minimum D[o,v](to) + D[v,d](tv).
This means that there can be several cases in which we construct the approximate
path via an appropriate explored node v by the Dijkstra-ball rather than via the
proposed landmark ℓ.
Next, we observed that a predecessor given by the preprocessed distance-summaries

can be already visited, which means that a cycle is created. This can be expected since
we search into different approximate functions for each vertex v, departing from ℓ.
The TRAP method samples the exact travel-time function in different subintervals for
each destination. We choose to face this case as follows. The path reconstruction
method returns to its initial step, where v = d. Instead departing from the landmark
ℓ at the exact departure time tl, we seek for the closest departure time to tl, contained
as a breakpoint in all approximate distance functions of the predecessors involved to
an approximate path up to ℓ. This safely means that this departure time is a sampling
time for all those destinations and thus, they all belong to the very same shortest-path
tree, creted by the TRAP method during the preprocessing. To avoid the cycle (which
in practice is a rare case), we consider the sequence of vertices created, considering
the above departure time from ℓ, which is usually very close to the actual.
After the sequence of predecessors has been constructed, the method simply walks

on the edges connecting them an the ℓ-v path-travel-time value is provided by the
(actual) path-travel-time function, when departing from ℓ at its actual arrival-time,
set by the query algorithm. The resulting value is at most the approximate one. In

32

practice, we obtain a much better travel-time response. The last step is to connect the
constructed ℓ-v path with the exact o-ℓ path, leading to a total o-d route-response,
which is actually very close to the exact one.

3.1.4 Compressing Preprocessing Space

Due to the criticality of the preprocessing space, our goal is to achieve an efficient
storage of the constructed travel-time summaries, while keeping a sufficient precision.
The key is that some specific features can be exploited in order to reduce the required
space.

Contraction of the road network. The preprocessing space and time can be reduced
if we only focus on a subgraph of the underlying graph representing the road network.
Towards this direction, we have chosen to “contract” all the vertices which do not
depict junctions of road segments (e.g., intermediate stops along a road segment). We
consider these vertices as inactive (only for the preprocessing phase), and we do not
consider them during the subsequent preprocessing of travel-time related information,
since they do not provide actual alternatives along a route using them, unless they
are indeed endpoints of the query at hand. It is emphasized though, that the queries
are conducted in the original graph, not just the contracted subgraph, meaning that
we can query also for contracted origin-destination pairs and the returned paths do
not contain shortcuts but actual road segments.
In more detail, in the instance-contraction phase we seek for maximal w.r.t. the

number of arcs (possibly bidirectional) paths which have no “vertical” intersections,
i.e., all the intermediate vertices connect only with their neighboring vertices along
the path. Each such path is substituted with a shortcut (arc) connecting its endpoints,
which is equipped with an arc-travel-time function equal to the corresponding exact
path-travel-time function. In fact, multiple paths with no intermediate intersections
may connect the same active endpoints. In that case, a single shortcut represents
more than one contracted paths, i.e. the arc-travel-time function of the shortcut is
computed by applying the minimization operator on the path-travel-time functions
corresponding to each of the contracted paths. If there exists an original arc connecting
two active endpoints, which are to be connected with a shortcut, we choose not to
insert an additional shortcut, but to update accordingly the arc-travel-time of the

33

already existing arc which now plays the role of a shortcut as well. The original
arcs involved in the contracted paths are also considered as inactive. All contracted
vertices are ignored during the landmark-preprocessing and therefore the number of
reachable destinations from a landmark is smaller. At the query phase, the contracted
paths can be easily recovered, by exploiting the appropriate information kept on all
shortcuts and the corresponding contracted vertices.

Almost Constant Legs. The original TRAP approximation method [27] introduced
at least one intermediate breakpoint per interval that does not yet meet the required
approximation guarantee. This is certainly unnecessary for small intervals in which
the actual shortest-travel-time functions are constant. To avoid the blow-up of the
required preprocessing space, we heuristically make a “guess” that we have to deal
with a constant shortest-travel-time function D[ℓ, v] within a given interval [ts, tf =

ts + τ) with sufficiently small length τ , whenever the following holds: D[ℓ, v](ts) =

D[ℓ, v](tf) = D[ℓ, v]
(
ts+tf

2

)
. This is justified by the fact that D[ℓ, v] is a continuous pwl

function and it is unlikely that three different departure times within a small interval
would give the same value, unless the function is indeed constant. Of course, one
could easily construct artificial examples for which this criterion is violated, e.g. by
providing a properly chosen periodic function with period τ/2. On the other hand,
one can easily tackle this by considering a randomly perturbed sampling period τ +δ,
for some arbitrarily small but positive random variable δ. Since we engineer oracles
for real-world road-networks, having three colinear points which do not belong to a
leg of the sampled travel-time function is quite unlikely, therefore we choose not to
randomly perturb the sampling period.

Fixed Range. For a one-day time period, departure-times and arrival-times have a
bounded value range. The same also holds for travel times which are at most one-day
for any query within a country area such as Germany. Therefore, when the considered
precision of the traffic data is within seconds, we handle time-values as integers in the
range {0 , 1 , . . . , 86, 399}, for milliseconds as integers in {0 , 1 , . . . , 86, 399, 999},
etc.
Any (real) time value within a single-day period, represented as a floating-point

number tf , can thus be converted to an integer ti with fewer bytes and a given
unit of measure. For a unit measure (or scale factor) s, the resulting integer is ti =

34

⌈
tf
s

⌉
, requiring

⌈
log2(tf/s)

8

⌉
bytes for its storage. The division tf

s
has quotient π and

remainder υ s.t., tf = s · π + υ, and ti =
⌈
s·π+υ
s

⌉
= π +

⌈
υ
s

⌉
∈ {π, π + 1}, since

0 ≤ υ ≤ s− 1. Therefore, by storing ti we actually consider the upper-approximating
time t′f = s · ti of tf , which causes an absolute error of at most s (i.e., one unit of
measure): t′f − tf < s · (π + 1) − s · π = s. In our experiments, for storing the time
values involved in the approximate shortest-travel-time functions, we have considered
a 1.32sec resolution, corresponding to the appropriate scale factor s = 1.318359375

(when originally counting time in seconds), that requires 2 bytes per time-value.

Bucketing. The number of breakpoints of the arc-travel-time functions is a major
factor of space increase on the resulting minimum-travel-time functions. A way to
deal with this is by merging consecutive breakpoints having absolute difference in
travel-time values less than few seconds, in each arc travel time function. In this
manner, to preserve the upper bound error, each resulted breakpoint gets the largest
travel time among the breakpoints which take part in merge. Depending on the
bucketing parameter c, we can decrease the number of breakpoints, sacrificing part of
accuracy. In our experiments, the bucketing led to the highest reduction (about 86%)
in space requirements.

Piecewise Composition. Many shortest od-paths typicaly contain at least one arc
with pwl travel-time function, making D[o, d](t) also a pwl function. To avoid the
space increase from storing breakpoints unrestrictedly, we analyse any such shortest
od-path into two subpaths o-p-d. p is selected so that the pd-subpath is the maximum
subpath with no arc having pwl travel-time function. Such pd-subpaths exist because
the number of constant arc-travel-time functions is much larger than the number of
the pwl ones. Thus, for D[o, d](t) we only store a “predecessor” pointer to D[o, p](t)

and the constant travel-time offset D[p, d] i.e., D[o, d](t) = D[o, p](t) +D[p, d]. In our
experiments, this method lead to 40% reduction of the space requirements.

Delay Shifts. There are many shortest od-paths with travel-timeD[o, d](t) with delay
variation. Thus we further reduced the required space as follows. The delay fluctuates
around a constant value. By taking the minimum delay value, the leg-delays can be
represented as small shifts from this value. Those small shifts, belonging to a smaller
value range, can be stored even in 1 byte. This conversion led to more than 5%

35

reduction of space requirements.

Compression. Since there is no need for all landmarks to be concurrently active, we
can compress their data blocks. We used the library zlib for this compression, which
led to 10% reduction in space.

Hierarchy of subintervals Another improvement that we adopt is that, rather than
splitting the entire period [0, T) in a flat manner into equal-size intervals, we start
with a coarse partitioning based on a large length and then in each inteval and
for each destination vertex we check for the provided approximation guarantee by
TRAP. All the vertices which are already satisfied by this guarantee with respect to
the current interval, become inactive for this and all its subsequent subintervals. We
then proceed by splitting in the middle every subinterval that contains at least one
still active destination vertex, and repeating the check for all active vertices within the
new subintervals.

Indexing Travel-Time Summaries. For retrieving efficiently the required minimum
travel-time function D[ℓ, d](t) from a landmark ℓ to a destination-node d, we need
also to store an index. Depending on the oracle, we used two types of indices.
We maintain a vector of pointers per landmark, one pointer equals per destination.

The pointer of destination v provides the address of the D[ℓ, v](t) data. The pointers
are in ascending order of node ID. The search time is O(1) and the required space
is O(n|L|).

Required space. For Berlin, the required space was limited to an average size of
less than 14MB per landmark. For storing the time-values of approximate travel-
time summaries, we considered 2.64sec as resolution, corresponding to a scale factor
s = 1.32 (when counting time in seconds), which requires 2 bytes per time-value.

36

RQA(o, d, to, r)

1. if o ∈ L then return
(
ASP [o, d](to), D[o, d](to)

)
/∗ (1 + ε)−approximation ∗/

2. B[o](to) := TDD-ball from (o, to) until either d or a landmark is settled

3. if d ∈ Bo then return (D[o, d](to)) /∗ exact suffix-subpath ∗/

4. ℓ0 ∈ B[o](to) ∩ L; R0 = D[o, ℓ0](to)

5. sol0 =
(
Q0 •Π0 , D[sol0](to) = R0 +D[ℓ0, d](to +R0)

)
/∗ via-ℓo approximation ∗/

6. k := 0; tk = to;

7. while k < r do

7.1. “guess” the first vertex wk+1 ∈ SP [wk, d](tk) \B[wk](tk)/∗ exhaustive search ∗/

7.2. tk+1 = tk +D[wk, wk+1](tk);

7.3. if wk+1 ∈ L

7.4. then return
(
P0,k+1 •Π[wk+1, d](tk+1), tk+1 − t0 +D[wk+1, d](tk+1)

)
/∗ approximate answer via wk+1 ∗/

7.5. B[wk+1](tk+1) := TDD-ball until d or a landmark is settled

7.6 if d ∈ B[wk+1](tk+1) then

7.7. then solk+1 =

 P0,k+1 • Pk+1,d,

D[solk+1](to) = tk+1 − to +D[wk+1, d](tk+1)


7.8. else

7.8.1 ℓk+1 ∈ L ∩B[wk+1](tk+1); Rk+1 = D[wk+1, ℓk+1](tk+1)

7.8.2 solk+1 =


P0,k+1 •Qk+1 •Πk+1,

D[solk+1](to) = tk+1 − to +Rk+1

+D[ℓk+1, d](tk+1 +Rk+1)


/∗ approximate answer via ℓk+1 ∗/

7.9. k = k + 1

8. endwhile

9. return min0≤k≤r {solk}

Figure 3.4: The recursive algorithm RQA providing (1 + σ)−approximate time-
dependent shortest paths. Qk ∈ SP [wk, ℓk](tk) is the shortest path connecting wk to its
closest landmark w.r.t. departure-time tk. P0,k ∈ SP [o, wk](to) is the prefix of the short-
est od−path that has been already discovered, up to vertex wk. Πk = ASP [ℓk, d](tk+Rk)

denotes the (1 + ε)−approximate shortest ℓkd−path precomputed by the oracle.

37

3.2 The HORN Oracle

The novelty of the HORN oracle [15] is to create a hierarchy of landmark sets, whose
range of “preprocessed destinations” gradually ranges from a few “nearby” vertices
up to all reachable vertices (in the last level), in order to serve each query (o, d, to)

only with relevant landmarks with respect to its own Dijkstra rank Γ[o, d](to). This
way, we aim at achieving speedups similar to those of FLAT for long-range queries, to
all possible ranges of queries, while increasing the space requirements only by a small
factor. Our goal is to “guess” the order of the Dijkstra Rank Γ[o, d](to) for (o, d, to). The
guessing is achieved in a way that is typical in online algorithms that have to deal with
an unknown parameter: Starting from a small value (say, O(

√
n)), we keep growing

a ball from (o, to), increasing appropriately the value of the guess as the ball grows,
until the very first time at which a successful completion of a proper variant of RQA is
very likely to occur (exactly because we “guessed right” the actual Dijkstra rank). The
travel-time returned is that of the best possible od-path among all the successfully
discovered approximate od-paths so far, via “informed” landmarks that possess travel-
time summaries for d. The crux is in organizing the preprocessed information in such
a way that it is indeed possible for the query algorithm to successfully complete its
execution as soon as the “guess” asymptotically matches the value of Γ[o, d](to).
The Hierarchical Query Algorithm (HQA) for (o, d, to) proceeds as follows: a single

ball grows from (o, to), until either d is reached, or an Early Stopping criterion (ESC)
is fulfilled, or the Appropriate Level of Hierarchy (ALH) of landmarks is reached
(whichever occurs first). If d is settled by the ball from (o, to), an exact solution is
returned. If ESC causes HQA to terminate, then the value D[o, ℓo](to) + ∆[ℓo, d](to +

D[o, ℓo](to)) is reported, because it is already a very good approximation. Otherwise,
HQA, due to ALH, considers being at the right level-i of the hierarchy and continues
executing the corresponding variant of RQA, call it RQAi, which uses as its own landmark
set Mi = ∪4j=iLj. Observe that RQAi may now fail constructing approximate shortest
paths via certain landmarks in Mi that it settles, since they may not possess a travel-
time summary for d. HQA terminates by returning the best od-path that has been
discovered so far, via all settled landmarks which are “informed” (i.e., they have d
in their coverage), either by the very first ball from (o, to) or by RQAi. HQA uses some
parameters: a is the degree of sublinearity in the query time, compared to the targeted
Dijkstra rank; β is related to the approximation guarantee achieved upon exit due to

38

ESC; γ has to do with the number of levels that we create in the hierarchy; and ξ is
the amount of slackness that we introduce in the size of the area of coverage. We set
these parameters here to the values a = 1, β = 1, γ = 1.88, ξ = 0.1. A more detailed
explanation of HQA, as well as of its parameters, is provided in [15].
In the following, we describe and analyze in detail the Hierarchical ORacle for

time-dependent Networks (HORN), whose query algorithm is highly competitive against
TDD, not only for long-range queries (i.e., having Dijkstra-Rank proportional to the
network size) but also for medium- and short-range queries, while ensuring sub-
quadratic preprocessing space and time [15]. The main idea of HORN is to preprocess:
many landmarks, each possessing summaries for a few destinations around them, so
that all short-range queries can be answered using only these landmarks; fewer land-
marks possessing summaries for more (but still not all) destinations around them,
so that medium-range queries be answered by them; and so on, up to only a few
landmarks (those required by FLAT) possessing summaries for all reachable destina-
tions. The area of coverage C[ℓ] ⊂ V of ℓ is the set of its nearby vertices, for which ℓ
possesses summaries. ℓ is called informed for each v ∈ C[ℓ], and uninformed for each
v ∈ V \ C[ℓ]. The landmarks are organized in a hierarchy, according to the sizes of
their areas of coverage. Each level Li in the hierarchy is accompanied with a targeted
Dijkstra-Rank Ni ∈ [n], and the goal of HORN is to assure that Li should suffice for RQA
to successfully address queries (o, d, to) with Γ[o, d](to) ≤ Ni, in time o(Ni). The diffi-
culty of this approach lies in the analysis of the query algorithm. We want to execute
a variant of RQA which, based on a minimal subset of landmarks, would guarantee
a (1 + σ(r))-approximate solution for any query (o, d, to) (as in TRAPONLY and FLAT),
but also time-complexity sublinear in Γ[o, d](to). We propose the Hierarchical Query
Algorithm (HQA) which grows an initial TDD ball from (o, to) that stops only when it
settles an informed landmark ℓ w.r.t. d which is at the “right distance” from o, given
the density of landmarks belonging to the same level with ℓ. HQA essentially “guesses”
as appropriate level-i in the hierarchy the level that contains ℓ, and continues with
the execution of RQA with landmarks having coverage at least equal to that of ℓ.

Initialization of HORN. We use the following parameters for the hierarchical construc-
tion: (i) k ∈ O(log log(n)) determines the number of levels (minus one) comprising
the hierarchy of landmarks. (ii) γ > 1 determines the actual values of the targeted
Dijkstra-Ranks, one per level of the hierarchy. For example, as γ gets closer to 1,

39

the targeted Dijkstra-Ranks accumulate closer to small- and medium-rank queries.
(iii) δ ∈ (0, 1) is the parameter that quantifies the sublinearity of the query algorithm
(HQA), in each level of the hierarchy, compared to the targeted Dijkstra-Rank of this
level. In particular, if Ni is the targeted Dijkstra-Rank corresponding to level-i in the
hierarchy, then HQA should be executed in time O

(
(Ni)

δ
)
, if only the landmarks in

this level (or in higher levels) are allowed to be used.

Preprocessing of HORN. ∀i ∈ [k], we set the targeted Dijkstra-Rank for level-i to Ni =

n(γi−1)/γi. Then, we construct a randomly chosen level-i landmark set Li ⊂uar(ρi) V ,
where ρi = N

−δ/(r+1)
i = n−δ(γi−1)/[(r+1)γi]. Each ℓi ∈ Li acquires summaries for all

(and only those) v ∈ C[ℓi], where C[ℓi] is the smallest free-flow ball centered at ℓi
containing ci = Ni · nξi = n(γi−1)/γi+ξi vertices, for a sufficiently small constant ξi > 0.
The summaries to the Fi = cχi nearby vertices around ℓi are constructed with BIS;
the summaries to the remaining ci − Fi faraway vertices of ℓi are constructed with
TRAP, where χ = θ

ν
= 1+α

2+αν
∈
[
1
2
, 2
2+ν

]
is an appropriate value determined to assure the

correctness of FLAT w.r.t. the level-i of the hierarchy. An ultimate level Lk+1 ⊂uar(ρk+1) V

of landmarks, with ρk+1 = n− δ
r+1 , assures that HORN is also competitive against queries

with Dijkstra-Rank greater than n(γk−1)/γk . We choose in this case ck+1 = Nk+1 = n,
Fk+1 = nχ and C[ℓk+1] = V , ∀ℓk+1 ∈ Lk+1.

Description of HQA. A TDD ball from (o, to) is grown until d is settled, or the (ESC)-
criterion or the (ALH)-criterion is fulfilled (whichever occurs first):
⋄ Early Stopping Criterion (ESC): ℓo ∈ L = ∪i∈[k+1]Li is settled, which is informed
(d ∈ C[ℓo]) and, for φ ≥ 1, ∆[ℓo,d](to+D[o,ℓo](to))

D[o,ℓo](to)
≥ (1 + ε) · φ · (r + 1) + ψ − 1 .

⋄ Appropriate Level of Hierarchy (ALH): For some level i ∈ [k] of the hierarchy,
the first landmark ℓi,o ∈ Li is settled such that: (i) d ∈ C[ℓi,o] (ℓi,o is “informed”); and
(ii) N

δ/(r+1)
i

ln(n) ≤ Γ[o, ℓi,o](to) ≤ ln(n) ·N δ/(r+1)
i (ℓi,o is at the “right distance”). In that case,

HQA concludes that i is the “appropriate level” of the hierarchy to consider. Observe
that the level-(k+1) landmarks are always informed. Thus, if no level-(≤ k) informed
landmark is discovered at the right distance, then the first level-(k+1) landmark that
will be found at distance larger than ln(n) · N δ/(r+1)

k will be considered to be at the
right distance, and then HQA concludes that the appropriate level is k + 1.
If d is settled, an exact solution is returned. If (ESC) causes termination of HQA, the

value D[o, ℓo](to)+∆[ℓo, d](to+D[o, ℓo](to)) is reported. Otherwise, HQA stops the initial

40

ball due to the (ALH)-criterion, considering i ∈ [k + 1] as the appropriate level, and
then continues executing the variant of RQA, call it RQAi, which uses as its landmark
set Mi = ∪k+1

j=i Lj. Observe that RQAi may fail constructing approximate solutions via
certain landmarks in Mi that it settles, since they may not be informed about d.
Eventually, HQA returns the best od-path (w.r.t. the approximate travel-times) among
the ones discovered by RQAi via all settled and informed landmarks ℓ. Theorem 3.1
[15] summarizes the performance of HORN.

Theorem 3.1. [15] Consider any TD-instance with λ ∈ o
(√

log(n)
log log(n)

)
and g(n), f(n) ∈

polylog(n) (cf. Assumption 2.3.4). For φ = ε·(r+1)
ψ·(1+ε/ψ)r+1−1

and k ∈ O(log log(n)), let
ξi ∈

([
(1 + λ) · log log(n) + λ log

(
1 + ζ

1−Λmin

)]
/ log(n) , 1− γ−i

)
, for all i ∈ [k]. Then,

for any query (o, d, to) s.t. Ni∗−1 < Γ[o, d](to) ≤ Ni∗ for some i∗ ∈ [k + 1], any δ ∈
(α, 1), β > 0, and r =

⌊
δ
α
· (2/ν+α)(1−γ)
β·(2/(αν)+1)+2/ν−1

⌋
−1, HORN achieves E {QHQA} ∈ (Ni∗)

δ+o(1),
PHORN , SHORN ∈ n2−β+o(1) and stretch 1+ε (1+ε/ψ)r+1

(1+ε/ψ)r+1−1
, with probability at least 1−O

(
1
n

)
.

Horn Index. For each node v we maintain a vector of pointers. The number of
pointers equals to the number of landmarks, from any partition level, which have
travel time to the corresponding node v as destination. Obviously, there exist at least
one landmark from the highest partition level. The pointer of the associated landmark
ℓ provides the address of theD[ℓ, v](t) data. The pointers are stored in ascending order
of node ID. The search time is O(log(|L|)) and the required space is O(n|L|).

3.3 The CFLAT Oracle

The currently most successful oracle is FLAT [27, 15]. However, despite their remark-
able query response times, oracles suffer from high preprocessing space and time
requirements.
In this section we present our novel oracle, CFLAT, which can be considered as

the combinatorial analogue of FLAT, aiming mostly at a significant reduction in the
required space without compromising the query-time, and also achieving smaller
stretch factors.
This oracle is based on the CTRAP approximation mathod, which computes and

stores only shortest path trees at carefully sampled departure-times, rather than actual
breakpoints of the corresponding minimum-travel-time functions as TRAP does.

41

We present here an overview of the main steps, as well as the major differences
compared to TRAP, which allow the significant reduction in preprocessing space (and
time) requirements. In a nutshell, CTRAP, when executed from a landmark ℓ, works
as follows:

procedure CTRAP(ℓ)

STEP 1: Keep sampling departure-times from [0, T), until all the destinations achieve a

desired approximation guarantee. Only predecessors of time-stamped shortest-path trees,

rooted at ℓ, are stored per destination.

STEP 2: Cleanup each sequence of predecessors, by merging consecutive records with the

same predecessor.

STEP 3: Look for destinations with identical sequences of departure-times (time-stamps)

and write this common sequence only once, for a representative destination, whereas the

rest (non-representative) destinations keep only the sequences of the corresponding prede-

cessors.

STEP 1 resembles TRAP, the only difference being that CTRAP keeps the immediate
predecessors (parents) per active destination v in the sampled shortest-path trees.
In particular, CTRAP maintains a pair of sequences, PRED[ℓ, v] for predecessors and
DEP [ℓ, v] for the corresponding sampled departure-times, per destination vertex v,
given ℓ.
The algorithm’s pseudocode is provided below.

The CTRAP approximation algorithm (pseudocode) Now, we present a more detailed
description of CTRAP. The pseudocode is the following:

42

procedure CTRAP(ℓ)

1: for v ∈ V do { ACTIV E[ℓ, v](0, T) = TRUE }; τold = T ; τ = 3200 /∗ initialization ∗/

2: while ∃v ∈ V, ∃k ∈ [0, T) : ACTIV E[ℓ, v](kτold, (k + 1)τold) == TRUE do

3: Sample (not already sampled) shortest-path trees rooted at ℓ, for all departure

times

kτ ∈ [0, T) /∗ PRED[ℓ, v](kτ) indicates v’s parent in the tree for (ℓ, kτ)... ∗/

4: for v ∈ V ∧ k : kτ ∈ [0, T) do /∗ looking for still active destinations... ∗/

5: if ACTIV E[ℓ, v](kτ, (k + 1)τ) == TRUE then

6: if DEP [ℓ, v].NotInSequence(kt) then

7: position = DEP [ℓ, v].SortedInsertion(kτ);

8: PRED[ℓ, v].Insertion(parent[ℓ, v](kτ), position)

9: end if

10: if MAE[ℓ, v](kτ, (k + 1)τ) == TRUE then { ACTIV E[ℓ, v](kτ, (k +

1)τ) = FALSE }

11: end if

12: end for

13: τ = τ/2; τold = 2τ

14: end while

15: for v ∈ V do

16: repeat /∗ merge intervals with the same predecessor... ∗/

17: for consecutive records (PRED[ℓ, v](t), t) and (PRED[ℓ, v](t′), t′) such that

PRED[ℓ, v](t) == PRED[ℓ, v](t′) do

18: PRED[ℓ, v].Delete(PRED[ℓ, v](t′))

19: DEP [ℓ, v].Delete(t′)

20: end for

21: until PRED[ℓ, v] does not have identical consecutive records.

22: end for

23: for u, v ∈ V : DEP [ℓ, v] == DEP [ℓ, u] do

24: Store the departure-times sequence DEP [ℓ, v] only once, for the (unique) repre-

sentative v, and store the sequence PRED[ℓ, u] of corresponding predecessors for all

non-representative destinations u.

25: end for

43

We now comment on the data types used. For a given landmark vertex ℓ, a desti-
nation vertex v, and a subinterval [ts, tf) ⊆ [0, T), the flag ACTIV E[ℓ, v](ts, tf) declares
whether the upper-approximation δ[ℓ, v] considered by CTRAP (cf. Figure 2.1) is satis-
factory, given the required approximation guarantee that we consider. The variable
τ determines the current step of the sampled departure-times from ℓ. PRED[ℓ, v]

and DEP [ℓ, v] are the sequences of predecessors and (corresponding) departure-
times from ℓ, w.r.t. the destination vertex v. We assure that DEP [ℓ, v] is always
ordered in increasing departure-time values. This is done by assuming the opera-
tion DEP [ℓ, v].SortedInsertion(x) which places x in the right position, which is then
returned by the procedure. As for DEP [ℓ, v], we consider the insertion of a new el-
ement u at an arbitrary position pos, DEP [ℓ, v](u, pos). It is mentioned at this point
that these operations have been implemented in a rather straightforward manner
(essentially performing linear scans on the queues), leaving for the future the consid-
eration of more sophisticated implementations. The boolean functionMAE[ℓ, v](ts, tf)

determines whether the maximum-absolute-error test is satisfied for v, in the interval
[ts, tf). In particular, since we already have sampled all the travel-times at ts and tf ,
for a given approximation guarantee ε > 0 we perform the following test, which is
a sufficient condition for δ[ℓ, v] being a (1 + ε)-upper-approximation of D[ℓ, v] within
[ts, tf):

procedure MAE[ℓ, v](ts, tf)

1: if min{D[ℓ, v](ts), D[ℓ, v](tf)} ≥
(
1 + 1

ε

)
Λmax then return (TRUE)

2: else return (FALSE)

3.3.1 Preprocessing space and time reduction

Next, we describe in more detail the major algorithmic improvements of CTRAP towards
a significant reduction in the required preprocessing space and time.

Omit intermediate breakpoints between consecutive sampled breakpoints. TRAP

computes “intermediate” breakpoints (tm, Dm) between consecutive (sampled) break-
points of D[ℓ, v], as the intersection points of the two non-constant legs involved in
the definition of the upper-approximating function δ[ℓ, v](t), for each landmark ℓ and
destination v. All these intermediate points are stored by FLAT, for each interval be-
tween consecutive sampled points where the MAE is satisfied. In CTRAP we choose not

44

to keep these intermediate breakpoints and restrict the preprocessed information only
to the actual samples. We let the query algorithm deal with the missing information,
whenever needed. This way, per landmark we avoid the storage of approximately
10M for Berlin, and 100M intermediate breakpoints for Germany.

Store trees, rather than functions. For each leg of the travel-time summary ∆[ℓ, v],
we choose in CTRAP to store pairs ⟨tℓ, PRED[ℓ, v](tℓ)⟩ of departure times tℓ from ℓ and
the immediate predecessor of v in the corresponding shortest-path tree rooted at (ℓ, tℓ),
omitting the actual min-travel-time values D[ℓ, v](tℓ) of the sampling procedure. This
modification makes the oracle aware only of the shortest-path-tree structures created
during the repeated sampling procedure, instead of the travel-time summaries stored
by TRAP (as sequences of breakpoints).
Additionally, rather than storing repeatedly the IDs of predecessors, which would

be space consuming in a network of millions of vertices, CTRAP stores only the position
of the corresponding arc in the list of incoming arcs to a vertex v. Since the maximum
in-degree in a road network is at most 7, we only need to consume 1 byte per storage
for a predecessor. We could even consume 3 bits per predecessor which could then be
packed into only two bytes containing also the corresponding departure-time value.
E.g., by choosing a scaling factor s = 10.547sec, each departure-time value would
require 13 bits for its own representation. We prefer not to combine predecessors with
departure-times in the same bit string, because we shall exploit later the extensive
repetition of identical sequences of departure-times, which nevertheless would be
lost for strings also containing the predecessors. It was observed in both benchmark
instances that about one half of all possible destinations per landmark ℓ appear to
have a unique predecessor throughout the entire period of departure times, [0, T). For
those nodes, we simply store their unique predecessor only once. For the remaining
destinations though, even with only two possible predecessors, we have to store the
entire sequence of predecessor-changes.

Avoid duplicate records of common departure-time sequences. We now exploit
the fact that CTRAP is a repeated-sampling method which probes (at common departure-
times for all destinations) shortest-path trees from a given landmark ℓ, starting from
a coarse-grained sampling towards more fine-grained samples of the entire period
[0, T), until the MAE guarantee is satisfied for all reachable destinations from ℓ. A

45

destination v may not care for all these departure-times, because the value of MAE
may be satisfied at an early stage for it. This indeed depends on the actual mini-
mum travel-time min{D[ℓ, v](ts), D[ℓ, v](tf)} at the endpoints of each given subinter-
val [ts, tf). For each landmark-destination pair (ℓ, v), we store the sequences DEP [ℓ, v]
of necessary departure-times and PRED[ℓ, v] of the corresponding immediate prede-
cessors. The crucial observation is that destinations which are (roughly) at the same
distance from ℓ would be expected to have the same sequence of sampled departure-
times, possibly differing only in their sequences of predecessors. It is clearly a waste
of space to store two identical sequences DEP [ℓ, v] = DEP [ℓ, u] more than once,
even if the corresponding sequences of predecessors differ. Thus, we choose to store
each sequence DEP [ℓ, v] as soon as it first appears, for some destination vertex v,
and consider v as the representative destination of all other destinations u for which
DEP [ℓ, u] = DEP [ℓ, v]. For each non-representative destination u, we only store
PRED[ℓ, u] and their representative v for which it holds that DEP [ℓ, u] = DEP [ℓ, v].
A challenging aspect is how to efficiently compare a newly created departure-times

sequence with the already stored ones. In order to avoid a potential blow-up of the
preprocessing time, we do not compare these subsequences point-by-point, in order
to discover whether they are identical or not. Instead, we assign to every sampled
departure-time tℓ two independently and uniformly at random chosen floating-point
numbers w1(tℓ), w2(tℓ) from the interval [1.0, 100.0]. Each destination u adds the two
values w1(tℓ) · tℓ and w2(tℓ) · tℓ to its own hash keys, i.e., H1[u] = H1[u] + w1(tℓ) · tℓ
and H2[u] = H2[u] + w2(tℓ) · tℓ, only when tℓ is indeed a necessary sample for u.
Otherwise, the hash keys of u remain intact. At the end, we sort lexicographically
the hash pairs of all destinations, in order to discover families of common departure-
times sequences. We deduce that two destinations possess the same sequence when
both their hash pairs match, in which case we verify this allegation by comparing
them point by point. We observed that, for both benchmark instances, 80% of all
destinations with at least two predecessors can be represented w.r.t departure-times
by the remaining 20% of (representative) destinations.

Merge sequences of breakpoints with identical predecessors. Our next algorith-
mic intervention in CTRAP is based on our observation that the vast majority of all
destinations appear to have on average 2 alternating predecessors throughout the
entire period [0, T). To save space, we choose to merge consecutive sampled break-

46

points for v of the form ⟨tℓ, x = PRED[ℓ, v](tℓ)⟩ and ⟨t′ℓ, x = PRED[ℓ, v](t′ℓ)⟩, i.e.,
possessing the same predecessor. This leads to a significant reduction in the number
of breakpoints to store, but also has a negative influence (reduction of similarities) on
the departure-times sequences, and thus on the amount of repetitions that we could
exploit. However, there is still a significant gain by applying both the aforementioned
heuristic and that of Section 3.3.1.
In overall, all the above mentioned algorithmic improvements resulted in a re-

duction of 88% in the preprocessing space requirements of CFLAT, compared to the
requirements of FLAT reported in [27].

Indexing preprocessed information. For retrieving efficiently the required prepro-
cessed information (summary) from a landmark ℓ to each destination v, we maintain
a vector of pointers per landmark, one pointer per destination, providing the address
for the starting location of the summary for v. The pointers are in ascending order of
vertex ID. The lookup time is O(1) and the required space for this indexing scheme
consumes O(n · L) additional bytes.

Speeding up preprocessing time. Handling shortest-path trees, rather than minimum-
travel-time functions, also has a collateral effect of speeding up the required prepro-
cessing time. The reason for this is that we do not compute explicitly, each and every
time that we sample travel-time values from ℓ, the exact shapes of the corresponding
minimum-travel-time functions per destination. The travel-time summaries provided
by FLAT were created based on this explicit computation of all the earliest-arrival
functions per destination v, from each landmark ℓ. In contrast, the shortest-path
summaries of CTRAP are created without having to compute earliest-arrival functions.
This leads to a reduction in the preprocessing time of approximately 35%, compared
to FLAT.

3.3.2 The Query Algorithm

We now present our novel query algorithm CFCA(N) for responding to arbitrary
queries (o, d, to) ∈ V ×V ×[0, T), which efficiently exploits the time-dependent shortest-
path trees data structure computed during the preprocessing phase. The algorithm
is based on FCA+(N) presented in [27], but is fundamentally different from it in the
sense that it now has to exploit shortest-path trees (rather than travel-time functions)

47

and also considers the construction of the proposed od-path to be part of it, which was
not accounted for in the performance of FCA+(N), and indeed of most of the shortest-
path query algorithms in the literature. The parameter N indicates the number of
landmarks to be settled by the query algorithm around the origin o, before specifying
the particular od-path to recommend. In particular, CFCA(N) consists of three main
steps:

procedure CFCA(N)

STEP 1: A TDD ball is grown from (o, to), until N landmarks are settled.

STEP 2: Starting from d, recursively mark arcs from their predecessors to all the intermedi-

ate vertices, along od-paths indicated per pair of a settled landmark and its corresponding

arrival-time at it, until explored (but not necessarily settled, yet) vertices from STEP 1 are

reached.

STEP 3: Return an od-path by running TDD on the subgraph induced by all the marked

arcs.

Recall that, at the end of STEP 1, we do not have at our disposal travel-time sum-
maries, from a settled landmark ℓ towards d, or any other vertex. As a consequence,
we are not able to compare ℓv-paths based on their (approximate) lengths. We only
possess time-dependent information about predecessors in the appropriate shortest-
path trees from these landmarks. On the other hand, for each departure-time tℓ from
ℓ, and any vertex v, we can tell the predecessor(s) of v in the (at most two) most
relevant shortest-path trees.

3.3.3 Detailed description of the actual path construction

In case that the destination was discovered in the first step, the resulting (exact) od-
path can be computed by a simple backtracking towards the origin, following the
pointers to all predecessors. Otherwise, the algorithm takes into account the prepro-
cessed information provided by the N settled landmarks as follows. Given a settled
landmark ℓ, for which we already have a shortest oℓ-path that guarantees arrival-
time tℓ = D[o, ℓ](to) at ℓ, we repeatedly ask the oracle for predecessors of intermediate
vertices v in the most relevant preprocessed shortest-path tree(s) determined at the
endpoints of the corresponding to the leg containing tℓ, starting with v = d. The
goal is to eventually mark a small subset of vertices that contain some od-path, not

48

necessarily passing by ℓ, but being “oriented” towards ℓ.
Clearly, the predecessor of a vertex v, w.r.t. ℓ may vary with time. Since the

departure-time tℓ from ℓ is a continuous variable in [0, T), at most two different
predecessors of v may be proposed by the oracle w.r.t. (ℓ, tℓ), depending on the
subinterval [ts, tf) to which tℓ belongs.

CFCA(N) marks (per landmark) the connecting arcs from the most relevant (one
or two) predecessor(s) of v to v. All the discovered predecessors w.r.t. the N settled
landmarks are inserted in a FIFO queue, which was initiated with d, so that, upon
their extraction from the queue, they can provide in turn their own predecessors (to
be added to the queue, if they have not been processed already).
The recursive search for predecessors stops as soon as a vertex x in the explored

area of the initial TDD ball of STEP 1 is reached. CFCA marks then also the arcs of
the corresponding short (not necessarily the shortest though, since x is explored but
not necessarily settled) ox-path. This way we are guaranteed that in the subgraph of
marked arcs there is already an od-path which has been oriented by (ℓ, tℓ) and passes
by x. STEP 2 of CFCA(N) terminates when the FIFO queue becomes empty, i.e., we
no longer have to process intermediate vertices which are unexplored by STEP1.
The path construction takes place in STEP 3, which considers the subgraph in-

duced by the marked arcs and grows a TDD ball from (o, to) in this subgraph. Indeed,
we continue growing the TDD ball from STEP 1, which already possesses all the ex-
plored nodes reached so far, but only considering the marked arcs from now on.
This path construction indeed leads to significantly smaller relative errors, since the
resulting shortest-path is not only the best choice among a given set of N paths in-
duced by the N settled landmarks (as in FLAT), but the actual shortest od-path within
the induced sugbgraph.

49

Chapter 4

Experimental Evaluation

4.1 Experimental Setup

4.2 Benchmark Instances

4.3 Experimental Evaluation of FLAT and HORN.

4.4 Experimental Evaluation of CFLAT.

4.1 Experimental Setup

All algorithms were implemented using C++ (gcc version 4.8.2).
To support graph-operations we used the PGL library [28]. This graph structure

consists of three packed-memory arrays, one for the nodes and two for the edges of
the graph (viewed as either outgoing or incoming) with pointers associating them.
The two edge arrays are copies of each other, with the edges sorted as outgoing or
incoming in each case. PGL supports the following features: i) Compactness: ability
to efficiently access adjacent nodes or edges, a requirement of all speed-up techniques
based on Dijkstra’s algorithm, ii) Agility: ability to change and reconfigure its internal
layout in order to improve the locality of the elements, according to a given algorithm,
and iii) Dynamicity: ability to efficiently insert or delete nodes and edges.
The experiments were executed on an Intel(R) Xeon(R) CPU E5-2643v3 3.40GHz

using 128GB of RAM and Ubuntu 14.04 LTS. We used 6 threads for the parallelization
of the preprocessing phase and the adaptation of the preprocessed information to live
traffic incidents. The query algorithms were executed on a single thread.

50

The experimental evaluation of FLAT, HORN and CFLAT was conducted on two real-
world instances, one concerning the metropolitan area of the city of Berlin, and the
other concerning the road network in Germany.

4.2 Benchmark Instances

We report here the details of the instances of Berlin and Germany, on which we have
conducted the experimental evaluation of our oracles.

Berlin Instance The instance of Berlin consists of 473, 253 nodes and 1, 126, 468

arcs. The contraction of the road network created 183, 468 shortcuts. Whenever more
than one contracted paths shared the same endpoints, we added only one shortcut
representing all these contracted paths. There were 914 such cases in the Berlin
instance. The contracted paths that could be represented by an original arc in the
graph, are 11, 398 in total. In overall, the contraction of Berlin led to a graph of
292, 356 active vertices and 752, 362 active arcs.

Germany Instance The instance of Germany consists of 4, 692, 091 nodes and 11, 183, 060

arcs. After the instance-preprocessing phase we got an instance with 3, 431, 213 active
vertices and 11, 554, 840 active arcs. The total number of the added shortcuts was
4, 595, 148. We avoided the insertion of additional shortcuts in 106, 464 cases, where
6, 816 of them correspond to “parallel” shortcuts and the 99, 648 correspond to the
existence of actual arcs connecting the endpoints of contracted paths.

4.3 Experimental Evaluation of FLAT and HORN.

We report here the outcome of our experiments on the instance of Berlin.

4.3.1 FLAT @ Berlin.

Tables 4.1 and 4.2 summarize the performance of the basic query algorithms of
FLAT with respect to absolute running times and Dijkstra rank values, respectively,
for landmark sets of various sizes. The best performance is indicated by highlighted

51

table cells. The last four lines in each table are for the sake of comparison of FLAT
with HORN (see Section 4.3.2). As for the query algorithms, we used recursion budget
1 for RQA and we let FCA+ settle the 6 closest landmarks, which is roughly the average
number of settled landmarks by RQA as well.

Landmark Selection Policies.

R is for uniform and random landmark selection. K is for selecting the boundary
vertices of a kahip partition as landmarks. We have used the version v0.71 of the kahip
partitioning software, exploiting the KaFFPa algorithm, with the following parameters:
The number of blocks to partition the graph was set to 178, so that we get (slightly
more than) 2, 000 landmarks. H is for a hybrid partition that initially creates a kahip
partition (with half the landmarks) and then randomly chooses additional landmarks
within each cell of the partition. IR indicates a variant of R that moves each randomly
selected landmark to its closest important node. We have considered as “important”
those nodes in the Berlin instance which are incident to road segments of category
at most 3. SR indicates another variant of randomly selected landmarks, where each
newly chosen random landmark excludes its closest 300 nodes (under the free-flow
metric) from being landmarks in the future.

4.3.2 HORN @ Berlin.

Due to large space requirements, we could handle landmark hierarchies with up
to 21, 000 landmarks for the Berlin instance, which seems to be harder than that
of Germany1. The average size per landmark in the hierarchy is 2.1MBytes. For a
hierarchy of 10, 443 landmarks the preprocessing of HORN took 5.1 hours, for 20, 886
landmarks it took 10.3 hours, or at most 1.8sec per landmark in either case. The
landmarks in each level of the hierarchy were chosen by the random (HR) and sparse-
random (HSR) methods. We consider 4 levels of the hierarchy, according to the sizes
of the landmarks’ areas of coverage, i.e. the number of “nearby” destinations for
which they possess travel-time summaries. The area of coverage for landmarks of

1We observed that the speedups are significantly better in Germany, despite the fact that we consider
the same number of landmarks in a larger, by an order of magnitude, network. This is probably due
to stronger correlation of time-dependence among different road segments in an urban environment,
rather than in a nationwide road network.

52

level 4 is actually the entire graph. These are exactly the “global” landmarks which
the corresponding variant of FLAT would also consider. The landmarks of the other
levels have significantly smaller areas of coverage.
In overall, we created four distinct hierarchies, with 10, 443 and 20, 886 landmarks,

based on HR and HSR landmark selection methods (cf. Table 4.5). The corresponding
variants for FLAT possess the same (274 and 548, respectively) “global” landmarks. We
created travel-time summaries using only the TRAP approximation method, within the
subgraph induced by each landmark’s area of coverage (extended, as in Assump-
tion 2.3.3).
The experimental results of FCA for R274, SR274, R548 and SR548 are shown in

Tables 4.1 and 4.2. Table 4.4 summarises the experimental evaluation of HQA. Inter-
estingly,its performance with HR-landmarks is better than that with HSR-landmarks,
probably because the ESC criterion seems more effective in the former case. Table 4.6
summarizes the comparison of HORN with FLAT. The results for HR10443, HSR10443,
HR20886 and HSR20886 are compared with the corresponding results of FCA for R274,
H274, R548 and H548 (i.e., with the same number of global landmarks), respectively.
There is a significant improvement in query performance (e.g., more than 41% w.r.t.
Dijkstra ranks), but also in quality of the produced solution (by more than 29%), at
the cost of increasing the space requirements by a factor of 6.34 at most.

53

4.3.3 Detailed Experimental Results

TDD FCA FCA+(6) RQA

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

R2000
73.402 0

0.130 0.964 0.692 0.448 0.677 0.669

K2000 0.158 1.076 0.513 0.361 0.410 0.554

H2000 0.154 0.907 0.714 0.331 0.636 0.631

IR2000 0.105 0.894 0.583 0.346 0.561 0.585

SR2000 0.085 0.717 0.574 0.321 0.446 0.604

R548 0.384 1.838 2.365 0.736 2.348 1.629

SR548 0.553 1.545 2.456 0.562 2.498 1.529

R274 0.943 2.309 4.008 0.843 4.929 2.348

SR274 0.729 2.091 4.288 0.747 4.271 2.256

Table 4.1: Performance of FCA, FCA+(6) and RQA, w.r.t. the running times and relative
errors, at 2.64sec resolution, for a query set of 10, 000 random queries in Berlin.

TDD FCA FCA+(6) RQA

Rank Speedup Rank Speedup Rank Speedup Rank Speedup

R2000
147, 904 1

155 954.219 904 163.610 971 152.321

K2000 191 774.366 858 172.382 665 222.412

H2000 168 880.381 880 168.072 829 178.413

IR2000 135 1, 095.585 830 178.197 851 173.800

SR2000 121 1, 222.347 957 154.549 788 187.695

R548 548 269.898 3, 250 45.509 3, 449 42.883

SR548 604 244.874 3, 670 40.300 3, 843 38.486

R274 1, 174 125.983 6, 367 23.229 6, 835 21.639

SR274 1, 184 124.919 7, 045 20.994 7, 359 20.098

Table 4.2: Performance of FCA, FCA+(6) and RQA, w.r.t. Dijkstra ranks, at 2.64sec
resolution, for a query set of 10, 000 random queries in Berlin.

54

Level Size of Levels Area of coverage Excluded Ball Size (for HSR)
|L| = 10, 443 |L| = 20, 886 |L| = 10, 443 |L| = 20, 886

L1 7, 832 15, 664 1, 292 35 15

L2 1, 630 3, 260 29, 841 150 80

L3 707 1, 414 158, 535 350 180

L4 274 548 299, 693 800 400

Table 4.3: Landmark hierarchies for HORN, based on HR and HSR landmark selection
methods, for the Berlin instance.

TDD HQA

Time
(msec)

Rel.Error
%

Rank Speedup Time
(msec)

Rel.Error
%

Rank Speedup

HR10443
73.402 0 147, 904 1

0.532 1.606 664 222.747

HSR10443 0.550 1.432 686 215.603

HR20886 0.241 1.179 314 471.032

HSR20886 0.304 1.096 355 416.631

Table 4.4: Performance of HQA, w.r.t. the running times, relative errors and Dijkstra
ranks, at 2.64sec resolution, for a query set of 10, 000 random queries in Berlin.

Level Size of Levels Area of coverage Excluded Ball Size (for HSR)
|L| = 10, 443 |L| = 20, 886 |L| = 10, 443 |L| = 20, 886

L1 7, 832 15, 664 1, 292 35 15

L2 1, 630 3, 260 29, 841 150 80

L3 707 1, 414 158, 535 350 180

L4 274 548 299, 693 800 400

Table 4.5: Landmark hierarchies for HORN, based on HR and HSR landmark selection
methods, for the Berlin instance.

Change in: Query Time Error Dijkstra Rank Space
(%) (%) (%) (in times)

R274 vs HR10443 43.58 30.44 43.44 6.057
H274 vs HSR10443 24.55 31.51 42.06 6.333
R548 vs HR20886 37.23 35.85 42.70 6.298

H548 vs HSR20886 45.02 29.06 41.22 6.283

Table 4.6: Comparison of HORN and FLAT oracles for the instance of Berlin.

55

4.3.4 Live Traffic Reporting with FLAT.

In a server-side routing service that responds to several queries in real-time, various
disruptions may occur “on the fly” (e.g., the abrupt and unforeseen congestion, or
even blockage of a road segment for half an hour due to a car accident) and have to be
taken into account for the affected route plans that have already been suggested or will
be suggested in the near future. We thus consider dynamic scenarios where there is a
stream of live-traffic reports about abnormal delays on certain road segments (arcs),
along with a time-window [rs, re], of typically small duration, in which the disruption
occurs.
Our update step involves the recomputation of travel-time summaries for a subset

of landmarks in the vicinity of the disruption. In particular, for a disrupted arc
a = uv of disruption duration [rs, re], we run a Backward-Dijkstra from u under the
free-flow metric, with travel time radius of at most re − rs. The limited travel time
radius is used to trace only the nearest landmarks that may actually be affected by
the disruption, leaving unaffected all the “faraway” landmarks. The goal is to update
as soon as possible the recommendations for the drivers who are close to the area
of disruption. For each affected landmark ℓ, we consider a disruption-times window
[ts, te], containing the latest departure times from ℓ for arriving at the tail u at any
time in the interval [rs, re] in which the disruption occurs. We then compute temporal
travel-time summaries for each affected landmark and disruption-times window. This
computation is conducted as in the preprocessing phase. Using a 15min radius for
the disruptions, we ran 1, 000 live-traffic updates for the instance of Berlin, with 2, 000

SR-landmarks, using 6 threads. The average number of affected landmarks was 86

and the corresponding update time for their preprocessed data was 32.376sec.

4.4 Experimental Evaluation of CFLAT.

In the following, we present the extensive experimental evaluation of the improved
distance oracle CFLAT.

56

4.4.1 Evaluation of CFLAT @ Berlin

Landmark Selection Policies.

We start with a systematic naming of the chosen landmark sets that we consider. Each
set is encoded as XY , where X ∈ {R,SR, IR, SK,KC,BC,KB} determines the type
of landmark set, and Y ∈ {250, 500, 1K, 2K, 4K, 8K, 16K} determines its size. For all
types we have considered Y = 4K meaning that we chose 4, 000 landmarks. Especially
for R we have tried all possible values for Y , in order to showcase the scalability of
CFLAT and its smooth trade-off of preprocessing requirements, query-times and stretch
factors. We now proceed with a clarification of the considered types of landmark
sets. {R,SR, IR, SK} were also considered in [27], whereas {KC,BC,KB} are new
landmark types. Additionally, we set the sizes of the excluded free-flow ball per
selected landmark to 150 vertices for SR, 100 for IR, 50 for SK , 20 for KC , 150 for
BC , and 20 for KB. For the SK , KC and KB landmark sets we used the following
parameters for kahip: The number of cells to partition the graph was set to 4, 000,
having 13, 256 boundary vertices in total. For SK we chose randomly 4, 000 boundary
vertices as landmarks. For KC and KB we chose, either randomly or according to
importance, one landmark per cell.

Preprocessing Requirements.

We start with the presentation of the preprocessing requirements for the construction
of shortest-path summaries for CFLAT, for various sizes of random (R) landmark sets
(cf. Figure 4.1). The requirements for other landmark types are analogous. For this
preprocessing, we have used 6 parallel threads. It is worth mentioning that FLAT [27]
required uncompressed preprocessing space 43GB, or equivalently, compressed size of
14MB per landmark, and 33h to preprocess R2K. CFLAT preprocesses R16K in 26h
consuming 41.4GB, and R2K in 3.5h consuming only 5.2GB.

Performance of CFCA(N).

We measured the performance of CFCA(N), for N ∈ {1, 2, 4, 6}, on a set of 50, 000
queries (o,d,to) generated independently and uniformly at random from V ×V ×[0, T).
We first conducted an experiment with various sizes of R-landmark sets, to test

the scalability of our oracle’s query-time and relative error, as a function of the

57

45

Preprocessing requirements @ BERLIN

40

45

30

35

m
an

ce

25

G
B)
 R
er
fo
rm

15

20

) &
 S
pa

ce
 (G

5

10

Ti
m
e
(h
)

R250 R500 R1K R2K R4K R8K R16K
0

5

Time (hours) 0.5 0.9 1.8 3.5 7 15 26
Space (GB) 0.7 1.3 2.6 5.2 10.4 20.8 41.4

Figure 4.1: Preprocessing requirements for Berlin.

number of landmarks. Figure 4.2 demonstrates the results of this experiment. As is
evident from this figure, the relative errors decrease linearly and the running times
decrease quadratically, as we double the number of landmarks. It is also mentioned
that remarkable relative errors of less than 0.142% are achieved for CFCA(6) even
with only 250 landmarks which require only 700MB, with running time less than
4.346msec. Moreover, a “quick-and-dirty” answer of average error at most 2.341%
is returned in only 0.814msec. The minimum query-times and relative errors are
achieved for R16K , where CFCA(1) has running time 0.103msec and relative error
0.291%, whereas CFCA(6) has running time 0.247msec and relative error 0.059%.
Our next experiment compared different types of landmark sets. We chose various

landmark sets of size 4, 000, and tried 50, 000 random queries. Figure 4.3 summarizes
the performance of CFCA(N) w.r.t. average query-times and relative errors. The average
query-time for TDD was 131.873msec, implying (e.g., for BC4K) a speedup of more
than 1, 030 with average stretch 0.536%. That is, the query-time is only slightly worse
(0.128msec instead of 0.083msec) even though the measurement in this work includes
also the path construction, but the corresponding average error is clearly better than
the average error of 0.781% for FCA(N) [27]. Note that TDD is executed here on the
original instance (even before the vertex contraction), whereas in [27] it was executed

58

5

Query Time Scalability @ BERLIN

4

4.5

5

3

3.5

4

m
e
(m

se
c)

2

2.5

e
qu

er
y
tim

1

1.5

Av
er
ag
e

R250 R500 R1K R2K R4K R8K R16K
0

0.5

R250 R500 R1K R2K R4K R8K R16K
CFCA(1) 0.814 0.452 0.274 0.185 0.138 0.12 0.103
CFCA(2) 1.526 0.799 0.457 0.287 0.2 0.154 0.136
CFCA(4) 4 1 512 0 83 0 497 0 323 0 234 0 19CFCA(4) 4 1.512 0.83 0.497 0.323 0.234 0.19
CFCA(6) 4.346 2.186 1.191 0.7 0.443 0.316 0.247

2 5

Relative Error Scalability @ BERLIN

2

2.5

1.5

2

r (
%
)

1la
tiv

e
er
ro

0.5

re
l

R250 R500 R1K R2K R4K R8K R16K
0

R250 R500 R1K R2K R4K R8K R16K
CFCA(1) 2.341 1.883 1.479 0.994 0.693 0.457 0.291
CFCA(2) 0.807 0.745 0.623 0.408 0.314 0.215 0.151
CFCA(4) 0 248 0 241 0 236 0 151 0 131 0 1 0 08CFCA(4) 0.248 0.241 0.236 0.151 0.131 0.1 0.08
CFCA(6) 0.142 0.132 0.127 0.089 0.083 0.068 0.059

Figure 4.2: Average query time (in msec) and relative error of CFCA(N), at 1.32sec
resolution, for a query set of 50, 000 random queries in Berlin.

on the contracted graph, hence the slightly smaller execution times of TDD in that work.
Nevertheless, we believe that this is the appropriate measurement to make for TDD,
for sake of comparison with other works, and also since the contraction of degree-2
vertices is part of the preprocessing phase. Concerning running times, the best curve
is provided by SK4K , but only SR4K seems to be really worse than the others.
As for relative errors, SR4K and BC4K are clear winners. Further experiments are
reported in Section 4.4.4.

0.1

0.2

0.3

0.4

0.5

0.6

e
ra
ge

 Q
u
er
y
R
e
sp
o
n
se
 T
Im

e
(m

se
c)

Query time of CFCA(N) on BERLIN

N=1 N=2 N=4 N=6

R4K 0.138 0.2 0.323 0.443

SR4K 0.134 0.218 0.389 0.532

IR4K 0.136 0.19 0.302 0.431

SK4K 0.128 0.18 0.295 0.412

KC4K 0.131 0.193 0.313 0.435

BC4K 0.128 0.209 0.34 0.467

KB4K 0.126 0.183 0.307 0.424

0

A
ve

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 R
el
at
iv
e
 E
rr
o
r
(%

)

Relative Error of CFCA(N) on BERLIN

N=1 N=2 N=4 N=6

R4K 0.693 0.314 0.131 0.083

SR4K 0.546 0.149 0.059 0.046

IR4K 0.667 0.349 0.161 0.101

SK4K 0.571 0.189 0.079 0.056

KC4K 0.558 0.201 0.082 0.057

BC4K 0.536 0.142 0.057 0.043

KB4K 0.548 0.204 0.078 0.054

0

Figure 4.3: Performance of CFCA(N), w.r.t. the average query times (in msec) and
relative errors, at 1.32sec resolution, for a query set of 50, 000 random queries in
Berlin.

59

4.4.2 Evaluation of CFLAT @ Germany

Landmark Selection Policies.

CFLAT was tested with the landmark sets R3K , SR3K with excluded neighborhood
size 1, 200, SK3K with excluded neighborhood size 350, and BC3K with excluded
neighborhood size 1, 000.

Preprocessing Requirements for Germany

The preprocessing requirements for the shortest-path summaries of CFLAT in Germany,
for various sizes of R-landmark sets, are shown in Figure 4.4. The requirements for
other landmark types are analogous. CFLAT creates the preprocessed data in 32.2h
requiring (uncompressed) space 53.6GB. This indeed made it possible to consider
landmark sets of size up to 4, 000 in this work.

120

Preprocessing requirements @ GERMANY

100

120

80

100

m
an

ce

60ac
e
Pe

rf
or
m

40Ti
m
e
&
 S
pa

20

R1000 R2000 R3000 R4000
0

Time (hours) 16 32.2 46 63
Space (GB) 26.8 53.6 80.4 107.2

Figure 4.4: Preprocessing requirements of Germany.

Performance of CFCA(N).

We started with an experiment on various sizes of R-landmark sets, to test the scalabil-
ity of CFCA(N)’s query-time and relative error, as a function of N . Figure 4.5 demon-

60

strates the results of this experiment. Once more, the relative errors decrease linearly
and the running times decrease quadratically, as we double the number of land-
marks. Remarkable relative errors of less than 0.072% are achieved for CFCA(6) even
with 1, 000 landmarks which require 26.8GB, with running time less than 17.105msec.
Moreover, a “quick-and-dirty” answer of average error at most 1.562% is returned in
only 2.87msec. The best query-times and relative errors are achieved for R4K , where
CFCA(1) has running time 1.036msec and relative error 0.912%, whereas CFCA(6) has
running time 4.766msec and relative error 0.053%.
We proceed next with comparing various types of landmark sets, w.r.t. the perfor-

mance of CFCA(N) in absolute times and relative errors (cf. Figure 4.6). For Germany
we have a clear winner, BC3K , w.r.t. both running times and relative errors. Since the
average running time of TDD is 1, 421.12msec, we get for CFCA(1) an average query-time
of 0.959msec (i.e., speedup by more than 1, 481) with average relative error 0.911%,
and for CFCA(6) a query-time of 5.506msec (i.e., speedup by more than 258) with
relative error 0.032%. Further experiments are reported in Section 4.4.4.

18

Query Time Scalability @ GERMANY

14

16

18

12

14

m
e
(m

se
c)

8

10

e
qu

er
y
tim

4

6

av
er
ag
e

R1000 R2000 R3000 R4000
0

2

R1000 R2000 R3000 R4000
CFCA(1) 2.87 1.689 1.265 1.036
CFCA(2) 5.651 3.094 2.227 1.932
CFCA(4) 11 174 5 969 4 179 3 267CFCA(4) 11.174 5.969 4.179 3.267
CFCA(6) 17.105 8.958 6.104 4.766

1 8

Relative Error Scalability @ GERMANY

1 4

1.6

1.8

1.2

1.4

r (
%
)

0.8

1

la
tiv

e
er
ro

0.4

0.6re
l

R1000 R2000 R3000 R4000
0

0.2

R1000 R2000 R3000 R4000
CFCA(1) 1.562 1.231 1.016 0.912
CFCA(2) 0.534 0.448 0.384 0.347
CFCA(4) 0 154 0 136 0 121 0 109CFCA(4) 0.154 0.136 0.121 0.109
CFCA(6) 0.072 0.062 0.056 0.053

Figure 4.5: Average query time (in msec) and relative error of CFCA(N), at 1.32sec
resolution, for a query set of 50, 000 random queries in Germany.

61

2.000

3.000

4.000

5.000

6.000

7.000

Q
u
e
ry
 R
e
sp
o
n
se
 T
Im

e
 (
m
se
c)

Query time of CFCA(N) on GERMANY

N=1 N=2 N=4 N=6

R3K 1.265 2.227 4.179 6.104

SR3K 1.220 2.327 4.477 6.341

SK3K 1.166 2.225 4.239 6.018

BC3K 0.959 1.866 3.643 5.506

0.000

1.000

A
ve
ra
ge

0.400

0.600

0.800

1.000

1.200

er
ag
e
 R
e
la
ti
ve
 E
rr
o
r
(%

)
Relative Error of CFCA(N) on GERMANY

N=1 N=2 N=4 N=6

R3K 1.016 0.384 0.121 0.056

SR3K 0.924 0.260 0.064 0.030

SK3K 1.062 0.354 0.104 0.047

BC3K 0.911 0.272 0.071 0.032

0.000

0.200A
ve

Figure 4.6: Performance of CFCA(N), w.r.t. average query times (in msec) and relative
errors, at 1.32sec resolution, for a query set of 50, 000 random queries in Germany.

62

4.4.3 Preprocessing Statistics for Berlin and Germany

Table 4.7 reports some significant preprocessing statistics. In particular, the measure-
ments are the following: (i) the average number of vertices per landmark whose
predecessor remains constant on the shortest-path tree throughout the whole time
period, (ii) the remaining vertices with pwl behaviour w.r.t. their predecessor, (iii)
the average number of unique departure-time sequences stored, instead keeping one
sequence per destination with pwl predecessor, and (iv) the average number of in-
termediate points of TRAP per landmark, which we now avoid to store.

Vertices with
Unique Pred

Vertices with
pwl Pred

Unique Departure
Time Sequences

Intermediate
Points of TRAP

R4K 272, 286 20, 070 5, 963 10, 663, 125

SR4K 272, 287 20, 069 5, 831 10, 688, 275

IR4K 272, 284 20, 072 5, 781 10, 672, 869

SK4K 272, 282 20, 074 6, 011 10, 934, 712

KC4K 272, 287 20, 069 5, 857 10, 758, 955

BC4K 272, 293 20, 063 5, 858 10, 728, 776

KB4K 272, 300 20, 056 5, 432 10, 643, 285

Table 4.7: Preprocessing statistics for CFLAT Oracle for Berlin.

Table 4.8 provides the preprocessing statistics related to Germany, in the same
format as in the case of Berlin.

Vertices with
Unique Pred

Vertices with
pwl Pred

Unique Departure
Time Sequences

Intermediate
Points of TRAP

R3K 3, 201, 577 229, 636 38, 102 112, 137, 488

SR3K 3, 201, 642 229, 571 37, 212 112, 081, 032

SK3K 3, 201, 503 229, 710 38, 068 113, 536, 811

BC3K 3, 201, 637 229, 576 37, 207 112, 067, 442

Table 4.8: Preprocessing statistics for CFLAT in Germany.

4.4.4 Detailed auditing of CFCA(N)’s computational effort

We also study how the total amount of computational effort is split among the major
steps of the query algorithm. In particular, we measured the total number of touched

63

arcs (for relaxation or marking) per step.

100

200

300

400

500

600

an
s
fo
r
R
e
la
xa
ti
o
n
 b
y
In
it
ia
l B

a
ll

Contribution of STEP 1 in query time of
CFCA(N) on BERLIN

N=1 N=2 N=4 N=6

R4K 72 144 289 434

SR4K 61 159 322 480

IR4K 64 123 252 387

SK4K 44 108 236 368

KC4K 50 119 260 404

BC4K 52 145 300 452

KB4K 45 109 244 383

0

100

A
rc
 S
ca 200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
M
ar
ke

d
 A
rc
s

Contribution of STEP 2 in query time of
CFCA(N) on BERLIN

N=1 N=2 N=4 N=6

R4K 178 345 670 985

SR4K 178 342 664 977

IR4K 178 347 673 990

SK4K 179 347 673 990

KC4K 178 346 671 986

BC4K 178 343 667 980

KB4K 179 347 672 988

0

50

100

150

200

250

ca
n
s
fo
r
R
e
la
xa
ti
o
n
 in

 S
u
b
gr
ap

h

Contribution of STEP 3 in query time of
CFCA(N) on BERLIN

N=1 N=2 N=4 N=6

R4K 177 186 198 207

SR4K 177 188 202 212

IR4K 177 185 197 206

SK4K 178 189 204 214

KC4K 178 187 201 212

BC4K 177 188 203 214

KB4K 178 188 202 212

0A
rc
s
Sc

Figure 4.7: Per step performance of CFCA(N), at 1.32sec resolution, for a query set of
50, 000 random queries in Berlin.

Figure 4.7 gives these measurements of CFCA(N) in Berlin, i.e. the number of
arcs checked for relaxation by the initial TDD-ball from (o, to) in step 1, the number
of marked arcs connecting predecessors to intermediate vertices in step 2, and the
number of arcs checked for relaxation during the extension of the TDD-ball within the
marked subgraph, in order to provide the resulting od-path. It is clear from Figure 4.7
that only step 1 depends on the type of landmarks that we consider. Observe also
that step 3 is essentially independent of the value of N , whereas the other two steps
depend linearly on it. For sake of comparison, it is mentioned that the number of
arcs checked for relaxation by TDD for the set of 50, 000 random queries in Berlin
is 235, 880. This for example implies a speed-up, w.r.t. the machine-independent
measure of “touched” vertices, of more than 588 for CFCA(1) and SK4K. Recall that the
measurement does not only concern the estimation of an upper-bound on the earliest
arrival-time at (or equivalently, the shortest travel-time towards) the destination, but
also the explicit construction of the corresponding od-path that guarantees this bound.
Observe also that in absolute running times the speed-up is almost double, because the
computationally most demanding step 2 only concerns accesses to the preprocessed
data and there is no need for handling priority queues. Moreover, step 3 only concerns
a very limited subgraph, containing only a few hundreds of arcs in overall.
Figure 4.8 demonstrates this measurement for Germany. Again we observe the

remarkable stability (and independence of the landmark set) for steps 2 and 3, as
well as the linear dependence of steps 1 and 2, and the independence of step 3 on the
value of N . Since the average number of touched arcs for TDD was 2, 351, 697 vertices,
the overall speedup of CFCA(1) for BC3K is more than 1, 666 w.r.t. the machine

64

3,000

4,000

5,000

6,000

7,000

8,000

o
r
R
e
la
xa
ti
o
n
 b
y
In
it
ia
l B

al
l

Contribution of STEP 1 in query time of
CFCA(N) on GERMANY

N=1 N=2 N=4 N=6

R3K 1,116 2,209 4,467 6,748

SR3K 834 2,046 4,378 6,722

SK3K 884 1,916 4,028 6,166

BC3K 756 1,860 4,025 6,262

0

1,000

2,000

A
rc
 S
ca
n
s
fo

800

1,000

1,200

1,400

1,600

1,800

2,000

m
b
er
 o
f
M
ar
ke

d
 A
rc
s

Contribution of STEP 2 in query time of
CFCA(N) on GERMANY

N=1 N=2 N=4 N=6

R3K 326 634 1,230 1,810

SR3K 327 634 1,228 1,806

SK3K 327 635 1,232 1,813

BC3K 328 636 1,233 1,813

0

200

400

600

N
u
m

100

150

200

250

300

350

400

450

500

ca
n
s
fo
r
R
e
la
xa
ti
o
n
 in

 S
u
b
gr
ap

h

Contribution of STEP 3 in query time of
CFCA(N) on GERMANY

N=1 N=2 N=4 N=6

R3K 325 354 391 416

SR3K 327 360 399 425

SK3K 326 359 398 425

BC3K 327 361 402 429

0

50

A
rc
 S
c

Figure 4.8: Per step performance of CFCA(N), at 1.32sec resolution, for a query set of
50, 000 random queries in Germany.

independent measure of number of “touched” arcs.
Observe finally that for Germany the speedups within the two measures (absolute

running times, and “touched” arcs) are analogous. This is due to the fact that, since
we have a quite small landmark set size this time, step 1 actually dominates the
computational effort in this case.

Exploring Outliers in Relative Errors

The purpose of our next experiment was to delve into the details of the relative error
of CFCA(N). We study the quantiles of the relative error for serving 50, 000 random
queries with the most prominent landmark set BC4K.
In particular, taking the average error value as our baseline, we constructed buckets

corresponding to multiples of this baseline, and then measured the percentage of
queries resulting in a relative error belonging to each bucket. We chose BC4K because
this is the landmark set that results in the best trade-off of query time and relative
error. Figure 4.9 demonstrates the results of this analysis for CFCA(1), CFCA(2), CFCA(4)
and CFCA(6). We observe the following: CFCA(1) has an average relative error for is
0.536%, whereas 81.6% of total responses are below this average value. CFCA(2) has
an average relative error 0.142%, and 90.7% of total responses are below this average
value, and 94.2% of queries have relative error up to 0.568%. CFCA(4) has an average
relative error 0.057%, and 97.3% of queries have relative error at most 0.456%. CFCA(6)
has an average relative error 0.043%, and 97.6% of queries have relative error at most
0.344%. It is finally mentioned that for all values of N we faced the same worst-case
error of 71.558%, which appeared for only one short-range query.

65

63.6%0.0% (exact)
78.7%0.0% (exact)

83.8%0.0% (exact)
85.0%0.0% (exact)

18.0%0.0% - 0.536%
12.0%0.0% - 0.142%
10.8%0.0% - 0.057%
10.6%0.0% - 0.043%

5.5%0.536% - 1.072%
1.5%0.142% - 0.284%
0.7%0.057% - 0.114%
0.5%0.043% - 0.086%

5.5%1.072% - 2.144%
2.0%0.284% - 0.568%
0.8%0.114% - 0.228%
0.7%0.086% - 0.172%

4.5%2.144% - 4.288%
2.2%0.568% - 1.136%
1.2%0.228% - 0.456%
0.8%0.172% - 0.344%

2.2%4.288% - 8.276%
2.0%1.136% - 2.272%
1.1%0.456% - 0.912%
0.8%0.344% - 0.688%

0% 20% 40% 60% 80%
% queries (green: N = 1, red: N = 2, blue: N = 4, black: N = 6)

Figure 4.9: Tails of error percentages of CFCA(N) for 50, 000 randomly chosen queries
in the instance of Berlin, with the BC4K landmark set.

Exploring Outliers in Relative Errors.

We conducted the same statistical analysis on the relative error of CFCA(N) in Germany,
as we did for Berlin. Figure 4.10 demonstrates the results of this analysis for CFCA(1),
CFCA(2), CFCA(4) and CFCA(6). The outcome is slightly different compared to the Berlin
instance. In particular, the vast majority of the queries result in relative errors below
the average value, as we observed for Berlin, while some of them (but not most
of them) provide the exact shortest-path. In more detail, for BC3K in Germany we
observe the following: The average relative error for CFCA(1) is 0.911%. The algorithm
discovers the exact shortest path in 23.4% of queries. 74.7% of total responses are
below the average value. The worst-case error was 79.315%. The average relative
error for CFCA(2) is 0.272%. The algorithm discovers the exact shortest path in 35.3%
of queries. 84.2% of total responses are below the average value. The worst-case
error was 43.179%. The average relative error for CFCA(4) is 0.071%. The algorithm

66

23.4%0.0% (exact)
35.3%0.0% (exact)

42.0%0.0% (exact)
44.0%0.0% (exact)

51.3%0.0% - 0.911%
48.9%0.0% - 0.272%
50.1%0.0% - 0.071%
50.8%0.0% - 0.032%

9.8%0.911% - 1.822%
3.8%0.272% - 0.544%

1.3%0.071% - 0.142%
0.6%0.032% - 0.064%

8.8%1.822% - 3.644%
4.5%0.544% - 1.088%

1.5%0.142% - 0.284%
0.7%0.064% - 0.128%

4.8%3.644% - 7.288%
4.0%1.088% - 2.176%

1.6%0.284% - 0.568%
0.9%0.128% - 0.256%
1.6%7.288% - 14.576%
2.5%2.176% - 4.352%
1.7%0.568% - 1.136%
1.0%0.256% - 0.512%

0% 20% 40% 60%
percentage of queries (green: N = 1, red: N = 2, blue: N = 4, grey: N = 6)

Figure 4.10: Tails of error percentages of CFCA(N) for 50, 000 randomly chosen queries
in the instance of Germany, with the BC3K landmark set.

discovers the exact shortest path in 42.0% of queries. 92.1% of total responses are
below the average value. The worst-case error was 26.840%. The average relative
error for CFCA(6) is 0.032%. The algorithm discovers the exact shortest path in 44.0%
of queries. 94.8% of total responses are below the average value. The worst-case error
was 12.860%.

4.4.5 Live Traffic Reporting with CFLAT

As was done in the case of FLAT oracle, we conducted an experiment to assess the
responsiveness of CFLAT to live-traffic updates. We remind that the goal is, when a
disruption occurs “on the fly” (e.g., the abrupt and unforeseen congestion, or even
blockage of a road segment for half an hour due to a car accident), that the oracle
can take into account, for the affected route plans that have already been suggested

67

or will be suggested in the near future, the temporal traffic-related information, as
fast as possible. Using a 15-min radius for the disruptions, we executed 1, 000 live-
traffic updates for the instances of Berlin and Germany, for the landmark set BC4K
and BC3K , respectively. For Berlin, the average number of affected landmarks was
82 for Berlin, and the updating procedure of the affected landmarks’ summaries
requires average time 8.7sec, using 6 threads. For Germany, the average number of
affected landmarks was only 6, and the updating procedure of the affected landmarks’
summaries requires average time 11sec, again using 6 threads.

68

Chapter 5

Conclusion

We provided an extensive experimental evaluation of landmark-based oracles for
time-dependent road networks.
Our experimentation of the FLAT oracle in the instance of Berlin has shown that

the average query time can be as small as 85µsec, achieving a speedup (against the
time-dependent variant of Dijkstra) more than 863 in absolute running times, and
more than 1, 222 in Dijkstra rank measures, with worst-case observed stretch less than
0.717%.
It was proved that the advantage of HORN over FLAT is that it achieves query times

sublinear, not just in the size of the network, but in the actual Dijkstra rank of the
query at hand, be it long-range, mid-range, or short-range, while requiring asymptot-
ically similar preprocessing space and time. Our experiments on the Berlin instance
indeed confirm the improved stretch factors, but also better speedups due to sophis-
ticated early-stopping criteria, compared to the experimentation on FLAT for the same
subsets of “global” landmarks.
Our main goal in this work is to demonstrate the practicality of FLAT and HORN,

which provide provable guarantees w.r.t. query times, stretch factors and preprocess-
ing requirements, for large-scale real data sets. The strong aspects of our oracles are
the simplicity of the query algorithms, the remarkably small (optimal in most cases)
observed stretches, and the achieved speedups. On the negative side, the preprocess-
ing space and time requirements are rather large.
The CFLAT oracle achieves much better preprocessing requirements, with similar

69

query-times and better approximation guarantees, compared to FLAT. To the best of
our knowledge, CFCA(N) is the only query algorithm which accounts in its query-time,
apart from the estimation of the minimum travel-time along an od-path, also the
actual path construction. And yet, the achieved query times are quite competitive.
Moreover, CFLAT is totally scalable, as a typical landmark-based oracle, and it also
achieves a noticeable performance against other state-of-art speedup techniques for
time-dependent road networks.
For Berlin, the only experimentally evaluated speedup technique we are aware of,

TDCRP [29], requires 21min of preprocessing time on a 16-core machine, 31MB of pre-
processing space, and achieves 0.28msec query time and average error of 1.47%. For
an analogous amount of preprocessing work, CFLAT preprocesses R500 in 54min on a
6-core machine, in space 1.3GB, and achieves query-times varying from 0.452msec up
to 2.186msec and relative error from 1.883% down to 0.132%, depending on the value
of N . If query-time is the main goal, then CFLAT can preprocess BC4K in 7h con-
suming 10.4GB and achieving query-times varying from 0.128msec up to 0.467msec
and average errors from 0.536% down to 0.043%, depending on the value of N . It is
also noted that CFCA(6) achieves error at most 0.043% for 95.6%, and at most 0.688%
for 98.4% of the 50, 000 queries (cf. Figure 4.9).
For Germany, we compare our oracle with the two most prominent speedup tech-

niques we are aware of, TDCRP and inex.TCH(0.1), using their evaluation as reported
in [29]. TDCRP requires total preprocessing time 4h41min on a 16-core machine, using
361MB preprocessing space, and achieves 1.17msec query-time and average error of
0.68%. For an analogous amount of preprocessing work, CFLAT preprocesses R1K in
16h on a 6-core machine, consumes space 26.8GB and achieves query-times varying
from 2.87msec up to 17.105msec, and relative error from 1.562% down to 0.072%,
depending on the value of N . If query-time is the main goal, then CFLAT preprocesses
BC3K in 46h consuming 80.4GB and achieving query-times varying from 0.959msec
up to 5.506msec and average errors from 0.911% down to 0.032%, depending on the
value of N . It is also noted that CFCA(6) achieves error at most 0.032% for 94.8%,
and at most 0.512% for 98% of the 50, 000 queries (cf. Figure 4.10). inex.TCH(0.1), on
the other hand, preprocesses the instance in 6h18min, requiring space 1.34GB, and
achieves average query-time 0.7msec with average error 0.02% and worst-case error
0.1%.

CFCA(N) gave a speedup of more than 1, 030 w.r.t. query time against the time-

70

dependent variant of Dijkstra with average stretch 0.536%. That is, the query-time is
only slightly worse (0.128msec instead of 0.083msec) even though the measurement
in this work includes also the path construction, but the corresponding average error
is clearly better than the average error of 0.781% for FCA(N) in FLAT oracle.

71

Bibliography

[1] C. Sommer, “Shortest-path queries in static networks,” ACM Comp. Surveys,
vol. 46, 2014.

[2] H. Bast, D. Delling, A. V. Goldberg, M. Mller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. Werneck, “Route planning in transportation networks,” Tech.
Rep. MSR-TR-2014-4, Microsoft Research, 2014.

[3] G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter, “Minimum time-dependent
travel times with contraction hierarchies,” ACM Journal of Experimental Algo-
rithmics, vol. 18, pp. 1–43, 2013.

[4] D. Delling, “Time-dependent sharc-routing,” Algorithmica, vol. 60, pp. 60–94,
2011.

[5] D. Delling, L. Liberti, G. Nannicini, and D. Schultes, “Bidirectional A* search on
time-dependent road networks,” Networks, vol. 59, pp. 240–251, 2012.

[6] B. C. Dean, “Shortest paths in fifo time-dependent networks: Theory and algo-
rithms,” tech. rep., Massachusetts Institute of Technology, 2004.

[7] F. Dehne, O. T. Masoud, and J. R. Sack, “Shortest paths in time-dependent fifo
networks,” Algorithmica, vol. 62, pp. 416–435, 2012.

[8] L. Foschini, J. Hershberger, and S. Suri, “On the complexity of time-dependent
shortest paths,” Algorithmica, vol. 68, pp. 1075–1097, 2014.

[9] A. Orda and R. Rom, “Shortest-path and minimum delay algorithms in networks
with time-dependent edge-length,” Journal of the ACM, vol. 37, pp. 607–625,
1990.

72

[10] K. Cooke and E. Halsey, “The shortest route through a network with time-
dependent intermodal transit times,” Journal of Mathematical Analysis and Ap-
plications, vol. 14, pp. 493–498, 1966.

[11] K. Ozbay, H. D. Sherali, and S. Subramanian, “The time-dependent shortest
pair of disjoint paths problem: Complexity, models, and algorithms,” Networks,
vol. 31, pp. 259–272, 1998.

[12] S. E. Dreyfus, “An appraisal of some shortest-path algorithms,” Operations Re-
search, vol. 17, pp. 395–412, 1969.

[13] B. C. Dean, “Continuous-time dynamic shortest path algorithms,” Master’s the-
sis, Massachusetts Institute of Technology, 1999.

[14] B. C. Dean, “Algorithms for minimum-cost paths in time-dependent networks
with waiting policies,” Networks, vol. 44, pp. 41–46, 2004.

[15] S. Kontogiannis, D. Wagner, and C. Zaroliagis, “Hierarchical time-dependent
oracles,” ISAAC, 2016.

[16] S. Kontogiannis and C. Zaroliagis, “Distance oracles for time-dependent net-
works,” Algorithmica, vol. 74, no. 4, pp. 1404–1434, 2016.

[17] G. V. Batz, D. Delling, P. Sanders, and C. Vetter, “Time-dependent contraction
hierarchies,” in Proceedings of the 11th Workshop on Algorithm Engineering
and Experiments (ALENEX’09), pp. 97–105, 2009.

[18] R. Agarwal and P. Godfrey, “Distance oracles for stretch less than 2,” in Pro-
ceedings of the 24th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’13), pp. 526–538, 2013.

[19] E. Porat and L. Roditty, “Preprocess, set, query!,” in Proceedings of the 19th
European Symposium on Algorithms (ESA 2011), vol. LNCS 6942, pp. 603–
614, 2011.

[20] M. Thorup and U. Zwick, “Approximate distance oracles.,” Journal of the ACM,
vol. 52, pp. 1–24, 2005.

73

[21] M. Hilger, E. Kohler, R. H. Mohring, and H. Schilling, “Fast point-to-point
shortest path computations with arc-flags,” The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, vol. 74 of DIMACS Book, pp. 41–72, 2009.

[22] S. Kontogiannis and C. Zaroliagis, “Approximating time-dependent shortest
paths in road networks,” Tech. Rep. eCOMPASS-TR-17, September 2013.

[23] S. Kontogiannis, D. Wagner, and C. Zaroliagis, “Distance oracles for time-
dependent networks,” ICALP, no. 1, pp. 713–724, 2014.

[24] Y. Bartal, L. Gottlieb, T. Kopelowitz, M. Lewenstein, and L. Roditty, “Fast, precise
and dynamic distance queries,” ACM-SIAM SODA, pp. 840–853, 2011.

[25] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating betweenness
centrality,” Springer, pp. 124–137, 2007.

[26] S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos,
D. Wagner, and C. Zaroliagis, “Analysis and experimental evaluation of time-
dependent distance oracles,” AlgorithmEngineering and Experiments (ALENEX
2015), SIAM, pp. 147–158, 2015.

[27] S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wag-
ner, and C. Zaroliagis, “Engineering oracles for time-dependent road networks,”
Algorithm Engineering and Experiments (ALENEX 2016), SIAM, pp. 1–14,
2016.

[28] G. Mali, P. Michail, A. Paraskevopoulos, and C. Zaroliagis, “A new dynamic
graph structure for large-scale transportation networks,” Algorithms and Com-
plexity – CIAC 2013, vol. LNCS 7878, pp. 312–323, 2013.

[29] M. Baum, J. Dibbelt, T. Pajor, and D. Wagner, “Dynamic time-dependent route
planning in road networks with user preferences,” 15th International Sym-
posium, on Experimental Algorithms (SEA2016), vol. LNCS 9685, pp. 33–49,
2016.

Author’s Publications

• Spyros Kontogiannis, George Michalopoulos, Georgia Papastavrou, Andreas
Paraskevopoulos, Dorothea Wagner, Christos D. Zaroliagis: Engineering Oracles
for Time-Dependent Road Networks. ALENEX 2016: 1-14

• Spyros Kontogiannis, George Michalopoulos, Georgia Papastavrou, Andreas
Paraskevopoulos, Dorothea Wagner, Christos D. Zaroliagis: Analysis and Ex-
perimental Evaluation of Time-Dependent Distance Oracles. ALENEX 2015:
147-158

Short Biography

• Name and Contact Information
Name: Georgia Papastavrou
Address: 13A Neotitos, Heraklion, Athens, 14122
Date of Birth: 21st June 1986
Nationality: Greek
Email: gpapasta21@gmail.com

• Education
Degree on Computer Science, University of Ioannina, 2013.
Undergraduate student, Department of Primary Education, University of Ioan-
nina

• Foreign Languages
Cambridge Proficiency in English

• Employment History
IT Teacher, Ellinoagliki Primary School, Amarousion, Athens, 2017
Scientific Associate in Computer Technology Institute and Press, Diophantus,
2013-2016

• Professional Skills
Programming, Software Engineering, Teaching

• Research Interests
Graph Theory, Design and Analysis of Algorithms, Route Planning

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation and Problem Statement
	Related Work
	Objectives and Contribution
	Structure of Thesis

	Theoretical Background
	Preliminaries and Notation
	FIFO Property in Time Dependent Networks
	Assumptions on the arc-cost metric.
	Landmarks Selection Policies and Preprocessing of Distance Summaries
	The Trapezoidal (TRAP) Approximation Method

	Engineering Oracles for Time-Dependent Shortest Paths
	The FLAT Oracle
	Constant-approximation Query Algorithm
	(1+s)-approximate Query Algorithm
	The Path Reconstruction
	Compressing Preprocessing Space

	The HORN Oracle
	The CFLAT Oracle
	Preprocessing space and time reduction
	The Query Algorithm
	Detailed description of the actual path construction

	Experimental Evaluation
	Experimental Setup
	Benchmark Instances
	Experimental Evaluation of FLAT and HORN.
	FLAT @ Berlin.
	HORN @ Berlin.
	Detailed Experimental Results
	Live Traffic Reporting with FLAT.

	Experimental Evaluation of CFLAT.
	Evaluation of CFLAT @ Berlin
	Evaluation of CFLAT @ Germany
	Preprocessing Statistics for Berlin and Germany
	Detailed auditing of CFCA(N)'s computational effort
	Live Traffic Reporting with CFLAT

	Conclusion
	Bibliography
	Author's Publications
	Short Biography

