[MopdAAnin Ko Katavepunuévn enegepyasio epOTNUATOV G YDPO-AEKTIKA dEGOUEVOL

(Parallel and distributed processing of spatial preference queries)

H
METAIITYXIAKH EPT'AXIA EZEIAIKEYXHX

YmoPaAiretar otnv opicbeioca
amo v [evikn Zovédevon Ewdumg XHvOeonc

tov Tpnuatog Mnyavikev H/Y kot ITAnpo@opikng

E&etaotikn Emtponn)

ontd Tov

Mnéota Anuntplo

®G LEPOC TV VTTOYPEDGEMV Y10 TNV OTOKTNOT TOL

METAIITYXIAKOY AIITAQMATOZX XTHN [IAHPO®OPIKH

ME EZEIAIKEYXZH XTO AOTI'’=MIKO

[Mavemotuo loavviveov

drePapnc 2017

ACKNOWLEDGMENTS

AQlepOVETOL GTNV OKOYEVELDL LOV Yo TNV oTNPLEN TOVG KB’ OAN TNV S1dpKELD TV CTOVODV

pov.

CONTENTS

Acknowledgments
Contents
List of tables
List of figures
Extetapévn [epiinym
Abstract
Chapter 1. Introduction
Chapter 2. Related Work
2.1. Spatial preference queries
2.2. Top-k spatial preference queries
2.3. Set similarity joins
2.4. Spatio-textual search
Chapter 3. Parallel and distributed processing of spatial preference
queries using keywords
3.1. Preliminaries
3.2. Problem statement and overview of solution
3.3. Grid-based partitioning and initial algorithm
3.4. Algorithms with early termination
3.5. Theoretical results
3.6. Experimental evaluation
3.7. Performance improvement techniques
3.8. Emulator
Chapter 4. Conclusions — Further work
4.1. Conclusions
4.2. Further work
References
Short Vita

viii

14
14
15
15
17

19
19
21
26
31
39
47
66
71
74
74
75
77
84

LIST OF TABLES

Table 1: Overview of symbols 21
Table 2: Example of datasets and scores for query q.W = {italian} 24
Table 3: Experimental parameters (default values in bold) 47
Table 4: Emulator output 1/4 71
Table 5: Emulator output 2/4 72
Table 6: Emulator output 3/4 73
Table 7: Emulator output 4/4 73

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Example of spatial preference query using keywords (SPQ).
Example of grid partitioning

Algorithm 1: pSPQ: Map function

Algorithm 2: pSPQ: Reduce function

Algorithm 3: eSPQIlen: Map function

Algorithm 4: eSPQIlen: Reduce function with Early Termination

Algorithm 5: eSPQsco: Map function

Algorithm 6: eSPQsco: Reduce function

Spatial distribution of flickr dataset

Spatial distribution of twitter dataset

Spatial distribution of clustered dataset
Duplication of feature objects

Flickr dataset grid size experiment results

Flickr dataset keywords experiment results

Flickr dataset range experiment results

Flickr dataset top-k parameter experiment results
Twitter dataset grid size experiment results
Twitter dataset keywords experiment results
Twitter dataset range experiment results

Twitter dataset top-k parameter experiment results
Scalability of our algorithms performance when varying

the dataset size

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31.:
Figure 32:
Figure 33:
Figure 34:

Uniform dataset grid size experiment results

Uniform dataset keywords experiment results

Uniform dataset range experiment results

Uniform dataset top-k parameter experiment results
Clustered dataset grid size experiment results

Clustered dataset keywords experiment results

Clustered dataset range experiment results

Clustered dataset top-k parameter experiment results
eSPQsco execution time based on keyword selection (1/2)
eSPQsco execution time based on keyword selection (2/2)
Clustered file with 5x5 static grid

Clustered file with 5x5 dynamic grid

Gains by using mbrs or dynamic grid

23
26
28
31
34
35
37
38
49
49
50
51
53
53
54
55
56
56
57
57

58
59
59
60
60
61
62
63
63
64
65
66
67
69

Vi

EKTETAMENH INIEPIAHYH

Ovopa: Anuntprog Mréotag tov lodvvn kot g Mapiog

Eidog tithov: MSc

Tunua [Minpoeopikng, [oavemotwo loavvivov

13/2/2017

Tithog Awtpipng: HopdhAnin kon Katavepnpuévn eneepyacio EpOTNUATOV GE YDPO-AEKTIK
dedopéva

Emprénovtag: NikdAoog MopovAing

O o10)0G ™G CLYKEKPEVNS daTpIPng eivar 1 avamTuEn akyopiBumy yio v eniAvon ywpo-
AekTiK®V epoTNUdTOV (Spatio-textual queries) mévm ce dedopéva peydiov dykov (big-data)
Kot koTaveunpévo mepiaiiov. To cvykekpiuévo avtikeipevo €xel peretnfel extevog amd v
aKodNUAIK) Kowotnta Kot €xovv mpotabel moAlol Kot amodotikoi aiyopiBupotr yio v

OVTILETAOTIOTN TOL {NTHLOTOG.

Ot vmdpyovces pehéteg (Ko Kotd GULVEMEW KOl VAOTOWOELS) EMKEVIPMOVOVIOL GTNV
Aertovpyio. og KEVIPIKO VIOAOYIoTIKO mepPdriov, NTol TV enelepyacio twv dedopévov ce
éva. kol povo teppotikd punydvnua (HY, xwnto, ktd). To yeyovdg avtd emeépel €va
ONUOVTIKO petovékTnua: Oa mpémel To dedopéEva va eivar apkoHvImg HKPE MGTE VO LITOPOLV
vo eneEepyaoTolV Omd TIG MOAAEG (POPEC TEPLOPICUEVEG VTOAOYICTIKEG OLVATOTNTEG TOL

TEPLOTIKOV UMY OVT|LLOTOG.

Me 10 mépacpa Tov xpoOvov Kot TV €upvtatn €£AMAMOTN TOL SLUOIKTVOV KOl TOV KIVNTOV
GLUOKEVMV OV £YOVV TTPOGPacT G€ AVTO, 0 GYKOG TV TOPAYOUEVOV dEdOUEVDV (OADV TV

TOmoV) &gl molamiaoclaotel. Mikdue mAéov ywo big-data ftor dedopéva g tééng TtV

vii

nolMov gigabytes. Tao dedopéva owTd oty TAEOYNQI0 TOV TEPITTOCEMY APOPOHY Kot TNV

tonobecia TV YPNoTOV, dpo AdE Yo xopikd dedopéva (location based data).

v dwrpPn avt) Ba emAvoovpe to (TN TG emeEepyaciog oVTOV TV OEOOUEVODV GE
Katavepunuévo mepipdiiov kot Ba mpoteivovpe aAyopiBpove yioo to mepPdAiov owTo.
Aéyovtag katoveunuévo mePPAALOV €VVOOLUE KOTOO0 VLTOAOYIOTIKO GUOTNUO HE 2 1)
napamiveo kouPovc. Evd Omoc simope to oviikeipevo tmv spatio-textual queries éyet
perenOel o KEVIPIKO EMIMEDO EKTEVMDS, M UETOPOPO TOV GE KATOVEUNUEVO TEPIPAALOV

TOPOVCIALEL TPOKANGELC.

Xmv mapovoa epyacioc 0o TOPOVGIAGOLUE TIG TPOKANCELS avTEG Ko Oa dovue mwg
avtipetonilovtor kabhg kot Oa mpoteivovpe Evav mopdAANAo aAyopBo mov emAVEL e TOV

Béltioto tpdmo spatio-textual queries og katavepnuévo tepPaiiov.

2T0VG EMUEPOVG GTOYOVS TNG EPYUCIOG AVIKEL KOl O OXEOOGHOG EVOC TTPOGOUOLMTH O 0TTOT0g

Bo TpocopoldVEL TNV Agttovpyia TOL TAPAAANAOL aAyopiBlLov G KEVIPIKO TEPPAALOV.

viii

ABSTRACT

Surname: Bestas

Name: Dimitrios

Initials: B.D

Title: MSc

Computer Science Department, University of loannina, Greece
13/2/2017

Parallel and distributed processing of spatio-textual queries

Thesis Supervisor: Nikolaos Mamoulis

In this thesis we aim to implement algorithms for solving spatio-textual queries over big data

and thus over a distributed environment.

This topic has been extensively studied by the academic community, while a plethora of

algorithms have been proposed and implemented that handle these types of queries.

The problem with the existing solutions is that they focus on a centralized environment, or
processing of the available data on a single terminal device (PC, mobile phone, etc). This fact
incurs a significant disadvantage: The data to be processed should be sufficiently small in
order to be able to be processed by the sometimes limited processing capabilities of the

terminal device.

With the advent of time and the huge growth of the internet and the widespread availability of
devices that can access it, the amount of data produced has increased exponentially. We now

talk about big-data, or data in the magnitude of hundreds of gigabytes. Depending on the

application that generates the data (eg Facebook, Flickr, twitter, foursquare, etc.) more often
than not, the geographical location of the user is also included. Thus we are faced with
location based data.

In this thesis we will tackle the problems that arise when trying to process such data on a
distributed environment and we will propose algorithms that run on such environments. A
distributed environment is a computational system that is comprised of at least two computing

nodes.

As mentioned before, spatio-textual queries have been studied in a centralized environment,
but transferring the existing knowledge to a distributed environment poses challenges. We
will study those challenges and propose parallel algorithms that solve spatio-textual queries in

an optimum way.

Motivated by this trend, in this thesis, we study the novel problem of parallel and distributed
processing of spatial preference queries using keywords, where the input data is stored in a

distributed way.

Given a set of keywords, a set of spatial data objects and a set of spatial feature objects that
are additionally annotated with textual descriptions, the spatial preference query using
keywords retrieves the top-k spatial data objects ranked according to the textual relevance of

feature objects in their vicinity.

This query type is processing-intensive, especially for large datasets, since any data objects
may belong to the result set while the spatial range defines the score, and the k data objects

with the highest score need to be retrieved.
We propose a solution that has two notable features:
e we propose a deliberate re-partitioning mechanism of input data to servers, which

allows parallelized processing, thus establishing the foundations for a scalable query

processing algorithm, and

e Wwe boost the query processing performance in each partition by introducing an early
termination mechanism that delivers the correct result by only examining few data

objects.

Capitalizing on this, we implement parallel algorithms that solve the problem in the
MapReduce framework. Our experimental study using both real and synthetic data in a cluster

of sixteen physical machines demonstrates the efficiency of our solution.

11

CHAPTER 1. INTRODUCTION

With the advent of modern applications that record the position of mobile users by means of
GPS, and the extensive use of mobile smartphones, we have entered the era of Big Spatial
Data. The fact that an increasing amount of user-generated content (e.g., messages in Twitter,
photos in Flickr, etc.) is geotagged also contributes to the daily creation of huge volumes of
location-based data. Apart from spatial locations, the data typically contain textual

descriptions or annotations.

Analyzing and exploiting such textually annotated location-based data is estimated to bring
high economic benefits in the near future. In order to extract useful insights from this wealth
of Big Spatial Data, advanced querying mechanisms are required that retrieve interesting

results from massively distributed spatio-textual data.

Advanced queries that combine spatial constraints with textual relevance to retrieve objects of
interest have attracted increased attention recently due to the ever-increasing rate of user-

generated spatio-textual data.

Such queries are processing-intensive, especially for large datasets, since any object may

belong to the result set if it complies with the query restraints.

In this thesis, we study such a query that retrieves data objects based on the textual relevance
of other (feature) objects in their spatial neighborhood.

In particular, given a keyword-based query, a set of spatial data objects and a set of spatial
feature objects that are additionally annotated with textual descriptions; the spatial preference
query using keywords retrieves the top-k spatial data objects ranked according to the textual

relevance of feature objects in their vicinity.

12

This query is generic, as it can be used to retrieve locations of interest based on the relevance
of Tweets in their vicinity, based on popular places (bars, restaurants, etc.), and/or based on
the comments of other people in the surrounding area.

However, processing this query raises significant challenges. First, due to the query
definition, every data object is a potential result and cannot be pruned by spatial or textual
constrains. Second, the size of the data ranges from a few gigabytes to hundreds of gigabytes
(or more). This means that processing the data on a central level, i.e. on a single machine, is
impossible taking into account the limited hardware capabilities such a machine could
possess. This in turn leads to the need of parallelizing the problem. The initial dataset must be
split into pieces and each piece must be processed independently by a distributed system,

while ensuring that the final result is not affected by this procedure.

Similar queries have been extensively studied by academia, while efficient algorithms have
been proposed that solve that queries [1],[2],[71] etc. However those works focus exclusively
on a centralized processing environment and thus cannot be classified under the “big-data”

category.

In this thesis, we address the technical challenges described above and provide the first

solution to parallel/distributed processing of the spatial preference query using keywords.

Our approach has two notable features:

e We propose a method to parallelize processing by deliberately re-partitioning input
data, in such a way that the partitions can be processed in parallel, independently from
each other, and

e Within each partition, we apply an early termination mechanism that eagerly restricts
the number of objects that need to be processed in order to provide the correct result

set.

13

In more detail, we make the following contributions in this thesis:

e We formulate and address a novel problem, namely parallel/distributed evaluation of
spatial preference queries using keywords over massive and distributed spatio-textual
data.

e We propose a grid-based partitioning that uses careful duplication of feature objects in
selected neighboring cells that allows independent processing of subsets of input data
in parallel, thus establishing the foundations We further boost the performance of our
algorithm by introducing an early termination mechanism for each independent work
unit, thereby reducing the processing cost.

e We demonstrate the efficiency of our algorithms by means of experimental evaluation
using both real and synthetic datasets in a medium-sized cluster.

e We examine further possible improvements that can be implemented without
significant overhead, that take into account the distribution of the objects in the
dataset. Those improvements incur quantified performance gains that are independent

of the proposed algorithm, thus reusable to other similar works.

14

CHAPTER 2. RELATED WORK

2.1. Spatial preference queries

2.2. Top-k spatial preference queries
2.3. Set similarity joins

2.4. Spatio-textual search

In this section we will briefly present some existing work on the subject of spatial queries.
Most of the existing work studies spatial queries with or without textual information based on
a centric approach. That is that the solutions and algorithms proposed work on a single device

(personal computer, mobile phone, etc).

2.1. Spatial preference queries

Spatial preference queries [71] rank objects based on the qualities of features in their spatial

neighborhood.

For example, think a real estate agency database of flats for lease; a customer may want to
rank the flats with respect to the appropriateness of their location, defined after aggregating
the qualities of other features (e.g., schools, cafes, hospital, market, etc.) within their spatial

neighborhood.

Such a neighborhood concept can be specified by the user via different functions. It can be an
explicit circular region within a given distance from the flat. Another intuitive definition is to
consider the whole spatial domain and assign higher weights to the features based on their

proximity to the flat.

15

Given a set D of objects of interest (e.g., candidate locations), a top-k spatial preference query
retrieves the k objects in D with the highest scores. The score of an object is defined by the

quality of features (e.g., facilities or services) in its spatial neighborhood.

2.2. Top-k spatial preference queries

Top-k spatial preference queries return a ranked set of the k best data objects based on the
scores of feature objects in their spatial neighborhood. Despite the wide range of location-
based applications that rely on spatial preference queries, existing algorithms incur non-
negligible processing cost resulting in high response time. The reason is that computing the
score of a data object requires examining its spatial neighborhood to find the feature object

with highest score.

One technique to speed up the performance of top-k spatial preference queries is the mapping
of pairs of data and feature objects to a distance-score space, which in turn allows identifying
and materializing the minimal subset of pairs that is sufficient to answer any spatial

preference query [67].

In [67] the authors also present a novel algorithm that improves query processing
performance by avoiding examining the spatial neighborhood of the data objects during query
execution. In addition, an efficient algorithm for materialization is proposed and the useful

properties that reduce the cost of maintenance are described.

2.3. Set similarity joins

Recently, the set-similarity join has attracted significant interest. Given a collection D of set-
valued data, the problem is to find pairs (x, y) of sets in D, such that simy(x, y) > 8, where
simy(x, y) is a similarity function and 6 is a threshold. The main application of set-similarity
joins is near-duplicate object detection [38] (e.g., identify plagiarism, record linkage in data

integration, duplicate data cleansing, etc.). Set-similarity joins can also be used to facilitate

16

string matching; [40] showed that the edit distance between two strings can be bounded by

set-similarity measures defined on two sets of g-grams, which approximate the strings.

Computing set-similarity joins based on inverted files [55] was first proposed in [49]: for each
object x, the inverted lists that correspond to x’s clements are scanned to accumulate the
similarity between x and all other objects. Several optimizations over this baseline approach
are proposed, including scanning only a smaller subset of x’s lists and performing a single
pass over the data that constructs the inverted index and computes the join result at the same

time.

Chaudhuri et al. [10] suggested an efficient filter-refinement framework for set-similarity
joins, based on the observation that for two sets x, y to satisfy sim(x, y) > t, a necessary

condition is that prefixes of x and y should have at least some minimum overlap.

Arasu et al. [26] showed that this prefix-based filtering is just one of the possible summary
schemes that one could use as necessary conditions and provided alternative schemes with

theoretical bounds on their effectiveness.

Bayardo et al., [28] proposed an efficient framework for evaluating set-similarity joins, which
minimizes the necessary elements to add in the inverted file, during join evaluation, based on
pre-computed bounds on the element weights in the sets and appropriate orderings for the

domain of set elements and the database D.

This method is further optimized by Xiao et al. [52], by enhancing prefix-filtering using
positional information of elements in the prefixes and partially-seen suffixes of the joined

objects.

17

2.4. Spatio-textual search

In the past decade, there has been increasing interest on extracting spatial information from
web pages such as addresses, phone numbers, zip codes, and then assigning geographic tags

to the pages, a process known as geo-tagging [1, 13, 21].

Documents are given a geographic footprint, i.e., a set of locations; the footprint is often
approximated by an MBR. Geo-tagging facilitates multi-criteria search, such as searching
documents by textual content and spatial location; this type of search has already been
considered by commercial search engines like Google Maps. SPIRIT [50] is a search engine
that supports spatio-textual selection queries; the user inputs a set of keywords and a set of
spatial predicates and the engine returns the documents, which contain the keywords and their
spatial footprint satisfies the spatial predicates (e.g., “find all documents about children

hospitals within 10km from the city center”).

Several indexing approaches for the efficient support of spatio-textual selections have been
proposed [35, 42, 50, 54]. Some of these methods propose extensions of the R-tree, which
associate nodes or entries of the tree with inverted files for the contents of the corresponding
subtrees [42]; other approaches primarily index the data using an inverted file and then

spatially index each inverted list by an R-tree [51] or a space-filling curve [35].

De Felipe et al. [39] extend the R-tree to support containment nearest neighbor queries. Given
a query location g, a set of keywords K, and an integer k, the objective is to find the k nearest
objects to q which include all keywords in K. Each entry e of the tree, apart from its MBR,
stores a bitmap, which encodes the set of keywords included in every document in the subtree

indexed by e.

The algorithm of [43] is used to retrieve the nearest neighbors of q incrementally; entries that
violate the keyword containment constraint of the query are pruned during search. Cong et al.
[36] and Li et al. [44] independently proposed an IR-tree index, which primarily indexes the
data using an R-tree, but creates an inverted file for each node of the tree. The inverted file of
a leaf node indexes all documents in the node, while in the inverted file of a non-leaf node,

each id corresponds to a child (i.e., subtree) of the non-leaf node. The inverted list for a term

18

contains the children which include that term and the maximum weight of the term in any

object of the corresponding subtree.

By extending the nearest neighbor algorithm of [43], the IR-tree can be used to answer spatio-
textual proximity queries, where the user provides a location q and a set of keywords K and

asks for the best object on a map with respect to both distance from q and similarity with K.

An alternative, Spatial Inverted Index for spatio-textual proximity queries was recently
proposed by [48]. This method generates one inverted list per term and indexes each long
inverted list using an aggregate R-tree [47]; given a query, the lists of the query terms are
joined, by accessing from each tree the objects in increasing order of relevance and merging

them, until the k best objects are guaranteed to be found.

Several, more complex queries have also been defined and studied in the context of spatio-
textual search, like prestige-based spatio-textual similarity [31] and finding spatially close

groups of objects that match the query keywords [32, 53].

19

CHAPTER 3. PARALLEL AND DISTRIBUTED
PROCESSING OF SPATIAL PREFERENCE QUERIES
USING KEYWORDS

3.1. Preliminaries

3.2. Problem statement and overview of solution
3.3. Grid-based partitioning and initial algorithm
3.4. Algorithms with early termination

3.5. Theoretical results

3.6. Experimental evaluation

3.7. Performance improvement techniques

3.8. Emulator

3.1. Preliminaries

In this section we give a brief overview of MapReduce and HDFS, and define the type of

queries we will focus on.
3.1.1 MapReduce and HDFS
Hadoop is an open-source implementation of MapReduce [59], providing an environment for

large-scale, fault-tolerant data processing. Hadoop consists of two main parts: the HDFS

distributed file system and MapReduce for distributed processing.

20

Files in HDFS are split into a number of large blocks which are stored on DataNodes, and one
file is typically distributed over a number of DataNodes in order to facilitate high bandwidth
during parallel processing. In addition, blocks can be replicated to multiple DataNodes (by
default three replicas), in order to ensure fault-tolerance. A separate NameNode is responsible
for keeping track of the location of files, blocks, and replicas thereof. HDFS is designed for
use-cases where large datasets are loaded (“‘write-once”) and processed by many different

queries that perform various data analysis tasks (“read-many”).

A task to be performed using the MapReduce framework has to be specified as two steps. The
Map step as specified by a map function takes some input (typically from HDFS files),
possibly performs some computation on this input, and redistributes it to worker nodes (a
process known as “shuffle”). An important aspect of MapReduce is that both the input and
output of the Map step is represented as key-value pairs, and that pairs with same key will be
processed as one group by a Reducer. As such, the Reduce step receives all values associated
with a given key, from multiple map functions, as a result of the redistribution process, and

typically performs some aggregation on the values, as specified by a reduce function.

It is important to note that one can customize the redistribution of data to Reducers by
implementing a Partitioner that operates on the output key of the map function, thus
practically enforcing an application-specific grouping of data in the Reduce phase. Also, the
ordering of values in the reduce function can be specified, by implementing a customized
Comparator. In our work, we employ such customizations to obtain a scalable and efficient

solution to our problem.

3.1.2 Spatial Preference Queries

The spatial preference query belongs to a class of queries that rank objects based on the
quality of other (feature) objects in their spatial neighborhood [67, 70, 71]. Inherently a
spatial preference query assumes that two types of objects exist: the data objects, which will
be ranked and returned by the query, and the feature objects, which are responsible for
ranking the data objects. As such, the feature objects determine the score of each data object
according to a user-specified metric. Spatial preference queries find more applications in the

case of textually annotated feature objects [68], where the score of data objects is determined

21

by a textual similarity function applied on query keywords and textual annotations of feature
objects. This query is known as top-k spatio-textual preference query [68]. In this thesis, we

study a distributed variant of this query.

Table 1: Overview of symbols

Symbol Description

@) Set of data Objects

p ObjectsinO,p € O

F Set of feature Objects

f Feature objectinF, f € F

W Keywords associated with feature object f
qlk, r, W) Query for top-k data objects

w(f, q) Textual relevance of feature f to query g
w(f,q) Upper bound of w(f, q)

dist(p,f) Spatial distance between p and f

7(p) Score of data object p

T Score of the k-th best data object

R Number of reduce tasks

C={Cq ... ,Cr} Grid cells

3.2. Problem statement and overview of solution

3.2.1 Problem Formulation

Consider an object dataset O of spatial objects p € O, which are described by their
coordinates p.x and p.y. Also, consider a feature dataset F(i) of spatio-textual objects f € F,

which are represented by spatial coordinates f.x and f.y, and a set of keywords f.W.

The spatial preference query using keywords returns the k data objects {ps, . . ., pc} from O
with the highest score. The score of a data object p € O is defined by the scores of feature
objects f € F in its spatial neighborhood. As already mentioned, each feature object f is

associated with a set of keywords f.W.

A query g consists of a neighborhood distance threshold r, a set of query keywords q.W for
the feature set F, and the value k that determines how many data objects need to be retrieved.

For a quick overview of the basic symbols used in this thesis, we refer to Table 1.

22

Given a query q(k, r, W) and a feature object f € F, we define the non- spatial score w(f, q)
that indicates the goodness (quality) of f as the similarity of sets g.W and t.W. In this work, we
employ Jaccard similarity for this purpose. Obviously, the domain of values of w(f, q) is the
range [0, 1].

Definition 1: (Non-spatial score w(f, g)): Given a query g and a feature object f € F, the non-
spatial score w(f, q) determines the textual relevance between the set of query keywords g.W

and the keywords f.W of f using Jaccard similarity:

lqw N fw]
[qw U f.w|

w(f, q) =
The score 7 (p) of a data object p is determined by the feature objects that are within distance r
from p. More specifically, z (p) is defined by the maximum non-spatial score w(f, q) of any
feature object f in the r-neighborhood of p. This range based neighborhood condition is
typically used in the related work [67, 68, 70, 71].

Formally:

Definition 2: The score 7 (p) of p based on feature dataset F, given the range-based

neighborhood condition r is defined as:

7 (p) =max{w(f,q) | fe F:d(p, f)<r}

Example 1: Figure 1 depicts an example: The spatial area contains both data objects (denoted
as p;) and feature objects (denoted as f;). The data objects represent hotels and the feature

objects represent restaurants.

Assume a user issues the following query: Find the best (top-k) hotels that have an Italian
restaurant nearby. Let us assume that k = 1 and “nearby” is translated to r = 1.5 units of
distance. Then, the query is expressed as: Find the top-1 data object for which there exists a

highly ranked feature object based on the keyword “Italian” at a distance at most 1.5 units.

23

Figure 1: Example of spatial preference query using keywords (SPQ).

Table 2 lists the locations and descriptions of both data and feature objects. Only feature
objects fi, f4 and f; have a common term with the user specified query (the keyword “italian”).

Thus, only f;, f, and f; will have a Jaccard score other than 0.

In the last column of Table 2 the Jaccard score for all feature objects is shown. The score of
each data object is influenced only by the feature objects within a distance at most 1.5 units.

In Figure 1 the circles with radius 1.5 range units and center each data object include the
feature objects that are nearby each data object and influence its score. The actual score of a
data object is the highest score of all nearby feature objects.

Data object p4 has a score of 0.5 due to feature object f;, data object p; has a score of 1
because of feature object f, and data object ps has a score of 0.5 due to feature object f;.
Hence, the top-1 result is object p;.

24

Table 2: Example of datasets and scores for query g.W = {italian}

Object X Y Keywords Jaccard

pl 4.6 4.8 - -

p2 7.5 1.7 - -

p3 8.9 5.2 - -

p4 1.8 | 18 - -

p5 1.9 9.0 - -

fl 2.8 1.2 italian,gourmet 0.5
f2 5.0 3.8 chinese,cheap 0

f3 8.7 1.9 sushi,wine 0

f4 3.8 5.5 italian 1

f5 5.2 5.1 mexican,exotic 0

6 7.4 5.4 greek,traditional notinRange
f7 3.0 8.1 italian,spaghetti 0.5
f8 9.5 7.0 indian 0

In the parallel and distributed setting that is targeted in this thesis, datasets O and F are
horizontally partitioned and distributed to different machines (servers), which means that each

server stores only a fraction (partition) of the entire datasets.

In other words, there exists a number of partitions O; € O and F; € F of datasets O and F
respectively, such that U Oi=0,0; N Oj=@ fori#j,and U Fi=F, Fi N Fj= @ fori#j. Due
to horizontal partitioning, any (data or feature) object belongs to a single partition (Oi or Fi
respectively). We make no assumption on the number of such partitions nor on having equal
number of data and feature object partitions. Also, no assumptions are made on the specific
partitioning method used; in fact, our proposed solution is independent of the actual

partitioning method employed, which makes it applicable in the most generic case.

Problem 1. (Parallel/Distributed Spatial Preference Query using Keywords (SPQ)) Given an
object dataset O and a feature dataset F, which are horizontally partitioned and distributed to
a set of servers, the parallel/distributed spatial preference query using keywords returns the k
data objects {p1, . . . , p«} from O with the highest z (p;) scores.

25

3.2.2 Design Rationale

The spatial preference query using keywords (SPQ) targeted in this thesis is a complex query
operator, since any data object p may belong to the result set and the spatial range cannot be

used for pruning the data space.

As a result, the computation becomes more challenging and efficient query processing
mechanisms are required that can exploit parallelism and the availability of hardware
resources. Parallelizing this query is also challenging because any given data object p and all
feature objects within the query range r from p must be assigned to the same server to ensure
the correct computation of the score z(p) of p.

As such, a repartitioning mechanism is required in order to assign (data and feature) objects to
servers in a deliberate way that allows local processing at each server. To achieve the desired
independent score computation at each server, duplication of feature objects to multiple
servers is typically necessary. Based on this, we set the following objectives for achieving

parallel, scalable and efficient query processing:

e Objective #1: parallelize processing by breaking the work into independent parts,
while minimizing feature object duplication. In addition, the union of the results in
each part should suffice to produce the final result set.

e Objective #2: avoid processing the input data in its entirety, by providing early

termination mechanisms for query processing.

To meet the above objectives, we design our solution by using the following two techniques:

e a grid-partitioning of the spatial data space that uses careful duplication of feature
objects in selected neighboring cells, in order to create independent work units
(Section 3.3), and

e sorted access to the feature objects in a deliberate order along with a thresholding
mechanism that allows early termination of query processing that guarantees the

correctness of the result (Section 3.4).

26
3.3. Grid-based partitioning and initial algorithm

In this section, we present an algorithm for solving the parallel/distributed spatial preference
query using keywords, which relies on a grid-based partitioning of the 2-dimensional space in
order to identify subsets of the original data that can be processed in parallel. To ensure
correctness of the result computed in parallel, we repartition the input data to grid cells and
deliberately duplicate some feature objects in neighboring grid cells. As a result, this
technique lays the foundation for parallelizing the query processing and leads to the first

scalable solution.

y

Figure 2: Example of grid partitioning

3.3.1 Grid-based Partitioning

Consider a regular, uniform grid in the 2-dimensional dataspace that consists of R cells: C =
{C1, . .. ,Cr}. Our approach assigns all data and feature objects to cells of this grid, and
expects each cell to be processed independently of the other cells. In MapReduce terms, we
assign each cell to a single processing task (Reducer), thus all data that affect this cell need to

27

be sent to the assigned Reducer. The repartitioning mechanism operates in the following way:
Based on the spatial location of an object (data or feature object), this object is assigned to the
cell that encloses it in a straightforward way. However, some feature objects must be
additionally assigned to other cells (i.e., duplicated), in order to ensure that the data in each
cell can indeed be processed independently of the other cells and produce the correct result.
More specifically, given a feature object f € C; and any grid cell C; (C; # C;), we denote by
MINDIST(f, C;j) the minimum distance between feature object f and C;. This distance is
defined as the distance of f to the nearest edge of Ci, since f is outside C;. When this minimum
distance is smaller than the query radius r, i.e., MINDIST(f, C;) < r, then it is possible that f
is within distance r from a data object p € C;. Therefore, f needs to be assigned (duplicated)
also to cell Ci. The following lemma guarantees the correctness of the afore-described

technique.

Lemma 1. (Correctness) Given a parallel/distributed spatial preference query using keywords
with radius r, any feature object f € Cj must be assigned to all other grid cells C; (Ci # C)), if
MINDIST(f, Cj) <r.

Figure 2 illustrates the same dataset as in Figure 1 and a 4x4 grid (the numbering of the cells
is shown in the figure). Consider a query with radius r = 1.5, and let us examine feature object
f; as an example. Assuming that f; has at least one common term in its keyword set (f;.W) with
the user specified query (g.W), then f; may affect neighboring cells located near cell with
identifier Cy4. It is fairly easy to see that f; needs to be duplicated to cells Cq, C19, and Cy3, for
which MINDIST(f7,Ci) < r, thus the score of data objects located in these cells may be
determined by f5.

Before presenting the algorithm that exploits this grid partitioning, we make a note on how to
select an appropriate grid size, as this affects the amount of duplication required. It should
also be noted that in our approach the grid is defined at query time, after the value of r is
known. Let a denote the length of the edge of a grid cell. For now, we should ensure that o >
r, otherwise excessive replication to neighboring cells would be performed. Later, in Section
6, we provide a thorough analysis on the effect of the grid cell size to the amount of
duplicated data. Moreover we will show experimental results on this relationship in the results

section.

28

3.3.2 Parallel Algorithm

We design a parallel algorithm, termed pSPQ, that solves the problem in MapReduce. The
Map phase is responsible for re-partitioning the input data based on the grid introduced
earlier. Then, in the Reduce phase, the problem of reporting the top-k data objects is solved in
each cell independently of the rest. This is the part of the query that dominates the processing
time; the final result is produced by merging the k results of each of the R cells and returning
the top-k with the highest score. However, this last step can be performed in a centralized way
without significant overhead, given that the number of these results is small because k is

typically small.

In more detail, in the Map phase, each Map task (Mapper) receives as input some data objects
and some feature objects, without any assumptions on their location. Each Mapper is
responsible for assigning data and feature objects to grid cells, including duplicating feature
objects. Each grid cell corresponds to a single Reduce task, which will take as input all
objects assigned to the respective grid cell. Then, the Reducer can accurately compute the

score of any data object located in the particular grid cell and report the top-k.

Input: q(k,7,W),grid cells C = { (4, ...,Cr}
function MAP (x: input object)
C; < {C;: C; € Candx enclosedin C;}
if x is a data object then
x.tag < 0
output ((i, x.tag), x)
else
x.tag <« 1
if (x.W N q.W = @) then
10: output ((i, x.tag), x)

N AR S o

11: for (C; € C,suchthat MINDIST(x,C;) < r do
12: output ((j, x.tag), x))

13: end for

14: end if

15: end if

16: end function

Figure 3: Algorithm 1: pSPQ: Map function

29

3.3.2.1 Map Phase

Algorithm 1 shows the pseudo-code of the Map phase, where each call of the Map function

processes a single object denoted by x, which can be a data object or a feature object.

First, in line 3, the cell C; that encloses object x is determined.

Then, if x is a data object, it is tagged (x.tag) with the value 0, otherwise with the value 1. In
case of a data object, x is output using a composite key that consists of the cell id i and the tag
as key, and as value the entire data object x. In case of a feature object, we apply a simple
pruning rule (line 9) to eliminate feature objects that do not affect the result of the query. This
rule practically eliminates from further processing any feature object that has no common
keyword with the query keywords, i.e., g W n f.W = @. The reason is that such feature
objects cannot contribute to the score of any data object, based on the definition of our query.
This pruning rule can significantly limit the number of feature objects that need to be i)
duplicated and ii) be sent to the Reduce phase. For the remaining feature objects that have at
least one common keyword with the query, they are first output with the same composite key

as above, and value the entire feature object x.

In addition, we identify neighboring cells C; that comply with Lemma 1, and replicate the
feature object in those cells too. In this way, we have partitioned the initial data to grid cells

and have performed the necessary duplication of feature objects.

The output key-values of the Map phase are grouped by cell id and assigned to Reduce tasks
using a customized Partitioner. Also, in each Reduce task, we order the objects within each
group by their tag, so that data objects precede feature objects. This is achieved through the
use of the composite keys for sorting. As a result, it is guaranteed that each Reducer accesses

any feature object after it has accessed all data objects.

30

3.3.2.2 Reduce Phase

As already mentioned, a Reduce task processes all the data assigned to a single cell and
reports the top-k data objects within the respective cell. The pseudo-code of the Reduce

function is depicted in Algorithm 2.

First, all data objects are accessed one-by-one and loaded in memory (O;). Moreover, a sorted
list Lk of the k data objects pi with higher scores 7 (p;) is maintained. Let T denote the k-th best

score of any data object so far.

Then, for each feature object x accessed, its non-spatial score w(x, q) (i.e., textual similarity to
the query terms) is compared to T . Only if the non-spatial score w(x, q) is larger than T (line
9), may the top-k list of data objects be updated. Therefore, in this case we test all
combinations of x with the data objects p kept in memory O;. If such a combination (x, p) is
within distance r (line 11), then we check if the temporary score of p denoted by score(p) can
be improved based on x (i.e., w(X, g)), and if that is the case we check whether p has obtained

a score that places it in the current top-k list of data objects (L).

Line 12 shows how the score can be improved, however we omit from the pseudo-code the
check of score improvement of p for sake of simplicity. Then, in line 13, the list Ly is updated.
As explained, this update is needed only if the score of p is improved. In this case, if p already
exists in Lx we only update its score; otherwise p is inserted into L. After all feature objects

have been processed, Ly contains the top-k data objects of this cell.

3.3.2.3 Limitations

The above algorithm provides a correct solution to the problem in a parallel manner, thus
achieving Objective #1. However, in each Reducer, it needs to process the entire set of feature
objects in order to produce the correct result. In the following section, we present techniques

that overcome this limitation, thereby achieving significant performance gains.

31

N NNRRRPRRPR R R R R |
NP OOV oW RO

N AR o o

Input: q(k,r, W)
function REDUCE (key, V: objects assigned to cell with id key)
Ly <0
for (x € V)do
if x is a data object then
Load x in memory 0;
score(x) « 0 // initial score
else
if w(x,q) > 7 then
for (p € 0;) do
if d(p,x) < r then
score(p) < max{score(p),w(x,q)}
update list L, of top-k data objects and T
end if
end for
end if
end if

: end for
: forp e L, do

output (p, score(p)) // at this point: score(p) = t(p)

: end for
: end function

Figure 4: Algorithm 2: pSPQ: Reduce function

3.4. Algorithms with early termination

Even though the technique outlined in the previous section enables parallel processing of

independent partitions to solve the problem, it cannot guarantee good performance since it

requires processing both data partitions in a cell in their entirety (including duplicated feature

objects). To alleviate this shortcoming, we introduce two alternative techniques that achieve

early termination, i.e., report the correct result after accessing all data objects but only few

feature objects. This is achieved by imposing a deliberate order for accessing feature objects

in each cell, which in turn allows determining an upper bound for the score of any unseen

feature object. When this upper bound cannot improve the score of the current top-k object,

we can safely terminate processing of a given Reducer.

32
3.4.1 Accessing Feature Objects by Increasing Keyword Length

The first algorithm that employs early termination, termed eSPQIlen, is based on the intuition
that feature objects f with long textual descriptions that consist of many keywords (|f.W|) are
expected to produce low scores w(f, q). This is due to the Jaccard similarity used in the
definition of w(f, g) (Defn. 1), which has |g.W U f.W | in the denominator. Based on this,
we impose an ordering of feature objects in each Reducer by increasing keyword length,
aiming at examining first feature objects that will produce high score values w(f, g) with

higher probability.

In more technical details, given the keywords g.W of a query g, and a feature object f with
keywords f.W, we define a bound for the best possible Jaccard score that this feature object

can achieve as:

1 L IfWI<l|qgW]|

w(f,q) =y lawi S
Wz gl

(1)

Given that feature objects are accessed by increased keyword length, this bound is derived as
follows. As long as feature objects f are accessed that satisfy |[f.W| < |q.W]| , it is not
possible to terminate processing, thus the bound takes the value of 1. The reason is that
|f.W]| < |q.W] | holds, it is possible that a subsequent feature object f’ with more keywords
than f may have higher Jaccard score than f. However, as soon as it holds that |f. W | > |q. W|

the bound (best possible score) equals:

minlq. W1, If. W1} _la.w]
min{lq. WL, IF- WD+ 1f-WI=1a. W}~ 1. W]

because in the best case the intersection of sets q.W and f.W will be equal to: min{|q.W|,
[f.W|}, while their union will be equal to: min{|g.W|, [f.W[} + [fW| — |q.W|. Recall that T
denotes the k-th best score of any data object so far. Then, the condition for early termination

during processing of feature objects by increasing keyword length, can be stated as follows:

33

Lemma 2. (Correctness of Early Termination eSPQIlen) Given a query g and an ordering of
feature objects based on increasing number of keywords, it is safe to stop accessing more

feature objects as soon as a feature object f is accessed with:

T = w(f,q)

Based on this analysis, we introduce a new algorithm that follows the paradigm of Section 4,
but imposes the desired access order to feature objects and is able to terminate early in the

Reduce phase.

3.4.1.1 Map Phase

Algorithm 3 describes the Map phase of the new algorithm. The main difference to the
algorithm described in Section 4 is in the use of the composite key when objects are output by
the Map function (lines 8 and 10).

The composite key contains two parts. The first part is the cell id, as previously, but the
second part is a number. The second part corresponds to the value zero in the case of data
objects, while it corresponds to the length |f.W| of the keyword description in the case of a

feature object f.

The rationale behind the use of this composite key is that the cell id is going to be used to
group objects to Reducers, while the second part of the key is going to be used to establish the
ordering in the Reduce phase in increased order of the number used. In this sorted order, data

objects again precede feature objects, due to the use of the zero value.

Between two feature objects, the one with the smallest length of keyword description (i.e.,

fewer keywords) precedes the other in the sorted order.

34

Input: q(k,r,W),gridcellsC = {Cy,...,Cr}
function MAP (x: input object)
C; < {C;: C; € C andx enclosed in C;}
if x is a data object then
output ((i, 0), x)
else
if Cc. W N q.W = @) then
output ((i, |x. W|), x)
for (C; € C,suchthat MINDIST (x,(C;) < rdo
output ((J, |x. W), x)
end for
end if
: end if
: end function

0N AR Wy

Y S Gy
ol

Figure 5: Algorithm 3: eSPQIlen: Map function

3.4.1.2 Reduce Phase

As already mentioned, feature objects with long keyword lists are expected to result in
decreased textual similarity (in terms of Jaccard value). Thus, our hope is that after accessing
feature objects with few keywords, we will find a feature object that has so many keywords
that all remaining feature objects in the ordering cannot surpass the score of k-th best data

object thus far.

Algorithm 4 explains the details of our approach. Again, only the set of data objects assigned
to this Reducer is maintained in memory, along with a sorted list Lk of the k data objects with

best scores found thus far in the algorithm.

The condition for early termination is based on the score T of the k-th object in list Ly and the

best potential score w(f, q) of the current feature object f (line 9).

35

1: Input: q(k,r, W)

2: function REDUCE (key, V: objects assigned to cell with id key)
3: L, <0

4: for (x € V) do

5: if x is a data object then

6: Load x in memory O;

7: score(x) « 0 // initial score
8: else

9 ifT >w(x,q)then

10: break

11: end if

12: ifw(x,q) > 7 then

13: for (p € 0;) do

14: if d(p,x) < r then

15: score(p) < max{score(p),w(x,q)}

16: update list L of top-k data objects and T
17: end if

18: end for

19: end if

20: endif

21: end for

22: forp € L, do

23: output (p,score(p)) // at this point: score(p) = 1(p)
24: end for

25: end function

Figure 6: Algorithm 4: eSPQlen: Reduce function with Early Termination

3.4.2 Accessing Feature Objects by Decreasing Score

In this section, we introduce an even better early termination algorithm, termed eSPQsco.

The rationale of this algorithm is to compute the Jaccard score in the Map phase and use this

score as second part of the composite key.

In essence, this can enforce a sorted order in the Reduce phase where feature objects are

accessed from the highest scoring feature object to the lowest scoring one.

36

To explain the intuition of the algorithm, consider the feature object with highest score. By
drawing a circle in the dataset space with center that feature object and range r and checking
witch data objects reside in that circle we get the top-k results. This observation leads to a
more efficient algorithm that can (in principle) produce results when accessing even a single

feature object.

As a result, the algorithm is expected to terminate earlier, by accessing only a handful of
feature objects. This approach incurs additional processing cost at the Map phase (i.e.,
computation of the Jaccard score), but the imposed overhead to the overall execution time is

minimal.

Lemma 3. (Correctness of Early Termination eSPQsco) Given a query g and an ordering of
feature objects {fi} based on decreasing score w(fi, g), it is safe to stop accessing more
feature objects as soon as k data objects are retrieved within distance r from any already

accessed feature object.

3.4.2.1 Map Phase

Algorithm 5 describes the Map function, where the only modifications are related to the

second part of the composite key (lines 5, 8, and 10).

In the case of data objects, this must be set to a value strictly higher than any potential Jaccard
value, i.e., it can be set equal to 2, since the Jaccard score is bounded in the range [0, 1]. Thus,

data objects will be accessed before any feature object.

In the case of a feature object f, it is set to the Jaccard score w(f,) of f with respect to the
query g. Obviously, the customized Comparator must also be changed in order to enforce the
ordering, from highest scores to lowest scores.

37

Input: q(k,r,W),gridcellsC = {Cy,...,Cg}
function MAP (x: input object)
C; < {C;: C; € C andx enclosed in C;}
if x is a data object then
output ((i,2), x)
else
if (x. W N q.W = @) then
output ((i, w(x, q)), x)
for (C; € C,suchthat MINDIST (x,(C;) < rdo
output ((j, w(x, q)), x)
end for
end if
: end if
: end function

0N AR Wy

Y S Gy
ol

Figure 7: Algorithm 5: eSPQsco: Map function

3.4.2.2 Reduce Phase

Algorithm 6 details the operation of the Reduce phase. After all data objects are loaded in
memory, the feature objects are accessed in decreasing order of their Jaccard score to the
query. For each such feature object f, the algorithm draws a circle in the dataspace of the
current reducer with center the feature object and range r. It then accesses all data objects and
checks if they reside in that circle. If so (if dist < r) that data object is part of the results.

If k data objects are found in the circle of the best feature object, the procedure stops. Since
this feature object has the best possible score (in the scope of the current reducer), it is

guaranteed that no other feature objects will be able to give a better score.

Here we have to note that if the best feature object does not have any data objects in its circle,
it is discarded — it cannot be part of the results. In that case the next feature object with the

second best score is accessed etc. until the k data objects are found.

38

In the highly unlikely case that no feature object has any data objects in its circle, then the
algorithm will not produce a result for this specific reducer, and its performance will degrade
to that of the pSPQ algorithm.

1: Input: q(k,r, W)

2: function REDUCE (key, V: objects assigned to cell with id key)
3: for (x € V)do

4. if x is a data object then

5 Load x in memory 0;

6: else

7: if3p € 0;:d(p,x) <rthen

8 output (p,w(x,q)) // here: w(x,q) = t(p)

9

cnt + +
10: if (cnt = k) then
11: break
12: end if
13: end if
14 endif
15: end for

16: end function

Figure 8: Algorithm 6: eSPQsco: Reduce function

39
3.5. Theoretical results

In this section, we analyze the space and time complexity in the Reduce phase, which relate to

the number of cells and the number of duplicate objects.
3.5.1 Complexity Analysis

Let R denote the number of reducers, which is also equivalent to the number of grid cells.
Further, let O; and F; denote the subset of the data and feature object s assigned to the i-th

reducer respectively.

Notice that F; contains both the feature objects enclosed in the cell corresponding to the i-th
reducer, as well as the duplicated feature objects that are located in other neighboring cells. In

other words, it holds that:

R
|JiFil = 17y
i=1

In the case of the initial parallel algorithm that does not use early termination (Section 4), a
Reducer needs to store in memory the data objects |O;| and the list of k data objects with best

scores, leading to space complexity: O(|O;[) since |O;| >> k.

On the other hand, the time complexity is: O(|Oi| * |Fi[), since in worst case for all data objects
and for each feature object the score is computed. In practice, when using the early
termination the processing cost of each Reducer is significantly smaller, since only few

feature objects need to be examined before reporting the correct result set.

If we make the simplistic assumption that the work is shared fairly in the R Reducers (e.g.,
assuming uniform distribution and a regular uniform grid), then we can replace in the above
formulas:

10|

0i| = —
j0i = =

40

Let us also consider the duplication factor d; of the feature dataset F, which is a real number

that is grid-dependent and data-dependent, such that:

R
LJiFit = a1
i=1

Then, we can also replace in the above formulas:

Thus, the processing cost of a Reducer is proportional to:

|0 df * |F|
0i Fi| = — ¥+ —
|0i| * |Fi] 7 * TR

3.5.2 Estimation of the Duplication Factor

In the following, we assume that the size a of each side of a grid cell is larger than twice the

query radius, i.e., a = 2r, or equivalently r <= %.This is reasonable, since we expect r to

be smaller than the size of a grid cell.

Depending on the area where a feature object is positioned, different number of duplicates of

this object will be created. Figure 9 shows an example of a grid cell.

Given a feature object enclosed into a cell, we identify four different cases. If the feature
object has a distance smaller than or equal to r from any cell corner then the feature object is
enclosed in the area A; that is depicted as the dotted area. In this case, the feature object must
be duplicated to all three neighboring cells to the corner of the cell.

If the feature object has a distance smaller than or equal to r from two cell borders but not
from a cell corner then the feature object is enclosed in area Az. This area is depicted with

solid blue color defined by the four rectangles, but does not include the circles.

41

If located in Az, then only 2 duplicates will be created (not on the diagonal cell). The third
area is A, depicted as dashed area and corresponds to the feature objects that have a distance
smaller than or equal to r from only one border of the cell. In this case, only one duplicate is
needed. Finally, if the feature object is enclosed in the remaining area of the cell (white area,

called area A4), no duplication is needed.

Obviously, since it holds r <= % any feature object that belongs to a cell is located in only

one of these four areas. Let |A;| denote the surface of area A;, and A denote the area of the

complete cell. Then:

e |A| =4 - — = nr

|4z = 4 ‘r? — |A1] = (4 — ”)rz

|Az] = 4 ¢ (a — 2r)r

|A4] = a? — |[A1] — [Az] — |4s] = (a — 27”)2
|A] = a?

Let P(A;) denote the probability that a feature object belongs to area A;. Then, if we assume
uniform distribution of feature objects in the space, we obtain the following probabilities:
|Af]

(4i) = Ik Based on this, given n feature objects enclosed in a cell, we can calculate the

total number of feature objects (including duplicates), denoted by 7, of the n feature points:

n=3°n--PA)+2 - -n--PA,) +n P +n

and we can calculate the duplication factor df for this cell:

W I D

- P(A))+ 2 - P(A4)+ P(43)+ 1

r? 4 —m)r? a—2r)r
:3 C{Z +2(CZZ) +4%+1
nr: 4r
=—+—+1

a a

42

Based on the above formula, we conclude that the worst value of dyis 3 +g for the case of

= 2randitholdsthat1 < df < 3 + %for any query range r such that a < 2r.

Also, the duplication factor depends only on the ratio of the cell size to the query range, under
the assumption of uniform distribution. Moreover, the formula shows that smaller cell size a
(compared to the query range r) increases the number of duplicated feature objects. Put

differently, a larger cell size o reduces the duplication of feature objects.

] AT
NN Ny A2

Tl

B N \\%.\}x\\\ iﬁﬂ“

I A3
[] A4

////2

Figure 9: Breaking a cell in areas based on the number of duplicates.

3.5.3 Analysis of the Cell Size

Even though using a larger cell size o reduces the total number of feature objects, it also has
significant disadvantages.

e First, it results in fewer cells thus reducing parallelism.

e Second, the probability of obtaining imbalanced partitions in the case of skewed data

is increased.

Let us assume that all R cells can be processed in a single round, i.e., the hardware resources

are sufficient to launch R Reduce tasks in parallel.

43

In this case, the total processing time depends on the performance of one Reducer, which as

mentioned before depends on:

d F d
|0i|.|pi|=%*%ll_ % w 7

If we normalize the dataset in [0, 1] x [0, 1], thena < 1land = %
Then, |0i| = |Fi| = 0] |F| * df * a*.

In order to study the performance of one Reducer while varying a, it is sufficient to study dy =
a* since the remaining factors are constant. Based on the estimation of d; in the previous

section,

nr?: 4r

de xa* = <a_2+ ;+1)>ﬁ<a4 =mxr?xa’+4*xrxa®+ at

If we consider r as a constant, then for increasing positive values of a, the value of the
previous equation increases, which means that the complexity of the algorithm increases.
Thus, a smaller cell size « increases the number of cells and parallelism, and also reduces the

processing cost of each Reducer.

3.5.4 Worst case performance of eSPQlen algorithm

The eSPQIlen algorithm, as mentioned in section 5.1, accesses the feature objects by the
number of features the have in |[f.W| in increasing order. That means that the first feature
objects that will be evaluated will be those that have at least a word in their |f.W|. We say at

least because of the filter applied during the map phase (line 9 at Algorithm 3).

44

The early termination filter for the reduce function of the eSPQIlen algorithm states:

1 Af Wl <lq. W
upper bound = w(f,q) = { lq.W|
— J|f.W| = |q. W]
rwp =l

Let’s assume the following scenario: It holds that |f.W| = |q. W| but there are no feature

objects that have score wif,q| = :fq'—;l’/:.

In that case the early termination condition will not be satisfied by the feature objects that
have the minimum number of features which we denote as |f. W|’ from now on, nor will it be
satisfied by any other feature objects that have number of features > |f.W|" ,since the
denominator on the Jaccard score index formula will be greater. For this specific reason the

algorithm needs to update the upper bound value each time a new feature object with
|f-W|current > |fW|I

Lemma 4. (Worst case performance of eSPQlen algorithm) At the worst case, the eSPQlen

algorithm will need to evaluate all the feature objects that have:

lg. W|*(Clg.WIUIf.W[)
lg. WIN|f.w|

|f churrent 2

where |f.W|’ stands for the last feature object that the top-k memory has.

Proof: First we assume that for a specific reducer we receive both some data objects and some
feature objects. If this condition is not satisfied then that specific reducer cannot produce (and
will not produce) any results. Now let’s assume that |f. W| > |q. W| (The alternate possibility
|f.W]| < |q.W|will be examined later). Since the reducer has some feature objects, that
means that all of those feature objects share at least one common term with the user specified
query (otherwise they would be cut from further processing by the filter applied during the
map phase of the algorithm). Since the feature objects are ranked (in increasing order) by the
number of feature they have, the first feature object to be processed will have the
min|f.W|=|f.W|

45

If this specific feature object has one or more data objects in its vicinity (inside the circle with
center the f.o0 and radius r) then that/those data objects will be part of the results list (the top-k
memory will hold that/those data objects). In case that feature object is not near a data object,
it will be discarded and the second feature object will be evaluated. If the second f.o doesn’t
have any data objects in its vicinity, it is discared as well etc, until a f.o that has one or more
data objects in its vicinity is found. (In the highly unlikely case that no feature object has any
data objects in its vicinity then the reducer will not produce any result so the results memory

will be empty)

Since a feature object was found that has one or more data objects in its vicinity, we are
interested in the number of features it has. That number is |f.W|" and is important to know.

Now the top-k memory will be filled with the id of this specific data object(s).

Since we keep the top-k memory sorted (decreasing order so that the best score comes first),
the last position of the memory will hold the id of the first data object that satisfied the range

query. Also let’s assume that this specific feature object does not have a score that is equal to

lqW|
lfwir

specified query. In that case the early termination criterion will not be satisfied by this

the upper limit score = or in other words, not all of its terms are the same with the user

specific feature object and the next one will have to be evaluated.

Now let’s assume that all the remaining feature objects that the reducer received do not have a

score that is equal to their possible maximum score. That means that

IQ-Wl N |f-W|current |QW|
|CI- Wl U |f-W|current |f churrent

w(f,q) < T =>

This is the absolute worst case for the algorithm. The algorithm will continue to evaluate the
feature objects and compare the current worst top-k score with the current upper limit/early

termination criterion.

46

Since all of the feature objects have scores lower than their maximum possible, the algorithm
will continue to evaluate feature objects up to the point that the early termination criterion is
satisfied:

That is, T >w (f,q). But the score Tis equal to the score of the last object in the top-k

memory or:

__lawinirwy
- WIUIfWT

By replacing this equation to the previous we get:

W) => lg. wINn|f.w| o lawl
a ' g WIUIf. W]~ If - Wleurrene

By solving this equation for | f. W | yrren: We get that:

If - Wlcurrent * 1l WINIf W] = |q.W]| « [qW|U |[f. W] =>

lg. W] « lq.W| U |f.W]
lg W|N|f.w]|

|f churrent 2

We now need to examine the opposite possibility, that |f.W| < |q. W|. All other conditions

are the same as above (worst case for all .o not having a score equal to the upper limit).

It is easy to see that in this case nothing changes. The upper limit score is still updated each
time |f. W | urrene 1S increased. Regardless of the |f. W]’ the first f.o that makes it into the
results memory has, the early termination criterion will check the T > w (f, q) condition.

By following the same computation as above, we reach the exact same formula.

This proves the lemma.

47

3.6. Experimental evaluation

In this section, we report the results of our experimental study. AIll algorithms are

implemented in Java.

Table 3: Experimental parameters (default values in bold)

Parameter Values
Datasets Real: {TW, FL}
Synthetic: {UN, CL}
Query Keywords (|g.W]) 1,3,5/10
Query Radius (r) (% of grid cell side &) | 5%, 10%, 25%, 50%
Top-k 5, 10, 50, 100
Grid size (FL, TW) 35x35, 50x50, 75x75, 100x100
Grid size (UN, CL) 10x10, 15x15, 50x50, 100x100

3.6.1 Experimental Setup

Platform: We deployed our algorithms in an in-house CDH cluster consisting of sixteen (16)
server nodes. Each of the nodes d1-d8 have 32GB of RAM, 2 disks for HDFS (5TB in total)
and 2 CPUs with a total of 8 cores running at 2.6 GHz. The nodes d9-d12 have 128GB of
RAM, 4 disks for HDFS (8TB in total) and 2 CPUs with a total of 12 cores (24 hyper threads)
running at 2.6 GHz. Finally, each of the nodes d13-d16 is equipped 128GB RAM, 4 disks for
HDFS (8TB in total), and 2 CPUs with a total of 16 cores running at 2.6GHz.

Each of the servers in the cluster functions as DataNode and NodeManager, while one of
them in addition functions as NameNode and ResourceManager. Each node runs Ubuntu
12.04. We use the CDH 5.4.8.1 version of Cloudera and Oracle Java 1.7.

48

The JVM heap size is set to 1GB for Map and Reduce tasks. We configure HDFS with
128MB block size and use a default replication factor of 3.

Datasets: In order to evaluate the performance of our algorithms we used four different large-

scale datasets.

Two real datasets are included, a dataset of tweets obtained from Twitter and a dataset of

images obtained from Flickr.

The Twitter dataset (TW) was created by extracting approximately 80 million tweets which
requires 5.7GB on disk. Besides a spatial location, each tweet contains several keywords
extracted from its text, with 9.8 keywords on average per tweet, while the size of the

dictionary is 88,706 keywords.

The Flickr dataset (FL) contains metadata of approximately 40 million images, thus capturing
3.5GB on disk. The average number of keywords per image is 7.9 and the dictionary contains

34,716 unique keywords.

In addition, we created two synthetic datasets in order to test the scalability of our algorithms

with even larger datasets.

The first synthetic dataset consists of 512 million spatial (data and feature) objects that follow
a uniform (UN) distribution in the data space. Each feature object is assigned with a random
number of keywords between 10 and 100, and these keywords are selected from a vocabulary
of size 1,000. The total size of the file is 160GB.

The second synthetic dataset follows a clustered (CL) distribution. We generate 16 clusters
whose position in space is selected at random. All other parameters are the same. The total
size of the generated dataset is 160GB, as in the case of UN. Figures 9,10,11 depict the spatial
distribution of the datasets employed in our experimental study. In all cases, we randomly

select half of the objects to act as data objects and the other half as feature objects.

10000

9000

800

3000|

10000

8000

7000

1000

Figure 9

: Spatial distribution of flickr dataset

1000

2000 3000

Figure 10

4000 5000 6000 7000 8000 9000

: Spatial distribution of twitter dataset

10000

49

50

Figure 11: Spatial distribution of clustered dataset

Algorithms: We compare the performance of the following algorithms that are used to
compute the spatial preference query using keywords in a distributed and parallel way in
Hadoop:
e pSPQ: the parallel grid-based algorithm without early termination ,
e eSPQlen: the parallel algorithm that uses early termination by accessing feature
objects based on increasing keyword length, and
e eSPQsco: the parallel algorithm that uses early termination by accessing feature

objects based on decreasing.

For clarification purposes, we note that centralized processing of this query type is infeasible
in practice, due to the size of the underlying datasets and the time necessary to build

centralized index structures.

Query generation: Queries are generated by selecting various values for the query radius r and
a number of random query keywords g.W from the vocabulary of the respective dataset. We
also explored alternative methods for keyword selection instead of random selection, such as
selecting from the most frequent words or the least frequent words, but the execution time of

our algorithms was not significantly affected. This is shown in figures 30 and 31.

o1

Parameters: During the experimental evaluation a number of parameters were varied in order
to observe their effect on each algorithm’s runtime. These parameters, reported in Table 3,
are:

o the radius of the query,

e the number of keywords of the query,

e the size of the grid that we use to partition the data space,

e the number of the k results that the algorithm returns, and

e the size of the dataset.

In all cases, the number of Reducers is set equal to the number of cells in the spatial grid.

Metrics: The algorithms are evaluated by the time required for the MapReduce job to
complete, i.e., the job execution time. Another metric that was considered is the duplication
factor of the feature objects during the MapReduce job. This was done in order to get a better
insight of the dependence of the execution time and the grid size. The duplication of the

feature objects was measured and plotted. The results can be seen at figure 12.

staticCd ——1
dynamicCd

#of times f.o. were duplicated
= N W B U1 OV NN 0O WO

5 10
Grid size

Figure 12: Duplication of feature objects

52

3.6.2 Experimental Results

3.6.2.1 Experiments with Real Data: Flickr

Figures 13, 14, 15 and 16 present the results obtained for the Flickr (FL) dataset.

First, in Figure 13, we study the effect of grid size to the performance of our algorithms. The
first observation is that using more grid cells (i.e., Reduce tasks) improves the performance,

since more, yet smaller, parts of the problem need to be computed.

The algorithms that employ early termination (eSPQIlen, eSPQsco) are consistently much
faster than the grid-based algorithm pSPQ. In particular, eSPQsco improves pSPQ up to a
factor of 6x. Between the early termination algorithms, eSPQsco is consistently faster due to
the sorting based on score, which typically needs to access only a handful of feature objects
before reporting the correct result.

Figure 14 shows the effect of varying the number of query keywords (|g.W|). In general, when
more keywords are used in the query more feature objects are passed to the Reduce phase,
since the probability of having non-zero Jaccard similarity increases.

This is more evident in pSPQ, whose cost increases substantially with increased query
keyword length. Instead, eSPQsco is not significantly affected by the increased number of
keywords, because it still manages to find the correct result after examining only few feature

objects.

This experiment demonstrates the value of the early termination criterion employed in
eSPQsco.

Time (sec)

Time (sec)

600
500
400
300
200
100

2000 |

1500

1000 |

500

pSPQ ———
eSPQlen M
— eSPQsco

1 B

35 50 75 100
Grid size

Figure 13: Flickr dataset grid size experiment results

'pSPQ —— —
eSPQlen mmmmm
| eSPQsco m—

o b

Query keywords

Figure 14: Flickr dataset keywords experiment results

53

2000
1800
1600
1400
1200
1000
800
600
400
200

Time (sec)

pSPQ ———

| eSPQlen mummm
eSPQsco m——

P |

o

50

100

Range (percentage of cell size)

Figure 15: Flickr dataset range experiment results

54

In Figure 15, we gradually increase the radius of the query. In principle, this makes query

processing costlier as again more feature objects become candidates for determining the score

of any data object.

However, the early termination algorithms are not significantly affected by increased values

of radius, as they can still report the correct result after examining few feature objects only.

Finally, in Figure 16, we study the effect on increased values of top-k. The chart shows that

all algorithms are not particularly sensitive to increased values of k, because the cost of

reporting a few more results is marginal compared to the work needed to report the first

result.

55

700 | pSPQ ——]
600 | eSPQlen
eSPQsco m—

500 | — = - -
400
300
200
100

Time (sec)

5 10 50 100
top-k parameter

Figure 16: Flickr dataset top-k parameter experiment results

3.6.2.2 Experiments with Real Data: Twitter

Figures 17, 18, 19 and 20 depict the results obtained in the case of the Twitter (TW) dataset.
In general, the conclusions drawn are quite similar to the case of the FL dataset. Algorithms

that employ early termination, and in particular eS-PQsco, scale gracefully in every setup.

Even in the harder setups of many query keywords (Figure 18) and larger query radius
(Figure 19), the performance of eSPQsco is not significantly affected. This is because as soon
as the first few feature objects with highest scores are examined, the algorithm can safely
report the top-k data objects in the cell. In other words, the vast majority of feature objects
assigned to a cell are not actually processed, and exactly this characteristic makes the
algorithm scalable both in the case of more demanding queries as well as in the case of larger

datasets.

Time (sec)

Time (sec)

400 - pSPQ ——
330 r eSPQlen mmmms
300 } eSPQsco m—
250]
200 |
150
100 |
i
35 20 75 100
Grid size
Figure 17: Twitter dataset grid size experiment results
500 | pSPQ —

400 } eSPQsco mmmmmm

300 t
200

[L l
0

eSPQlen mmmmm

1 3 5 10
Query keywords

Figure 18: Twitter dataset keywords experiment results

56

Time (sec)

Time (sec)

700
600
500
400
300 |
200
100

400

350
300
250
200 ¢
150
100
50

'pSPQ —— —
eSPQlen s
eSPQsco mu———

nllh

10 25 50 100
Range (percentage of cell size)

Figure 19: Twitter dataset range experiment results

pSPQ ———
eSPQlen M
eSPQsco mu——

1201

5 10 50 100
top-k parameter

Figure 20: Twitter dataset top-k parameter experiment results

S7

58

3.6.2.3 Experiments with Uniform Data

In order to study the performance of our algorithms for large-scale datasets, we employ in our
study synthetic datasets. Figures 22, 23, 24 and 25 present the results obtained for the
Uniform (UN) dataset. Notice the log-scale used in the y-axis. A general observation is that
eSPQsco that uses early termination outperforms pSPQ by more than one order of magnitude.
This is a strong indication in favor of the algorithms employing early termination, as their
performance gains are more evident for larger datasets, such as the synthetic ones used in our
study. Also, the general trends in the charts are in accordance with the conclusions derived
from the real datasets. It is noteworthy that the performance of eSPQsco remains relatively
stable in the harder setups consisting of many query keywords (Figure 23) and larger query

radius (Figure 24).

| pSPQ
4096 I .SPQlen mmmms

1024 | eSPQsco mmmm

256 |

64 |

Time (sec)

16

64 128 256 512
Dataset size (Million entries)

Figure 21: Scalability of our algorithms performance when varying the dataset size

Moreover, Figure 20 shows the results obtained when we vary the dataset size. This
experiment aims at demonstrating the nice scaling properties of our algorithms. In particular,
pSPQ scales linearly with increased dataset size, which is already a good result. However, the

algorithms that employ early termination perform much better, since they only examine few

59

feature objects regardless of the increase of dataset size. The experiment also shows that the

gain of the algorithms that employ early termination compared to pSPQ increases for larger

datasets.
pSPQ ———
10000 eSPQlen mummmm
eSPQsco mm—
) 1000
()]
2,
)
£ 100
I_
10
1
10 15 50 100
Grid size
Figure 22: Uniform dataset grid size experiment results
100000 ¢ ' ps PQ '|:| '
eSPQlen
10000 | eSPQsCO
)
3 1000
)
£ 100
|_
10
1

1 S 5 10
Query keywords

Figure 23: Uniform dataset keywords experiment results

Time (sec)

Time (sec)

[pSPQ T——
100060 eSPQlen
10000 } eSPQsco

1000 |
100 |
10

1

5 10 15 50 100
Range (percentage of cell size)

Figure 24: Uniform dataset range experiment results

100000

pSPQ
woe| 5B =
1000 }
100 }
10
'

5 10 50 100
top-k parameter

Figure 25: Uniform dataset top-k parameter experiment results

60

61

3.6.2.4 Experiments with Clustered Data

Figures 26, 27, 28 and 29 present the results obtained for the Clustered(CL) dataset. It should
be noted that such a data distribution is particularly challenging as: (a) it is hard to fairly
assign the objects to Reducers, thus typically some Reducers are overburdened, and (b)

excessive object duplication can occur when a cluster is located on grid cell boundaries.

10000 ¢ r ; ' .
. eSPQlen s
[eSPQsco mewm—m—n
1000
)
()]
D,
p 100
-
S
10
1
10 15 50 100
Grid size

Figure 26: Clustered dataset grid size experiment results

For the CL dataset, we observed that pSPQ results in extremely high execution time, thus it is
not depicted in the charts. For instance, for the default setup, it takes approximately 48 hours

for pSPQ to complete. This is due to the fact that some Reducers are assigned with too many
feature objects and pSPQ has to perform O(|Oi| - |Fi|) score computations before termination.

Still, the algorithms employing early termination perform much better in all cases.

62

Again, when eSPQsco is considered, its performance is the best among all algorithms, and it
remains quite stable even in the case of more demanding queries. This experiment verifies the
nice properties of eSPQsco, even for the combination of large-scale dataset with a demanding

data distribution.

By using an emulator that emulates the map/reduce job (see section 3.8), we can verify that at
most cases, the eSPQsco only evaluates a handful of feature objects in order to produce the

result (usually only 1). That explains its significantly better performance than eSPQlen.

100000 ¢ . .
. eSPQlen

| eSPQsco mm—mn
10000 ¢}

1000

Time (sec)

100 ¢

10 ¢

1 3 5 10
Query keywords

Figure 27: Clustered dataset keywords experiment results

Time (sec)

Time (sec)

1 . .
800 eSPQlen
1600 [eSPQscO m—=

1400
1200 |
1000
800 |
600 |
400
200

) 10 16 50 100
Range (percentage of cell size)

Figure 28: Clustered dataset range experiment results

1200

eSPQlen

eSPQsco m——=
1000

800
600
400

200

o 10 50 100
top-k parameter

Figure 29: Clustered dataset top-k parameter experiment results

63

64

3.6.2.5 Query keyword selection and execution time

In this section we describe the effect the query keyword selection method has on the
execution time. We designed and executed two experiments to show that dependence. We
chose the eSPQsco algorithm as our basis and run several queries keeping all parameters the

same, except for the query keywords.

In order to be as thorough as possible, we chose to run the queries with some of the most

frequent words in the dataset, some of the least frequent and some random.

This way we cover all possibilities and if a relation between the method of selecting the

keywords and execution time exists, it will be reflected on the results.

Also we run the experiment on all of our available datasets in order to verify that the results
are not dataset dependent.

3 most frequent words ——— -

o 4096 ¢

E ' 3 random words
D 1024 [3 least frequent words m——m 7
I_ i -
i 256

) 64 | |
(b]

£ 16} _
(b]

£

|_

gl |

48(7 a/.f//(,‘k f"l’/[‘[‘e ¢/ U,gfe U’?/f

/77
Dataset type

Figure 30: eSPQsco execution time based on keyword selection (1/2)

65

In figure 30 we can see the first experiment: We chose the 3 most common, the 3 least
common and 3 random words as the query input. As we can see, for all the datasets, the

execution time does not vary significantly.

In figure 31 we can see the second experiment. This time we chose 10 of the most common,
least common and random words as the query input. Again the results are not affected in any

significant way by the process of the query keyword selection.

This justifies the decision we made to use a random selection of keywords for each set of
experiments on our datasets. (That selection remained the same during the run of all the

experiments for that specific dataset)

~ 4096 |10 most frequent words ———— -
E 10 random words
= 1024 110 least frequent words s |
F B -
o 256

) 64 | !
O

g 16 |
)

£

I—

gl f

g ar’7/0/r M, . Clusy cro, Uny,,

Orm
Dataset type

Figure 31: eSPQsco execution time based on keyword selection (2/2)

66

3.7. Performance improvement techniques

In this section we will examine possible improvements that can be achieved regarding the
performance of the algorithms. Those improvements are not on the algorithms themselves —
we showed that the eSPQsco algorithm is the optimal, but have to do with the grid

partitioning method of the datasets.

3.7.1 Dynamic Grid

So far we only considered the use of a uniform grid. That is logical and of course yields the
best possible results in case of datasets that their objects follow a uniform distribution. But as
we saw in the case of the clustered dataset experiment, the performance of the algorithms is
highly dependent on the distribution of the objects inside the dataset. This is expected. As we
can see in figure 32 that depicts a clustered dataset, the objects (both data and feature) are in
close proximity to each other and more importantly, do not take up much of the available
dataset’s spatial dimensions. That in turn will lead to a highly unbalanced load to the reducers
using the uniform grid partitioning method. Some reducers will receive no input, while others
will be called to carry out the bulk of the computation. In the same picture we can see an

example 5x5 static grid. Notice how many of the cells are empty.

10000

Figure 32: Clustered file with 5x5 static grid

67

To address this issue we consider a dynamic grid partitioning method. This method takes into
account the spatial distribution of the data and finds an improved way of partitioning the
dataset into cells. By achieving such a partitioning scheme, the processing load is distributed

much more evenly to the reducers, thus significantly reducing the total processing time.

To achieve such a partitioning scheme, the dataset needs to be preprocessed. In other words,
we need to introduce a new step before the execution of our algorithms. That step will need to
find the best possible partitioning scheme without incurring a significant time penalty to the
total execution of our MapReduce jobs. For example, if we wanted to find the centroids of a
clustered dataset of 512m entries, the use of an algorithm like k-means would be inadvisable.
It’s time complexity is greater than O(n”2), (where n the dataset size) that our worst algorithm
requires to solve the problem. So most of the time would be spent on trying to optimize the

solution, than the actual solution of the problem itself.

In figure 33 we can see the same clustered dataset as in figure 32, but this time partition with
a 5x5 dynamic grid. Notice the large variation between the cell sizes. Also far less cells are

empty.

Figure 33: Clustered file with 5x5 dynamic grid

68
3.7.2 Reservoir Sampling
To address this issue we propose the use of a sampling method like reservoir sampling.

The reservoir sampling method operates in the following manger: An array with fixed size ,i,
is specified — that is the reservoir. Then the dataset is processed linearly and the first values of
the dataset (up to the size of the reservoir) are stored in the reservoir array (the coordinates of

the objects). When the i+1 element of the dataset is processed it will replace a random
element of the reservoir with probability % . This probability is gradually decreased as the

dataset is processed.

By providing a reasonable size for the reservoir (eg 1% of the dataset size), at the end of the
procedure the reservoir will hold a representative sample for the distribution of the objects.

The next step is to sort the reservoir in increasing order.

Since we use a two-dimensional space, we need to create 2 reservoirs, one for each axis. Now,

instead of using the static grid partitioning method that would produce a cell at each of the:

datasetSize /\/numOfcells

we split at:

reservoirSize[reservoirSize /\/numOfcells]
(the element of the reservoir array at position reservoirSize//numOfcells).

This method produces a much fairer grid in terms of data distribution in each of its cells.
Instead of having some grid cells overloaded with points of interest and others almost empty,
the load is balanced. As a result a significant reduction in the total processing time is
achieved, especially for non-early termination algorithms (since they process all of the points

of interest in the cell).

69

3000 : . .
staticNoCd T
2500 t staticCd mmmmmn
staticMbr m—
< 2000 | dynamicCd mumm— -
q) _
o 1500 }]
£
— 1000 (\ | || || |
500 || | | | _
0

10 50 100

Figure 34: Gains by using mbrs or dynamic grid

Another possible improvement that has to do with the duplication factor of the feature objects,
is the use of mbr’s (maximum bounding rectangles) of the grid cells instead of their physical
limits during the collision detection test. In cases of real datasets that do not follow uniform
distribution, the maximum bounding rectangle of a cell usually has significantly lower area
than the cell itself. If this is the case, the collision detection filter will produce significantly
fewer duplicates of the feature objects. This in turn has an effect of the performance,

especially in the pSPQ algorithm.

The experimental results for the aforementioned techniques can be seen in figure 34. In that
figure we see how the performance of one of our algorithms (pSPQ) is affected by the use of a
dynamic grid or mbrs. The most notable gains are given by the collision detection filter
(which determines to which cells a f.o is duplicated) — if cd is off then each f.o is duplicated
to all of its adjacent cells, thus significantly increasing the total number of objects each
reducer receives. The use of mbrs shaves off some of the execution time while the dynamic

grid offers slightly better results.

70

The gains are even more impressive if we take into account that the total execution time
includes the time required by the map phase, which is constant (since the same piece of code
runs for all the cases).

To better quantify the results a new experiment was performed on a small dataset (cluster
with 2 million entries). The map phase required approximately 10 seconds to complete. In the
first case, where no performance improving technique is used, the total execution time was 42

seconds (that means that the reduce phase took 32 seconds).

Using the mbrs technique the total execution time dropped to 40 seconds, meaning that the
reduce phase completed in 2 seconds less, or a 6.25% improvement.

Using the dynamic grid, the total execution time dropped further, to 37 seconds, meaning the

reduce phase completed in 5 seconds less, or a 15.625% improvement.

Note that we can use both performance improvement techniques but that would require
running two different preprocessing jobs on the dataset, one to determine the dynamic grid

and one to determine the mbrs.

71

3.8. Emulator

For the needs of this thesis we also produced a java based emulator that mimics the execution
of the map-reduce jobs described at the previous sessions. In contrast with the Hadoop cluster,
the emulator runs on a single machine and executes the reduce jobs sequentially. Its benefits

are:

e easy debugging of the source code for the three described algorithms
e more readable output of the map-reduce job using apache POI library to write the

results to an excel file.
As expected, the emulator does not support processing datasets the size the Hadoop cluster
does. This is due to the memory constraints imposed by running on a single machine. Also,

the execution time is greatly increased since each reduce task is processed sequentially.

Below are some figures that show the detailed output of the emulator for a run of the pSPQ

algorithm:
Table 4: Emulator output 1/4
Reducer | #of data | #of feature | #of feature sum of feature #of feature time taken
Id elements | elements elements elements (column C | elements that
from + column D) were
duplication evaluated
load for
reducer
#O: 11410 85072 0 85072 85072 40,495
load for
reducer
#3: 809 569 0 569 569 0,035
load for
reducer
#5: 329 246 57 303 303 0,004
load for
reducer
#6: 34631 26037 5033 31070 31070 4,516

72

In table 4 we can see the detailed results for each of the reduce tasks. The emulator keeps
track for the following parameters: the data objects each reducer received, the feature objects
it received, how many of the feature objects come from duplication, the sum of feature objects
that were received, the number of feature objects that were evaluated in order to produce the

result and finally the time taken for this reducer to complete.

Table 5: Emulator output 2/4

Vectors initialized in: 1,116
Map phase completed in: 1,875
Reducer input sorted in: 0,117
Reducer phase completed in: 103,879
Job completed in: 108,056
Total memory used during job execution (mb): 937

Table 5 shows some statistics for a query run on the emulator. The times to complete each
step of the job are recorded, along with the total memory requirements. One interesting thing
to note is that the intermediate step of sorting the reducer input, which is mandatory for all the
algorithms, only amounts to a small fraction of the total processing time. This is due to the

use of the highly optimized sorting function that Java includes.

In table 6 we can see some more detailed results for each of the reducers. This data is stored
on a new sheet on the output file produced by the emulator. It documents (for each reducer)
its best calculated score, its id, the feature object that gave that best score and its features.

That helps a lot with the verification process.

Table 6: Emulator output 3/4

73

Reducer id: Best score: Data object id: Feature Features of f.o :
object id:
kv16|kv2|kv10|kv4|kv1l1|kv15
#O: #1:0.0833 #:974 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvl1|kvl5
#O: #2:0.0833 #:1012 #:15 |kv6 |kv13|kvl|kv1l7
kv16|kv2|kv10|kv4|kvll|kvl5
#O: #3:0.0833 #:1211 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvl1|kvl5
#O: #4:0.0833 #:1579 #:15 |kv6 |kv13|kvl|kv1l7
kv16|kv2|kv10|kv4|kvl1|kvl5
#0: #5:0.0833 #:1851 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvll|kvl5
#0: #6:0.0833 #:2141 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvl1|kvl5
#0: #7:0.0833 #:2264 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvll|kvl5
#0: #8:0.0833 #:2408 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvl1|kvl5
#0: #9: 0.0833 #:2698 #:15 |kv6 |kv13|kvl|kv17
kv16|kv2|kv10|kv4|kvll|kvl5
#0: #10: 0.0833 #:2821 #:15 |kv6 |kv13|kvl|kv17

Finally in table 7 we can see the top-k results. The emulator creates a new sheet on the output

file and there it stores the top-k results for the job. That is achieved by comparing the results

each reducer produced and keeping the k best ones.

Table 7: Emulator output 4/4

Reducer id: Best score: Data object id: Feature object that gave best score:
#0 0.0833 #:974 #:15
#0 0.0833 #:1012 #:15
#0 0.0833 #:1211 #:15
#0 0.0833 #:1579 #:15
#0 0.0833 #:1851 #:15
#0 0.0833 #:2141 #:15
#0 0.0833 #:2264 #:15
#0 0.0833 #:2408 #:15

74

CHAPTER 4. CONCLUSIONS - FURTHER WORK

4.1. Conclusions
4.2. Further Work

4.1. Conclusions

In this thesis we studied the problem of parallel/distributed processing of spatial preference

queries using keywords.

We proposed scalable algorithms that rely on grid-based re-partitioning of input data in order

to generate partitions that can be processed independently in parallel.

To boost the performance of query processing, we showed that it is possible to employ early
termination, thus reporting the correct result set after examining only a handful of the input
data.

Our experimental study using both real and synthetic datasets shows that our best algorithm
consistently outperforms other implementations, whilst its performance is not significantly

affected even in the case of demanding queries.

Moreover, we examined additional possible improvements i.e dynamic grid partitioning and
the use of mbrs and showed that those two methods, despite requiring an extra preprocessing

step, offer quantified improvement gains over the static grid partitioning.

75

4.2. Further work

One important contribution of this thesis is that the mechanism that deals with the datasets is
reusable. If one has to deal with data that belongs to the “big-data” category (or in other
words hundreds of gigabytes), he can then adopt the partitioning mechanism as described. By
splitting one large problem into sub-problems, he can then design an algorithm based on the
problem/query he has to solve.

The queries examined in this thesis used the non-spatial score as the only parameter that
defines the quality of a feature object/point of interest. In real life applications it makes sense

to use another score function, the influence score [71].

The influence score is a combination of both the quality of a feature object and its distance to
the data objects. In other words, a traveler would likely be interested in renting a hotel room
that has some quality restaurants/cafes nearby that are not necessarily the best ones available,

just to save the trouble of getting to the best ones.

Such a query would then involve a second parameter that directly impacts the score of each
feature object, its distance to the candidate data objects.

Formally we could write: = a *w(f,q) + (1 — a)dists.ore(f,q) , Where o € [0,1], is a
balancing parameter that defines which factor will have a greater influence on the score: the

textual similarity or the distance between the two objects and distg..r.(f,q) is the spatial

maxDatasetDimension
dist(f,q)

score that is defined as: distg.pre =

The greater the distance between two points (f,q), the lower the disty.y.. iS, SO the
InfluenceScore between f,g is reduced. The problem with this definition is that the distg.,,e

is by definition a continuous variable.

That poses a challenge if we are to implement algorithms with early termination that would
use the InfluenceScore, since a feature object might have a really low Jaccard score, but being
extremely close to a data object would give it a high overall score.

76

To tackle this issue we propose using a quantified dist,.,... This means that the total possible
values of dists.,. are already known and defined. For instance let’s assume we have 3
values (representing “close”, “average distance” and “far”) for the distance between f,q. Each
possible distance dist(f, q) would then be assigned a quantified dists.,. With the following

check:

e If dist(f, q) < MaxDistance/3 then dists.pre = 1
e If MaxDistance/3 < dist(f, q) < 2*MaxDistance/3 then dists.ore = 0.5
o Ifdist(f,q) > MaxDistance/3 then dists.ore = 0.1

Obviously the values 1, 0.5, 0.1 are not important and can be chosen arbitrarily. What is
important is that the lowest possible distance category gets the highest score and the highest
category gets the lowest score. Also the total possible distance categories can be as many as

we like.

Using this technique, we would be able to modify our early termination algorithms to work
with this query. We would use the same strategy of sending the feature objects to the reducers
sorted by their Jaccard score, and during the influence score calculation we would calculate
the distance as before, but we would also retrieve the dists.,. that corresponds to the
calculated distance. The early termination criterion would be altered to the product of the best
poi’s Jaccard score with the best dist,.,.. Taking the poi with the best score and drawing the
circle with radius MaxDistance/3, we then check if a data object resides in that area. If so we

have an optimum result.

If this quantification of the dist,.,. IS acceptable, we have a technique to implement the best

possible algorithm, based on our early termination work.

77

REFERENCES

[1] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k Spatial Preference Queries,” in
ICDE, 2007.

[2] N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k Queries over Web-accessible
Databases,” in ICDE, 2002.

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” in SIGMOD,
1984.

[4] G. R. Hjaltason and H. Samet, “Distance Browsing in Spatial Databases,” TODS, vol.
24(2), pp. 265-318, 1999.

[5] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance study for

similarity-search methods in highdimensional spaces.” in VLDB, 1998.

[6] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “nearest neighbor”
meaningful?” in ICDT, 1999.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation Algorithms for Middleware,” in
PODS, 2001.

[8] L. F. Ilyas, W. G. Aref, and A. Elmagarmid, “Supporting Top-k Join Queries in Relational
Databases,” in VLDB, 2003.

[9] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung, “Efficient Top-k Aggregation
of Ranked Inputs,” ACM TODS, vol. 32, no. 3, p. 19, 2007.

78

[10] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient OLAP Operations in Spatial
Data Warehouses,” in SSTD, 2001.

[11] S. Hong, B. Moon, and S. Lee, “Efficient Execution of Range Top-k Queries in
Aggregate R-Trees,” IEICE Transactions, vol. 88-D, no. 11, pp. 25442554, 2005.

[12] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing Top-t Most Influential
Spatial Sites,” in VLDB, 2005.

[13] Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Query,” in SSTD, 2005.

[14] D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive Computation of The Min-Dist
Optimal-Location Query,” in VLDB, 2006.

[15] Y. Chen and J. M. Patel, “Efficient Evaluation of All-Nearest-Neighbor Queries,” in
ICDE, 2007.

[16] P. G. Yokesh Kumar, Ravi Janardan, “Efficient Algorithms for Reverse Proximity Query
Problems,” in ACM GIS, 2008.

[17] M. L. Yiu, P. Karras, and N. Mamoulis, “Ring-Constrained Join: Deriving Fair
Middleman Locations from Pointsets via a Geometric Constraint,” in EDBT, 2008.

[18] M. L. Yiu, N. Mamoulis, and P. Karras, “Common Influence Join: A Natural Join

Operation for Spatial Pointsets,” in ICDE, 2008.

[19] Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Processing in Geographic Web
Search Engines,” in SIGMOD, 2006.

[20] V. S. Sengar, T. Joshi, J. Joy, S. Prakash, and K. Toyama, “Robust Location Search from
Text Queries,” in ACM GIS, 2007.

79

[21] S. Berchtold, C. Boehm, D. Keim, and H. Kriegel, “A Cost Model for Nearest Neighbor
Search in High-Dimensional Data Space,” in PODS, 1997.

[22] E. Dellis, B. Seeger, and A. Vlachou, “Nearest Neighbor Search on Vertically Partitioned
High-Dimensional Data,” in DaWakK, 2005, pp. 243-253.

[23] N. Mamoulis and D. Papadias, “Multiway Spatial Joins,” TODS, vol. 26(4), pp. 424—
475, 2001.

[24] A. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering in Large
Multimedia Databases with Noise,” in KDD, 1998.

[25] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-where: geotagging web content. In
SIGIR, 2004.

[26] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In VLDB, 2006.

[27] J. Ballesteros, A. Cary, and N. Rishe. Spsjoin: parallel spatial similarity joins. In GIS,
pages 481-484, 2011.

[28] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW,
2007.

[29] C. B"ohm, B. Braunmuller, F. Krebs, and H.-P. Kriegel. Epsilon grid order: An
algorithm for the similarity join on massive high-dimensional data. In SIGMOD Conference,
2001.

[30] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-
trees. In SIGMOD Conference, 1993.

[31] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web
objects. PVLDB, 3(1):373-384, 2010.

80

[32] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In
SIGMOD Conference, 2011.

[33] E. P. F. Chan. Buffer queries. IEEE Trans. Knowl. Data Eng., 15(4):895-910, 2003.

[34] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data
cleaning. In ICDE, 2006.

[35] Y.-Y. Chen, T. Suel, and A. Markowetz.Efficient query processing in geographic web
search engines. In SIGMOD Conference, 2006.

[36] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB, 2(1):337-348, 20009.

[37] J. Ding, L. Gravano, and N. Shivakumar. Computing geographical scopes of web
resources. In VLDB, 2000.

[38] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A
survey. IEEE Trans. Knowl. Data Eng., 19(1):1-16, 2007.

[39] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE,
2008.

[40] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D.

Srivastava. Approximate string joins in a database (almost) for free. In VLDB, 2001.

[41] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD
Conference, 1984.

[42] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk) queries in
geographic information retrieval (gir) systems. In SSDBM, 2007.

81

[43] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Trans.
Database Syst., 24(2):265-318, 1999.

[44] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. Ir-tree: An efficient
index for geographic document search. IEEE Trans. Knowl. Data Eng., 23(4):585-599, 2011.

[45] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging with local lexicons to

build indexes for textually-specified spatial data. In ICDE, 2010.

[46] J. A. Orenstein. Spatial query processing in an object-oriented database system. In
SIGMOD, 1986.

[47] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial data
warehouses. In SSTD, 2001.

[48] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nerv®ag. Efficient processing of
top-k spatial keyword queries. In SSTD, 2011.

[49] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD
Conference, 2004.

[50] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing for
geographical search on the web. In SSTD, 2005.

[51] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In ICDE, 20009.

[52] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-
duplicate detection. ACM Trans. Database Syst., 36(3):15, 2011.

[53] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa. Keyword search
in spatial databases: Towards searching by document. In ICDE,20009.

82

[54] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index structures for
location-based web search. In CIKM, 2005.

[55] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for text
indexing. ACM Trans. Database Syst., 23(4):453-490, 1998.

[56] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1):1-12,
2012,

[57] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In
Proc. Of SIGMOD, pages 373-384, 2011.

[58] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: An
experimental evaluation. PVLDB, 6(3):217-228, 2013.

[59] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In
Proc. of OSDI, 2004.

[60] K. Deng, X. Li, J. Lu, and X. Zhou. Best keyword cover search. IEEE Trans. Knowl.
Data Eng., 27(1):61-73, 2015.

[61] C. Doulkeridis and K. Nerv®ag. A survey of analytical query processing in MapReduce.
VLDB Journal, 2014.

[62] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In Proc. of SSTD, pages 163—
180, 2005.

[63] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial data.
In Proc. of ICDE, pages 1352-1363, 2015.

[64] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K. Mohania.
Processing multi-way spatial joins on MapReduce. In Proc. Of EDBT, pages 113-124, 2013.

83

[65] H. Hu, G. Li, Z. Bao, J. Feng, Y. Wu, Z. Gong, and Y. Xu. Top-k spatio-textual
similarity join. IEEE Trans. Knowl. Data Eng., 28(2):551-565, 2016.

[66] J. Rao, J. J. Lin, and H. Samet. Partitioning strategies for spatio-textual similarity join. In
Proc. Of BigSpatial Workshop, pages 4049, 2014.

[67] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nerv°ag. Efficient processing of
top-k spatial preference queries. PVLDB, 4(2):93-104, 2010.

[68] G. Tsatsanifos and A. Vlachou. On processing top-k spatio-textual preference queries. In
Proc. of EDBT, pages 433-444, 2015.

[69] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential spatial
sites. In Proc. of VLDB, pages 946-957, 2005.

[70] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference queries. In
Proc. of ICDE, pages1076-1085, 2007.

[71] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis. Ranking spatial data by quality
preferences. IEEE Trans. Knowl. Data Eng., 23(3):433-446, 2011.

[72] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJIMR: parallelizing spatial join with
MapReduce on clusters. In Proc. of CLUSTER, pages 1-8, 20009.

[73] Y. Zhang, Y. Ma, and X. Meng. Efficient spatio-textual similarity join using
MapReduce. In Proc. of IEEE Web Intelligence, pages 52-59, 2014.

84

SHORT VITA

Mpestas Dimitrios was born in Romania in 1983. He moved do Greece in 1985. In 2001 he
received his high school diploma. He continued his studies at the University of the Aegean
where he received his Diploma in Computer Science in 2009. In 2010 he enlisted to the Greek
army and fulfilled his military obligations. In 2011 he was accepted as a post-graduate student
at the University of the Aegean, where he studied computer networks and technologies. In
2013 he received his Master from the University of the Aegean. In 2014 he got accepted as a
post-graduate student at the University of loannina. Since 2015 he has worked as a java
developer in two E.U co-funded projects (roadRunner at the University of Piraeus,
economicLinkedOpenData at the University of Piraeus). In February 2017 he presented his
thesis in order to complete the requirements for the Master’s degree set by the University of

loannina.

