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Abstract

Motivated by recent work on low energy unification, in this short note we derive corrections on Newton’s inverse square
law due to the existence of extra decompactified dimensions. In the four-dimensional macroscopic limit we find that the
corrections are of Yukawa type. Inside the compactified space of n-extra dimensions the sub-leading term is proportional to

Ž .the nq1 -power of the distance over the compactification radius ratio. Some physical implications of these modifications
are briefly discussed. q 1999 Elsevier Science B.V. All rights reserved.

One of the most tantalizing mysteries in modern
unified theories is the magnitude of the unification
scale. A well known result in the weakly coupled
heterotic string theory is that the string scale, is of

w xthe order of the Planck mass M 1 . Recent devel-P

opments have revealed the possibility that the string
scale can be arbitrarily low in Type I and Type IIB

w xtheories 2–11 .
According to a recently proposed scenario, the

w xhierarchy problem may be solved 3 assuming the
existence of extra spatial dimensions at low energies
w x12 . In this picture, strong gravitational effects –
which could not be described accurately by Newton’s
law – may appear at short distances of the order of
the compactification scale of the extra dimensions. If
so, gravitons may propagate freely inside the space
of extra dimensions, while all ordinary particles
would leave in the four dimensional world. Experi-
mental searches for possible deviations from New-
ton’s inverse square law imply that such effects

should be limited below the sub-millimeter range
w x13 . We note that this scenario can find a realization

w xin the context of D-branes 14,15 . Matter fields may
live in a 9 or 3-brane, while gravitons can live in a
larger dimensional bulk.

Deviations from the gravitational law have been
w xintensively studied also in the past. In 16 the theo-

retical aspects of a gravitationally repulsive term in
w xsupergravity theories were investigated, while in 17

string loop corrections which affect gravitational
couplings were considered.

In this letter we examine corrections to the gravi-
tational force which are of particular importance in
the case of experimental searches in the vicinity of
the compactification radii. In the presence of n
compact spatial dimensions of radii R , the fun-1, . . . ,n

damental scale M of the theory for very short orX

very large distances can be estimated using the Gauss
law. The approximate forms of the gravitational
potential in two limiting cases in the presence of
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n-compactified extra dimensions are given by the
Gauss law. Assuming for simplicity that all compact-
ification radii are the same R sR, inside the vol-i

ume of the extra dimensions i.e. when r<R, in ref
w x3 the potential was approximated as follows

1 1
V r f , r<R 1Ž . Ž .nq2 nq1M rPnq 4

where M nq2 is the Planck mass in n q 4-Pnq 4

dimensional space and is identified with the funda-
mental scale M . For large distances compared toX

the mean compactification radius of the extra dimen-
sions i.e., when r4R, the n-dimensional compacti-
fied volume confines the gravitational flux and as a
result the potential is given

1 1
V r f , r4 R 2Ž . Ž .nnq2 R rMPnq 4

The latter should be identical to the known 4yd
gravitational potential

1 1
V r s 3Ž . Ž .2 rMP4

The comparison of the last two formulae for dis-
1tances far beyond the compactification scale M ;C R

gives an approximate relation between the latter and
the Planck mass in 4 and nq4 dimensions

2rn
M1 1 P4

;R; 4Ž .ž /M M MC P Pnq 4 nq4

For distances comparable to the compactification
scale corrections are expected to modify the above
formulae. In what follows, we will present some
analytic results for the case of ns1 and ns2
compactified dimensions. We will see that some
important modifications of the above formulae will
show up in both cases. In particular, inside the
compactification circle, i.e., r-R, the first sub-
dominant term will be shown to have a power depen-
dence on the ratio rrR, while at large distances the
potential has a Yukawa type correction, proportional
to the form eyr r Rrr.

Ž .We will solve the Laplace equation in nq3
spatial dimensions where n of them are compactified
on a torus with radius R. Assume the coordinates
x for the 3-dimensional ordinary space and x c, i1,2,3 i

s1, . . . ,n for the compactified ones. Defining the
angles u for the compactified dimensions with1,2, . . . ,n

w x cu g 0,2p , we write them as x sRu where wei i i

assumed for simplicity one common radius R. The
Laplace equation may be written as follows

1
2 3 n= Fsyd xyy d uyu 5Ž . Ž . Ž .0nR

Ž .where the d-functions on the right-hand side RHS
are given as usually by

1
3 3 ı kPŽ xyy.d xyy s d ke ,Ž . H32pŽ .

1 c cn c c ımPŽu yu .0d x yx s eŽ . Ýn0 2p RŽ . m

and the sums extend form y` to ` for all indices
m . Using the Fourier transform, one finds1,2, . . . ,n

F r ,qŽ .
1 1

s nnq3 R2pŽ .

=
` 223 ı kPrqımPq ys k q mrRŽ .w xd k e d seÝH H½ 5

0m

6Ž .
where for simplicity we have denoted rsxyy and

Ž .qsuyu . In the integrand of 6 , the summation is0

taken over the infinite tower of KK-excitations in all
Ž .the additional space dimensions, ms m , . . . ,m .1 n

It is easy now to perform the integration with respect
to k. The result is

1 1
F r ,q sŽ . n3r2 2p RŽ .4pŽ .

=
` 2 2y3r2 yr r4 s ımPqysŽm r R.d ss e eÝH

0 m

7Ž .
In the above summations, m2 sm2 q PPP qm2 and1 n

mPqsm q q PPP qm q is the inner product over1 1 n n

the n-dimensional compactified space. The above
result can also be written in terms of a product of
theta functions as follows
F r ,qŽ .

1 1
s n3r2 2p RŽ .4pŽ .

=
n` q s2 jy3r2 yr r4 sd ss e u ,ı 8Ž .ŁH 3 2ž /2p p R0 js1
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where

`
2n r2 nu n ,t s p z 9Ž . Ž .Ý3

nsy`

with pse2 ıpt and zse2 ıpn. Performing the inte-
gral we obtain

F r ,qŽ .
` r1 1 1

y< m <s 1q2 e cos mPqŽ .RÝn ½ 54p r2p RŽ . m

10Ž .

In the particular case of one extra dimension, ns1,
we may obtain an exact result of the above integral.

Ž .We first perform the integration in 7 to obtain

` r1 1 1
ymF r ,q s 1q2 e cos mqŽ . Ž .RÝ2 ½ 5R r8p ms1

11Ž .

Performing the sum in this formula one gets the final
expression for ns1. Suppressing an overall numeri-
cal factor, we have the following form for the poten-
tial

r

R1 e cosqy1 1
V r A 1q2Ž . rns1 3 RrM rP5 � 0R2e y2e cosqq1R

12Ž .

The dependence on the distance r in this formula is
exact and valid for any value of r. For fixed r, its
maximum value is obtained when qs0, while for
fixed q the maxima are along the path determined by

Ž .the equation rsRlog 1"sinq . The resulting po-
tential as a function of r and qsuyu is plotted0

in Fig. 1.
In order to compare with the approximate formu-

lae of the potential given in the introduction, we
Ž .wish now to take the limit qs0 in 12 which gives

r

R1 e q1 1
Vs 13Ž .r3 RrMP5 Re y1

Ž .Fig. 1. The potential V r for one extra dimension as a function of
the distance-compactification ratio rrR and the angle qsu yu .0

The formula for r<R becomes

1 2 1 r 2

V f 1q 14Ž .ns1 3 2 2ž /12M r RP5

This formula which is valid for small r, differs by a
Ž .factor of 2 compared to the approximation 1 . This

is due to the fact that asymptotic matching is correct
for the forces and not for the potentials. The match-
ing of forces is given by the Gauss law which for
nq3 space dimensions is,

1
F s ,nq3 nq2 nq2V M rnq2 nq4

dd r2 Ž .where V s 2p rG is the n y 1-dy 1 2

Ž .dimensional area for the unit sphere and G z the
Euler-Gamma function.

For r4R we obtain an exponential correction of
the form

r1 1 M 1Cy yM rCV f 1q2e f 1q2eŽ .RŽ .ns1 3 3Rr rM MP P5 5

15Ž .

which is a Yukawa type correction valid for large
distances compared to the compactification radius.
The approximation used, gives us the chance to
compare directly the above formula with the usual
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parametrization of the long-range forces of gravita-
w xtional strength in the literature 18,19

1
yr rlV r A 1qae . 16Ž . Ž . Ž .

r

Comparing the two formulae, we have a definite
prediction for the strength a of Yukawa type gravi-
tational corrections in the case of one extra compact
dimension which is as2. Using the a–l plot of
w x13 which gives the experimentally determined re-
gion, we conclude that the allowed radius has an
upper bound of the order l'R;1 mm.

Next, let us return to the approximate formulae in
Ž .1, 3 which can be written in a single expression as,

1 1 1
Vf u ryR q u Ryr . 17Ž . Ž . Ž .3 2ž /rRM rP5

Ž .The formula 17 is plotted in Fig. 2 versus the exact
Ž .expression 13 . The plot shows that the two expres-

sions coincide only for r4R. For distances r;R
and r-R there exist significant deviations which
might lead to interesting corrections in calculating
various effects in physical processes.

Ž .For more than one compact dimensions n)1 ,
we will work out approximated forms of the poten-
tial. As already stated, the approximations are
straightforward in the case where the radii of the
extra compactified dimensions are either very big or
enormously small compared to the distance that the
potential is estimated, being those obtained from the
Gauss’ law in the ‘spherically’ symmetric case. At
relatively large distances, r)R, we may also keep

Ž .Fig. 2. Comparison of the exact upper curve and approximate
Ž .forms lower curve in the ns1 potential.

Ž .the first two terms of the series expansion in 7 , to
obtain the result

1 1 1
yr r RF r , R s 1q2ne 18Ž . Ž . Ž .n4p r 2p RŽ .

which is a straightforward generalization of the ap-
Ž .proximation 15 for arbitrary n. The other interest-

ing case, which may have particular importance for
the experimental verification of strongly coupled
gravity at the TeV scale, is when the distance is
comparable with the compactification radius.

When the experimental measurement is taken in
distances smaller than the compactification radius of
the extra dimensions rFR, the behavior of the
infinite sum is not manifest since an infinite number
of terms may contribute. Then, the most effective
tool to extract the asymptotic behaviour of the poten-
tial in the transition region where R becomes effec-
tively large, is the Jacobi’s transformation of theta

w xfunctions 20

`
22ym ll1q2 e cos 2p m ll zŽ .Ý

ms1

2`'p 2p mz22 2 2 2yp z ym p r lls e 1q2 e coshÝž /ll llms1

19Ž .

Ž .Substitution of the above formula in 7 gives

F r ,qŽ .
nnq3`1 2 2 2y yr r4 s yq R r4 sjs d ss e e2 ŁHnq3

0' js12 pŽ .

=
` 2m q p R2r s j jy m p RŽ .j1q2 e cosh 20Ž .Ýž /smj

Now, for R)r the exponentials in the sum con-
verge rapidly and a certain number of terms in the
product may give a good approximation.

We are interested in the case of two extra dimen-
sions. Taking the case of zero angles, i.e. q su yj j

Ž .u s0 for all j’s and ns2 we can split 20 into0 j
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three integrals which can be evaluated. The results
are,

1 1
I s 21Ž .0 2 38p r

4 1
I s 22Ž .Ý1 2 3r22 2 2 28p r q4p k RŽ .k

4 1
I s Ý Ý2 2 3r222 2 2 28p ks1 r q4p k q ll Rlls1 Ž .Ž .

23Ž .

We note that the number 4 multiplying the correc-
tions is the product of the factor 2 in front of the sum

Ž .in the integral 20 times the number of dimensions
Ž .ns2. Defining the parameter rsrr 2p R , for r-

1 we may expand to obtain

1 4
3 2I f z 3 y z 5 r 24Ž . Ž . Ž .Ž .1 22 38p 2p RŽ .

1 4
3 2I f z 3 y z 5 r 25Ž . Ž . Ž .Ž .2 2 222 38p 2p RŽ .

Ž .where in the above expressions z ll is the Riemann
zeta function and we have introduced the notation
Ž . Ž 2 2 .yllz ll sÝ k qm . Thus, we obtain an ap-2 k ,m

proximation for the corrections

1 2.24
V r f q4 26Ž . Ž .3 3r 2p RŽ .
An estimation of the correction terms may also be
given in the limiting case r™1. Putting rs1 and
performing the sums we obtain

1 1.32
V r f q4 27Ž . Ž .3 3r 2p RŽ .
The general result for ns2 can be written as a
double convergent sum as follows

1 1
F sns2 2 38p r

=
` ` 1

31q4r Ý Ý 3r22 2 2r q k q lŽ .ks0 ls1 Ž .
28Ž .

The double sum takes also into account the degener-
acy of a particular KK-contribution. Clearly, the sum

of the two integers k 2 q l 2 sN 2 which appears in
the denominator is related to the degeneracy.

The generalization of the above result to higher
dimensions is straightforward. Here, we have re-
stricted in examining the corrections to the Newto-
nian gravity due to the possible existence of ns1 or
ns2 extra space-time dimensions. We have suc-
ceeded to obtain useful exact forms of the potential
for the case ns1. In the cases where n)1 the long
range corrections can be approximated by a Yukawa
type interaction, and the potential is written

1
yr r RV f 1q2neŽ .r ) R nR r

where r is the distance and R a common compactifi-
cation radius of the n extra dimensions. When the
compact radius is effectively large, the modifications
are expressed as powers of the ratio rrR,

nq11 r
V f 1q2ncr - R nnq1 ž /ž /Rr

where c is a calculable coefficient which for then
Ž .cases ns1,2 is given by the expressions 14 and

Ž .28 in this work.

Note added. As this work was being written, we
w xreceived 21 where a similar analysis is presented.
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