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By using the language of dlfferentlal forms, which tllurmnates the structure of the gauge symmetries of string theories in a 
compact notational framework, we clarify the relation between the Neveu-West-Ntcolaa-Schwarz formulahon of the 
gauge-covanant string field theories and that of Banks and Peskm 

1. The rapidly growing interest in the recently 
constructed supersymmetric string theories [ 1,2] as 
unified theories of  all known interactions makes more 
urgent the answers to many fundamental theoretical 
questions, such as renormalizability or finiteness, na- 
ture of  the vacuum, symmetry-breaking mechanisms, 
consistent compactification o f  extra dimensions, to 
mention a few of  them [3]. Although partial answers 
to some of  these questions have been given in a non- 
covariant formulation at the first- or the second- 
quantized level [3], it is expected that deeper under- 
standing will be obtained when one has gauge- as well 
as Lorentz-covariant formulation of  string field theo- 
ries. Indeed several attempts in such a direction have 
recently been started [ 4 - 9 ] .  

In this letter we present a geometric interpretation 
of  the Neveu-West-Nicola i -Schwarz  (NWNS) string 
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field theory for the free open bosonic string in D = 26 
dimensions. Other cases will be discussed elsewhere. 
We will see that the geometric interpretation illumi- 
nates the structure of  the huge set of  gauge invari- 
ances of  the string field theory, which is a consequence 
of  the reparametrization invariance o f  the string. This 
reformulation has a further advantage of  making the 
relation between NWNS theories and that of  Banks 
and Peskin (BP) [6] transparent. As an application, 
we shall point out that BP-type theories with a finite 
number of  auxiliary fields (minimum four) exist. 

2. The basic tool for the study of  the string gauge 
symmetries is the Virasoro algebra, which is the quan- 
tum version of  the Lie algebra of  the reparametriza- 
tion group [3] 

[ L n , L m ]  = Vkn, m L k  + 6 n , _ m C ( n )  , 

k , n ,  m E Z  , (2.1) 
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where 

Vkn, m = (n -- m )iS n +m, k , 

and 

C(n) = ~ D n ( n  2 - 1 ) ,  n E Z .  

The dimension D of the space- t ime in which the 
string lives is taken to be arbitrary for the moment .  
(In what follows, we shall deal with the case with an 
infinite number of  fields. Finite-number versions will 
be obtained simply as special cases, and so will become 
clear later.) 

Let M be the space of  functions xU(s)  def'med on a 
two-dimensional surface Z (s E Z). M is an infinite- 
dimensional space and will be called the string space. 
String fields are defined as function(als) on M and 
form a Hilbert space H M. The inner product in H M is 
defined by an appropriate path integral, A,  B E HM, 

(A, B) =- f  x(s) A+(x(s)W(x(s)). (2.2) 

H M is the Fock space of the states of  a string. The ac- 
tion of an inf'mitesimal reparametrization transforma- 
tion on Z induces a transformation on M and hence 
on H M. This can be represented by 

~n ~ = Ln tp ,  ~k e H M . ( 2 . 3 )  

Consider now the tangent and the cotangent spaces, 
T M and T~I, respectively, on M. The above transfor- 
mation on M naturally defines a corresponding basis 
{ e n ) ,  n = 1, 2, ..., say, on T~I. The dual basis ( e _ m )  
on T M is defined as usual: 

(en ,  e _ m ) = 6  n ,  n, m E Z + .  (2.4) 

This "inner product"  is between T M and T~l and 
should not be confused with the one on H M. 

Now, tensor fields on M can be introduced just as 
in the case of  the finite dimensional manifold [10]. It  
will be useful to consider tensors for which all the co- 
variant and the contravariant indices are separately 
fully antisymmetrized. Then it is natural to call such 
a tensor o f ( ~ )  type an (~)  form, and write it as 

m l . . . m  a 
co = COnl...n b e m l  A ... A ema 

® e  n l  A ... A e nb  

ni E Z + , mj  E Z_  . 
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The inner product of  an (~)  form 6o and o f a  (b )  
form p consists of  (2.2) and (2.4) and takes the form 

(CO, P)  =- FC-DX(s) 6 o m I ' " m a ( x ( s ) ) P  n l ' ' ' n b  (X(S)) 
d lll . . .rt b ml . . . ra  a " 

(2.6) 

The string fields ~P, ep(m) and ~(m,n) of the NWNS 
formulation become forms in an obvious way 

@: (0 )  f o r m ,  

¢b = ¢b-m e _ m  : (1)  f o r m ,  

~ = ~ n m e _ m  ® en: (~)  form . (2.7) 

Next we come to the important  notions of  the ex- 
terior derivative d and the divergence 8 [10]. 

We define the exterior derivative of  a (0 )  form 
as 

d ~  = L n ~ e  n ,  n E Z + (2.8) 

and demanding the antiderivation property 

d(6o A v) = dee ^ v + ( - 1 )  deg to w ^ d r ,  (2.9) 

[where for an ( ~ )  form co, deg 6o = b] ,  plus the co- 
homology property 

d 2 = 0  

on Nit, we are led to choose 

1 n e k e m de n = - ~ V ~ : r  n A , n , k ,  m E Z  + (2.10) 

Demanding d 2 = 0 on a (1 )  form we may choose 

d e _  n = Vnm,_ke_m ® e k . (2.11) 

One may also choose --Vnm, k (indices 7+) in place of  
Vnm,,_k to get d 2 = 0. This choice, however, is not  use- 
ful in what follows. Note also that V~, k = wn, k of  
BP [6]. With the definitions (2.8), ( 2 . ~ )  and (2.11) 
we can build the action of  d naturally on any ( ~ )  
form ¢o [6]:  

m l  dco=(L  coml. ' .ma + aV; ,_n l coPm2""ma  
nl  n 2 . . . n b +  1 n2 . . .  rib+ 1 

__ l b V  p ~oml  m nl • .. a e ... e nb+l 
n l n 2  p n 3 . . . n b + l  ) A A 

@ e m l  A ... A ema , 

m i E Z - ,  n j E Z  +.  (2.12) 

(2.5) The next step in our construction is to define the dual 
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operator 6, the divergence. This is defined to be the 
conjugate of  d with respect to the inner product (2.6) 

(dco, v) -- (co, 6v) .  (2.13) 

From (2.6), (2.12) and (2.13), we see that d maps 
(~ )  forms to (b~-1) forms and 6, (~ )  forms to ( a ~ l )  
forms. From (2.12) and (2.13)we fred the action of 
6 on any (~ )  form [6]: 

6co = ( L  co p m l ' ' ' m a - I  + b V q  c o p m l " ' m a - 1  
- p  nl . . .n b n l , - p  nl . . .n b 

k (  a . . . .  m I klm2.. .  --  -- l )Vk , l con l . . .n  b m a - l ~ e  nl A ... A e  nb 

® eml A ... A ema , 

m i E Z - ,  n / E Z  +.  (2.14) 

We present two examples of the action of 5, namely 
on (~)  and ( ] )  forms, which we shall need later. Let 
co = ~o-m e _ m  a n d J  = J n m  e n, e be two such forms. 
Applying (2.14) we find: 

~co = L _ m c o - m  , (2.15a) 

and 

6 J =  ( L _ m J n  m + VPn ,_mJpm)e  n . (2.15b) 

Another crucial operation we shall need is the star op- 
eration which turns (~ )  forms into ( b )  forms and it is 
defined on forms by transforming all the basis ele- 
ments as follows ,1 

* e _  n = n n m e m  , , e  n = n n m e _ m  (2.16a, b) 

where 

nnm =m6n ,  m , n nm = ( l / m ) 6 n ,  m • 

We can check that the following properties hold: 

. • = 1 , ( .co,  . v )  = (co, v) ,  (2.16c, d) 

for any (~) ,  ( b )  forms co and v. 
Finally, we need the generalized kinetic operator 

K = 2(L 0 - 1 +-N),  

where on any (~ )  form 

+1 The * operation here should not be confused with the 
Hodge, • operation [10]. It is similar to the t, $ opera- 
tions of Peskin and Banks [6]. 

¢.o=coml"'maenl...n b ml  A . . . A e m a  ® e  nl 

m i E Z - ,  n / E Z  +,  

l~rC O m 1 m-  ~_l =co "'" - / /  (n i+ lmi l )  nl. . .n b .. 

A ... A e nb , 

X ema A ... ^ ema ® e nl A ... ^ e nb • (2.17) 

Later we shall use the following properties of d, 6, K, 
, operations which can be easily checked: using the 
properties of the structure constants Vlmn of the 
Virasoro algebra, 

[ d , 6 ] O = K . ~  ( ~ D = 2 6 ! )  (2.18a) 

[d, K] q~ = 0 ,  [6, K] ~" = 0 ,  (2.18b, c) 

[ d , K ] ~ = 0 ,  K . ~  = , K ~ ,  (2.18d, e) 

qs, qb, ~" are (0) ,  (1 )  and ( ~ ) forms, respective- where 
ly. 

3. The NWS action of the gauge covariant formula- 
tion for the open bosonic string is of  the form [9] 

ANW s = ~(~I,, (L 0 - 1)~I') 

+ ~ (Ln~P + nob(n), cb(n)) 
n=l 

+ ~ (Lncb(m) + ( 2 n  +m)dp(n+m),~(n,m)) 
n,m=l  

t x J  

_ 1 ~ (~(n,m),  (L 0 _ 1 + n  + m ) ~ ( n , m ) ) .  
2 n ,m=l  

(3.1) 

This action is invariant under the gauge transforma- 
tions 

6A~P= ~ L _ n A  n ,  6A~b(n)=--(L 0 - 1 + n ) A  n . 
n=l 

(3.2a, b) 

6 A ~(n,m) = - L m A  n - (2m + n)An+ m , 

n, m = 1,2 .... , (3.2c) 

only if the identity [9] 
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n-1 

m=l 
(2n - m)(n + m) + ~ D n ( n  2 - 1) 

- 2n(n - 1) = 0 (3.3) 

is true Vn = 2, 3 . . . . .  and this happens only when D = 
26. It is possible to choose a specific gauge such that 

(p(n) = ~(n,m) = 0 ,  rt, m = 1, 2 . . . . .  (3.4) 

and the equations of motion for the action (3.1) be- 
come 

(L 0 - 1 ) x I  ' = 0 ,  Lnq~ = 0 ,  n = l , 2  . . . . .  (3.5) 

We proceed now to the geometrical formulation of 
the NWS string field theory. First we identify the 
fields ~ ,  (p(n), ~(n,m) and the gauge functions A n 
with the forms 

~I,: (0 O) fo rm,  

(p(n) ~ (b = (p-nen: (1) f o r m ,  

= ~-nem ~(n,m) ~ ~ m ® e_n: ( ) f o r m ,  

A n -+ A = A - n e _ n  : (1)  fo rm.  

Then we observe that the different parts of  the action 
(3.1) can be written as: 

½(~I,, (L 0 - 1)qO = -~(q~, K ~ ) ,  (3.6a) 

1 ~ ( ~ ( n , m ) , ( L o _ l + n + m ) ~ ( m , n ) )  
2 n,m=l 

= ~(~', K~) ,  (3.6b) 

n((p(n), (p(n)) = ((p, . O ) ,  (3.6c) 
n=l 

(LnCb(m) + (2n + m)(p (n+m), ~(n,m)) 
rt, m=l 

= n~ ( (p-n' ~-lL-m~nmm 

+ ~ (2p + q ) ~ q P )  
p+q=n 

(2.15b) 
= ((p, 6~) .  (3.6d) 

So we obtain: 

A N W S  = K,I , )  - 

+ ((p, d ~  + 6~" + ,q~). (3.7) 

The gauge transformations (3.2) become 

6Axil = 5 A ,  6A(I) = --~ K A ,  6A~" = - - d A .  

(3.8a, b, c) 

The variation of the action under (3.8) is 

5AANw S = ~ ( * ,  [K6 -- 6 K + Kd - dKl A) 

+((p, [d5 - S d  - , K I A ) .  

The vanishing of  5AA is guaranteed by the relations 
(2.18). We see that gauge invariance in covariant 
gauges follows if and only i f D  = 26. We now briefly 
discuss the formulations with a finite number of  aux- 
iliary fields and their mutual relations. First we easily 
observe that, for a given n(~>2), we can consider ~ ,  
and A such that 

( p - k = ~ - / - k = A - k = 0 ,  V k > n .  

Then we get an acUon, call irA(n),  o f  NWNS [9,8] 
with a finite number of  auxiliary fields. Now given 
A (n), we can go t o A  ( n - l )  by the following proce- 
dure: the fields not i n A ( n - l )  are (p-n ,  ~-e n (e = 1, 
2 . . . . .  n) and ~'n 1 (e = 1,2 ... . .  n - 1). It  is easy to see 
that the ~'n 1 are Lagrange multiplier fields and, upon 
integration, produce 6 functions 

n - 1  
6(L I(p - n  - ~ K~'Fn). (3.9) 

l=1 

Since K is an invertible operator by using (3.8b), we 
can gauge (p-n to zero, i.e., we can insert 6(~  - n )  
with an appropriate ghost term. Then (3.9) becomes a 
5 function constraint on the ~--n. Upon doing this, 
we find that the ~-n completely decouple from the 
fields in A ( n - l )  and these can also be integrated. In 
this way we arrive a t A ( n - l )  plus a ghost term. The 
relation between the theories based o n A  (n) and 
A (n - l ) ,  displayed above, suggests that they may well 
lead to different interacting theories. 

4. The relation between the NWNS formulation 
and the BP one [6] becomes obvious if we write 
down the BP action m the form 
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ApB = ~ ( ~ ,  Kxp) -- ~(~-, K~') 

- - ~ ( d ~  + 6~', .dxP + .6~ ' ) ,  

where we identified the • and A fields of  BP as 

(4.1) 

qb=xp,  A = ~ ' .  

Comparing (3.9) and (4.1), one immediately recog- 
nizes that integration over qb in ANWN S gives ABp. In- 
deed, by completing the square 

ANW s = ABp + (G, , G ) ,  (4.2) 

where 

G = ,@ + ~(dqz + 6~'), (4.3) 

it is readily checked that G is gauge invariant. Gauge 
invariance Of ABp under (3.8a) and (3.8c) is thus 
guaranteed. The difference between the two ap- 
proaches lies simply in the use of  the first-order 
(NWNS) or the second-order (BP) formalism. 

One can now easily obtain a BP-type action A(B n) 
with a Finite number of  auxiliary fields, starting from 
A ~)WNS" Especially for N = 2, A (21) contains only four 
auxiliary fields. It  should be remarked, however, that 
one cannot go from A (Bnp) to A (Bnf 1), in contrast to the 
case OfANwNS. The reason is two-fold: first, gauge 
transformation of  ~'e n involves non-invertible opera- 
tors. Thus one cannot gauge away ~'e n. Further, none 
of  the ~'n 1 are Lagrange multiplier fields any more. 
Integration over them produces non-local expressions. 
The gauge fixing of  ~ - n  in NWNS formulation does 
not correspond to a simple procedure in the BP ver- 
sion. 

It should also be mentioned that there exists anoth- 

er action which is local and invariant under the set of  
gauge transformations (3.8). Namely, one can add to 
ANWNS a term (d~, .d~'), which after fixing the gauge 
appropriately gives the same equations of  motion [3, 
5]. I t  is possible to extend the geometric interpreta- 
tion to the closed as well as to the supersymmetric 
string theories. We hope that it will be of  some help 
for the search of  the covariant interacting string field 
theories. 

We thank A. Neveu for his valuable observations on 
the paper as well as for reading it. Two of  us, E.G.F. 
and K.T. want to thank B.T. Clan for providing the 
necessary stimulation to enter the field of  string theo- 
ries. 
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