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Phenomenological constraints imposed by the hidden sector 
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We calculate the trilinear superpotential of the hidden sector of the three generation flipped SU(5)×U(1)xU(I )4x  
SO (10) × SU (4) superstring model. We perform a renormalization group analysis of the model taking into account the hidden 
sector. We find that, in all relevant cases, fractionally charged tetraplets of the hidden SO(6) gauge group are confined at a high 
scale. Nevertheless, their contribution to the observable U ( 1 ) gauge coupling evolution results in a drastic reduction of the avail- 
able freedom in the values of a3 (mw), sin20w and Mx that allow superunification. 

The most at t ract ive feature of  modern  string the- 
ory [ 1 ] is that it provides a f ramework for a unif ied 
theory for all interact ions including gravitation.  In 
earl ier  approaches  some of  the spatial  d imensions  of  
the string ere compact i f ied  on a Ca lab i -Yau  mani-  
fold [2] or on an orbifold [3].  In more recent ap- 
proaches, four-dimensional  strings [4,5] are con- 
structed directly without  any in termedia te  higher 
d imensional  state. In a par t icular  approach,  free fer- 
mionic internal degrees of  freedom on the world-sheet 
are used to cancel the superconformal anomaly in four 
dimensions.  Models  [6,7] bui ld along this line have 
N =  1 supersymmetry  and chiral fermions and do not 
possess any Higgs fields in the adjoint  representat ion 
of  the gauge group, as is convent ional ly  required for 
the gauge symmetry  breaking down to the s tandard  
model, provided we do not go beyond level k =  1 Kac-  
Moody algebras [ 8 ]. 

A currently popular  model  [ 7] constructed in the 
f ramework of  the fermionic formulat ion of  the four- 
d imensional  superstrings is the " f l ipped"  SU (5)  X 
U ( 1 ) '  model  [ 9 ]. The complete  gauge group of  the 
model  is SU(5) ×U(1) '  ×U(1 )4×SO(10) X 
SU (4).  The standard gauge group of  electroweak and 
strong interactions is embedded  in SU ( 5 ) × U ( 1 ) '. 
The ordinary  quark and lepton mat ter  fields trans- 
form also non-tr ivial ly under  the extra U(  1 )4 gauge 
factor which turns out to be broken at a superheavy 
scale. This part  of  the gauge group, together with the 

fields that  t ransform under it, consti tute the "observ-  
able sector" of  the model. The remaining gauge group, 
namely S O ( 1 0 ) x S U ( 4 ) ,  defines the "h idden  sec- 
tor",  although the term "h idden"  is not strictly cor- 
rect since there exist fields that t ransform under  it 
and simultaneously have non-zero electric charge. In 
fact, these states carry fractional electric charges of  

Light fractionally charged particles are not easily 
accommodated  in the present low energy phenome-  
nology. It is interesting to point  out, however, that 
such states are not par t icular  to the fl ipped 
SU ( 5 ) × U ( 1 ) superstring model  but  they are rather 
generic [10].  In several models, arising either from 
Calab i -Yau  compact i f icat ions or from four d imen-  
sional fermionic constructions, one ends up with 
massless fractionally charged states in the spectrum 
of  the theory. A detai led discussion, val id for any bet- 
erotic string theory, showing at which price one may 
avoid  the appearance of  these states, was given re- 
cently in ref. [ 1 1 ]. In par t icular  it has been proved 
that a modula r  invar iant  string theory without  frac- 
t ional  charges can exist only if  the SU (2)  and SU (3)  
levels k2 and k3 of  the K a c - M o o d y  algebra, to which 
the gauge group of  the theory extends, and the U ( 1 ) 
normal iza t ion  factor k~ of  the s tandard model  
embedding  in string theory, satisfy the constraint  
k~ + 9k2 + 12k3 = 0 mod  36. When other  considera- 
tions, like the weak mixing angle etc., are taken into 
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account, one is forced to SU (5) unification which re- 
quires adjoint Higgses and, therefore, inevitably dic- 
tates higher level Kac-Moody algebras. Although this 
option is challenging, model builders up to now have 
considered only level-one realistic models. 

In this article, we examine in detail the "hidden 
sector" of the revamped flipped SU (5) × U ( 1 ) su- 
perstring model [7]. In particular, we have com- 
puted the superpotential couplings of hidden matter- 
fields and the resulting massless spectrum under a 
given vacuum choice. We have performed a renor- 
malization group analysis of all relevant parameters 
taking into account the hidden sector as well. We ad- 
dress the question of the survival of  the problematic 
fractionally charged states at low energies and the 
feasibility of the confinement mechanism via SU (4) 
hidden interactions proposed in ref. [ 7 ]. 

The construction of the model is based on a basis 
of eight vectors of boundary conditions for all world- 
sheet fermions. These basis vectors generate three 
chiral families of massless matter superfields each 
forming a complete 16 of SO (10) with the following 
SU (5) × U ( 1 ) '  quantum numbers: 

F(10, ½) +f (5 ,  _3)  +~c(1 ' I )  • 

The families differ in their U(  1 )4 quantum num- 
ber content. There is also a number of massless Higgs 
superfields in the 10, 10, 5 and 5 representations of 
SU (5) which are used to break the symmetry to the 
standard model and provide the weak isodoublets 
necessary for the subsequent breaking to SU(3)cX 
U(1)em. 

The massless spectrum contains also a large num- 
ber of SU (5) × U ( 1 ) '  singlets with various charge 
assignments under the four U( 1 ) factors. The latter 
are found to have Tr U ( 1 )i=~ 0. However, without loss 
of generality, one can define four orthogonal combi- 
nations [7] in such a way that only one, namely 
U(1 ) A = - 3 U ( 1 ) I - U ( 1 ) 2 + 2 U ( 1 ) 3 - U ( 1 ) 4 ,  re- 
mains anomalous [ T r U (  1 )A= 180]. This is broken 
by the Dine-Seiberg-Witten mechanism [12] in 
which the anomalous D-term generated by a vacuum 
expectation value of the dilaton is canceled by vac- 
uum expectation values that break some of the non- 
anomalous gauge symmetries so that supersymmetry 
is preserved. The cancelation conditions together with 
the F-flatness conditions, constrain the pattern of 
possible vacuum expectation values. There exist, 

however, more F-flat directions than constraints and 
the model possesses a number of degenerate 
SU (5) × U ( 1 ) '- invariant vacua. Not all of these 
possible vacua are phenomenologically acceptable. 
since a complete analysis of  the possible vacuum ex- 
pectation value patterns has not been done yet, we 
shall limit ourselves to the specific phenomenologi- 
cally acceptable choice of ~23, (~)23, ~31, ~045, ~45, ~0+ 
(and possibly some of q)3~, ~0i, 0i, 0+, ~0_, 0 -  subject 
to the F-flatness constraints) non-vanishing vacuum 
expectation values made in ref. [ 7 ]. 

The SU(5) × U ( 1  ) '  breaking to the standard 
model is achieved by giving a non-vanishing vacuum 
expectation value to a combination of the F~(10, ½) 
matter fields (F)=Zi=l,2,3ai(Fi) together with an 
( F  s) vacuum expectation value. D-flatness is en- 
forced by the equality ( F )  = ( F s ) .  The above set of 
VEVs leads to n2 = 4 massless SU ( 2 )-isodoublets and 
n3 = 2 massless but innocent SU ( 3 )-triplets after the 
SU (5) × U ( 1 ) '  breakdown. 

The fields discussed so far, are singlets under 
SO(10) × S O ( 6 )  hidden gauge interactions. How- 
ever, in addition to the above observable fields the 
massless spectrum contains states that transform non- 
trivially under the hidden gauge group. These addi- 
tional states can be divided in two classes. The first 
class consists of SU ( 5 ) X U ( 1 ) '- invariant fields that 
couple to the observable sector only through U( 1 )4 
gauge interactions. In contrast, the fields that belong 
to the second class, in addition to their 
SO(10) × S O ( 6 )  × U (  1 )4 quantum numbers, they 
also carry U ( 1 ) '  charges. 

The first class of hidden states comes from the sec- 
tors b~+2a and b i+2a+~,  where i= 1, ..., 5, in the 
customary fermionic model-building notation 
[4,6,7]. These fields, listed in terms of their 
SO(10) × S O ( 6 )  × U ( 1  )4 transformation proper- 
ties, are 

3, =(1,6)(0,-½,½,0), 

32= (1,6)(-½,0,½,0), 

33=(1,6)(-½,-½,0,½), 

34= (1,6)(0,--½,½,0), 

35=(1,6)(½,0,-½,0), ( l a )  
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TI = (10 ,  1)(0,  -½,  ½, 0 ) ,  

T2 = (10, 1 ) ( - ~ ,  0, ½,0) ,  

T3 = (10, 1 ) ( - ½ ,  -½,  0, - ½ ) ,  

7"4=(10 , 1)(0,  ½, - ~ , 0 ) ,  

T5 = (10, 1 ) ( - ½ ,  0, ½,0) . ( l b )  

We now proceed to the calculation of  the trilinear 
superpotential involving the fields A~, T~. Adopting the 
normalization ((7+ a+ } = 1 and { a+a_ } = 0, the only 
non-vanishing three-point functions are [ 7 ] 

1 
(a+a_ f> = <~+ ~_~>- x/~ , (2) 

with a+ being the two twist-fields of  conformal di- 
mensions ( ~, ~ ) corresponding to the two different 
fermion number projections ( -  1)r~= _+ 1 in the 
Ramond sector for a given real two-dimensional fer- 
mion f(left) and }(right). The only non-vanishing 
trilinear superpotential terms are "~ 

• 2 -- 2 ~ 2  1/1/ = ZJ 1 0523 "1- zJ 2 0531 -t- ZJ 2 1~23 "[- Z~ 2 1~31 -t - z14A5 ~03 
~ t  

1 
+ T 12 q523 + T2 0531 + T]  0523 + T~ 0531 + ~ T4Ts(~2. 

(3) 

For the singlet fields (/5 we follow the notation of  
ref. [7] that corresponds to the following U(1)4  
assignments: 

0 5 2 3 ( 0 ,  - -  1, 1, O) , 

I ~ 2 3 ( 0  , 1, - 1, 0) , 

~o~(½, -½, o,o),  

0531(1,0 , - - 1 ,0 )  , 

I~31(-- 1, 0 , 1,0)  , 

0~(-½, ½,o,o). (4) 

Adopting the specific vacuum choice of  ref. [ 7 ] we 
see that the terms in ( 3 ) provide tree level masses for 
all but A3 and T3 fields listed in ( 1 ). The latter could 
in principle acquire masses from higher order terms. 
In any case the existence of  a mass term for T3 is not 
important for our discussion since it is an 
SU(4)  × S U ( 5 )  × U (  1 ) '  singlet. In contrast, zJ 3 plays 
an essential role in our results since it affects the 
SU (4) confinement scale and, therefore, it is impor- 
tant to know if it remains massless or not. However, 

a search over all possible fourth and fifth order non- 
renormalizable mass terms has shown that fourth or- 
der terms are not allowed by gauge symmetry, whilst 
the few allowed fifth order terms vanish due to string 
discrete symmetry arguments state in relation (2) ,2. 

The hidden chiral superfields belonging to the sec- 
ond class, transform as the spinorial representation 
of  SO (6), or equivalently as a 4 of  4 of  SU (4). They 
are SU(5)-singlets but carry non-zero observable 
U ( 1 ) '  charge (corresponding to fractional electric 
charge _+ ½ ). These are the problematic exotic states 
that are inevitable in any level-one construction [ 11 ]. 
These states arise from various different sectors, 
namely b~ _+a (+~) ,  and bl +b4+bs++_a (+~), b4+_a 
( +~), b2+b3+bs-+ a (+~)  and bl+bz+b4+-a ( +~). 
They are, in terms of  their U(  1 ) '  × S O ( 1 0 )  X SO(6)  
× U ( 1 ) 4 transformation properties, 

)(1 = ( - ] ) ( 1 ,  4 ) ( - ¼ ,  4', 4', ½), 

£ = ( -¼)(~ ,  ¢) ( -4 ' ,  4', ~, -½),  

YI = (5)(1,  4 ) ( - 4 ' ,  }, -4 ' ,  ½), 

Y2 = ( + ] ) ( 1 ,  4 ) ( - 4 ' ,  ¼ , - } , - ½ ) ,  

Z . = ( - ~ ) ( 1 , 4 ) ( 4 ' , ¼ ,  - ] , ½ ) ,  

Z , = ( } ) ( 1 , 4 - ) ( - 4 ' , - 4 ' , } , - ½ ) ,  

Xl = (¼)(1, 4 ) (} ,  _¼, _•, _ ½ ) ,  

2~ = ( - ~ ) ( 1 ,  ¢ ) ( -¼ ,  ¼, 4', - ~ ) ,  

0 1 = ( - } ) ( 1 , ¢ ) ( - L  } , - L 0 ) ,  

Q ~ = ( 5 ) ( 1 , 4 ) ( - 4 ' , I , - ~ , 0 ) ,  

Y ~ = ( ¼ ) ( 1 , 4 ) ( - 4  ~, 4', - ~ ,  - ½ ) ,  

L = ( - ~ ) ( 1 ,  ¢ ) (L  -4', 4', - ½ ) .  (5) 

The electric charge for the above twelve states is 
Q+ 2 (+~)  + 0 - -  + ½. The trilinear superpotential 
that involves these states can be calculated as in the 
case of  ( 3 ). It turns out to be ~3 

1 
W'---- ~ (Y1}(2(,04-I-X, Y2(fll ) -1-£ Y2(fl+ 

+ZI21053+Q,Q,~I2+ZI£'2~ + Y'2Z, Al. (6) 

~ We have omitted the overall normalization factor propor- 
tional to the gauge coupling since it is not important to our 
analysis. 

~2 Possible higher order terms would give masses lower than the 
SU(4) confinement scale in all acceptable cases. 

~3 {0~,4= (1, 0; 1, _ z~, 0, 0) and (/)3 is a total singlet. 
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~ is the second-generation "right-handed" lepton 
superfield with SU (5) × U ( 1 ) '  × U ( 1 )4 assignment 
(1, ~; 0, -½,  0, 0). The first five o f  the above super- 
potential couplings are potential mass terms for some 
(at most 8) of  the appearing fractionally charged 
states depending on the vacuum expectation value 
assignments of  the singlets q,. The sixth term is the 
unique direct Yukawa coupling between observable 
and hidden sectors. This exotic coupling would im- 
ply the decay of  sleptons into fractionally charged 
particles if these particles survived light enough. 
Shortly we shall provide quantitative support in fa- 
vour of  the conjectured mechanism of  confinement 
of  the fractionally charged states by strong SU (4) in- 
teractions. Therefore, this coupling will not be of  any 
consequence, at least in our framework. 

Since some of  the singlets in (6) will be forced to 
have vanishing VEVs (e.g. 4512 ), either from phe- 
nomenology or F-flatness constraints [7] ,  the tri- 
linear superpotential W' can provide masses only for 
a few of  the tetraplets (four or probably less, for the 
vacuum choice of  ref. [7] ). Therefore possible non- 
renormalizable mass terms will be o f  crucial impor- 
tance for our analysis. Search up to fifth order has 
given the following allowed couplings (in Mp1 
units) ~¢4,5,6 

Wn.r. = X 1 g~ ( ~0+ ~2 -[- ~02 (if--) -[" ]'71 Y~ (~0 + ~3 + ~03 q~_ ) 

q- Y~-'Y2 (F2Psq'+)  + Y'2£, (F2ff s~o~ ) 

"t- X1 Xl F 5 F 1 ~03. ( 7 ) 

The existence of  these terms can reduce the number  
of  light fractionally charged states providing super- 
heavy masses for some more tetraplet pairs or inter- 
mediate masses for others. 

It has been argued [7] that the SU(4)  hidden in- 
teractions become strong at some scale A below the 
unification scale resulting into confinement of  all 
SU (4)-non-singlet states and in particular the mass- 
less fractionally charged tetraplet states. I f  this is the 

~4 Since the selection rules for these terms have not been rigor- 
ously derived yet, we simply list the gauge invariant terms 
which are not explicitly vanishing from the rules stated in (2). 

~5 We have not included non-renormalizable terms that consti- 
tute corrections to non-vanishing lower order ones. 

a6 The U( 1 )a assignments for the singlets are [7]: ~oi= (½, - ½, 
0, 0), i=1 ..... 4, ~0_=(½, -½, 0, -1) ,  ~0+=(½, -~, 0, 1), 
0 , =  (0,  O, 0, 0 ) ,  I =  1 ... . .  5. 

case, all fractionally charged tetraplets will form 
SU (4)-singlet bound states of  natural masses of  or- 
der A. For simple group theoretical reasons, these 
states will involve an even number  of  tetraplets and 
consequently will possess integer electric charge. In 
order to give a quantitative answer to the question of  
confinement of  all the fractionally charged states as 
well as their effect on the various parameters of  the 
theory (i.e. Mx, Msv, a3, sin20w) we must consider 
the coupled SU (3) X SU (2) × U ( 1 ) × SU (4) renor- 
malization group equations and compute all phe- 
nomenologically relevant parameters together with 
the SU (4) confinement scale A. 

Let us first consider the coupled renormalization 
group equations in the two loop approximation. They 
can be written in the form ( a , = g  2/4n and t=  In #, as 
usually ) 

dai a 2 ( b i + l  ) 
dt - 2n ~n ~" b°aj ' (8) 

where the beta function coefficients for SU(5)  
× U (  1 ) '  × S U ( 4 )  above Mx are 

(!) b ~ = -  15 + 2 nG+ n s +  n~0 
\ 1 2 /  \ 0 /  

+ F/4 + n 6 , 

b,j= -150  0 l + l  232 no 
0 - 9 6 /  \ 0  0 

+ 5 ~ n s +  lsss nt0 

0 0/  \ 0  0 

/ O 75/ (~ / 2 5 0  0 0 0 T6 
"Jff 0 0 n 4 "~ 0 0 n 6 , 

. f i  o o 18/  
(9a) 

where i, j =  ( 1, 5, 4), while below Mx for SU (3 )c  × 
S U ( 2 ) e X U ( 1 ) r X S U ( 4 )  
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b~ = - 9  + 2 rtG -t- 0 /12 q- t 1/3 

\ -  12/ \ 0 /  \ 0 /  \ 0 /  

0 0 
+ / 2  |n32 -I- n6 + 0 n 4  

- 2 4  0 
b° = 0 - 54 

0 0 - 6 

? 14 8 00 +( t  7 0 O0 

+/! 3'o o "tOo ooo o 
/o ,6 , 3 , ,  

° /,:o 8 
to oo +/! + 0 ~ n3 3 ~4 n32 

0 0 0 0 

/o oooo g/ /°o°°oo °o / 
+ / o o o  oj 4+/o o o o 

.Y6 0 0 ~ ]  \0  0 0 18] 

(9b) 

where i , j= ( 1,2, 3, 4). In the above n G is the number 
of  generations and nm, ns, n2, n3, n32 are the number  
of  Higgs decuplets, pentaplets, doublets, triplets and 
doublet-triplet representations respectively, n4 and/76 
are the fourplets and sextets of  (1) and (4). In our 
analysis we will take riG=3, n~o=2, ns= 10, n3=4,  
n32=0 and n6= 1 which result from the specific VEVs 
choice of  ref. [ 7 ]. According to our previous discus- 
sion in what follows, we will keep an open mind and 
perform our analysis for variable number  n4 ~< 6. We 
have omitted the contribution of  Yukawa couplings. 
This amounts to neglecting the terms [4 (2 t+2b) ,  
6(2t+2b)  +2~,½ (262t+ 142U+ 182~) ] in (9b). These 
terms have a relative weight ~ to the gauge coupling 
terms. Being a small correction to a small correction 
in the two-loop term, they could be ignored (includ- 
ing them results in a slight shift of  Mx).  The contri- 
bution of  the massless hidden sector fields, namely 
tetraplets and sextets, is taken into account from the 

superunification scale Msu up to the scale A at which 
SU (4) interactions become strong. At A these states 
decouple from the renormalization group, forming 
massive bound states with natural masses of  order A. 
We define A as the scale at which og 4 (A) = 0.2. 

The renormalization group equations are inte- 
grated using as low energy conditions the phenome- 
nologically acceptable values of  a3 (mw) and sin20w 

0.222 < sin20w < 0.234,  

0.107 <a3(mw)  <0 .138 .  (10) 

The grand unification scale Mx is defined as the scale 
at which the S U ( 3 ) c  and the SU(2)L gauge cou- 
plings are equal, i.e. 

a3 (Mx)  = or2 ( M x ) =  o~5 (Mx) (1 1 ) 

while for the U ( 1 ) v gauge coupling at Mx we have 

25 1 24 
+ (12) 

IDLy - -  0 / 5  OL 1 

The superunification scale Msu is defined as the scale 
at which the U(  1 ) '  and the SU (5) couplings are 
equal: 

oq (Msu) = c% (Msu) =O~u. (13) 

Since Mso is expected to he at the string scale, where 
the couplings of  all non-abelian gauge group factors 
realized at the same level of  the Kac-Moody  algebra 
are equal [13],  we should also demand c~4 ( M s o ) =  
~x U. It is evident that for ~ y ( M x )  > ¢x3 (Mx)  the con- 
dition for superunification cannot be met. 

We start our analysis first by determining the scale 
at which SU(4)  becomes strong. For some mean 
value for the superunification scale as well as the 
unified gauge coupling, i.e. 

Msu ~ 1.2>( 1016 , OlD =0.057 

we have plotted in fig. i the evolution of  the o~4 cou- 
pling for n6= 1, n4=0,  2, 4, ..., 12. As one should ex- 
pect, o~4 becomes strong at low energies at a scale that 
decreases with an increasing number of  massless 
tetraplets. 

We proceed now in a detailed analysis for the gauge 
couplings and the unification and superunification 
scales by integrating the complete system of  RG 
equations. Our results for Mx and Msu are exhibited 
in figs. 2-4. In fig. 2 we have plotted the values for 
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Fig. 1. Evolution of  the SU ( 4 ) gauge coupling for Msu  ~ 1.2 × 10 ' 6 
and  a u = 0 . 0 5 7 .  
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Fig. 2. Con tou r  plots for the unif icat ion scale fo r / / 6=  1, n 4=0 ,  2, 
4, 6 for the allowed regions of  the sin2Ow(rnw) and  oL3(mw ). 
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0.~1 ' i 0.115 0.12 0.1125 0.13 0.1'35 
i f 3  

Fig. 3. Plots  of  Msv  versus  ot3(mw ) for n6=  1 and  n4 =0 ,  2, 4, 6. 
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Fig. 4. Plots o f  the ratio log(Msu/mx) for n6= 1 , / /4=0,  2, 4 and  
sin:0w(rnw) =0 .228 .  

the unification scale for phenomenologically accept- 
able values of o~3(mw) and sin2Ow(rnw). The solid 
lines correspond to the curves Mx = constant. As ex- 
pected, the unification scale Mx is not sensitive to 
the number of massless tetraplets since they are 
SU (3) × SU (2) singlets. On the contrary the exis- 
tence of the superunification point depends crucially 
on their number since they carry U ( 1 )' charges. The 
dotted lines correspond to the curves Msv=Mx for 
the cases//4 = 0, 2, 4, 6. For each particular value of 
n4 the superunification point above the correspond- 
ing dotted line does not exist since ar(Mx)> 
as(Mx).  As previously explained we have taken 
//6 = 1, as the most probable case. Of course higher//6 
values would be much more restrictive. 

We observe therefore, that the presence of the 
massless fractionally charged states in the spectrum, 
lowers drastically the allowed unification scale val- 
ues and moreover restricts the allowed regions of the 
sin20w (mw) and a3 (row) low energy parameters. 

The dependence of Msu from O~3(mw) is shown in 
fig. 3. It is worth noticing that for the special case of 
our analysis where//2 + 2nto = 6 +//3, Msu is not sen- 
sitive to sin20w(mw) [ 14]. 

Finally, in fig. 4 we present the ratio log(Msu/Mx) 
for a mean value of sine0w(mw)= 0.228. This figure 
exhibits the behavior of Msv relative to Mx for var- 
ious values of//4. It is clear that the existence of the 
fractionally charged tetraplets lowers the above ratio 
by shifting Msv closer to Mx. 

Let us now state our conclusions briefly summariz- 
ing our analysis. 

We have considered the three family flipped 
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SU (5) X U ( 1 ) '  superstring model for vacuum choice 
within the framework proposed in ref. [ 7 ]. 

We have computed the trilinear Yukawa cou- 
plings, as well as the possible quartic and quintic ones 
relevant for mass-terms, involving the hidden sector 
fields. Trilinear level Yukawa couplings can provide 
masses for no more than four fractionally charged te- 
traplets for the specific VEVs choice. For other 
choices of VEVs, the number of massive tetraplets 
could increase up to eight. Mass terms arising from 
nonrenormalizable interactions could possibly pro- 
vide superheavy or intermediate masses for another 
two or three pairs. 

We performed a two loop renormalization group 
analysis of the complete system of the gauge cou- 
plings. The proposed mechanism of confinement of 
tetraplet states that carry fractional electric charge is 
generally supported by our results. However, the ex- 
istence of these states lowers MstJ and restricts the 
acceptable range for Mx, ol3 (mw) and sinZ0w(mw) to 
lower values. In any case, as can be seen from fig. 4, 
the number of light tetraplets should not be more than 
four, since the scale Mx is pushed beyond the range 
accepted from proton decay bounds. 

One of us (J.R.) wishes to thank the University of 
Ioannina Research Committee for financial support. 
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