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We present a model for cosmological inflation at the Planck time in the context of simple (N = 1) supergravity. The 
model uses only one gauge singlet chiral superfield and requires non-renormalizable terms at least up to sixth order in the 
superpotential. Inflation itself imposes no serious constraints on any of the parameters in the model. In addition this mod- 
el is capable of producing scale independent density fluctuations 6p/p ~ O(10-4). 

It is well known by now that a large number of  
cosmological peculiarities such as the high degree of 
isotropy and flatness, large-scale homogeneity, great 
longevity and apparent lack of magnetic monopoles, 
could all be understood as natural provided there ex- 
isted some epoch in which the universe expanded ex- 
ponentially [1 ]. The period of exponential growth or 
inflation is generally associated with a supercooled 
phase transition at [1-4]  or before [5] the Grand 
Unified Theory (GUT) era. During this transition the 
universe becomes dominated by the vacuum energy 
density due to a scalar field and passes from a radia- 
tion dominated Friedmann-Robertson-Walker 
(FRW) state to an approximate De Sitter state [6]. 
The return to a FRW universe had been one of the 
main sore spots in Guth's original scenario [1 ]. This 
problem, however, was resolved [2,3] by considering 
an inflationary period which begins after the transi- 
tion has taken place and the scalar field has begun its 
roll-over to a new global minimum. 

Conventional scnarios [ 1-4]  consider the phase 
transition driving inflation to be associated with the 
breaking of  a GUT such as SU(5) down to SU(3) 
× SU(2) × U(1) and the scalar field responsible for 
this breaking to be in the adjoint representation. Re- 
vised scenarios [2-4]  all employ the Coleman- 

Weinberg mechanism [7] for the symmetry breaking, 
i.e. through one-loop corrections to the scalar poten- 
tial. These models all require, however, unnatural 
fine-tunings of parameters. In addition, because the 
amount of inflation produced is very sensitive to the 
~4 coupling which in turn depends on the gauge cou- 
pling g, it has been shown [8] that sufficient infla- 
tion only occurs when g2 ~ 10-2. Other effects such 
as scalar field fluctuations all support the same con- 
clusion [8-10]  : standard SU(5) using the Coleman- 
Weinberg mechanism does not provide one with a 
suitable inflationary scenario. 

There is yet another problem with standard SU(5) 
and inflation, namely the magnitude of density per- 
turbations produced by the phase transition. Although 
phase transitions driven by scalar fields yield a scale 
independent spectrum for density fluctuations [11 ] 
several groups [10,12] have all concluded that the 
magnitude of these perturbations are a factor of 
O(105) too large and would totally disrupt the ob- 
served isotropy of the cosmic background radiation. 
It is interesting to note that this problem also arises 
because of the ~4 coupling's relation to the unadjust- 
able gauge coupling. 

These problems have led several of us to consider 
[5,8,13,14] supersymmetric versions of the infla- 
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tionary scenario. In supersymmetry, the ~b 4 coupling 
can be made independent o f  the gauge coupling. Al- 
though this resolves technically many of  these prob- 
lems, inflation at the GUT scale still requires the un- 
natural fine-tunings of  several parameters. It has been 
shown [5] that by  pushing the scale at which infla- 
tion occurs above the GUT scale and closer to the 
Planck scale, the fine-tuning problems are removed. 
New problems associated with first order gravita- 
tional (FOG) effects arise as the inflationary scale 
nears the Planck scale. We propose here a simple toy 
model involving a single scalar gauge singlet field in 
the context of  simple supergravity [15].  We derive 
general conditions under which inflation is possible 
in such a model and conditions in which density per- 
turbations are also at an acceptable level. We assume 
that simple supergravity provides a reasonable model 
for gravitational interactions, at and below the Planck 
scale, and that all FOG effects are accounted for by 
including non-renormalizable terms in the superpo- 
tential [16] .  

We begin, therefore by writing down the most gen- 
eral form for the superpotential in one field ¢ (which 
we take to be real). 

f =  / 23 X n n + l  
= ~ + X' , (1)  

where m is arbitrary and may be infinite, and M = Mp/ 
(8rr)l/2 = 2.4 × 1018 GeV. The couplings X i are all 
dimensionless, and/1 is an as yet unspecified mass pa- 
rameter. 

The effective potential in N = 1 supergravity is 
given by [15] 

V(~) = exp (Ic~12/M2)[If4~l 2 - (3/M2)lf12], (2) 

where the generalized derivative f~ is 

f(~ = ~f/~c~ + qb*f/M 2 

="3IXo + (Xl+ M 

X n ][(9•n+2q 
+ 23 j .  (3) 

n=O 

From this point on, we will use units in which M = 1. 
In order to have a flat potential at the origin [a 11/ 
aqS(0) = 0] one must eliminate the linear term in the 

potential V b y  either setting X 1 = X' or X 0 = 0. To 
simplify the following analyses we wish to have as 
few parameters in the low order terms in V as pos- 
sible;therefore we will choose to take X 1 = X' = 0. 
The effective potential then takes the following form 

V(q~)//2 6 = exp (~b2)[X 2 + k0(2?k 2 -- )k0)q52 + 2)k0X3q53 

2 + (X 2 + X~ + 5 XoX2 + 2XoX4)~ 4 + ."]" (4) 

Because sufficient inflation will require q5 ~ 1 and be- 
cause we are only interested in the dynamics o f  the 
inflationary epoch, we can expand exp (4 2) and we 
fred that 

V(~b)//26 = ~ + ")'(b 2 - 13~b 3 + o~q54 + . . . .  ( 5 )  

where 

1 2 8 
a = ~ X 2 + X 2 + 5 X0X2 + 2)t0)k4, (6)  

13 = --2X0X 3 , 3' = 2X0X 2 , 8 = X 2 . (7,8,9) 

This will be the basic form for the potential we con- 
sider for inflation. 

Because inflation is occurring at the Planck scale, 
we will work in the context of  exact supersymmetry. 
Effects due to the breaking of  supersymmetry will 
only be valid at scales ~ m s ~ (mw rap) 1/2. In order 
to ensure that supersymmetry remains unbroken, we 
must require that the generalized derivative of  the 
superpotential vanish at the minimum of  V. We choose 
this minimum to occur at (q9 = o = 1. Thus we require 

f c ~ ( 1 ) = / 2 3 ( k  n + 2`  ' = V ; S  an )  = 0. ( I0) 

In addition to preserving supersymmetry, we also 
will require that at the minimum of V, the cosmolog- 
ical constant also vanish. While in principle, the cos- 
mological constant may have further contributions 
due to other phase transition (e.g., the GUT phase 
transition), these contributions will all be ~ I. There- 
fore, for all intents and purposes we must have at 
least a negligible cosmological constant at this scale. 
Together with condition (10) it is easily seen by (2) 
that 11(1) will vanish if 

af(1)=u3 x n = f ( a ) = u  3 xn 
~-~ " n=0 n=0 ~ = 0. (1 1) 

We now make the following observation: In any 
N = 1 supergravity model, if there exists a point p at 
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which supersymmetry is unbroken and has a vanish- 
ing cosmological constant, then: 

(i) That point will be an extremum. 
(ii) The curvature at p is positive-semi-definite. 

This can be seen by computing the derivatives OV/ 
3q~i(p) and 02 V/(~Oi ~ ) ( P )  (in general the super- 
potential may be a function o f  an arbitrary number 
of  fields qSi). The term 3 V/O~i is always proportional 
to a lihear combination o f  V, f~. and f *  which at p 
are all zero. The second derivat}~e 

a2V , . 02f * 
0~-t. 0-~ tP) = /.~ & ( P ) ~ / . * ~  (P)' (12) 

and clearly has only non-negative eigenvalues. Thus 
the theorem is proved *1. In this case o f  a single field 

the second derivative is just 02 V/(O(oOO*) = D2f/ 
O~b 2 [ 2. From the point of  view of  inflation, in order 
to ensure that the point p = 1 is a minimum we must 
simply require 

-02~f=/J 3 ~ nX,,@0. (13) 
~}~b 2 n=l 

Eqs. (11) and (13) are therefore sufficient to have a 
minimum at 4~ = 1 with V(1) = 0. 

Let us now examine what values o f  the couplings 
are necessary in order to achieve sufficient inflation 
to solve the cosmological peculiarities mentioned 
above. To begin with, we must require that the field 

be constrained near the origin long enough so that 
the temperature will have fallen to T H = H[2rr where 
in these units the Hubble parameter is 

H 2 = -~ 8 = jA0U1-2 6. (14) 

Otherwise, thermal fluctuation could carry the field 
and the amount of  inflation ensuing could not be de- 
termined. To achieve this, we have the necessary con- 
dition +z that the universe as a whole does not make 
the tunnelling transition too soon. The probability 
for tunnelling is given by 

p ~ ,¥2 exp ( -B) ,  (15) 

~1 This may be thought of as the generalization of the posi- 
tivity of the effective potential in global supersymmetry 
[17]. 

*2 This condition may not be sufficient, e.g. if there is some 
other smaller action; however, it is at least necessary [18]. 

where the euclidean gravitation action B is 

= -4 f d4x x/g(R - 2A), (16) 

where g is the determinant of  the De Sitter metric, 
R is the scalar curvature (R = 4A in a De Sitter space) 
and A = 6 is the cosmological constant before the 
phase transition. The action for tunnelling from the 
local minimum to the local maximum is then [4] [for 

(Vl - v0) v0] 

B= Z47r2(1/Vo-1/V1)~ Z4rr2(V l -  Vo)/V 2, (17) 

where V 0 = 6 is the value of  V at the local minimum 
and V 1 is the value o f  V at the local maximum. We 
now require B >> 1 [19].  

To find the value V 1 we first calculate the value of  
q~ at the local maximum, 

q51 = 3~3/8c~ -- (9132 -- 32o~T)1/2/8o~ 

27/3/3 = - 2 x 2 / 3 x  3 (for 32a3,/9~32 ~ 1), (18) 

we then have 

V 1 - V 0 ~ (8X0X3/27X~)/a6 (19) 

and the action is just 

B ~ 2 3 3 2 6  
= 7r X2/X0X3U . (20) 

The final constraint comes from requiring that the 
roll-over timescale r ~ 3H/27g 6 , i.e., the time in which 
it takes for the field to move from the local maximum 
to the "global" minimum +3, to be large 

Hr  = 3H2/27/~ 6 = X0/4X 2 > 65,  

)t o > 260X 2 . (21) 

This constraint (21) together with B >> 1 implies 

-Tk3/J3 .~ 2 X 10 3 (~'3 < 0). (22) 

Finally, our approximation (18) requires 

Xo u3 ~ 3 × 10 -3 .  (23) 

Therefore if we set X0/a 3 ~ )k3/.t3 ~ 3 X 10 -3  and 
2t2/23 ~ 10  - 5  , this model will give a sufficient amount 
of  inflation. To satisfy conditions (10) and (11) at 

4:3 This model presumably possesses many other minima at 
>> 1, but these will be separated by enormous barriers 

and are not to be feared. 
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least 4 5 and 4 6 terms must be considered with their 
couplings fixed by  (11) and (13). 

We note at this point  that  we have not discussed 
any finite temperature corrections to the potential  
(4). We now show that  they  are negligible. One can 
estimate finite temperature corrections to V by 

V = (~2f/~42)21 T 2 ~51 U6)t22 T242 (24) 

for 4 ~ T and 4 ~ 1. But because B >> 1, the universe 
will quickly cool down to T H so that  

16"2~2~2=/ /12( ;k2;k2/247r2)42 ,  (25) 6 V ~ ~/.t A2 IHq~ 

and hence negligible to the 4 2 term already present 
i n V .  

We now briefly discuss the magnitude o f  density 
perturbations that  arise during inflation [10,12,13].  
For a potent ial  containing a cubic term the magni- 
tude of  fluctuations as they  enter the horizon is [13] 

~p/p ~ [Lt3/(27r3) 1/2 ] (J3/H) ln2(Hk - 1 ), (26) 

where k is the wave number o f  the fluctuation 64 
leading to the density f luctuation t~p. In terms o f  the 
potent ial  (4) we have 

6p/p ~" (6/7r3)1/2 X3/13 In 2 [(Xo/~3/x/~)k -1 ] 

O(103)X3/J 3 . (27) 

Thus we need couplings somewhat lower than those 
sufficient for inflation in order to have 6p/p  ~ O(10-4) .  
Couplings of  the order X 0 ~ X 3 ~ 10 -1  and X 2 ~ 10 - 3  
and/a ~ 10 - 2  will provide bo th  enough inflation and 
density per turbat ion of  an acceptable magnitude.  

Finally we note once again that  primordial  infla- 
t ion does not solve the monopole  problem [20] .  In- 
stead a natural explanat ion o f  monopole  suppression 
might be due to a delayed breaking on SU(5). It is 
well known that  if  the SU(5) phase transit ion takes 
place at T c ~ 1010 GeV the number o f  monopoles  
will be at an acceptable level [21].  That this scale 
coincides with the strong coupling scale ASU(5 ) of  
SU(5) and the supersymmetry breaking scale m s, we 
feel, is no accident. In a forthcoming paper [22],  we 
describe in detail such a supersymmetric SU(5) mod- 
el coupled to N = 1 supergravity. 

In summary,  we have displayed a simple toy  model  
for primordial  inflation in the context  of  simple su- 
pergravity. This model  does not  suffer from previous 
problems inherent in non-supersymmetric inflation, 

e.g. a large 4 4 coupling and technically unnatrual 
fune-tunings. It also takes completely into account 
all FOG effects which were a worry to globally super- 
symmetric inflationary models in which the inflation 
scale was at or close to the Planck scale. While we do 
not  expect that  this is the final solution to inflation, 
it seems to point  in the direction that gravitational 
interactions are somehow related to our present uni- 
verse, maybe not such a far-fetched idea. 
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