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The generating functional of a (i)iQ) four-fermion field theory in four dimensions is expressed in terms of
collective. boson variables and then expanded in a Laplace expansion. All divergences are absorbed in a
renormalized Yukawa-type coupling and a renormalized fermion mass. The collective boson mass and
self-couplings are fixed to all orders in terms of the Yukawa coupling. The renormalized theory is formally
equivalent to the. Yukawa theory expanded the same way.

I. INTRODUCTION

Spinor models with quartic self-interaction are
not renormalizable in the perturbation expansion
with respect to the four-fermion coupling. This
is a result of the fact that this parameter has
dimensions (mass)~ and thus each higher order of
an expansion in it stays dimensionally correct by
increasing powers of the momentum in numerators,
resulting in ever more divergent integrals.

It has recently been suggested that particular
four-fermion theories, within a certain approxi-
mation of the Hartree type, are formally equiva-
lent to renormalizable theories and thus renor-
malizable themselves in this approximation. ' '
Formal equivalence means that all the renormal-
ized Green's functions are exactly the same func-
tions of the renormalized parameters and the mo-
menta, but the definitions of the renormalized
parameters in terms of the bare parameters and
the cutoff differ.

Approximations of the above type can be formu-
lated as bound-state mean-field expansions, ' i.e.,
Laplace expansions of the functional integral
describing the generating functional of the theory.
The ordinary loop expansion is also a Laplace ex-
pansion of the generating functional. What char-
acterizes our mean-field expansion is that in this
expansion the functional integral is written first in
terms of a different dummy variable from the
fundamental field, a bound-state mean field, and
then expanded. The guide toward the choice of a
particular mean field is the form of the interaction
Lagrangian.

In this paper we study in detail the scalar-scalar
four-fermion theory in such a bound-state mean-
field expansion. This is the simplest four-Fermi
model. Consequently, the results we obtain are
not complicated by indices associated with the
Lorentz group or internal-symmetry groups. To
derive the expansion we rewrite the original
Lagrangian

in terms of an auxiliary field o,

I = 4 (sP'+ g.~)4

Even though o enters the Lagrangian as an auxil-
iary field, it acquires a kinetic energy term in the
renormalized effective action arising from the
structure of the vacuum polarization diagrams.
Thus the resulting theory will have properties of
interactions of fundamental scalars with fermions.

We shall demonstrate renormalizability and
formal equivalence to the Yukawa theory for all
orders of the o-mean-field expansion. In this
particular model if we mere to have N fermion
fields the mean-field expansion would be identical
to the 1/N expansion. ' The use of N fermions pro
vides us from the beginning with a small param
eter 1/E in the case that N is large However, . as
we shall show the I/N expansion has a Landau
ghost mhich can be bypassed through further ex-
pansion of our theory. Our methods mork for
N= 1 as well as N large and for the N-small case,
the ghost problem is naturally avoided.

The cubic and quartic induced o self-couplings
required by renormalization are not arbitrary, but
are given as functions of the renormalized Yukama
coupling and fermion mass. This is demonstrated
by deriving differential equations of the Callan-
Symanzik type for these couplings. Similarly the
o mass is fixed. As the major result of this
paper, we show that the theory is renormalizable
in terms of only two parameters, a dimensionless
coupling constant and a fermion mass.

The paper is organized as follows: In Sec. II
we develop the expansion scheme. In Sec. III we
examine the lowest order of the theory. In Sec. IV
me formally renormalize the theory by showing
that the divergences can be absorbed by the physi-
cal parameters of the theory. In Sec. V me derive
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equations fixing the boson self-couplings. In Sec.VI we demonstrate the equivalence with the Yukawa
theory. In Sec. VII we summarize our conclusions.

II. THE MEAN-FIELD EXPANSION

We consider the scalar-scalar four-fermion Lagrangian

(2.1)

The Fermi coupling Xo has dimensions of (mass) . Consequently it is convenient to write the coupling as
2

g =&o
0

where g, is a dimensionless bare coupling and p,' is a bare mass parameter. Then Eq. (2.1) takes the form

(2.2)

The connected generating functional is given by the functional integral

eiNq&5)
/ 2

(d})(d})«V } d'r($(})()}+}„',((}})'+}r}+n}l)
lee

(2.3)

where g, g are anticommuting c-number sources. Next we observe that the Gaussian integral over the
boson variable o;

do' exp -i d x
2

o-
)

is just a constant. Inserting the above integral in Eq. (2.3) will change only the normalization constant N.
The resulting functional is an integral over both boson and fermion variables:

2
e'w'"'"' '=N' d d dv exp i d'x ie+goo —

2
o'+g + g+ Jo' (2.4)

, Here J is an external source coupled to o. The effective interaction Lagrangian of this model, except for
the absence of a kinetic term, is of the Yukawa type with the fermions entering quadratically. Neverthe-
less, it is easy to see directly that this effective Lagrangian leads to the same field equation as the
original Lagrangian (2.2) with sources added. The integral over the Fermi fields of (2.4) can be evaluated
exactly to obtain

2
e' '"'"~ '=N' der exp i d'g -gSg —itrlniS ' — ' o'+Jo

2
(2.5)

Here

s '(x,y) =-(iy "&,+g,o') &"'(x,y) .
The corresponding Euclidean space functional is

(2.6)

ew=N' do exp — +gSg-trlnS '+ o'- Jo
2

(2.7)

This expression suggests the modified form.

ew, y N do e-z( )g (2.8a)

where

2

r(a} f ( S rrlnrS r'+ r' —Jr
2

(2.8b)

We have introduced the parameter c. as a bookkeeping device to serve as an intermediate expansion param-
eter. At the endof computations E must be set equal to one to regain the original theory. In the case where
N fermion fields participate in the interaction we could rescale the fields so that the effective Lagrangian
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is multiplied by N. Then it is possible to make the identification a = I/N so for large N we would possess
a candidate for a small parameter to begin with. Thus, there is no need to send z -1. On the other hand,
if N =1 there is no obvious initial small parameter. Then our only hope of making the ordering obtained
by introducing c. by hand meaningful in the limit a-1 is if in the explicit iterative solution obtained a is
always multiplied by a small parameter. We shall show that this is the case for the example under con-
sideration. The mean field o, is defined by the mean-field conditions

6F =0
60

0

and

$2F

5o(x)5o(y)

If we introduce

PF
5o(x)5o(y) 5o(s)

O'F
5o (x)5o( y) 6o(z)5o (ao)

then we may expand (2.8) around o,:

e~& '-e ~('0'«e " ~ 1 —— C xyz sv 'xy 'zan

+ — B x,y,zB a, b, c 2A 'x, a ' y, b 'z, c

+ 3A'(x, y)A '(z, a)A '(b, c)]+0(a')) . (2.11)

If (2.8) were an ordinary integral this formula
would define an asymptotic expansion for e 0+ .

Expression (2.11) has been considered in detail
in Ref. 3, and consequently we only outline its
most essential features here. The lowest-order
Fermi propagator S(x,y) as given by E(L. (2.6) is
graphically represented by a solid line from point;
x to point y, while g(y) is represented by a cross
at the point y and g(y) by a barred cross at the
point y. With these conventions J3(x,y, s) is repre-
sented by a triangle connecting the three points
x, y, and z, plus all possible graphs made by re-
moving one side of the triangle and placing a
cross and a barred cross at the bare ends.
Associated with each of the points x, y, and z is
a factor of g, so that B(x,y, x} behaves as g,'.
SimilarLy C(x,y, z, ao) is constructed by connecting
the four points x, y, z, and ~ together in all pos-
sible ways with four-Fermi propagators, and then
systematically removing one propagator at a time
and placing a cross and a bared cross at the ex-
posed ends. The sum of all these graphs forms
C(x,y, x,sv) which is proportional to go~. In general

gnF

5o( }.x~ ~ 6o(x„) o,

is represented by the sum of all possible n-sided

closed polygons and all possible (n-1)-sided open
polygonal paths with crosses and barred crosses
at their end points and is proportional to g,".

The inverse of the second derivative of F plays
a prominent role in the expansion (2.11). Because
of this, we graphically denote A '(x,y) as a wiggly
line from x toy. Using this rule it is easy to see
that the terms of order a or higher in the curly
brackets of E(L. (2.11) can be graphically repre
sented by the appropriate product of polygons or
amputated polygons generated by taking the deri-
vative of F in which all points are connected by
wiggly lines. In fact, only the three types of
vertices shown in Fig.. 1 are generated by this
procedure. When the Fermi sources are turned
off, only the Yukawa-type vertices of Fig. 1(a)
remain. We will show in the next section that this
resemblance is even analytically accurate since

will be identified with the lowest-order propa-
gator of a scalar particle.

With these conventions we may graphically con-
struct W, as given by E(L. (2.8). It is found that
the graphs of order a"(n ~ 2) that contribute to W,
are all the topologically possible combinations
formed out of the basic vertices of Fig. 1 that obey
a simple rule: The number of independent mo-
mentum loop integrations ismrbitrary, but n-in-
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(3.2c)

(a)

FIG. 1. Basic vertices.

dependent loops have at least one wiggly line in
them.

The vacuum functional W, is primarily of interest
to us because by differentiation of W, with respect
to the external sources q, g and J the appropriate
number of times any Qreen's function can be pro-
duced. It is straightforward but tedious to verify
that differentiation of W, creates vertices of only
the type given in Fig. 1. Consequently, the graph-
ical rules of mean-field expansion with the sources
off are very simple. To find any Green's function
of order n draw and evaluate all topologically
possible graphs containing only the Yukawa-type
vertex of Fig. 1(a) and obeying the rule: Exactly
n of the independent momentum loop integrals
contain at least one wiggly line. The numerical
weighting factors of each graph are determined
by explicit reference to Eq. (2.11).

III. THE LOP(EST-ORDER THEORY

The lowest-order connected functional according
to formula (2.11) and (2.8) is

Wp = -E(a'p; )7,)7,J), (3.1)

= op(x). (3.2a)

Similarly it is convenient to introduce the defini-
tions

where the mean field op is defined by Eq. (2.9).
Because of this definition, it is straightforward to
verify that 0, is, in fact, the lowest-order vacuum
expectation of the quantum 0 field in our approxi-
mation. Thus, if we make the definition o'(x)
-=5W, /6J(x) it follows that

6Wp 6E(ap;q, q,J)
W(x) VZ(x)

Having made these observations, we will here-
after suppress the z label on the classical fields.
The zero subscript will be used for lowest order
and the context will make it clear if a, is not one.
Here we have defined

S(»y) I
-=S,(x,y) .

In terms of these quantities Eq. (2.9) applied to
(2.7) through (2.11) determines o, as

(3.2d)

pp'ap(x)=ggp(x) gp(x)+gp tr Sp (x,x)+J (x) .

(3.2e)

The reader should recognize this as a result ob-
tainable by a factorization of the vacuum expecta-
tion of a field equation obtained from the Lagran-
gian associated with Eq. (2.4).

The positivity condition (2.10) is also easily
explicitly computed. We find that it is

A(x,y) =g,' [g,(y) S,(y,x)(I,(x)

+ g()(x) Sp(x,y)gp(y)]

+ gp' tr [Sp(x,y) Sp(y, x)]+ pp' 5(x -y) &0.

(3.3a)

d~yA x-y V y = A.,V x,
where X„ is a strictly positive eigenvalue of A
associated with the eigenvector V(y). Fourier
transforming this relation shows that

A(p') v(p') = ~„v(p') .

Although this condition does have a very positive
look to it, it is in fact divergent so in order to
determine if (3.3a) is valid we must evaluate it
within our explicit renormalization scheme. We
leave this verification for later in this section.

In general the integrability condition as given by
(3.3a) is a very complicated condition since it
must be valid with all the sources on. In the
special case where the sources are constant (or
zero), A(x,y)=A(x-y) and the condition that A is
a positive matrix can be written in the form

and
If A(P ) =A(0)+P'Il(P') with B(P') regular at p'=0
we must have V(p')()p5 (p') and

5W,
C)7(x) A(0) = X„&0 . (3.3b)

Then in lowest order

(3.2b)

As we sh'all see, this condition is the condition
that the lowest-order effective potential be at a
minimum.

In order to study our results in terms of the
effective action, we rewrite W; as
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W(n, rt,Z)= (-S S'S+trlnS' — n )
and

a~V )0.
8o'0

The effective action functional of o is defined, as
usual, by a Legendre transformation

I', (n) —W,(J) —fJ

and consequently is to lowest order

p,r, (n)= f 1', -S,S,-'S, ttrtns, - -" r,*).
The effective action is the generating functional
of all one-particle-irreducible (1PI) graphs. The
graphical interpretation of the bare effective ac-
tion and the bare mean-field functional to this
order is very simple. Adding a constant term
—tr ln (gf+g,v), with v the value of v, in the ab-
sence of sources, and translating the classical
field o, = s,+e will not change the action. Thus it
can be written in the form

In making the above comparison, we have used
the mean-field condition (3.2e) with the sources
off which is the gap equation

p 'o' =g trS
and have evaluated A(p') at zero momentum as
directed to do by our previous analysis. The ex-
pression obtained is

. d'p ( 1

(2v)4 I (»+g c)'

One should keep in mind that for higher orders
the mean-field conditions are not obviously the
same as demanding a minimum of the effective
potential to that order. We have made no attempt
(nor is it necessary to do so within our calcula-
tional procedure) to confirm the identity. If they
should differ (3.3) is preferred.

The fermion inverse propagator' to this order is

r,(~,) = y, s,-'y, "; (s,+e) pro S-1 ~
0 P gp Or (3.4)

+trln 1+ .g,s, l
if+ goV j

—(I) S 'g — (s '+2s, t))

(-1)" I' g,s,
v ),i/+ g,v

The infinite series representing the functional
logarithm corresponds to the infinite set of dia-
grams shown in Fig. 2.

It is of interest to note that the mean-field con-
ditions (2.9} and (2.10) coincide with the condition
that we are at a minimum of the o effective poten-
tial to lowest order. From above the effective po-
tential to lowest order is just

2

V(o', ) = 0 oo' —tr ln So
' .

The mean-field conditions (3.2e) and (3.3) with
the sources off and at zero momentum can be
written in the forms

&V

80'0

the nonvanishing of o, and hence the expectation
value of the o' field (with the sources off) breaks
the discrete symmetry g-y, )1) of the original La-
grangian. Of course, no Goldstone boson is as-
sociated with such discrete symmetry breaking.
Since the standard form of the Fermi propagator
is taken to be S, '(p) =P-m the above form de-
scribes a free fermion with mass

Pl = —goo'0.

The lowest-order inverse o' propagator' is de-
fined as usual (see Fig. 3):

0 —~ -l(p2)
5o 5o

b '(0)&0. (3.6)

In Minkowski space the above o propagator is

d4a
4, '(p') =-po'+ig, 'tr

~~
So(k+p) S,(k) .

(3.V)

= —p,' -g,'tr S,(k+P)S,(k) .
d44

(2))

Note that h, '(P'}= -A(P'} so the positivity condi-
tion is

o + r ~ ~

FIG. 2. Infinite series for the functional logarithm. FIG. 8. Self-energy.
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The fermion bubble

II (p') = i—tr
2 4 So(k+ p) So(k)
d4k

~;(p)= p, +g, 11(0)+p'g.'
.BP Q

+go Bubo li (p ) .
The symbol sub2Q stands for

b', 11(p') = II(p') —ii(0) -p'
I

&8P Q

We introduce a lowest-order renormalized mass
p.' and a renormalization factor Z, by the defini-
tions

2

S,-'(0) = —— (3.8a)

and

(3.8b)

Note that the positivity condition (3.6) is simply
the condition that lz /Z, is positive. With these
definitions the following form for the propagator
is obtained:

d4k k2+ k .p+ m~

(2m) [(k+p)' —m'](k' —m')

d4k ' k2- p~x(1 —x)+m'= 4i 4 dX(2v)', ~k'+ p'x(1 —x) -m']'

is quadratically divergent. ' Subtracting at zero
we obtain

p, ,' o, =g,i tr S,(x x) +J . (3.13K)

Using (3.5) we can rewrite (3.13) in the form

propagator, however, is a finite function of p',
p', m, and g'. The renormalized coupling does
not depend on the bare coupling except implicitly
through the mass m:

1 Z, ' ~9II
g gQ k &P P

2 (d'k)s 3k'' —m'
3 (2~)4 (k '+m')'

Unfortunately 1/g' is logarithmically divergent
and hence is not a fixed number in our theory. We
must instead identify in the conventional way

gQ Z, as being a quantity needing renormal ization
and hence to be replaced by an arbitrary finite
number. We shall choose the renormalized cou-
pling g' to be a small number and the expansion
parameter of the theory. ' If we were in 4-c
dimensions the analogous dimensionless coupling
would be a fixed number in terms of the fermion
mass m due to its depending only implicitly
(through m) on g, .

At this stage it might appear to the reader that
the mass parameter of Ezl. (3.8) is entirely free
because it is the result of a renormalization of a
quadratically divergent integral, Because of the
internal consistency conditions imposed on the
theory through (3.2e), this mass is in fact fixed.
To show this we examine (3.2e) with zi= zi= 0 and
J (x) =J where J is a space-time-independent
source. In Minkowski space we have

2, 2

'(p') = ——+—+g ' sub' 0 (p') .

To this lowest order a renormalized coupling can
be defined by

p, ,'zzz = —mgo'f (m) —g J,
where

f ( )
i tr So(x)x)

m

(3.13b)

(3.14)

=gQ Zg~

so the renormalized propagator Zo(p') can be
written as

(3.S)

l(p2) =pz —Zz2+ g2 sub2 11 (p2)

using the definition

(3.10)

(3.11)

o- Z '~'o

The quantity

t'ea,', eo

(3.12)

This result naturally leads to the definition of a
renormalized 0 field to lowest order g

If tr S,(x,x) is explicitly evaluated we find it to be
quadratically divergent since it is the Fermi mass
to this order. Accordingly f(m) is not defined
except through a subtraction procedure. The re-
maining finite part of f (m), which is all that is of
interest, is then determined in terms of J and the
lowest-order renormalized mass m, and p.Q', by
(3.13b). To use (3.13b) to fix the boson mass we
need the relatjonshjp4, z2

d "F(o'o(J);J)
d"o,(J)

4x '''
j.

is logarithmically divergent. The renormalized (3.15)
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p, o2 = -g02f (m) -mgo' f ' (m) —6 '(0) . (3.16)

We may now apply the internal consistency condi-
tion (3.13b) to this equation to eliminate f (m) and
obtain with J=O

which is valid for an arbitrary differentiable func-
tion with J a space-time-independent source. Ap-
plying (3.16) with E=J to (3.14) we find

stage we interject a minimal assumption which is
easily justified in any common rational cutoff
procedure. %e assume that the last term in the
numerator in (3.18) vanishes by oddness. It is
then easily seen that after a change in variables
for the x integration agai:n by oddness

a '(4m')=0.

a, '(0) = mg, 'f '(m) . (3.1V)
Consequently the o mass to this order lies at
threshold.

Using (3.8a) and (3.9) the above is expressed en-
tirely in renormalized quantities (to this order) as

f (m)= (3.18)

Of course f '(m) is logarithmically divergent so
(3.1V) is regarded as its value after an appropriate
subtraction procedure.

So far. we have not made any progress in re-
stricting the number of parameters of our theory.
To this end we need to be more explicit. Using
(3.13) in (3.V) we find, using the usual Feynman
parametrization, that

4i '
~

2m2+ p'(x- 1)- k ~ p
(2r) [k'-m'+p'x(1-X)j2 '

(3.19)

In all that we have done to now and all that follows
we do not refer to cutoffs or need them. At this

Evaluating the subtracted bubble we find

2
I1'=4m' (I+ g,

12@2 (3.20)

Since we take g'& 0 and hence have Z, &0, Eq.
(3.20) with (3.8) guarantees that the integrability
condition (3.6) or equivalently (3.3b) is met.

It is straightforward to explicitly evaluate
subo Il(p'). Doing this calculation and inserting
the results into (3.9), we find the expression for
the o propagator in Euclidean space as follows:

p~ =4m

Of course, higher-order corrections should
change this relation.

The mass parameter p.2 that has been introduced
is related to the physical mass p.,2. It is

p, 2=4m'+g' suIP, II(4m') .

~. '(p') „,,„g'
4m2 2g2 2~2

1+
. (x'+ 1)'") x' (2+ xx')

(x +1)ln +3( ' 1)' ' (
' 1)'

(x2+ I)1/2)

(3.21)

Here we have made the definition x'=p'/4m'.
Even though we have demonstrated that the in-

tegrability condition (3.3b) is satisfied and hence
that we are at a minimum of the effective potential
the propagator d,,(p2) is not problem-free. This
can be seen by noting that if g' is small 4o '(p')
as given by (3.21) has a zero at Euclidean four-
momentum,

P j. II2/g 2

4m2

More accurate calculations show that for the rela-
tively large value g' = 0.9 this zero occurs at p'
-4m' x 10'. Thus, for large spacelike momentum
the bound-state propagator has a pole.

This pathology is, in fact, in no way unique to
our model but occurs in all four-dimensional
theories involving fermion propagation. It was
first observed by Landau in quantum electrody-
namics and is called the Landau ghost. If in

electrodynamics the photon Green's function
equation D~z (q) is worked out one obtains to second
order' in e02 the result

[q'g„, e()' H„)„(q)—]D~„=-g
Here II„„(q) is the usual fermion loop. After re-
normalization it can be seen that the photon prop-
agator also has a pole at Euclidean four-momen-
tump2/4m2-e"~ where a is the fine-structure
constant. "

In our problem for small g2, as well as in elec-
trodynamics, this pole occurs at such large
values of momentum as to be beyond any con-
ceivable physical relevance. ' The spectral rep-
resentation for the photon Green's function does
not demonstrate this "ghost" and presumably as
higher and higher orders of perturbation theory
are calculated the "ghost" moves to higher and
higher values of spacelike momentum.

It might be argued that even though this pathology
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is acceptable in QED, it is in fact not evident that
it is acceptable in our resumed four-Fermi model.
In particular, a striking difference of our model
with the coupling-constant perturbation theory of
@ED is the lack of symmetry between the bound-
state propagator and the fermion propagator. In
lowest order of our expansion scheme the bound-
state propagator contains momentum-dependent
correction terms involving g' (g

' will be identified
as our small parameter after a -1 since l)tt= 1)
while the fermion propagator has no such correc-
tion terms. This situation remedies itself in a
logical way after renormalization. We may expand
all Green's functions in a power series in the
small parameter g' and set &=1. It is easily seen
from derivations later in this paper that to calcu-
late any Green's function to order (g ')" we need
only calculate to the a.

" term of our expansion, set
c = 1, expand in g', and discard terms of order
g' ' or higher. We shall show later in this paper
that after. going through this procedure we will
then obtain a perturbation theory that looks no
different from a renormalized Yukawa theory in a

FIG. 4. 30 vertex.

coupling-constant expansion. The advantage we
will have gained-from the four-Fermi theory is
that parameters that are normally free in the
Yukawa theory will be fixed here. After having
expanded all the Qreen's functions in powers of
g' they may be resummed in any way desired and
in particular, in a way which treats the 0 propa-
gation and the )I) propagation symmetrically ing'.
The point of this discussion has been to indicate
that the Landau ghost problem is no worse (or
better) than it is in any conventional theory in-
volving fermions in four dimensions.

We shall complete the examination of the lowest
order by looking at the 30 and 40' vertex functions.
The 3o vertex is just the fermion triangle (Fig. 4)

~] d'
= r (")(p„p,)= -fg,'tr „S,(u+ p, ) S, (p+p, +p, ) S, (a)+ (xT).0 && 2 0 2)()

(3.22)

Here (xT) stands for the various structurally identical cross terms. The fermion triangle is logarithmic-
ally divergent. One subtraction can remove the divergence. Introducing a dimensionless renormalized
cubic coupling by

(3a) (p p)
m

we obtain

A.
' 4ru" (k„k,)= „,—ir, 'sub,' tr „S,( s)t,)S, (k+S, +(t,)s, (k)s(xr)I.

6 2'I()

Thus, we have

r t"t(k„k) =mt' —ix' sub', tr f, S,(ksk) S, (ks)t, s)))S,(k)s (xr),

where

(3.23)

fs(3a)(p p )=Z -3/2fs(3a)(p p ) (3.24)

Unlike the usual case with divergent renormalizations X' is not a free parameter but is entirely fixed by
the internal consistency conditions of this model. To demonstrate this we note that according to (3.15) and
(3.22)

r, "(o,o)= ~,-'(0) =-g, &,-'(0).

Using (3.16) we have

I',(s" (0,0) =g,' (f (m)+mf
' (m)) =g,'(-6mg (m) —2m'g '(m)) .3 d

(3.25)

Here we have isolated the divergent part of f (m) by making the definition

g(m) —= —f ' (m)/2m = -u'/2g'm'. (3.26)
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Direct calculation shows that

g '(m) = —1/8&(2m

and

g "(m) = 1/8(&~m'.

Thus, combining (3.26) and (3.27a) with (3.24) we conclude that

I' ""(0,0) =g 3M'/m+g' m/4(& ' .
Substitution of (3.20) allows this to be displayed as a function of the two parameters m and g,

I'"' (0,0) = 12 gm +g 'm'/4@2. '

Thus, to this order in our a. expansion

X' = 12g+ 5g'/4((' .
Similarly the 4(&'-vertex function is (Fig. 5)

1 d4kI'' "(ppp, )=6 6
=ig, tr

2 )
S, (k p+,)S (k+p, +p, )S, (k p+, p+, p+, )S, (k) +(xT).

(3.27a)

(3.27b)

(3.28)

(3.29)

(3.30)

The fermion quadrangle is logarithmically divergent. Introducing a dimensionless renormalized quartic
coupling by

r("&(o,o,o) = (3.31)

we obtain

I («(t&(P P P ) g -21 («(t&(p p p )

where the renormalized 40 vertex is

(3.32)

t'' "(ppp &= —ktix sub'tr f ~
k (ktp&s (ktp, rp&s (ktp tp, rp&s (k&+ (xx&. (3.33)

Just as it was possible to explicitly calculate X',
it is also straightforward to calculate A.. Using
(3.15), (3.30), and (3.22) we find

From this we find

X= 12g2. (3.35)

2 4
I' '«" (0,0,0) = —12g '— (3.34)

d2r,(«"(o,o,o) =„,~,-'(0)

d I (atx&(0 0)'dna

which with (3.25) becomes

I' '«"(0,0,0) =go«[6g(m)+ lomg '(m)+ 2m'g "(m)] .

Using (3.32), (2.26), and (3.27) this is

3 2~2 4
I ("&(0 o o) =

m' m' '

which through application of (3.20}becomes

Thus we have shown (not surprisingly) that be-
cause of renormalization cubic and quartic re-
normalized 0 self-couplings appear in the theory,
although bare couplings of these types are absent
in the original Lagrangian. What is exciting is
that, because of the fact that all propagation is
described through the fermion propagator (3.4) in
a self-consistent manner regulated by (3.2e}, all
these renormalized couplings are completely
fixed in lowest order by the renormalized param-
eter g. Later in this paper we shall show to all
orders that this coupling constant and the Fermi
mass are the only free parameters of the theory.

All 1PI vertex functions except those that we
already examined are superficially finite. Thus,

+ (XT)

FIG. 5. 40 vertex. FIG. 6. Lowest-order scattering.
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all lowest-order Green's functions are finite
functions of the momenta and the renormalized
parameters. For example, four-Fermi scattering
is, to this order

(a)

lowest' order divergent graph:

o =go'So S, A, SOSo+ (xT)0 0 0 0 0 0

=g2S S b, S S +(xT),
and thus is saturated by the exchange of a cr bound
state (see Fig. 6). Note that no remnant of the
original explicit four-fermion contact interaction
appears. This property is essential for the re-
normalizability of our theo''y as demonstrated in
the next section.

(b)

(c)

lowest order divergent graph:

IV. RENORMALIZATION

With our knowledge of how to construct a,ny

graph in the mean-field perturbation theory out of
the lowest-order propagators and our explicit
knowledge of the behavior of these propagators we
can now study the renormalization properties
through Weinberg's theorem (see Ref. 9). The
large-momentum behavior of the lowest-order 0.

propagator as can be seen from (3.15) is

bo(p ) 0(1/p ) (p -~) ~

The fermion propagator is free and has the usual
behavior

(d)

(e)

lowest order divergent graph:

lowest order dive;gent graph:

So(p)-, (p' —~) .

From these and the fact that only the vertex of
Fig. 1(a) contributes when the sources are off, we
can deduce the degree of superficial ultraviolet
divergence of any graph using conventional power
counting. The superficial degree of divergence
associated with a graph having B external o lines
and I' external fermion lines is easily seen to be

D=4 B —,'S . (4. 1)

According to (4.1) vacuum graphs will have max-
imal D=4. These divergences are irrelevant be-
cause the vacuum bubbles are always divided out
of any Green's function. Graphs with one external
0. line have D=3, but they are always absorbed in
the mass renormalization and will not be explicitly
discussed further.

The remaining superficially divergent graphs of
our expansion are (Fig. 7)

(a) graphs with two external o lines (D =2),
(b) graphs with two external g lines (D=1),
(c) graphs with two external g lines and one ex-

ternal o line (D= 0),
(d) graphs with three external o lines (D= 1).
(e) graphs with four external o lines (D= 0).

lowest order divergent graph:

FIG. 7. The graphs on the left-hand side represent the
classes of divergences which occur, and the graphs on
the right-hand side represent the lowest-order divergent
graphs in each class.

Graphs having two external meson lines have a
maximal D of 2. For large internal momentum
the leading behavior of the lowest-order inverse
0 propagator is

Thus, as we have already seen, this graph re-
quires two subtractions in order to rid it of the
quadratic divergence.

Graphs having two external fermion lines are
linearly divergent behaving like

d'k P
(k')'

and thus require two subtractions.
The vertex graphs having two external fermi. on

lines and one o line have D= 0. They are logarith-
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No other graphs have superficial divergence.
Note that the above arguments have in effect

nearly demonstrated that the theory is renormal-
izable since it is clear that there are a finite num-
ber of (superficially) divergent objects with a
limited degree of (superficial) divergence. To
finish the renormalization program we only need
to observe how the renormalization constants of
our model group together to form the renormalized
parameters. All renormalized Green's functions
of the theory must be finite functions of these re-
normalized parameters. In order to demonstrate
how this works we shall examine the Schwinger-
Dyson equations for the superficially divergent
Green's functions. It is straightforward to show
as well that the superficially finite Green's func-
tions are finite functions of the same renormalized
parameters.

We introduce the exact Green's functions asso-
ciated with (2.8) in exact analog to the lowest-or-
der Green's functions we have been discussing.
Thus in Minkowski space using

W, = i& ln (~)'-,

we define all the superficially divergent all-order
Green's functions as follows:

6W,
'

6J(x) ' (4.2a)

mically divergent:

l de

(k')'k'

Graphs with three external 0 lines have D = I,
but their true superficial divergence is logarith-
mic. Having dimensions of mass and vanishing if
the discrete y, symmetry is pr eserved, they must
be proportional to the bare fermion mass m,
= —g,a. The other dimensional parameter in the
theory, the renormalized o mass p, ', is always
determined in terms of m and the couplings, as
we shall show later. Consequently, the graphs
with three external 0 lines behave as

d4a
1nA

r, (z, x, y) =— , , S '(x, y),
5g 0(F(z)

I (sa)(& x )
— (e& '~x

5o(z)
2

r'"'(w, z, x, y) =—
( ) ( )

4 '(x, y).

(4.2f)

(4 2g)

(4.2h)

The next step in our renormalization program is
to write down a set of suitable renormalization
conditions for the superficially divergent functions
at some arbitrary point in momentum space. For
convenience we choose to write the renormaliza-
tion conditions at zero momentum. We emphasize
that we are defining the all-order parameters in
the following. When it is necessary to use the
lowest-order parameters again either it will be
pointed out or it will be clear from the context.

We make the following definitions:

s '(o) -=

Z2'

EBS' I
(sp o

2

6 '(0) =-—z
a~-'( p') )

Bp j 0 Z, '

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

r (36)(0 0)—
fy

(4.3f)

(4 3g)

When we examine the Green's function equations
of this theory it will be apparent that the following
are the only grouping of the parameters of (4.3)
which occur in the renormalized theory:

(a) a renormalized fermion mass m,
(b) a renormalized v mass p,',
(c) a dimensionless renormalized Yukawa-type

coupling g' —=g, 'Z, (Z, /Z, )',
(d) a dimensionless renormalized 3v coupling X',
(e) a dimensionless renormalized 4v coupling X.

6%',
(('(x)=q ('),

)
5W,

(((x —
( ),

( py)
g ( ) g ( )

(4.2b)

(4.2c)

(4.2(i)

(4.2e)

We shall show that the theory is renormalizable in
terms of these parameters (m, p,', g', X', and X).
Thus, all the divergences can be absorbed in them
to all orders in our mean-field expansion. In addi-
tion we shall show in. the next section. that p, ', X',
and A. are dependent parameters. To every order
in our expansion X' = X'(g'), i(' = p, '(m', g'), and X

= X(g ). Thus, the theory will be shown to be char-
acterized by two parameters, a fermion mass m
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and a dimensionless Yukawa coupling g'.
The Schwinger-Dyson equations of this model

appropriate for our expansion scheme can be de-
rived in a straightforward way by differentiation
of (2.8) with respect to the external sources J, q,
and q. The following equations are obtained and
can be used to generate the all-order Green's
functions' with g=g=0:

Using the renorma1. ization conditions we are led to
-1

S '(P) = P
~

— +—P(A(P') -A(o) )
0

+ B(P') B(0—)

= (P' m) —-+ P'(A(P') -A(o)}+B(P') —B(o) .
Z2

i5ij+g,o(x)+eg,—,g(x)+q=0,
RT xj

p, 'o (x) =J(x) +g,i tr S(x, x) ."
In (4.4b) we have set

g=g=O.

From these we obtain

S '(P) =P'+ g.o

+ igo'& «S(k +p) n(k) I', (k +p, k),
d'k

(4.4a)

(4.4b)

(4.5)

Defining

suboZ(p) —=psuboA(p')+ suboB(p'),

Sl g lsl
2 (4.10)

dk
S '(p) =—p —m+ig, 'Z, e sub', «S(k+ p)&, (k')

(2)) '
x I;(k, k+P).

The inverse a propagator is subtracted in the
same fashion. It is of the form

~ '(P') =-v.'+ 11(p'),

we obtain the renormalized fermion propagator

k '(P')= —tt, '+t's, 'tr f,S(k+p)r. (k+p, k)s(k),

(4.8)

where

rr(p') ;s fs-=,.t't(s(k) r.(k, k t p)S(k + p)) .

I",(k, k +p) = 1+ig,'e S&,I', ,
5g o

(4 7)
Subtracting twice and using the appropriate renor-
malization conditions we obtain

I''"'=g 'i tr(SI' S),0 gg 0 II

2

5(goo

(4.8)

(4.9)

n '( p') = —p,'+ II(0) +p',
~

+ sub2o II(p')
ap'),

&err &

In all of these it is understood that the sources
have been turned off after taking the variational
derivatives. We emphasize that the above are
equations for the all-order Green'sfunctionsfor
arbitrary &.

Now we begin our subtraction procedure. The
number of necessary subtractions is dictated by
the degree of superficial divergence. Further,
the momentum-space analysis is done with the
sour ces off.

The inverse fermion propagator is of the form 'y

S '(p) = p+ g,o+ Z(p),

where

dk
Z(P) =-ig, 'e «S(k+P) &(k') I',(k+P, k) .

(2n '
The fermion self-energy Z(P) is in general of the
form Z(p) =pA(p')+ B(p'). Subtracting at zero we
obtain

since

(8& BII 't

( sp', sp'y,

Defining ~ by

6 '(p') = Z

leads to

5 '(P') =P' —V'+ iZ, g()'

d4k
x sub', , tr(S(k)I', (k, k+ p)S(k+ p)).

(4.11)

The renormalized fermion vertex is defined in a
similar way:

I",= I;(0,0) + sub, 'I',

=—+ig, 'e sub', (Sb,l', ) = Z, 'I',gggo001
S '( P) = P+ g,o + B(0) + PA(0)

+$(A(P')- A(0))+ B(P') —B(0) .

or

I",=—1+ ig 'Z, & sub', — SA,I', .
5gOO'

(4.12)
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The 3o and 4o vertices having logarithmic super-
ficial divergence must be subtracted once. The
renormalized vertices are

expressible in terms of renormalized objects, we
conclude that

=ms'st, Z,' 'sub tr(SI', b))
~go~

I (4e) Z 2p(4')

= -X+ ig0 Z,' sub0, tr SI',S
6 g()v

(4.13)

(4.14)

= &(('- g) —~g'~(~ t")sl (~ t-). (4.2o)

Thus, the operator of (4. 17) is completely ex-
pressible in renormalized (but not finite since it
carries the vertex divergence) quantities.

In order to symmetrize our expressions and
partially alleviate the overlapping- divergence
problem, we replace the bare vertex I(g) every-
where in our Green's function equations by using
(4.17) in the form

The renormalization of the a propagator dictates
the definition of a renormalized 0 field,

(4.15) .,

Our next step will be to indicate that (4.10),
(4.11), (4. 12), (4.13), and (4.14) depend on the Z's
only through the renormalized parameters defined
previously, that is, they are finite functions of the
momenta and the renormalized parameters to
every order in our expansion. .

Before we do that let us consider the fermion
vertex

1=r,(1 ~g, 'nSI) ', (4.21)

which in terms of renormalized Green's functions
becomes

1=Z, 'I;(1—eg'&SI) =-Z, 'I', B. (4.22)

or

Now we are ready to examine the renormalized
functions one by one with the appropriate number
of subtractions to make them finite. The fermion
propagator is

8'=t( —m+(t, 'Z, s sub' fZZ, Z, 'Z, , '(t",BS l)u',
I', = 1+ i@0 & S4,I';.0 gg(

It ls convenient to rewrite (4.16) in the form

r.(g) =1(g )[6(g —g) - ~,'~(t g-)sf(g-g)].

(4.16)
S '=t( +su', sub', f r.aSur-. .

The 0 propagator is

(4.23)

(4.17) Z '.= P' —p, '+ ig, 'Z, Z, 'Z, ' sub', tr(I', Bsl,S)

Here we have explicitly displayed the coordinate
associated with 0 propagation, but have suppressed
the coordinate and spin indices associated with the
Fermi field in an extended matrix notation. The
only information that is relevant to us at this point
is that I($"$) (which is a function of four coordi-
nates and two Fermi indices) has the momentum
behavior of a Green's fanction having two external
Fermi lines and two external v-meson lines. Con-
sequently, by our preceding analysis I($",$) is
superficially finite and its only divergences come
from the divergences of the other Green's func-
tions from which it is constructed. Comparing
(4.16) and (4.17) we must have

or

4 '=P' —p. '+i@'sub' tr F' J3S I' S .

The fermion vertex is

I', = 1+ig', Z, Z, '"& sub', SSI,
6g 0(T

or

I",= 1+ ig '& sub0 I', BS4I', .0 ggo a

The 30 vertex is

(4.24)

(4.25)

2

g, 'sm= g—.' (S~r,).i 6g00
(4.18)

Reexpressing everything in (4. 18) in terms of re-
normalized quantities, we find or

1" '"'= mX'+iZ ' 'g 'sub' tr(I' BSI' S)ty 0 Og+ y fy v

xz 'Z Z'"
2 1 II

It'Z 2 ) g2
(4.19) 1 '"'= mX'+ig' sub', tr(I', BSI;S). (4.26)

Thus, if we define I=(Z, /Z, )1, which clearly is The 4' vertex is
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I' "= X-+ i Z'go' subo tr(I', BSI;Si",S)
5goV

or

I' "=-X+ig sub' tr(I;BSI;ST',S). (4.27)' 6go.

We have thus succeeded in expressing the renor-
malized functions only in terms of renormalized
quantities. The renormalized functions thus ap-
pear to be finite functions of the momenta and the
renormalized parameters. However, we have
only partially confronted the problem of overlap-
ping divergences. We have not written down the
renormalized Green's functions in a form which
is manifestly free of overlaps. On. e elegant way
to begin is to differentiate the divergent Green's
functions' rather than subtract and apply (4.17) to
generate Green's function equations which are
(partially) free of overlaps. In fact, the Green's
functions we display are adequate for calculational
purposes and serve our point of displaying the pa-
rametrization of the theory; we will not discuss
the details of this procedure here, but defer full
explicit removal of overlaps to a paper more
specifically aimed at analyzing the details of the
Schwinger- Dyson equations. "

An important observation that we can make here
is that the parameter & in the preceding renor-
malized Green's function equations is always mul-
tiplied by the renormalized coupling g '. Thus, if
we let & -1 we can keep an effective small expan-
sion parameter by letting g'-0. This is in ac-
cord with our earlier statements.

Finally, we note that with &= 1, and expanding
so g' is small, the renormalized Green's func-
tions look similar to the equations we would get
for a conventional (kinetic terms for the o field
and mass terms for the fermion in the Lagrangian)
g,pro interaction expanded and renormalized in a
coupling-constant expansion. The esoteric aspects
of the mean-field expansion caused by the reorder-
ing of terms in the usual expansion are now gone.
What remains, which is of interest, are the rela-
tions among parameters which result from the way
the theory was generated. We have already ex-
amined these in first order, and will show how the
all-order relations work in the next section. Sec-
tion VI will further develop the relationship to
more conventional theories.

V. THE RENORMALIZED PARAMETERS

In Sec. III we observed that the parameters g
'

and m completely characterized the lowest-order
renormalized theory. We proved this remarkable

(5.1)

Inserting the renormalized propagators, we ob-
tain

S-( ),Z-., dS '(p)

= Zi Z go VF (p -p) .

Introducing the "anomalous dimension" of the
fermion field

&lnZ2
2 g p (5 2)

we are led to

-2y&+o' —8 ' p =gVT', p, -p . (5.3)

y~ is a superficially finite quantity. Since the
theory is renormalizable y& will be a finite func-
tion of the renormalized parameters and since it
is dimensionless it will be a function only of the
dimensionless coupling g'.

Considering (5.3) at zero momentum we have

fact by differentiation with respect to the lowest-
order mass m or equivalently the lowest-order
vacuum expectation o', . In this section we will
build on this observation and examine the all-
order theory through the Callan-Symanzik equa-
tions, demonstrating that the entire theory is de-
pendent only ong and m. We will show how to ex-
plicitly calculate ~, A.', and p,

' in terms of these
two parameters. For clarity and simplicity in
presentation, we will assume for most of what
follows that the quantities we will deal with depend
only on g and m. At appropriate places we will
indicate how modification of our equations and in-
duction using the lowest-order results confirms
this assumption.

An ordinary differentiation of a 1PI diagram
with respect to a bare mass corresponds to a mass
insertion. Qn the other hand, in our model higher
o-vertex functions with one of the external mo-
menta set equal to zero are also Green's functions
with a mass insertion. This suggests that we can
derive a set of Callan-Symanzik equations by dif-
ferentiating the unrenormalized 1PI functions
with respect to the constant 0 field. We recall
that it was pointed out in the preceding section
that we are primarily interested in expanding the
renormalized Qreen's functions in a power series
ing'. Consequently, we lose nothing by setting
e= 1 for this discussion.

Let us begin with the fermion propagator. The
following is true:
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-2y&(g )+ o' —m=-go.
do' (5.4)

and

8 2

p(g') -=c
80'

g 2go
(5.6)

The derivative o dm/da must be of the form
.o dm/dc=a(g')m. Note that n is finite. Thus,
we can obtain the solution

m=-go(n —2y„) '.
To lowest order this leads to the familiar result

(5.5)

Before we proceed to derive similar equations
for the o vertices, we introduce

using

dr &"&(0,0,0) r(5(f)(Q Q 0 Q)

Repeating the previous procedure at zero momen-
tum, we obtain

4y +o —X= Z '~V r&"'(0)=-V r"'&(0).d
do'

(5.11)

Expanding the differential operator results in

(-4y, +P(g*),) 1=—(u-2y~)1'+'(0).

(5.11')

To lowest order this equation is

II1Zy
8o (5.V)

8g2 8gp(g')=~ =g '~ ' =2g'y (g').8o' o 8O'

Since to this order y, (g') =g'/8v' we have p(g ')
=g4/4v'.

Differentiating the 30 vertex we obtain

2

p(g ') and y, (g') are finite functions of the dimen-
sionless coupling. To lowest order

2+4 2 2 X=—
2 g

~3g
2r

%e have used the fact that to lowest order the re-
sults of Sec. gI easily lead to

5
r&"&(o,o,o,o)=- g~.

Consequently, our equation becomes

dp(3 ) ((Pg&P2) r (4g) (p p 0)do'

which at zero momentum is according to our de-
finitions

g2 8
I -1+—

2 A, =-6g2.

An ansatz ~ =c,g'+ c,g can be inserted. It
satisfies (5.12) to order g' for c,=12 and c,
= anything. Thus we obtain the solution

x = 12g'+ 0 (g ')

(5.12)

(5.13)

Carrying out the differentiation we find

I
&(g')-3y. (g')+~ —l~'= —(~ 2y, ). (5-.8)

d't
do) g

Expanding the Callas-Symanzik operator in
terms of independent renormalized parameters g
and m (5.8) can be rewritten as

Going back to Eq. (5.10) for the cubic coupling,
we obtain

, +, , V=12g+ C2g'. (5.14)

A solution to the above can be immediately ob-
tained by inserting an ansatz X'= c,g+ c~g' to yield

u 3y, + am +p(g'), ) X'=- (e —2y„) .
8ypz ag2 ) g

X'=12g+0(g') . (5.15)

(
8, A,

o, —3y + P A.
' =- (a —2y„) .0 ' 8g2 g

To lowest order this equation becomes

(5.9)

g g3 8 x'=- .8g2 4 2 8g2 g
(5.10)

Next we derive an equation for the 4o coupling

Since ~' is dimensionless, it cannot depend ex-
plicitly on the mass m, so we have the simplified
equation

Thus we have succeeded in obtaining the renor-
malized cubic and quartic o self-couplings as
functions of g', the renormalized Yukawa-type
coupling in exactly the same form as our explicit
calculation of Sec. ItI. It is clear that Eqs. (5.11)
and (5.9) will enable us to calculate these quanti-
ties to any order of g' in our expansion. This is
easily seen by an induction argument. All the
quantities in (5.11) except A, are explicitly finite.
If we know them in one order as functions of g and
m we can calculate them in the next higher order
by using our Green's function expansion techniques
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and they will be functions of only g and m. Con-
sequently, we can calculate X to the next higher
order as a function only of g and m. Then using
(5.8) the same type of argument can be applied to
calculate A,

' as a function of g and m to one higher
order. Moreover, we can now see how to con-
struct the arguments that these functions depend
only on g and m and not X or A.'. For example, if
at some order ~ becomes an independent function
of another parameter p then one could argue that
(5.11) should have a term in it of the form p, &/&p.
However, since P, and all other quantities are
finite and constructed from lower-order functions
of onlyg and m, p cannot be an independent
parameter. Thus, since the lowest-order Green's
functions have been explicitly constructed and
found to be functions of only g and m, we have all
we need for an induction argument except the
demonstration. that p is not an independent mass.
We demonstrated explicitly that this is true to
lowest order. Our next step will be to find an
equation for p2 similar to the above equations for
the couplings so that p,

2 can be calculated to any
order.

The original theory had one mass parameter p, ,2.

A bare fermion mass appears, however, due to
the nonvanishing expectation value of o'. These
two parameters are not independent (in the absence
of sources), but are related through the gap equa-
tion

p, 2o=g0trS.

Differentiating this equation with respect to the
constant o field we obtain

dp,
p,,'+ o

d
' ——-g,' tr (SF,S) .

do'

Since we know that

we are led to the equation

(5.16)

which can then be written according to (4.3c) as

dp,Zo' = —p

(=z ~""
do'

dp m=o 2y, y, ' V(o; 2y„).do' g
Our Eq. (5.18) then takes the form

d m2A. '
1 —2y, + a —p, ' = (c. —2y„) .

do' g
Analyzing the mass operator we obtain

9 2 8 2
m2A, '

1 —2y, +am + p(g'), p.'= (c' —2V,).
em &g' g

(5.19)

To lowest order this equation becomes

g2 8 g4
1 — 2+m —+ 2 2 p, =12m

and it is automatically satisfied for

p, '=4
12m2 j

which, as was established in Sec. IG, is the cor-
rect lowest-order result.

It is clear now that (5.19) to every order can
yield p, '= p'(m'~'). We can apply our construc-
tion arguments to support this, and Eq. (5.19)
gives us the required information to finish the
induction proof. We have succeeded in renormal-
izing the four-fermion theory in terms of a di-
mensionless coupling g2 and a fermion mass m.
The other renormalized parameters that were
introduced are determined order by order in terms
of m and g2.

VI; EQUIVALENCE WITH THE YUKAWA THEORY

Let us consider the theory described by the La-

grangiann

2

L(q, q, 0) = y(i/+ g,a)g+ —,'(s „o)' — 2O cr'

Introducing the superficially finite function

——o v4 @+g+q+ Jv4t (6.1)

g (p', m,g') -=z.o. (5.17)

The generating function after the integration of the
fermion variables takes the form, in Euclidean
space,

we get the equation

& (p,',m,g') = —p,'. (5.18)

e = d(T exp — pe -trlnS '+&o -a'+p' o0

Equation (5.17) can be analyzed as follows:
+ —,cr4+ J'v

)41 )
(6.2)
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Here S is given as before by (2.6).
The mean-field expansion can be defined in the

same way as in Sec. II. An z is introduced and the
generating function becomes

e ' =N dg exp -Ea

The mean-field conditions are again

5J
i

6'E
50, ' 5(y5(T

and the expanded functional is given by (2.11). Note
that even though (6.1) is a common renormalizable
field theory in a coupling-constant expansion or a
loop expansion, we have no a priori information
about its behavior in our mean-field expansion,
and the questions of renormalizability and para-
meterization must be reexamined from the begin-
ning here.

The lowest-order connected functional in Eucli-
dean space is

l

-Wgv„rji, J) =F(vo, q, q, J')

qSoq -tr lnSo '+ ohio(-9'+ po )cro

g-'(p') =p2 ]+g 2~
f ail
(sp2 0 2 0

g ~go Zo ~ (6.6)

For this model the renormalization equations de-
fining the mass and the couplings are different from
the (g g)' model and are

—
p 2+ "0 0 g 211(0)

Z =I+g.'I(
1 2( BIL

g O (~@2

Application of these with (6.6) leads to

+ II (0)g,'+g, ' sub', ll (P').

Introducing a renormalized g-mass parameter p. '
and a renormalization factor Z, , as in Egs. (3.8),
we are led to the following form for the renormal-
ized 0 propagator:

P2) =P p2+gosub211(P ) = Z ~ (P2) (6 5)

The renormalized coupling appearing in (6.5) is

+—o' —Jg o0 0 (6.3)
(()j;I

+
go (~i' o

(6.7)

This form is identical to that given by (2.8b) except
for the g term and the kinetic terms for g. De-
spite these nontrivial differences we shall show
that for a special value of the renormalized para-
meters the theories are identical.

The mean-field condition (we now return to Min-
kowski space) takes the form of a gap e|Iuation for
constant source J,

po'po =gom f(m) ——', c,'+J'. (6.8)

We now want to carry out the lowest-order con-
stant source analysis for this theory in the same
manner as was done for the ($ g)' theory. Ecluation
(6.4) can be rewritten using the definition (3.14) to
obtain

P o co=goitrS, —
3)

coo+ J; (6.4)
Turning off the source and using the definition of rn

and g this becomes

The fermion propagator to lowest order describes
a free fermion of mass rn = -gpss'0 The inverse 0
propagator is

dk

rn2
go'= -g,'f(m) —+Z, (6.9)

Note that, except for the last term, (6.9) is the
same as (3.13b) with J= 0. The extra term in (6.9)
clearly reflects that in general Yukawa-type mod-
els have more parameterS than the pure Fermi
models.

By differentiating (6.8) with respect to the space-
time independent field vp we obtain the expression
for the lowest-order a propagator at zero momen-
tum,

The structure of this is nearly identical to (3.V) so
we proceed in the identical manner. Defining

II(p') =i tr[S(k+ p)S(k)]
d'k

and subtracting twice, we obtain

(0) =y, o2+go2( f(m)+ mP(m))+ 4 o

Using (6.9) go' can be eliminated to obtain
pÃ2

& '(0) = mg'f'(m)+ X,Z,' = -p.m.

(6.10)

(6.11)
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We can solve this equation for f'(m) and find

f'(m) =- A Z,'m
fPlg 3

(6.12)

Using (6.16) and (6.11) we find

Xm' ( g'
(6.17b)

A.
'

I'""(0 0)-=-=Z3/21(3 )

Z3/2

I (44)(0 P P) = —Z-2 I (44)
g 2 6 f

where

To lowest order we easily find that

x S (k+pp, +p )+2(xr)

(6.13)

I ""(P,PP3) = —)(+ ig4subp'tr
d4k

)4 Sp(k +p()

x S,(k+p, +p,)

x S,(k+p, +p, +p3).

(6.14)

Except for the last term this is identical to Eq.
(3.17). The first term of (6.12) is identical to the
Fermi model case and the second term occurs be-
cause of the o term in the Lagrangian. Note that
in this model, because of the explicit appearance
of this bare quartic meson interaction, we can ob-
tain no information about the location of the physi-
cal o pole in terms of the Fermi mass alone.

The 3o- and 40-vertex functions are logarithmi-
cally divergent and so are subtracted once at zero.
The renormalized 30 and 40 couplings are defined
as

So far we have just discussed this theory in low-
est order. We can examine higher orders by work-
ing out the expansion of (6.2) through Eq. (2.11).
We note that all terms in the expansion (2.11) in-
volving five of more derivatives of E with respect
to o(x) are the same for both the (T)) (1))2 model and
the Yukawa model. The functions A, B,C are the
a propagator and 3- and 4-vertex, respectively,
and are, of course, divergent. Writing these ob-
jects in the form (6.5), (6.13), and (6.14) for the
Yukawa model we see they are exactly the same
functions of p', m, p, ', X', X, andg' as Eqs. (3.10),
(3.22), and (3.33). This observation remains valid
even when the Fermi sources are on. We can fur-
ther verify that all the functional derivatives with
respect to the three sources of S„4„I'o", and
I',' are the same functions of these parameters in
both models. These properties along with the ex-
pansion (2.11) guarantee that to any order all
Green's functions of both theories are identical
functions of the above parameters. The real dif-
ference between the two theories is the values that
the renormalized parameters can take. We have
already seen that these values are very restricted
for the ((I) g)' model with only two parameters being
free. We will show shortly that there is a choice
of parameters for the Yukawa model so that it
touches the (T()(i))2 theory.

Before we proceed with this identification we can
display some all-order results for the Yukawa-type
model since its parameterization has been identi-
fied. We proceed just as in Sec. IV. For example,
the renormalized cubic coupling is related to the
quartic coupling since we started with no bare cu-
bic coupling. It satisfies the exact equation

8 2 8, A,

()( —3y.+ g,(g', )() 2 + g,(g', )()—)(' =—(a —2y,).

By differentiating (6.10) we can generate explicit
expressions for X and X' as in Sec. III. We find To lowest order, since

(6.18)

3 XZ2)('=-—[2f'(m)+mf"(m)] — ' '
'm

X= -g [3f"(m)+m f"'(m)] —X,Z,2.

(6.15)

(6.16)

9,(g', x) =—0 — = 4y, X —OI""'(0)
e~ g2)o'o

g')( 3g'
2%2 ~2

Except for the fast terms these have the same
structure as the corresponding expressions for the
(It)g)2 model. Using Eq. (6.12) for f'(m) we easily
verify from (6.15) and (6.16) that

(6.18) becomes

1 —,+, , +, (x —6g')—3g' g' s g' s
8@2 4g2 eg2 2g2 8 g g

V = —+ O(g').
g

(6.17a.)
Thus, we again obtain the previous solution X' = )(/g
+0(g3). It can be shown that the mass p,

' satis-
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fies an analogous equation which we use shortly.
Since the 4o coupling is an independent parameter
its Callan-Symanzik equation must be an identity.
This equation is

-4y, + g,(g', a), + 8, (&,g')—(
8 8

which becomes to lowest order

3-4y, A. +S,(X,g') =-—,g .

Since y, =g'/8m~ and g„= (g'/2n')(X -6g') this indeed
is an identity.

Now we return to demonstrating the equivalence
of the two theories for some set of values of the
parameters. We have already shown that the low-
est-order Green's functions are identical functions
of the same renormalized parameters. If we im-
pose A. =12g' (6.17a) becomes (3.26) and (6.17b) be-
comes (3.20). We can see this directly in the Cal-
lan-Symanzik equation for the 0 mass with this
condition,

Z, =O. (6.19)

This is the well-known composite particle limit.
We have thus demonstrated that in this limit the
operator X,o' is irrelevant as it has no effect on

This is identical with (3.20) since the g, a/BA.
' term

will not contribute. Thus, the mass p,
' =.p'(m, g')

becomes the same for both theories. Hence, we
conclude that, imposing X=12g', the lowest order
of the Yukawa theory is equivalent to the lowest or-
der of the four-fermion theory. This is enough to
guarantee their equivalence to all orders, since all
higher-order Green's functions are constructed by
iterating the lowest-order functional and its deriv-
atives and the renormalized parameters are con-
structed by a similar iteration procedure of the
renormalization-group equations. The equivalence
of the two theories holds, of course, only if we
start with our mean-field expansion and then ex-
pand in the renormalized coupling, but does not
hold in perturbation theory with respect to the bare
coupling s.

It is profitable to look at this equivalence in an-
other way. Equations (6.9), (6.11), (6.15), and
(6.16) would all be identical to the analogous equa-
tions in the four-Fermi model except for their last
terms. If we require Xg,'=0 then both models are
identical (to all orders). This means that for non-
zero X, the models become identical in the limit

quantum field theory. ' ' lt can be argued that an
equation of the form (6.19) is valid when Z, is the
all-order Z. '4

Finally, we note that if we assumed that our La-
grangian (6.1) had terms of the form E„"~C„v"
added to it, it is not normally renormalizable even
in the mean-field approximation. " However, this
does not affect an analysis of the lowest order and
if we proceed through this, we can argue that in
the limit Z, -O all these extra operators become
irrelevant and the theory collapses to the results
we have already obtained. We can then iterate
this lowest-order result using (2.11). Since all the
lowest-order Green's functions are identical, the
higher-order Green's functions will be identical
before renormalization but after Z, -O. In particu-
lar, the quantities needing renormalization of this
all-order theory will be the same as those of the
((g)' theory. It follows then that the renormaliza-
tion-group equations are the same and since the
lowest-order Green's functions are set, iteration
fixes this new theory to be identical to the ($g)'
theory. Unfortunately, we have essentially defined
our way into this result and we probably have
gained no real insight into the general behavior
of the more complicated nonrenormalizable the-
ory.

VII. CONCLUSIONS

(a) We have developed an expansion scheme for
the four-fermion theory. The vacuum functional is
expressed as an integral over collective boson
variables while the fermions appear only through
the sources. A Laplace expmsion of the functional
integral is written down.

(b) The theory is renormalizable in four dimen-
sions to all orders in this expansion, i.e., all di-
vergences can be absorbed in a finite number of
renormalized parameter s. After renormalization
the theory is reexpanded in the then identifiable
small parameter g'. Cubic and quartic boson self-
interactions ar e induced.

(c) The boson self-couplings are determinable to
any order in terms of the renormalized Yukawa-
type coupling and the fermion mass. The bound-
state mass is also determined in terms of the
fermion mass and the coupling. Thus, there are
only two free parameters.

(d) The renormalized vacuum functional de-
scribes fermions interacting with a fundamental
boson in contrast with the bare functional that de-
scribed fermions interacting with a composite bo-
son. This happens because a kinetic term for the
collective boson was created from the vacuum po-
larization gr ap.hs.

(e) The Yukawa theory can be expanded the same
way. The lowest-order renormalized connected
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functional of the Yukawa theory becomes exactly
the same function of the renormalized quantities as
the vacuum functional of the four-fermion theory if
we impose the condition 1/3! (renormalized quar-
tic boson coupling) = 2 (renormalized Yukawa cou-
pling)' to lowest order. All renormalized 1Pl func-
tions are the same. Note that previous state-
ments" about required restrictions on the bare
parameters of the Yukawa model in order to ob-
tain this equivalence are "inoperative. "

(f) Equivalence of the vacuum functional and its
derivatives to lowest order is enough to guarantee
equivalence to all orders since the mean-field ex-
pansion and the various Callan-Symanzik equations

used to set renormalized parameters are based on
the iteration of the lowest-order functional.

(g) This equivalence occurs at Z, =0 and at this
point the quartic and higher-order g self-interac-
tions terms in the Lagrangian become irrelevant.
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