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We apply Weinberg's method of effective gauge theories to the study of fight scalar masses 
and coupling constants, in a simplified model with two widely separated mass scales. No 
improvement of the unnaturalness in the H.iggs sector is seen. 

1. Introduction 

The unification of the SU(3) and SU(2)X U(1) gauge groups of the observed 
strong and electroweak interactions in a simple gauge group G [1] inevitably leads to 
the existence of two enormously different mass scales [2], one associated with the 
breaking of the unification gauge group G down to SU(3)X SU(2 )x  U(I)  and the 
other associated with the breaking SU(3) x SU(2) x U(I)  ~ SU(3) X U(1)e m. A the- 
ory with two so disparate mass scales poses well-known problems. The central 
problem is whether it is possible and natural to arrange the parameters of the theory 
so that the desired mass hierarchy can be achieved at the tree level and then stay 
stable against radiative corrections. This is known as the gauge hierarchy problem 
[3]. A large mass hierarchy can be arranged, but only at the price of fine-tuning the 
Higgs and Yukawa couplings of the theory. The deep question of how such a mass 
hierarchy arises naturally remains unanswered, although some attempts have been 
made to bypass it by completely discarding the Higgs fields [4], but with no apparent 
success. 

The next more realistic question to ask is, if, given a large mass hierarchy at the 
tree level, one can maintain it in the presence of radiative corrections. Once this is 
done, a consistent separation of light and heavy particles is possible. Without a 
stable gauge hierarchy, no decoupling of heavy particles and no definition of an 
effective light theory at low energies is meaningful. The decoupling of heavy 
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particles in spontaneously broken gauge theories is supported by many explicit 
one-loop calculations [5]. On the other hand, different methods to define an effective 
low energy theory have been employed by different people [6]. 

In the present work, we consider an SU(2) gauge model with a triplet and a 
complex doublet of Higgs fields and, in analogy with more realistic models, such as 
SU(5), we assume it spontaneously broken according to the pattern 

SU(2) --,v U(1) -.  ~ No symmetry, 
Msrl MI. 

with V(ML)<< V(MsH ). We adopt Weinberg's method [7] to construct an effective 
theory by integrating out the heavy degrees of freedom. First, we obtain the effective 
parameters of the light theory by performing a one-loop functional integral over 
heavy fields at renormalization scales of order MSH (the mass scale of the strong 
breaking). In defining the heavy fields, we have assumed the existence of a gauge 
hierarchy at the tree level. Second, we integrate the two-loop renormalization group 
equations (RGE) for the parameters of the light theory, in which no heavy fields 
appear, from low energy scales up to MSH, where we use the expressions obtained at 
the first step as initial conditions. In this way we can see in a transparent fashion 
that the gauge hierarchy problem remains and is a problem of initial conditions. 

Recently, Kazama et al. [8] argued that one can define a stable gauge hierarchy if 
one organizes the perturbation theory properly. In fact, they take as parameters the 
vacuum expectation values of the theory V and v and they demand v << V. The mass 
parameters that appear in the lagrangian do not enter into the Green functions of 
the theory, but they are connected with the vacuum expectation values through the 
minimization conditions. In this way, a stable hierarchy is possible (v << V), but the 
unnatural adjustment, which has to be done in each order of perturbation theory, 
has been carried over to the minimization conditions. To us, this merely disguises the 
question of the gauge hierarchy, burying the fine tuning into the minimization 
conditions. 

The paper is organized as follows. In sect. 2 we review the essential points of 
Weinberg's approach of constructing a light effective gauge theory, by integrating 
out the heavy fields. In sect. 3 we describe the model which we are working with and 
derive the effective parameters to be used as boundary conditions when solving the 
renormalization group equations of the effective theory. In sect. 4 we discuss the 
effective theory and the minimization condition of its effective potential up to 
the two-loop level. In sect. 5 we derive the renormalization group equations for the 
effective theory and give their solutions. Finally, in sect. 6 we draw our conclusions. 

2. Effective gauge theories 

Consider a field theory with two sets of fields, X of small or zero mass and ~ of 
much larger mass. All the connected Green functions with X external legs can be 
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obtained from the generating functional 

S(X,4') is the action and J a c-number source. Integrating out the 4, fields, we are 
left with an alternative expression for the connected functional: 

eiW'J)--f[dx]exp(iS(x) + i f  d°xJ" X)-  (2) 

The new action of the effective theory is defined by 

S(x) = - iln( f [d4' ]exp[iX(x, 4' )] ) (3) 

and can be expanded in 4' loops. 
Although, in principle, all Green functions of the light field X can be extracted 

from either expression, -~(X) is non-local and contains an infinite number of 
non-renormalizable terms. Hence, in practice, we would be able to compute with it 
only for energies for which it could be replaced by a limiting local and renormaliz- 
able lagrangian. The non-renormalizable couplings have dimensions of inverse mass 
to some power, this mass being naturally the scale of the 4' fields. At energies E well 
below the 4' mass scale, the non-renormalizable terms are suppressed by powers of 
E/M,  and the effective lagrangian becomes renormalizable at low energies. The 
graphs participating in the loop expansion of S(X) have only 4' internal lines and 
hence we can deal with renormalized 4' graphs in the external X field. The local limit 
can then be taken and we end up with a local and renormalizable effective theory at 
low energies. The resulting theory involves only light particles. 

Calculations performed with the effective theory incorporate the memory of the 
full theory via the definition of the effective parameters. The expressions that one 
obtains in perturbation theory are reliable at energies close to the large mass. They 
can be put in touch with the light theory computations through the renormalization 
group*. 

For a spontaneously broken gauge theory, care must be taken whether this 
separation of fields can be done in a way that will leave us with an effective theory 
that possesses the desired local gauge invariance. Following Weinberg [7] we employ 
a gauge-fixing term of the form 

l fd~,x2 [~4'2 +g¢.~Xx~ +ig~(V,~,~)] 2 2~ co, 

* The renormalization group equations for the light effective parameters, say to n th order in the l~p 
expansion, must be integrated up to the hear 3" scale, where their expressions to (n - l)th order in 
terms of the parameters of the full theory, axe employed as boundary conditions. 
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suited to give an effective theory which is locally gauge invariant under the unbroken 
subgroup of X'S- The summation is only over heavy fields and V is the expectation 
value of the heavy Higgs field ¢. It is easy to see that, in the Landau gauge, such a 
prescription will lead to the usual Fadeev-Popov-de Witt (FPdW) determinant. 

3. The model 

As a model, where we explicitly carry out the above stated program, we have 
considered an SU(2) gauge theory with a triplet and a complex doublet of scalar 
fields. Needless to say that our results are expected to hold, with no qualitative 
changes, in more realistic models. 

The triplet Higgs develops an expectation value which breaks the SU(2) symmetry 
down to U(I). Subsequently, the U(I) breaks down to no symmetry via the doublet. 
The fields that developed a mass, at the tree level, in the first breaking, will be 
designated as the heavy fields. Of course, the important issue here is 'whether the 
light fields, i.e., the fields that got mass in the second breaking or no mass at all, will 
remain light. 

Our lagrangian is 

E= -¼Tr{ (0,W, - 0,I,V~ + g[ W,, W~]) 2 } + ½Tr ( (~,¢ -- ~/-(~gi[ W~, ¢])2} 

+ (%,--v'~giW~,)ne+½~2Tr(¢Z)+½1,2lnl 2 (4) 

- ~ f (Tr(¢2  ))2 _ ¼XIH 14 - ½a I H 12Tr(¢2 ). 

The SU(2)-. U(I) breaking is achieved by the development of an expectation 
value by the triplet ¢. The lagrangian is supplemented by the appropriate gauge 
fixing term and the Fadeev-Popov ghost term (see appendix A and fig. 1). The 
adjoint Higgs is chosen to get an expectation value in the % direction 

( ~ )  = ~/½ V%, or ( ~ . )  = V6.3. (5) 

As a result of the breaking in the r 3 direction, the I'V, t and I,V, 2 gauge fields acquire 
masses M2v = g2V2 at the tree level. The surviving scalar particle corresponding to 
the field ~3 gets a mass M~ = 2fV 2. These will be defined as the heavy particles of 
the theory. 

The U(I) symmetric vacuum which the theory has chosen after the spontaneous 
breaking of the SU(2) symmetry is only approximate. Subsequently, the U(I) 
symmetry will be broken via the doublet. Nevertheless, we choose to define first a 
U(I) symmetric effective theory, irrespectively of any breaking of the remnant 
symmetry, by integrating out the heavy degrees of freedom, as explained in the 
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Fig. I. Feynman rules used to calculate effective coupling and mars parameters (see figs. 2, 3, 4). 
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3 3 

Fig. 2. Graphs involving only heavy, loops leading to renormalization of the light gauge boson (photon). 
We only depict the non-vanishing graphs in the Landau gauge. Wavv internal lines may also designate 

heavy Goldstones. 

H H H H 

Fig. 3. Non-vanishing graphs (Landau gauge) renormalizing the light Higgs and the mass parameter. The 
internal wavy lines are as in fig. 2. 
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H H H H H , , H 

H H H H 

$ ; 3 :3 1.2 • (Crossed diagrams) 

H H ~ H 

Fig. 4. Graphs leading to renormalization of tile light quartic coupling. Internal gauge boson lines are as 
in figs. 2 and 3. 

previous section. The coefficients in the light fields in the effective lagrangian, after 
we take the local limit, will be light particle irreducible diagrams,  with only heavy 
fields propagat ing  in the internal lines. 

The  diagrams,  with heavy internal lines, contr ibut ing in the Landau  gauge (4 = 0) 
to the light gauge and scalar propagators  are shown in figs. 2 and 3, respectively. The  
graphs of fig. 2 provide us with the renormalizat ion of  the gauge coupling, due to 
heavy loops. The graphs of fig. 3 provide us with the corrections of  the light mass  
paramete r  v 2, induced by the heavy fields. The graphs,  which give the effective 
quart ic coupling of  the U(1) theory are depicted in fig. 4. For  the effective couplings 
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one finds* 

g~2(/x) = g - 2 ( p . ) -  1 ( l - - , ' l n ( g 2 V 2 ) )  

24~ ------S 7 ' 
(6) 

.,o t 
= x(") - 7 + 13g tT-' 

#-  a 2 • }. (7) 

The effective mass u2f is given by 

v~fr(~ ) = v2 _ aV 2 + 3g 4 - ~ In 

+ 2 a f l n (  21 V2 a _  - 2r t f} .  (8) 

Note  that v~ff - V~r/~ef t would be the vacuum expectation value of the light sector, 
when U(l )  breaks, with the contributions of heavies taken into account. At the tree 
level this becomes (v 2 -  a V 2 ) / ( ~ - a 2 / f ) ,  which is indeed the tree level vacuum 
expectat ion value obtained by minimizing the potential. 

At this point, we should comment  on v~r r. It is clear that at the tree level one needs 
ot ~ O ( v 2 / V  2) in order to achieve a large mass separation (fine tuning). What  is now 
disturbing is that, at the one-loop level, the condition for keeping F~f light has to be 
changed [readjustment, see eq. (8)]. Instead of v~ff, we could, of course, use the 
parameter  t)2ff( ~ /Ye2ff/)~eff). In this way the r e l a t ion  v2ff = )kerft~2ff simply determines 
v 2 in terms of v~u, V 2 but v~2fr never appears in the Green functions. Taking Gff<< V, 
the light sector remains light, without further fine tuning. This is the line of 
reasoning followed by Kazawa et al. [8] and the relation v2u=A~uv~u, which 
determines v 2 in terms of ve2rr, V x and the couplings, is nothing else but their 
formulae (III.10, 11)**, solved for v 2, when only the contr ibut ion of the heavies is 
taken into account. Although there is nothing wrong with this reasoning, this does 
not  give an answer to the gauge hierarchy problem, as stated in its initial form. The  
whole gauge hierarchy issue is still unresolved, because in order to take l)ef f (< V, one 
has to satisfy v~f(V) = AeffO2ff, without further fine tuning. A consistent treatment of 
the theory has to take the minimization conditions into account. 

* Dimensional regulanzation and minim',d subtraction are used throughout the calculations. 
** See the first paper in ref. [8]. 
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4. The effective theory 

At energies much smaller than the scale of the SU(2) breaking, the physics is 
described by the effective U(1) symmetric lagrangian* 

(--- -¼(a,W~3-a~W~3)2+[(O,-ig*%W~3)Hl2+ ~u*2[Hl2-Jh*lHI4. (9) 

The U(I) symmetry will be broken to no symmetry if the doublet Higgs fields 
develop a non-zero vacuum expectation value. This is best studied, as is well known, 
by calculating the effective potential and looking for an asymmetric minimum**. 
The physical spectrum of the U(1) theory contains two Goldstone bosons, a massive 
vector and a massive scalar, with masses ½g*2v2 and ~,*v 2, respectively, at the tree 

[ 
0] and 2 .2 * It " level where (01 HI0) ---- (v /~ /2) [  1 ] v --= 1, / ~ . .  Is easy to observe that there 

is a global 0(4) invariance in the Higgs sector, which facilitates the computation of 
the effective potential***. The calculation is performed in the Landau gauge and 
MS renormalization scheme is being used. The vacuum graphs that contribute up to 
the two-loop approximation are shown in fig. 5. The relevant Feynman rules are 
listed in fig. 6. (We use the shift of the fields 9~,--' ¢Pi + ~, [9].) The potential is best 
expressible in terms of the "vector" and "scalar" masses 

 g,21 HI2, 

. ?  = _ + I H I L  

M 2 2 =  I , 2  4 _ I ) . ,  I -~ l ,  - ~ , ,  iHI 2. (10) 

The evaluation of the one-loop graphs gives the one-loop potential 

5 M4 v 9 "(H) v"]°°P=-½v*2IHI2+~)~*IHI4 128~.2 128~.2 M~ 

3 M4+6~:M4vln(M~I ( l l )  
128~r 2 p2 ] 

64rr 2 m bt 2 64~r------- 7 / z2 ] .  

* All asterisks indicate effective quantities. 
** We are justified in looking separately at the light particle theory since V receives only small 

corrections from the light particles, having arranged a large gauge hierarchy. 
***  In fact, we can put  

~3 - i~4 

and then we have invariance under the 0(4)  symmetry ~, ~ O,j~j, 0 being an orthogonal 4 x 4 
matrix. 
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8 o o 
Fig. 5. The one- and two-loop contr ibut ions to the effective potential. Crosses denote counterterms. The 

rules for evaluating the graphs are given in fig. 6. 

" ~ gt.vSij 
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J \ 
, /  K 

= 2- ' t j  k ~jk~i k x $  i - 

i ( i  i 
- I  T - 7, ¢ - ; i  - 2~;ri 

Fig. 6. Feynman  rules used to calculate the graphs of fig. 5. 
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The function U(M 2, M~, M2v) can be expressed in terms of logarithms and Spence 
functions. It is given in appendix B. The separate contributions of the diagrams are 
also listed in the appendix B. The minimization condition is now 

= -- 1 -- In - -  + . (14) 
32,//.2 g*2 ]] 64,/r 2 g,2 ]J  

B is a complicated function of (~,/g,2), involving logarithms and Spence functions. 
No qualitative difference arises at the two-loop level with respect to the position of 
the vacuum and, in order to have a small v 2, one surely needs small ~,,2. Therefore, 
the study of the ~,,2 via the RGE, at the two-loop order, is needed in order to reach a 
definite conclusion. 

5. The renormalization group 

As we have already seen, the low-energy computations performed with the 
effective theory can incorporate the heavy particle effects through the boundary 
conditions, near the heavy mass scale. The two energy regions can be bridged via the 
RG. In order to match the one-loop boundary conditions, we must use the two-loop 
RGE. In the dimensionally regularized theory, the mass term is replaced by J;2tt2 and 
the evolution of the now dimensionless 92 is studied like the evolution of any 
coupling. For the calculation of the fl function we need the wave function renormali- 
zation constants for the "photon" and the Higgs fields. The divergent part of the 
potential we already have. The relevant graphs are shown in fig. 7. 

The resulting two-loop RGE are 

dg .2 1 g,4 I g,6 

dlnp. 2 (16~r 2) 6 (16~.2)2 2 '  

dX* 1 -- _ _  (3,g,4 ~ k , g , 2  + 3 ~ , 2 )  
d In ~t 2 (16~ 2 ) 

1 

( 1 5 )  

q - - - ( - -  2~g'6 q - 429-•*g'4 q - ~X*2g . 2 -  39X'3), (16) 
(167r2) 2 

dln~, .2 l ( ] ,  1 ( ~ g , 4  3X,g,2 ~)~,2 
- - -  + - -  ) .  (17) 

dln/~ 2 (16~r 2) (16rr2) 2 

The gauge coupling constant renormalization group equation can be integrated 
exactly to give 

g * - 2 ( ~ ) = g * - 2 ( # O )  (96~r2----~in + (16~r2~ln - - I n  - -  . (96~r 2 ) tt~ 

( 1 8 )  
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. . . .  / " x  _ # 7 3 x  _ _ J ' Y ' ~  ___ # " x  

w 

(a) 

(b) 

Fig. 7. (a) Thc non-vanishing graphs (Landau gauge) needed to determine the wave function renormali- 
zation constant for the "'photon" field. Diagrams involving one-loop and one-counterterm add up to zero 
as a result of the Ward identity and are not shown. (b) Non-vanishing graphs (Landau gauge) used to 

determine the Higgs wave function renormalization constant. Crosses denote counterterms. 

The one-loop equations for X* and •.2 are also exactly integrable and yield 

g*2(~t) 18 [ g* (#o) ~/~_~ g*2(~to) ~;~_~ , (19) 

---2 

.*:(~o) g*~(~o) 

[ cos[ l ' /Sr61n(g*2(t l ) /g*2(t t°) )  ' l - 

× 1 + tan-'[(18/V'~)M(~0)/g*2(~0_)_~ 5/~;~)]  / ( cos[tan-'((18/V/5-6)X*(~o)/g*2(~o) - 5/i '~- )] 

1/2 

(20) 

In order to integrate the two-loop equation (17) we have to make some approxi- 
mations and it is reasonable to consider logarithms of the couplings virtually 
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constant*. In this approximation one finds 

23 

2-,oop TM I +  - - v  . v*2(#o) ,- ,oop (967r2) ~ 

where 

A ( ~ o ) -  (167r2 ~ 18 4~ + 11_~67 . 
g * 2 ( ~ O )  g * 2 ( b t 0 )  

(21) 

(22) 

No significant change from the one-loop result is found, apart from mild corrections 
and conclusively, the two-loop RGE do not change the situation. The term on the 
right-hand side in (21), multiplying (v*2(lt)/v*2(t%))o,,¢.loop, cannot become vanish- 
ingly small and, hence, even at the two-loop level, for having v*2(~t) small, it is 
demanded that v*2(~0) be small too. 

The conclusion of this section is that the RGE for the "mass" do not improve the 
gauge hierarchy problem. Hence, a fine tuning along with order-by-order readjust- 
ment is needed if one uses the "masses" as arbitrary parameters, at least in the 
context of the perturbation theory. 

6. Conclusions 

We have studied an SU(2) gauge theory, which suffers two stages of spontaneous 
symmetry breaking: one strong at energies MsH, with a scalar triplet, and another 
weak at M L << Ms. ,  with a scalar doublet. We designate as heavy fields those 
acquiring masses via the first breaking; the rest we call light. After integrating out, at 
the first stage of the breaking, the heavy degrees of freedom, we have an effective 
U(I)  symmetric theory, whose parameters at scales - M s H  are connected to the 
parameters of the initial SU(2) theory. 

In order to have an effective U(1) theory at low energies and light particles to be 
really light, one needs to show that the subsequent breaking U(I)--. no symmetry is 
caused by a vacuum expectation value v ~ M L << Msn. We investigated the breaking 
of the remnant U(I) symmetry, by calculating the effective potential at two-loop 
approximation. The couplings and masses appearing in it are those of the effective 
theory. Their values at energies E ~ M L << MsH are given by solving the RGE, given 
that at MSH they are related to the couplings and masses of the full SU(2) theory 
(initial conditions). In order to have a very small vacuum expectation value for the 
"'lights", one needs fine tuning as well as unnatural adjustment. Therefore, the way 
out of this difficulty does not seem to lie within perturbation theory, at least without 
new dynamical input. 

* From the one-loop calculation we see that the logarithms of the couplings are very slow functions of 
the scale p2. 
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Taking the vacuum expectation value as parameters to replace the pair of 
"masses" and demanding v << V, the gauge hierarchy issue is rephrased, but not 
resolved. The lights remain indeed light, as v << V, but the mass parameters are 
connected to v, V through the minimization conditions. However, these conditions 
contain unnatural adjustments to each order. 

The conclusions of this work can be extrapolated to more realistic models, as the 
simple SU(2) model we deal with carries all the qualitative features of such grand 
unifying models. 

We wish to thank L. Abbott, G. Martinelli and M. Veltman for helpful discus- 
sions, C. Sachrajda for explaining to us his approach and especially J. Ellis for 
discussions, comments and suggestions. One of us (A.L.) wishes to thank J. Prentki 
for his hospitality during the initial stages of the work. 

Appendix A 

In what follows, we explain the notation and conventions used in the main text. 
The r matrices are chosen to obey the convention 

Tr( r~r  b) = 23 ~b 

and satisfy the commutation relations 

[ r  ", r t' ] = 2ie~hCr c. 

The gauge and Higgs fields written in the adjoint representation are 

W~ = /I . . . . .  ra(~a.  v~r % ,  ~=~/½ 

The fundamental Hip.s is a complex doublet 

H =  /_/2 =~/ i  %--i¢P4 " 

The gauge-fixing term for the SU(2) --, U(1) breaking is chosen 

IGF = 
a= 1,2 

The ghost lagranBian is 

~FPdW ~ '~G-  1,~, 
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is the Spence function or diiogarithm, and 

J0 Jo(x)-- 'dtln 1 t(1--t) 

{ ( )  =-~ln2x+0(1-4x)  -(lnx)~/l-4xln 1+¢1-4x 
1 - ( 1  - 4x 

1 + , f l  - 4 x  1 - ,,"1 - 4x 

+ O ( 4 x - 1 ) ( - 2 V / 4 x - l ) f 2 t a n  '( 1 )] 
~/4x -- ! ' 

with f ix )  = I m L(e '~) (Clausen's function). 
The separate contributions of the various graphs are 

= ~iX*(M?- M~)[J(M 2, M 2, M,) +J(M, ,  M,, M,)], 

~ = ,~i~.*[5K2(M2) + 2K(Mt)K(M 2) + K~(M,)], 

---- ¼ig*2M~[(V- 2)J(M V, M,, Mv) + X(M V, M,, Me)], 

~ = 1)[3K( M v)K( M 2 ) K( M V)K( M I )], D + 

~ = M 2, Mv) Y(M,, M 2, Mv) + Y(M2, M,, My)I, ~ig*2[2Y( M2, + 

where 

__[ dOp 1 --i I 
K (M)  ,_-S-"~ [ p 2-  M 2] - - -  (M2) °/2- I ' ( l -  ~D), 

J (47r) °/2 t2~ ' )  

L x> f: ln l ,> 
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d°pd°q [p2_ A2]-,[( p + q)2_ B2]-,[q~_ Cq-' 
J(A,  B,C) =f (2~r)2 o 

l r(~)r(z~)r(1 +~) 
(4~r) ° r (2  + 2e) 

x {(A 2 + B 2 + C z) 

+,  5 (A~+B2+c~) -2  A21nT+B~lnT+C2ln V 

+ ~  13(A2 + B~ + C ~) - 10 A~ln 7 + B21n 7 + C~ln 7 

+2  A21n2-~+B21n2v+C21n2 +2S(A2, B2,C2) . 

D = 4 - 2~ is the number of dimensions and S is a symmetric function of A 2, B 2, C2: 

S(A2, B2,CZ)=--A2 ldxL 1 A 2 X A 2 1--X 

C 2 B 2 

Finally, 

y( A, B, C) - - f  d°pd°q ( p 2 -  ( P " q)2 ) [p2 - A 2] 
(207.)20 q2 

' [ ( p + q ) 2 - B 2 ] - ' [ q 2 - C 2 ]  

1 4C 2 (A4h- B a h  - C 4 -  2A2B 2 - 2B2C 2 - 2A2C2)j( A, B, C) 

Bz - -  A z ) 
+¼ 1+  C----T-- K ( B ) K ( C ) - ¼ K ( A ) K ( B )  

A2 B2) ( B 2 - A 2 )  2 
+~ 1+ c i  K(A)K(C)+ ---- J(A,B,0), 

4C z 
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X(A,B,C)=_f d°pdoq (P'q)2[p2-A2]-'[(p+q)2_B2]-l[q2_C2]-I 
(2~r)20 p2q2 

B,c)  [r(A, B,c)  - r(o, B, c)] .  
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