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We present a simple method for deriving some general selection rules for nonrenormalizable chiral terms based entirely on the 
field charges under the U (1) currents associated with the N= 2 world sheet supersymmetry algebra. We explicitly derive these 
rules for terms up to ninth order. 

Superstring theory is our best candidate for a uni- 
fied theory o f  all known interactions including grav- 
ity. In the last few years various approaches for con- 
structing superstring models have been presented 
[ 1,2 ]. In the fermionic formulation o f  the, heterotic 
string in four dimensions models with realistic fea- 
tures have been constructed [ 3,4]. In a recent paper 
[ 5 ], rules for the calculation o f  non-renormalizable 
superpotential terms have been presented and these 
terms for a specific model [3 ] have been explicitly 
derived [6,7] up to the N- -5  order. Although the 
method of  calculation is straightforward, the number  
o f  terms increases rapidly with the order. Since in 
these models some very high VEV's are invariably in- 
volved, one needs to consider N R  terms of  quite high 
order ( N ~  10) before one decides for the phenome- 
nological viability o f  the model. In this paper we 
present a very simple method for derivation of  gen- 
eral selection rules referring to arbitrarily high order 
of  NR terms. These rules are based on the N =  2 su- 
perconformal U ( 1 ) charges of  the states and they can 
be readily applied to any N =  1 supersymmetric 
model. Actually, in a recent paper [ 8 ] similar argu- 
ments were used in the case o f  the S U ( 5 ) × U  (1)  
model in order to consider possible higher order con- 
tributions to mass matrices. 

In the free fermionic formulation of  the heterotic 
string extra world-sheet fermions are introduced in 
order to cancel the conformal anomaly in four di- 
mensions [2].  The left movers are the spacetime 

fields X u, ~u and the 18 real free fermions x I, yl, 
tnz(I= 1, ..., 6), transforming according to the ad- 
joint of  SU(2  )6, and the right movers .~u and 44 real 
free fermions q~ ( a =  1, ..., 44),  in the usual litera- 
ture notation. In terms of  these fields the supercur- 
rent is 

Tv=gtuOXu+i ~ xIyIco'. (1)  
I 

A specific model is defined by a set of  boundary 
conditions for all world-sheet fermions. Depending 
on the boundary conditions some real fermions can 
be either complexified in left-left or right-right pairs 
or form nontrivial real fermion left-right pairs cor- 
responding to an Ising model. In the usual construc- 
tion we can choose a basis vector 

S =  {~ll#, X 1 . . . . .  X 6} , 

where the fields included are periodic and the rest an- 
tiperiodic. The left-moving fields x 1, ..., x 6 can be bo- 
sonized [ 5 ] 

1 
X//~ ( x l + i x 2 )  =exp( iSl2)  , 

1 
x/~ (x I - - ix  2) =exp ( - - iS l2 )  , 

1 X//~ (x3+ix 4) =exp(iS34) , (2) 

Elsevier Science Publishers B.V. (North-Holland) 227 



Volume 262, number 2,3 PHYSICS LETTERS B 20 June 1991 

l 
x/~ (x3 - i x  4) =exp(-iS34 ) , 

1 
X/~ (xS+ix 6) =exp(iS56) , 

1 
x/~ (xS--ix 6) =exp(- iSs6)  . (2 cont'd) 

Some of the remaining left movers can be bosonized 
as well. 

According to refs. [9,5] N = I  spacetime SUSY 
implies N= 2 superconformal invariance as well as the 
existence of an extra U j( 1 ) world-sheet current. Ac- 
cording to ref. [ 5 ] this current is expressed in terms 
of  Sl2, S34, S56 as 

J ( z )  =i0z (Sl2 ÷S34 ÷856) , (3) 

and the U j( 1 ) symmetry is extended to U( 1 )3 with 
the three U( 1 )'s generated by S~2, $34, $56. 

In a particular N= 1 supersymmetric model, the 
coupling of a specific superpotential term involving 
the chiral superfields ¢~i( i= 1, ..., N)  

~ d 2 0  ¢2~1 ...rib N (4) 

is proportional to the correlator 

( vIF V2F v3B ...VN)B ( 5 )  

where V~(V~) is the fermionic (bosonic) part of the 
vertex operator corresponding to the superfield q~,. 
Physical states are divided in two classes according 
to the sector they arise from: (i) the NS sector (un- 
twisted) and (ii) the R sector (twisted). According 
to ref. [ 5 ], the part of the vertex operators involving 
the bosonized fields (2) is 

V~_t) ~exp(ozS~2)exp(flS34)exp(;~S56) , (6a) 

V~_ 1/2) ~exp[ ( c t -  ½ )S,2]exp [ ( f l -  ½ )$34] 

×exp[ (~-  ½)$56] , (6a) 

with 

(a, fl, y)e{(1, 0, 0), (0, 1, 0), (0, 0, 1)} (7a) 

for NS fields, and 

(a,  fl, ~)~{(0, ½, ½), (½, 0, ½), (½, ½, 0)} (7b) 

for R fields, with the subscript ( - 1 ) or ( - ½ ) refer- 
ring to the ghost number. 

Of course, in order for the correlator (5) to be 
modular invariant the total ghost number should add 
up to - 2  which implies that the vertex operators 

B B V4 ... VN have to be picture-changed in the zero pic- 
ture according to 

V~o)(Z) = lira e¢(w)Tv(w)  V~_~)(z) . (8) 
w-~ z 

Following ref. [ 5 ] the contributing part of the super- 
current is 

T~ =exp( - iSl /)zt2 +exp( - iS34) z34 

+exp( -iS56)%6, (9) 

with 

i T/j= "~ (y io) i÷ iydof l )  . (10) 

Using (6) and (8), we find that the charge of a pic- 
ture-changed bosonic NS field is always (0, 0, 0) 
while for a R boson two contributions arise with 
charges { (0, -½, +½), (0, +½, -½)}, { (+½,0 , -½) ,  
( -½,0 ,  +½)}, { (+½, -½,0) ,  ( -½,  +½, 0)} foreach 
of the cases (7b). We note that we can introduce a 
simple vector notation for the state charges. We de- 
fine t$i ( i= l, 2, 3) 

61=(1 ,0 ,0 ) ,  62=(0 ,1 ,0 ) ,  63=(0 ,0 ,1 )  (11) 

and assign each vertex operator a subscript ie { l, 2, 
3} corresponding to the position of 1 in (7a) for a 
NS field or the position of 0 in (7b) for a R field, as 
shown in table I. This number to which we will refer 
as "category" together with the field type (R/NS) 
completely determines the field charges under S~2, $34, 
S56 as shown in table 1. The charges of the various 
types of vertex operators in this notation are shown 

Table 1 
Charges under S 12, $34, S56 for various types of vertex operators 
in vector notation. 

Field type Charge (a, p, ?) 

(NS)~_,) 6i 
(NS)/F(_,/2) ½(26i-1) 
(R)iB<_t) ½(1-6,) 
(R)~_,/2~ -½6, 
(NS)~<o) 0 
(R)~t0) ½ (1 - # s - 2 6 r  ), i' # i 
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in table 2, where we have used the notation i' for a 
variable with values different than i, which actually 
accounts for the contribution of the i' term of the su- 
percurrent in (9). 

Let us now start our analysis by examining the 
correlator 

( v F  ( -1 /2 )  V F  ( -1 /2 )  VB B B ~3 (-1) Vi4 (o)...Vi~ (o)) 
(12) 

corresponding to the superpotential coupling (4),  
using the following facts: 

(a) Due to the well known conformal field theory 
result the total charge of  the vertex operators in (12), 
under each of the three U ( 1 )'s, should add up to zero 
for the correlator to be nonvanishing. 

(b) Due to the N =  1 supersymmetry the correlator 
is independent of  which two fields we choose to be 
fermions ~ 1 

(c) Due to conformal invariance the correlator is 
independent of  which particular bosons we choose to 
picture-change ~1. 

Furthermore in our notation one can immediately 
verify the following identity: 

~, +t~j +t~k = 1 *--* i # j # k .  (13) 

We shall start with the N =  3 superpotential cou- 
plings and see what rules we get when using (a),  (b),  
(c). We have the following possible types of 
couplings ~e: 

(i) R v R~ R~: Vanishing of the total charge (a) re- 

"~ Possible field reorderings could give rise to a phase factor [ 10] 
but we are only interested in cases where the correlator (12) 
vanishes. 

~2 The N=  3 as well as some of  the N =  4 and N =  5 rules have 
also been derived in ref. [ 5 ] using a different method. 

Table 2 
Category assignment for various types of fields 
$34, $56 charges. 

according toSs2, 

Field type Fermionic charge Bosonic charge Category 

R (--½,0 ,0)  (0, ½, ½) 1 
(0 , - -½,0)  (½, 0, ~) 2 
(0,0, --½) (½, ½,0) 3 

NS ( ½ , - ½ , - ½ )  (1 ,0 ,0 )  1 
( - ½ ,  ½, - ½ )  (0, 1,0) 2 
( - ½ ,  -½,½)  (0,0, l )  3 

quires $~+ 6j + 6k= 1 which according to ( 13 ) implies 
i~ j~k .  

(ii) v v n. Ri Rj NSk. Vanishing of the total charge (a) 
requires - 216~- ½ 6j + 6k = 0 which implies i = j  = k. 

(iii) NS~VNS~R~: Vanishing of the total charge im- 
plies - r i - r j +  ½dk = 1. This is clearly impossible and 
thus couplings of this explicitly vanish. 

(iv) NSVNS~NS~: We have again ~ , + r s + r k = l  
which according to ( 13 ) implies i # j #  k. 

Similarly we have for the N =  4 NR terms ~2. 
(i) "iDFDFDBDB . l x j  Ix k Ix m . We obtain ¢~i"[-~j+~k+~m+2~m, 

= 2 which using ( 13 ) implies i=jv~ k= m # m'. 
• ' F F B B (11) R i RJ Rk NSm: Since the charge of the NS field 

in the zero picture is zero, we immediately get the 
tree level result iv~j# k. This implies that m should 
be equal to one of {i, j, k}. Assuming m = k  we con- 
sider the equivalent, according to (c), coupling 

F F B B R i R) NS,,R~ a n d  ge t  ~i"~j+q~k+2g~k,--2t~m= 1. U s -  

i ng  (13) and the previous results we find 6k, =rk. This 
is not possible because by definition k' ~ k, and thus 
this coupling vanishes. 

(iii) R~ v R~NS~ NSam: From the tree level results, we 
obtain i=j=k, but if we consider RiV RjF NSmB NSkB we 
get i=j=m. On the other hand from NSm F NSkV RiB Rjn 

we get 6 , ,+6k-½6~-½6j - r j ,  = 0  which is not com- 
patible with the previous two. Thus this coupling also 
vanishes. 

(iv) v F B n. Re NS~ NSk NSm. From the tree level result 
(iii) we find that this coupling also vanishes. 

( v )  v F B n .  NS~ NS~ NSk NSm. Using the tree level results 
(iv) for cyclic reorderings we get the incompatible 
relations i~sj~k, m ~ i ~ j ,  k # m # i .  Thus this cou- 
pling also vanishes. 

One can now repeat the above steps and derive 
constraints for higher order terms. 

Alternatively, we can prove some general theorems 
which will allow us to construct the selection rules by 
inspection. 

Theorem 1. A coupling of the type (R)i,...(R)~,, 
with il=i2 . . . . .  im#{im+l .... , iN}, N>_-3, is nonvan- 
ishing only if m = N mod 2, m # N. 

Theorem 2. A coupling of the type (R)i,. . .(R)i~ 
(NS)j, N~>3 with i1=i2 . . . . .  im=j¢{im+l . . . . .  iN} 

vanishes for m/> N -  2. 
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Theorem 3. Any pure NS coupling vanishes unless 
N= 3 ~3 

Theorem 4. Any coupling with n R and ( N -  n) NS 
fields, N> 3, vanishes for n = 1, 2, 3. 

Proof of  Theorem 1. The charge conservation (a) 
for this type of coupling implies 

N N 

Z 6~,~,+2 Z d , , , : , = ( N - 2 ) l .  (14) 
J =  l J = 4  

Assuming i~=i~ . . . . .  im=i¢{im+~, ..., iN}, this 
becomes 

N N 
m¢~i+ ~ ~ , ~ + 2  ~ 6 c , ~ , = ( N - 2 ) l .  (15) 

J = m +  1 J = 4  

Looking at the ith component we have m +  
2 ( . . . ) = N - 2 ~ m = N  mod2.  On the other hand, if 
m = N, (14) requires 

N~i + 2 (di,~4)+ ..,+ 6c ~uj ) --- ( N -  2) 1, (16) 

with {i '(4),  i~5),  "..,i'(N)} ~ i which fails to be satisfied 
in the ith component. 

Proof of  Theorem 2. Since a picture-changed NS 
field gets zero charge, one constraint for the coupling 
(R)~. . . (R)iu(NS)j  immediately follows from the 
(R)~I...(R)~u coupling and requires m = N  mod2,  
m ¢ N, according to Theorem 1, and thus m ~< N -  2. 
I f  m = N - 2  we consider the equivalent coupling 
(R )~_, (R )iu(NS )j(R ) , . . . (R )~u_2.Fromchargecon- 
servation we get 

t~i~m +t~i~_~) + (N-2)~i+2(~i , ,~  +...+6i,~_2> ) 

= ( N - 2 ) I + 2 6 j ,  (17) 

with {i(N),  i(N- ~), i'~j) } ~ i = i~ . . . . .  i ~U-2) =J, which 
fails to be satisfied in the ith component and thus the 
coupling vanishes. 

Proof of  Theorem 3. A pure NS coupling is of the 
form (NS), . . .  (NS)i,,. Charge conservation requires 
d, + 6~ + ~gs = 1 which implies i~ ~ iz ~ i3 according to 
( 13 ). Thus the N=  3 case is possible if all fields be- 

~3 Th i s  has  also been  p r o v e d  in ref. [ 5 ]. 

long to different categories. I f  N>  3, we consider the 
cyclic reorderings (NS) i4 (NS) i l (NS) i2 (NS) i s . . .  
(NS)~u and (NS)~(NS)i4(NS),(NS)~2...(NS)~u. 
They require i 4 ~ ij ¢ i2 and i3 ¢ i4 ~ ij respectively. 
These three constraints are incompatible and thus the 
coupling vanishes for all N>  3. 

Proof of  Theorem 4. For the n = 1 case we consider 
a coupling of the form Ri~ (NS) ~2..- (NS) ~u. Vanishing 
of the total charge requires - ½ti, +6~2 +6~3 = 1.1 as 
in the N =  3 case. This is clearly impossible. For the 
n = 2  case we have a coupling of the form 
RitRi2(NS)i3. . . (NS)iN requiring -½6.-½6~2+6~3 
=0  which implies il = i2= is. Since N> 3, we can then 
interchange i3 ~-~ i4 and get it =i2=i4. But if we then 
consider (NS) ~s (NS) ~, R ,  Ri~ (NS) ~5... (NS) iu, we get 

2t~i3 + 2t~i, - -  ~i2 - -  ¢~it - -  2t~i2, : 0 . ( 18 ) 

This, for il = i2 = i3 = i4, implies 6i2 = 6~2, and thus fails 
to be satisfied since i2¢ i2' by definition. For the n=  3 
case Theorem 1 requires one R field to each category. 
On the other hand Theorem 2 requires that no NS 
field belongs to the category with the maximum 
number of elements (one, in this case). Thus the n= 3 
couplings are also impossible. 

One can now proceed and obtain some constraints 
by considering Theorem 1 for a pure R coupling and 
Theorem 1 in conjuction with Theorems 2 and 3 for 
a mixed coupling. 

As corollaries one can easily show: 
(1) Any coupling of the form (R)i,(R),2 

(R)i3...(R)iM(NS)jl...(NS)jx with i2=i2 . . . . .  ira=i, 
m = M -  2, M>~ 3 vanishes if for some I ( I =  1, ..., K), 

j l--~ i. 
(2) Any coupling with four R fields of  the type 

(R)i,(R)g2(R)i3(R)~,(NS)~...(NS)iN is nonvanish- 
ing only if it = iz ¢ i3 = i4 ~ i5 . . . . .  iN. 

In order to prove Corollary 1, we first apply Theo- 
rem I, neglecting the picture-changed (NS) fields 
which give zero charge, and obtain that the maxi- 
mum allowed number of equal index R fields is 
m = M - 2 .  Then we apply Theorem 2 for each of the 
(NS) fields consecutively and obtain Jl¢ i, I= I, ..., 
K. Corollary 2 follows from the RgRjRkR,, result re- 
quiring i = j  ¢ k =  m in conjuction with Corollary 1. 

We can now consider specific types of higher order 
couplings. For N =  5 Theorem 1 gives that R~RjRk 
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R,,Rn is only possible if i = j =  k #  m # n, and the cou- 
pling RiRjRkRmNSn is possible for i = j #  k =  m # n ac- 
cording to Corollary 1. All other types of N =  5 cou- 
plings vanish according to Theorems 3, 4. At this 
point we note that we can introduce an easier nota- 
tion for the allowed couplings, showing the number 
of  equal index fields of  each type. In this notation we 
write the allowed (5R) couplings as [3R, 1R, 1R] and 
the allowed (4R) ( INS)  couplings as [2R, 2R, INs]. 
Using the above notation we present explicit results 
following from the use of  Theorems 1, 2, 3 and 4 for 
terms up to N =  9, in table 3. Some comments are now 
in order about how one is to read these results. Table 
3 contains the field partitions in the three categories 
which lead to nonvanishing couplings for the various 
types of couplings. All partitions not included in ta- 
ble 3 lead to explicitly vanishing couplings. Further- 
more partitions indicated are orderless. That means 
that if [nl, n2, It3] is allowed, then [nl, n3, n2], [n2, 
nl, n3], [nz, n3, nl],  [n3, nl, n2], [n3, n2, nl] areal-  
lowed too. We must also note that in case the number 
of  NS fields indicated is less than the total number of  
NS fields, the rest of  the NS fields can be freely dis- 
tributed to the three categories except the one which 
indicates 0ys. For example, in the box corresponding 
to the N =  9 coupling with 6 R and 3 NS fields we 
write [ 4R + 0NS, 2R, OR ] indicating that the couplings 
[4R, 2R, 3NS], [4R, 2R-I- INS, 2NS], [4R, 2R4-2NS, INS], 

[ 4R, 2R -]" 3NS, 0 ] are allowed. 
Let us now summarize our results. For N =  1 super- 

symmetric models built in the free fermionic formu- 
lation one has to choose six of the left-moving real 
fermions to be bosonized forming three U ( l ) ' s .  
Physical states have specific charges under these 
U(  1 )'s and can be divided in three categories ac- 
cording to these charges. We find that some general 
selection rules associated with type {R, NS} and the 
category { 1, 2, 3) of  the involved fields can be de- 
rived. More specifically, for any N~> 3 superpotential 
coupling 

( i )  A pure NS coupling exists only at N--3  with 
each field of  different category. 

(ii) A pure R coupling of order N partitioned as 
[ HI, /'/2, 1"/3 ] to the three categories vanishes unless if 
ni = N mod 2 and n i # N. 

(iii) Any coupling with n R and (N-n) NS fields, 
N>  3, vanishes if n ~< 3. 

(iv) A coupling of order N >  3 involving some R 
and 1 NS field is nonvanishing only if the pure R part 
is nonvanishing according to (ii) and the NS field 
does not belong to the category with the maximum 
allowed number of elements. 

(v)  Any coupling with 4 R and ( N - 4 )  NS fields 
vanishes unless if the associated fields are divided as 
[2R, 2R, (N--4)NS] in the three categories. 

(vi) For the remaining coupling types, involving 

Table 3 
Field partitions to the three categories which lead to nonvanishing superpotential couplings up to the ninth order. 

3 [1R, 1R, 1R] [2R+ INS, 0, 0] -- [INs, INS, INS] 

4 [2R, 2R, 0] -- -- 

5 [3R, IR, 13] [2R, 2R, INs] -- 

6 [43, 2R, 0] [3a, 1R+ INS, 13] [2R, 2R, 2NS] 
[2R, 23,2R] 

7 [53, IR, 1R] [4a, 2R, INS] [3R, 13+2NS, 13] [23, 23, 3NS] -- 
[33, 3R, 1R] [4R, 2R+ INS, 0] [33, 13+ INS, 13+ INS] 

[23, 2~, 2R+INs] 

8 [6a, 23, 0] [53, 1R+ INS, 1R] [43, 23, 2Nsl [3R, 13, 13+3NS] [2a, 2R, 4NS] 
[4R, 43, 0] [33, 3R, 13+INs] [4R, 23+lNs, INS] [3R, 13+ INS, 1R+2NS] 
[4R, 2R, 23] [33, 3R+ INS, 1R] [43, 23+2NS, 0] 

[23,23,23] 

9 [7R, 1R, 1R] [6R, 2R, INS] [5R, 1R+INs, 13+INs] [4R+0NS, 23, OR] [3R+0NS, 1R, 1RI 
[5R, 33, IR] [63, 23+ INS, 0] [5R, 13, 1R+2NS] [2R, 2R, 23] [2R, 2R, 2R] 
[3R, 3R, 3R] [4R, 4R, 0R] [33,3R, IR] 

[4R, 2R, 2R] 

[23,2R, 5NS] 
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bo th  R and  m o r e  than  1 N S  field, rules ar is ing f r o m  

the  c o m b i n a t i o n  o f  ( i i )  and  ( i v )  can  be  cons t ruc ted .  

Explici t ly ,  the  rules for  al possible  coupl ing  types 

up to N =  9 are p re sen ted  in table  3. 
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