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Abstract 

We construct and analyze an W(6) X SU(2) GUT. The model is k = 1 string embedable in the sense that we employ 

only chiral representations allowed at the k = 1 level of the associated Kac-Moody Algebra. Both cases SU(6) X SU(Z), and 
SU(6) X SU(2), are realized. The model is characterized by the SU(6) X SU(2) + SU(4) X SU(2) X SU(2) breaking scale 

M,, and the SU(4) X SU(2) X SU(2) --) SU(3), X SU(2), X U(l), breaking scale M,. The spectrum bellow MR includes an 
extra pair of charge-l/3 colour-triplets of mass M, I MR that does not couple to matter fields and, possibly, an extra pair of 
isodoublets. Above M, the SU(6) and SU(2) gauge couplings always unify at a scale which can be taken to be the string 
unification scale M, - 5 X 1017 GeV. The model has Yukawa coupling unification since quarks and leptons obtain their 

masses from a single Yukawa coupling. Neutrinos obtain acceptably small masses through a see-saw mechanism. Coloured 
triplets that couple to matter fields are naturally split from the coexisting isodoublets without the need of any numerical fine 

tuning. 0 1997 Elsevier Science B.V. 

1. Introduction 

Superstring Theory [l] is at present our best can- 
didate for a unified theory of all particle interactions 
being a consistent theoretical framework that incor- 
porates quantum gravity and supersymmetric gauge 
theories [2]. Unification takes place at energies close 
to the Planck scale while at lower energies gauge 
interactions are described in terms of an effective 
field theory whose spectrum consists of the massless 
string modes. From the low energy point of view the 
Standard Model and its N = 1 supersymmetric ex- 
tension, the Minimal Supersymmetric Standard 
Model (MSSM), can be naturally embedded in a 
Grand Unified Theory (GUT) with interesting phe- 
nomenological and cosmological consequences. 
GUTS [3] can successfully predict sin20,, fermion 

mass relations, charge quantization as well as pro- 
vide a mechanism to explain the baryon asymmetry 
of the Universe [4]. However, in the context of 
quantum field theory no severe restrictions exist on 
the gauge group or the matter content of a GUT 
apart from the requirement that it should accommo- 
date the MSSM. Thus a lot of possibilities arise 
including minimal SU(5) and its extensions [5], vari- 
eties of SO(10) [6], E(6) models [7] etc. 

Accommodating a GUT in the framework of Su- 
perstring Theory ‘, or more precisely assuming that 

’ The term GUT is used here in a loose sense for a gauge 

model with gauge group G 1 SU(3)X SU(2)X U(1) which accom- 

modates the MSSM particles and displays partial unification 

and/or correlation of the standard model group gauge factors. 

0370-2693/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved. 
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the GUT is &he low energy effective field theory of a 

four dimensional heterotic superstring compactifica- 
tion, imposes serious restrictions on the GUT spec- 

trum. For gauge groups realized at level k = 1 of the 

World-Sheet Affine Algebra, only the chiral multi- 

plets in the vector and antisymmetric representations 

of N(n) groups and the vector and spinor of SO(n) 

groups are massless. The absence of adjoint scalars 
limits the possibilities of breaking to the MSSM 
through the Higgs mechanism and diminishes the 

number of candidate GUT models. Apart from this 
serious restriction, superstrings offer a new possibil- 

ity. The GUT gauge group does not have to be 

simple in order to guarantee unification. Semi-simple 
or product groups are equally acceptable since string 

theory takes over the job of gauge coupling unifica- 
tion. 

Historically the first GUTS that were studied as 

candidate low energy superstring effective models 

were the maximal E(6) subgroups [8] as they arise 
naturally in the context of Calabi-Yau compactifica- 

tions [9-l 11. A typical example of such a model is 

the SU(3) X SU(3) X SU(3) GUT 1121 while other 
possibilities as SU(6) X U(l) have also been consid- 
ered [13]. Soon it was realized that SO(10) sub- 

groups were also possible in the context of Orbifolds 
[14,1 I] or in the free-firmionic formulation [15]. 

Two typical GUT examples, namely the “flipped- 
SU(5)” [16] and the supersymmetric Pati-Salam 

model [ 171, were explicitly constructed in the frame- 

work of the Fermionic Superstrings [ 18,191. Standard 

Model-like alternatives have also been explored [20]. 

Recently, a new the possibility has been explored, 
namely GUTS realized at the k L 2 level of heterotic 
superstring compactifications [21 I. Some generic fea- 
tures of these models have been presented in [22,23]. 

Higher level models allow the presence of adjoint 
chiral superfields and thus the number of the candi- 

date GUT gauge groups is enhanced. Although some 
explicit superstring models have been presented 1241, 
there are still some problems to overcome [22,23,25]. 
Such is the absence of certain couplings. For in- 
stance, the remnants of the GUT breaking adjoint 
Higgs, an isotriplet and a colour-octet, remain light 

to all orders in perturbation theory [22,25]. 
Another issue raised in the framework of the 

Superstring embedding of the MSSM is that of the 
“unification mismatch”. Assuming MSSM to hold, 

low energy data indicate gauge coupling unification 

at a scale Mx N 1016 GeV 1261 more than one order 
of magnitude below the string scale M,* N 5 x 10” 

GeV which is the typical string unification scale. The 

prospects to fill this gap by threshold corrections due 

to the infinite tower of massive string modes [27,28] 

seem rather restricted [29] as explicit calculations in 

superstring models show that such thresholds are 
very small [30]. This could be taken as an indication 
for the existence of intermediate scales in which 
extra matter states become massive and their thresh- 

olds increase the coupling unification scale up to M, 

[31,32,25]. One is thus motivated to incorporate this 
additional feature in a candidate GUT model. 

In the current state of elaboration of String The- 
ory, the string vacuum is not uniquely determined 

and the various gauge groups appear on equal foot- 
ing. It is hence interesting, from the low energy point 

of view, to classify all gauge models satisfying the 

known string constraints and see whether they can 
meet the criteria imposed by low energy data and at 
the same time look for signatures that distinguish 

among them. 
As is well known, all quark and lepton fields can 

be accommodated in the 27 representation of E(6) 
together with a pair of isodoublets suitable to serve 

as electroweak Higgses and a pair of charge + f 
colour-triplets. Among the maximal subgroups of 

E(6) we find SU(6) X SU(2), a regular subgroup 
which apart from [33] has not received much atten- 

tion in the literature. Decomposing the 27 under 

SU(6) X SU(2) we get [34] 

27 = (%,2) + (15,l) 

where 15 is the two-index antisymmetric representa- 
tion of SU(6). In what follows we shall construct a 

k = 1 string embedable SU(6) X SU(2) GUT using 

chiral superfields in the (6,2) and (l&l) representa- 
tions only. Two distinct ways of embedding the 
standard model group in SU(6) X SU(2) arise de- 
pending on whether we identify the electroweak 
SU(2), with the GUT SU(2) factor or with the 
SU(4) x SU(2) subgroup of SU(6). In the latter case 
we have an SU(6) X SU(2), model while in the 
former an SU(6) X SU(2), model. Both cases SU(6) 
x SU(2), and SU(6) X SU(2), are realizable. Apart 

from the GUT scale M, of SU(6) breaking, the 
model is also characterized by the extra scale of 
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SU(2), breaking MR. Below the scale MR the spec- 
trum contains an extra pair of coloured triplets of 
mass MI s MR. The W(6) and W(2) gauge cou- 
plings always meet at energies above M, introduc- 
ing an additional scale which can always be taken to 
be the string unification scale MS N 5 X 1017 GeV. 
In addition these models have some other very inter- 
esting features. The electroweak Higgses, together 
with extra charge-l/3 colored triplets, participate in 
the same representations that contain quarks and 
leptons. These isodoublets and colour-triplets also 
come in family replicas. Despite that, the triplet- 
doublet splitting can be achieved naturally without 
the need of any numerical fine tuning. Quark and 
lepton masses arise from a single Yukawa coupling, 
a cubic interaction of matter superfields, just as in 
E6, despite the fact that matter fields come in a 
reducible representation. Thus, SU(6) X SU(2) dis- 
plays Yukawa coupling unification. In the case of 
one pair of Higgs isodoublets the mass relations 
nr,cotp = m,, = mT are true and imply strong con- 
straints on m,, tan/3 [36] and the various supersym- 
metry breaking parameters [37]. 

2. Symmetry breaking and model building 

Decomposing the 15 representation under SU(4) 
X W(2) X U(1) c W(6) we obtain - 

15 = (1,1,4) + (6,1,- 2) + (4,2,1) 

Thus, it is clear that the GUT symmetry breaking 
SU(6) X SU(2) --f SU(4) X W(2) X SU(2) can be 
achieved with a non-zero v.e.v. of (l&l) + (15,l) in 
the D-flat direction ((1,1,4)) = ((l,l, - 4)). The de- 
composition of the adjoint 350f SU(6) under SU(4) 
X SU(2) X U(1) takes the form 35 = (l,l,O) + 
(1,3,0) + (15,1,0) + (4,2,- 3) + @,2,3). This helps 
to see that the tetraplets in 15will be absorbed while 
the sextets (6,1, - 2), (6,1,2) and the singlet combi- 
nation (1,1,4) + Cl,&- 4) will survive the Higgs 
phenomena. Nevertheless, cubic superpotential cou- 
plings 

(15)3 = (6,1,- 2)‘(1,1,4) + (4,2,1)‘(6,1,- 2) 

while not spoiling F-flatness, can give the sextets a 

mass. The lirst stage of symmetry breaking being as 
described, two possibilities arise as we move further 
down. 

a) An SU(6) X SlJ(2), model. 
The desired breaking pattern down to the standard 

model gauge group is 

SU(6) X SU(2)L -+ M, SU( 4) X SU( 2) R X SU( 2) ,_ 

+ M,SU(3),X U(l),XSU(2), 

As we described above, the first stage of symmetry 
breaking requires a pair of Higgses 2 

Z(EI) + F(I5,l) = (NH)(1.1,1) 

+ ( A;, + A&.i,i) + ( Et; + N; + Dfi + U,c)(;i,z,i~ 

+ conj . reps. (1) 

A D-flat v.e.v. (NH) = <x” > = V, breaks SU(6) X 

SU(2), to SU(4) X SU(21, X SU(2),. The surviving 
states are the sextets ( Af, + ~$,)(~,~i~. C& f &&i.i) 
plus a singlet combination NH + NH. 

The second stage of symmetry breaking down to 
the standard model gauge group can be achieved 
introducing an additional pair 

+ conj . reps. (2) 

A D-flat v.e.v. ( vi > = <FH > = V, breaks SU(4) X 

SU(2), down to SU(3), X U(l), . The nine surviv- 
ing states are the sextets (8; + $,H)C6,1,1), @H 

+ %)(6.1,1) and the singlets (n,)(,,,,,), @,&i,t,i), 
which do not participate in the symmetry breaking 
anyway, a pair of colour-triplets dk, & and a 
combination of singlets vi + zH. 

The Higgs sector superpotential, suitable for the 
desired symmetry breaking pattern will be taken to 

’ We in&oduce here a mixed notation where the SU(4)X 

W(2), X W(2), C SU(6) X SC&?) quantum numbers are shown 

explicitly while the symbols for the fields indicate Standard 

Model quantum numbers in the usual notation: Ac,Dc,6’ --) 
(~,l,~), UC,uC+($l,-~f), EC,eC+(l,l,l), N,n,vC-+(l,l,O), 
h,L,q + (1.2, - +> etc. 
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be the cubic superpotential (invariant under the dis- 
crete symmetry H + - H) 

W, = AcTH2 + m 

which leads to the Higgs mass terms 

(3) 

(w,),,,,=hV,6~6,+hV,d~A, 

+Xv,s;s, + xv,- + . . . (4) 

Two pairs of coloured triplets, namely 6,) 8; and &, 

G, obtain a mass of O(Mx) and two pairs, namely 

dh, A, and c, i&, obtain a mass of O(M,). Below 
MR, apart from the four singlet states nH, G, NH 
+G and vi+%, the renormalizable superpoten- 

tial interactions in (3) leave the pair of coloured 

triplets Af,, 3 massless. Effective non-renormaliz- 

able terms could be added to (3) which would gener- 

ate masses for these states. These could arise due to 
the exchange of massive states present in all string 

constructions. Their exact form depends on the de- 
tails of the specific string model. A necessary con- 

straint on these terms is the requirement that they 

should not spoil F-flatness. Note however that viola- 
tions of F-flatness that lead to scalar masses of 

O(TeV) can be tolerated since the supersymmetry 
breaking is of that order. This implies (F)/M< 

O(TeV) or (F) I (10” GeVj2. High order non-re- 
normalizable terms of the form (Z%?“/M 2n- 3 lead 

to F*(M.JM)2”-’ M2 and satisfy this constraint if 

04x/M)‘“-’ I 10-14. For M,/M N 0.01 this cor- 

responds to n 2 4. Writing down the contents of 

such a term, gives 

AW, = (~GT%)“/M~“-~ 

This corresponds to an intermediate mass M, N 
(M,/M)2”-2M for the triplets Afi, z and the - 
singlet NH + NH. The generated intermediate mass is 
constrained to be M, N (M,/M)‘“- 2M I 
O(lO-‘“)M’/M,. For M,/M N 0.01, this implies 
M, s O( lo6 GeV). For M,/M N 0.1, M, _< 
0(105 GeV). Note also that, although the product in 
(5) can arise either as (15ji.(15)‘j or as 

(15),j(15),,(15),,E ijklmn(15)pq(~rs(~)f~~q~.~,~, 

only the first case gives rise to masses. It should be 
remarked however that the exact form of the non-re- 

normalizable terms depends on the details of the, 
possibly, underlying string model and the above 

presented mechanism that supplies the remaining 

colour-triplets with an intermediate mass, although 

perfectly consistent in the framework of the GUT, 

serves as an existence proof of phenomenologically 

desirable scenaria that can be realized within the 

string model. Summarizing, we see that introducing 

the Higgses Z, 2, H, R we can achieve the 
successive breaking SU(6) X SU(2), -+ SU(4) x 
S11(2), X XJ(2), --+ SU(3)c X U(l), X SU(2),. Be- 

low M, the two pairs of Higgses contribute to the 
spectrum of the model with two sextets (A, + 

Ai&,I.I) and conjugate states, two tetraplets (uh + 

df,+ef,+ v,$)(~~,) and conjugate states, and the 
’ ‘- 

three singlets nH, nH, NH + NH. Below MR only the 

coloured triplets A;, z survive, together with four 

singlets nH, G, 
- 

NH + NH, vi + 3. The coloured 

triplets obtain a mass at the lower scale M,. 
Quarks and leptons can be accommodated in the 

(E,l) + (6,2) representation in three family replicas 

4(%1) = 4r.r~) + (6’ + ~)(6.1,,) 

+ ( e“ + vc + d’ + u(‘)(~,~,~) (6) 

$(6,2) = (h + h”) (1,Z.Z) + (4 + Q(4J.2, (7) 

Notice that together with quarks and leptons we have 
pairs of isodoublets, suitable as electroweak Higgses 
h, h’ and coloured triplets 6, 6’ in three family 

replicas too. We next introduce the matter self cou- 

pling 

wM = Y’ jk 4i *j *k 

= qjk( qjd,“h, + q,uFh; + l,efh, + ljvfhi 

+ ;cYiqjqk + S;qjl, + N,hjh;) (8) 

where f.jk = yljk + qkj. Quark and lepton masses 
arise exclusively from the single Yukawa coupling 
cjk. The fifth and sixth term in (8), together with a 
SS’ mass term for the extra colour-triplets, give rise 
to the D = 5 operators qqqZ that violate baryon 
number and can induce proton decay [35]. These 
operators are controllable if the SiSr mass is of 
O(M,). This can be achieved if we introduce the 

couplings 

AW, = ~hijX~i~j + $‘ijZ”$i$j (9) 
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which give the terms 

Aij( N,6,6j’ + e,“ufA, + vfdj”A, + uFd;Af, + . ..) 

+ Xij( N&h; + qiqiAH + gilid;) (10) 

Masses of O( AV,) and O(A’V, > correspondingly 
can now arise for the coloured triplets and isodou- 
blets. Note that both Aij and Aij couplings are 
symmetric and A\j must have at least one zero 
eigenvalue. Baryon number violating operators of 
D = 5 of the type eCucucdC, uCuCdCdC and qqql 
would also appear if a mass term A,-Af, were 
present. This is not the case however since Af, 
mixes only with q which does not mix with matter 
fields. Nevertheless, D = 6 operators of the form 
hij&,(ufdfq~I~), generated by the exchange of a 
scalar triplet A, or Aj,, are still possible and can be 
dangerous in the case of an intermediate triplet mass. 
The presence of these operators depends on the 
structure of the coupling matrices hijA’,,. For in- 
stance, in the case of diagonal couplings, a simple 
condition like A,i = 0,j = 1,2 would be sufficient to 
render these operators harmless without affecting the 
massiveness of &,a:. In a general situation this 
problem can be evaded by requiring a more compli- 
cated texture structure for Aij and/or A;,. Another 
more drastic solution is to set A;,,, = 0. In this case 
no such operators exist but all three pairs of isodou- 
blets are left massless. This is not a big problem 
since their masses can be generated by non-renor- 
malizable terms. For example the term $H4~i$j 

leads to a AyjwhihS isodoublet mass matrix 
without introducing any unwanted couplings. 

Expressing the Yukawa interactions in terms of 
the Higgs mass eigenstates, we obtain 

a = 1,2,3 (11) 

It is clear that in the case of only one pair of 
massless Higgses, since there is a single, generation 
dependent, Yukawa coupling, we have the fermion 
mass relations mb = m,cot p = mT which imply the 
prediction of m, [36] as well as strong constraints on 
tan@ (tanp 2 40) and the susy-breaking parameters 
[37]. In the case that a second pair of isodoublets is 
massless and obtain v.e.v.‘s, there is no simple mass 
relation unless there is v.e.v. alignment. Depending 

on the details of the specific string model or possibly 
existing family symmetries, the Yukawa couplings 
for the light generations could arise as effective 
non-renormalizable terms with a suppressing factor 
((S)/Mjn involving the v.e.v. of a singlet field S 
1411. Nevertheless, an alternative to such a scenario 
would be to keep more doublets light and impose a 
hierarchy on the available many v.e.v’s. Non-renor- 
malizable terms can also generate the required large 
Majorana mass for the right-handed neutrino. Intro- 
ducing 

y:‘&pjFf/M 

we are only led to 

(12) 

(13) 

Depending on the effective non-renormalizable cou- 
pling Y,y this term can lead to acceptable neutrino 
masses through a see-saw mechanism. 

b) An SU(6) X SU(2), model. 
The first breaking W(6) X W(2), + SU(4) X 

W(2), X W(2), occurs exactly as in the previous 
model using a pair of Higgses (15,l) + (i?+,l). Nev- 
ertheless, due to the different position of W(2), 
their content looks different in terms of standard 
model quantum numbers. Again we introduce 

-- 
Z?( 15,l) + Z(15,l) 

= wJW.1~ + ( 4 + 4 )6.1.1) 

+ ( b + QH h.2.11 + COG. reps. ( 14) 

A D-flat v.e.v. (NH > = (wH > = V, breaks the gauge 
group to W(4) X W(2), X W(2),. The coloured 
triplets A,, AL, &, i$, and a combination of 
singlets, namely NH + mH, survive the Higgs phe- 
nomena. 

The second stage of symmetry breaking down to 
the Standard Model group is achieved introducing 

H(U) + R(U) = ( Q, + 7; Jo.2.2) 

+ ( dT, + G + G + $&s,i,z~ 

+ conj . reps. (15) 

A D-flat v.e.v. ( vi > = (zH > = V, breaks the gauge 
group down to W(3), X W(2), X U(l),. In addi- 
tion to v~, Q;, hH, TH which are not affected by the 
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Higgs phenomena, d;, & and the singlet vk + 2; 
survive. 

The Higgs sector superpotential will be taken to 

be again a cubic one of the form 

W, = AEH2 + IL%+ (16) 

which leads to the Higgs mass terms 

W”)mass = AV, 77~ T& + AV, A, dfi + conj . reps. 

(17) 

Two pairs of Higgs isodoublets become massive at 

M, and two pairs of coloured triplets, namely A,, 
df, and &, G become massive at MR. Below M, 

we are left with a massless pair of colour-triplets 
c A;, A,. Following the philosophy of the previous 

model we can expect that non-renormalizable terms 
L2?~n/M2n-3 will give rise to a mass of interme- 

diate value M, _ lo6 GeV or smaller for the pair 

A&, $ as well as for the singlet NH + NH. 
The matter fields are introduced as 

4(15,1) = Ni.1~) + ( 6 + 8c)(6,1,1) 

+ (1+ c7)(4,2,1) 

G(O) = (h + q1.m 

(18) 

+ (d’ + uc + ec + v“)(s,JJ) 09) 

in three family replicas. The Yukawa terms are 

obtained from 

wM = & jk +i +j *k (20) 

= Ejk( lieTh, + liuFhi + qidJh, + qiuJh; + N,hjhi 

+ Sid;v; + 6&e, + S;dfu;) (21) 

Let us now introduce the Higgs-matter interactions 

AW, = AjjZ’&pj + h;jZ’+i+j 

=hij(N,6i6,‘+ A,qiqj) 

+ Xij( NH hi hj” + A, d:u; + A, ufe,” 

+ A; dfuf ) (22) 

Note that the couplings hi,, A>j are symmetric. 
These couplings are sufficient to render all triplets 
Si, SF massive with a mass of O(M,). Of course h;j 
has to be restricted in family space in order to obtain 
the desired number of massless pairs of eiectroweak 
Higgses. The D = 5 operators that violate baryon 

number and can arise from W, are going to be 

sufficiently suppressed if Si, SF have a mass of 

O(M,). On the other hand, since A, and Af, do not 

mix, there is no danger of any D = 5 operators 
arising from AW,. Note that A, obtains its mass 

from di which does not mix with matter. D = 6 
operators involving the exchange of a A, scalar are 

also possible and could be dangerous for low MR. 
The related discussion in the previous model applies 

also here. If the condition Aij = 0 is imposed in 

order to circumvent this problem, the non-renormal- 

izable term $+H4rlr,Gj can be invoked to generate 

w masses for the unwanted doublets. 
Finally the Yukawa interactions are identical to 

those of the previous model and all points concern- 
ing Yukawa coupling unification and mass relations 
are the same. Again, in order to obtain acceptable 
neutrino masses, the non-renormalizable interactions 

have to be invoked. This term generates a Majorana 

mass matrix for the right-handed neutrinos of order 

y,; V,2/M. 

3. Renormalization group analysis 

As follows from the previous analysis the W(2), 
scale MR is a free parameter while the triplet mass 

scale M, depends on the details of the model and in 
particular of the non-renormalizable contributions in 
the superpotential. In addition the W(6) X W(2), 

model, denoted as model (I) from now on, and the 
SU(4) X SU(2), model, denoted as model (II), are 
indistinguishable bellow MR where we have an 

SU(3), X W(2), X U(l), theory with an extra 
charge- l/3 colour-triplet pair of intermediate mass 
M,. In what follows we shall assume both MR and 
MI as free parameters and derive the constraints 
imposed on them when demanding SU(6) and SU(2) 
coupling unification at the string scale MS = 5.27 X 
g, x 1017 GeV. For simplicity we consider here only 
the case of one or two (NH = 1,2) massless isodou- 
blet pairs below MR and leave the more complicated 
analysis of extra intermediate mass doublets for a 
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future publication [38]. Integrating the renormaliza- 
tion group equations from M, up to M,, we obtain 

+ (23) 

Where i = 1,2,3 and (Y,, cu2, a3 stand for the values 
of the three gauge couplings at M,. The RG coeffi- 
cients take up the values b, = -3, b, = NH, b, = 6 
+ q, h3 = 1, & = O,fi, = f At an energy scale 
p 2 MR we have an SU(4) X W(2), X W(2), the- 
ory in both cases (I) and (II). Note that the particle 
content for (I) and (II) is the same. The three gauge 
couplings are given by 

a;‘( p) = a;‘( MR) + (24) 

where i = 4,2 R, 2L. The coefficients take up the 
values b4 = - 2, b,, =N”, bzR = 4 + NH. The 
matching conditions at MR are 

%( MR) = %( MR) (25) 

a;;( MR) = $a;‘( MR) - +a,‘( MR) (26) 

%L( MR) = a2( MR) (27) 

As J.L moves away from MR two possibilities arise. 

If ff2R meets first with CQ, we have model (I). In 
the opposite case of ozL meeting first with Q~, we 
have model (II). From the point of view of the 
renormalization group analysis, the low energy data 
as well as the free parameters of the theory, MR and 
M,, determine which case is realized. 

Let us first study the case of model (I) which is 
defined by 

a6(MX) = a2R(MX) = d”X) 

M, stands for the SU(6) X W(2) breaking scale. 
Manipulating all previously displayed equations, we 
obtain 

1 
- 

2rr(6 + NH) 

The inequality in (28) defining model (I) is equiva- 
lent to 

-(6 +NH)o;l + iln 

(30) 

At a scale p 2 M, the W(6) X W(2), gauge 
couplings are 

a;‘( p) = a;‘( M,) + 

Where i = 6,2 L. The coefficients take up the values 
b6 = - 1, b,, = 3. The fact that b, < 0 and b,, > 0 
together with (28) imply that there exists always a 
scale p = MS > M, at which the SU(6) and W(2) 
couplings become equal 

%( MS) = %( MS) = os 

Solving for it, we obtain 

(32) 

+ 
(2-NH) 

& 14 h/M,) (33) 

while the value of the unified gauge coupling is 
given by 

as -Iza-l 
3 + -&hi: + ilnM, 

Z 25- M, 

1 MI 

+ 2z Z 
(34) 

The case of the model (II) is obtained for 

a6 = %L( MX) = %( MX) r a2R( MX) (35) 
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and the inequality (28) amounts to F 2 0. The GUT 
scale is given by 

- 

The SU(6) X SU(2), gauge couplings at a scale p 2 
M, are given by the corresponding expressions for 

model (I) with the replacements b6 + b& = - 3 and 

bkL + biR = 9. These couplings always meet at a 
scale MS defined by 

(36) 

c&K) = MMs) = as (37) 
The scale MS is obtained to be 

$1, = &( a;’ - (Y;‘) - ---&h(M,/Mz) 

(6-h) 
+ 24T 14 MX/MZ) 

- $4 M/z/M,) (38) 

while the formula for the unified gauge coupling 

takes the form 

-I _-I 
3 MS 1 M, 

ffs 3 + GlnF + GlnF 
Z Z 

- kln$ 
Z 

(39) 

Given M, and MR and the values of the low energy 
parameters we can now check whether F < 0 or 

‘%,0(k) 

Fig. 1. The intermediate scale log,,(M,) in the case NH = 1,2 as 

function of log ,O(MR), for (Ye = .I 1 (dashed line) and LY~ = 13 
(continuous line). 

Fig. 2. The GUT scale log,,(M,) in the case NH = 2 as function 

of loglO( for (Ye = .I 1 (dashed line) and (Ye = .I3 (continuous 

line). 

F > 0. In the former case we are in Model (I) and we 

can use (291, (331, (34) in order to solve for M, and 
MS as well as LYE. In the latter we are in model (II) 

and we must use (37), (331, (40) instead. If we 
further assume that the unification scale MS is the 
string scale MS = 5.27 X g, X 10” GeV we can ex- 

press M,, and subsequently M, and cys, as a func- 
tion of MR. 

In Figs. 1, 2 and 3 we give plots of MI and M, 

as functions of log(M,) for MS = 5.27 X g, X 10” 
GeV in the cases NH = 1,2 for both models (I) and 

(II). As indicative input values we have taken those 

of [39], while for cr3(Mz) we have utilized the range 
0.11-o. 13. We shall not worry about the uncertainty 

in these values since we intend here to investigate 
the generic dependence on the parameter MR instead 

of obtaining a precise determination. The allowed 
region is the one between the dashed and the full 
line. As it can be seen in the figures there is a wide 
range of MR and M, values for which both versions 

of the model can be realized. Namely, for NH = 1 
model (I) requires ’ 1O’5.8 GeV < MR < 10’6.3 GeV 
and model (II) 10’4.6 GeV < MR < 10’6.’ GeV while 
10” GeV <M, < 10” GeV. For NH = 2, model (I) 
demands 10i5.’ GeV < MR < 10’6.4 GeV and M, - 

b(GeV) and model (II) lOI GeV < MR < 1O’5.8 GeV 
with lo3 GeV <M, < 10s GeV. From Fig. 1 it can 
be seen that the intermediate scale M, in the case of 
model (I) is either very small (NH = 2) or very large 

3 We have taken into account proton decay constraints on M,. 
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Fig. 3. The GUT scale log,,(M,) in the case NH = 1 as function 

of log,,(M,), for (Ye = .I 1 (dashed line) and a3 = .13 (continuous 

line). 

(NH = 1). The previously proposed mechanism for 
generation of M, through the specific non-renormal- 
izable terms (51, can be realized for MR u 10’4-10’5 
GeV, MI N lo6 GeV in the case of model (II). Note 
however that we have left for future study [38] the 
more complicated case of an intermediate scale mass 
for the second pair of Higgs isodoublets which could 
lead to acceptable MI within the range of the pro- 
posed mechanism for both models. 

4. Brief discussion and conclusions. 

We have constructed and analyzed SU(6) X Sz1(2) 
GUT. Depending on the identification of the elec- 
troweak &Y(2), gauge group with the GUT SU(2) 
factor or with the SU(2) c SU(6) two possible mod- 
els, SU(6) X SU(2), and SU(6) X Su(2),, arise. Both 
models can accommodate the MSSM particles, as 
well as the gauge symmetry breaking Higgses, in 
representations allowed by the k = 1 superstring em- 
bedding. The models possess several characteristic 
features of their own. From a group theoretic point 
of view they are unique since only (15,l) and ($2) 
representations are sufficient to accommodate matter 
as well as all the Higgses required for symmetry 
breaking. In contrast, flipped SU(5) or minimal 
SU(5) need (lO,l), 6, - 3) and (5, - 2) or 10, 5 and 
24. The models are characterized by an intermediate, 
nevertheless high, scale MR. The gauge couplings 
above the unijication scale M, always intersect at a 

scale MS which for a range of values of MR can 

play the role of the string unification scale. Thus, for 
these models there is no unification mismatch prob- 
lem. The particle content of the resulting SU(3)c X 
SU(2), X U(l), theory bellow MR is that of MSSM 
with an extra charge-l/3 colour-triplet pair of mass 
M, and, possibly, an extra pair of electroweak 
isodoublets. Remarkably the intermediate scale M, 

can be relatively small as it can be explicitly seen in 
the framework of the proposed mechanism for the 
extra triplet mass generation. 

The question of the generation of the scale MR 

and M,, a general question addressing all scales that 
arise from flat directions, could in principle be stud- 
ied in the framework of the softly broken theory. 
There, the supersymmetry breaking in conjunction 
with non-renormalizable terms can stabilize the re- 
lated vevs and give rise to intermediate scales. How- 
ever, this is not an easy problem since the susy 
breaking parameters run appreciably with the renor- 
malization scale. This study should necessarily in- 
volve the renormalization group equations for the 
soft parameters [40] and it is beyond the scope of 
this article. 

An interesting property of these models, inherited 
from E(6), and shared by X3(10), is the fact that 
they are characterized by Yukawa coupling unifica- 

tion, since all fermion masses result from a common 
generation-dependent Yukawa coupling. Note how- 
ever that only in the case of one pair of electroweak 
v.e.v.s we obtain simple fermion mass relations. On 
the other hand, the Higgs isodoublets and the extra 
pair of right-handed d-quarks contained in the matter 
representations can receive masses separately and 
can be split without the need for any numerical fine 
tuning. In order to maintain one or more massless 
isodoublet pairs in a truly natural sense a family-de- 
pendent symmetry would be required. Nevertheless, 
if, as it happens in specific string constructions, the 
Yukawa coupling family hierarchy comes about as a 
hierarchy in the order of non-renormalizable terms, 
such a family symmetry could arise in the form of a 
selection rule [41]. 

Let us now say a few things about the features of 
possible embedding of these models in k = 1 super- 
string constructions. Assuming a gauge group G = 
Ili, ,Gi, where th e group factors are realized at the 
level ki of the Afiine world sheet algebra, the 
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conformal weight of a representation (I-~, . . , r,> of 
G is given by the formula 

h KM 

where T(ri) is the index of the representation ri 

normalized as T = i for the vector of XI(n). Ai is 

the adjoint of G;. Applying this formula for G = 
SU(6) X SU(2) and ki = 1, we obtain that the confor- 
ma1 weights of the representations (6,1), (621, (15,1), 
(l&2), (20,1), (20,2) are 5/12, 2/3, 2/3, 11/12, 
3/4 and 1 correspondingly and thus all these states 
could be generically massless in a k = 1 construc- 
tion. Some of these representations e.g (6,l) will 
lead to exotic fractional charge states. In a fully 
realistic superstring derived model the appearing ex- 
otic representations should circumvent conflicts with 
phenomenology either due to supermassiveness or 
due to the confining properties of the hidden sector 
gauge group. For the moment no “realistic” k = 1 
SU(6) X SU(2) superstring model has been con- 
structed 4. However, the GUT analysis provides en- 
couraging results in order to proceed towards this 
direction. 
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