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Abstract

Ž . Ž .In this letter we discuss the supersymmetry issue of the self-dual supermembranes in 8q1 and 4q1 -dimensions. We
Ž .find that all genuine solutions of the 8q1 -dimensional supermembrane, based on the exceptional group G , preserve one2

Ž .of the sixteen supersymmetries while all solutions in 4q1 -dimensions preserve eight of them. q 1998 Elsevier Science
B.V. All rights reserved.

w x Ž .Recently, a new duality for fundamental membranes 1 in 4q1 -dimensions, has been extended to
Ž . w x8q1 -dimensions using the structure constants of the octonionic algebra 2–4 . Explicit solutions have been

w xconstructed in various dimensions and connections with string instantons have been found 5 .
w xThe fundamental supermembranes as extended objects were first described in 6 by a manifestly space-time

Ž . w xsupersymmetric Green-Schwarz GS -action. It was further shown 7 that they emerge as a solution of the
eleven dimensional supergravity field equations with their zero modes corresponding to the physical degrees of
freedom of the GS-action. It is now known that one of the fundamental problems of supermembrane theory is
the existence of a convenient perturbative expansion and the derivation of effective low energy Lagrangian
Ž .which is expected to be the 11-dimensional Ns1 supergravity theory . For this problem, the existence of a
self-dual sector of BPS-states for the supermembrane, preserving a number of supersymmetries which would
guarantee the absence of perturbative corrections could be a way out. An interesting property of the self-duality
equations for supermembrane is that in three dimensions the system is an integrable one and in principle all the
spectrum of the corresponding BPS-states could be determined. In this case, after the light-cone gauge fixing,
one restricts the membrane to the three of the nine dimensions in order to formulate the self-duality equations.
The corresponding integrability of the seven-dimensional case is still under investigation.

In this letter, we study the supersymmetry transformations for the octonionic self-dual membranes and we
determine the number of supersymmetries left in seven and three dimensions. We find that the seven-dimen-
sional case preserves one supersymmetry, while the three-dimensional solutions preserve eight of them. The G2

symmetry of the seven-dimensional case can be used to embed the Ns8, ds3 BPS-states into Ns8, ds7
superalgebra.
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We start by recalling the light-cone gauge formulation of the supermembrane, where half of the rigid
space-time supersymmetry as well as the local k-symmetry is fixed. We then provide the supersymmetries left
intact.

It is known that in ds8 dimensions there is a connection of the Clifford algebra with the octonionic algebra
and this is the information needed to study the behaviour of the octonionic self-duality equations under
supersymmetry transformations. The relation with the octonions has been noticed in the 80’s during the studies

7 w xof the S -compactifications of the 11-d supergravity as well as for the Ns8 gauged supergravities 8–10 .
Ž .Recently, the embedding of octonionic Yang-Mills YM instantons in the ten-dimensional effective supergrav-

w xity theories of strings has been constructed 11–13 where it was found that one supersymmetry survives. More
w xgenerally, wrapped membrane compactifications have been recently discussed in the literature 14 .

In the light-cone gauge, after the elimination of the X variable from the reparametrization constraints, they
w xsupersymmetric Hamiltonian 6,15 is defined as

1 21 12 I I J q I� 4 � 4HHs d s P P q X , X yP uG G X ,u 1Ž .H ž /I 0 y I2 4qP0

˙where P sX and the indices I, Js1, . . . ,9 while we have fixed the area preserving parameters so that ws1I I
w x6 . The compatibility condition for the uniqueness of X , is the Gauss lawy

Ẋ , X q uG ,u s0, Is1, . . . ,9 2Ž .� 4� 4I I y

Ž .where summation over repeated indices is assumed. The Clifford generators G , in 1 are represented by realI

32=32 matrices which can be chosen in the following form

G ss mg 3Ž .I 3 I

Ž .where s is the Pauli matrix, g represent the 16=16 matrices and g sg PPP g . Further, G and G3 I 9 1 8 y q'Ž .correspond to the light-cone coordinates X "X r 2 , thus they are given by a similar decomposition10 0

1
G s G "G . 4Ž . Ž ." 10 0'2

Thus, we have

0 1 0 016' 'G s ı 2 , G s ı 2 . 5Ž .y q 1 0ž / ž /160 0

Ž . ŽThe Hamiltonian 1 is invariant under area-preserving transformations of the membrane which for
non-trivial topologies of the membrane contain also global elements 2 g in number, where g is the genus of the

w x. Ž .membrane 15 . The local area-preserving transformations are generated by the Gauss law 2 . Here the
canonical variables satisfy Dirac brackets

I ˙ J X I J 2 XX s , X s sd d sys 6Ž . Ž . Ž . Ž .Ž .DB

I JX X1I J 2u s ,u s s G d sys 7Ž . Ž . Ž . Ž . Ž .Ž . q4DB

Ž .where we have chosen P s1 . It can be verified that in the light-cone gauge there are two independent spinorq
supersymmetry charges

QsQqqQys d2s J 0 8Ž .H
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1"where Q s G G Q, and" .2

q 2 ˙ I I J� 4Q s d s 2 X G q X , X G u 9Ž .Ž .H I I J

Qys2 d2s Ss2 G u 10Ž .H y 0

which are constants of motion and u is the momentum conjugate to the center-of-mass coordinate of the0

fermionic degrees of freedom of the membrane. The corresponding supersymmetry transformations which leave
the Hamiltonian invariant, are given by

I Id X sy2eG u 11Ž .
1 1 I J I J˙ � 4dus G XG qG eq X , X G G e . 12Ž .Ž .q I y q2 4

On the other hand, the local fermionic k-symmetry has been fixed by imposing the condition

G us0. 13Ž .q

Ž .Due to this gauge condition, the fermionic coordinates are restricted to SO 9 spinors, satisfying

G PPP G usu 14Ž .1 9

Ž . T Iwhile the SO 9 G-matrices satisfy G sG .I

The self-duality equations for the bosonic part of the supermembrane have been initially introduced in the
w xlight-cone gauge fixing X , . . . X to be constants 1 ,4 9

1Ẋ s e X , X , i , js1,2,3. 15� 4 Ž .i i jk j k2

These equations have been proposed as an analogue of the electric-magnetic duality where the local velocity of
the membrane corresponds to the electric field while the RHS which is the normal to the membrane surface,
corresponds to the magnetic field. They imply the Gauss law and the Euclidean-time equations of motion with

Ž . w xfermionic degrees of freedom dof set to zero 1,16 . This system has been shown to be integrable and a Lax
pair was found. In order to go to higher dimensions one should have the notion of cross product of two vectors

Žand this is provided as the unique other possibility by the structure constants of the algebra of octonions Cayley
. w xnumbers 17 . The octonionic units o satisfy the algebrai

o o syd qC o . 16Ž .i j i j i jk k

where is1, . . . ,7 are the 7 octonionic imaginary units with the property

� 4o ,o sy2d . 17Ž .i j i j

Ž . w xThe totally antisymmetric symbol C appearing in 16 is defined to be equal to 1 when the indices are 17i jk

1 2 4 3 6 5 7
C s 18Ž .2 4 3 6 5 7 1i jk ½

3 6 5 7 1 2 4

and zero for all other cases. With this multiplication table, C provides for every two seven-dimensionali jk

vectors a third one, normal to the first two. Thus, it is possible to extend the three-dimensional self-duality
equations to seven dimensions, fixing only the values of X , X membrane coordinates. Then, the self-duality8 9

w xequations 2 become

1Ẋ s C X , X . 19� 4 Ž .i i jk j k2
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The Gauss law results automatically by making use of the C cyclic symmetryi jk

Ẋ , X s0. 20Ž .� 4i i

Ž .The Euclidean equations of motion are obtained easily from 19

¨ � 4X s X , X , X 21� 4 Ž .i k i k

where use has been made of the identity

C C sd d yd d qf 22Ž .i jk lm k i l jm im jl i jlm

w xand of the cyclic property of the symbol f 17 which is defined to be equal to 1 when its indices take valuesi jlm

of the following table:

4 3 6 5 7 1 2°
5 7 1 2 4 3 6i j ~f s 23Ž .k l 6 5 7 1 2 4 3¢
7 1 2 4 3 6 5

whilst it is zero for any other combination of indices. In terms of these units an octonion can be written as
follows:

7

Xsx o q x o 24Ž .Ý0 0 i i
is1

with o the identity element. The conjugate is0

7

Xsx o y x o . 25Ž .Ý0 0 i i
is1

The octonions over the real numbers can also be defined as pairs of quaternions

Xs x , x 26Ž . Ž .1 2

m m 0 i Ž .where x sx s , x sx s and the indices m run from 0 to 3, while x are real numbers and x , is1,2,31 1 m 2 2 m 1,2 1,2

are imaginary numbers. Finally, s is the identity 2=2 matrix and s are the three standard Pauli matrices.0 i
Ž . Ž .If qs q ,q and rs r ,r are two octonions, the multiplication law is defined as1 2 1 2

q) r' q ,q ) r ,r s q r yr q ,r q qq r 27Ž . Ž . Ž .Ž .1 2 1 2 1 1 2 2 2 1 2 1

0 i 0 iwhere q sq qq s and q sq yq s . One can also define a conjugate operation for an octonion as1 1 1 i 1 1 1 i

q' q ,q s q ,yq 28Ž . Ž .Ž .1 2 1 2

and we get the possibility to define the norm and the scalar product q and r
3

m2 m2qqs q q qq q ,0 s q qq 29Ž .Ž . Ž .Ý1 1 2 2 1 2
ms0

1² < :q r s qrqqr 30Ž .Ž .2

In terms of the above formalism, the self-duality equations can be written as follows:
1˙ � 4Xs X , X 31Ž .2

where XsX io with is1, PPP ,7 and the Poisson bracket for two octonions is defined asi

E X E Y E X E Y
� 4X ,Y s y . 32Ž .

Ej Ej Ej Ej1 2 2 1
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After these preliminaries, we come now to the question regarding the number of supersymmetries preserved
by the self-duality equations. In our analysis we will explore the number of supersymmetries preserved by
Ž . Ž .3q1 - and 7q1 -dimensional solutions. We will see that 3-d solutions preserve as many as eight out of the
sixteen supersymmetries while the 7-d self-duality equations preserve only one supersymmetry. The supersym-

w xmetry transformation is defined 6

ıe1 1 AI I J˙ � 4dus G G X qG q G G X , X .Ž .ž /q I y q I J2 2 ež /B

In terms of the 16=16 g-matrices, the above is written

0 0 ıeA
dus 33Ž .1I I J˙' ež /� 4ı 2 g X q g X , X y2P1ž /Ž . BI I J 162

which implies that
1I I J˙' � 42 g X q g X , X e q2P1 e s0 34Ž .Ž .I I J A 16 B2

Ž .where e ,e are 16-dimensional spinors. From the form of Eq. 34 , we observe that if self-duality equationsA B

are going to play a role in the preservation of a number of supersymmetries, we should necessarily impose the
Ž .condition e s0. Thus, at least half of the supersymmetries are broken. Now, the last term in 34 is zero andB

Ž .Eq. 34 simply becomes
1I I J˙ � 4g X q g X , X e s0. 35Ž .Ž .I I J A2

˙Under the assumption that X s0, it can be shown that the above reduces to a simpler – 8=8 – matrix8,9

equation. In order to find a convenient explicit form, we first express the 16=16 matrices in terms of the
octonionic structure constants C as follows: let the index n run from 1 to 7; then we definei jk

0 1 0 b8 n
g s , g s 36Ž .8 nž / ž /y1 0 yb 08 n

w xwhere 1 is the 8=8-identity matrix and b are seven 8=8 g-matrices with elements 108 n

i i 8i ib sC , b sd , b syd 37Ž . Ž . Ž . Ž .j jn im j n j n j8

while it can be easily checked that b PPP b sy1 and1 7 8

1 08
g s . 38Ž .9 ž /0 y18

The commutation relations of b give:m

8w xb ,b sq2C 39Ž .Ž . jm n nm j

jw xb ,b sy2C 40Ž .Ž .m n nm j8

i m nw xb ,b sy2 XX y4 41Ž . Ž .Ž . jm n i j

m n Ž . w xwhere the tensors XX u are defined as follows 3i j

u
i j i j i jXX u sD q f 42Ž . Ž .k l k l k l4

1i j i j i jŽ .where D s d d yd d . Next, we impose the following condition on the components of the 16-spinor ek l k l l k A2

1
e s m´ 43Ž .A ž /yı
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where m stands for the direct product and ´ is an eight-component spinor whose components are left
Ž .unspecified. Clearly, condition 43 reduces further the sixteen supersymmetry charges to eight. Separating the

Ž . Ž . Ž .eight components of ´s ´ ,´ where ´ is a seven- one- dimensional vector, we find that Eq. 357 1 7Ž1.
reduces to the matrix equation

ı ı
m n˙ ˙� 4 � 4C X q XX y4 X , X X q C X , XŽ .im j m i j m n i im n m n

´2 2 7OO´' s0. 44Ž .ı ´ž /1˙ � 4y X q C X , X 0� 0i im n m nž /2

Ž .The rather interesting fact here is that the matrix elements OO and OO , js1, . . . ,7 multiplying the8 j j8
Ž .´ -component are the self-duality Eqs. 15 in eight dimensions when the Euclidean time-parameter t is1

Ž .replaced with ıt Minkowski . Thus, ´ -component remains unspecified and there is always one supersymmetry1

unbroken for any eight-dimensional solution of the self-duality equations.
Ž .Let us now turn our discussion to the upper 7=7 part of the matrix Eq. 44 . In general, the quantity

specifying these elements, namely
ı

m n˙ � 4C X q XX y4 X , X 45Ž . Ž .im j m i j m n2

is not automatically zero. However, there is a particular case –which turns out to be the most interesting one–
where the above quantity is the self-duality equation itself. In fact, if we consider only three-dimensional
solutions of the equations, the ‘curvature’ factor f i j is automatically zero while the tensor XX i j simplyk l k l

becomes
1i j i j i j i j i jXX sD s d d yd d for f s0. 46Ž .Ž .k l k l k l l k k l2

Ž .In this case, it can be easily seen that 45 reduces to the self-duality equations in three-dimensions. In this latter
case, all eight supersymmetries survive.

We summarize this note discussing also the importance of the supersymmetric self-duality configurations in
three and seven dimensions. The absence of a natural perturbative expansion for the 11-d fundamental
supermembrane prohibits so far the derivation of its low energy effective Lagrangian which is expected to
contain 11-d, Ns1 supergravity interacting with solitonic two- and five-branes in a duality symmetric way.
The Euclidean self-dual membrane configurations in three and seven dimensions, after light-cone gauge fixing,
provide non-perturbative minima of the action, which could survive perturbative corrections if enough
supersymmetries are left intact. Then, the quantum mechanical amplitudes calculated in supermembrane theory
could be determined by transforming the path-integral integration around these minima into the infinite
moduli-space integration of the self-dual configurations of supermembranes. The best candidate for these seem
to be the three-dimensional integrable self-dual sector where eight supersymmetries survive. The problem then
is reduced to find the moduli space and its integration measure of the minimum action 3-d configurations. We
hope to come back to this problem in a future work.
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