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Abstract

We investigate nuclear µ− − e− conversion in the framework of an effective Lagrangian arising

from the inverse seesaw model of neutrino masses. We consider lepton flavour violation interactions

that arise from short range (non-photonic) as well as long range (photonic) contributions. Upper

bounds for the Lf/ - parameters characterizing µ−− e− conversion are derived in the inverse seesaw

model Lagrangian using the available limits on the µ− − e− conversion branching ratio, as well as

the expected sensitivities of upcoming experiments. We comment on the relative importance of

these two types of contributions and their relationship with the measured solar neutrino mixing

angle θ12 and the dependence on θ13. Finally we show how the Lf/ µ− − e− conversion and the

µ− → e−γ rates are strongly correlated in this model.
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I. INTRODUCTION

The discovery of neutrino oscillations [1, 2, 3] shows that neutrinos are massive [4] and

that lepton flavour is violated in neutrino propagation. The violation of this conservation

law could show up in other contexts, such as rare lepton flavour violating (LFV) decays of

muons and taus, e.g. µ− → e−γ. In fact, there are strong indications from theory that

this may be the case. Among the lepton flavour violating (Lf/ ) processes, the electron- and

muon-flavour violating nuclear conversion

µ− + (A, Z) −→ e− + (A, Z)∗ , (1)

is known to provide a very sensitive probe of lepton flavour violation [5, 6, 7, 8, 9, 10, 11]. This

follows from the distinct feature of a coherent enhancement in nuclear µ− − e− conversion.

From the experimental viewpoint, currently the best upper bound on the µ−−e− conversion

branching ratio comes from the SINDRUM II experiment at PSI [12], using 197Au as stopping

target,

RAu
µe ≤ 5.0 × 10−13 90%C.L. (2)

The proposed aim of the MECO experiment, the µ− − e− conversion experiment at

Brookhaven [13], with 27Al as target is expected to reach [13]

RAl
µe ≤ 2 × 10−17 (3)

about three to four orders of magnitude better than the present best limit.

An even better sensitivity is expected at the new µ− − e− conversion PRISM experiment

at Tokyo, with 48Ti as stopping target. This experiment aims at [14]

RT i
µe ≤ 10−18. (4)

Such an impressive sensitivity can place severe constraints on the underlying parameters of

µ− − e− conversion.

There are many mechanisms beyond the Standard Model that could lead to lepton flavour

violation (see [5, 6, 7, 9, 10] and references therein). The corresponding Feynman diagrams

can be classified according to their short-range or long-range character into two types: pho-

tonic and non-photonic, as shown in Fig. 1. The long-distance photonic mechanisms in Fig.

1(a) are mediated by virtual photon exchange between nucleus and the µ − e lepton cur-

rent. The hadronic vertex is characterized in this case by ordinary electromagnetic nuclear
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form factors. Contributions to µ − e conversion arising from virtual photon exchange are

generically correlated to µ → eγ decay.

The short-distance non-photonic mechanisms in Fig. 1(b) include effective 4-fermion

quark-lepton Lf/ interactions which couple the quarks and leptons via heavy intermediate

particles (W, Z, Higgs bosons, supersymmetric particles, etc.) at the tree level, at the 1-loop

level or via box diagrams. The various mechanisms can significantly differ in many respects,

in particular, in what concerns nucleon and nuclear structure treatment. As a result, they

must be treated on a case-by-case basis.

In this paper we consider µ− − e− conversion in the context of a variant of the seesaw

model [15], called inverse seesaw [16]. It differs from the standard one in that no large mass

scale is necessary, providing a simple framework for enhanced Lf/ rates, unsuppressed by

small neutrino masses [17, 18]. The enhancement of Lf/ rates holds in this model even in the

absence of supersymmetry and in the absence of neutrino masses. For this reason it plays

a special role. For simplicity here we neglect possible supersymmetric contributions to the

Lf/ rates that could exist in this model, see [19]. Other seesaw constructions with extended

gauge groups have been considered recently, using either left–right gauge symmetry [20] or

full SO(10) unification [21, 22, 23]. They, too, will lead to enhanced LFV rates. However,

both for definiteness and simplicity, here we focus our discussion on the case of the simplest

SU(2) ⊗ U(1) inverse seesaw model which we take as a reference model. First, we derive

a formula for the µ− − e− conversion branching ratio in terms of Lf/ parameters of the

effective Lagrangian of the model. The transformation of this Lagrangian, first to the nucleon

and then to the nuclear level, needs special attention to the effects of nucleon and nuclear

structure. The nucleon structure is taken into account on the basis of the QCD picture of

baryon masses and experimental data on certain hadronic parameters. The nuclear physics,

which is involved in the muon-nucleus overlap integrals [10, 24] is evaluated paying special

attention on specific nuclei that are of current experimental interest like, 27Al, 48Ti and

197Au.
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Figure 1: (a) Photonic (long-distance) and (b) non-photonic (short-distance) contributions to the

nuclear µ− − e− conversion.

II. INVERSE SEESAW MECHANISM

The model extends minimally the particle content of the Standard Model by the sequential

addition of a pair of two-component SU(2) ⊗ U(1) singlet leptons, as follows





νi

ei



 , ec
i , ν

c
i , Si, (5)

with i a generation index running over 1, 2, 3. In addition to the more familiar right-handed

neutrinos characteristic of the standard seesaw model, the inverse seesaw scheme contains an

equal number of gauge singlet neutrinos Si. In the original formulation of the model, these

were superstring inspired E(6) singlets, in contrast to the right-handed neutrinos, members

of the spinorial representation. Recently similar constructions have been considered in the

framework of left–right symmetry [20] or SO(10) unified models [21, 22, 23].

In the ν, νc, S basis, the 9 × 9 neutral leptons mass matrix M is given as

M =











0 mT
D 0

mD 0 MT

0 M µ











, (6)

where mD and M are arbitrary 3×3 complex matrices in flavour space, whereas µ is complex

symmetric. The matrix M can be diagonalized by a unitary mixing matrix Uν ,

UT
ν MUν = diag(mi, M4, ..., M9), (7)
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yielding 9 mass eigenstates na. In the limit of small µ three of these correspond to the

observed light neutrinos with masses mi, while the three pairs of two-component leptons

(νc
i , Si) combine to form three heavy leptons, of the quasi-Dirac type [25].

The light neutrino mass states νi are given in terms of the flavour eigenstates via the

unitary matrix Uν

νi =
9
∑

a=1

(Uν)iana. (8)

which has been studied in earlier papers [17, 18]. The diagonalization results in an effective

Majorana mass matrix for the light neutrinos [26],

mν = mT
DMT −1

µM−1mD, (9)

where we are assuming µ, mD ≪ M . One sees that the neutrino masses vanish in the limit

µ → 0 where lepton number conservation is restored. In models where lepton number is

spontaneously broken by a vacuum expectation value 〈σ〉 [26] one has µ = λ 〈σ〉. Typical

parameter values may be estimated from the required values of the light neutrino masses

indicated by oscillation data [4] as

( mν

0.1eV

)

=
( mD

100GeV

)2 ( µ

1keV

)

(

M

104GeV

)−2

, (10)

For typical Yukawas λ ∼ 10−3 one sees that µ = 1 keV corresponds to a low scale of L

violation, 〈σ〉 ∼ 1 MeV (for very low values of 〈σ〉 this might lead to interesting signatures

in neutrinoless double beta decays [27]) 1.

In contrast, in the conventional seesaw mechanism without the gauge singlet neutrinos Si

one would have




0 mT
D

mD MR



 , mD ≪ MR ⇒ mν = mT
DM−1

R mD . (11)

Note that in the “inverse seesaw” scheme the three pairs of singlet neutrinos have masses

of the order of M and their admixture in the light neutrinos is suppressed as mD

M
. It is

crucial to realize that the mass M of our heavy leptons can be much smaller than the MR

characterizing the right-handed neutrinos in the conventional seesaw, since the suppression

in Eq. (10) is quadratic in M−1 (as opposed to the linear dependence in M−1
R given by

Eq. (11)), and since we have the independent small parameter µ characterizing the lepton

1 Note that such a low scale is protected by gauge symmetry.
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number violation scale. As a result the value of M may be as low as the weak scale (if light

enough, these neutral leptons could give signatures at accelerator experiments [28, 29]).

Without loss of generality one can assume µ to be diagonal,

µ = diag µi, (12)

and using the diagonalizing matrix U of the effective light neutrino mass matrix mν ,

UT mνU = diag mi, (13)

equation (9) can be written as

1 = diag

√

m−1
i · UT mT

DMT −1 · diag
√

µi · diag
√

µi · M−1mDU · diag

√

m−1
i . (14)

In the basis where the charged lepton Yukawa couplings are diagonal the lepton mixing

matrix is simply the rectangular matrix formed by the first three rows of Uν [30].

In analogy to the standard seesaw mechanism [31] it is thus possible to define a complex

orthogonal matrix

R = diag
√

µi · M−1mDU · diag
√

m−1
i (15)

with 6 real parameters. Using R, the neutrino Yukawa coupling matrix Yν = 1
v sinβ

mD can

be expressed as

Yν =
1

v sin β
M · diag

√

µ−1
i · R · diag

√
mi · U †, (16)

To further simplify our discussion we make the assumption that the eigenvalues of both M

and µ are degenerate and that R is real. This allows us to easily compare our results with

those obtained previously in Ref. [32, 33] for the case of the conventional seesaw mechanism.
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III. THE EFFECTIVE QUARK-LEVEL LAGRANGIAN

In our model the Lf/ arises from penguin photon and Z exchange as well as box diagrams,

as illustrated in Fig. 2. The resulting effective Lagrangian can be expressed as [5]

Leff = Lγ
eff + LZ

eff + Lbox
eff (17)

Lγ
eff = −e2

q2
ē
[

q2γα(AL
1 PL + AR

1 PR) + mµiσαβqβ(AL
2 PL + AR

2 PR)
]

µ ×
∑

q

Qq q̄γαq (18)

= −e2

q2

∑

q

[

1

2
(AL

1 + AR
1 )jV

α +
1

2
(AR

1 − AL
1 )jA

α +
i

2
(AL

2 + AR
2 )mµjαβqα

]

QqJV β
(q) (19)

LZ
eff =

g2
Z

m2
Z

ē
[

γα(F LPL + F RPR)
]

µ ×
∑

q

Zq
L + Zq

R

2
q̄γαq (20)

=
g2

Z

m2
Z

∑

q

[

1

2
(F L + F R)jV

α +
1

2
(F R − F L)jA

α

]

Zq
L + Zq

R

2
JV α

(q) (21)

Lbox
eff = e2ē

[

γα(DL
q PL + DR

q PR)
]

µ ×
∑

q

Qq q̄γαq (22)

= e2
∑

q

[

1

2
(DL

q + DR
q )jV

α +
1

2
(DR

q − DL
q )jA

α

]

QqJV α
(q) (23)

with Qq the electric charge of quark q, and

Zq
L/R = (T q

3 )L/R − Qq sin2 θW . (24)

The expressions in Eqs. (19), (21) and (23) correspond to the notation in Equation (5) of

Ref. [8]. The coefficients A
L/R
1 , A

L/R
2 , F L/R, D

L/R
q which give rise to lepton flavour violation,

are given by (for µ − e conversion, the indices i, j are always i = 2(∼ µ) and j = 1(∼ e),
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γ

w w− −

eµ ν −

( a )

X
− j N j,

u  ( d ) u  ( d )

Z,

Uµ j* U je

w−

eµ ν −−

Z

j , N j

Uµ j* U je

u  ( d ) u  ( d )

( b )

eµ

w−

− − µ−

+

X X
e

w−

−

w−

w−

u dd u u d

νj N j, νj N j,

( c )

Uµ j* Uµ j
*U je U je

Figure 2: Diagrams for µ − e conversion: photonic (a), Z-boson (a,b) and W-boson (c) exchange.

and are thus omitted for simplicity in the above formulae) [39]:

AL
1 =

9
∑

i=1

U∗
2iU1iFγ(λi), (25)

AR
1 = 0 (26)

AL
2 =

me

mµ

9
∑

i=1

U∗
2iU1iGγ(λi), (27)

AR
2 =

9
∑

i=1

U∗
2iU1iGγ(λi), (28)

F L =

9
∑

i,j=1

U∗
2iU1i (FZ(λi) + CijHZ(λi, λj) + Cij∗GZ(λi, λj)) , (29)

F R = 0, (30)

DL
q =

9
∑

i,j=1

(U∗
2iU1iFbox(λi, λj) + U2iU

∗
1iGbox(λi, λj)) , (31)

DR
q = 0, (32)

with

Cij =
3
∑

k=1

UkiU
∗
kj. (33)

8



The corresponding form-factor functions in the above terms are given by [39]

Fγ(x) =
7x3 − x2 − 12x

12(1 − x)3
− x4 − 10x3 + 12x2

6(1 − x)4
ln x, (34)

Gγ(x) = −2x3 + 5x2 − x

4(1 − x)3
− 3x3

2(1 − x)4
ln x, (35)

FZ(x) = − 5x

2(1 − x)
− 5x2

2(1 − x)2
ln x, (36)

GZ(x, y) = − 1

2(x − y)

[

x2(1 − y)

1 − x
ln x − y2(1 − x)

1 − y
ln y

]

, (37)

HZ(x, y) =

√
xy

4(x − y)

[

x2 − 4x

1 − x
ln x − y2 − 4y

1 − y
ln y

]

, (38)

Fbox(x, y) =
1

x − y

[

(

1 +
xy

4

)

(

1

1 − x
+

x2 ln x

(1 − x)2
− 1

1 − y
− y2 ln y

(1 − y)2

)

− 2xy

(

1

1 − x
+

x ln x

(1 − x)2
− 1

1 − y
− y ln y

(1 − y)2

)]

, (39)

Fbox(x, y) = −
√

xy

x − y

[

(4 + xy)

(

1

1 − x
+

x ln x

(1 − x)2
− 1

1 − y
− y ln y

(1 − y)2

)

− 2

(

1

1 − x
+

x2 ln x

(1 − x)2
− 1

1 − y
− y2 ln y

(1 − y)2

)]

. (40)

The effective Lagrangians for the µ − e diagrams of Eqs. (18), (20) and (22) can be

compactly written as

Lq
eff = Ga

(

∑

A,B;q

η
(q)
ABjA

µ JBµ
(q) +

∑

C,D;q

η
(q)
CDjC JD

(q) +
∑

q

η
(q)
T jµν Jµν

(q)

)

, a = ph, nph, (41)

where summation involves A, B = {A, V }; C, D = {S, P} and q = {u, d, s}. The coupling

strength factor Ga is given by Gnph = GF√
2

in the non-photonic and by Gph = 4πα
q2 in the

photonic case. The parameters η
(q)
i depend on the specific Lf/ model assumed. The lepton

and quark currents are

jV
µ = ēγµµ, jA

µ = ēγµγ5µ, (42)

jS = ē µ, jP = ēγ5µ, (43)

jµν = ēσµνµ, (44)

JV µ
(q) = q̄γµq, JAµ

(q) = q̄γµγ5q, (45)

JS
(q) = q̄ q, JP

(q) = q̄γ5 q, (46)

Jµν
(q) = q̄σµνq. (47)
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In our model, the only nonvanishing contributions are η
(q)
V V and η

(q)
AV ,

η
(q)
V V =

1

2
(F L + F R)(Zq

L + Zq
R) +

1

2
Qq(DL

q + DR
q ), (48)

η
(q)
AV =

1

2
(F L − F R)(Zq

L + Zq
R) +

1

2
Qq(DL

q − DL
q ). (49)

in the non-photonic case and

η
(q)
V V =

1

2
Qq(AL

1 + AR
1 ), (50)

η
(q)
AV =

1

2
Qq(AL

1 − AR
1 ), (51)

in the photonic case.

IV. THE EFFECTIVE NUCLEON-LEVEL LAGRANGIAN

The nucleon level effective Lagrangian obtained through the reformulation of the quark

level effective Lagrangian (41) can be written in terms of the effective nucleon fields and the

nucleon isospin operators as

LN
eff = Ga

∑

A,B

jA
µ

(

α
(0)
ABJBµ

(0) + α
(3)
ABJBµ

(3)

)

.jC(α
(0)
CDJD

(0) + α
(3)
CDJD

(3)) + (52)

+ jµν(α
(0)
T Jµν

(0) + α
(3)
T Jµν

(3))
]

, a = ph, nph. (53)

The isoscalar J(0) and isovector J(3) nucleon currents are defined as

JV µ
(k) = N̄γµτkN, JAµ

(k) = N̄γµγ5τkN, JS
(k) = N̄τkN, JP

(k) = N̄γ5τkN, Jµν
(k) = N̄σµντkN,

where k = 0, 3 and τ0 ≡ Î.

The relationship between the coefficients α in Eq. (52) and the fundamental Lf/ parameters

ηAB of the quark level Lagrangian (41) can be found as follows. We start from the equations

which relate the various nucleon form factors G
(q,N)
K with matrix elements of the quark states

and those of the nucleon states

〈N |q̄ ΓK q|N〉 = G
(q,N)
K Ψ̄N ΓK ΨN , (54)

with q = {u, d, s}, N = {p, n} and K = {V, A, S, P}, ΓK = {γµ, γµγ5, 1, γ5}. Since the

maximum momentum transfer in µ− e conversion is much smaller than the typical scale, we

may neglect the q2-dependence of G
(q,N)
K . Assuming isospin symmetry, we find

G
(u,n)
K = G

(d,p)
K ≡ Gd

K , G
(d,n)
K = G

(u,p)
K ≡ Gu

K , G
(s,n)
K = G

(s,p)
K ≡ Gs

K . (55)
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For the coherent nuclear µ− − e− conversion, only the vector and scalar nucleon form

factors are needed (the axial and pseudoscalar nucleon currents couple to the nuclear spin

and for spin zero nuclei they can contribute only to the incoherent transitions). The vector

current form factors are determined through the assumption of conservation of vector current

at the quark level which gives

Gu
V = 2, Gd

V = 1, Gs
V = 0. (56)

The coefficients α
(τ)
AB of the nucleon level Lagrangian (52) can be expressed in terms of

the Lf/ parameters ηAB of the quark level effective Lagrangian in Eq. (41) as

α
(0)
IV =

1

2
(η

(u)
IV + η

(d)
IV )(Gu

V + Gd
V ),

α
(3)
IV =

1

2
(η

(u)
IV − η

(d)
IV )(Gu

V − Gd
V ), (57)

where I = V, A.

From the Lagrangian (52), following standard procedure, we can derive a formula for the

total µ − e conversion branching ratio. In this paper we restrict ourselves to the coherent

process which is the dominant channel of µ − e conversion. For most experimentally inter-

esting nuclei, this accounts for more than 90% of the total µ−− e− branching ratio [24]. To

leading order of the non-relativistic reduction the coherent µ− e conversion branching ratio

takes the form

Rcoh
µe− = QaG

2
a

peEe

2π

M2
a

Γ(µ− → capture)
a = ph, nph , (58)

where pe, Ee are the outgoing electron 3-momentum and energy and M2
ph (M2

nph) represent

the squares of the nuclear matrix elements for the photonic and non-photonic modes of the

process. The quantity Qa is defined as

Qa = |α(0)
V V + α

(3)
V V φ|2 + |α(0)

AV + α
(3)
AV φ|2, (59)

with the corresponding coefficients α for the the photonic and non-photonic contributions

and depends on the nuclear parameters through the factor

φ = (Mp −Mn)/(Mp + Mn) . (60)

The Mp,n are given by

Mp,n = 4π

∫

(gegµ + fefµ)ρp,n(r)r2dr. (61)
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In the latter equation, ρp,n(r) are the spherically symmetric proton (p) and neutron (n)

nuclear densities normalized to the atomic number Z and neutron number N , respectively,

of the target nucleus. Here gµ, fµ are the top and bottom components of the 1s muon wave

function and ge, fe are the corresponding components of the Coulomb modified electron wave

function [34, 35].

In the present work, the matrix elements Mp,n, defined in Eq. (61), have been numerically

calculated using proton densities ρp from Ref. [36] and neutron densities ρn from Ref. [37].

The muon wave functions fµ and gµ (and also ge, fe) were obtained by solving the Dirac

equation with the Coulomb potential produced by the densities ρp,n by using artificial neural

network techniques. In this way, relativistic effects and vacuum polarization corrections

have been taken into account [34, 35]. The latter method has recently been applied for

evaluating the τ− wave functions in a set of (medium-heavy and heavy) nuclei for obtaining

the τ -capture rate by nuclei.

V. RESULTS AND DISCUSSION

The results for Mp,n corresponding to a set of nuclei throughout the periodic Table

including systems with good sensitivity to the µ− e conversion are shown in table I. In this

table we also present the muon binding energy ǫb and the experimental values for the total

rate of the ordinary muon capture Γµc [38]. We give the ingredients required to determine

the branching ratio Rµe for the three nuclei Al, Ti and Au, of current experimental interest.

As has been discussed in Ref. [7], for the description of the long range photonic contri-

bution only the proton matrix elements Mp are required. In the case of the non-photonic

mechanisms (short-range contributions), however, both protons and neutrons contribute and

therefore both Mp,n matrix elements are needed. The latter are obtained by using densities

extracted from the data on pionic atoms or the pion-nucleus scattering [37].

Using the values of Table 1 and the existing [12] or expected [13, 14] experimental sensitiv-

ities on Rµe, we can derive the corresponding sensitivity upper limits on the particle physics

parameters characterizing the effective Lagrangians (41) and (52). The most straightforward

limits can be set on the quantities Qa of Eq. (58) which are given in Table II.

In order to achieve limits on the particle physics leading to µ − e conversion, the quark

level effective Lagrangian of the model is adjusted to the form of Eq. (41) and by identifying

the effective parameters η
(q)
AB with expressions in terms of model parameters. This way the

12
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Figure 3: Present and expected limits on the model parameters M and µ/M . The shaded areas

are excluded by the bounds on Qnph (left panel) and Qph (right panel) given in Table II.
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Figure 4: Relation of branching ratios for µ−−e− conversion (left panel) and µ− → e−γ (right panel)

with the solar neutrino mixing angle, for different values of θ13. The inverse seesaw parameters are

given by: M = 100 GeV, µ = 10 eV.

upper bounds on Qa from Table II can be translated to restrictions on the model parameters

present in these expressions. Figure 3 shows the sensitivity bounds on the parameters M

and µ characterizing the inverse seesaw model, that follow from experiments with Al, Au

and Ti targets, respectively.

It is also interesting to explore how these rates depend on the relevant neutrino mixing

angles which are probed in solar neutrino experiments. This is shown in figure 4, where the
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Figure 5: Correlation between nuclear µ− − e− conversion and µ− → e−γ decay in the inverse

seesaw model.

relation between R(µ−Ti → e−Ti) (Br(µ → eγ)) and the solar neutrino angle θ12 for fixed

M and µ is displayed. As can be seen in the figure, there is also a strong dependence on the

small neutrino mixing angle θ13.

In designing future experiments testing for Lf/ it is instructive to determine how the

branching ratios for µ− − e− conversion and the µ− → e−γ are related. In Fig. 5 we show

explicitly that, in the inverse seesaw model, the rates for µ−−e− conversion and that for the

µ− → e−γ decay are strongly correlated, indicating the dominance of the photonic diagram

in Fig. 1(a).

VI. SUMMARY AND CONCLUSIONS

In the present paper we constructed an effective Lagrangian describing the photonic and

non-photonic µ− − e− conversion in the context of the inverse seesaw model and specified

the Lf/ parameters characterizing this process. We focused in the simplest inverse seesaw

model. The interest in the model is that it accounts for the observed masses and mixings

indicated by current oscillation data in such a way that the underlying physics “does not

decouple” and can be phenomenologically probed experimentally. The model provides a

framework for enhanced Lf/ rates with a rather simple, almost minimalistic, particle content.

In contrast to the conventional seesaw, this is achieved without need of supersymmetrization.

We derived a general formula for the coherent µ− − e− conversion branching ratio in terms

of the Lf/ parameters of the above quark level effective Lagrangian and we calculated the

corresponding nuclear matrix elements of currently interesting nuclear targets like 197Au (the

14



current SINDRUM II target), 27Al (the target of the ongoing MECO experiment) and 48Ti

(the target for the upcoming PRISM experiment). These results are given in table II and can

be used to obtain sensitivity limits from existing or planned experiments on Lf/ parameters

in a variety of particle physics models. We have considered in detail the new important

contributions to µ− − e− conversion present in the inverse seesaw model that come from

the exchange of the relatively light SU(2) ⊗ U(1) singlet neutral leptons. Figure 3 shows

the sensitivity bounds on the parameters M and µ characterizing the inverse seesaw model,

that follow from experiments with Al, Au and Ti, respectively. On the other hand figure 4

displays the relation of the Lf/ rates with the relevant neutrino mixing angles, while Fig. 5

establishes that, in the inverse seesaw model, the rates for µ− − e− conversion and that for

the µ− → e−γ decay are highly correlated.
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Nucleus |pe| (fm−1) Γµc (106 s−1) M2
ph (fm−3) M2

nph (fm−3) φ

12C 0.533 0.0388 0.00007 0.00029 0.0000

27Al 0.532 0.705 0.00204 0.00821 -0.0022

32S 0.531 1.352 0.00433 0.01656 0.0225

40Ca 0.529 2.557 0.00982 0.03667 0.0350

48Ti 0.528 2.590 0.01217 0.05560 -0.0645

63Cu 0.524 5.676 0.02883 0.12631 -0.0445

90Zr 0.517 8.660 0.06713 0.29713 -0.0493

112Cd 0.511 10.610 0.08416 0.37712 -0.0552

197Au 0.485 13.070 0.15571 0.68691 -0.0478

208Pb 0.482 13.450 0.18012 0.80892 -0.0563

238U 0.474 13.100 0.19360 0.87797 -0.0608

Table I: Ingredients entering Eq. (61) which gives the branching ratio of the charged lepton flavour

violating µ − e conversion for a set of nuclei throughout the periodic table. We note that by

neglecting the electron mass we have Ee ≈ pec.

Parameter Present limits (PSI) Expected limits (MECO) Expected limits (PRISM)

197Au 27Al 48Ti

Qph 1.96 · 10−16 2.68 · 10−18 8.39 · 10−20

Qnph 4.45 · 10−15 6.67 · 10−19 1.84 · 10−20

Table II: Upper bounds on the parameters Qa (see text, for definition) inferred from the SINDRUM

II data on the µ− − e− conversion in 197Au [Eq. (2)] as well as from the expected sensitivities of

the current MECO (BNL) [Eq. (3)] and PRISM (KEK) experiments [Eq. (4)] with 27Al and 48Ti

stopping targets respectively.
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