

29 February 1996

Physics Letters B 369 (1996) 367-371

Evaluation of the phase of the CP violation parameter η_{+-} and the $K_L - K_S$ mass difference from a correlation analysis of different experiments

PHYSICS LETTERS B

CPLEAR Collaboration

R. Adler^b, A. Angelopoulos^a, A. Apostolakis^a, E. Aslanides^k, G. Backenstoss^b, C.P. Beeⁱ, O. Behnke^q, A. Benelliⁱ, V. Bertin^k, F. Blanc^{g,m}, P. Bloch^d, P. Carlson^o, M. Carrollⁱ, J. Carvalho^e, E. Cawleyⁱ, S. Charalambous^p, G. Chardinⁿ, M.B. Chertok^c, A. Codyⁱ, M. Danielsson^o, M. Dejardinⁿ, J. Derreⁿ, A. Ealet^k, B. Eckart^b, C. Eleftheriadis^p, I. Evangelou^h, L. Faravel^g, P. Fassnacht^k, C. Felder^b, R. Ferreira-Marques^e, W. Fetscher^q, M. Fidecaro^d, A. Filipčič^j, D. Francis^c, J. Fryⁱ, E. Gabathulerⁱ, R. Gametⁱ, D. Garretaⁿ, H.-J. Gerber^q, A. Go^{c,o}, C. Guyotⁿ, A. Haseldenⁱ, P.J. Haymanⁱ, F. Henry-Couannier^k, R.W. Hollander^f, E. Hubert^k, K. Jon-And^o, P.-R. Kettle^m, C. Kochowskiⁿ, P. Kokkas^b, R. Kreuger^f, R. Le Gac^k, F. Leimgruber^b, A. Liolios^p, E. Machado^e, I. Mandić^j, N. Manthos^h, G. Marelⁿ, M. Mikuž^j, J. Miller^c, F. Montanet^k, T. Nakada^m, B. Pagels^q, I. Papadopoulos^p, P. Pavlopoulos^b, J. Pinto da Cunha^e, A. Policarpo^e, G. Polivka^b, R. Rickenbach^b, B.L. Roberts^c, T. Ruf^d, L. Sakeliou^a, P. Sandersⁱ, C. Santoni^b, M. Schäfer^q, L.A. Schaller^g, T. Schietinger^b, A. Schopper^d, P. Schuneⁿ, A. Soaresⁿ, L. Tauscher^b, C. Thibault^l, F. Touchard^k, C. Touramanis^d, F. Triantis^h, E. Van Beveren^e, C.W.E. Van Eijk^f, G. Varner^c, S. Vlachos^b, P. Weber^q, O. Wigger^m, M. Wolter^q, C. Yecheⁿ, D. Zavrtanik^j, D. Zimmerman^c ^a University of Athens, Greece ^b University of Basle, Switzerland ^c Boston University, USA ^d CERN, Geneva, Switzerland ^c LIP and University of Coimbra, Portugal ^f Technical University of Delft, The Netherlands ^g University of Fribourg, Switzerland ^h University of Ioannina, Greece ⁱ University of Liverpool, UK ¹ J. Stefan Inst. and Dep. of Physics, University of Ljubljana, Slovenia ^k CPPM, IN2P3-CNRS et Université d'Aix-Marseille II, Marseille, France ^ℓ CSNSM, IN2P3-CNRS Orsay, France ^m Paul-Scherrer-Institut Villigen, Switzerland ⁿ CEA. DSM/DAPNIA. CE Saclay. France ^o Royal Institute of Technology Stockholm, Sweden

Elsevier Science B.V. PII \$0370-2693(96)00021-4 CPLEAR Collaboration / Physics Letters B 369 (1996) 367-371

^P University of Thessaloniki, Greece ⁴ ETH-IPP Zürich, Switzerland

> Received 21 December 1995 Editor: L. Montanet

Abstract

The best estimation of φ_{+-} (the phase of the CP violation parameter η_{+-}) and of Δm (the K_L - K_S mass difference) is obtained by averaging the results of different experiments, taking into account the different correlation, existing for most of the experiments, between the measurement of φ_{+-} and Δm . Including the recent measurements, we obtain the average values $\langle \Delta m \rangle = (530.7 \pm 1.3) \times 10^7 \hbar/s$ and $\langle \varphi_{+-} \rangle = 43.82^{\circ} \pm 0.63^{\circ}$. This value of φ_{+-} is in good agreement with the superweak phase $\varphi_{SW} = 43.49^{\circ} \pm 0.08^{\circ}$.

1. Introduction

The world's best limits of CPT violation [1,2] are obtained by comparing the phase φ_{+-} of the CP violation parameter η_{+-} with the superweak phase $\varphi_{SW} \equiv$ $\tan^{-1}(2\Delta m/\Delta\Gamma)$. Here $\Delta m(\Delta\Gamma)$ is the mass (total decay width) difference between the K_L and K_S. Since the present experimental results [3-8,10-13] are of comparable precision, the best estimation of the value of φ_{+-} is obtained by averaging the results of all these experiments. Given the different strong correlation of the measurement of φ_{+-} and Δm for most of the experiments, averaging the measurements of φ_{+-} and Δm independently [1] seems not to be the adequate method. A more precise method consists in using all the available experimental information to construct a global likelihood distribution \mathcal{L} depending on the parameters Δm , φ_{+-} (and τ_s , the K_S mean life), as the product of individual likelihood distributions of each experiment. The best estimations for the values of Δm and φ_{+-} are then obtained by maximizing \mathcal{L} . The values of the experiments [3-6,10-12] adopted by PDG [1], as well as the values of three recent experiments [7,8,13] are presented in Table 1 (for φ_{+-}), together with their quoted Δm and τ_s dependence, and in Table 2 (for Δm).

A gaussian likelihood distribution taking into account the correlation between φ_{+-} and Δm can be defined with the published information for the experiments [6-8]. The authors of the other experiments [3-5] simply state that their value of φ_{+-} is strongly correlated with Δm and give a linear dependence. In order to define a gaussian likelihood distribution also for

these experiments, we have to make some assumptions about the correlation between φ_{+-} and Δm and about the central value of Δm . For the experiment of [3], which gives the most precise value of φ_{+-} among these three experiments, we have been able to deduce that the correlation is larger than 99% [9]. We assume this correlation also holds for the other two experiments [4,5]. For such a strong correlation between φ_{+-} and Δm , the error ellipse of the individual experiment is degenerated to a band (see Fig. 1) within the limit of Δm defined by the other experiments [6– 8,10-13]. Consequently the experiments [3-5] contribute to the fit only as one degree of freedom. The systematic uncertainty for the average values due to our assumptions is estimated by varying the correlation between φ_{+-} and Δm and the central value of Δm .

The dependence of φ_{+-} on the value of τ_S is less important, since τ_S is known to a better precision than Δm . For the same reason, the change in the experimental value of Δm is negligible, when varying the value of τ_S within its error (Table 2). The world average value of τ_S [1] is dominated by the experiment of Ref. [6]. The authors assume in their fit $\varphi_{+-} = \varphi_{SW}$ and note that a difference of 1° between φ_{+-} and φ_{SW} would shift the value of τ_S by only 0.0008 × 10⁻¹⁰ s. In our fitting procedure we only take into account the linear dependence of φ_{+-} with τ_S when it is given (Table 1). Table 1

Experiment	φ_{+-} [deg]	Stat. errors		ρ
		$\varphi_{+-} deg $	$\Delta m [10^7 \hbar/s]$	
Geweniger [3]	$49.4 \pm 1.0 + 0.565 (\Delta m - 540.0)$			> 0.99
Carithers [4]	$45.5 \pm 2.8 + 0.224 (\Delta m - 534.8)$			
Carosi [5]	$46.9 \pm 1.6 + 0.579 \left(\Delta m - 535.1 \right) + 303 \left(\tau_{S} - 0.8922 \right)$			
E731ª [6]	$42.2 \pm 0.9 + 0.189 (\Delta m - 525.7) - 460 (\tau_s - 0.8922)$	0.75	4.4	0.74
E773 [7]	$43.53 \pm 0.76 + 0.173 (\Delta m - 528.2) - 275 (\tau_s - 0.8926)$	0.58	3.0	0.67
CPLEAR 181	$42.7 \pm 1.1 + 0.316 (\Delta m - 527.4) + 30 (\tau_s - 0.8926)$	0.9	6.7	0.92

Measurements of φ_{+-} considered in our fit. For the experiments [6,7] we assume a common systematic error of $\pm 0.3^{\circ}$ due to regeneration uncertainties

^a The 1994 PDG [1] quotation has an error in the central value for the Δm dependence.

Table 2

Measurements of Δm considered in our fit. The experiments [10-13] measure Δm independently of φ_{+-} , whereas the experiments [6-8] obtain Δm from a fit with floating Δm and φ_{+-} . The experiments [11] and [12] have a common systematic error of $\pm 1.5 \times 10^7 \hbar/s$

Experiment	$\Delta m \mid 10^7 \hbar/s$]
E731 [6]	525.7 ± 4.9
E773 [7]	529.7 ± 3.7
CPLEAR [8]	529.5 ± 6.7
Cullen [10]	542.0 ± 6.0
Gjesdal [11]	533.4 ± 4.0
Geweniger [12]	$534.0 \pm 3.0 + 12 (\tau_{s} - 0.8994)$
CPLEAR [13]	$527.4 \pm 2.9 \pm 83 (\tau_S - 0.8926)$

Fig. 1. The plot shows the 1 σ contour plots of all measurements listed in Tables 1 and 2. The black ellipse in the center represents the result of our fit. The expected region for the value of φ_{SW} is also shown.

2. Description of the fits

We assume that the measured values $X_i = (\varphi_{+-}^{i}, \Delta m^{i})^T$ are distributed around the true value X according to a gaussian likelihood distribution:

$$L_i(X) = k_i e^{-\frac{1}{2}(X_i - X)^T C_i^{-1}(X_i - X)},$$
(1)

where C_i is the corresponding covariance matrix:

$$C_{i} = \begin{pmatrix} (\sigma_{\varphi}^{i})^{2} & c_{\varphi\Delta m}^{i} \\ c_{\varphi\Delta m}^{i} & (\sigma_{\Delta m}^{i})^{2} \end{pmatrix}, \qquad (2)$$

and k_i is a normalization factor which generally depends on the elements of C_i . In the case of experiments [10-13], $X_i = \Delta m^i$. The combined likelihood distribution of all measurements is then given by:

$$\mathcal{L}(X) = \prod_{i} L_{i}(X) .$$
(3)

The best estimate of X and its error is given by maximizing $\mathcal{L}(X)$, i.e. minimizing $\chi^2(X) = \sum (X_i - X)^T C_i^{-1} (X_i - X)$ with respect to X. Errors common to different experiments can be taken into account in this procedure by expanding X_i and C_i as follows:

$$X_i \to X_i = \begin{pmatrix} X_k \\ X_l \end{pmatrix}, \quad C_i \to C_i = \begin{pmatrix} C_k & \sigma^2 \\ \sigma^2 & C_l \end{pmatrix},$$
 (4)

where σ is the error common to experiment k and l.

Most of the experiments quote the value of $\varphi_{+\sim}$ for a fixed value $\Delta m = \Delta \tilde{m}$ together with the linear dependence on Δm . We recall that for a fixed value of Δm , $\Delta \tilde{m}$, the value of φ_{+-} and its error, $\tilde{\varphi}_{+-}$ and $\tilde{\sigma}_{\varphi}$ respectively, are given by:

$$\tilde{\varphi}_{+-} = \varphi_{+-} + \rho \frac{\sigma_{\varphi}}{\sigma_{\Delta m}} \left(\Delta \tilde{m} - \Delta m \right) , \qquad (5)$$

$$\tilde{\sigma}_{\varphi} = \sigma_{\varphi} \sqrt{1 - \rho^2} \,, \tag{6}$$

where φ_{+-} , σ_{φ} and Δm , $\sigma_{\Delta m}$ are the central values and errors of a two-parameter fit and ρ is the correlation coefficient between φ_{+-} and Δm . Therefore we are able to reconstruct the full covariance matrix by using in addition to the value of φ_{+-} and its statistical error, the value of Δm and its error and the linear dependence (Tables 1 and 2). The systematic errors of φ_{+-} and Δm are added in quadrature to the diagonal elements of the covariance matrix.

2.1. Average values for φ_{+-} and Δm

The data used as input to our fits is summarized in Tables 1 and 2 and also presented together with the final result in Fig. 1. Since the values of φ_{+-} depend on the value of τ_s , we leave τ_s as an additional free parameter in the fit. However, its value is constrained by the precision of the world average, $\langle \tau_s \rangle =$ $(0.8926 \pm 0.0012) \times 10^{-10}$ s [1].

Using the experimental data available up to 1994 as input to our fit, we find similar results as PDG [1]. However our error for $\langle \Delta m \rangle$ is smaller compared to the PDG result due to the additional information used. For Δm we find $\langle \Delta m \rangle = (532.1 \pm 1.8 \pm 0.1) \times 10^7 \hbar/s$ and for φ_{+-} the value $\langle \varphi_{+-} \rangle = 44.3^{\circ} \pm 1.0^{\circ} \pm 0.1^{\circ}$, where the second error reflects the uncertainty of the correlation between φ_{+-} and Δm for the experiments [3–5]. Two experiments [6,10] give a large contribution to the χ^2 , the first giving a low value and the second a high value of Δm compared to the average value. The $\chi^2/\text{degree of freedom (dof) for the combined aver$ $age of <math>\varphi_{+-}$ and Δm is 1.0, and in contrast to PDG we do not need to scale the error of Δm by 1.2.

If we include the three recently published measurements [7,8,13] of Δm and φ_{+-} we find the results shown in Table 3 (Fit A). The value of Δm is lower by 1 σ and only one experiment [10] now gives a large contribution to the χ^2 . Since this experiment deviates only by 2σ and the total χ^2/dof is 0.8, we have retained it in our fit. By using only the experiments [6-8,10-13], which give the full covariance matrix of their measurements, we obtain the results shown in Table 3 (Fit B), which are in good agreement with Fit A. Table 3

Results from Fit A and Fit B. Fit A is made using all the experiments whereas Fit B is based only on the experiments [6–8,10–13], which give the full covariance matrix of their measurements. The error for Fit A includes an additional error of $\pm 0.1 \times 10^7 h/s$ for Δm and $\pm 0.1^\circ$ for φ_{+-} , obtained by varying the correlation between φ_{+-} and Δm for the older experiments [3–5]

Parameter	Fit A	Fit B
$\Delta m [10^7 \hbar/s]$ φ_{+-} $\tau_s [10^{-10} s]$ χ^2/dof	$530.7 \pm 1.3 43.82^{\circ} \pm 0.63^{\circ} 0.8922 \pm 0.0010 0.89$	$530.9 \pm 1.5 43.71^{\circ} \pm 0.66^{\circ} 0.8923 \pm 0.0011 1.02$
φsw ^a	$43.49^{\circ} \pm 0.08^{\circ}$	$43.50^\circ\pm0.08^\circ$

^a For the K_L mean life we used $\tau_L = (5.15 \pm 0.04) \times 10^{-8}$ s [1].

The quoted systematic error of [6,7] concerning their phase measurement which is mainly determined by the knowledge of the regeneration amplitudes has been subject of discussion [14–16]. Increasing the common systematic error of these two experiments to 1° (3°) yields $\varphi_{+-} = 43.94^{\circ}\pm0.75^{\circ}$ (44.06°±0.87°) and $\Delta m = [530.8 \pm 1.4 (530.9 \pm 1.4)] \times 10^{7}\hbar/s$. We conclude that the results of our correlated analysis do not change significantly, even with enlarged systematic errors for the measurements reported by [6] and [7], although the precision on φ_{+-} deteriorates.

3. Conclusion

In order to determine the best values of Δm and φ_{+-} using the data available from different experiments, we performed a correlated fit to the data, using when available the individual correlations of these two parameters. Our final result using the experiments [3-8,10-13] is:

$$\langle \varphi_{\pm-} \rangle = 43.82^{\circ} \pm 0.63^{\circ},$$
 (7)

$$\langle \Delta m \rangle = (530.7 \pm 1.3) \times 10^7 \hbar/s,$$
 (8)

with a correlation coefficient of 0.70 between φ_{+-} and Δm , and -0.40 between φ_{+-} and τ_s , i.e.:

$$\varphi_{+-} = 43.82^{\circ} \pm 0.41^{\circ} + 0.339 (\Delta m - 530.7)^{\circ} - 252 (\tau_{S} - 0.8922)^{\circ} .$$
(9)

370

The value of φ_{+-} is in good agreement with the superweak phase $\varphi_{SW} = 43.49^{\circ} \pm 0.08^{\circ}$ as expected from CPT invariance.

Acknowledgements

We thank H. Wahl for useful discussions. This work was supported by the following institutions: the French CNRS/Institut National de Physique Nucléaire et de Physique des Particules, the French Commissariat à l'Energie Atomique, the Greek General Secretariat of Research and Technology, the Netherlands Foundation for Fundamental Research on Matter (FOM), the Portuguese JNICT and INIC, the Ministry of Science and Technology of the Republic of Slovenia, the Swedish Natural Science Research Council, the Swiss National Science Foundation, the UK Particle Physics and Astronomy Research Council (PPARC), and the US National Science Foundation.

References

- [1] Particle Data Group, Phys. Rev. D 50 (1994) 1173.
- [2] CPLEAR collaboration, An improved determination of the $\overline{K}^0 K^0$ mass difference: a test of CPT symmetry, in preparation.
- [3] C. Geweniger et al., Phys. Lett. B 48 (1974) 487.
- [4] W.C. Carithers et al., Phys. Rev. Lett. 34 (1975) 1244.
- [5] R. Carosi et al., Phys. Lett. B 237 (1990) 303.
- [6] L.K. Gibbons et al., Phys. Rev. Lett. 70 (1993) 1199:
 L.K. Gibbons, Thesis, Enrico Fermi Institute, University of Chicago (1993), Table 2, p. 280.
- [7] B. Schwingenheuer et al., Phys. Rev. Lett. 74 (1995) 4376.
- [8] R. Adler et al., Phys. Lett. B 363 (1995) 243.
- [9] F. Vannucci, Thesis, Centre d'Orsay, Université Paris-Sud (1973), Table IV-5, p. 87.
- [10] M. Cullen et al., Phys. Lett. B 32 (1970) 523.
- [11] S. Gjesdal et al., Phys. Lett. B 52 (1974) 113.
- [12] C. Geweniger et al., Phys. Lett. B 52 (1974) 108.
- [13] R. Adler et al., Measurement of the K_L-K_S mass difference using semileptonic decays of tagged neutral kaons, CERN-PPE/95-103, Phys. Lett. B, in print.
- [14] K. Kleinknecht and S. Luitz, Phys. Lett. B 336 (1994) 581.
- [15] P. Franzini, talk given at Int. Symposium on Lepton and Photon Interactions, LP'95, Beijing, August 1995.
- [16] R.A. Briere and B. Winstein, Phys. Rev. Lett. 75 (1995) 402.