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We discuss a locally supersymmetric GUT with no unnaturally small couplings and just two input mass scales: Mp ~ 1019 
GeV and ~ ~ 10 a 1 GeV. We get out both the weak scale M w ~ #2/Mp and the GUT scale M x ~ (gMp) 1/2. The model pro- 
duces an acceptable cosmological scenario similar to the one we have previously discussed for globally supersymmetrie 
GUTs. 

Global supersymmetry was introduced into grand 
unified theories to ameliorate the gauge hierarchy 
problem [ 1 ]. Originally, one expected to get a low 
energy theory in which supersymmetry was spon- 
taneously broken at energies comparable to the 
weak interaction scale. This led to enormously com- 
plicated models, as it is not easy to break global super- 
symmetry:  if there is a supersymmetric state in the 
Hilbert space, it is automatical ly the ground state. 

Recently,  however, various authors have considered 
locally supersymmetric models [ 2 - 2 2 ] .  Breaking lo- 
cal supersymmetry is much easier than breaking global 
supersymmetry.  Fur thermore ,  it is possible to break 
local supersymmetry at an intermediate scale * 1 /~ 
~-- 1011 GeV with fields that have only gravitational 
couplings to the fields which describe our world. This 
leads to theories which, at low energies, look like glo- 
bally supersymmetric models with explicit  soft break- 
ing terms [5 ,7 ,10] .  The scale of  soft breaking is the 
gravitino mass, m3/2, which is of  order t22]Mp ~ 1 O0 
GeV. All superpartners (squarks, sleptons, gauginos) 
can get masses of  order m3/2 from the soft breaking 

,1 Any quoted numerical values for mass scales should be 
considered uncertain by at least an order of magnitude. 

terms, and the spontaneous breakdown of  SU(2) 
X U(1) can be induced. 

Thus, the models proposed so far can account for 

the weak interaction scale (M w --~ m3/2 ~--/~2/Mp). 
However, they still suffer from some of  the problems 
of  ordinary grand unified theories. The GUT scale M x 
is put  in by hand. Many unnaturally small couplings 
must be introduced in the superpotential.  In particu- 
lar, getting a reasonable cosmology [23] out of  these 
models requires some couplings to be as small as 10 -12 
but not zero [24]. 

In this paper we will exhibit a class of  locally super- 
symmetric GUTs in which such small couplings arise 
in a completely natural way. Furthermore,  the grand 
unification scale M x is not  put in by hand. Ra the r ,M x 
turns out to be related to/1 and Mp by 

M4xmta2M 2,  M4x ~--m3/2M3p, (1 ,2)  

which is well satisfied b y M  x m 1015 GeV,/a "- 1011 
GeV, Mp --~ 1019 GeV. The small coupling we need 
turns out to be proport ional  to  (I,,t/Mp) 3/2 ~ 10 - 1 2 .  

We obtain these remarkable results by including non- 
renormalizable interactions in the superpotential ,  sup- 
pressed by inverse powers o fMp.  The only other scale 
in the lagrangian is the scale of  supersymmetry break- 
ing,/~ m 1011 GeV. 
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We note that it is perfectly natural to include non- 
renormizable interactions in the superpotential ,  since 
N = 1 supergravity is not  renormalizable to begin with. 
Of course, we do not know how to compute divergent 
radiative corrections, and so we take the point  of  view 
advocated in ref. [9]. We consider N = 1 supergravity 
to be an effective theory valid at energies below Mp, 
and suppose that all effects of  divergent radiative cor- 
rections are already contained in the specified non- 
renormalizable terms. 

We start with three chiral superfields with complex 
scalar components  Z,  X and Z. 2; is an SU(5) 24, 
while X and Z are SU(5) singlets. The superpotential  
is 

W = M ~ I x 1  X4 +Mp-2X2 X2 t r (2 ;3)+/a2(Z + A ) ,  (3) 

where A is a constant which must be adjusted to can- 
cel the cosmological constant.  The terms invoNing Z 
and A are responsible for the spontaneous breaking 
o f  local supersymmetry.  I f  the other fields were not 
present,  and we set A = (2 -- w'~)M, M - Mp/(87r) 1/2 , 
Z would get a VEV of (V~J - 1)M, the gravitino would 
get a mass m3/2 = exp(2 -x/-J)la2/M, and the cosmol- 
ogical constant 'would be zero [2]. This picture will 
not be disturbed if X and Y. get VEVs which are much 
less than Mp. In this case, we can construct a low ener- 
gy effective potential  which is [apart from a trivial 
rescaling of  W by a factor exp(2 - x/J)]  [7] 

Veff,= DW/OXI 2 + trlaW/bN[ 2 

+ m3/2 [(A + 1) XIMi,-1X 4 

+ (A + 2) X2Mp2X 2 t r (Z  3) + h.c.] 

2 1 DC, D ~ + m  /2 [ IXl2+ t r lZ [  2] +~ 

3W/3X = 4X1M~Ix  3 + 2X2M~-Ix t r ( £  3) , 

1 3W/32; = 3X2M~-2X 2 [2;2 _ g t r (£2) ]  , 

D a = g  tr X~[Z,E *] . (4) 

Here A is a constant which depends on the details of 
local supersymmetry breaking [ 10] ; in our case, A = 
3 - V ~  at tree level, but this result is subject to po- 
tentially large gravitational radiative corrections [25]. 

We have analyzed Veff in detail. Rather than present 
that analysis here, we will make some order-of-magni- 
tude estimates which indicate the main results. If  we 

set Xl, X2, and all numerical factors to unity,  ignore 
the matrix character of 2;, and define x =- X/Mp, 
o =- E/Mp, and e - m3/2/M P ~-- (/2/Mp) 2 ~- 10 -16 ,  we 
get 

Veff/M 4 = Ix 3 +xo3[  2 + [x2o212 

+ e(x 4 + x 2 o  3 + h.c.) + e2(Ixl 2 + lal2) . (5) 

At x = o = 0, Vef f has a local minimum with Vef f = 0. 
Our detailed analysis shows that this is the global 

minimum of Vef f unless A > 3. From now on, we as- 
sume A > 3. There are now three other minima, all 

with Vef f < 0. One of them is 

o = 0 ,  X "~ e 1/2 , Vef f ~ - e 3 M  4 . (6) 

The others are tbund by setting x 2 ~ - 0 3 ,  which, to 

an excellent approximation,  minimizes Veff with re- 
spect to x. Then we get 

Veff/M 4 ~ lob 10 - e(o 6 + h.c.) + e21ol 2 , (7) 

which yields a minimum at 

o~--e 1/4, x ~ e  3/8, Vef f ~ - e S / 2 M  4 .  (8) 

We see that the minimum of eq. (8) is much deeper 
than that of eq. (6). Furthermore,  our detailed anal- 
ysis reveals that the matrix 2; must be of the form 
d i a g ( 2 , 2 , 2 , - 3 , - 3 )  or d i a g (1 ,1 ,1 ,1 , - 4 ) ,  and that 
the SU(3)  × SU(2) × U(1) symmetric minimum is the 
lowest for  all values o f  X 1 and X 2. 

What do these results mean? First, since the VEV of 
Z sets the scale of SU(5) breaking, and o = 2;IMp ~-- e 1/4 

(/.t/M) 1/2, we find that the GUT scale M x satisfies 

Mx 2 ~ ~4"p.  (9) 

Second, the SU(3) X SU(2) X U(1) symmetric mini- 
mum is lower in energy density than the SU(5) sym- 
metric minimum X = 2; = 0 by an amount e5/2M 4 

~5/Mp. Third, the barrier between these two mini- 
ma is never larger than the largest term in Vet- t- for 0 
< Ix[ < e 3/8 and 0 < Io[ < z 1/4 , that is, the barrier is 
no larger than e5/2M 4 =laS/Mp, the same as the split- 
ting between the states. 

Why this is so can be seen by noting that if we re- 
place X by its VEV in the superpotential ,  the effective, 
renormalizable self-coupling of £ is X2Mp 2 (X) 2 
X tr(2; 3) ~-- 10 -12 t r (£3) .  Thus we have generated a 
small renormalizable coupling for 2; from our starting 
point of  only non-renormalizable interactions among 
X and 2;. This small coupling suppresses the barriers 
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between the SU(5), SU(4) × U(1), and SU(3) × SU(2) 
× U(1) phases. 

It should be clear that the basic result - small re- 
normalizable couplings arising from non-renormalizable 
ones suppressed only by inverse powers ofMp - is 
quite general and does not depend on the detailed 
form of the superpotential. For example, we would 
get very similar results from any superpotential of the 
form 

W = XlM3(X/Mp) 2n + ?t2M3(X/Mp) n tr(~/Mp) p , 

0o) 

with p > n. We would find Mx 2p -2 ~ m3/2Mp2p- 3, 
and <X) -~ eP/2n(p -1)Mp. We chose n = 2 and p ~- 3 

M 4 m3/2M 3 seems approximately correct, because 
and because (X) ± e3/8Mp ~ lO-6Mp is useful in what 
follows. 

The small barrier between the SU(5) and SU(3) 
× SU(2) × U(1) phases is exactly what we need to 
realize the cosmological scenario we have previously 
discussed for globally supersymmetric GUTs [23,24]. 
Thermal effects keep the universe in the SU(5) sym- 
metric phase until the temperature drops to the SU(5) 
confinement scale, A ~-- 109-1010 GeV. Then the 
number of massless degrees of freedom in this phase 
changes, and the universe tunnels to the now preferred 
SU(3) × SU(2) × U(1) phase, provided that the bar- 
rier between the phases is no larger than about A 4. In 
the model in this paper, this condition is satisfied. 
Since the transition is delayed to temperatures as low 
as 109 GeV, the number density of magnetic mono- 
poles produced in the transition does not exceed, and 
may be quite close to, the observed tipper limit [23], 

We still need a mechanism to create the cosmologi- 
cal baryon number asymmetry (CBA). In the second 
paper of ref. [241, the CBA was created after the 
transition by decays of weakly coupled SU(5) singlet 
particles. The needed superpotential was 

W = (10-6)YHH + (1010 GeV) H3H3 + (1010 GeV)Y 2, 

01) 
where Y is the SU(5) singlet, and H 3 and H 3 are the 
colour triplet components of H and H, a 5 and 5. 
(Actually we need two sets of 5 + 5 Higgs fields; see 
ref. [26] .) After the phase transition, the Y particles 
decay, out of equilibrium (because of the small cou- 
plings) to Higgs colour triplets, which then decay, out 
of equilibrium, to quarks and leptons. CP and baryon 
number violation in these decays produces the CBA. 

We can reproduce the superpotential of eq. (11) 
via 

W = M~ -1X3XYHH + Mp 1X4XHEH + X 5/~HH + 2`6flY 2. 
(12) 

We have introduced no new mass scales beyond/.t and 
Mp. All the X's are of order one. Yet when we replace 
X and E by their VEVs, we recover eq. (11), provided 
we fine tune 2, 4 and X 5 to give the SU(2) doublet com- 
ponents of H and H masses much less than ~. (Recall 
that <X) ~ e3/8Mp ~ 10-6Mp.) So, once again, we do 
not need to put any very small (i.e. 10 -6)  couplings 
into the original lagrangian. Even the HQQ couplings 
needed for quark and lepton masses can be made nat- 
urally small by using terms like M~-1HEQQ o r  Mp -2 
× HE2QQinstead [21]. 

At low energies, our model looks like a globally 
supersymmetric Weinberg-Salam model with softly 
broken supersymmetry. There are, in addition, some 
other chiral superfields: an SU(3) octet, an SU(2) 
triplet, and an SU(3) × SU(2) × U(1) singlet, all with 
masses of order m3/2 ; originally, they were part of :~. 
All have couplings to the Higgs doublets in the effec- 
tive, low energy superpotential of order <X)/Mp ~ 10 -6 
The singlet is potentially dangerous since its interac- 
tions beyond tree level can destabilize the hierarchy 
between M x and m3/2 [ 15,16]. However, in our case 
the singlet couples so weakly that this is not a prob- 
lem. We have not attempted a filll analysis of the low 
energy potential; we hope that radiative corrections 
will induce the spontaneous breakdown of SU(2) 
X U(1) [9]. 

Our model, as it stands, is not quite perfect. It re- 
quires additional light fields to obtain acceptable pre- 
dictions for sin20 w and AQC D [27,28]. Also, we must 
ensure that our 1010 GeV colour triplet Higgs particles 
do not lead to rapid proton decay. Various means of 
avoiding this potential problem have been discussed 
in ref. [26]. 

Also, the SU(5) to SU(3) × SU(2) X U(1) phase 
transition does not result in a long period of exponen- 
tial expansion (inflation). However, we can still solve 
the horizon, flatness, and rotation problems with in- 
flation at temperature of order Mp [20,28-30].  We 
have discussed elsewhere [20] how this can occur in 
N = 1 supergravity (again making use of non-renormal- 
izable couplings), while producing a spectrum of den- 
sity fluctuations which can lead to galaxy formation. 

It is not clear whether or not primordial inflation 
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solves the gravitino problem [28,31,32] .  In any case, 
a gravitino mass of  104 GeV avoids the problem alto- 
gether [31 ], without  inflation. It is also possible that 
our model  will result in some modest  expansion just 
before the SU(5) to SU(3) × SU(2) × U(1) transition. 
A change in the scale factor of the universe by three 
or four orders of  magnitude would permit a gravitino 
mass of 100 to 1000 GeV, which is just what we want. 

In conclusion, let us summarize. Starting from a 
locally supersymmetric lagrangian with no unnatural- 
ly small coupling constants and only two mass scales, 
Mp ~-- 1019 GeV and p ~-- 1011 GeV, we have generated 
both the weak scale M w ~ m3/9 ~-- p2/Mp, and the 
GUT scale M x ~-- (p214p) 1/2 . We iaave also reproduced 
previous scenarios [23,24] for early cosmology in 
supersymmetric GUTs without  problems. Coupled 
with primordial inflation [20,28] ,  we have no horizon, 
flatness, rotat ion,  monopole,  gravitino, baryon number,  
or galaxy formation [30] problems. The density of  
monopoles in the universe today may be close to the 
observed upper limit. 

Note added in the proof. We believe that the text  
of  this paper does not sufficiently emphasize the fact 
that the SU(5) to SU(3) × SU(2) × U(1) transition 
will not  occur without  non-perturbative effects in the 
SU(5) phase. The barrier between phases, though 
much less than M~x, is not  small enough to allow 
quantum mechanical tunnelling at a reasonable rate. 
However, if (for example) supersymmetry is broken 
non-perturbatively in the SU(5) phase, the free energy 
density near 2; = 0 will be of  order A 4, as high or 
higher than the barrier between phases. This will 
cause a second-order (or weakly first-order) SU(5) to 
SU(3) × SU(2) X U(1) transition at a critical temper- 
ature of  order A. Even i fsupersymmetry  is not  broken 
non-perturbatively,  other confinement effects in the 
SU(5) phase (which obscure the physics at 2; <~ A) 
may drive the transition. None of  these effects have 
consequences for physics in the SU(3) × SU(2) X 
U(1) phase. 
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