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OSCILLATION TESTS FOR DELAY EQUATIONS

J. JAROS̆ AND I.P. STAVROULAKIS

ABSTRACT. This paper is concerned with the oscillatory
behavior of first-order delay differential equations of the form

(1) x′(t) + p(t)x(τ(t)) = 0, t ≥ T,

where p, τ ∈ C([T,∞),R+), R+ = [0,∞), τ(t) is nondecreas-
ing, τ(t) < t for t ≥ T and limt→∞ τ(t) = ∞. Let the num-
bers k and L be defined by

k = lim inf
t→∞

∫ t

τ(t)

p(s) ds

and

L = lim sup
t→∞

∫ t

τ(t)

p(s) ds.

It is proved that, when L < 1 and 0 < k ≤ 1/e, all solutions
of Equation (1) oscillate if the condition

L >
ln λ1 + 1

λ1
− 1 − k −√

1 − 2k − k2

2
,

where λ1 is the smaller root of the equation λ = ekλ, is
satisfied.

1. Introduction. Consider the linear delay differential equation

(1) x′(t) + p(t)x(τ (t)) = 0, t ≥ T,

where p and τ are continuous functions defined on [T,∞), p(t) > 0,
τ (t) < t for t ≥ T , τ (t) is nondecreasing and limt→∞ τ (t) = ∞.
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By a solution of Equation (1) we understand a continuously differen-
tiable function defined on [τ (T1),∞) for some T1 ≥ T and such that
(1) is satisfied for t ≥ T1. Such a solution is called oscillatory if it has
arbitrarily large zeros. Otherwise, it is called nonoscillatory.

The first systematic study for the oscillation of all solutions of
Equation (1) was made by Myshkis. In 1950 [20] he proved that every
solution of Equation (1) oscillates if

(C1) lim sup
t→∞

[t − τ (t)] < ∞, lim inf
t→∞ [t − τ (t)] · lim inf

t→∞ p(t) >
1
e
.

In 1972, Ladas, Lakshmikantham and Papadakis [16] proved that the
same conclusion holds if

(C2) lim sup
t→∞

∫ t

τ(t)

p(s) ds > 1.

In 1979, Ladas [15] and, in 1982, Koplatadze and Chanturija [11]
improved (C1) to

(C3) lim inf
t→∞

∫ t

τ(t)

p(s) ds >
1
e
.

Concerning the constant 1/e in (C3), it is to be pointed out that, if the
inequality ∫ t

τ(t)

p(s) ds ≤ 1
e

holds eventually, then, according to a result in [11], (1) has a nonoscil-
latory solution.

In 1982, Ladas, Sficas and Stavroulakis [17] and, in 1984, Fukagai and
Kusano [9] established oscillation criteria (of the type of the conditions
(C2) and (C3)) for Equation (1) with oscillating coefficient p(t).

It is obvious that there is a gap between the conditions (C2) and (C3)
when the limit

lim
t→∞

∫ t

τ(t)

p(s) ds
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does not exist. How to fill this gap is an interesting problem which has
been recently investigated by several authors.

Before the work of Erbe and Zhang [8] not much was known about
the class of linear delay differential equations for which neither (C2)
nor (C3) was satisfied. As far as we know, only the papers [4, 9, 10]
contained results that could be applied also in some cases that were
not covered by the above mentioned results. In 1988, Erbe and Zhang
[8] developed new oscillation criteria by employing the upper bound
of the ratio x(τ (t))/x(t) for possible nonoscillatory solutions x(t) of
Equation (1). Their result, when formulated in terms of the numbers
k and L defined by

k = lim inf
t→∞

∫ t

τ(t)

p(s) ds and L = lim sup
t→∞

∫ t

τ(t)

p(s) ds,

says that all the solutions of Equation (1) are oscillatory if 0 < k ≤ 1/e
and

(C4) L > 1 − k2

4
.

Since then, several authors tried to obtain better results by improving
the upper bound for x(τ (t))/x(t). In 1991, Jian Chao [2] derived the
condition

(C5) L > 1 − k2

2(1 − k)
,

while, in 1992, Yu, Wang, Zhang and Qian [21] obtained the condition

(C6) L > 1 − 1 − k −√
1 − 2k − k2

2
.

In 1990, Elbert and Stavroulakis [6] and, in 1991, Kwong [14], using
different techniques, improved (C4) in the case where 0 < k ≤ 1/e, to
the conditions

(C7) L > 1 −
(

1 − 1√
λ1

)2
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and

(C8) L >
ln λ1 + 1

λ1
,

respectively, where λ1 is the smaller root of the equation

(2) λ = ekλ.

Following this historical (and chronological) review, we also mention
that, in the case where

∫ t

τ(t)

p(s) ds ≥ 1
e

and lim
t→∞

∫ t

τ(t)

p(s) ds =
1
e
,

this problem has been studied in 1993 by Elbert and Stavroulakis
[7] and in 1995 by Kozakiewicz [13], Li [19] and by Domshlak and
Stavroulakis [5].

The purpose of this paper is to combine the methods previously used
in [14] and [21] to show that the conditions (C2) and (C4) (C8) may
be weakened to

(C9) L >
ln λ1 + 1

λ1
− 1 − k −√

1 − 2k − k2

2

where λ1 is the smaller root of the equation λ = ekλ.

It is to be noted that, as k → 0, then all conditions (C4) (C8)
and also our condition (C9) reduce to the condition (C2). However,
the improvement is clear as k → 1/e. For illustrative purposes, we
give the values of the lower bound in these conditions when k = 1/e:
(C2): 1.000000, (C4): 0.966166, (C5): 0.892951, (C6): 0.863457, (C7):
0.845182, (C8): 0.735759, (C9): 0.599216.

We see that our condition (C9) essentially improves all the known
results in the literature.

2. Main results. In what follows we will denote by k and L
the lower and upper limits of the average

∫ t

τ(t)
p(s) ds as t → ∞,

respectively, i.e.,

k = lim inf
t→∞

∫ t

τ(t)

p(s) ds
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and

L = lim sup
t→∞

∫ t

τ(t)

p(s) ds.

Set
w(t) =

x(τ (t))
x(t)

.

We begin with the preliminary analysis of asymptotic behavior of the
function w(t) for a possible nonoscillatory solution x(t) of Equation (1)
in the case that k ≤ 1/e. For this purpose, assume that (1) has a
solution x(t) which is positive for all large t. Dividing first Equation (1)
by x(t) and then integrating it from τ (t) to t leads to the integral
equality

(3) w(t) = exp
∫ t

τ(t)

p(s)w(s) ds

which holds for all sufficiently large t, say for t ≥ T1, where both x(t)
and x(τ (t)) are positive on [T1,∞).

Lemma 1. Suppose that k > 0 and Equation (1) has an eventually
positive solution x(t). Then k ≤ 1/e and

λ1 ≤ lim inf
t→∞ w(t) ≤ λ2,

where λ1 and λ2 are the roots of the equation λ = ekλ.

Proof. Let α = lim inft→∞ w(t). From (3), we have

w(t) = exp
∫ t

τ(t)

p(s)w(s) ds

for sufficiently large t. This obviously implies that

α ≥ exp kα,

which is impossible if k > 1/e, since a simple calculus argument
shows that, in this case, λ < ekλ for all λ. This implies that (1)
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has no eventually positive solution if k > 1/e. On the other hand, if
0 < k ≤ 1/e, then λ = ekλ has roots λ1 ≤ λ2, with equality λ1 = λ2 = e
if and only if k = 1/e, and α ≥ ekα if and only if λ1 ≤ α ≤ λ2.

The next lemma is taken from [21] and it gives an upper bound for
the function w(t) as t → ∞.

Lemma 2. Let 0 < k ≤ 1/e and x(t) be an eventually positive
solution of Equation (1). Then

(4) lim sup
t→∞

w(t) ≤ 2
1 − k −√

1 − 2k − k2
.

Theorem 1. Let 0 < k ≤ 1/e, and let x(t) be an eventually positive
solution of Equation (1). Then

(5) L ≤ 1 + lnλ1

λ1
− M,

where λ1 is the smaller root of the equation λ = ekλ and

(6) M = lim inf
t→∞

x(t)
x(τ (t))

.

Proof. Let θ be any number in (1/λ1, 1). From Lemma 1 and the
definition of M , there is a T1 > T such that

x(τ (t))
x(t)

> θλ1, t ≥ T1,(7)

and

x(t)
x(τ (t))

> θM, t ≥ T1.(8)

Now let t ≥ T1. Since the function g(s) = x(τ (t))/x(s) is continuous,
g(τ (t)) = 1 < θλ1 and g(t) > θλ1, there is a t∗(t) ∈ (τ (t), t) such that

x(τ (t))
x(t∗(t))

= θλ1.
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Dividing (1) by x(t), integrating from τ (t) to t∗(t), and taking into
account (7) yields

(9)
∫ t∗(t)

τ(t)

p(s) ds ≤ − 1
θλ1

∫ t∗(t)

τ(t)

x′(s)
x(s)

ds =
ln(θλ1)

θλ1
.

Integrating (1) over [t∗(t), t] and using (8) and the fact that x(τ (s)) ≥
x(τ (t)) if s ≤ t yields

(10)

∫ t

t∗(t)

p(s) ds ≤ x(t∗(t))
x(τ (t))

− x(t)
x(τ (t))

=
1

θλ1
− x(t)

x(τ (t))

≤ 1
θλ1

− θM.

Adding (10) and (9) yields

∫ t

τ(t)

p(s) ds ≤ 1 + ln(θλ1)
θλ1

− θM.

Letting t → ∞ yields

L ≤ 1 + ln(θλ1)
θλ1

− θM.

Letting θ → 1 completes the proof.

This theorem, in view of Lemma 2, implies the following

Corollary 1. Consider the differential equation (1) and assume that
when L < 1 and 0 < k ≤ 1/e the following condition holds

(C9) L >
ln λ1 + 1

λ1
− 1 − k −√

1 − 2k − k2

2

where λ1 is the smaller root of the equation

λ = ekλ.
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Then all solutions of Equation (1) oscillate.

Example. Consider the delay differential equation

(11) x′(t) +
0.6

απ +
√

2
(2α + cos t)x

(
t − π

2

)
= 0,

where α = (
√

2(0.6e + 1))/(π(0.6e − 1)). Then

lim inf
t→∞

∫ t

t−π/2

0.6(2α + cos u)/(απ +
√

2) du =
1
e

and

lim sup
t→∞

∫ t

t−π/2

0.6(2α + cos u)/(απ +
√

2) du = 0.6.

Thus, according to Corollary 1, all solutions of Equation (11) are
oscillatory. We remark that none of the results mentioned in the
introduction can be applied to this equation.

3. Extensions. It is easy to see that the conclusions of Lemmas
1 and 2 remain valid if we replace Equation (1) by the differential
inequality

(12) x′(t) + p(t)x(τ (t)) ≤ 0, t ≥ T.

It is also clear that if x(t) is a solution of (12) then −x(t) is a solution
of the differential inequality

(13) x′(t) + p(t)x(τ (t)) ≥ 0.

Thus, we conclude the following

Corollary 2. Assume that the conditions of Corollary 1 are sat-
isfied. Then Equation (12) has no eventually positive solutions and
Equation (13) has no eventually negative solutions.

Our results can be extended to advanced differential equations and
inequalities of the form

x′(t) − p(t)(τ (t)) = 0,(1′)
x′(t) − p(t)x(τ (t)) ≥ 0,(12)′



OSCILLATION TESTS FOR DELAY EQUATIONS 205

and

x′(t) − p(t)x(τ (t)) ≤ 0,(13)′

where τ (t) > t for t ≥ T . Since the proofs are very similar we omit
them and formulate only the corresponding results.

Corollary 3. Assume that the conditions of Corollary 1 are satisfied
with

k = lim inf
t→∞

∫ τ(t)

t

p(s) ds and L = lim sup
t→∞

∫ τ(t)

t

p(s) ds.

Then Equation (12)′ has no eventually positive solutions, Equation (13)′

has no eventually negative solutions, and Equation (1)′ has oscillatory
solutions only.

We can also apply our results to equations with positive and negative
coefficients of the form, cf. [21],

x′(t) + p(t)x(t − τ ) − q(t)x(t − σ) = 0,

where
p, q ∈ C([T,∞),R+) and τ, σ ∈ R+,

to neutral differential equations of the form, cf. [3],

d

dt
[x(t) + p(t)x(t − τ )] + q(t)x(t − σ) = 0,

where

p ∈ C([T,∞),R), q ∈ C([T,∞),R+) and τ, σ ∈ R+,

and also to higher-order equations and essentially improve the existing
results in the literature.

Acknowledgment. The authors would like to express their thank-
fulness to the referee for his very useful and detailed suggestions which
improved this paper.
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