
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 320415, 9 pages
http://dx.doi.org/10.1155/2013/320415

Research Article
A Study of Nonlinear Fractional Differential
Equations of Arbitrary Order with Riemann-Liouville
Type Multistrip Boundary Conditions

Bashir Ahmad,1 Sotiris K. Ntouyas,2 and Ahmed Alsaedi1

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

Correspondence should be addressed to Bashir Ahmad; bashirahmad qau@yahoo.com

Received 28 November 2012; Accepted 19 January 2013

Academic Editor: José Tenreiro Machado
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We develop the existence theory for nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type
boundary conditions involving nonintersecting finite many strips of arbitrary length. Our results are based on some standard tools
of fixed point theory. For the illustration of the results, some examples are also discussed.

1. Introduction

The subject of fractional calculus has recently developed into
a hot topic for the researchers in view of its numerous applica-
tions in the field of physics, mechanics, chemistry, engineer-
ing, and so forth. One can find the systematic progress of the
topic in the books ([1–6]). A significant characteristic of a
fractional-order differential operator distinguishing it from
the integer-order differential operator is that it is nonlocal in
nature, that is, the future state of a dynamical system or pro-
cess involving fractional derivative depends on its current
state as well its past states. In fact, this feature of fractional-
order operators has contributed towards the popularity of
fractional-order models, which are recognized as more real-
istic and practical than the classical integer-order models.
In other words, we can say that the memory and hered-
itary properties of various materials and processes can be
described by differential equations of arbitrary order. There
has been a rapid development in the theoretical aspects such
as periodicity, asymptotic behavior, and numerical methods
for fractional equations. For some recent work on the topic,
see ([7–23]) and the references therein. In particular, Ahmad
et al. [22] studied nonlinear fractional differential equations

and inclusions of arbitrary order with multistrip boundary
conditions.

In this paper, we continue the study initiated in [22] and
consider a boundary value problem of fractional differential
equations of arbitrary order 𝑞 ∈ (𝑛 − 1, 𝑛], 𝑛 ≥ 2 with finite
many multistrip Riemann-Liouville type integral boundary
conditions:

𝑐

𝐷
𝑞

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 0, 𝑥


(0) = 0, . . . , 𝑥
(𝑛−2)

(0) = 0,

𝑥 (𝑇) =

𝑚

∑

𝑖=1

𝛾
𝑖
[𝐼
𝛽𝑖

𝑥 (𝜂
𝑖
) − 𝐼
𝛽𝑖

𝑥 (𝜁
𝑖
)] ,

(1)

where 𝑐𝐷𝑞 denotes theCaputo fractional derivative of order 𝑞,
𝑓 is a given continuous function, 𝐼𝛽𝑖 is the Riemann-Liouville
fractional integral of order 𝛽

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑚, 0 < 𝜁

1
<

𝜂
1
< 𝜁
2
< 𝜂
2
< . . . < 𝜁

𝑚
< 𝜂
𝑚
< 𝑇, and 𝛾

𝑖
∈ R are suitable

chosen constants.
Regarding the motivation of the problem, we know that

the strip conditions appear in the mathematical modeling of
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certain real world problems, for instance, see [24, 25]. In [22],
the authors considered the nonlocal strip conditions of the
form:

𝑥 (1) =

𝑛−2

∑

𝑖=1

𝛼
𝑖
∫

𝜂𝑖

𝜁𝑖

𝑥 (𝑠) 𝑑𝑠, 0 < 𝜁
𝑖
< 𝜂
𝑖
, < 1,

𝑖 = 1, 2, . . . , (𝑛 − 2) .

(2)

In the problem (1), we have introduced Riemann-Liouville
type multistrip integral boundary conditions which can be
interpreted as the controller at the right-end of the interval
under consideration is influenced by a discrete distribution
of finite many nonintersecting sensors (strips) of arbitrary
length expressed in terms of Riemann-Liouville type integral
boundary conditions. For some engineering applications of
strip conditions, see ([26–32]).

The main objective of the present study is to develop
some existence results for the problem (1) by using standard
techniques of fixed point theory. The paper is organized as
follows. In Section 2we discuss a linear variant of the problem
(1), which plays a key role in developing the main results
presented in Section 3. For the illustration of the theory, we
have also included some examples.

2. Preliminary Result

Let us begin this section with some basic definitions of frac-
tional calculus [2–4].

Definition 1. If 𝑔(𝑡) ∈ 𝐴𝐶
𝑛

[𝑎, 𝑏], then the Caputo derivative
of fractional order 𝑞 is defined as

𝑐

𝐷
𝑞

𝑎
+𝑔 (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑔
(𝑛)

(𝑠) 𝑑𝑠

= 𝐼
𝑛−𝑞

𝑎
+ 𝐷
𝑛

𝑔 (𝑥) , 𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(3)

where [𝑞] denotes the integer part of the real number 𝑞. For
details, seeTheorem 2.1 ([4, page 92]). Here𝐴𝐶𝑛[𝑎, 𝑏] denote
the space of real valued functions 𝑔(𝑡)which have continuous
derivatives up to order 𝑛 − 1 on [𝑎, 𝑏] such that 𝑔𝑛−1(𝑡) ∈

𝐴𝐶[𝑎, 𝑏].

Definition 2. The Riemann-Liouville fractional integral of
order 𝑞 is defined as

𝐼
𝑞

𝑔 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

𝑔 (𝑠)

(𝑡 − 𝑠)
1−𝑞

𝑑𝑠, 𝑞 > 0, (4)

provided the integral exists.

The following result associated with a linear variant of
problem (1) plays a pivotal role in establishing the main
results.

Lemma 3. For ℎ ∈ 𝐶[0, 𝑇], the fractional boundary value
problem

𝑐

𝐷
𝑞

𝑥 (𝑡) = ℎ (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑞 ∈ (𝑛 − 1, 𝑛]

𝑥 (0) = 0, 𝑥


(0) = 0, . . . , 𝑥
(𝑛−2)

(0) = 0,

𝑥 (𝑇) =

𝑚

∑

𝑖=1

𝛾
𝑖
[𝐼
𝛽𝑖

𝑥 (𝜂
𝑖
) − 𝐼
𝛽𝑖

𝑥 (𝜁
𝑖
)] ,

(5)

has a unique solution 𝑥(𝑡) ∈ 𝐴𝐶
𝑛

[0, 𝑇] given by

𝑥 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

ℎ (𝑠) 𝑑𝑠

−
𝑡
𝑛−1

𝜆Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

ℎ (𝑠) 𝑑𝑠

+
𝑡
𝑛−1

𝜆Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

ℎ (𝑢) 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

× ℎ (𝑢) 𝑑𝑢 𝑑𝑠] ,

(6)

where

𝜆 = (𝑇
𝑛−1

−

𝑚

∑

𝑖=1

𝛾
𝑖

(𝜂
𝛽𝑖+𝑛−1

𝑖
− 𝜁
𝛽𝑖+𝑛−1

𝑖
) Γ (𝑛)

Γ (𝛽
𝑖
+ 𝑛)

) ̸= 0. (7)

Proof. The general solution of fractional differential equa-
tions in (5) can be written as

𝑥 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

ℎ (𝑠) 𝑑𝑠 − 𝑐
0
− 𝑐
1
𝑡 − ⋅ ⋅ ⋅ − 𝑐

𝑛−1
𝑡
𝑛−1

.

(8)
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Using the given boundary conditions, it is found that 𝑐
0
= 0,

𝑐
1
= 0, . . . , 𝑐

𝑛−2
= 0. Applying the Riemann-Liouville integral

operator 𝐼𝛽𝑖 on (8), we get

𝐼
𝛽𝑖𝑥 (𝑡)

=
1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1

× (
1

Γ (𝑞)
∫

𝑠

0

(𝑠 − 𝑢)
𝑞−1

ℎ (𝑢) 𝑑𝑢 − 𝑐
𝑛−1

𝑠
𝑛−1

)𝑑𝑠

=
1

Γ (𝛽
𝑖
) Γ (𝑞)

∫

𝑡

0

∫

𝑠

0

(𝑡 − 𝑠)
𝛽𝑖−1(𝑠 − 𝑢)

𝑞−1

ℎ (𝑢) 𝑑𝑢 𝑑𝑠

− 𝑐
𝑛−1

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1𝑠
𝑛−1

𝑑𝑠.

(9)

Using the condition 𝑥(𝑇) = ∑
𝑚

𝑖=1
𝛾
𝑖
[𝐼
𝛽𝑖𝑥(𝜂
𝑖
) − 𝐼
𝛽𝑖𝑥(𝜁
𝑖
)], to-

gether with the fact that

1

Γ (𝛽
𝑖
)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽𝑖−1𝑠
𝑛−1

𝑑𝑠 =
𝑡
𝛽𝑖+𝑛−1Γ (𝑛)

Γ (𝛽
𝑖
+ 𝑛)

, (10)

we obtain
1

Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

ℎ (𝑠) 𝑑𝑠 − 𝑐
𝑛−1

𝑇
𝑛−1

=

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝑞) Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

ℎ (𝑢) 𝑑𝑢 𝑑𝑠

−∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

ℎ (𝑢) 𝑑𝑢 𝑑𝑠]

− 𝑐
𝑛−1

𝑚

∑

𝑖=1

𝛾
𝑖

(𝜂
𝛽𝑖+𝑛−1

𝑖
− 𝜁
𝛽𝑖+𝑛−1

𝑖
) Γ (𝑛)

Γ (𝛽
𝑖
+ 𝑛)

,

(11)

which yields

𝑐
𝑛−1

=
1

𝜆Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

ℎ (𝑠) 𝑑𝑠

−
1

𝜆Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

ℎ (𝑢) 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

× ℎ (𝑢) 𝑑𝑢 𝑑𝑠] ,

(12)

where 𝜆 is given by (7). Substituting the values of 𝑐
0
,

𝑐
1
, . . . , 𝑐

𝑛−2
, 𝑐
𝑛−1

in (8), we obtain (6). This completes the
proof.

3. Main Results

Let C := 𝐶([0, 𝑇],R) denotes the Banach space of all con-
tinuous functions defined on [0, 𝑇] × R endowed with a
topology of uniform convergence with the norm ‖𝑥‖ =

sup
𝑡∈[0,𝑇]

|𝑥(𝑡)|.
By Lemma 3, we define an operatorP : C → C as

(P𝑥) (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
𝑡
𝑛−1

𝜆Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+
𝑡
𝑛−1

𝜆Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

× 𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×𝑓 (𝑢, 𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠] ,

𝑡 ∈ [0, 𝑇] .

(13)

Observe that the problem (1) has a solution if and only if
the associated fixed point problemP𝑥 = 𝑥 has a fixed point.

In the first result we prove an existence and uniqueness
result by means of Banach’s contraction mapping principle.
For the sake of convenience, we set

Λ =
𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)

+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

.

(14)

Theorem 4. Suppose that 𝑓 : [0, 𝑇] ×R → R is a continuous
function and satisfies the following assumption:
(A
3
)

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 ,

∀𝑡 ∈ [0, 1] , 𝐿 > 0, 𝑥, 𝑦 ∈ R.
(15)

Then the boundary value problem (1) has a unique solution
provided

𝐿 <
1

Λ
, (16)

where Λ is given by (14).
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Proof. With 𝑟 ≥ 𝑀Λ/(1 − 𝐿Λ), we define 𝐵
𝑟
= {𝑥 ∈ C :

‖𝑥‖ ≤ 𝑟}, where 𝑀 = sup
𝑡∈[0,𝑇]

|𝑓(𝑡, 0)| < ∞ and Λ is given
by (14).Thenwe show thatP𝐵

𝑟
⊂ 𝐵
𝑟
. For 𝑥 ∈ 𝐵

𝑟
, bymeans of

the inequality |𝑓(𝑠, 𝑥(𝑠))| ≤ |𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 0)| + |𝑓(𝑠, 0)| ≤

𝐿‖𝑥‖ +𝑀 ≤ 𝐿𝑟 +𝑀, it can easily be shown that

‖P𝑥‖ = (𝐿𝑟 +𝑀)Λ ≤ 𝑟. (17)

Now, for 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ [0, 𝑇], we obtain

(P𝑥) − (P𝑦)


≤ sup
𝑡∈[0,𝑇]

{
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

𝜆Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

𝜆Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

𝑑𝑢

×
𝑓 (𝑢, 𝑥 (𝑢)) − 𝑓 (𝑢, 𝑦 (𝑢))

 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

−𝑓 (𝑢, 𝑦 (𝑢))
 𝑑𝑢 𝑑𝑠]}

≤ 𝐿Λ
𝑥 − 𝑦

 .

(18)

Note that Λ depends only on the parameters involved in the
problem. As 𝐿Λ < 1, thereforeP is a contraction. Hence, by
Banach’s contraction mapping principle, the problem (1) has
a unique solution on [0, 𝑇].

Example 5. Let us consider the following 4-strip nonlocal
boundary value problem:

𝑐

𝐷
9/2

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 2] ,

𝑥 (0) = 0, 𝑥


(0) = 0, 𝑥


(0) = 0, 𝑥


(0) = 0,

𝑥 (𝑇) =

4

∑

𝑖=1

𝛾
𝑖
[𝐼
𝛽𝑖

𝑥 (𝜂
𝑖
) − 𝐼
𝛽𝑖

𝑥 (𝜁
𝑖
)] ,

(19)

where 𝑞 = 9/2, 𝑛 = 5, 𝜁
1
= 1/4, 𝜂

1
= 1/2, 𝜁

2
= 2/3, 𝜂

2
= 1,

𝜁
3
= 5/4, 𝜂

3
= 4/3, 𝜁

4
= 3/2, 𝜂

4
= 7/4, 𝛾

1
= 5, 𝛾

2
= 10,

𝛾
3
= 15, 𝛾

4
= 25, 𝛽

1
= 5/4, 𝛽

2
= 7/4, 𝛽

3
= 9/4, 𝛽

4
= 11/4.

With the given values of the parameters involved, we find
that

𝜆 = (𝑇
𝑛−1

−

𝑚

∑

𝑖=1

𝛾
𝑖

(𝜂
𝛽𝑖+𝑛−1

𝑖
− 𝜁
𝛽𝑖+𝑛−1

𝑖
) Γ (𝑛)

Γ (𝛽
𝑖
+ 𝑛)

)

≃ 9.334784,

Λ =
𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)
+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

≃ 1.406972.

(20)

Let us choose

𝑓 (𝑡, 𝑥 (𝑡)) =
1

3√(𝑡 + 8)
(tan−1𝑥) + √4 + 3 sin 2𝑡. (21)

Clearly 𝐿 = 1/2 as |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ (1/2)|𝑥 − 𝑦| and
𝐿 < 1/Λ, where Λ ≃ 1.406972. Therefore all the conditions
of Theorem 4 hold and consequently there exists a unique
solution for the problem (19) with 𝑓(𝑡, 𝑥(𝑡)) given by (21).

In case of the following unbounded nonlinear function:

𝑓 (𝑡, 𝑥 (𝑡)) =
𝑥

7
+

1

3√(𝑡 + 8)
(tan−1𝑥) + √4 + 3 sin 2𝑡, (22)

we have 𝐿 = 9/14 and 𝐿 < 1/Λ (Λ ≃ 1.406972). As before,
the problem (19) with 𝑓(𝑡, 𝑥(𝑡)) given by (22) has a unique
solution.

In the second result we use the Leray-Schauder alterna-
tive.

Theorem 6 ((Leray-Schauder alternative) [33, page 4]). Let
𝑋 be a Banach space. Assume that 𝑇 : 𝑋 → 𝑋 is completely
continuous operator and the set

𝑉 = {𝑢 ∈ 𝑋 | 𝑢 = 𝜇𝑇𝑢, 0 < 𝜇 < 1} (23)

is bounded. Then 𝑇 has a fixed point in𝑋.

Theorem 7. Assume that there exists a positive constant 𝐿
1

such that |𝑓(𝑡, 𝑥)| ≤ 𝐿
1
for 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R. Then the problem

(1) has at least one solution.

Proof. First of all, we show that the operatorP is completely
continuous. Note that the operator P is continuous in view
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of the continuity of 𝑓. Let B ⊂ C be a bounded set. By the
assumption that |𝑓(𝑡, 𝑥)| ≤ 𝐿

1
, for 𝑥 ∈ B, we have

|(P𝑥) (𝑡)|

≤
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠]

≤ 𝐿
1
[

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 +
𝑡
𝑛−1

|𝜆| Γ (𝑞)
∫

𝑡

0

(𝑇 − 𝑠)
𝑞−1

𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

×(𝑠 − 𝑢)
𝑞−1

𝑑𝑢 𝑑𝑠] ]

≤ 𝐿
1
{

𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)

+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

} = 𝐿
2
,

(24)

which implies that ‖(P𝑥)‖ ≤ 𝐿
2
. Further, we find that


(P𝑥)


(𝑡)


=
1

Γ (𝑞 − 1)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−2 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
(𝑛 − 1) 𝑡

𝑛−2

|𝜆| Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
(𝑛 − 1) 𝑡

𝑛−2

|𝜆| Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)
[∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠]

≤ 𝐿
1
[

1

Γ (𝑞 − 1)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−2

𝑑𝑠

+
(𝑛 − 1) 𝑡

𝑛−2

|𝜆| Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

𝑑𝑠

+
(𝑛 − 1) 𝑡

𝑛−2

|𝜆| Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)
(∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))



× 𝑑𝑢 𝑑𝑠)]

≤ 𝐿
1
{
𝑇
𝑞−1

Γ (𝑞)
+
(𝑛 − 1) 𝑇

𝑞+𝑛−2

|𝜆| Γ (𝑞 + 1)

+
(𝑛 − 1) 𝑇

𝑛−2

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑗

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

} = 𝐿
3
.

(25)

Hence, for 𝑡
1
, 𝑡
2
∈ [0, 𝑇], we have

(P𝑥) (𝑡
2
) − (P𝑥) (𝑡

1
)
 ≤ ∫

𝑡2

𝑡1


(P𝑥)


(𝑠)

𝑑𝑠 ≤ 𝐿

3
(𝑡
2
− 𝑡
1
) .

(26)

This implies that P is equicontinuous on [0, 𝑇]. Thus, by
the Arzelá-Ascoli theorem, the operator P : C → C is
completely continuous.

Next, we consider the set

𝑉 = {𝑥 ∈ C | 𝑥 = 𝜇P𝑥, 0 < 𝜇 < 1} , (27)
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and show that the set 𝑉 is bounded. Let 𝑥 ∈ 𝑉, then 𝑥 =

𝜇P𝑥, 0 < 𝜇 < 1. For any 𝑡 ∈ [0, 𝑇], we have

|𝑥 (𝑡)| = 𝜇 |(P𝑥) (𝑡)|

≤
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠]

≤ 𝐿
1
{

𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)

+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

} = 𝑀
1
.

(28)

Thus, ‖𝑥‖ ≤ 𝑀
1
for any 𝑡 ∈ [0, 𝑇]. So, the set 𝑉 is

bounded.Thus, by the conclusion ofTheorem 6, the operator
P has at least one fixed point, which implies that (1) has at
least one solution.

Example 8. Consider the boundary value problem of
Example 5 with

𝑓 (𝑡, 𝑥 (𝑡)) =
3𝑒
√(2−|𝑥(𝑡)|)

3

[cos 4𝑡 + 2 ln (1 + 4sin2𝑥 (𝑡))]
√(10 + cos𝑥 (𝑡))

.

(29)

Observe that |𝑓(𝑡, 𝑥)| ≤ 𝐿
1
with 𝐿

1
= 𝑒
2√2

(1+ln 25).Thus the
hypothesis ofTheorem 7 is satisfied. Hence by the conclusion
of Theorem 7, the problem (19) with 𝑓(𝑡, 𝑥(𝑡)) given by (29)
has at least one solution.

In the next we prove one more existence result for
problem (1), based on the following known result.

Theorem 9 (see [34]). Let 𝑋 be a Banach space. Assume that
Ω is an open bounded subset of𝑋 with 𝜃 ∈ Ω and let 𝑇 : Ω →

𝑋 be a completely continuous operator such that

‖𝑇𝑢‖ ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝜕Ω. (30)

Then 𝑇 has a fixed point in Ω.

Theorem 10. Let there exist a small positive number 𝜏 such
that |𝑓(𝑡, 𝑥)| ≤ 𝜈|𝑥| for 0 < |𝑥| < 𝜏, with 0 < 𝜈 ≤ 1/Λ,
where Λ is given by (14). Then the problem (1) has at least one
solution.

Proof. Let us defineB
𝜏
= {𝑥 ∈ C | ‖𝑥‖ < 𝜏} and take 𝑥 ∈ C

such that ‖𝑥‖ = 𝜏, that is, 𝑥 ∈ 𝜕B
𝜏
. As before, it can be shown

thatP is completely continuous and

‖P𝑥‖ ≤ sup
𝑡∈[0,𝑡]

{
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

× ∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠]}

≤ Λ𝜈 ‖𝑥‖ ,

(31)

which in view of the given condition (𝜈Λ ≤ 1), gives ‖P𝑥‖ ≤

‖𝑥‖, 𝑥 ∈ 𝜕B
𝜏
.Therefore, byTheorem 9, the operatorP has at

least one fixed point, which in turn implies that the problem
(1) has at least one solution.

Example 11. Consider the boundary value problem of
Example 5 and let us consider

𝑓 (𝑡, 𝑥 (𝑡)) = 𝑥(𝑏
5

+ 𝑥
4

(𝑡))
1/5

+ 2(1 + cos (𝑡4 + 3))
5

× (1 − cos𝑥 (𝑡)) , 𝑥 ̸= 0, 𝑏 > 0.

(32)

For sufficiently small 𝑥 (ignoring 𝑥2 and higher powers of 𝑥),
we have


𝑥(𝑏
5

+ 𝑥
4

(𝑡))
1/5

+ 2(1 + cos (𝑡4 + 3))
5

(1 − cos𝑥 (𝑡))


≤ 𝑏 |𝑥| .

(33)

Choosing 𝑏 ≤ 1/Λ, all the assumptions of Theorem 10 hold.
Therefore, the conclusion of Theorem 10 implies that the
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problem (19) with 𝑓(𝑡, 𝑥(𝑡)) given by (32) has at least one
solution.

Our final existence result is based on Leray-Schauder
nonlinear alternative.

Lemma 12 ((Nonlinear alternative for single valued maps)
[33, page 135]). Let 𝐸 be a Banach space, 𝐶 a closed, convex
subset of 𝐸, 𝑈 an open subset of 𝐶 and 0 ∈ 𝑈. Suppose that
𝐹 : 𝑈 → 𝐶 is a continuous, compact (i.e., 𝐹(𝑈) is a relatively
compact subset of 𝐶) map. Then either

(i) 𝐹 has a fixed point in 𝑈, or
(ii) there is a 𝑢 ∈ 𝜕𝑈 (the boundary of 𝑈 in 𝐶) and 𝜆 ∈

(0, 1) with 𝑢 = 𝜆𝐹(𝑢).

Theorem 13. Assume that
(A
1
) there exist a function 𝜎 ∈ 𝐶([0, 1],R+), and a non-
decreasing function 𝜓 : R+ → R+ such that
|𝑓(𝑡, 𝑥)| ≤ 𝜎(𝑡)𝜓(‖𝑥‖), for all (𝑡, 𝑥) ∈ [0, 𝑇] ×R;

(A
2
) there exists a constant𝑀 > 0 such that

𝑀

𝜓(𝑀)Λ ‖𝜎‖
> 1. (34)

Then the boundary value problem (1) has at least one solution
on [0, 𝑇].

Proof. Consider the operator P : C → C defined by
(13). We show that P maps bounded sets into bounded sets
in 𝐶([0, 𝑇],R). For a positive number 𝑟, let 𝐵

𝑟
= {𝑥 ∈

𝐶([0, 𝑇],R) : ‖𝑥‖ ≤ 𝑟} be a bounded set in 𝐶([0, 𝑇],R). Then

‖P𝑥‖ ≤ sup
𝑡∈[0,𝑇]

{
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

+
𝑡
𝑛−1

|𝜆| Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

× (𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))



×𝑑𝑢 𝑑𝑠]}

≤ 𝜓 (𝑟) {
𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)

+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

} ‖𝜎‖ .

(35)

Next we show that 𝐹 maps bounded sets into equicontinuous
sets of 𝐶([0, 1],R). Let 𝑡, 𝑡 ∈ [0, 1] with 𝑡



< 𝑡
 and 𝑥 ∈ 𝐵

𝑟
,

where 𝐵
𝑟
is a bounded set of 𝐶([0, 1],R). Then we obtain


(P𝑥) (𝑡



) − (P𝑥) (𝑡


)


=



1

Γ (𝑞)
∫

𝑡


0

(𝑡


− 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
1

Γ (𝑞)
∫

𝑡


0

(𝑡


− 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−

[(𝑡


)
𝑛−1

− (𝑡


)
𝑛−1

]

𝜆Γ (𝑞)
∫

𝑇

0

(𝑇 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+

[(𝑡


)
𝑛−1

− (𝑡


)
𝑛−1

]

𝜆Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)
[∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠

− ∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

×
𝑓 (𝑢, 𝑥 (𝑢))

 𝑑𝑢 𝑑𝑠]



≤
1

Γ (𝑞)
∫

𝑡


0


(𝑡


− 𝑠)
𝑞−1

− (𝑡


− 𝑠)
𝑞−1

𝜓 (𝑟) 𝜎 (𝑠) 𝑑𝑠

+
1

Γ (𝑞)
∫

𝑡


𝑡



𝑡


− 𝑠


𝑞−1

𝜓 (𝑟) 𝜎 (𝑠) 𝑑𝑠

+


(𝑡


)
𝑛−1

− (𝑡


)
𝑛−1

|𝜆| Γ (𝑞)
∫

𝑇

0

|𝑇 − 𝑠|
𝑞−1

𝜓 (𝑟) 𝜎 (𝑠) 𝑑𝑠

+


(𝑡


)
𝑛−1

− (𝑡


)
𝑛−1

|𝜆| Γ (𝑞)

×

𝑚

∑

𝑖=1

𝛾
𝑖

Γ (𝛽
𝑖
)

× [∫

𝜂𝑖

0

∫

𝑠

0

(𝜂
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

𝑑𝑢𝜓 (𝑟) 𝜎 (𝑠) 𝑑𝑠

−∫

𝜁𝑖

0

∫

𝑠

0

(𝜁
𝑖
− 𝑠)
𝛽𝑖−1

(𝑠 − 𝑢)
𝑞−1

𝜓 (𝑟) 𝜎 (𝑠) 𝑑𝑢 𝑑𝑠] .

(36)
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Obviously the right hand side of the above inequality tends
to zero independently of 𝑥 ∈ 𝐵

𝑟
as 𝑡 − 𝑡



→ 0. As P :

𝐶([0, 𝑇],R) → 𝐶([0, 𝑇],R) satisfies the above assumptions,
therefore it follows by the Arzelá-Ascoli theorem that P is
completely continuous.

Let 𝑥 be a solution.Then, for 𝑡 ∈ [0, 𝑇], and following the
similar computations as before, we find that

|𝑥 (𝑡)| =
𝜇 (P𝑥) (𝑡)



≤ 𝜓 (𝑟) {
𝑇
𝑞

Γ (𝑞 + 1)
+

𝑇
𝑞+𝑛−1

|𝜆| Γ (𝑞 + 1)

+
𝑇
𝑛−1

|𝜆|

𝑚

∑

𝑖=1

𝛾
𝑖

𝜂
𝑞+𝛽𝑖

𝑖
− 𝜁
𝑞+𝛽𝑖

𝑖

Γ (𝑞 + 𝛽
𝑖
+ 1)

} ‖𝜎‖ .

(37)

In consequence, we have

‖𝑥‖

𝜓 (‖𝑥‖) Λ ‖𝜎‖
≤ 1. (38)

Thus, by (A
2
), there exists𝑀 such that ‖𝑥‖ ̸=𝑀. Let us set

𝑉 = {𝑥 ∈ 𝐶 ([0, 𝑇] ,R) : ‖𝑥‖ < 𝑀 + 1} . (39)

Note that the operator P : 𝑉 → 𝐶([0, 𝑇],R) is continuous
and completely continuous. From the choice of𝑉, there is no
𝑥 ∈ 𝜕𝑉 such that 𝑥 = 𝜇P(𝑥) for some 𝜇 ∈ (0, 1). Conseq-
uently, by the nonlinear alternative of Leray-Schauder type
(Lemma 12), we deduce thatP has a fixed point 𝑥 ∈ 𝑉which
is a solution of the problem (1).This completes the proof.

Example 14. Consider the boundary value problem of
Example 5 with

𝑓 (𝑡, 𝑥 (𝑡)) =
1

√𝑡 + 4
(1 +

|𝑥|

1 + |𝑥|
) ≤ 𝜎 (𝑡) 𝜓 (‖𝑥‖) . (40)

Then 𝜎(𝑡) = 1/√𝑡 + 4 and 𝜓(‖𝑥‖) = 2. Using ‖𝜎‖ = 1/2, Λ ≃

1.406972, we find by the condition (A
2
) that𝑀 > Λ. Thus all

the assumptions ofTheorem 13 are satisfied. Hence, it follows
by Theorem 13 that the problem (19) with 𝑓(𝑡, 𝑥(𝑡)) defined
by (40) has at least one solution.

If we choose an unbounded nonlinearity as follows:

𝑓 (𝑡, 𝑥 (𝑡)) =
1

√𝑡 + 4
(1 +

|𝑥|

1 + |𝑥|
+
|𝑥|

2
) . (41)

Then 𝑓(𝑡, 𝑥(𝑡)) ≤ 𝜎(𝑡)𝜓(‖𝑥‖) with 𝜎(𝑡) = 1/√𝑡 + 4 and
𝜓(‖𝑥‖) = 2 + ‖𝑥‖/2. Using the earlier arguments, with ‖𝜎‖ =

1/2, Λ ≃ 1.406972, we find that 𝑀 > 𝑀
1
, 𝑀
1
≈ 2.170392.

Hence the problem (19) with 𝑓(𝑡, 𝑥(𝑡)) given by (41) has at
least one solution.
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