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ON PERIODIC LINEAR NEUTRAL DELAY
DIFFERENTIAL AND DIFFERENCE EQUATIONS

CHRISTOS G. PHILOS, IOANNIS K. PURNARAS

Abstract. This article concerns the behavior of the solutions to periodic
linear neutral delay differential equations as well as to periodic linear neutral

delay difference equations. Some new results are obtained via two appropriate

distinct roots of the corresponding (so called) characteristic equation.

1. Introduction

Motivated by the old but very interesting asymptotic and stability results for
delay differential equations due to Driver [6, 7] and to Driver, Sasser and Slater
[9], a number of articles has been published during the last few years, which are
concerned with the asymptotic behavior (and, more general, the behavior) and the
stability for delay differential equations, neutral delay differential equations and
(neutral or non-neutral) integrodifferential equations with unbounded delay as well
as for delay difference equations (with discrete or continuous variable), neutral delay
difference equations and (neutral or non-neutral) Volterra difference equations with
infinite delay. See [1, 4, 5, 10, 11, 16, 17, 18, 19, 20], [22]–[34], [38]; for some related
results, see [2, 8, 12, 13, 21, 36, 37].

Recently, the authors [30] obtained some results concerning the behavior of the
solutions to autonomous linear delay differential equations as well as to autonomous
linear neutral delay differential equations; these results are essentially motivated by
a result due to Driver [6, Theorem 2]. In [31], the authors continued the work in
[30] to a wide class of autonomous linear neutral delay differential equations (and,
especially, delay differential equations) with infinitely many distributed type delays.
The authors’ paper [28] contains the discrete analogues of the results given in [30]
for autonomous linear delay difference equations as well as for autonomous linear
neutral delay difference equations; a result of the same type for autonomous linear
delay difference equations with continuous variable is also contained in [28]. The
study in [28, 30, 31] was continued by the authors in [33] to linear neutral integrod-
ifferential equations with unbounded delay, and, especially, to linear (non-neutral)
integrodifferential equations with unbounded delay; the discrete analogues of the
results in [33] for linear neutral (and, especially, non-neutral) Volterra difference
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equations with infinite delay have been presented by the authors in [34]. It must
be noted that the results in [28, 30, 31, 33, 34] are obtained via two distinct roots
of the corresponding characteristic equation.

A further continuation of the study in [28, 30, 31, 33, 34] was, very recently,
presented by the authors in [35]; the paper [35] contains some results on the behavior
of the solutions to periodic linear delay differential equations as well as to periodic
linear delay difference equations, which are derived by the use of two (appropriate)
distinct roots of the corresponding (so called) characteristic equation.

It is the subject of this paper to present a study analogous to the one in [35] for
the behavior of the solutions to periodic linear neutral delay differential equations
as well as to periodic linear neutral delay difference equations. Section 2 is devoted
to the case of differential equations, and Section 3 is concerned with the case of
difference equations. It is remarkable that an application of the main results of the
present work to the special case of (non-neutral) periodic linear delay differential
equations or to the special case of (non-neutral) periodic linear delay difference
equations leads to the main results of the previous authors’ paper [35], under some
additional hypotheses; but, these (additional) hypotheses are not needed for the
main results in [35] to hold. So, although the differential and difference equations
treated in [35] can be considered as special cases of the ones studied in this paper,
the main results in [35] cannot be obtained as corollaries of those given here.

Finally, we note that some considerable difficulty arises in the attempt to extend
the results of this paper to the more general case of periodic linear neutral delay
differential equations with several delays (such as those studied by the authors in
[23]) as well as of periodic linear neutral delay difference equations with several
delays (such as the ones treated by the authors in [29]).

2. On the behavior of the solutions to periodic linear neutral delay
differential equations

This section is concerned with the behavior of the solutions of the linear neutral
delay differential equation

[x(t) + cx(t− σ)]′ = a(t)x(t) + b(t)x(t− τ), (2.1)

where c is a real number, a and b are continuous real-valued functions on the interval
[0,∞), and σ and τ are positive real numbers. The function b is assumed to be not
identically zero on [0,∞). Moreover, it will be supposed that the coefficients a and
b are periodic functions with a common period T > 0 and that there exist positive
integers ` and m such that

σ = `T and τ = mT.

Consider the positive real number

r = max{σ, τ}.
As usual, a continuous real-valued function x defined on the interval [−r,∞) is

said to be a solution of the neutral delay differential equation (2.1) if the function
x(t) + cx(t − σ) is continuously differentiable for t ≥ 0 and x satisfies (2.1) for all
t ≥ 0.

Together with the neutral delay differential equation (2.1), it is customary to
specify an initial condition of the form

x(t) = φ(t) for − r ≤ t ≤ 0, (2.2)
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where the initial function φ is a given continuous real-valued function on the interval
[−r, 0].

Equations (2.1) and (2.2) constitute an initial value problem (IVP, for short). It
is well-known (see, for example, Diekmann et al. [3], Hale [14], or Hale and Verduyn
Lunel [15]) that there exists a unique solution x of the neutral delay differential
equation (2.1) which satisfies the initial condition (2.2); this unique solution x will
be called the solution of the initial value problem (2.1), (2.2) or, more briefly, the
solution of the IVP (2.1), (2.2).

Throughout this section, we shall use the notation

A =
1
T

∫ T

0

a(t)dt and B =
1
T

∫ T

0

b(t)dt.

We note that A and B are real constants. Also, it must be noted that B 6= 0 in the
case where the coefficient b is assumed to be of one sign on the interval [0,∞).

Along with the neutral delay differential equation (2.1), one associates the equa-
tion

λ(1 + ce−λσ) = A + Be−λτ , (2.3)
which will be called the characteristic equation of (2.1) (see the authors’ paper
[23]).

In the sequel, by ã and b̃ we shall denote the T -periodic extensions of the coeffi-
cients a and b, respectively, on the interval [−r,∞). Moreover, for any real number
λ, by fλ we will denote the continuous real-valued function defined on the interval
[−r,∞) as follows

fλ(t) = ã(t) + b̃(t)e−λτ for t ≥ −r.

Theorem 2.1 below has been proved by the authors in [23] for more general
periodic linear neutral delay differential equations with several delays. This theo-
rem is closely related to the main result (Theorem 2.4 below) of this section and
constitutes a fundamental asymptotic result for the solutions of the neutral delay
differential equation (2.1). In order to state Theorem 2.1, we introduce the notation

B̂ =
1
T

∫ T

0

|b(t)|dt.

Clearly, B̂ is a positive constant. It is obvious that |B| ≤ B̂. Moreover, we note
that |B| = B̂ in the case where the coefficient b is assumed to be of constant sign
on the interval [0,∞).

Theorem 2.1. Let λ0 be a real root of the characteristic equation (2.3), and set

ρλ0 = 1 + ce−λ0σ (2.4)

and

F̂λ0 =
1
T

∫ T

0

|fλ0(t)|dt.

Assume that the root λ0 has the property

|c|(|ρλ0 |+ F̂λ0σ)e−λ0σ + |ρλ0 |B̂τe−λ0τ < |ρλ0 |. (2.5)

Define
γλ0 = c(1− λ0σ)e−λ0σ + Bτe−λ0τ . (2.6)

(Note that Property (2.5) guarantees that ρλ0 > 0 and 1 + γλ0 > 0.)
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Then the solution x of the IVP (2.1), (2.2) satisfies

lim
t→∞

{
x(t) exp

[
− 1

ρλ0

∫ t

0

fλ0(u)du

]}
=

Lλ0(φ)
1 + γλ0

, (2.7)

where

Lλ0(φ) = φ(0) + c
{

φ(−σ)

− 1
ρλ0

e−λ0σ

∫ 0

−σ

fλ0(s)φ(s) exp
[
− 1

ρλ0

∫ s

0

fλ0(u)du

]
ds

}
+ e−λ0τ

∫ 0

−τ

b̃(s)φ(s) exp
[
− 1

ρλ0

∫ s

0

fλ0(u)du

]
ds.

(2.8)

In the main result (Theorem 2.4 below) of this section, it is supposed that c ≤ 0
and that b is nonpositive on the interval [0,∞). The hypothesis that b is nonpositive
on [0,∞) together with the assumptions that b is not identically zero on [0,∞)
and that b is a T -periodic function imply that the constant B is always negative.
Furthermore, we notice that Theorem 2.4 is obtained by the use of two real roots λ0

and λ1, λ0 6= λ1, of the characteristic equation (2.3); for the root λ0 it is assumed
that ρλ0 6= 0 and

ρλ0

[
a(t) + b(t)e−λ0τ

]
≤ 0 for t ≥ 0, (2.9)

where ρλ0 is defined by (2.4). Under these assumptions for the real root λ0, we
obviously have

1
ρλ0

[
a(t) + b(t)e−λ0τ

]
≤ 0 for t ≥ 0,

which gives

1
ρλ0

{[
1
T

∫ T

0

a(t)dt

]
+

[
1
T

∫ T

0

b(t)dt

]
e−λ0τ

}
≤ 0,

i.e.,
1

ρλ0

(A + Be−λ0τ ) ≤ 0.

So, by (2.4) and the fact that λ0 is a root of (2.3), it follows immediately that the
root λ0 is always nonpositive.

After the above observations, we give a lemma (Lemma 2.2 below) concerning
the real roots of the characteristic equation (2.3). This lemma is a special case of
a more general lemma due to the authors [30].

Lemma 2.2. Suppose that c ≤ 0 and B < 0.
(I) Let λ0 be a nonpositive real root of the characteristic equation (2.3), and let

γλ0 be defined by (2.6). Then
1 + γλ0 > 0

if (2.3) has another real root less than λ0, and

1 + γλ0 < 0

if (2.3) has another nonpositive real root greater than λ0.
(II) If A = 0, then λ = 0 is not a root of the characteristic equation (2.3).
(III) Assume that A = 0 and that c ≥ −1. Then the characteristic equation (2.3)

has no positive real roots.
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(IV) Assume that A+B ≤ 0 and c+Bτ ≥ −1. Then the characteristic equation
(2.3) has no positive real roots.

(V) Assume that A + B ≤ 0, Ar < 1, and

(1−Ar)ce−(A− 1
r )σ + Bre−(A− 1

r )τ > −1.

Then: (i) λ = A − 1
r is not a root of the characteristic equation (2.3). (ii) In the

interval (A− 1
r , 0], (2.3) has a unique root. (iii) In the interval (−∞, A− 1

r ), (2.3)
has a unique root.

As we have previously noted, in Theorem 2.4 (the main result of this section) we
use two suitable distinct real roots of the characteristic equation (2.3). We will give
here a lemma (Lemma 2.3 below), which plays a crucial role in proving Theorem
2.4, although this lemma is rather technical.

Lemma 2.3. Let λ0 and λ1, λ0 6= λ1, be two real roots of the characteristic equation
(2.3) with ρλ0 6= 0 and ρλ1 6= 0, where ρλ0 is defined by (2.4) and ρλ1 is defined in
an analogous way, i.e.,

ρλ1 = 1 + ce−λ1σ. (2.10)
Then, for each t ≥ 0, we have

1 = −ce−λ1σ + ce−λ0σ 1
ρλ0

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t

t−τ

b̃(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

(2.11)

Proof. First of all, we will establish some equalities needed below. It is obvious
that

fλ0(t)− fλ1(t) = b̃(t)
(
e−λ0τ − e−λ1τ

)
for t ≥ −r. (2.12)

Also, in view of (2.4) and (2.10), we have

ρλ0 − ρλ1 = c
(
e−λ0σ − e−λ1σ

)
. (2.13)

Furthermore, the T -periodicity of the coefficients a and b implies that the functions
fλ0 and fλ1 are also T -periodic. So, by taking into account the fact that τ = mT ,
we obtain for t ≥ 0,∫ t

t−τ

fλ0(u)du =
∫ τ

0

fλ0(u)du

=
[

1
τ

∫ τ

0

fλ0(u)du

]
τ

=

[
1
T

∫ T

0

fλ0(u)du

]
τ

=

{[
1
T

∫ T

0

a(u)du

]
+

[
1
T

∫ T

0

b(u)du

]
e−λ0τ

}
τ

= (A + Be−λ0τ )τ.

Thus, because of (2.4) and the fact that λ0 is a root of (2.3), it follows that

1
ρλ0

∫ t

t−τ

fλ0(u)du = λ0τ for every t ≥ 0. (2.14)
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In a similar way, by using (2.10) and the fact that λ1 is also a root of (2.3), we can
see that

1
ρλ1

∫ t

t−τ

fλ1(u)du = λ1τ for every t ≥ 0. (2.15)

Moreover, by taking again into account the fact that the function fλ0 is T -periodic,
for any positive integer ν, we get∫ νT

0

fλ0(u)du =

[
1

νT

∫ νT

0

fλ0(u)du

]
(νT )

=

[
1
T

∫ T

0

fλ0(u)du

]
(νT )

= (A + Be−λ0τ )(νT ).

Hence, as ρλ0 is given by (2.4) and λ0 is a root of (2.3), we have

1
ρλ0

∫ νT

0

fλ0(u)du = ν (λ0T ) (ν = 1, 2, . . . ). (2.16)

In a similar manner, by taking into account the fact that fλ1 is a T -periodic function
and using (2.10) and the fact that λ1 is also a root of (2.3), one can verify that

1
ρλ1

∫ νT

0

fλ1(u)du = ν (λ1T ) (ν = 1, 2, . . . ). (2.17)

Now, let us fix a point t ≥ 0. We will show that, for this fixed point t, equality
(2.11) holds true.

By using (2.12) and (2.13), we obtain∫ t

t−τ

b̃(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

e−λ0τ − e−λ1τ

∫ t

t−τ

b̃(s)
(
e−λ0τ − e−λ1τ

)
exp

{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

e−λ0τ − e−λ1τ

∫ t

t−τ

[fλ0(s)− fλ1(s)] exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

e−λ0τ − e−λ1τ

∫ t

t−τ

{
(ρλ0 − ρλ1)

fλ0(s)
ρλ0

+ ρλ1

[
fλ0(s)
ρλ0

− fλ1(s)
ρλ1

]}
×

× exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

= c
e−λ0σ − e−λ1σ

e−λ0τ − e−λ1τ
· 1
ρλ0

∫ t

t−τ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

+
1

e−λ0τ − e−λ1τ
ρλ1

∫ t

t−τ

[
fλ0(s)
ρλ0

− fλ1(s)
ρλ1

]
exp

{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

But, by (2.14) and (2.15), we have∫ t

t−τ

[
fλ0(s)
ρλ0

− fλ1(s)
ρλ1

]
exp

{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

= −
(

exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

})s=t

s=t−τ
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= −1 + exp
{∫ t

t−τ

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
= −1 + exp

[
1

ρλ0

∫ t

t−τ

fλ0(u)du− 1
ρλ1

∫ t

t−τ

fλ1(u)du

]
= −1 + eλ0τ−λ1τ = −1 + e(λ0−λ1)τ .

So, it holds ∫ t

t−τ

b̃(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

= c
e−λ0σ − e−λ1σ

e−λ0τ − e−λ1τ
· 1
ρλ0

∫ t

t−τ

fλ0(s)

× exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds− 1

e−λ0τ
ρλ1 .

(2.18)

Furthermore, in view of (2.10), equality (2.11) becomes

ρλ1 = ce−λ0σ 1
ρλ0

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t

t−τ

b̃(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

Hence, by using (2.18), we see that (2.11) can equivalently be written as follows

0 = ce−λ0σ 1
ρλ0

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ c
e−λ0σ − e−λ1σ

e−λ0τ − e−λ1τ
· 1
ρλ0

∫ t

t−τ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

It is clear that this equality holds if

e−λ0σ

e−λ0σ − e−λ1σ

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
e−λ0τ

e−λ0τ − e−λ1τ

∫ t

t−τ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

or, equivalently,

1
1− e(λ0−λ1)σ

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

1− e(λ0−λ1)τ

∫ t

t−τ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

(2.19)

So, the proof of the lemma can be accomplished by proving that (2.19) holds. It
suffices to show that

1
1− e(λ0−λ1)σ

∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

1− e(λ0−λ1)T

∫ t

t−T

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

(2.20)
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and

1
1− e(λ0−λ1)τ

∫ t

t−τ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1

1− e(λ0−λ1)T

∫ t

t−T

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

(2.21)

Next, we will establish (2.20). By taking into account the fact that the functions
fλ0 and fλ1 are T -periodic and that σ = `T and using (2.16) and (2.17), we obtain∫ t

t−σ

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t−(i−1)T

t−iT

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t

t−T

fλ0(s− (i− 1)T ) exp

{∫ t

s−(i−1)T

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t

t−T

fλ0(s) exp

{∫ s

s−(i−1)T

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

+
∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t

t−T

fλ0(s) exp

{[
1

ρλ0

∫ s

s−(i−1)T

fλ0(u)du− 1
ρλ1

∫ s

s−(i−1)T

fλ1(u)du

]

+
∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t

t−T

fλ0(s) exp

{[
1

ρλ0

∫ (i−1)T

0

fλ0(u)du− 1
ρλ1

∫ (i−1)T

0

fλ1(u)du

]

+
∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
∑̀
i=1

∫ t

t−T

fλ0(s) exp
{

[(i− 1)(λ0T )− (i− 1)(λ1T )]

+
∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=

[∑̀
i=1

e(i−1)(λ0−λ1)T

] ∫ t

t−T

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1− e`(λ0−λ1)T

1− e(λ0−λ1)T

∫ t

t−T

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

=
1− e(λ0−λ1)σ

1− e(λ0−λ1)T

∫ t

t−T

fλ0(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds.

This proves (2.20).
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Finally, by taking into account the fact that fλ0 and fλ1 are T -periodic functions
and that τ = mT and using again (2.16) and (2.17), we can follow the same
procedure to show that (2.21) is also satisfied.

The proof of the lemma is now complete. �

Now, we are in a position to present the main result of this section, i.e., the
following theorem.

Theorem 2.4. Suppose that c ≤ 0 and that b is nonpositive on the interval [0,∞).
Let λ0 be a real root of the characteristic equation (2.3) with ρλ0 6= 0 and satisfying
(2.9), where ρλ0 is defined by (2.4), and assume that

1 + γλ0 6= 0,

where γλ0 is defined by (2.6). Let also λ1, λ1 6= λ0, be another real root of (2.3)
with ρλ1 6= 0, where ρλ1 is defined by (2.10).

Then the solution x of the IVP (2.1), (2.2) satisfies

U1(λ0, λ1;φ) ≤
{

x(t)− Lλ0(φ)
1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]}
exp

[
− 1

ρλ1

∫ t

0

fλ1(u)du

]
≤ U2(λ0, λ1;φ) for all t ≥ 0,

where Lλ0(φ) is defined by (2.8), and

U1(λ0, λ1;φ) = min
−r≤t≤0

({
φ(t)− Lλ0(φ)

1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]}
×

× exp
[
− 1

ρλ1

∫ t

0

fλ1(u)du

])
,

U2(λ0, λ1;φ) = max
−r≤t≤0

({
φ(t)− Lλ0(φ)

1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]}
×

× exp
[
− 1

ρλ1

∫ t

0

fλ1(u)du

])
.

Note: The constant B is negative and the root λ0 is necessarily nonpositive;
hence, by Part (I) of Lemma 2.2, we always have 1+γλ0 6= 0 if λ1 is also nonpositive.

It is remarkable that the double inequality in the conclusion of the above theorem
can equivalently be written as follows

U1(λ0, λ1;φ) exp
{∫ t

0

[
fλ1(u)
ρλ1

− fλ0(u)
ρλ0

]
du

}
≤ x(t) exp

[
− 1

ρλ0

∫ t

0

fλ0(u)du

]
− Lλ0(φ)

1 + γλ0

≤ U2(λ0, λ1;φ) exp
{∫ t

0

[
fλ1(u)
ρλ1

− fλ0(u)
ρλ0

]
du

}
for t ≥ 0.

Hence, if the roots λ0 and λ1 of the characteristic equation (2.3) are such that

lim
t→∞

∫ t

0

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du = ∞,
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then the solution x of the IVP (2.1), (2.2) satisfies (2.7). Furthermore, we see that
the double inequality in the conclusion of Theorem 2.4 is equivalent to

U1(λ0, λ1;φ) exp
[

1
ρλ1

∫ t

0

fλ1(u)du

]
+

Lλ0(φ)
1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]
≤ x(t)

≤ U2(λ0, λ1;φ) exp
[

1
ρλ1

∫ t

0

fλ1(u)du

]
+

Lλ0(φ)
1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]
for t ≥ 0.

Proof of Theorem 2.4. Let x be the solution of the IVP (2.1), (2.2), and consider
the function y defined by

y(t) = x(t) exp
[
− 1

ρλ0

∫ t

0

fλ0(u)du

]
for t ≥ −r.

Furthermore, let us define

z(t) = y(t)− Lλ0(φ)
1 + γλ0

for t ≥ −r.

As it has been shown by the authors [23] (for more general periodic linear neutral
delay differential equations with several delays), the fact that x satisfies (2.1) for
t ≥ 0 is equivalent to the fact that z satisfies

z(t) + ce−λ0σz(t− σ)

= ce−λ0σ 1
ρλ0

∫ t

t−σ

fλ0(s)z(s)ds− e−λ0τ

∫ t

t−τ

b̃(s)z(s)ds for t ≥ 0.
(2.22)

(Note that in [23] we have ρλ0 > 0, but it suffices to have ρλ0 6= 0.)
Next, we introduce the function

w(t) = z(t) exp
{∫ t

0

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
for t ≥ −r.

By using this function, we can immediately see that (2.22) takes the equivalent
form

w(t) + ce−λ0σw(t− σ) exp
{∫ t

t−σ

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
= ce−λ0σ 1

ρλ0

∫ t

t−σ

fλ0(s)w(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t

t−τ

b̃(s)w(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds for t ≥ 0.

(2.23)

In view of the fact that the coefficients a and b are T -periodic functions, it follows
that the functions fλ0 and fλ1 are also T -periodic. So, by taking into account the
fact that σ = `T and following the same procedure as in proving (2.14) and (2.15)
(in the proof of Lemma 2.3), we can show that

1
ρλ0

∫ t

t−σ

fλ0(u)du = λ0σ for t ≥ 0
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and
1

ρλ1

∫ t

t−σ

fλ1(u)du = λ1σ for t ≥ 0.

Consequently,

exp
{∫ t

t−σ

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
= e(λ0−λ1)σ for every t ≥ 0.

By using this fact, we see that (2.23) can equivalently be written as follows

w(t) + ce−λ1σw(t− σ)

= ce−λ0σ 1
ρλ0

∫ t

t−σ

fλ0(s)w(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t

t−τ

b̃(s)w(s) exp
{∫ t

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds for t ≥ 0.

(2.24)

Combining the definitions of the functions y, z and w, we have

w(t) =
{

x(t)− Lλ0(φ)
1 + γλ0

exp
[

1
ρλ0

∫ t

0

fλ0(u)du

]}
exp

[
− 1

ρλ1

∫ t

0

fλ1(u)du

]
for t ≥ −r. Thus, by taking into account the initial condition (2.2) and the defini-
tions of the constants U1(λ0, λ1;φ) and U2(λ0, λ1;φ), we can immediately conclude
that the double inequality in the conclusion of our theorem can be written in the
equivalent form

min
−r≤s≤0

w(s) ≤ w(t) ≤ max
−r≤s≤0

w(s) for all t ≥ 0.

What we have to prove is that the last double inequality is valid. We will confine
our attention in establishing that

w(t) ≥ min
−r≤s≤0

w(s) for every t ≥ 0. (2.25)

In a similar way, one can show that

w(t) ≤ max
−r≤s≤0

w(s) for every t ≥ 0.

It remains to prove (2.25). For this purpose, let us consider an arbitrary real
number K with K < min−r≤s≤0 w(s). Then we obviously have

w(t) > K for − r ≤ t ≤ 0. (2.26)

We claim that
w(t) > K for all t ≥ 0. (2.27)

Otherwise, in view of (2.26), there exists a point t0 > 0 so that

w(t) > K for − r ≤ t < t0, and w(t0) = K. (2.28)

We notice that it is supposed that c ≤ 0. Also, we observe that, as ρλ0 6= 0, the
hypothesis (2.9) can be written in the form 1

ρλ0
fλ0(t) ≤ 0 for t ≥ 0. So, since the

function fλ0 is T -periodic and r is a multiple of the period T , we always have
1

ρλ0

fλ0(t) ≤ 0 for every t ≥ −r.

Furthermore, since the function b is T -periodic and τ = mT , the assumption that b

is not identically zero on [0,∞) means that b̃ is not identically zero on the interval
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[t0 − τ, t0), while the hypothesis that b is nonpositive on [0,∞) means that b̃ is
nonpositive on [t0 − τ, t0). Hence, the function b̃ is nonpositive, but not identically
zero, on the interval [t0 − τ, t0). We also have b̃(t0) ≤ 0. Now, by using (2.28) and
taking into account the above observations, from (2.24) we obtain

K = w(t0) = −ce−λ1σw(t0 − σ)

+ ce−λ0σ 1
ρλ0

∫ t0

t0−σ

fλ0(s)w(s) exp
{∫ t0

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t0

t0−τ

b̃(s)w(s) exp
{∫ t0

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

> K

(
−ce−λ1σ + ce−λ0σ 1

ρλ0

∫ t0

t0−σ

fλ0(s) exp
{∫ t0

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

− e−λ0τ

∫ t0

t0−τ

b̃(s) exp
{∫ t0

s

[
fλ0(u)
ρλ0

− fλ1(u)
ρλ1

]
du

}
ds

)
.

Thus, using (2.11) for t = t0, we arrive at the contradiction K > K. This contra-
diction establishes our claim, i.e., (2.27) holds. Since (2.27) is satisfied for all real
numbers K such that K < min−r≤s≤0 w(s), it follows that (2.25) is always fulfilled.

The proof of the theorem is complete. �

Before closing this section, we will consider two special cases, namely the non-
neutral case and the autonomous case.

Consider, first, the periodic linear (non-neutral) delay differential equation

x′(t) = a(t)x(t) + b(t)x(t− τ). (2.29)

Equation (2.29) can be obtained (as a special case) from (2.1) by taking c = 0 and
σ = τ . As it concerns the (non-neutral) delay differential equation (2.29), we have
the number τ in place of r. The characteristic equation of (2.29) is

λ = A + Be−λτ . (2.30)

By applying Theorem 2.4 to the (non-neutral) delay differential equation (2.29), we
are led to [35, Theorem 2.3] in the previous authors’ paper, under the additional
hypotheses that the root λ0 of the characteristic equation (2.30) is such that a(t) +
b(t)e−λ0τ ≤ 0 for t ≥ 0 (and so λ0 is always nonpositive) and that λ0 satisfies
1 + Bτe−λ0τ 6= 0. (Note that we always have 1 + Bτe−λ0τ 6= 0 if the other root λ1

of (2.30) is also nonpositive.) But, these (additional) hypotheses are not needed
for [35, Theorem 2.3] to hold. Hence, [35, Theorem 2.3] cannot be obtained as a
corollary from Theorem 2.4, the main result of this section.

Next, let us consider the autonomous linear neutral delay differential equation

[x(t) + cx(t− σ)]′ = ax(t) + bx(t− τ), (2.31)

where c, a and b 6= 0 are real numbers, and σ and τ are positive real constants. The
characteristic equation of (2.31) is the following one

λ(1 + ce−λσ) = a + be−λτ . (2.32)

The constant coefficients a and b of the autonomous neutral delay differential equa-
tion (2.31) can be considered as T -periodic functions, for any real number T > 0.
We observe that the hypothesis that the root λ0 of the characteristic equation
(2.32) satisfies (2.9) is equivalent to the hypothesis that λ0 is nonpositive. After
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these observations, it is not difficult to apply Theorem 2.4 to the special case of the
autonomous linear neutral delay differential equation (2.31). The result obtained
by such an application is a special case of a more general result given by the au-
thors in [30] (for autonomous linear neutral delay differential equations with several
delays), under the assumption that there exist T > 0 and positive integers ` and
m with σ = `T and τ = mT , and the hypothesis that the roots λ0 and λ1 of the
characteristic equation (2.32) satisfy 1 + ce−λ0σ 6= 0 and 1 + ce−λ1σ 6= 0. Note
that these restrictions are not necessary for the special case of the more general
result in [30] to be valid. Such restrictions are not imposed in the corresponding
result in [30] concerning more general autonomous linear neutral delay differential
equations.

3. On the behavior of the solutions to periodic linear neutral delay
difference equations

This section is devoted to the study of the behavior of the solutions of the linear
neutral delay difference equation

∆ (xn + cxn−σ) = a(n)xn + b(n)xn−τ , (3.1)

where c is a real number, (a(n))n≥0 and (b(n))n≥0 are sequences of real numbers,
and σ and τ are positive integers. It is supposed that the sequence (b(n))n≥0 is not
identically zero. Moreover, it will be assumed that the coefficients (a(n))n≥0 and
(b(n))n≥0 are periodic sequences with a common period T (where T is a positive
integer) and that there exist positive integers ` and m such that

σ = `T and τ = mT.

Let us consider the positive integer r defined by

r = max{σ, τ}.
A solution of the neutral delay difference equation (3.1) is a sequence of real

numbers (xn)n≥−r, which satisfies (3.1) for all n ≥ 0.
With the neutral delay difference equation (3.1), one associates an initial condi-

tion of the form
xn = φn for n = −r, . . . , 0, (3.2)

where the initial values φn (n = −r, . . . , 0) are given real numbers. For convenience,
we will use the notation φ = (φn)0n=−r.

Equations (3.1) and (3.2) constitute an initial value problem (IVP, for short).
It is clear that there exists exactly one solution (xn)n≥−r of the neutral delay
difference equation (3.1) which satisfies the initial condition (3.2); we shall call this
unique solution (xn)n≥−r the solution of the initial value problem (3.1), (3.2) or,
more briefly, the solution of the IVP (3.1), (3.2).

With the neutral delay difference equation (3.1), we associate the equation[
λ(1 + cλ−σ)

]T =
T−1∏
k=0

[
1 + cλ−σ + a(k) + b(k)λ−τ

]
; (3.3)

this equation will be called the characteristic equation of (3.1) (see the authors’
paper [29]).

Now, we shall introduce certain notation, which will be used throughout this
section without any further mention.
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By (ã(n))n≥−r and (̃b(n))n≥−r we will denote the T -periodic extensions of the
coefficients (a(n))n≥0 and (b(n))n≥0, respectively. (Clearly, r is a multiple of the
period T .)

We consider positive roots λ of the characteristic equation (3.3) with the follow-
ing property:

1 + cλ−σ 6= 0. (3.4)
We immediately observe that a positive root λ of (3.3) with the property (3.4)
satisfies

λT =
T−1∏
k=0

{
1 +

1
1 + cλ−σ

[
a(k) + b(k)λ−τ

]}
.

Furthermore, for any positive root λ of the characteristic equation (3.3) with
the property (3.4), by (hλ(n))n≥−r we shall denote the sequence of real numbers
defined as follows

hλ(n) = 1 +
1

1 + cλ−σ
[ã(n) + b̃(n)λ−τ ] for n ≥ −r.

Since the sequences (a(n))n≥0 and (b(n))n≥0 are T -periodic, it follows immedi-
ately that, for each positive root λ of (3.3) with the property (3.4), the sequence
(hλ(n))n≥−r is also T -periodic.

By the use of the above notation, we have

λT =
T−1∏
k=0

hλ(k)

for each positive root λ of the characteristic equation (3.3) with the property (3.4).
This fact will be used quite frequently in the sequel without any specific mention.

We will make use of positive roots λ of the characteristic equation (3.3) with the
property (3.4) and the additional property: If T > 1, then

hλ(k) ≡ 1 +
1

1 + cλ−σ
[a(k) + b(k)λ−τ ] > 0 (k = 1, . . . , T − 1). (3.5)

(It must be noted that (3.5) holds by itself when T = 1.)
The following simple result will be kept in mind in what follows:
If λ is a positive root of the characteristic equation (3.3) with the properties (3.4)

and (3.5), then
hλ(n) > 0 for all n ≥ −r.

This result has been established by the authors in [29] for the case of more
general periodic linear neutral delay difference equations with several delays. Note
that in [29] we have used positive roots λ of the characteristic equation (3.3) with
the property

1 + cλ−σ > 0 (3.6)
in place of the property (3.4) considered here. But, the above result remains valid
with (3.4) instead of (3.6).

Let us introduce another notation. If λ is a positive root of the characteristic
equation (3.3) with the properties (3.4) and (3.5), then (Hλ(n))n≥−r will stand for
the sequence of positive real numbers defined by

Hλ(n) =

{∏n−1
k=0 hλ(k) for n ≥ 0[∏−1

k=n hλ(k)
]−1 for n = −r, . . . , 0.
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Note that, here and in the sequel, we use the usual convention
∏−1

k=0 = 1.
A basic asymptotic criterion for the solutions of the neutral delay difference

equation (3.1) is the following theorem, which is closely related to the main result
(Theorem 3.3 below) of this section.

Theorem 3.1. Let λ0 be a positive root of the characteristic equation (3.3) with
the properties (3.4) and (3.5) with λ0 instead of λ, and the following property:

|c|λ−σ
0

[
1 +

σ−1∑
s=0

∣∣∣∣1− 1
hλ0(s)

∣∣∣∣
]

+ λ−τ
0

τ−1∑
s=0

1
hλ0(s)

|b(s)| < 1. (3.7)

Set

βλ0 = cλ−σ
0

{
1−

σ−1∑
s=0

[
1− 1

hλ0(s)

]}
+ λ−τ

0

τ−1∑
s=0

1
hλ0(s)

b(s). (3.8)

(Note that Property (3.7) guarantees that 1 + βλ0 > 0.)
Then the solution (xn)n≥−r of the IVP (3.1), (3.2) satisfies

lim
n→∞

xn

Hλ0(n)
=

Mλ0(φ)
1 + βλ0

, (3.9)

where

Mλ0(φ) = φ0 + c

{
φ−σ − λ−σ

0

−1∑
s=−σ

[
1− 1

hλ0(s)

][ −1∏
k=s

hλ0(k)

]
φs

}

+ λ−τ
0

−1∑
s=−τ

[ −1∏
k=s+1

hλ0(k)

]
b̃(s)φs.

(3.10)

The above theorem has been established in the authors’ paper [29] for more
general periodic linear neutral delay difference equations with several delays. Note
that in [29] we have assumed that the positive root λ0 of the characteristic equation
(3.3) has the property (3.6) with λ0 instead of λ, while in Theorem 3.1 it is supposed
that λ0 has the property (3.4) with λ0 instead of λ. But, if λ0 has the properties
(3.4) and (3.5) with λ0 instead of λ, then (3.7) makes sense and it implies that
|c|λ−σ

0 < 1, which gives 1 + cλ−σ
0 > 0, i.e., λ0 has always the property (3.6) with

λ0 instead of λ.
The main result of this section, i.e., Theorem 3.3 below, is derived via two

suitable distinct positive roots of the characteristic equation (3.3). Before stating
and proving Theorem 3.3, we give a lemma (Lemma 3.2 below), which is rather
technical, but it is crucial in proving Theorem 3.3.

Lemma 3.2. Let λ0 and λ1, λ0 6= λ1, be two positive roots of the characteristic
equation (3.3) with the properties (3.4) and (3.5) with λ0 instead of λ as well as
(3.4) and (3.5) with λ1 instead of λ, respectively. Then, for each n ≥ 0, we have

1 = −cλ−σ
1 + cλ−σ

0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

− λ−τ
0

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)
n−1∏
k=s

hλ0(k)
hλ1(k)

.

(3.11)
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Proof. Set µλ0 = 1 + cλ−σ
0 and µλ1 = 1 + cλ−σ

1 . We immediately see that

µλ0 [hλ0(n)− 1]− µλ1 [hλ1(n)− 1] = b̃(n)
(
λ−τ

0 − λ−τ
1

)
for n ≥ −r. (3.12)

Also, it is obvious that

µλ0 − µλ1 = c
(
λ−σ

0 − λ−σ
1

)
. (3.13)

Furthermore, we note that the sequences (hλ0(n))n≥−r and (hλ1(n))n≥−r are T -
periodic. Thus, by taking into account the fact that τ = mT , we obtain for n ≥ 0

n−1∏
k=n−τ

hλ0(k) =
τ−1∏
k=0

hλ0(k) =

[
T−1∏
k=0

hλ0(k)

]m

=
(
λT

0

)m
= λmT

0 = λτ
0 .

That is,
n−1∏

k=n−τ

hλ0(k) = λτ
0 for every n ≥ 0. (3.14)

Similarly, we have
n−1∏

k=n−τ

hλ1(k) = λτ
1 for every n ≥ 0. (3.15)

Moreover, for any positive integer ν, we get
νT−1∏
k=0

hλ0(k) =

[
T−1∏
k=0

hλ0(k)

]ν

=
(
λT

0

)ν
= λνT

0 .

Consequently,
νT−1∏
k=0

hλ0(k) = λνT
0 (ν = 1, 2, . . . ). (3.16)

Analogously, we find
νT−1∏
k=0

hλ1(k) = λνT
1 (ν = 1, 2, . . . ). (3.17)

Now, let us consider an arbitrary but fixed integer n ≥ 0. We shall show that,
for this fixed integer n, equality (3.11) is fulfilled.

We take into account (3.12) and (3.13) to obtain
n−1∑

s=n−τ

1
hλ0(s)

b̃(s)
n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)
(
λ−τ

0 − λ−τ
1

) n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

1
hλ0(s)

{
µλ0 [hλ0(s)− 1]− µλ1 [hλ1(s)− 1]

} n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

1
hλ0(s)

{
(µλ0 − µλ1) [hλ0(s)− 1] + µλ1 [hλ0(s)− hλ1(s)]

}
×

×
n−1∏
k=s

hλ0(k)
hλ1(k)
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= c
λ−σ

0 − λ−σ
1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

− 1
λ−τ

0 − λ−τ
1

µλ1

n−1∑
s=n−τ

[
hλ1(s)
hλ0(s)

− 1
] n−1∏

k=s

hλ0(k)
hλ1(k)

.

But, using (3.14) and (3.15), we have

n−1∑
s=n−τ

[
hλ1(s)
hλ0(s)

− 1
] n−1∏

k=s

hλ0(k)
hλ1(k)

=
n−1∑

s=n−τ

 1
hλ0 (s)

hλ1 (s)

n−1∏
k=s

hλ0(k)
hλ1(k)

−
n−1∏
k=s

hλ0(k)
hλ1(k)


=

n−1∑
s=n−τ

[
n−1∏

k=s+1

hλ0(k)
hλ1(k)

−
n−1∏
k=s

hλ0(k)
hλ1(k)

]

=
n−1∑

s=n−τ

∆

[
n−1∏
k=s

hλ0(k)
hλ1(k)

]

=

[
n−1∏
k=s

hλ0(k)
hλ1(k)

]
s=(n−1)+1

−

[
n−1∏
k=s

hλ0(k)
hλ1(k)

]
s=n−τ

=
n−1∏
k=n

hλ0(k)
hλ1(k)

−
n−1∏

k=n−τ

hλ0(k)
hλ1(k)

= 1−
∏n−1

k=n−τ hλ0(k)∏n−1
k=n−τ hλ1(k)

= 1− λτ
0

λτ
1

= 1−
(

λ0

λ1

)τ

.

Note that we have used the usual convention that
∏n−1

n = 1. Hence, it holds
n−1∑

s=n−τ

1
hλ0(s)

b̃(s)
n−1∏
k=s

hλ0(k)
hλ1(k)

= c
λ−σ

0 − λ−σ
1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

− 1
λ−τ

0

µλ1 .

(3.18)

Next, we observe that (3.11) can equivalently be written as follows

µλ1 = cλ−σ
0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

− λ−τ
0

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)
n−1∏
k=s

hλ0(k)
hλ1(k)

.

So, in view of (3.18), equality (3.11) is equivalent to

0 = cλ−σ
0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

− λ−τ
0 c

λ−σ
0 − λ−σ

1

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

.

The above equality is satisfied if

λ−σ
0

λ−σ
0 − λ−σ

1

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)
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=
λ−τ

0

λ−τ
0 − λ−τ

1

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

,

i.e., if the following equality holds,

1

1−
(

λ0
λ1

)σ

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

1−
(

λ0
λ1

)τ

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

.

(3.19)

In the rest of the proof, we will establish (3.19). To this end, it is sufficient to prove
that

1

1−
(

λ0
λ1

)σ

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

1−
(

λ0
λ1

)T

n−1∑
s=n−T

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

(3.20)

and

1

1−
(

λ0
λ1

)τ

n−1∑
s=n−τ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
1

1−
(

λ0
λ1

)T

n−1∑
s=n−T

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

.

(3.21)

To prove (3.20) and (3.21), we shall take into account the fact that the sequences
(hλ0(n))n≥−r and (hλ1(n))n≥−r are T -periodic and that σ = `T and τ = mT and
we will use equalities (3.16) and (3.17). We confine ourselves to showing (3.20).
Equality (3.21) can be established by an analogous procedure. We obtain

n−1∑
s=n−σ

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
∑̀
i=1

n−1−(i−1)T∑
s=n−iT

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
∑̀
i=1

n−1∑
s=n−T

[
1− 1

hλ0(s− (i− 1)T )

] n−1∏
k=s−(i−1)T

hλ0(k)
hλ1(k)

=
∑̀
i=1

n−1∑
s=n−T

[
1− 1

hλ0(s)

] s−1∏
k=s−(i−1)T

hλ0(k)
hλ1(k)

[
n−1∏
k=s

hλ0(k)
hλ1(k)

]

=
∑̀
i=1

n−1∑
s=n−T

[
1− 1

hλ0(s)

] ∏s−1
k=s−(i−1)T hλ0(k)∏s−1
k=s−(i−1)T hλ1(k)

n−1∏
k=s

hλ0(k)
hλ1(k)
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=
∑̀
i=1

n−1∑
s=n−T

[
1− 1

hλ0(s)

] ∏(i−1)T−1
k=0 hλ0(k)∏(i−1)T−1
k=0 hλ1(k)

n−1∏
k=s

hλ0(k)
hλ1(k)

=
∑̀
i=1

n−1∑
s=n−T

[
1− 1

hλ0(s)

]
λ

(i−1)T
0

λ
(i−1)T
1

n−1∏
k=s

hλ0(k)
hλ1(k)

=

[∑̀
i=1

(
λ0

λ1

)(i−1)T
]

n−1∑
s=n−T

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
1−

(
λ0
λ1

)`T

1−
(

λ0
λ1

)T

n−1∑
s=n−T

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

=
1−

(
λ0
λ1

)σ

1−
(

λ0
λ1

)T

n−1∑
s=n−T

[
1− 1

hλ0(s)

] n−1∏
k=s

hλ0(k)
hλ1(k)

.

So, we have proved that (3.20) holds.
The proof of our lemma is complete. �

Now, we proceed to establish the main result of this section, i.e., Theorem 3.3
below.

Theorem 3.3. Suppose that c ≤ 0 and that (b(n))n≥0 is nonpositive. Let λ0 be a
positive root of the characteristic equation (3.3) with the properties (3.4) and (3.5)
with λ0 instead of λ and such that(

1 + cλ−σ
0

) [
a(n) + b(n)λ−τ

0

]
≤ 0 for n ≥ 0, (3.22)

and assume that 1 + βλ0 6= 0, where βλ0 is defined by (3.8). Let also λ1, λ1 6= λ0,
be another positive root of (3.3) with the properties (3.4) and (3.5) with λ1 instead
of λ.

Then the solution (xn)n≥−r of the IVP (3.1), (3.2) satisfies

V1(λ0, λ1;φ) ≤ 1
Hλ1(n)

[
xn −

Mλ0(φ)
1 + βλ0

Hλ0(n)
]
≤ V2(λ0, λ1;φ) for all n ≥ 0,

where Mλ0(φ) is defined by (3.10), and

V1(λ0, λ1;φ) = min
n=−r,...,0

{
1

Hλ1(n)

[
φn −

Mλ0(φ)
1 + βλ0

Hλ0(n)
]}

,

V2(λ0, λ1;φ) = max
n=−r,...,0

{
1

Hλ1(n)

[
φn −

Mλ0(φ)
1 + βλ0

Hλ0(n)
]}

.

Let λ0 be a positive root of the characteristic equation (3.3) with the proper-
ties (3.4) and (3.5) with λ0 instead of λ, and such that (3.22) holds. Then we
immediately see that (3.22) can equivalently be written as follows

1
1 + cλ−σ

0

[ã(n) + b̃(n)λ−τ
0 ] ≤ 0 for n ≥ −r.

Hence, inequality (3.22) is equivalent to

hλ0(n) ≤ 1 for n ≥ −r. (3.23)

Furthermore, it follows easily that the root λ0 is always less than or equal to 1.
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It must be noted that the double inequality in the conclusion of Theorem 3.3 is
equivalent to

V1(λ0, λ1;φ)
Hλ1(n)
Hλ0(n)

≤ xn

Hλ0(n)
− Mλ0(φ)

1 + βλ0

≤ V2(λ0, λ1;φ)
Hλ1(n)
Hλ0(n)

for n ≥ 0.

Thus, (3.9) is satisfied if the roots λ0 and λ1 of (3.3) are such that

lim
n→∞

Hλ0(n)
Hλ1(n)

= ∞.

Moreover, we notice that another equivalent form of the double inequality in the
conclusion of Theorem 3.3 is the following one

V1(λ0, λ1;φ)Hλ1(n) +
Mλ0(φ)
1 + βλ0

Hλ0(n)

≤ xn

≤ V2(λ0, λ1;φ)Hλ1(n) +
Mλ0(φ)
1 + βλ0

Hλ0(n) for n ≥ 0.

Proof of Theorem 3.3. Consider the solution (xn)n≥−r of the IVP (3.1), (3.2), and
set

yn =
xn

Hλ0(n)
for n ≥ −r.

Define

zn = yn −
Mλ0(φ)
1 + βλ0

for n ≥ −r.

It has been shown by the authors [29] (for more general periodic linear neutral delay
difference equations with several delays) that (xn)n≥−r satisfies (3.1) for n ≥ 0 if
and only if (zn)n≥−r satisfies

zn + cλ−σ
0 zn−σ = cλ−σ

0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

]
zs − λ−τ

0

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)zs (3.24)

for n ≥ 0. Note that in [29] it is assumed that λ0 has the property (3.6) with λ0

instead of λ, but it is sufficient to suppose that λ0 has the property (3.4) with λ0

instead of λ.
Next, we define

wn =
Hλ0(n)
Hλ1(n)

zn for n ≥ −r.

Then we see that (3.24) reduces to the equivalent equation

wn + cλ−σ
0

Hλ1(n− σ)/Hλ1(n)
Hλ0(n− σ)/Hλ0(n)

wn−σ

= cλ−σ
0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

]
Hλ0(n)/Hλ0(s)
Hλ1(n)/Hλ1(s)

ws

− λ−τ
0

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)
Hλ0(n)/Hλ0(s)
Hλ1(n)/Hλ1(s)

ws for n ≥ 0.

(3.25)
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By taking into account the fact that the sequence (hλ0(n))n≥−r is T -periodic and
that σ = `T , we obtain for n ≥ 0

Hλ0(n− σ)
Hλ0(n)

=


Qn−σ−1

k=0 hλ0 (k)Qn−1
k=0 hλ0 (k)

, if n ≥ σ

[Q−1
k=n−σ hλ0 (k)]−1Qn−1

k=0 hλ0 (k)
, if 0 ≤ n ≤ σ

=


1

[Qn−1
k=0 hλ0 (k)][Qn−σ−1

k=0 hλ0 (k)]−1 , if n ≥ σ

1

[Q−1
k=n−σ hλ0 (k)][Qn−1

k=0 hλ0 (k)] , if 0 ≤ n ≤ σ

=

[
n−1∏

k=n−σ

hλ0(k)

]−1

=

[
σ−1∏
k=0

hλ0(k)

]−1

=


[

T−1∏
k=0

hλ0(k)

]`

−1

=

[
T−1∏
k=0

hλ0(k)

]−`

=
(
λT

0

)−`
= λ−`T

0 = λ−σ
0 .

That is,

Hλ0(n− σ)
Hλ0(n)

= λ−σ
0 for all n ≥ 0. (3.26)

In a similar way, by using the fact that the sequence (hλ1(n))n≥−r is T -periodic
and that σ = `T , we find

Hλ1(n− σ)
Hλ1(n)

= λ−σ
1 for all n ≥ 0. (3.27)

Furthermore, for any integers n and s with n ≥ 0 and −r ≤ s ≤ n− 1, we get

Hλ0(n)
Hλ0(s)

=


Qn−1

k=0 hλ0 (k)Qs−1
k=0 hλ0 (k)

, if 0 ≤ s ≤ n− 1Qn−1
k=0 hλ0 (k)

[Q−1
k=s hλ0 (k)]−1 , if − r ≤ s ≤ 0

=


Qn−1

k=0 hλ0 (k)Qs−1
k=0 hλ0 (k)

, if 0 ≤ s ≤ n− 1[∏−1
k=s hλ0(k)

] [∏n−1
k=0 hλ0(k)

]
, if − r ≤ s ≤ 0.

So, we have

Hλ0(n)
Hλ0(s)

=
n−1∏
k=s

hλ0(k) for n ≥ 0 and − r ≤ s ≤ n− 1. (3.28)

Similarly,

Hλ1(n)
Hλ1(s)

=
n−1∏
k=s

hλ1(k) for n ≥ 0 and − r ≤ s ≤ n− 1. (3.29)
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In view of (3.26), (3.27), (3.28) and (3.29), equation (3.25) is written in the following
equivalent form

wn + cλ−σ
1 wn−σ = cλ−σ

0

n−1∑
s=n−σ

[
1− 1

hλ0(s)

][
n−1∏
k=s

hλ0(k)
hλ1(k)

]
ws

− λ−τ
0

n−1∑
s=n−τ

1
hλ0(s)

b̃(s)

[
n−1∏
k=s

hλ0(k)
hλ1(k)

]
ws for n ≥ 0.

(3.30)

By the definitions of (yn)n≥−r, (zn)n≥−r and (wn)n≥−r, it follows immediately that

wn =
1

Hλ1(n)

[
xn −

Mλ0(φ)
1 + βλ0

Hλ0(n)
]

for n ≥ −r.

Thus, in view of initial condition (3.2) and because of the definition of V1(λ0, λ1;φ)
and V2(λ0, λ1;φ), we see that what we have to prove is that (wn)n≥−r satisfies

min
s=−r,...,0

ws ≤ wn ≤ max
s=−r,...,0

ws for all n ≥ 0.

We will restrict ourselves to showing the left hand part of the above double in-
equality. The right hand part of this double inequality can be established by an
analogous procedure. So, it remains to prove that

wn ≥ min
s=−r,...,0

ws for every n ≥ 0. (3.31)

To prove (3.31), it suffices to show that, for any real number K with K <
mins=−r,...,0 ws, it holds

wn > K for all n ≥ 0. (3.32)
Let us consider an arbitrary real number K with K < mins=−r,...,0 ws. Then

wn > K for n = −r, . . . , 0. (3.33)

Assume, for the sake of contradiction, that (3.32) is not valid. Then, because of
(3.33), there exists an integer n0 > 0 so that

wn > K for n = −r, . . . , n0 − 1, and wn0 ≤ K. (3.34)

We notice that we have supposed that c ≤ 0. Also, it follows from (3.23) that

1− 1
hλ0(n)

≤ 0 for all n ≥ −r.

Furthermore, as the coefficient sequence (b(n))n≥0 is T -periodic and τ = mT ,
the assumption that (b(n))n≥0 is not identically zero means that (̃b(n))n0−1

n=n0−τ is
not identically zero, and the hypothesis that (b(n))n≥0 is nonpositive means that
(̃b(n))n0−1

n=n0−τ is nonpositive. Hence, (̃b(n))n0−1
n=n0−τ is nonpositive, but not identically

zero. Now, by using (3.34) and taking into account the above observations, from
(3.30) we obtain

K ≥ wn0

= −cλ−σ
1 wn0−σ + cλ−σ

0

n0−1∑
s=n0−σ

[
1− 1

hλ0(s)

][
n0−1∏
k=s

hλ0(k)
hλ1(k)

]
ws

− λ−τ
0

n0−1∑
s=n0−τ

1
hλ0(s)

b̃(s)

[
n0−1∏
k=s

hλ0(k)
hλ1(k)

]
ws



EJDE-2006/110 PERIODIC LINEAR NEUTRAL DELAY EQUATIONS 23

> K

{
−cλ−σ

1 + cλ−σ
0

n0−1∑
s=n0−σ

[
1− 1

hλ0(s)

] n0−1∏
k=s

hλ0(k)
hλ1(k)

−λ−τ
0

n0−1∑
s=n0−τ

1
hλ0(s)

b̃(s)
n0−1∏
k=s

hλ0(k)
hλ1(k)

}
.

So, we can use (3.11) for n = n0 to arrive at the contradiction K > K. This
contradiction implies that (3.32) holds true. We have thus proved that (3.31) is
always satisfied.

The proof of the theorem is complete. �

Before closing this section and ending the paper, let us concentrate on the fol-
lowing two special cases.

Consider the special case of the periodic linear (non-neutral) delay difference
equation

∆xn = a(n)xn + b(n)xn−τ . (3.35)
This equation can be obtained (as a particular case) from (3.1) by taking c = 0
and considering the delay σ to be chosen arbitrarily so that σ ≤ τ (for example,
σ can be chosen to be equal to τ). In the case considered, we have the integer τ
instead of r. As it concerns the (non-neutral) delay difference equation (3.35), the
characteristic equation (3.3) becomes

λT =
T−1∏
k=0

[
1 + a(k) + b(k)λ−τ

]
. (3.36)

We observe that (3.4) holds by itself, for any positive root λ of the characteristic
equation (3.36). Moreover, it is not difficult to see that, if λ is a positive root of the
characteristic equation (3.36) with the property (3.5), then every positive root λ∗ of
(3.36) with λ∗ > λ has also the property (3.5) with λ∗ instead of λ, provided that
(b(n))n≥0 is nonpositive. An application of Theorem 3.3 to the (non-neutral) delay
difference equation (3.35) leads to [35, Theorem 3.4] in the authors’ paper, under
the additional assumptions that the root λ0 of the characteristic equation (3.36)
satisfies a(n) + b(n)λ−τ

0 ≤ 0 for n ≥ 0 (which implies that λ0 is always less than or
equal to 1) and that 1 + λ−τ

0

∑τ−1
s=0

1
hλ0 (s)b(s) 6= 0. These additional assumptions

are not necessary for the validity of [35, Theorem 3.4]. Thus, [35, Theorem 3.4] is
not a corollary of the main result of this section, i.e., Theorem 3.3.

Finally, let us consider the special case of the autonomous linear neutral delay
difference equation

∆(xn + cxn−σ) = axn + bxn−τ , (3.37)
where c, a and b 6= 0 are real constants, and σ and τ are positive integers. The
constant coefficients a and b of (3.37) can be considered as T -periodic sequences of
real numbers with T = 1. The assumption that there exist positive integers ` and
m such that σ = `T and τ = mT holds by itself. The characteristic equation of
(3.37) is

(λ− 1)
(
1 + cλ−σ

)
= a + bλ−τ . (3.38)

We can immediately see that the hypothesis that the root λ0 of the characteristic
equation (3.38) is such that (3.22) holds is equivalent to the hypothesis that λ0 ≤ 1.
By applying Theorem 3.3 to the special case of the autonomous linear neutral delay
difference equation (3.37), we can easily be led to a particular case of a more general
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result obtained by the authors in [28] (for autonomous linear neutral delay difference
equations with several delays), under the restriction that the roots λ0 and λ1 of the
characteristic equation (3.38) are such that 1 + cλ−σ

0 6= 0 and 1 + cλ−σ
1 6= 0. It

must be noted that this restriction can be removed; indeed, the corresponding more
general result in [28] holds without such a restriction.
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[12] I. Györi, Invariant cones of positive initial functions for delay differential equations, Appl.

Anal. 35 (1990), 21-41.
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