Electronic Journal of Differential Equations, Vol. 2004(2004), No. 84, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS

BAPURAO C. DHAGE, ABDELKADER BOUCHERIF, SOTIRIS K. NTOUYAS

Abstract

In this paper we present an existence result for a first order impulsive differential inclusion with periodic boundary conditions and impulses at the fixed times under the convex condition of multi-functions.

1. Introduction

In this paper, we study the existence of solutions to a periodic nonlinear boundary value problems for first order Carathéodory impulsive ordinary differential inclusions with convex multi-functions. Given a closed and bounded interval $J:=[0, T]$ in \mathbb{R}, the set of real numbers, and given the impulsive moments $t_{1}, t_{2}, \ldots, t_{p}$ with $0=t_{0}<t_{1}<t_{2}<\cdots<t_{p}<t_{p+1}=T, J^{\prime}=J \backslash\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}, J_{j}=\left(t_{j}, t_{j+1}\right)$, consider the following periodic boundary-value problem for impulsive differential inclusions (in short IDI):

$$
\begin{gather*}
x^{\prime}(t) \in F(t, x(t))+G(t, x(t)) \text { a.e. } t \in J^{\prime} \tag{1.1}\\
x\left(t_{j}^{+}\right)=x\left(t_{j}^{-}\right)+I_{j}\left(x\left(t_{j}^{-}\right)\right) \tag{1.2}\\
x(0)=x(T) \tag{1.3}
\end{gather*}
$$

where $F, G: J \times \mathbb{R} \rightarrow P_{f}(\mathbb{R})$ are impulsive multi-functions, $I_{j}: \mathbb{R} \rightarrow \mathbb{R}, j=$ $1,2, \ldots, p$ are the impulse functions and $x\left(t_{j}^{+}\right)$and $x\left(t_{j}^{-}\right)$are respectively the right and the left limit of x at $t=t_{j}$.

Let $C(J, \mathbb{R})$ and $L^{1}(J, \mathbb{R})$ denote the space of continuous and Lebesgue integrable real-valued functions on J. Consider the Banach space
$X:=\left\{x: J \rightarrow \mathbb{R}: x \in C\left(J^{\prime}, \mathbb{R}\right), x\left(t_{j}^{+}\right), x\left(t_{j}^{-}\right)\right.$exist, $\left.x\left(t_{j}^{-}\right)=x\left(t_{j}\right), j=1,2, \ldots, p\right\}$ equipped with the norm $\|x\|=\max \{|x(t)|: t \in J\}$, and the space

$$
Y:=\left\{x \in X: x \text { is differentiable a.e. on }(0, T), x^{\prime} \in L^{1}(J, \mathbb{R})\right\}
$$

By a solution of (1.1)-1.3), we mean a function x in $Y_{T}:=\{v \in Y: v(0)=v(T)\}$ that satisfies the differential inclusion (1.1), and the impulsive conditions 1.2 .

Several papers have been devoted to the study of initial and boundary value problems for impulsive differential inclusions (see for example [2, 3]). Some basic

[^0]results in the theory of periodic boundary value problems for first order impulsive differential equations may be found in [12, 13, 14] and the references therein. Also, for a general theory on impulsive differential equations we refer the interested reader to [15] and the monographs [10] and [16]. Our aim is to provide sufficient conditions on the multifunctions F, G and the impulsive functions I_{j}, that insure the existence of solutions of problem IDI (1.1)-1.3).

2. Preliminaries

Let $(E,\|\cdot\|)$ be a Banach space and let $P_{f}(E)$ denote the class of all non-empty subsets of E with the property f. Thus $P_{c l}(E), P_{b d}(E), P_{c v}(E)$ and $P_{c p}(E)$ denote respectively the classes of all closed, bounded, convex and compact subsets of E. Similarly $P_{c l, c v, b d}(E)$ and $P_{c p, c v}(E)$ denote the classes of all closed, convex and bounded and compact and convex subsets of E. For $x \in E$ and $Y, Z \in P_{b d, c l}(E)$ we denote by $D(x, Y)=\inf \{\|x-y\|: y \in Y\}$, and $\rho(Y, Z)=\sup _{a \in Y} D(a, Z)$.

Define a function $H: P_{b d, c l}(E) \times P_{b d, c l}(E) \rightarrow \mathbb{R}^{+}$by

$$
H(A, B)=\max \{\rho(A, B, \rho(B, A)\} .
$$

The function H is called a Hausdorff metric on E. Note that $\|Y\|=H(Y,\{0\})$.
A map $F: E \rightarrow P(E)$ is called a multi-valued mapping on E. A point $u \in E$ is called a fixed point of the multi-valued operator $F: E \rightarrow P(E)$ if $u \in F(u)$. The fixed points set of F will be denoted by $\operatorname{Fix}(F)$.

A multivalued map $F:[a, b] \subset \mathbb{R} \rightarrow P_{c l, b d}(E)$ is said to be measurable if for each $x \in X$, the distance between x and $F(t)$ is a measurable function on $[a, b]$. A function $f:[a, b] \rightarrow E$ is called measurable selector of the multi-function F if f is measurable and $f(t) \in F(t)$ for almost everywhere $t \in[a, b]$.

Definition 2.1. Let $F: E \rightarrow P_{b d, c l}(E)$ be a multi-valued operator. Then F is called a multi-valued contraction if there exists a constant $\alpha \in(0,1)$ such that for each $x, y \in E$ we have

$$
H(F(x), F(y)) \leq \alpha\|x-y\|
$$

The constant α is called a contraction constant of F.
A multifunction F is called upper semi-continuous (u.s.c.) if for each $x_{0} \in E$, the set $F\left(x_{0}\right)$ is a nonempty and closed subset of E, and for each open set $N \subset E$ containing $F\left(x_{0}\right)$, there exists an open neighborhood M of x_{0} such that $F(M) \subset N$. If F is nonempty and compact-valued, then F is u.s.c. if and only if F has a closed graph, i.e., given sequences $\left\{x_{n}\right\}_{n=1}^{\infty} \rightarrow x_{0},\left\{y_{n}\right\}_{n=1}^{\infty} \rightarrow y_{0}, y_{n} \in F\left(x_{n}\right)$ for every $n=1,2, \ldots$ imply $y_{0} \in F\left(x_{0}\right)$.
F is bounded on bounded sets if $\bigcup F(S)$ is bounded in E for every bounded set $S \subset E$, i.e., $\sup _{x \in S}\{\sup \{|y|: y \in F(x)\}\}<+\infty$. Again the operator F is called compact if $\overline{\bigcup F(E)}$ is a compact subset of $E . F$ is said to be completely continuous if it is u.s.c. and $\bigcup F(S)$ is relatively compact set in E for every bounded subset S of E. Finally a multi-valued operator F is called convex (resp. compact) valued if $F(x)$ is a convex (resp. compact) set in E for each $x \in E$.

The following form of a fixed point theorem of Dhage 6 will be used while proving our main existence result.

Theorem 2.1 (Dhage [6]). Let $B(0, r)$ and $B[0, r]$ denote respectively the open and closed balls in a Banach space E centered at origin and of radius r and let $A: E \rightarrow P_{c l, c v, b d}(E)$ and $B: B[0, r] \rightarrow P_{c p, c v}(E)$ be two multi-valued operators satisfying
(i) A is multi-valued contraction, and
(ii) B is completely continuous.

Then either
(a) the operator inclusion $x \in A x+B x$ has a solution in $B[0, r]$, or
(b) there exists an $u \in E$ with $\|u\|=r$ such that $\lambda u \in A u+B u$ for some $\lambda>1$.

In the following section we prove the main existence results of this paper.

3. Main Results

Consider the following linear periodic problem with some given impulses $\theta_{j} \in \mathbb{R}$, $j=1,2, \ldots, p$:

$$
\begin{gather*}
x^{\prime}(t)+k x(t)=\sigma(t), \text { a.e. } t \in J^{\prime} \tag{3.1}\\
x\left(t_{j}^{+}\right)-x\left(t_{j}^{-}\right)=\theta_{j}, j=1,2, \ldots, p \tag{3.2}\\
x(0)=x(T) \tag{3.3}
\end{gather*}
$$

where $k>0$, and $\sigma \in L^{1}(J)$. The solution of 3.1 - 3.3) is given by (see 12 , Lemma 2.1])

$$
\begin{equation*}
x(t)=\int_{0}^{T} g_{k}(t, s) \sigma(s) d s+\sum_{j=1}^{p} g_{k}\left(t, t_{j}\right) \theta_{j} \tag{3.4}
\end{equation*}
$$

where

$$
g_{k}(t, s)= \begin{cases}\frac{e^{-k(t-s)}}{1-e^{-k T}}, & 0 \leq s \leq t \leq T \\ \frac{e^{-k(T+t-s)}}{1-e^{-k T}}, & 0 \leq t<s \leq T\end{cases}
$$

Clearly the function $g_{k}(t, s)$ is discontinuous and nonnegative on $J \times J$ and has a jump at $t=s$.

Let

$$
M_{k}:=\max \left\{\left|g_{k}(t, s)\right|: t, s \in[0, T]\right\}=\frac{1}{1-e^{-k T}}
$$

Now $x \in Y_{T}$ is a solution of 1.1 -1.3 if and only if

$$
\begin{equation*}
x(t) \in B_{k}^{1} x(t)+B_{k}^{2} x(t), \quad t \in J \tag{3.5}
\end{equation*}
$$

where the multi-valued operators B_{k}^{1} and B_{k}^{2} are defined by

$$
\begin{gather*}
\mathcal{B}_{k}^{1} x(t)=\int_{0}^{T} g_{k}(t, s) F(s, x(s)) d s \tag{3.6}\\
\mathcal{B}_{k}^{2} x(t)=\int_{0}^{T} g_{k}(t, s)[k x(s)+G(s, x(s))] d s+\sum_{j=1}^{p} g\left(t, t_{j}\right) I_{j}\left(x\left(t_{j}^{-}\right)\right) \tag{3.7}
\end{gather*}
$$

Definition 3.1. A multi-function $\beta: J \times \mathbb{R} \rightarrow P_{f}(\mathbb{R})$ is called an impulsive Carathéodory if
(i) $\beta(\cdot, x)$ is measurable for every $x \in \mathbb{R}$ and
(ii) $\beta(t, \cdot)$ is upper semi-continuous a.e. on J.

Further the impulsive Carathéodory multifunction β is called impulsive L^{1} Carathéodory if
(iii) for every $r>0$ there exists a function $h_{r} \in L^{1}(J)$ such that

$$
\|\beta(t, x)\|=\sup \{|u|: u \in \beta(t, x)\} \leq h_{r}(t) \text { a.e. } t \in J
$$

for all $x \in \mathbb{R}$ with $|x| \leq r$.
Denote

$$
S_{\beta}^{1}(x)=\left\{v \in L^{1}(J, \mathbb{R}): v(t) \in \beta(t, x) \text { a.e. } t \in J\right\}
$$

Lemma 3.1 (Lasota and Opial [11]). Let E be a Banach space. Further if $\operatorname{dim}(E)<$ ∞ and $\beta: J \times E \rightarrow P_{b d, c l}(E)$ is L^{1}-Carathéodory, then $S_{\beta}^{1}(x) \neq \emptyset$ for each $x \in E$.

Definition 3.2. A measurable multi-valued function $F: J \rightarrow P_{c p}(\mathbb{R})$ is said to be integrably bounded if there exists a function $h \in L^{1}(J, \mathbb{R})$ such that $|v| \leq h(t)$ a.e. $t \in J$ for all $v \in F(t)$.

Remark 3.1. It is known that if $F: J \rightarrow \mathbb{R}$ is an integrably bounded multifunction, then the set S_{F}^{1} of all Lebesgue integrable selections of F is closed and non-empty. See Covitz and Nadler 4].

We now introduce the following assumptions:
(H1) The functions $I_{j}: \mathbb{R} \rightarrow \mathbb{R}, j=1,2, \ldots, p$ are continuous, and there exist $c_{j} \in \mathbb{R}, j=1,2, \ldots, p$ such that $\left|I_{j}(x)\right| \leq c_{j}, j=1,2, \ldots, p$ for every $x \in \mathbb{R}$.
(H2) $G: J \times \mathbb{R} \rightarrow P_{c p, c v}(\mathbb{R})$ is an impulsive Carathéodory multi-function.
(H3) There exist a real number $k>0$ and a Carathéodory function $\omega: J \times \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+}which is nondecreasing with respect to its second argument such that

$$
\|G(t, x)+k x\|=\sup \{|v|: v \in G(t, x)+k x\} \leq \omega(t,|x|)
$$

a.e. $t \in J^{\prime}, x \in \mathbb{R}$.
(H4) The multi-function $t \mapsto F(t, x)$ is measurable and integrally bounded for each $x \in \mathbb{R}$.
(H5) The multi-function $F(t, x)$ is $F: J \times \mathbb{R} \rightarrow P_{c l, c v, b d}(\mathbb{R})$ and there exists a function $\ell \in L^{1}(J, \mathbb{R})$ such that

$$
H(F(t, x), F(t, y)) \leq \ell(t)|x-y| \quad \text { a.e. } t \in J
$$

for all $x, y \in \mathbb{R}$.
Note that the hypotheses (H1)-(H5) are not new, they have been used extensively in the literature on differential inclusions. Also (H3) in the special case $\omega(t, r)=$ $\phi(t) \psi(r)$ has been used by several authors. See Dhage [6] and the references therein.

Lemma 3.2. Assume that (H2)-(H3) hold. Then the operator $S_{k+G}^{1}: Y_{T} \rightarrow$ $P_{f}\left(L^{1}(J, \mathbb{R})\right)$ defined by

$$
\begin{equation*}
S_{k+G}^{1}(x):=\left\{v \in L^{1}(J, \mathbb{R}): v(t) \in k x(t)+G(t, x(t)) \text { a.e. } t \in J\right\} \tag{3.8}
\end{equation*}
$$

is well defined, u.s.c., closed and convex valued, and sends bounded subsets of Y_{T} into bounded subsets of $L^{1}(J, \mathbb{R})$.
Proof. Since (H2) holds, by Lemma $3.1 S_{k+G}^{1}(x) \neq \emptyset$ for each $x \in Y_{T}$. Below we show that S_{k+G}^{1} has the desired properties on Y_{T}.
Step I: First we show that S_{k+G}^{1} has closed values on Y_{T}. Let $x \in Y_{T}$ be arbitrary and let $\left\{\omega_{n}\right\}$ be a sequence in $S_{k+G}^{1}(x) \subset L^{1}(J, \mathbb{R})$ such that $\omega_{n} \rightarrow \omega$. Then $\omega_{n} \rightarrow \omega$
in measure. So there exists a subset S of positive integers such that $\omega_{n} \rightarrow \omega$ a.e. $n \rightarrow \infty$ through S. Since the hypothesis (H2) holds, we have $\omega \in S_{k+G}^{1}(x)$. Therefore, $S_{k+G}^{1}(x)$ is a closed set in $L^{1}(J, \mathbb{R})$. Thus for each $x \in Y_{T}, S_{k+G}^{1}(x)$ is a non-empty, closed subset of $L^{1}(J, \mathbb{R})$ and consequently S_{k+G}^{1} has non-empty and closed values on Y_{T}.
Step II: Next we show that $S_{k+G}^{1}(x)$ is convex subset of $L^{1}(J, \mathbb{R})$ for each $x \in Y_{T}$. Let $v_{1}, v_{2} \in S_{k+G}^{1}(x)$ and let $\lambda \in[0,1]$. Then there exist functions $f_{1}, f_{2} \in S_{k+G}^{1}(x)$ such that

$$
v_{1}(t)=k x(t)+f_{1}(t) \quad \text { and } \quad v_{2}(t)=k x(t)+f_{2}(t)
$$

for $t \in J$. Therefore we have

$$
\begin{aligned}
\lambda v_{1}(t)+(1-\lambda) v_{2}(t) & =\lambda\left[k x(t)+f_{1}(t)\right]+(1-\lambda)\left[k x(t)+f_{2}(t)\right] \\
& =\lambda k x(t)+(1-\lambda) k x(t)+\lambda f_{1}(t)+(1-\lambda) f_{2}(t) \\
& =k x(t)+f_{3}(t)
\end{aligned}
$$

where $f_{3}(t)=\lambda f_{1}(t)+(1-\lambda) f_{2}(t)$ for all $t \in J$. Since $G(t, x)$ is convex for each $x \in \mathbb{R}$, one has $f_{3}(t) \in G(t, x(t))$ for all $t \in J$. Therefore,

$$
\lambda v_{1}(t)+(1-\lambda) v_{2}(t) \in k x(t)+G(t, x(t))
$$

for all $t \in J$ and consequently $\lambda v_{1}+(1-\lambda) v_{2} \in S_{k+G}^{1}(x)$. As a result $S_{k+G}^{1}(x)$ is a convex subset of $L^{1}(J, \mathbb{R})$.
Step III: Next we show that S_{k+G}^{1} is an u.s.c. multi-valued operator on Y_{T}. Let $\left\{x_{n}\right\}$ be a sequence in Y_{T} such that $x_{n} \rightarrow x_{*}$ and let $\left\{y_{n}\right\}$ be a sequence such that $y_{n} \in S_{k+G}^{1}\left(x_{n}\right)$ and $y_{n} \rightarrow y_{*}$. To finish, it suffices to show that $y_{*} \in S_{k+G}^{1}\left(x_{*}\right)$. Since $y_{n} \in S_{k+G}^{1}\left(x_{n}\right)$, there is a function $f_{n} \in S_{k+G}^{1}\left(x_{n}\right)$ such that $y_{n}(t)=k x_{n}(t)+f_{n}(t)$ for all $t \in J$ and that $y_{*}(t)=k x_{*}(t)+f_{*}(t)$, where $f_{n} \rightarrow f_{*}$ as $n \rightarrow \infty$. Now the multi-function $G(t, x)$ is an upper semi-continuous in x for all $t \in J$, one has $f_{*}(t) \in G\left(t, x_{*}(t)\right)$ for all $t \in J$. Hence it follows that $y_{*} \in S_{k+G}^{1}\left(x_{*}\right)$.
Step IV: Finally we show that S_{k+G}^{1} maps bounded sets of Y_{T} into bounded sets of $L^{1}(J, \mathbb{R})$. Let M be a bounded subset of Y_{T}. Then there is a real number $r>0$ such that $\|x\| \leq r$ for all $x \in M$. Let $y \in S_{k+G}^{1}(S)$ be arbitrary. Then there is an $x \in M$ such that $y \in S_{k+G}^{1}(x)$ and therefore $y(t) \in k x(t)+G(t, x(t))$ a.e. $t \in J$. Now by (H3),

$$
\begin{aligned}
\|y\|_{L^{1}} & =\int_{0}^{T}|y(t)| d t \\
& \leq \int_{0}^{T}\|k x(t)+G(t, x(t))\| d t \\
& \leq \int_{0}^{T} \omega(t, \mid x(t \mid) d t \\
& \leq \int_{0}^{T} \omega(t, r) d t .
\end{aligned}
$$

Hence $S_{k+G}^{1}(S)$ is a bounded set in $L^{1}(J, \mathbb{R})$.
Thus the multi-valued operator S_{k+G}^{1} is an upper semi-continuous and has closed, convex values on Y_{T}. The proof is complete.

Lemma 3.3. Assume $\left(H_{1}\right)-\left(H_{3}\right)$. The multivalued operator \mathcal{B}_{k}^{2} defined by 3.7) is completely continuous and has convex, compact values on Y_{T}.

Proof. Since S_{k+G}^{1} is as upper semi-continuous and has closed and convex values and since (H1) holds, \mathcal{B}_{k}^{2} is u.s.c. and has closed-convex values on Y_{T}. To show \mathcal{B}_{k}^{2} is relatively compact, we use the Arzelá-Ascoli theorem. Let $M \subset B[0, r]$ be any set. Then $\|x\| \leq r$ for all $x \in M$. First we show that $\mathcal{B}_{k}^{2}(M)$ is uniformly bounded. Now for any $x \in M$ and for any $y \in \mathcal{B}_{k}^{2}(x)$ one has

$$
\begin{aligned}
|y(t)| & \leq \int_{0}^{T}\left|g_{k}(t, s)\right|| |[k x(s)+G(s, x(s))] \| d s+\sum_{j=1}^{p}\left|g_{k}\left(t, t_{j}\right)\right|\left|I_{j}\left(x\left(t_{j}^{-}\right)\right)\right| \\
& \leq \int_{0}^{T} M_{k} \omega(s,|x(s)|) d s+M_{k} \sum_{j=1}^{p} c_{j} \\
& \leq M_{k} \int_{0}^{T} \omega(s, r) d s+M_{k} \sum_{j=1}^{p} c_{j}
\end{aligned}
$$

where M_{k} is the bound of g_{k} on $[0, T] \times[0, T]$. Taking the supremum over t,

$$
\left\|\mathcal{B}_{k}^{2} x\right\| \leq M_{k}\left[\int_{0}^{T} \omega(s, r) d s+\sum_{j=1}^{p} c_{j}\right]
$$

for all $x \in M$. Hence $\mathcal{B}_{k}^{2}(M)$ is a uniformly bounded set in Y_{T}. Next we prove the equi-continuity of the set $\mathcal{B}_{k}^{2}(M)$ in Y_{T}. Let $y \in B_{k}^{2}(M)$ be arbitrary. Then there is a $v \in S_{k+G}(x)$ such that

$$
y(t)=\int_{0}^{T} g_{k}(t, s) v(s) d s+\sum_{j=1}^{p} g_{k}\left(t, t_{j}\right) I_{j}\left(x\left(t_{j}^{-}\right)\right), \quad t \in J
$$

for some $x \in M$.
To finish, it is sufficient to show that y^{\prime} is bounded on $[0, T]$. Now for any $t \in[0, T]$,

$$
\begin{aligned}
\left|y^{\prime}(t)\right| & \leq\left|\int_{0}^{T} \frac{\partial}{\partial t} g_{k}(t, s) v(s) d s+\sum_{j=1}^{p} \frac{\partial}{\partial t} g_{k}\left(t, t_{k}\right) I_{j}\left(y_{j}\left(t_{j}^{-}\right)\right)\right| \\
& =\left|\int_{0}^{T}(-k) g_{k}(t, s) v(s) d s+\sum_{j=1}^{p}(-k) g_{k}\left(t, t_{k}\right) I_{j}\left(y_{j}\left(t_{j}^{-}\right)\right)\right| \\
& \leq k M_{k} \int_{0}^{T} \omega(s, r) d s+k M_{k} \sum_{j=1}^{p} c_{j}=c .
\end{aligned}
$$

Hence for any $t, \tau \in[0, T]$ and for all $y \in B_{k}^{2}(M)$ one has

$$
|y(t)-y(\tau)| \leq c|t-\tau| \rightarrow 0 \quad \text { as } \quad t \rightarrow \tau
$$

This shows that $\mathcal{B}_{k}^{2}(M)$ is a equi-continuous set and consequently relatively compact in view of Arzelá-Ascoli theorem. Obviously $\mathcal{B}_{k}^{2}(x) \subset \mathcal{B}_{k}^{2}(B[0, r])$ for each $x \in B[0, r]$. Since $\mathcal{B}_{k}^{2}(B[0, r])$ is relatively compact, $\mathcal{B}_{k}^{2}(x)$ is relatively compact and which is compact in view of hypothesis (H2). Hence \mathcal{B}_{k}^{2} is a completely continuous multi-valued operator on Y_{T}. The proof of the lemma is complete.

Lemma 3.4. Assume that the hypotheses (H4)-(H5) hold. Then the operator B_{k}^{1} defined by (3.6) is a multi-valued contraction operator on Y_{T}, provided $M_{k}\|\ell\|_{L^{1}}<$ 1.

Proof. Define a mapping $\mathcal{B}_{k}^{1}: Y_{T} \rightarrow Y_{T}$ by (3.6). We show that \mathcal{B}_{k}^{1} is a multi-valued contraction on Y_{T}. Let $x, y \in Y_{T}$ be arbitrary and let $u_{1} \in \mathcal{B}_{k}^{1}(x)$. Then $u_{1} \in Y_{T}$ and

$$
u_{1}(t)=\int_{0}^{T} g_{k}(t, s) v_{1}(s) d s
$$

for some $v_{1} \in S_{F}^{1}(x)$. Since $H(F(t, x(t)), F(t, y(t)) \leq \ell(t)|x(t)-y(t)|$, one obtains that there exists a $w \in F(t, y(t))$ such that

$$
\left|v_{1}(t)-w\right| \leq \ell(t)|x(t)-y(t)| .
$$

Thus the multi-valued operator U defined by $U(t)=S_{F}^{1}(y)(t) \cap K(t)$, where

$$
K(t)=\left\{w| | v_{1}(t)-w|\leq \ell(t)| x(t)-y(t) \mid\right\}
$$

has nonempty values and is measurable. Let v_{2} be a measurable selection for U (which exists by Kuratowski-Ryll-Nardzewski's selection theorem. See [3]). Then $v_{2} \in F(t, y(t))$ and

$$
\left|v_{1}(t)-v_{2}(t)\right| \leq \ell(t)|x(t)-y(t)| \quad \text { a.e. } t \in J
$$

Define

$$
u_{2}(t)=\int_{0}^{T} g_{k}(t, s) v_{2}(s) d s
$$

It follows that $u_{2} \in \mathcal{B}_{k}^{1}(y)$ and

$$
\begin{aligned}
\left|u_{1}(t)-u_{2}(t)\right| & \leq\left|\int_{0}^{T} g_{k}(t, s) v_{1}(s) d s-\int_{0}^{T} g_{k}(t, s) v_{2}(s) d s\right| \\
& \leq \int_{0}^{T} M_{k}\left|v_{1}(s)-v_{2}(s)\right| d s \\
& \leq \int_{0}^{T} M_{k} \ell(s)|x(s)-y(s)| d s \\
& \leq M_{k}\|\ell\|_{L^{1}}\|x-y\|
\end{aligned}
$$

Taking the supremum over t, we obtain

$$
\left\|u_{1}-u_{2}\right\| \leq M_{k}\|\ell\|_{L^{1}}\|x-y\|
$$

From this and the analogous inequality obtained by interchanging the roles of x and y we get that

$$
H\left(\mathcal{B}_{k}^{1}(x), \mathcal{B}_{k}^{1}(y)\right) \leq \mu\|x-y\|
$$

for all $x, y \in Y_{T}$. This shows that \mathcal{B}_{k}^{1} is a multi-valued contraction, since $\mu=$ $M_{k}\|\ell\|_{L^{1}}<1$.

Theorem 3.1. Assume (H1)-(H5) are satisfied. Further if there exists a real number $r>0$ such that

$$
\begin{equation*}
r>\frac{M_{k} \int_{0}^{T} \omega(s, r) d s+M_{k} F_{0}+M_{k} \sum_{j=1}^{p} c_{j}}{1-M_{k}\|\ell\|_{L^{1}}} \tag{3.9}
\end{equation*}
$$

where $M_{k}\|\ell\|_{L^{1}}<1$ and $F_{0}=\int_{0}^{T}\|F(s, 0)\| d s$, then the problem IDI (1.1)-1.3) has at least one solution on J.

Proof. Define an open ball $B(0, r)$ in Y_{T}, where the real number r satisfies the inequality given in condition 3.9 . Define the multi-valued operators \mathcal{B}_{k}^{1} and \mathcal{B}_{k}^{2} on Y_{T} by (3.6) and (3.7). We shall show that the operators \mathcal{B}_{k}^{1} and \mathcal{B}_{k}^{2} satisfy all the conditions of Theorem 2.1.
Step I: The assumptions (H2)-(H3) imply by Lemma 3.3 that \mathcal{B}_{k}^{2} is completely continuous multi-valued operator on $B[0, r]$. Again since (H4)-(H5) hold, by Lemma 3.4. \mathcal{B}_{k}^{1} is a multi-valued contraction on Y_{T} with a contraction constant $\mu=$ $\bar{M}_{k}\|\ell\|_{L^{1}}$. Now an application of Theorem 2.1 yields that either the operator inclusion $x \in \mathcal{B}_{k}^{1} x+\mathcal{B}_{k}^{2} x$ has a solution in $B[0, r]$, or, there exists an $u \in Y_{T}$ with $\|u\|=r$ satisfying $\lambda u \in B_{k}^{1} u+B_{k}^{2} u$ for some $\lambda>1$.
Step II: Now we show that the second assertion of Theorem 2.1 is not true. Let $u \in Y_{T}$ be a possible solution of $\lambda u \in B_{k}^{1} u+B_{k}^{2} u$ for some real number $\lambda>1$ with $\|u\|=r$. Then we have,

$$
\begin{aligned}
u(t) & \in \lambda^{-1} \int_{0}^{T} g_{k}(t, s) F(s, u(s)) d s+\lambda^{-1} \int_{0}^{T} g_{k}(t, s)[k u(s)+G(s, u(s))] d s \\
& +\lambda^{-1} \sum_{j=1}^{p} g_{k}\left(t, t_{j}\right) I_{j}\left(u\left(t_{j}^{-}\right)\right) .
\end{aligned}
$$

Hence by (H3)-(H5),

$$
\begin{aligned}
|u(t)| \leq & \int_{0}^{T}\left|g_{k}(t, s)\right| \omega(s,|u(s)|) d s+\int_{0}^{T}\left|g_{k}(t, s)\right||\ell(s) \| u(s)| d s \\
& +\int_{0}^{T}\left|g_{k}(t, s)\right|\|F(s, 0)\| d s+\sum_{j=1}^{p}\left|g_{k}(t, s)\right| \mid I_{j}\left(u\left(t_{j}^{-}\right) \mid\right. \\
\leq & M_{k} \int_{0}^{T} \omega(s,\|u\|) d s+M_{k} \int_{0}^{T}|\ell(s)|\|u\| d s+M_{k} F_{0}+M_{k} \sum_{j=1}^{p} c_{j} \\
\leq & M_{k} \int_{0}^{T} \omega(s,\|u\|) d s+M_{k}\|\ell\|_{L^{1}}\|u\|+M_{k} F_{0}+M_{k} \sum_{j=1}^{p} c_{j}
\end{aligned}
$$

Taking the supremum over t we get

$$
\|u\| \leq M_{k} \int_{0}^{T} \omega(s,\|u\|) d s+M_{k}\|\ell\|_{L^{1}}\|u\|+M_{k} F_{0}+M_{k} \sum_{j=1}^{p} c_{j} .
$$

Substituting $\|u\|=r$ in the above inequality yields

$$
r \leq \frac{M_{k} \int_{0}^{T} \omega(s, r) d s+M_{k} F_{0}+M_{k} \sum_{j=1}^{p} c_{j}}{1-M_{k}\|\ell\|_{L^{1}}}
$$

which is a contradiction to 3.9 . Hence the operator inclusion $x \in \mathcal{B}_{k}^{1} x+\mathcal{B}_{k}^{2} x$ has a solution in $B[0, r]$. This further implies that the IDI 1.1 -1.3) has a solution on J. The proof is complete.

Remark 3.2. On taking $F(t, x) \equiv 0$ on $J^{\prime} \times \mathbb{R}$ in Theorem 3.1 we obtain as a special case the existence result in [7] for the impulsive differential inclusion (1.1)(1.3) with $F(t, x) \equiv 0$.

Remark 3.3. In this paper we have dealt with the perturbed impulsive differential inclusions involving convex multi-functions. Note that the continuity of the multi-function is important here, however in a forthcoming paper we will relax the continuity condition of one of the multi-functions and discuss the existence results for mild discontinuous perturbed impulsive differential inclusions.

Acknowledgement. A. Boucherif is grateful to KFUPM for its constant support.

References

[1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[2] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach spaces, Dynamic Syst. Appl. 8 (1999), 119-126.
[3] M. Benchohra, A. Boucherif and J. J. Nieto, On initial value problems for a class of first order impulsive differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 21 (2001), 159-171.
[4] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
[5] K. Deimling, Multivalued Differential Equations, Walter de Gruyter \& Co., Berlin, 1992.
[6] B. C. Dhage, Multi-valued mappings and fixed points II, preprint.
[7] B. C. Dhage, On periodic boundary value problems of first order impulsive differential inclusions, Publ. Math. Debrecen (to appear).
[8] A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag, Berlin, 2003.
[9] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.
[10] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Pub.Co., Singapore, 1989.
[11] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad.Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[12] J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205 (1997), 423-433.
[13] J. J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett. 15 (2002), 489-493.
[14] J. J. Nieto, Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear Anal. 51 (2002), 1223-1232.
[15] Y. V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dynam. Contin. Discrete Impuls. Systems 3 (1997), 57-88.
[16] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific Pub. Co., River Edge, NJ, 1995.

Bapurao C. Dhage
Kasubai, Gurukul Colony, Ahmedpur-413 515, Dist: Latur, Maharashtra, India E-mail address: bcd20012001@yahoo.co.in

Abdelkader Boucherif
Department of Mathematical sciences, King Fahd University of Petroleum and Miner-
als, P. O. Box 5046, Dhahran 31261, Saudi Arabia
E-mail address: aboucher@kfupm.edu.sa
Sotiris K. Ntouyas
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
E-mail address: sntouyas@cc.uoi.gr

[^0]: 2000 Mathematics Subject Classification. 34A60, 34A37.
 Key words and phrases. Impulsive differential inclusion, existence theorem.
 (C) 2004 Texas State University - San Marcos.

 Submitted April 19, 2004. Published June 13, 2004.

