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A. In this note a selection theorem due to Bressan and Colombo for lower
semi-continuous multi-valued operators with nonempty closed decomposable val-
ues combined with Schaefer’s fixed point theorem is used to investigate the exis-
tence of positive solutions form-point boundary value problems for one dimen-
sionalp-Laplacian differential inclusions.
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1. I

This note is concerned with the existence of positive solutions for the following
class of boundary value problems form-point one dimensionalp-Laplacian differen-
tial inclusions

(ϕ(y′))′ ∈ F(t, y), a. e.t ∈ J := [0,1]; (1.1)

y′(0) =

m−2∑

i=1

biy
′(ξi), y(1) =

m−2∑

i=1

aiy
′(ξi), (1.2)

whereϕ : �∗+ → �+ defined byϕ(v) := |v|p−2v, p > 1, F : J × � → P(�+) is a
multi-valued map,P(�+) is the family of all subsets of�+, ξi ∈ (0,1), 0< ξ1 < ξ2 <
. . . < ξm−2 < 1, andai , bi , i = 1, . . . ,m− 2, are positive and satisfy 0<

∑m−2
i=1 ai < 1,∑m−2

i=1 bi < 1. The study of multi-point boundary value problems for linear second
order ordinary differential equations was initiated by Il’in and Moiseev [15,16]. Then
Gupta [10, 11] studied three-point boundary value problems for nonlinear ordinary
differential equations, the m-point boundary value problem was studied by Guptaet
al, [12, 14], Ma [18]. Very recently, in a series of papers by Benchohra and Ntouyas
(see [2–5]) some extensions to multi-point differential inclusions have been proposed
with the aid of fixed point arguments in the cases when the right-hand side is convex
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as well as nonconvex valued. Some existence results for one dimensionalp-Laplacian
differential equations are given in the papers by Bai and Fang [1] and Jian and Guo
[17]. Our goal here is to give the existence of at least one positive solution form-point
boundary value problems for one dimensionalp-Laplacian differential inclusions.
Our approach relies on Schaefer’s fixed point theorem combined with a selection
theorem due to Bressan and Colombo [6] for lower semi-continuous operators with
nonempty closed and decomposable values.

2. P

In this Section, we introduce notations, definitions, and preliminary facts from
multi-valued analysis which are used throughout this paper.
C([0,1],�) is the Banach space of all continuous functions from [0, 1] into � with
the norm

‖y‖∞ := sup{|y(t)| : 0 ≤ t ≤ 1}.
AC([0, 1],�) is the space of all absolutely continuous functionsy from [0, 1] into�.
L1(J,�) denotes the Banach space of functionsy : J → � which are Lebesgue
integrable normed by

‖y‖L1 =

∫ 1

0
|y(t)|dt.

LetA be a subset of [0,1]×�. A isL⊗Bmeasurable ifA belongs to theσ-algebra
generated by all sets of the formN × D whereN is Lebesgue measurable in [0,1]
andD is Borel measurable in�. A subsetI of L1([0,1],�) is decomposable if for
all u, v ∈ I andN ⊂ [0,1] measurable the functionuχN + vχ[0,1]−N ∈ I, whereχ[0,1]

stands for the characteristic function of [0, 1].
Let E be a Banach space,X a nonempty closed subset ofE andG : X → P(E)

a multi-valued operator with nonempty closed values.G is lower semi-continuous
(l.s.c.) if the set{x ∈ X : G(x) ∩ B , ∅} is open for any open setB in E. G has a
fixed point if there isx ∈ X such thatx ∈ G(x). For more details on multi-valued maps
we refer to the books by Deimling [7], Ǵorniewicz [9] and Hu and Papageorgiou [19].

Definition 1. Let Y be a separable metric space and letN : Y→ P(L1([0,b],�))
be a multi-valued operator. We sayN has the property (BC) if

(1) N is lower semi-continuous (l.s.c.);
(2) N has nonempty closed and decomposable values.

Let F : J × �+ → P(�+) be a multi-valued map with nonempty compact values.
Assign toF the multi-valued operator

F : C([0,1],�+)→ P(L1([0,1],�+))

by letting

F (y) = {w ∈ L1([0,1],�) : w(t) ∈ F(t, y(t)) for a. e.t ∈ [0,1]}.
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The operatorF is called the Niemytzki operator associated withF.

Definition 2. Let F : J×�+ → P(�+) be a multi-valued function with nonempty
compact values. We sayF is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Niemytzki operatorF is lower semi-continuous and has nonempty closed and
decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 1 ([6]). Assume thatY is a separable metric space and letN : Y →
P(L1([0,1],�)) be a multi-valued operator which has the property (BC). ThenN
has a continuous selection, i.e. there exists a continuous function (single-valued)
g : Y→ L1(J,�) such thatg(y) ∈ N(y) for everyy ∈ Y.

Let us introduce the following hypotheses which are assumed hereafter:

(H1) F : [0,1] × �+ → P(�+) is a nonempty compact valued multi-valued map
such that:
(a) (t, y) 7→ F(t, y) isL ⊗ Bmeasurable;
(b) y 7→ F(t, y) is lower semi-continuous for a. e.t ∈ [0, 1];

(H2) There exists a functionh ∈ L1([0, 1],�+) such that

‖F(t, y)‖ := sup{|v| : v ∈ F(t, y)} ≤ h(t) for a. e.t ∈ [0, 1] and fory ∈ �.

3. M 

Let us start by defining what we mean by a solution of problem (1.1)–(1.2).

Definition 3. A functiony ∈ C1((0,1),�) with ϕ(y′) ∈ AC((0,1),�) is said to be a
solution of (1.1), (1.2) if there existsv(t) ∈ L1(J,�) such thaty satisfies the equation
(ϕ(y′))′ = v(t) a. e. onJ and the condition (1.2).

Theorem 2. Suppose that hypotheses (H1), (H2) are satisfied. Then them-point
BVP(1.1), (1.2)has at least one positive solution.

P. (H1) and (H2) imply by Lemma 2.2 in Frigon [8] thatF is of the lower
semi-continuous type. Then from Theorem 1 there exists a continuous functionf :
C([0, 1],�) → L1([0, 1],�) such thatf (y) ∈ F (y) for all y ∈ C([0,1],�). Consider
the following problem

(ϕ(y′))′ = f (y(t)), a. e.t ∈ J, (3.1)

y′(0) =

m−2∑

i=1

biy
′(ξi), y(1) =

m−2∑

i=1

aiy
′(ξi). (3.2)

Clearly, if y is a solution of problem (3.1), (3.2), theny is a solution to problem
(1.1), (1.2).
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Transform the problem (3.1), (3.2) into a fixed point problem. Consider the oper-
atorN : C([0, 1],�+)→ C([0,1],�) defined by:

N(y)(t) = −
∫ t

0
ψ

(∫ s

0
f (y(τ))dτ

)
ds− tB

m−2∑

i=1

biψ

(∫ ξi

0
f (y(τ))dτ

)

+ A

{∫ 1

0
ψ

(∫ s

0
f (y(τ))dτ

)
ds−

m−2∑

i=1

ai

∫ ξi

0
ψ

(∫ s

0
f (y(τ))dτ

)
ds

+ B
m−2∑

i=1

biψ

(∫ ξi

0
f (y(τ))dτ

) 1−
m−2∑

i=1

aiξi




whereψ is the inverse of the functionϕ defined byψ(w) := |w|q−2w, with q =
p

p−1 > 1
and

A =

1−
m−2∑

i=1

ai


−1

, B =

1−
m−2∑

i=1

bi


−1

.

The fixed points of the operatorN are solutions to problem (3.1), (3.2) (see [1]). It
is clear thatN(y)(t) ≥ 0 on J for anyy ∈ C([0,1],�+). We shall first show thatN is
completely continuous. The proof will be given in three steps.

Step 1: N is continuous.Let {yn} be a sequence such thatyn → y in C([0, 1],�).
Set

L(y)(t) :=
∫ t

0
| f (y(s))|ds.

Then

|L(yn)(s) − L(y(s))| ≤
∫ t

0
| f (yn(s)) − f (y(s))|ds≤

∫ 1

0
| f (yn(s)) − f (y(s))|ds.

Since f is a continuous function, it follows that

‖L(yn) − L(y)‖∞ ≤ ‖ f (yn(.)) − f (y(.))‖L1 → 0 asn→ ∞.
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Then

|N(yn(t)) − N(y(t))| ≤
∫ 1

0
|ψ(L(yn(t)) − ψ(L(y(t)))|ds

+ tB
m−2∑

i=1

bi |ψ(L(yn(ξi))) − ψ(L(yn(ξi)))|

+ A
∫ 1

0
|ψ(L(yn(s))) − ψ(L(yn(s)))|ds

+ A
m−2∑

i=1

ai

∫ ξi

0
|ψ(L(yn(s))) − ψ(L(y(s)))|ds

+ AB
m−2∑

i=1

bi |ψ(L(yn(ξi)) − ψ(L(y(ξi))|
1−

m−2∑

i=1

aiξi

 .

Sinceψ is a continuous function, then

‖N(yn) − N(y)‖∞ ≤ ‖ψ(L(yn)) − ψ(L(y))‖∞ + B
m−2∑

i=1

bi‖ψ(L(yn)) − ψ(L(y))‖∞

+ A‖ψ(L(yn)) − ψ(L(y))‖∞ + A
m−2∑

i=1

ai‖ψ(L(yn)) − ψ(L(y))‖∞

+ AB
m−2∑

i=1

bi‖ψ(L(yn)) − ψ(L(y))‖∞
1−

m−2∑

i=1

aiξi

 as n→ ∞.

Step 2: N maps bounded sets into bounded sets inC([0,1],�). Indeed, it is enough
to show that, for anyq > 0, there exists a positive constant` such that, for each
y ∈ Bq = {y ∈ C([0,1],�) : ‖y‖∞ ≤ q}, we have‖N(y)‖∞ ≤ `. From (H2), we have

∣∣∣∣∣∣
∫ 1

0
f (y(s))ds

∣∣∣∣∣∣ ≤ ‖h‖L1 := q∗,
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and

|N(y)(t)| ≤
∫ 1

0
|ψ(L(y(s))|ds+ tB

m−2∑

i=1

bi |ψ(L(y(ξi)))|

+ A
∫ 1

0
|ψ(L(y(s)))|ds+ A

m−2∑

i=1

ai

∫ ξi

0
|ψ(L(y(s)))|ds

+ AB
m−2∑

i=1

bi |ψ(L(y(ξi)))|
1−

m−2∑

i=1

aiξi

 .

Then

‖N(y)‖∞ ≤ sup
w∈[−q∗,q∗]

|ψ(w)| + B
m−2∑

i=1

bi sup
w∈[−q∗,q∗]

|ψ(w)|

+ A sup
w∈[−q∗,q∗]

|ψ(w)| + A
m−2∑

i=1

ai sup
w∈[−q∗,q∗]

|ψ(w)|

+ AB
m−2∑

i=1

bi sup
w∈[−q∗,q∗]

|ψ(w)|
1−

m−2∑

i=1

aiξi

 := `.

Step 3: N maps bounded sets into equicontinuous sets ofC([0,1],�). Let l1, l2 ∈
[0,1], l1 < l2 andBq be a bounded set ofC([0,1],�) as in Step 2. Lety ∈ Bq, then

|N(y)(l2) − N(y)(l1)| ≤ (l2 − l1) sup
w∈[−q∗,q∗]

|ψ(w)|

+ B(l2 − l1)
m−2∑

i=1

bi

∣∣∣∣∣∣ψ
(∫ ξi

0
f (y(τ))dτ

)∣∣∣∣∣∣ .

As l2 → l1, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that
N : C([0,1],�)→ C([0, 1],�) is completely continuous.

Step 4: The set

E(N) := {y ∈ C([0,1],�) : y = λN(y), for some0 < λ < 1}
is bounded.

The reasoning used in the proof of Step 2 shows that the setE(N) is bounded.
SetX := C([0,1],�). As a consequence of Schaefer’s fixed point theorem [20,

p. 29] we deduce thatN has a fixed pointy which is a solution to problem (3.1),
(3.2), and hence, a solution to problem (1.1), (1.2).

�
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