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BEHAVIOR OF THE SOLUTIONS TO SECOND ORDER LINEAR
AUTONOMOUS DELAY DIFFERENTIAL EQUATIONS

CHRISTOS G. PHILOS, IOANNIS K. PURNARAS

Abstract. A wide class of second order linear autonomous delay differential

equations with distributed type delays is considered. An asymptotic result, a
useful exponential estimate of the solutions, a stability criterion, and a result

on the behavior of the solutions are established.

1. Introduction and preliminaries

The theory of delay differential equations is of both theoretical and practical
interest. For the basic theory of delay differential equations, the reader is referred
to the books by Diekmann et al. [2], Driver [7], Hale [12], and Hale and Verduyn
Lunel [13].

The old but very interesting asymptotic and stability results for delay differential
equations due to Driver [5, 6] and to Driver, Sasser and Slater [8] gave rise to the
publication of a number of articles concerning the asymptotic behavior (and, more
generally, the behavior) and the stability for delay differential equations, neutral de-
lay differential equations and (neutral or non-neutral) integrodifferential equations
with unbounded delay during the last few years. See [1, 3, 4, 9, 10, 14]-[24]; for
some related results see [11]. Moreover, in the last few years, a number of articles
dealing with the asymptotic behavior (and, more generally, the behavior) and the
stability of delay, and neutral delay, difference equations (with discrete or contin-
uous variable) and of (neutral or non-neutral) Volterra difference equations with
infinite delay (see [25] and the references cited therein) appeared in the literature.
Very recently, Yeniçerioğlu [26] obtained some results on the qualitative behavior of
the solutions of a second order linear autonomous delay differential equation with
a single delay. The main idea in [26] is that of transforming the second order delay
differential equation into a first order delay differential equation, by the use of a real
root of the corresponding characteristic equation. The same idea will be used in
this paper to obtain some general results including the results in [26] as particular
cases.

In the present paper, a wide class of second order linear autonomous delay differ-
ential equations with distributed type delays is considered. An asymptotic result
for the solutions is obtained. Also, an estimate of the solutions and a stability
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criterion for the trivial solution are established. Moreover, a result on the behavior
of the solutions is given.

Consider the delay differential equation

x′′(t) +
∫ 0

−r

x′(t+ s)dζ(s) =
∫ 0

−r

x(t+ s)dη(s), (1.1)

where r is a positive real constant, ζ and η are real-valued functions of bounded
variation on the interval [−r, 0], and the integrals are Riemann-Stieltjes integrals.
It will be assumed that η is not constant on [−r, 0].

By a solution of the delay differential equation (1.1), we mean a continuously
differentiable real-valued function x defined on the interval [−r,∞), which is twice
continuously differentiable on [0,∞) and satisfies (1.1) for all t ≥ 0.

Together with the delay differential equation (1.1), it is customary to specify an
initial condition of the form

x(t) = φ(t) for − r ≤ t ≤ 0, (1.2)

where the initial function φ is a given continuously differentiable real-valued func-
tion on the initial interval [−r, 0].

Equations (1.1) and (1.2) constitute an initial value problem (IVP, for short).
It is well-known (see, for example, Diekmann et al. [2], Driver [7], Hale [12], or
Hale and Verduyn Lunel [13]) that there exists a unique solution x of the delay
differential equation (1.1) which satisfies the initial condition (1.2); this unique
solution x will be called the solution of the initial value problem (1.1) and (1.2) or,
more briefly, the solution of the IVP (1.1) and (1.2).

Along with the delay differential equation (1.1), we associate its characteristic
equation

λ2 + λ

∫ 0

−r

eλsdζ(s) =
∫ 0

−r

eλsdη(s), (1.3)

which is obtained from (1.1) by looking for solutions of the form x(t) = eλt for
t ≥ −r.

For a given real root λ0 of the characteristic equation (1.3), we consider the (first
order) delay differential equation

z′(t) + 2λ0z(t) +
∫ 0

−r

eλ0sz(t+ s)dζ(s)

= λ0

∫ 0

−r

eλ0s

[∫ 0

s

z(t+ u)du
]
dζ(s)−

∫ 0

−r

eλ0s

[∫ 0

s

z(t+ u)du
]
dη(s).

(1.4)

A solution of the delay differential equation (1.4) is a continuous real-valued func-
tion z defined on the interval [−r,∞), which is continuously differentiable on [0,∞)
and satisfies (1.4) for all t ≥ 0.

The characteristic equation of the delay differential equation (1.4) is

µ+ 2λ0 +
∫ 0

−r

e(λ0+µ)sdζ(s)

= λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dζ(s)−

∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s).

(1.5)

This equation is obtained from (1.4) by seeking solutions of the form z(t) = eµt for
t ≥ −r.
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For our convenience, we introduce some notations. For a given real root λ0 of
the characteristic equation (1.3), we set

β(λ0) = 2λ0 +
∫ 0

−r

[1− λ0(−s)]eλ0sdζ(s) +
∫ 0

−r

(−s)eλ0sdη(s) (1.6)

and, also, we define

K(λ0;φ) = φ′(0) + λ0φ(0) +
∫ 0

−r

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du
]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dη(s);

(1.7)

in addition, provided that β(λ0) 6= 0, we define

Φ(λ0;φ)(t) = e−λ0tφ(t)− K(λ0;φ)
β(λ0)

for − r ≤ t ≤ 0. (1.8)

We will now give a proposition, which plays a crucial role in obtaining our main
results.

Proposition 1.1. Let λ0 be a real root of the characteristic equation (1.3), and
let β(λ0) and K(λ0;φ) be defined by (1.6) and (1.7), respectively. Suppose that
β(λ0) 6= 0, and define Φ(λ0;φ) by (1.8).

Then a continuous real-valued function x defined on the interval [−r,∞) is the
solution of the IVP (1.1) and (1.2) if and only if the function z defined by

z(t) = e−λ0tx(t)− K(λ0;φ)
β(λ0)

for t ≥ −r (1.9)

is the solution of the delay differential equation (1.4) which satisfies the initial
condition

z(t) = Φ(λ0;φ)(t) for − r ≤ t ≤ 0. (1.10)

Proof. Let x be the solution of the IVP (1.1) and (1.2), and define

y(t) = e−λ0tx(t) for t ≥ −r. (1.11)

Then, by taking into account the fact that λ0 is a real root of the characteristic
equation (1.3), we get, for every t ≥ 0,

x′′(t) +
∫ 0

−r

x′(t+ s)dζ(s)−
∫ 0

−r

x(t+ s)dη(s)

= eλ0t

{[
y′′(t) + 2λ0y

′(t) + λ2
0y(t)

]
+

∫ 0

−r

eλ0s [y′(t+ s) + λ0y(t+ s)] dζ(s)

−
∫ 0

−r

eλ0sy(t+ s)dη(s)
}

= eλ0t

{[
y′′(t) + 2λ0y

′(t) +
∫ 0

−r

eλ0sy′(t+ s)dζ(s)
]

+ λ2
0y(t)

+λ0

∫ 0

−r

eλ0sy(t+ s)dζ(s)−
∫ 0

−r

eλ0sy(t+ s)dη(s)
}

= eλ0t

{[
y′(t) + 2λ0y(t) +

∫ 0

−r

eλ0sy(t+ s)dζ(s)
]′
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+
[
−λ0

∫ 0

−r

eλ0sdζ(s) +
∫ 0

−r

eλ0sdη(s)
]
y(t)

+λ0

∫ 0

−r

eλ0sy(t+ s)dζ(s)−
∫ 0

−r

eλ0sy(t+ s)dη(s)
}

= eλ0t

{[
y′(t) + 2λ0y(t) +

∫ 0

−r

eλ0sy(t+ s)dζ(s)
]′

−λ0

∫ 0

−r

eλ0s [y(t)− y(t+ s)] dζ(s) +
∫ 0

−r

eλ0s [y(t)− y(t+ s)] dη(s)
}
.

Hence, the fact that x is a solution of the delay differential equation (1.1) is equiv-
alent to the fact that y satisfies[

y′(t) + 2λ0y(t) +
∫ 0

−r

eλ0sy(t+ s)dζ(s)
]′

= λ0

∫ 0

−r

eλ0s [y(t)− y(t+ s)] dζ(s)−
∫ 0

−r

eλ0s [y(t)− y(t+ s)] dη(s)

(1.12)

for all t ≥ 0. On the other hand, x satisfies the initial condition (1.2) if and only if
y satisfies the initial condition

y(t) = e−λ0tφ(t) for − r ≤ t ≤ 0. (1.13)

Furthermore, we see that y satisfies (1.12) for t ≥ 0 if and only if

y′(t) + 2λ0y(t) +
∫ 0

−r

eλ0sy(t+ s)dζ(s)

= λ0

∫ 0

−r

eλ0s

[∫ t

t+s

y(u)du
]
dζ(s)−

∫ 0

−r

eλ0s

[∫ t

t+s

y(u)du
]
dη(s) + Θ

or, equivalently,

y′(t) + 2λ0y(t) +
∫ 0

−r

eλ0sy(t+ s)dζ(s)

= λ0

∫ 0

−r

eλ0s

[∫ 0

s

y(t+ u)du
]
dζ(s)−

∫ 0

−r

eλ0s

[∫ 0

s

y(t+ u)du
]
dη(s) + Θ

for all t ≥ 0, where Θ is some real constant. By using the initial condition (1.13)
and taking into account the definition of K(λ0;φ) by (1.7), we have

Θ = y′(0) + 2λ0y(0) +
∫ 0

−r

eλ0sy(s)dζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

y(u)du
]
dζ(s) +

∫ 0

−r

eλ0s

[∫ 0

s

y(u)du
]
dη(s)

= [φ′(0)− λ0φ(0)] + 2λ0φ(0) +
∫ 0

−r

φ(s)dζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dζ(s) +

∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dη(s)

= φ′(0) + λ0φ(0) +
∫ 0

−r

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du
]
dζ(s)
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+
∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dη(s)

≡ K(λ0;φ).

So, the fact that y satisfies (1.12) for t ≥ 0 is equivalent to the fact that y satisfies

y′(t) + 2λ0y(t) +
∫ 0

−r

eλ0sy(t+ s)dζ(s)

= λ0

∫ 0

−r

eλ0s

[∫ 0

s

y(t+ u)du
]
dζ(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

y(t+ u)du
]
dη(s) +K(λ0;φ)

(1.14)

for all t ≥ 0.
Now, we take into account the assumption β(λ0) 6= 0 and we define

z(t) = y(t)− K(λ0;φ)
β(λ0)

for t ≥ −r. (1.15)

Then, because of the definition of β(λ0) by (1.6), it is a matter of elementary
calculations to show that y satisfies (1.14) for t ≥ 0 if and only if z satisfies (1.4) for
all t ≥ 0, i.e., if and only if z is a solution of the delay differential equation (1.4).
Moreover, we see that the initial condition (1.13) is equivalently written as follows

z(t) = e−λ0tφ(t)− K(λ0;φ)
β(λ0)

for − r ≤ t ≤ 0. (1.16)

We have thus proved that x is the solution of the IVP (1.1) and (1.2) if and only
if z is the solution of the delay differential equation (1.4) which satisfies the initial
condition (1.16). By (1.11), we see that (1.15) coincides with (1.9). Also, by taking
into account the definition of Φ(λ0;φ) by (1.8), we observe that (1.16) coincides
with the initial condition (1.10). The proof of our proposition is complete. �

Let C([−r, 0],R) be the Banach space of all continuous real-valued functions on
the interval [−r, 0], endowed with the usual sup-norm

‖ψ‖ = max
−r≤t≤0

|ψ(t)| for ψ ∈ C([−r, 0],R).

Moreover, let C1([−r, 0],R) be the set of all continuously differentiable real-valued
functions on the interval [−r, 0]. This set is a Banach space with the norm

∦ ω ∦= max {‖ω‖ , ‖ω′‖} for ω ∈ C1([−r, 0],R).

As it concerns the IVP (1.1) and (1.2) studied in this paper, the initial function φ
belongs to C1([−r, 0],R). So, the notation ∦ φ ∦ used in Section 3 is defined by

∦ φ ∦= max {‖φ‖ , ‖φ′‖} ≡ max
{

max
−r≤t≤0

|φ(t)| , max
−r≤t≤0

|φ′(t)|
}
.

It will be considered that the reader is familiar with the notions of stability, uni-
form stability, asymptotic stability, and uniform asymptotic stability of the trivial
solution of a linear delay differential system. (We choose to refer to the book by
Driver [7].) It is known (see, for example, [7]) that, in the case of autonomous linear
delay differential systems, the trivial solution is uniformly stable if and only if it is
stable (at 0), and the trivial solution is uniformly asymptotically stable if and only
if it is asymptotically stable (at 0).
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The substitution
x1 = x, x2 = x′

transforms the (second order) linear delay differential equation (1.1) into the fol-
lowing equivalent (first order) linear delay differential system

x′1(t) = x2(t), x′2(t) =
∫ 0

−r

x1(t+ s)dη(s)−
∫ 0

−r

x2(t+ s)dζ(s). (1.17)

The delay differential system (1.17) is considered in conjunction with the initial
condition

x1(t) = φ(t) for − r ≤ t ≤ 0, x2(t) = φ′(t) for − r ≤ t ≤ 0. (1.18)

So, the IVP (1.1) and (1.2) is transformed into the equivalent initial value problem
(1.17) and (1.18).

On the basis of the above transformation of the delay differential equation (1.1)
into the equivalent delay differential system (1.17), one can formulate the defini-
tions of the notions of the stability, uniform stability, asymptotic stability, and
uniform asymptotic stability of the trivial solution of (1.1). As the delay differen-
tial equation (1.1) is autonomous, the trivial solution of (1.1) is uniformly stable
(respectively, uniformly asymptotically stable) if and only if it is stable (at 0) (re-
spectively, asymptotically stable (at 0)). We restrict ourselves to giving here the
definitions of the stability (at 0) and the asymptotic stability (at 0) of the trivial
solution of (1.1). The trivial solution of the delay differential equation (1.1) is said
to be stable (at 0) if, for each ε > 0, there exists a δ ≡ δ(ε) > 0 such that, for any
φ ∈ C1([−r, 0],R) with ∦ φ ∦< δ, the solution x of the IVP (1.1) and (1.2) satisfies

max {|x(t)| , |x′(t)|} < ε for all t ≥ −r.
Moreover, the trivial solution of (1.1) is called asymptotically stable (at 0) if it is
stable (at 0) in the above sense and, in addition, there exists a δ0 > 0 such that,
for any φ ∈ C1([−r, 0],R) with ∦ φ ∦< δ0, the solution x of the IVP (1.1) and (1.2)
satisfies

lim
t→∞

[max {|x(t)| , |x′(t)|}] = 0; i.e., lim
t→∞

x(t) = lim
t→∞

x′(t) = 0.

Let us consider the special case of the delay differential equation

x′′(t) =
∫ 0

−r

x(t+ s)dη(s). (1.19)

This equation is obtained from (1.1), by considering that ζ is any constant real
-valued function on the interval [−r, 0].

The characteristic equation of the delay differential equation (1.19) is

λ2 =
∫ 0

−r

eλsdη(s). (1.20)

For a given real root λ0 of the characteristic equation (1.20), we consider the
(first order) delay differential equation

z′(t) + 2λ0z(t) = −
∫ 0

−r

eλ0s

[∫ 0

s

z(t+ u)du
]
dη(s). (1.21)

The equation

µ+ 2λ0 = −
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s) (1.22)
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is the characteristic equation of the delay differential equation (1.21). For a given
real root λ0 of the characteristic equation (1.20), we define

β̃(λ0) = 2λ0 +
∫ 0

−r

(−s)eλ0sdη(s), (1.23)

K̃(λ0;φ) = φ′(0) + λ0φ(0) +
∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dη(s) (1.24)

and, provided that β̃(λ0) 6= 0,

Φ̃(λ0;φ)(t) = e−λ0tφ(t)− K̃(λ0;φ)

β̃(λ0)
for − r ≤ t ≤ 0. (1.25)

Our results given in the next sections (Sections 2−5) are formulated as four
theorems (Theorems 2.1, 3.1, 4.2, and 4.4), a corollary (Corollary 3.2), and five
lemmas (Lemmas 4.1, 4.3, and 5.1–5.3). Section 2 contains Theorem 2.1, Section
3 is devoted to Theorem 3.1 and Corollary 3.2, Section 4 includes Lemmas 4.1 and
4.3 as well as Theorems 4.2 and 4.4, and Section 5 contains Lemmas 5.1–5.3.

Theorem 2.1 constitutes a basic asymptotic result for the solution of the IVP
(1.1) and (1.2) as well as for the first order derivative of this solution. Estimates of
the solution of the IVP (1.1) and (1.2) and of the first order derivative of the solution
are established by Theorem 3.1. Corollary 3.2 is a stability criterion for the trivial
solution of the delay differential equation (1.1). Lemma 4.1 is an auxiliary result
about the real roots of the characteristic equation (1.5), where λ0 is a negative real
root of the characteristic equation (1.3). Analogously, Lemma 4.3 is an auxiliary
result concerning the real roots of the characteristic equation (1.22), where λ0 is
a nonzero real root of the characteristic equation (1.20). Lemmas 4.1 and 4.3 are
used in establishing Theorems 4.2 and 4.4, respectively. Theorem 4.2 is concerned
with the behavior of the solution of the IVP (1.1) and (1.2) and of the first order
derivative of this solution. Theorem 4.4 concerns the special case of the IVP (1.19)
and (1.2), and provides a result on the behavior of the solution and of the first order
derivative of this solution. For a given real root λ0 of the characteristic equation
(1.3), Lemma 5.1 establishes sufficient conditions for the characteristic equation
(1.5) to have a real root with an appropriate property. Lemma 5.2 is concerned
with the real roots of (1.5), where λ0 is a negative real root of (1.3). Finally,
Lemma 5.3 concerns the real roots of the characteristic equation (1.22), where λ0

is a nonzero real root of the characteristic equation (1.20).
Theorems 2.1 and 3.1 as well as Corollary 3.2 are obtained, by the use of a real

root λ0 of the characteristic equation (1.3) and of a real root µ0 of the characteristic
equation (1.5). Theorem 4.2 is derived, via a negative real root λ0 of (1.3) and two
distinct real roots µ0 and µ1 of (1.5). In obtaining Theorem 4.4, a nonzero real
root λ0 of the characteristic equation (1.20) and two distinct real roots µ0 and µ1

of the characteristic equation (1.22) are used.
Throughout the paper, we need a notation concerning a real-valued function θ

which is of bounded variation on the interval [−r, 0]. By V (θ) we will denote the
total variation function of θ, which is defined on the interval [−r, 0] as follows:
V (θ)(−r) = 0, and V (θ)(s) is the total variation of θ on [−r, s] for each s in (−r, 0].
Note that the function V (θ) is nonnegative and increasing on the interval [−r, 0].
Moreover, it must be noted that V (θ) is identically zero on [−r, 0] if and only if
θ is constant on the interval [−r, 0]. So, as η is assumed to be not constant on
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[−r, 0], the function V (η) is not identically zero on the interval [−r, 0] (and so it is
always not constant on [−r, 0]). It will be considered that the reader is familiar with
the theory of functions of bounded variation and the theory of Riemann-Stieltjes
integration.

2. An asymptotic result

Our purpose in this section is to establish the following theorem.

Theorem 2.1. Let λ0 be a real root of the characteristic equation (1.3), and
let β(λ0) and K(λ0;φ) be defined by (1.6) and (1.7), respectively. Suppose that
β(λ0) 6= 0, and define Φ(λ0;φ) by (1.8). Furthermore, let µ0 be a real root of the
characteristic equation (1.5), and set

γ(λ0, µ0) = −
∫ 0

−r

eλ0s

[
(−s)eµ0s − λ0

∫ 0

s

(−u)eµ0udu

]
dζ(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dη(s)

(2.1)

and, also, define

L(λ0, µ0;φ) = Φ(λ0;φ)(0)−
∫ 0

−r

eλ0s

{
eµ0s

∫ 0

s

e−µ0uΦ(λ0;φ)(u)du

−λ0

∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dζ(s)

−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dη(s).

(2.2)

(Note that, because of β(λ0) 6= 0, we always have µ0 6= 0.) Assume that∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s) < 1.

(2.3)

(This assumption guarantees that 1 + γ(λ0, µ0) > 0.) Then the solution x of the
IVP (1.1) and (1.2) satisfies

lim
t→∞

{
e−µ0t

[
e−λ0tx(t)− K(λ0;φ)

β(λ0)

]}
=

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

(2.4)

and

lim
t→∞

{
e−µ0t

[
e−λ0tx′(t)− λ0

K(λ0;φ)
β(λ0)

]}
= (λ0 + µ0)

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

. (2.5)

Before we prove the above theorem, we will present some observations, which
are concerned with a real root λ0 of the characteristic equation (1.3) and a real
root µ0 of the characteristic equation (1.5).

We immediately see that zero is a root of (1.5) if and only if

2λ0 +
∫ 0

−r

eλ0sdζ(s) = λ0

∫ 0

−r

(−s)eλ0sdζ(s)−
∫ 0

−r

(−s)eλ0sdη(s);

i.e., if and only if β(λ0) = 0, where β(λ0) is defined by (1.6). Hence, if we assume
that β(λ0) 6= 0, then we always have µ0 6= 0.
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Let us define

ρ(λ0, µ0) =
∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s).

(2.6)

As η is assumed to be not constant on [−r, 0], it is clear that ρ(λ0, µ0) is positive.
So, (2.3) can equivalently be written as follows

0 < ρ(λ0, µ0) < 1. (2.7)

Furthermore, for the real constant γ(λ0, µ0) defined by (2.1), we have

|γ(λ0, µ0)| ≤
∣∣∣∣∫ 0

−r

eλ0s

[
(−s)eµ0s − λ0

∫ 0

s

(−u)eµ0udu

]
dζ(s)

∣∣∣∣
+

∣∣∣∣∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dη(s)

∣∣∣∣
≤

∫ 0

−r

eλ0s

∣∣∣∣(−s)eµ0s − λ0

∫ 0

s

(−u)eµ0udu

∣∣∣∣ dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

≤
∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s).

That is,
|γ(λ0, µ0)| ≤ ρ(λ0, µ0). (2.8)

Thus, if we assume that (2.3) is satisfied, i.e., that (2.7) holds, then (2.8) gives
|γ(λ0, µ0)| < 1. This guarantees, in particular, that

1 + γ(λ0, µ0) > 0. (2.9)

Proof of Theorem 2.1. Let x be the solution of the IVP (1.1) and (1.2). Define the
function z by (1.9). By Proposition 1.1, the fact that x is the solution of the IVP
(1.1) and (1.2) is equivalent to the fact that z is the solution of the delay differential
equation (1.4) which satisfies the initial condition (1.10). Set

w(t) = e−µ0tz(t) for t ≥ −r. (2.10)

Then, using the fact that µ0 is a real root of the characteristic equation (1.5), we
obtain, for every t ≥ 0,

z′(t) + 2λ0z(t) +
∫ 0

−r

eλ0sz(t+ s)dζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

z(t+ u)du
]
dζ(s) +

∫ 0

−r

eλ0s

[∫ 0

s

z(t+ u)du
]
dη(s)

= eµ0t

{
w′(t) + (µ0 + 2λ0)w(t) +

∫ 0

−r

e(λ0+µ0)sw(t+ s)dζ(s)
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− λ0

∫ 0

−r

eλ0s

[∫ 0

s

eµ0uw(t+ u)du
]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

eµ0uw(t+ u)du
]
dη(s)

}
= eµ0t

{
w′(t) +

[
−

∫ 0

−r

e(λ0+µ0)sdζ(s) + λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµ0udu

)
dζ(s)

−
∫ 0

−r

eλ0s

(∫ 0

s

eµ0udu

)
dη(s)

]
w(t) +

∫ 0

−r

e(λ0+µ0)sw(t+ s)dζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

eµ0uw(t+ u)du
]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

eµ0uw(t+ u)du
]
dη(s)

}
= eµ0t

(
w′(t)−

∫ 0

−r

e(λ0+µ0)s[w(t)− w(t+ s)]dζ(s)

+ λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u[w(t)− w(t+ u)]du
}
dζ(s)

−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u[w(t)− w(t+ u)]du
}
dη(s)

)
.

So, z is a solution of the delay differential equation (1.4) if and only if w satisfies

w′(t) =
∫ 0

−r

e(λ0+µ0)s[w(t)− w(t+ s)]dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u[w(t)− w(t+ u)]du
}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u[w(t)− w(t+ u)]du
}
dη(s)

(2.11)

for all t ≥ 0. Moreover, z satisfies the initial condition (1.10) if and only if w
satisfies

w(t) = e−µ0tΦ(λ0;φ)(t) for − r ≤ t ≤ 0. (2.12)

Furthermore, we see that the fact that w satisfies (2.11) for t ≥ 0 is equivalent to
the fact that w satisfies

w(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ t

t+s

w(u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ t

t+u

w(v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ t

t+u

w(v)dv
]
du

}
dη(s) + Λ,

i.e.,

w(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

w(t+ u)du
]
dζ(s)
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− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(t+ v)dv
]
du

}
dη(s) + Λ

for all t ≥ 0, where Λ is some real number. But, by taking into account the initial
condition (2.12) and the definition of L(λ0, µ0;φ) by (2.2), we have

Λ = w(0)−
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

w(u)du
]
dζ(s)

+ λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(v)dv
]
du

}
dζ(s)

−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(v)dv
]
du

}
dη(s)

= Φ(λ0;φ)(0)−
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

e−µ0uΦ(λ0;φ)(u)du
]
dζ(s)

+ λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dζ(s)

−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dη(s)

= Φ(λ0;φ)(0)−
∫ 0

−r

eλ0s

{
eµ0s

∫ 0

s

e−µ0uΦ(λ0;φ)(u)du

−λ0

∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dζ(s)

−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dη(s)

≡ L(λ0, µ0;φ).

Thus, (2.11) is satisfied for t ≥ 0 if and only if w satisfies

w(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

w(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

w(t+ v)dv
]
du

}
dη(s) + L(λ0, µ0;φ)

(2.13)

for all t ≥ 0. Next, taking into account (2.9) (which is a consequence of the
assumption (2.3)), we define

f(t) = w(t)− L(λ0, µ0;φ)
1 + γ(λ0, µ0)

for t ≥ −r. (2.14)
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Then, using the definition of γ(λ0, µ0) by (2.1), it is not difficult to show that the
fact that w satisfies (2.13) for t ≥ 0 is equivalent to the fact that f satisfies

f(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

f(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

}
dη(s)

(2.15)

for all t ≥ 0. On the other hand, the initial condition (2.12) takes the following
equivalent form

f(t) = e−µ0tΦ(λ0;φ)(t)− L(λ0, µ0;φ)
1 + γ(λ0, µ0)

for − r ≤ t ≤ 0. (2.16)

Now, we shall prove that
lim

t→∞
f(t) = 0. (2.17)

Define

M(λ0, µ0;φ) = max
−r≤t≤0

∣∣∣∣e−µ0tΦ(λ0;φ)(t)− L(λ0, µ0;φ)
1 + γ(λ0, µ0)

∣∣∣∣ . (2.18)

It follows from (2.16) and (2.18) that

|f(t)| ≤M(λ0, µ0;φ) for − r ≤ t ≤ 0. (2.19)

We will show that M(λ0, µ0;φ) is a bound of the function f on the whole interval
[−r,∞), i.e., that

|f(t)| ≤M(λ0, µ0;φ) for all t ≥ −r. (2.20)

For this purpose, we consider an arbitrary positive real number ε. We claim that

|f(t)| < M(λ0, µ0;φ) + ε for every t ≥ −r. (2.21)

Otherwise, since (2.19) implies that |f(t)| < M(λ0, µ0;φ) + ε for −r ≤ t ≤ 0, there
exists a point t0 > 0 so that

|f(t)| < M(λ0, µ0;φ) + ε for − r ≤ t < t0, and |f(t0)| = M(λ0, µ0;φ) + ε.

Then, by taking into account the definition of ρ(λ0, µ0) by (2.6) and using (2.7)
(which is equivalent to the assumption (2.3)), from (2.15) we obtain

M(λ0, µ0;φ) + ε

= |f(t0)|

=
∣∣∣∣∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

f(t0 + u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

}
dη(s)

∣∣∣∣
≤

∣∣∣∣∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

f(t0 + u)du
]
dζ(s)

∣∣∣∣
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+ |λ0|
∣∣∣∣∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

}
dζ(s)

∣∣∣∣
+

∣∣∣∣∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

}
dη(s)

∣∣∣∣
≤

∫ 0

−r

e(λ0+µ0)s

∣∣∣∣∫ 0

s

f(t0 + u)du
∣∣∣∣ dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

∣∣∣∣∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

∣∣∣∣ dV (ζ)(s)

+
∫ 0

−r

eλ0s

∣∣∣∣∫ 0

s

eµ0u

[∫ 0

u

f(t0 + v)dv
]
du

∣∣∣∣ dV (η)(s)

≤
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

|f(t0 + u)| du
]
dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

|f(t0 + v)| dv
]
du

}
dV (ζ)(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

|f(t0 + v)| dv
]
du

}
dV (η)(s)

≤
{∫ 0

−r

e(λ0+µ0)s

(∫ 0

s

du

)
dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

[∫ 0

s

eµ0u

(∫ 0

u

dv

)
du

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

eµ0u

(∫ 0

u

dv

)
du

]
dV (η)(s)

}
[M(λ0, µ0;φ) + ε]

=
{∫ 0

−r

(−s)e(λ0+µ0)sdV (ζ)(s) + |λ0|
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

}
[M(λ0, µ0;φ) + ε]

=
{∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

}
[M(λ0, µ0;φ) + ε]

= ρ(λ0, µ0) [M(λ0, µ0;φ) + ε]

< M(λ0, µ0;φ) + ε.

We have thus arrived at a contradiction, which establishes our claim, i.e., that
(2.21) holds true. As (2.21) is satisfied for all real numbers ε > 0, it follows that
(2.20) is always fulfilled. Furthermore, by using (2.20), from (2.15) we get, for every
t ≥ 0,

|f(t)| ≤
∣∣∣∣∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

f(t+ u)du
]
dζ(s)

∣∣∣∣
+ |λ0|

∣∣∣∣∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

}
dζ(s)

∣∣∣∣
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+
∣∣∣∣∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

}
dη(s)

∣∣∣∣
≤

∫ 0

−r

e(λ0+µ0)s

∣∣∣∣∫ 0

s

f(t+ u)du
∣∣∣∣ dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

∣∣∣∣∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

∣∣∣∣ dV (ζ)(s)

+
∫ 0

−r

eλ0s

∣∣∣∣∫ 0

s

eµ0u

[∫ 0

u

f(t+ v)dv
]
du

∣∣∣∣ dV (η)(s)

≤
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

|f(t+ u)| du
]
dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

|f(t+ v)| dv
]
du

}
dV (ζ)(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

|f(t+ v)| dv
]
du

}
dV (η)(s)

≤
{∫ 0

−r

e(λ0+µ0)s

(∫ 0

s

du

)
dV (ζ)(s)

+ |λ0|
∫ 0

−r

eλ0s

[∫ 0

s

eµ0u

(∫ 0

u

dv

)
du

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

eµ0u

(∫ 0

u

dv

)
du

]
dV (η)(s)

}
M(λ0, µ0;φ)

=
{∫ 0

−r

(−s)e(λ0+µ0)sdV (ζ)(s) + |λ0|
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

}
M(λ0, µ0;φ)

=
{∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

}
M(λ0, µ0;φ).

Thus, by taking into account the definition of ρ(λ0, µ0) by (2.6), we have

|f(t)| ≤ ρ(λ0, µ0)M(λ0, µ0;φ) for every t ≥ 0. (2.22)

By using (2.15) and taking into account the definition of ρ(λ0, µ0) by (2.6) as well
as taking into account (2.20) and (2.22), one can prove, by an easy induction, that
the function f satisfies

|f(t)| ≤ [ρ(λ0, µ0)]
ν
M(λ0, µ0;φ) for all t ≥ νr − r (ν = 0, 1, 2, . . . ). (2.23)

Because of (2.7) (which is equivalent to the assumption (2.3)), we have

lim
ν→∞

[ρ(λ0, µ0)]
ν = 0. (2.24)

In view of (2.24), it follows from (2.23) that limt→∞ f(t) = 0, i.e., (2.17) holds true.
Next, we will establish that

lim
t→∞

f ′(t) = 0. (2.25)
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From (2.15) it follows that f ′ satisfies

f ′(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

f ′(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f ′(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

f ′(t+ v)dv
]
du

}
dη(s)

(2.26)

for all t ≥ 0. Moreover, the initial condition (2.16) gives

f ′(t) = e−µ0t
[
(Φ(λ0;φ))′ (t)− µ0Φ(λ0;φ)(t)

]
for − r ≤ t ≤ 0. (2.27)

Set

N(λ0, µ0;φ) = max
−r≤t≤0

∣∣e−µ0t
[
(Φ(λ0;φ))′ (t)− µ0Φ(λ0;φ)(t)

]∣∣ . (2.28)

It follows from (2.27) and (2.28) that

|f ′(t)| ≤ N(λ0, µ0;φ) for − r ≤ t ≤ 0. (2.29)

By taking into account the definition of ρ(λ0, µ0) by (2.6) and using (2.29), (2.26)
and (2.7), we can follow the same arguments applied previously in proving (2.20)
to conclude that N(λ0, µ0;φ) is a bound of f ′ on the whole interval [−r,∞), i.e.,
that

|f ′(t)| ≤ N(λ0, µ0;φ) for all t ≥ −r. (2.30)

Furthermore, by taking again into account the definition of ρ(λ0, µ0) by (2.6) and
using (2.30) and (2.26), we may apply the same arguments used above in establish-
ing (2.22) to obtain

|f ′(t)| ≤ ρ(λ0, µ0)N(λ0, µ0;φ) for every t ≥ 0. (2.31)

Taking into account (2.6) as well as (2.30) and (2.31), one can use (2.26) to show,
by induction, that

|f ′(t)| ≤ [ρ(λ0, µ0)]
ν
N(λ0, µ0;φ) for all t ≥ νr − r (ν = 0, 1, 2, . . . ). (2.32)

Because of (2.24), it follows from (2.32) that limt→∞ f ′(t) = 0. So, (2.25) has been
established.

Finally, by (1.9), (2.10) and (2.14), we have

f(t) = e−µ0t

[
e−λ0tx(t)− K(λ0;φ)

β(λ0)

]
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)
for t ≥ −r. (2.33)

In view of this equality, (2.4) coincides with (2.17). So, the solution x of the IVP
(1.1) and (1.2) satisfies (2.4). Furthermore, for t ≥ −r, we define

g(t) = e−µ0t

[
e−λ0tx′(t)− λ0

K(λ0;φ)
β(λ0)

]
− (λ0 + µ0)

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

. (2.34)

Then it is a matter of elementary calculations we check that

g(t) = f ′(t) + (λ0 + µ0)f(t) for all t ≥ −r. (2.35)

In view of (2.17) and (2.25), it follows from (2.35) that

lim
t→∞

g(t) = 0. (2.36)
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By (2.34), we see that (2.5) coincides with (2.36). Hence, the solution x of the IVP
(1.1) and (1.2) satisfies (2.5). The proof of the theorem is complete. �

3. An estimate of the solutions. A stability criterion

Our results in this section are Theorem 3.1 below and its corollary.

Theorem 3.1. Let λ0 be a real root of the characteristic equation (1.3), and suppose
that β(λ0) 6= 0, where β(λ0) is defined by (1.6). Set

m(λ0) = max
{
1, eλ0r

}
, (3.1)

α(λ0) =
∫ 0

−r

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−r

(−s)eλ0sdV (η)(s). (3.2)

Furthermore, let µ0 be a real root of the characteristic equation (1.5), and let
γ(λ0, µ0) and ρ(λ0, µ0) be defined by (2.1) and (2.6), respectively. (Note that,
because of β(λ0) 6= 0, we always have µ0 6= 0). Also, set

m(µ0) = max {1, eµ0r} . (3.3)

Assume that (2.3) holds. (This assumption guarantees that 1 + γ(λ0, µ0) > 0.)
Then the solution x of the IVP (1.1) and (1.2) satisfies

|x(t)| ≤
[
P (λ0)eλ0t +Q(λ0, µ0)e(λ0+µ0)t

]
∦ φ ∦ for all t ≥ 0 (3.4)

and

|x′(t)| ≤
{
|λ0|P (λ0)eλ0t + [|λ0 + µ0|Q(λ0, µ0) +R(λ0, µ0)] e(λ0+µ0)t

}
∦ φ ∦ (3.5)

for all t ≥ 0, where

P (λ0) =
1 + |λ0|+ α(λ0)m(λ0)

|β(λ0)|
, (3.6)

Q(λ0, µ0) =
{
ρ(λ0, µ0)m(µ0) + [1 + ρ(λ0, µ0)]

1 + ρ(λ0, µ0)m(µ0)
1 + γ(λ0, µ0)

}
×

[
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

] (3.7)

and
R(λ0, µ0)

= ρ(λ0, µ0)m(µ0)
[
(1 + |λ0|+ |µ0|)m(λ0) + |µ0|

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
.

(3.8)

The constant Q(λ0, µ0) is greater than 1.

Corollary 3.2. Let λ0 be a real root of the characteristic equation (1.3), and
suppose that β(λ0) 6= 0, where β(λ0) is defined by (1.6). Furthermore, let µ0 be a
real root of the characteristic equation (1.5). (Note that, because of β(λ0) 6= 0, we
always have µ0 6= 0.)

Assume that (2.3) holds. Then the trivial solution of the delay differential equa-
tion (1.1) is uniformly stable if λ0 ≤ 0 and λ0 + µ0 ≤ 0, and it is uniformly
asymptotically stable if λ0 < 0 and λ0 + µ0 < 0.
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Proof of Theorem 3.1. First of all, we observe that, for any real number c, it holds
max−r≤t≤0 e

−ct = max{1, ecr}. So, by taking into account the definitions of m(λ0)
and m(µ0) by (3.1) and (3.3), respectively, we immediately see that

e−λ0t ≤ m(λ0) for − r ≤ t ≤ 0, (3.9)

e−µ0t ≤ m(µ0) for − r ≤ t ≤ 0. (3.10)

These inequalities will be frequently used in the sequel.
Define K(λ0;φ) by (1.7). Then

|K(λ0;φ)|

≤ |φ′(0)|+ |λ0| |φ(0)|+
∣∣∣∣∫ 0

−r

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du
]
dζ(s)

∣∣∣∣
+

∣∣∣∣∫ 0

−r

eλ0s

[∫ 0

s

e−λ0uφ(u)du
]
dη(s)

∣∣∣∣
= |φ′(0)|+ |λ0| |φ(0)|+

∣∣∣∣∫ 0

−r

[
e−λ0sφ(s)− λ0

∫ 0

s

e−λ0uφ(u)du
]
eλ0sdζ(s)

∣∣∣∣
+

∣∣∣∣∫ 0

−r

[∫ 0

s

e−λ0uφ(u)du
]
eλ0sdη(s)

∣∣∣∣
≤ |φ′(0)|+ |λ0| |φ(0)|+

∫ 0

−r

∣∣∣∣e−λ0sφ(s)− λ0

∫ 0

s

e−λ0uφ(u)du
∣∣∣∣ eλ0sdV (ζ)(s)

+
∫ 0

−r

∣∣∣∣∫ 0

s

e−λ0uφ(u)du
∣∣∣∣ eλ0sdV (η)(s)

≤ |φ′(0)|+ |λ0| |φ(0)|+
∫ 0

−r

[
e−λ0s |φ(s)|+ |λ0|

∫ 0

s

e−λ0u |φ(u)| du
]
eλ0sdV (ζ)(s)

+
∫ 0

−r

[∫ 0

s

e−λ0u |φ(u)| du
]
eλ0sdV (η)(s)

≤ ‖φ′‖+
[
|λ0|+

∫ 0

−r

(
e−λ0s + |λ0|

∫ 0

s

e−λ0udu

)
eλ0sdV (ζ)(s)

+
∫ 0

−r

(∫ 0

s

e−λ0udu

)
eλ0sdV (η)(s)

]
‖φ‖ .

In view of (3.9), we have

e−λ0s ≤ m(λ0),
∫ 0

s

e−λ0udu ≤ (−s)m(λ0)

for every s ∈ [−r, 0]. Thus, we obtain

|K(λ0;φ)| ≤ ‖φ′‖+
(
|λ0|+

{∫ 0

−r

[1 + |λ0| (−s)] eλ0sdV (ζ)(s)

+
∫ 0

−r

(−s)eλ0sdV (η)(s)
}
m(λ0)

)
‖φ‖

and consequently, because of the definition of α(λ0) by (3.2), we get

|K(λ0;φ)| ≤ ‖φ′‖+ [|λ0|+ α(λ0)m(λ0)] ‖φ‖ .
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This gives
|K(λ0;φ)| ≤ [1 + |λ0|+ α(λ0)m(λ0)] ∦ φ ∦ . (3.11)

Consider the function Φ(λ0;φ) defined by (1.8). Then, by (3.9), we have

‖Φ(λ0;φ)‖ ≤ m(λ0) ‖φ‖+
|K(λ0;φ)|
|β(λ0)|

and so, in view of (3.11),

‖Φ(λ0;φ)‖ ≤ m(λ0) ‖φ‖+
1 + |λ0|+ α(λ0)m(λ0)

|β(λ0)|
∦ φ ∦ .

Therefore,

‖Φ(λ0;φ)‖ ≤
[
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
∦ φ ∦ . (3.12)

Let us consider the constant L(λ0, µ0;φ) defined by (2.2). Then

|L(λ0, µ0;φ)|

≤ |Φ(λ0;φ)(0)|+
∣∣∣∣∫ 0

−r

eλ0s

{
eµ0s

∫ 0

s

e−µ0uΦ(λ0;φ)(u)du

−λ0

∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dζ(s)

∣∣∣∣
+

∣∣∣∣∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

}
dη(s)

∣∣∣∣
≤ |Φ(λ0;φ)(0)|+

∫ 0

−r

eλ0s

∣∣∣∣eµ0s

∫ 0

s

e−µ0uΦ(λ0;φ)(u)du

−λ0

∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

∣∣∣∣ dV (ζ)(s)

+
∫ 0

−r

eλ0s

∣∣∣∣∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ(λ0;φ)(v)dv
]
du

∣∣∣∣ dV (η)(s)

≤ |Φ(λ0;φ)(0)|+
∫ 0

−r

eλ0s

{
eµ0s

∫ 0

s

e−µ0u |Φ(λ0;φ)(u)| du

+ |λ0|
∫ 0

s

eµ0u

[∫ 0

u

e−µ0v |Φ(λ0;φ)(v)| dv
]
du

}
dV (ζ)(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0v |Φ(λ0;φ)(v)| dv
]
du

}
dV (η)(s)

≤
{

1 +
∫ 0

−r

eλ0s

[
eµ0s

∫ 0

s

e−µ0udu+ |λ0|
∫ 0

s

eµ0u

(∫ 0

u

e−µ0vdv

)
du

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

eµ0u

(∫ 0

u

e−µ0vdv

)
du

]
dV (η)(s)

}
‖Φ(λ0;φ)‖ .

By (3.10), we have ∫ 0

s

e−µ0udu ≤ (−s)m(µ0),∫ 0

u

e−µ0vdv ≤ (−u)m(µ0) for u ∈ [s, 0]
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for every s ∈ [−r, 0]. Hence, we derive

|L(λ0, µ0;φ)| ≤
(

1 +
{∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

}
m(µ0)

)
‖Φ(λ0;φ)‖ .

Because of the definition of ρ(λ0, µ0) by (2.6), the last inequality is written as

|L(λ0, µ0;φ)| ≤ [1 + ρ(λ0, µ0)m(µ0)] ‖Φ(λ0;φ)‖ .

A combination of this inequality and (3.12) leads to

|L(λ0, µ0;φ)| ≤ [1 + ρ(λ0, µ0)m(µ0)]
[
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
∦ φ ∦ .

(3.13)
Let γ(λ0, µ0) be defined by (2.1). Take into account (2.9) (which is a consequence

of the assumption (2.3)), and define M(λ0, µ0;φ) by (2.18). Then, by using (3.10),
we have

M(λ0, µ0;φ) ≤ m(µ0) ‖Φ(λ0;φ)‖+
|L(λ0, µ0;φ)|
1 + γ(λ0, µ0)

.

So, by virtue of (3.12) and (3.13),

M(λ0, µ0;φ)

≤
[
m(µ0) +

1 + ρ(λ0, µ0)m(µ0)
1 + γ(λ0, µ0)

] [
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
∦ φ ∦ .

(3.14)
Consider the constant N(λ0, µ0;φ) defined by (2.28). Then, by (3.10), we have

N(λ0, µ0;φ) ≤ m(µ0)
[∥∥(Φ(λ0;φ))′

∥∥ + |µ0| ‖Φ(λ0;φ)‖
]
.

From the definition of Φ(λ0;φ) by (1.18) it follows that

(Φ(λ0;φ))′ (t) = e−λ0t [φ′(t)− λ0φ(t)] for − r ≤ t ≤ 0

and consequently, in view of (3.9),∥∥(Φ(λ0;φ))′
∥∥ ≤ m(λ0) (‖φ′‖+ |λ0| ‖φ‖) ,

which gives ∥∥(Φ(λ0;φ))′
∥∥ ≤ (1 + |λ0|)m(λ0) ∦ φ ∦ .

By using the last inequality and inequality (3.12), we find

N(λ0, µ0;φ)

≤ m(µ0)
[
(1 + |λ0|+ |µ0|)m(λ0) + |µ0|

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
∦ φ ∦ .

(3.15)

Now, let x be the solution of the IVP (1.1) and (1.2), and define the function z
by (1.9). Also, we define the functions w and f by (2.10) and (2.14), respectively.
Note that (2.9) (which is a consequence of the assumption (2.3)) states that 1 +
γ(λ0, µ0) > 0. Then, as in the proof of Theorem 2.1, we show that (2.22), (2.31)
and (2.33) are satisfied. Moreover, we consider the function g defined by (2.34);
the function g satisfies (2.35). We shall prove that x satisfies (3.4) and (3.5), where
the constants P (λ0), Q(λ0, µ0) and R(λ0, µ0) are defined by (3.6), (3.7) and (3.8),
respectively.
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From (2.33) it follows that

x(t) =
K(λ0;φ)
β(λ0)

eλ0t +
[
f(t) +

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

]
e(λ0+µ0)t for t ≥ 0

and consequently

|x(t)| ≤ |K(λ0;φ)|
|β(λ0)|

eλ0t +
[
|f(t)|+ |L(λ0, µ0;φ)|

1 + γ(λ0, µ0)

]
e(λ0+µ0)t for t ≥ 0.

Thus, using (2.22), we obtain

|x(t)| ≤ |K(λ0;φ)|
|β(λ0)|

eλ0t +
[
ρ(λ0, µ0)M(λ0, µ0;φ) +

|L(λ0, µ0;φ)|
1 + γ(λ0, µ0)

]
e(λ0+µ0)t (3.16)

for t ≥ 0. In view of (3.6), inequality (3.11) can equivalently be written as

|K(λ0;φ)|
|β(λ0)|

≤ P (λ0) ∦ φ ∦ . (3.17)

Moreover, by the use of (3.13) and (3.14), we get

ρ(λ0, µ0)M(λ0, µ0;φ) +
|L(λ0, µ0;φ)|
1 + γ(λ0, µ0)

≤
{
ρ(λ0, µ0)

[
m(µ0) +

1 + ρ(λ0, µ0)m(µ0)
1 + γ(λ0, µ0)

] [
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
+

1 + ρ(λ0, µ0)m(µ0)
1 + γ(λ0, µ0)

[
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]}
∦ φ ∦

=
{
ρ(λ0, µ0)m(µ0) + [1 + ρ(λ0, µ0)]

1 + ρ(λ0, µ0)m(µ0)
1 + γ(λ0, µ0)

}
×

[
m(λ0) +

1 + |λ0|+ α(λ0)m(λ0)
|β(λ0)|

]
∦ φ ∦ .

So, because of (3.7), we have

ρ(λ0, µ0)M(λ0, µ0;φ) +
|L(λ0, µ0;φ)|
1 + γ(λ0, µ0)

≤ Q(λ0, µ0) ∦ φ ∦ . (3.18)

Using (3.17) and (3.18), we immediately see that (3.16) implies (3.4). Hence, (3.4)
has been proved.

Next, we see that (2.34) gives

x′(t) = λ0
K(λ0;φ)
β(λ0)

eλ0t +
[
g(t) + (λ0 + µ0)

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

]
e(λ0+µ0)t for t ≥ 0

and hence, by (2.35), we have

x′(t) = λ0
K(λ0;φ)
β(λ0)

eλ0t +
{

(λ0 + µ0)
[
f(t) +

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

]
+ f ′(t)

}
e(λ0+µ0)t

for t ≥ 0. Consequently,

|x′(t)| ≤ |λ0|
|K(λ0;φ)|
|β(λ0)|

eλ0t

+
{
|λ0 + µ0|

[
|f(t)|+ |L(λ0, µ0;φ)|

1 + γ(λ0, µ0)

]
+ |f ′(t)|

}
e(λ0+µ0)t for t ≥ 0.
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So, in view of (2.22) and (2.31), we derive

|x′(t)| ≤ |λ0|
|K(λ0;φ)|
|β(λ0)|

eλ0t

+
{
|λ0 + µ0|

[
ρ(λ0, µ0)M(λ0, µ0;φ) +

|L(λ0, µ0;φ)|
1 + γ(λ0, µ0)

]
+ρ(λ0, µ0)N(λ0, µ0;φ)} e(λ0+µ0)t for t ≥ 0.

(3.19)

But, because of (3.8), it follows from (3.15) that

ρ(λ0, µ0)N(λ0, µ0;φ) ≤ R(λ0, µ0) ∦ φ ∦ . (3.20)

By (3.17), (3.18) and (3.20), we see that (3.5) can be obtained from (3.19). Thus,
we have shown that (3.5) holds true.

Finally, we will establish that the constant Q(λ0, µ0) is greater than 1. By (2.8)
and (2.9), we have

0 < 1 + γ(λ0, µ0) ≤ 1 + |γ(λ0, µ0)| ≤ 1 + ρ(λ0, µ0)

and so, as m(µ0) ≥ 1,

0 < 1 + γ(λ0, µ0) ≤ 1 + ρ(λ0, µ0)m(µ0),

which ensures that
1 + ρ(λ0, µ0)m(µ0)

1 + γ(λ0, µ0)
≥ 1.

Thus, since ρ(λ0, µ0) > 0, we obtain

[1 + ρ(λ0, µ0)]
1 + ρ(λ0, µ0)m(µ0)

1 + γ(λ0, µ0)
> 1

and consequently

ρ(λ0, µ0)m(µ0) + [1 + ρ(λ0, µ0)]
1 + ρ(λ0, µ0)m(µ0)

1 + γ(λ0, µ0)
> 1.

Moreover, as m(λ0) ≥ 1, we have

m(λ0) +
1 + |λ0|+ α(λ0)m(λ0)

|β(λ0)|
> 1.

Hence, it follows from the definition of Q(λ0, µ0) by (3.7) that Q(λ0, µ0) is always
greater than 1. The proof of the theorem is now complete. �

Proof of Corollary 3.2. Define m(λ0), α(λ0), γ(λ0, µ0), ρ(λ0, µ0) and m(µ0) by
(3.1), (3.2), (2.1), (2.6) and (3.3), respectively. Note that assumption (2.3) guar-
antees that 1 + γ(λ0, µ0) > 0. Let x be the solution of the IVP (1.1) and (1.2). By
Theorem 3.1, the solution x satisfies (3.4) and (3.5), where P (λ0), Q(λ0, µ0) and
R(λ0, µ0) are defined by (3.6), (3.7) and (3.8), respectively. The constant Q(λ0, µ0)
is greater than 1.

Assume first that λ0 ≤ 0 and λ0 + µ0 ≤ 0. Then (3.4) and (3.5) give

|x(t)| ≤ [P (λ0) +Q(λ0, µ0)] ∦ φ ∦ for t ≥ 0,

|x′(t)| ≤ [|λ0|P (λ0) + |λ0 + µ0|Q(λ0, µ0) +R(λ0, µ0)] ∦ φ ∦ for t ≥ 0,

respectively. So, if we set

S(λ0, µ0)

= max {P (λ0) +Q(λ0, µ0), |λ0|P (λ0) + |λ0 + µ0|Q(λ0, µ0) +R(λ0, µ0)} ,
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then we have

max{|x(t)| , |x′(t)|} ≤ S(λ0, µ0) ∦ φ ∦ for every t ≥ 0.

Since Q(λ0, µ0) > 1, we always have S(λ0, µ0) > 1. Thus, we obtain

max{|x(t)| , |x′(t)|} ≤ S(λ0, µ0) ∦ φ ∦ for all t ≥ −r.
Using this inequality, we can immediately verify that the trivial solution of (1.1) is
stable (at 0). Because of the autonomous character of (1.1), the trivial solution of
(1.1) is uniformly stable.

Next, let us suppose that λ0 < 0 and λ0 + µ0 < 0. Then the trivial solution of
(1.1) is stable (at 0). Furthermore, we see that it follows from (3.4) and (3.5) that
the solution x satisfies

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0.

Hence, the trivial solution of (1.1) is asymptotically stable (at 0). As (1.1) is au-
tonomous, we conclude that the trivial solution of (1.1) is uniformly asymptotically
stable. The proof is complete. �

4. A result on the behavior of the solutions

We begin this section with the following lemma.

Lemma 4.1. Suppose that

ζ and η are increasing on [−r, 0]. (4.1)

Let λ0 be a negative real root of the characteristic equation (1.3). Furthermore,
let µ0 be a real root of the characteristic equation (1.5), and define γ(λ0, µ0) by
(2.1). Then 1 + γ(λ0, µ0) > 0 if (1.5) has another real root less than µ0, and
1 + γ(λ0, µ0) < 0 if (1.5) has another real root greater than µ0.

Before we proceed to the proof of Lemma 4.1, we remark that: if η is increasing
on [−r, 0], then, as η is also assumed to be not constant on [−r, 0], we always have∫ 0

−r
dη(s) > 0 and so the zero is not a root of the characteristic equation (1.3).

Proof of Lemma 4.1. Consider the real-valued function Ω defined by

Ω(µ) = µ+ 2λ0 +
∫ 0

−r

e(λ0+µ)sdζ(s)− λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dζ(s)

+
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s) for µ ∈ R.

(4.2)

We obtain immediately

Ω′(µ) = 1−
∫ 0

−r

eλ0s

[
(−s)eµs − λ0

∫ 0

s

(−u)eµudu

]
dζ(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµudu

]
dη(s) for µ ∈ R.

(4.3)

Furthermore,

Ω′′(µ) =
∫ 0

−r

eλ0s

[
s2eµs + (−λ0)

∫ 0

s

u2eµudu

]
dζ(s)

+
∫ 0

−r

eλ0s

(∫ 0

s

u2eµudu

)
dη(s) for µ ∈ R.
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So, taking into account (4.1) and the fact that η is not constant on [−r, 0] and using
the hypothesis that λ0 < 0, we conclude that

Ω′′(µ) > 0 for all µ ∈ R. (4.4)

Now, assume that (1.5) has another real root µ1 with µ1 < µ0 (respectively,
µ1 > µ0). From the definition of the function Ω by (4.2) it follows that Ω(µ0) =
Ω(µ1) = 0, and consequently Rolle’s Theorem guarantees the existence of a point ξ
with µ1 < ξ < µ0 (resp., µ0 < ξ < µ1 ) such that Ω′(ξ) = 0. But, (4.4) implies that
Ω′ is strictly increasing on R and hence, as Ω′(ξ) = 0, we conclude that Ω′ is positive
on (ξ,∞) (resp., Ω′ is negative on (−∞, ξ)). Thus, we must have Ω′(µ0) > 0 (resp.,
Ω′(µ0) < 0). By taking into account the definition of γ(λ0, µ0) by (2.1), from (4.3)
we obtain

Ω′(µ0) = 1 + γ(λ0, µ0)
and so the proof of the lemma is complete. �

Now, we will establish the following theorem.

Theorem 4.2. Suppose that statement (4.1) is true. Let λ0 be a negative real
root of the characteristic equation (1.3), and let β(λ0) and K(λ0;φ) be defined
by (1.6) and (1.7), respectively. Suppose that β(λ0) 6= 0, and define Φ(λ0;φ) by
(1.8). Furthermore, let µ0 be a real root of the characteristic equation (1.5), and
let γ(λ0, µ0) and L(λ0, µ0;φ) be defined by (2.1) and (2.2), respectively. Also, let
µ1 be a real root of (1.5) with µ1 6= µ0. (Note that, because of β(λ0) 6= 0, we
always have µ0 6= 0 and µ1 6= 0; moreover, note that Lemma 4.1 guarantees that
1 + γ(λ0, µ0) 6= 0.)

Then the solution x of the IVP (1.1) and (1.2) satisfies

C1(λ0, µ0, µ1;φ) ≤ e−µ1t

[
e−λ0tx(t)− K(λ0;φ)

β(λ0)
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)
eµ0t

]
≤ C2(λ0, µ0, µ1;φ) for all t ≥ 0

(4.5)

and
D1(λ0, µ0, µ1;φ)

≤ e−µ1t

[
e−λ0tx′(t)− λ0

K(λ0;φ)
β(λ0)

− (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
≤ D2(λ0, µ0, µ1;φ) for all t ≥ 0,

(4.6)

where

C1(λ0, µ0, µ1;φ) = min
−r≤t≤0

{
e−µ1t

[
e−λ0tφ(t)− K(λ0;φ)

β(λ0)
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)
eµ0t

]}
,

(4.7)

C2(λ0, µ0, µ1;φ) = max
−r≤t≤0

{
e−µ1t

[
e−λ0tφ(t)− K(λ0;φ)

β(λ0)
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)
eµ0t

]}
(4.8)

and
D1(λ0, µ0, µ1;φ)

= min
−r≤t≤0

{
e−µ1t

[
e−λ0tφ′(t)− λ0

K(λ0;φ)
β(λ0)

− (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]}
,

(4.9)
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D2(λ0, µ0, µ1;φ)

= max
−r≤t≤0

{
e−µ1t

[
e−λ0tφ′(t)− λ0

K(λ0;φ)
β(λ0)

− (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]}
.

(4.10)

We see immediately that inequalities (4.5) and (4.6) can equivalently be written
as follows

C1(λ0, µ0, µ1;φ)e(µ1−µ0)t ≤ e−µ0t

[
e−λ0tx(t)− K(λ0;φ)

β(λ0)

]
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)

≤ C2(λ0, µ0, µ1;φ)e(µ1−µ0)t for all t ≥ 0

and

D1(λ0, µ0, µ1;φ)e(µ1−µ0)t

≤ e−µ0t

[
e−λ0tx′(t)− λ0

K(λ0;φ)
β(λ0)

]
− (λ0 + µ0)

L(λ0, µ0;φ)
1 + γ(λ0, µ0)

≤ D2(λ0, µ0, µ1;φ)e(µ1−µ0)t for all t ≥ 0,

respectively. Hence, if µ1 < µ0, then the solution x of the IVP (1.1) and (1.2)
satisfies (2.4) and (2.5).

Also, we observe that (4.5) and (4.6) are, respectively, equivalent to

eλ0t

[
C1(λ0, µ0, µ1;φ)eµ1t +

K(λ0;φ)
β(λ0)

+
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
≤ x(t)

≤ eλ0t

[
C2(λ0, µ0, µ1;φ)eµ1t +

K(λ0;φ)
β(λ0)

+
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
for all t ≥ 0

and

eλ0t

[
D1(λ0, µ0, µ1;φ)eµ1t + λ0

K(λ0;φ)
β(λ0)

+ (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
≤ x′(t)

≤ eλ0t

[
D2(λ0, µ0, µ1;φ)eµ1t + λ0

K(λ0;φ)
β(λ0)

+ (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
for all t ≥ 0.

Proof of Theorem 4.2. Let x be the solution of the IVP (1.1) and (1.2), and consider
the function z defined by (1.9). Consider also the functions w and f defined by
(2.10) and (2.14), respectively. Note that, by Lemma 4.1, we necessarily have
1 + γ(λ0, µ0) 6= 0. As it has been shown in the proof of Theorem 2.1, the fact
that x satisfies (1.1) for t ≥ 0 is equivalent to the fact that f satisfies (2.15) for all
t ≥ 0. Moreover, as in the proof of Theorem 2.1, we see that f ′ satisfies (2.26) for
all t ≥ 0, and that (2.33) is valid. Furthermore, we consider the function g defined
by (2.34). As in the proof of Theorem 2.1, equality (2.35) holds true. Because of
(2.35), we can use (2.15) and (2.26) to conclude that the function g satisfies, for all
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t ≥ 0,

g(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

g(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

g(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

g(t+ v)dv
]
du

}
dη(s).

(4.11)

Now, we define

h(t) = e(µ0−µ1)tf(t) for t ≥ −r, (4.12)

k(t) = e(µ0−µ1)tg(t) for t ≥ −r. (4.13)

Then we see that (2.15) holds for t ≥ 0 if and only if h satisfies

h(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

e−(µ0−µ1)uh(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t+ v)dv
]
du

}
dη(s)

(4.14)

for all t ≥ 0, and that (4.11) is fulfilled for t ≥ 0 if and only if k satisfies

k(t) =
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

e−(µ0−µ1)uk(t+ u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vk(t+ v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vk(t+ v)dv
]
du

}
dη(s)

(4.15)

for all t ≥ 0. By combining (2.33) and (4.12), we have

h(t) = e−µ1t

[
e−λ0tx(t)− K(λ0;φ)

β(λ0)
− L(λ0, µ0;φ)

1 + γ(λ0, µ0)
eµ0t

]
for t ≥ −r, (4.16)

while a combination of (2.34) and (4.13) leads to

k(t) = e−µ1t

[
e−λ0tx′(t)− λ0

K(λ0;φ)
β(λ0)

− (λ0 + µ0)
L(λ0, µ0;φ)
1 + γ(λ0, µ0)

eµ0t

]
(4.17)

for t ≥ −r. As the solution x satisfies the initial condition (1.2), we can use (4.16)
as well as the definitions of C1(λ0, µ0, µ1;φ) and C2(λ0, µ0, µ1;φ) by (4.7) and (4.8),
respectively, to see that

C1(λ0, µ0, µ1;φ) = min
−r≤t≤0

h(t) and C2(λ0, µ0, µ1;φ) = max
−r≤t≤0

h(t). (4.18)

Moreover, from the initial condition (1.2) we obtain

x′(t) = φ′(t) for − r ≤ t ≤ 0.
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So, by taking into account (4.17) as well as the definitions of D1(λ0, µ0, µ1;φ) and
D2(λ0, µ0, µ1;φ) by (4.9) and (4.10), respectively, we have

D1(λ0, µ0, µ1;φ) = min
−r≤t≤0

k(t) and D2(λ0, µ0, µ1;φ) = max
−r≤t≤0

k(t). (4.19)

In view of (4.16) and (4.18), the double inequality (4.5) can equivalently written
as follows

min
−r≤s≤0

h(s) ≤ h(t) ≤ max
−r≤s≤0

h(s) for all t ≥ 0. (4.20)

Also, by (4.17) and (4.19), the double inequality (4.6) takes the following equivalent
form

min
−r≤s≤0

k(s) ≤ k(t) ≤ max
−r≤s≤0

k(s) for all t ≥ 0. (4.21)

All we have to prove is that (4.20) and (4.21) hold. We will use the fact that h
satisfies (4.14) for all t ≥ 0 in order to show that (4.20) is valid. By a similar way,
one can use the fact that k satisfies (4.15) for all t ≥ 0 to establish (4.21). So, the
proof of (4.21) will be omitted. We restrict ourselves to proving that

h(t) ≥ min
−r≤s≤0

h(s) for every t ≥ 0. (4.22)

The proof of the inequality

h(t) ≤ max
−r≤s≤0

h(s) for every t ≥ 0

can be obtained in a similar way, and so it is omitted. In the rest of the proof we
will establish (4.22). In order to so, we consider an arbitrary real number A with
A < min−r≤s≤0 h(s), i.e., with

h(t) > A for − r ≤ t ≤ 0. (4.23)

We will show that
h(t) > A for all t ≥ 0. (4.24)

To this end, let us assume that (4.24) fails to hold. Then, because of (4.23), there
exists a point t0 > 0 so that

h(t) > A for − r ≤ t < t0, and h(t0) = A.

Thus, by using (4.1) and the fact that η is not constant on [−r, 0] and taking into
account the hypothesis that λ0 < 0, from (4.14) we obtain

A = h(t0)

=
∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

e−(µ0−µ1)uh(t0 + u)du
]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t0 + v)dv
]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t0 + v)dv
]
du

}
dη(s)

> A

(∫ 0

−r

e(λ0+µ0)s

[∫ 0

s

e−(µ0−µ1)udu

]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vdv

]
du

}
dζ(s)
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+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vdv

]
du

}
dη(s)

)
= A

(∫ 0

−r

e(λ0+µ0)s

(
− 1
µ0 − µ1

) [
1− e−(µ0−µ1)s

]
dζ(s)

− λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

(
− 1
µ0 − µ1

) [
1− e−(µ0−µ1)u

]
du

}
dζ(s)

+
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

(
− 1
µ0 − µ1

) [
1− e−(µ0−µ1)u

]
du

}
dη(s)

)
=

A

µ0 − µ1

{
−

∫ 0

−r

eλ0s (eµ0s − eµ1s) dζ(s)

+ λ0

∫ 0

−r

eλ0s

[∫ 0

s

(eµ0u − eµ1u) du
]
dζ(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(eµ0u − eµ1u) du
]
dη(s)

}
=

A

µ0 − µ1

{[
−

∫ 0

−r

e(λ0+µ0)sdζ(s) + λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµ0udu

)
dζ(s)

−
∫ 0

−r

eλ0s

(∫ 0

s

eµ0udu

)
dη(s)

]
−

[
−

∫ 0

−r

e(λ0+µ1)sdζ(s) + λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµ1udu

)
dζ(s)

−
∫ 0

−r

eλ0s

(∫ 0

s

eµ1udu

)
dη(s)

]}
=

A

µ0 − µ1
[(µ0 + 2λ0)− (µ1 + 2λ0)] = A.

We have thus arrived at a contradiction and so (4.24) is true. Since (4.24) is satisfied
for all real numbers A with A < min−r≤s≤0 h(s), it follows that (4.22) is always
fulfilled. The proof of the theorem is complete. �

Now, let us concentrate on the special case of the delay differential equation
(1.19). In this case, the hypothesis λ0 < 0 posed in Lemma 4.1 and Theorem 4.2
can be removed without damage. More precisely, we have the following results.

Lemma 4.3. Suppose that

η is increasing on [−r, 0]. (4.25)

Let λ0 6= 0 be a real root of the characteristic equation (1.20). Furthermore, let µ0

be a real root of the characteristic equation (1.22), and set

γ̃(λ0, µ0) = −
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dη(s). (4.26)

Then 1 + γ̃(λ0, µ0) > 0 if (1.22) has another real root less than µ0, and 1 +
γ̃(λ0, µ0) < 0 if (1.22) has another real root greater than µ0.

Theorem 4.4. Suppose that (4.25) holds. Let λ0 6= 0 be a real root of the charac-
teristic equation (1.20), and let β̃(λ0) and K̃(λ0;φ) be defined by (1.23) and (1.24),
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respectively. Suppose that β̃(λ0) 6= 0, and define Φ̃(λ0;φ) by (1.25). Furthermore,
let µ0 be a real root of the characteristic equation (1.22), and let γ̃(λ0, µ0) and
L̃(λ0, µ0;φ) be defined by (4.26) and

L̃(λ0, µ0;φ) = Φ̃(λ0;φ)(0)−
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−µ0vΦ̃(λ0;φ)(v)dv
]
du

}
dη(s),

respectively. Also, let µ1 be a real root of (1.22) with µ1 6= µ0. (Note that, because
of β̃(λ0) 6= 0, we always have µ0 6= 0 and µ1 6= 0; moreover, note that Lemma 4.3
guarantees that 1 + γ̃(λ0, µ0) 6= 0.)

Then the solution x of the IVP (1.19) and (1.2) satisfies

C̃1(λ0, µ0, µ1;φ) ≤ e−µ1t

[
e−λ0tx(t)− K̃(λ0;φ)

β̃(λ0)
− L̃(λ0, µ0;φ)

1 + γ̃(λ0, µ0)
eµ0t

]
≤ C̃2(λ0, µ0, µ1;φ) for all t ≥ 0

and

D̃1(λ0, µ0, µ1;φ) ≤ e−µ1t

[
e−λ0tx′(t)− λ0

K̃(λ0;φ)

β̃(λ0)
− (λ0 + µ0)

L̃(λ0, µ0;φ)
1 + γ̃(λ0, µ0)

eµ0t

]
≤ D̃2(λ0, µ0, µ1;φ) for all t ≥ 0,

where

C̃1(λ0, µ0, µ1;φ) = min
−r≤t≤0

{
e−µ1t

[
e−λ0tφ(t)− K̃(λ0;φ)

β̃(λ0)
− L̃(λ0, µ0;φ)

1 + γ̃(λ0, µ0)
eµ0t

]}
,

C̃2(λ0, µ0, µ1;φ) = max
−r≤t≤0

{
e−µ1t

[
e−λ0tφ(t)− K̃(λ0;φ)

β̃(λ0)
− L̃(λ0, µ0;φ)

1 + γ̃(λ0, µ0)
eµ0t

]}
and

D̃1(λ0, µ0, µ1;φ)

= min
−r≤t≤0

{
e−µ1t

[
e−λ0tφ′(t)− λ0

K̃(λ0;φ)

β̃(λ0)
− (λ0 + µ0)

L̃(λ0, µ0;φ)
1 + γ̃(λ0, µ0)

eµ0t

]}
,

D̃2(λ0, µ0, µ1;φ)

= max
−r≤t≤0

{
e−µ1t

[
e−λ0tφ′(t)− λ0

K̃(λ0;φ)

β̃(λ0)
− (λ0 + µ0)

L̃(λ0, µ0;φ)
1 + γ̃(λ0, µ0)

eµ0t

]}
.

Note that the observations presented after the statement of Theorem 4.2 can
also be formulated in connection with Theorem 4.4, i.e., in the special case of the
delay differential equation (1.19).

Proof of Lemma 4.3. The proof will be omitted since it is similar to that of Lemma
4.1. We restrict ourselves only to noting that, here, we have the real-valued function
Ω0 defined by

Ω0(µ) = µ+ 2λ0 +
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s) for µ ∈ R (4.27)
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instead of Ω. We note that

Ω′′0(µ) > 0 for all µ ∈ R.

This inequality holds true without the hypothesis that λ0 is negative. �

Proof of Theorem 4.4. The need for assuming, in Theorem 4.2, that the root λ0 of
the characteristic equation (1.3) is negative is due only to the existence of the term

−λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t+ v)dv
]
du

}
dζ(s)

in (4.14) as well as to the existence of the term

−λ0

∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vk(t+ v)dv
]
du

}
dζ(s)

in (4.15). These terms do not appear in the special case of the delay differential
equation (1.19). In this special case, h satisfies

h(t) =
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vh(t+ v)dv
]
du

}
dη(s)

for all t ≥ 0, and k satisfies

k(t) =
∫ 0

−r

eλ0s

{∫ 0

s

eµ0u

[∫ 0

u

e−(µ0−µ1)vk(t+ v)dv
]
du

}
dη(s)

for all t ≥ 0. After these observations, we omit the proof of the theorem. �

5. Additional Lemmas

We have already obtained two lemmas (Lemmas 4.1 and 4.3); Lemma 4.1 is
concerned with the real roots of the characteristic equation (1.5), while Lemma 4.3
concerns the real roots of the characteristic equation (1.22). Lemmas 4.1 and 4.3
have been used in order to establish Theorems 4.2 and 4.4, respectively. Here, we
will give two lemmas about the real roots of (1.5) and a lemma concerning the real
roots of (1.22).

Lemma 5.1. Let λ0 be a real root of the characteristic equation (1.3). Assume
that ∫ 0

−r

eλ0s

[
e−(2λ0+

1
r )s − λ0

∫ 0

s

e−(2λ0+
1
r )udu

]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s) <

1
r

(5.1)

and ∫ 0

−r

eλ0s

[
(−s)e−(2λ0+

1
r )s + |λ0|

∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (η)(s) ≤ 1.

(5.2)

Then, in the interval
(
−2λ0 − 1

r ,∞
)
, the characteristic equation (1.5) has a unique

root µ0; this root satisfies (2.3), and the root µ0 is less than −2λ0 + 1
r , provided
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that ∫ 0

−r

eλ0s

[
e

(
−2λ0+

1
r

)
s − λ0

∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s) > −1

r
.

(5.3)

Proof. Consider the real-valued function Ω defined by (4.2). The derivative Ω′ of
Ω is given by (4.3). It follows from (4.2) that

Ω
(
− 2λ0 −

1
r

)
=

(
− 2λ0 −

1
r

)
+ 2λ0 +

∫ 0

−r

eλ0se−(2λ0+
1
r )sdζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dζ(s) +

∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s)

= −1
r

+
∫ 0

−r

eλ0s

[
e−(2λ0+

1
r )s − λ0

∫ 0

s

e−(2λ0+
1
r )udu

]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s)

and consequently, by (5.1), it holds

Ω
(
− 2λ0 −

1
r

)
< 0. (5.4)

Moreover, from (4.2) we obtain, for µ ≥ −2λ0 − 1
r ,

Ω(µ) = µ+ 2λ0 +
∫ 0

−r

eλ0s

(
eµs − λ0

∫ 0

s

eµudu

)
dζ(s)

+
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s)

≥ µ+ 2λ0 −
∣∣∣∣∫ 0

−r

eλ0s

(
eµs − λ0

∫ 0

s

eµudu

)
dζ(s)

∣∣∣∣
−

∣∣∣∣∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s)

∣∣∣∣
≥ µ+ 2λ0 −

∫ 0

−r

eλ0s

∣∣∣∣eµs − λ0

∫ 0

s

eµudu

∣∣∣∣ dV (ζ)(s)

−
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dV (η)(s)

≥ µ+ 2λ0 −
∫ 0

−r

eλ0s

(
eµs + |λ0|

∫ 0

s

eµudu

)
dV (ζ)(s)

−
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dV (η)(s)

≥ µ+ 2λ0 −
∫ 0

−r

eλ0s

[
e−(2λ0+

1
r )s + |λ0|

∫ 0

s

e−(2λ0+
1
r )udu

]
dV (ζ)(s)
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−
∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dV (η)(s).

Therefore,
Ω(∞) = ∞. (5.5)

Furthermore, using (4.3), we have, for every µ > −2λ0 − 1
r ,

Ω′(µ) ≥ 1−
∣∣∣∣∫ 0

−r

eλ0s

[
(−s)eµs − λ0

∫ 0

s

(−u)eµudu

]
dζ(s)

∣∣∣∣
−

∣∣∣∣∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµudu

]
dη(s)

∣∣∣∣
≥ 1−

∫ 0

−r

eλ0s

∣∣∣∣(−s)eµs − λ0

∫ 0

s

(−u)eµudu

∣∣∣∣ dV (ζ)(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµudu

]
dV (η)(s)

≥ 1−
∫ 0

−r

eλ0s

[
(−s)eµs + |λ0|

∫ 0

s

(−u)eµudu

]
dV (ζ)(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµudu

]
dV (η)(s)

> 1−
∫ 0

−r

eλ0s

[
(−s)e−(2λ0+

1
r )s + |λ0|

∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (ζ)(s)

−
∫ 0

−r

eλ0s

[∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (η)(s).

Consequently, in view of (5.2), it holds

Ω′(µ) > 0 for all µ > −2λ0 −
1
r
,

which implies that Ω is strictly increasing on
(
−2λ0 − 1

r ,∞
)
. By using this fact

as well as (5.4) and (5.5), we conclude that, in the interval
(
−2λ0 − 1

r ,∞
)
, the

equation Ω(µ) = 0 (which coincides with (1.5)) has a unique root µ0. This root
satisfies (2.3). Indeed, by using again (5.2), we have∫ 0

−r

eλ0s

[
(−s)eµ0s + |λ0|

∫ 0

s

(−u)eµ0udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)eµ0udu

]
dV (η)(s)

<

∫ 0

−r

eλ0s

[
(−s)e−(2λ0+

1
r )s + |λ0|

∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (ζ)(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (η)(s)

≤ 1.

Finally, let us assume that (5.3) holds. Then it follows from (4.2) that

Ω
(
−2λ0 +

1
r

)
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=
(
−2λ0 +

1
r

)
+ 2λ0 +

∫ 0

−r

eλ0se

(
−2λ0+

1
r

)
sdζ(s)

− λ0

∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dζ(s) +

∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s)

=
1
r

+
∫ 0

−r

eλ0s

[
e

(
−2λ0+

1
r

)
s − λ0

∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dζ(s)

+
∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s) > 0.

As Ω
(
− 2λ0 + 1

r

)
> 0, we see that µ0 must be less than −2λ0 + 1

r . This completes
the proof of the lemma. �

Lemma 5.1 can be applied to the special case of the characteristic equation (1.22),
where λ0 is a real root of the characteristic equation (1.20). In this particular case,
conditions (5.1), (5.2) and (5.3) become∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s) <

1
r
, (5.6)∫ 0

−r

eλ0s

[∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (η)(s) ≤ 1, (5.7)∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s) > −1

r
, (5.8)

respectively. It is remarkable that conditions (5.6), (5.7) and (5.8) are satisfied if
the following stronger condition holds:∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dV (η)(s) <

1
r
. (5.9)

In fact, we have∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s) ≤

∣∣∣∣∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dη(s)

∣∣∣∣
≤

∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dV (η)(s),

∫ 0

−r

eλ0s

[∫ 0

s

(−u)e−(2λ0+
1
r )udu

]
dV (η)(s)

≤ r

∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dV (η)(s)

and∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s) ≥ −

∣∣∣∣∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dη(s)

∣∣∣∣
≥ −

∫ 0

−r

eλ0s

[∫ 0

s

e

(
−2λ0+

1
r

)
udu

]
dV (η)(s)

≥ −
∫ 0

−r

eλ0s

[∫ 0

s

e−(2λ0+
1
r )udu

]
dV (η)(s).
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So, condition (5.9) implies each one of the conditions (5.6), (5.7) and (5.8).

Lemma 5.2. Suppose that statement (4.1) is true. Let λ0 be a negative real root
of the characteristic equation (1.3). Then we have:

(I) In the interval [−2λ0,∞), the characteristic equation (1.5) has no roots.
(II) Assume that (5.1) holds. Then: (i) µ = −2λ0 − 1

r is not a root of the
characteristic equation (1.5). (ii) In the interval

(
−2λ0 − 1

r ,−2λ0

)
, (1.5)

has a unique root. (iii) In the interval
(
−∞,−2λ0 − 1

r

)
, (1.5) has a unique

root.

Proof. (I) Let µ̃ be a real root of the characteristic equation (1.5). By taking into
account (4.1) as well as the fact that η is not constant on [−r, 0] and using the
hypothesis that λ0 < 0, we can immediately see that

−
∫ 0

−r

e(λ0+eµ)sdζ(s) + λ0

∫ 0

−r

eλ0s

(∫ 0

s

eeµudu

)
dζ(s)−

∫ 0

−r

eλ0s

(∫ 0

s

eeµudu

)
dη(s)

< 0.

Hence, from (1.5) it follows that µ̃+ 2λ0 < 0, i.e., µ̃ < −2λ0. We have thus proved
that every real root of (1.5) is always less than −2λ0.

(II) Consider the real-valued function Ω defined by (4.2). As in the proof of
Lemma 4.1, we see that (4.4) holds and consequently

Ω is convex on R. (5.10)

Next, we observe that, as in the proof of Lemma 5.1, assumption (5.1) means that
(5.4) holds true. Inequality (5.4) implies, in particular, that µ = −2λ0 − 1

r is not a
root of the characteristic equation (1.5). From (4.2) we obtain

Ω(−2λ0) =
∫ 0

−r

e−λ0sdζ(s)− λ0

∫ 0

−r

eλ0s

(∫ 0

s

e−2λ0udu

)
dζ(s)

+
∫ 0

−r

eλ0s

(∫ 0

s

e−2λ0udu

)
dη(s).

So, by using (4.1) and taking into account the facts that η is not constant on [−r, 0]
and that λ0 is negative, we conclude that

Ω(−2λ0) > 0. (5.11)

Furthermore, as λ0 < 0 and ζ is increasing on [−r, 0], from (4.2) we get

Ω(µ) ≥ µ+ 2λ0 +
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s) for µ ∈ R.

Using this inequality and the fact that η is increasing and not constant on [−r, 0],
it is not difficult to show that

Ω(−∞) = ∞. (5.12)

From (5.10), (5.4) and (5.11) it follows that, in the interval
(
− 2λ0− 1

r ,−2λ0

)
, the

characteristic equation (1.5) has a unique root. Moreover, (5.10), (5.4) and (5.12)
guarantee that, in the interval

(
−∞,−2λ0 − 1

r

)
, (1.5) has also a unique root. The

proof of the lemma is complete. �
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If someone reads carefully the proof of Lemma 5.2, he/she may see that the
assumption that the root λ0 of the characteristic equation (1.3) is negative is a
necessity because of the presence of the term

λ0

∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dζ(s)

in the characteristic equation (1.5). As this term does not exist in the characteristic
equation (1.22), using the function Ω0 defined by

Ω0(µ) = µ+ 2λ0 +
∫ 0

−r

eλ0s

(∫ 0

s

eµudu

)
dη(s) for µ ∈ R

instead of the function Ω and following the steps of the proof of Lemma 5.2, we
can prove the next lemma valid in the special case of the characteristic equation
(1.22), without the restriction that the root λ0 of the characteristic equation (1.20)
is necessarily negative.

Lemma 5.3. Suppose that (4.25) holds. Let λ0 6= 0 be a real root of the character-
istic equation (1.20). Then we have:

(I) In the interval [−2λ0,∞), the characteristic equation (1.20) has no roots.
(II) Assume that (5.6) holds. Then: (i) µ = −2λ0 − 1

r is not a root of the
characteristic equation (1.22). (ii) In the interval

(
−2λ0 − 1

r ,−2λ0

)
, (1.22)

has a unique root. (iii) In the interval
(
−∞,−2λ0 − 1

r

)
, (1.22) has a unique

root.
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