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Forbidden states and the three-body bound state collapse
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The appearance of bound states with large binding energies of several hundred MeV in the three-body
system, known as bound state collapse, is investigated. For this purpose three classes of two-body potentials
are employed; local potentials equivalent to nonlocal interactions possessing a continuum bound state, in
addition to the usual negative-energy bound state; local potentials with a strong attractive well sustaining a
forbidden state; and supersymmetric transformation potentials. It is first shown that local potentials equivalent
to the above nonlocal ones have a strong attractive well in the interior region which supports, in addition to the
physical deuteron state, a second bound state~usually called a pseudobound state! with a large binding energy,
which is responsible for the bound state collapse in the three-body~and in general to theN-body! system.
Second, it is shown that local potentials with a forbidden state also generate a three-body bound state collapse,
implying that the role played by the forbidden state is similar to the one played by the pseudobound state.
Finally, it is shown that the removal of the forbidden state via supersymmetric transformations also results in
the disappearance of the collapse. Thus one can safely argue that the presence of unphysical bound states with
large binding energies in the two-body system is responsible for the bound state collapse in the three-body
system.

DOI: 10.1103/PhysRevC.63.044009 PACS number~s!: 21.45.1v, 03.65.Ge, 12.39.Pn, 21.10.Dr
t
es
ca
g
-
e
si
th

um

f
su
wa
nt

te
s

-I
to
s

nc

ally
an

ity,

rm
be
f
o-

able
and
the
of
t be
fino
S,
nc-
gy

re-
hat
o-
tion
del,
ate

be-
s a
ody

on
l, is

ive
I. INTRODUCTION

Three-body bound state collapse~BSC! @1–5#, i.e., the
appearance of bound states with large binding energies in
three-body system, has been the subject of several studi
the past. It was found, long ago, that the rank-1 nonlo
separable potential of Tabakin@1# generates a large bindin
energy for the three-body system@2#. This came as a sur
prise, as this potential predicts the two-body data, fairly w
and, there was no apparent reason why such an unphy
bound state with large binding energy should appear in
three-body system.

Subsequent studies with rank-2 separable potentials@3,4#
showed that BSC could be related to two-body continu
bound states~CBS’s!, i.e., to the existence of anS-matrix
pole on the real positive-energy axis. This was the case
separable potentials, while for purely local potentials or
perpositions of local and nonlocal potentials the collapse
not observed. Some aspects of BSC for the Tabakin pote
were also studied by Ruppet al. @5#. In that work a rank-1
potential, similar to the Tabakin potential, was construc
and used to calculate the three-body binding energy a
function of the nonlocal parameterb, i.e., the inverse of the
nonlocality range of the potential. Several radialS-wave
functions for different values ofb were constructed, and
compared with the deuteron wave function of the Graz
potential @6#. This comparison revealed that, in contrast
the deuteron wave function of the Graz-II potential, the
bound state wave functions have a node at short dista
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which moves outward with increasingb, while the corre-
sponding three-body binding energies increase eventu
leading to a collapse of the three-body system. This was
indication that BSC is related to the range of the nonlocal
at least for this kind of potential.

Almost a decade later, Delfinoet al. @7,8# were able to
show that for rank-1 separable potentials with a one-te
form factor of Yamaguchi type, the BSC could essentially
linked to the Thomas effect@9#, i.e., to a drastic increase o
the three-particle binding energy as the range of the tw
particle potential tends to zero. Thus these authors were
to establish an equivalence between the Thomas effect
the phenomenon of collapse by means of the range of
potential. In contrast, when the form factor is a sum
Yamaguchi terms and the nonlocality parameter could no
taken as a measure of the range of the potential, Del
et al. @8# noted that, if this type of potentials supports a CB
in addition to a physical dueteron state, the CBS wave fu
tion is identical to the wave function of a negative-ener
bound state, the so called pseudobound state, which is
sponsible for the collapse. An important suggestion of t
work was that one should expect similar results for all p
tentials which support at least another bound state in addi
to the physical deuteron state. In the resonating group mo
this bound state is usually called a Pauli-forbidden st
~PFS! @10#.

In the presence of a PFS the physical deuteron state
comes an excited bound state and its wave function ha
node. The relation between that node and the three-b
binding energy was investigated by Nakaichi-Maeda@11#
who employed the Kukulin nucleon-nucleon~NN! potential
@12#. This interaction, in addition to the physical deuter
state, also sustains a PFS which, for the triplet channe
r-
©2001 The American Physical Society09-1
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;58 MeV, for the singlet is;440 MeV, and for the couple
channel system is even deeper,;525 MeV @13#. Thus, for
this potential, the physical deuteron state is an excited bo
state, and the corresponding wave function has a node
varying the magnitude of the inner amplitude of the wa
function and the position of the node, Nakaichi-Maeda c
firmed that the BSC is connected to the nodal behavior of
deuteron wave function.

The purpose of this paper is threefold. First, we take
findings of Delfinoet al. @7,8# further, and show that they
can be generalized to any kind of two-particle poten
which has a bound state with large binding energy, in ad
tion to the physical deuteron state. By looking at the no
behavior of the wave functions we will also confirm, in
more rigorous way, the results of Nakaichi-Maeda@11#. Sec-
ond, by constructing a local potential sustaining at least
forbidden state, we will show that it can cause a BSC in
three-body system. Finally, we will remove the forbidd
state via supersymmetric~SUSY! transformations@14,15#,
and show that this results in the disappearance of the B

The paper is organized as follows: In Sec. II, we prese
short description of nonlocal potentials of rank 1 sustainin
CBS, we construct their phase-equivalent local interactio
and use them to obtain the trinucleon binding energy. T
relevance of forbidden states of purely local interactions
the BSC are discussed in Sec. III. In Sec. IV, we brie
present the supersymmetric transformations used to rem
the forbidden states. Finally, in Sec. V, we discuss our
sults and draw our conclusions.

II. NONLOCAL INTERACTIONS

A. Short review

For convenience, let us briefly recall the relevant formu
describing a two-particle system in anS state. In our inves-
tigations we shall use the nonlocal potentials of Table I
Ref. @8# which are rank-1 separable interactions,

V~p,q!5lg~p!g~q!, ~1!

with a form factor consisting of a sum of Yamaguchi term

g~k!5
a1

k21b1
2

1
a2

k21b2
2

. ~2!

The corresponding two particlet matrix, at a given energy
E5k2 (\2/2m51), is given by

t~p,q;k2!5g~p!
l

D~k2!
g~q!, ~3!

with

D~k2!512
2l

p E
0

`g2~p!p2dp

k22p21 i e
. ~4!

If the system has a bound state atEb52g2 then, from Eq.
~4!, we obtain
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D~g2!511l (
i , j 51

2
a ia j

~g1b i !~g1b j !~b i1b j !
. ~5!

The corresponding bound state wave function is given b

Fb~p!52N
g~p!

~g21p2!
, ~6!

whereN is the normalization constant.
The potentials of Table I support a CBS at a positi

energyEc5pc
2 if

g~pc!50 and D~pc
2!50. ~7!

From Eqs.~2! and ~4! and conditions~7!, for a CBS wave
function one obtains

Fc~p!52N
~a11a2!

~p21b1
2!~p21b2

2!
. ~8!

Two important aspects concerning this wave function w
already noted in Ref.@8#, namely, that it does not depen
directly on the energypc

2 , and that at large distances it de
cays exponentially as exp(2bir) and not as exp(2pcr). It was
further noted that it reduces to a bound state@Eq. ~6!# if one
identifies the binding energyg2 with b i

2 and the form factor
with (p21b j

2)21, whereb i(b j ) is the smaller~larger! of b1

andb2. In other words, the CBS wave function has the b
havior of a normal negative-energy bound state wave fu
tion, and this pseudobound state is responsible for the
pearance of an extra bound state in the three-body syste

It is noted that for this type of nonlocal potential the p
rameterb i cannot be taken as a measure of the range of
potential. However, the range of the nonlocality can be
duced by constructing equivalent local interactions in co
dinate space, which we shall discuss next.

B. Equivalent local interactions

There are many ways to construct local interactio
equivalent to nonlocal ones. A particular localization meth
which is well suited for our investigation is the one based
two linear independent solutions of the Schro¨dinger equa-
tion. The method was outlined in Refs.@16–18# and we refer
to these works for more detail. This type of equivalent loc
potential~ELP! ~sometimes called the quantal or Wronski

TABLE I. The parameters for the nonlocal potentials@Eqs. ~1!
and ~2!#, together with the collapse momentumpc and the three-
body binding energyB3 for a2521.0 andb151.4 (fm21).

Pot. a1 b2 (fm21) l (fm23) pc (fm21) B3 ~MeV!

1 0.05 8.47 2491.4 1.307 902.3
2 0.1 5.73 1096.1 1.213 644.8
3 0.13 4.92 831.3 1.167 578.5
4 0.15 4.53 729.3 1.149 539.4
5 0.2 3.82 573.9 1.097 486.5
9-2
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ELP! depends on energy. Since we are interested in
shape and range of these potentials as well as in t
strength for interpretation purposes, it suffices to constr
them at some fixed energy. Another way is, of course,
construct ELP’s via inverse scattering techniques in orde
generate l-dependent but energy-independent interacti
@19–21#. However, this would lead to unnecessary comp
cations without gaining more insight into what we are tryi
to do.

The ELP’s of the nonlocal interactions of Table I a
shown in Fig. 1 fork52.0 fm21. It is seen that they are
similar in shape, and have an attractive strength at short
tances which is quite large compared with the strength o
typical NN interaction. Another aspect of these potenti
should be noted, namely, the existence of a hump, wh
suggests a repulsion in the interaction region, and thus r
nances may also appear@21#. Such a hump is characterist
of local potentials equivalent to nonlocal interactions, wh
fit the two-nucleon scattering data at high energ
@11,17,22#. The striking similarity of then-a local poten-
tials, equivalent to nonlocal potentials, and of the cor
sponding two-body bound state wave functions presente
Ref. @21# with those of the present work is worth mentionin
Looking now at the three-body binding energies genera
by the nonlocal potentials of Table I, we note that the sho
the range of the potential the larger the three-body bind
energy. This is in agreement with the findings of Delfi
et al. @7# obtained with rank-1 nonlocal potentials with
one-term Yamaguchi form factor. The results of Ref.@7#
were shown to be related to the Thomas effect. The pre
results suggest that this relation is also valid for potent
with a form factor consisting of a sum of Yamaguchi term
and therefore it is a more general statement.

In Fig. 2 one of the ELP’s employed, potential 1, is show
for different momenta. It is seen that the main characteris
of the potential do not change significantly and thus the p
vious results of Ruppet al. @5#, obtained with a local poten

FIG. 1. Local potentials equivalent to the two-body nonloc
interactions of Table I fork52.0 fm21. The strong, short-ranged
attractive well of potential 1 generates BSC in the three-body s
tem.
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tial equivalent to that of Tabakin, are corroborated.
The wave functions of the excited states, i.e., the phys

two-body states, are shown in Fig. 3. It is seen that there
node in the interior region which moves to shorter distan
as the energy of the ground state increases. This is not u
pected, as the attractive well of the potential is shifted in
interior region and assumes the characteristics of ad func-
tion ~hence the relation to the Thomas effect, see Fig.!;
therefore, the position of the node of the excited state is a
shifted closer to zero. These results are in qualitative ag
ment with those of Nakaichi-Maeda@11#. In other words, the
appearance of a bound state with a large binding energ
the three-body system~collapse! is related to the nodal be
havior of the physical two-body wave function.

III. LOCAL INTERACTIONS

There are many local potential models which determ
the deuteron properties fairly well. Since our main concern

l

s-

FIG. 2. Local potentials equivalent to potential 1 of Table I f
k52.0, 2.4, and 2.8 fm21.

FIG. 3. The short-range behavior of the physical deuteron w
function generated by the potentials of Table I. The position of
node depends on the range of the attractive well.
9-3
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three-body bound state collapse, it is sufficient to choose
of this multitude a simple local model which reproduces
binding energy of the deuteron. The aforementionedNN po-
tential of Kukulin et al. @12# is best suited for our investiga
tions. This potential has a deep attractive well at short d
tances which results from a six-quark model in the inter
region, and generates a PFS with a large binding ene
This implies that the corresponding physical two-body bou
state wave function has an inner node which simulates
repulsive core of the traditionalNN potentials. The form of
this potential is

V~r !5V0 exp~2ar 2!1V1@12exp~2br !#
exp~2mr !

mr
.

~9!

By varying its parameters one can move the forbidden s
above or below the physical deuteron state, which we k
fixed atEb52.225 MeV. Thus the state corresponding toEb
can be an excited or a ground state of the two-body syst
and thus it may or may not have a node.

Several sets of parameters were used which give ris
different shapes, ranges, and depths of the potential. F
characteristic examples are presented in Table II toge
with the resulting two- and three-body binding energi
These potentials are plotted in Fig. 4. Potential 1 is mu
more attractive, and supports a forbidden state atEg
577.513 MeV. As compared to the other three potentia
potential 2 has a different shape and a much longer range
forbidden state being atEg517.486 MeV. Potential 3 sus
tains only the physical deuteron state, while potential 4 s
ports, in addition to this an excited bound state atEe
50.074 MeV. It is noted that potentials 3 and 4 are similar
soft-coreNN potentials, and fit the binding energy but not t
scattering phase shifts. Therefore, with these examples
can pinpoint which property of the potential is most impo
tant for the collapse.

In order to calculate the three-body binding energy,
utilize the Faddeev formalism. For this we transform the p
tentials@Eq. ~9!# in momentum space, and the potential m
trix,

TABLE II. The set of parameters used in the two-body loc
potential of Eq.~9! together with the corresponding two- and thre
body binding energiesB2 andB3, respectively.

Pot.
V0

~MeV!
a

(fm22)
V1

~MeV!
b

(fm21)
m

(fm21)
B2

~MeV!
B3

~MeV!

1 178.24 0.2 5.0 1.0 0.7 2.225 4.60
77.513 163.85

2 36.5 0.03 10.0 3.0 0.7 2.225 7.26
17.486 38.35

3 45.88 0.5 30.0 1.4 0.7 2.225 4.74
4 4.7 0.007 3.0 1.4 0.2 0.074 0.30

2.822 5.96
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V~p,q!5
V0

4
ApaFexpS 2

~p2q!2

4a D2expS 2
~p1q!2

4a D G
1

V1

4m
lnF @m21~p1q!2#@~m1b!21~p2q!2#

@m21~p1q!2#@~m1b!21~p1q!2#
G ,

~10!

is then used to obtain the two-bodyt matrix needed in the
Faddeev equation for the bound states. For three bosons
S state, one has@23#

c~p,q!5
8

pqA3
E

0

`

q8 dq8E
u2q2q8u/A3

(2q1q8)/A3
p8 dp8

3
t@p,~p821q822q2!1/2;s2q2#c~p8,q8!

s2p822q82
,

~11!

where

t~p,k;z!5V~p,k!2
2

pE0

`V~p,k8!t~k8,k;z!k82dk8

k822z
.

~12!

Due to the variable limits ofp8, it is impractical to solve Eq.
~11! by converting it to a matrix form and then applying th
usual eigenanalysis techniques. Furthermore, the form of
potentials~a deep attractive well! requires special attention
and care. Thus the method of successive iterations has
employed @24#, and the results obtained were reasona
stable.

Here we point out that the two-body ground-state energ
for potentials 1 and 2 are larger than the binding energy
the deuteron. In contrast, the two-body ground-state ene
for potential 3 is fixed at 2.225 MeV, while that for potenti
4 is fixed at 2.282 MeV for reasons which we shall expla

l

FIG. 4. The local potentials corresponding to Eq.~9!. The pa-
rameters are those given in Table II.
9-4
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FORBIDDEN STATES AND THE THREE-BODY BOUND . . . PHYSICAL REVIEW C63 044009
later. The corresponding wave functions for the two-bo
ground states are shown in Fig. 5, and those for the exc
states in Fig. 6.

We have searched for three-body binding energies in
region of ~21000, 0! MeV. The results are presented
Table II. For potentials 1, 2, and 4, we located two thre
body bound states corresponding to the two two-body bo
states. The three-body binding energy is at its maxim
value atEt5163.85 MeV for potential 1, and decreases
Et538.35 MeV for potential 2. There is no collapse for p
tential 3, which supports only the physical deuteron sta
Comparing these results with the range of potentials sho
in Fig. 4, we see that the three-body ground-state energ
larger when the range of the potential is smaller—an indir
manifestation of the relation between the BSC and the T
mas effect. Looking now at the nodal behavior of the wa

FIG. 5. Ground-state wave functions of the potentials of Ta
II. Their peak and spread are directly linked to the shape
strength of the attractive well.

FIG. 6. Excited-state wave functions of the potentials of Ta
II. Short-range attractive wells shift the node in the interior regi
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functions in Fig. 6, we note that the collapse is more e
hanced when the node is in the interior region. This is in l
with the results found in Sec. II.

In order to obtain an excited bound state that lies ab
the physical deuteron state, we slightly increased, for po
tial 4, the two-body ground-state energy toEb52.822 MeV,
and obtainedEe50.074 MeV. The corresponding three-bod
binding energies are 0.308 and 5.96 MeV, i.e., no colla
was detected in this case. It seems that there is a contra
tion here with the results of the nonlocal potentials, whi
also showed a collapse for potentials fulfilling condition~7!.
As already noticed by Delfinoet al. @7,8#, however, for this
type of potential the two-body pseudobound state has
same behavior as the physical bound state. Therefore, we
conclude that only forbidden states with large binding en
gies cause the three-body bound state collapse. This a
ment will be also supported by removing the forbidden sta
via supersymmetric transformations.

IV. SUPERSYMMETRIC POTENTIALS

Quite often, in nuclear physics problems, the construc
two-body potential has an attractive well that sustains
physical bound states which must be removed or projec
out from the spectrum before the potential is used in cal
lations. One way to achieve this is via SUSY transform
tions, in which one can add or remove a bound state from
spectrum. The method was discussed extensively in R
@14,15#, and therefore here we shall recall its main featu
only briefly.

We consider the radial Schro¨dinger equation

H0c0~r ![F2
d2

dr2
1

l ~ l 11!

r 2
1V0~r !Gc0~r !5Ec0~r !

~13!

for the HamiltonianH0, which has in its spectrum an un
physical two-body bound stateE[Eb

(0) . This state can be
removed by factorizingH0 and its supersymmetric partne
HamiltonianH1,

H05A0
1A0

21e0 , H15A0
2A0

11e0 , ~14!

where

A25~A0
1!†52

d

dr
1

d

dr
ln@c0~r ,e0!#. ~15!

Herec0(r ,e0) is the solution of the Schro¨dinger equation at
the factorization energye0. The SUSY-1 potentialV1, that
corresponds to the partner HamiltonianH1, is given by

V15V022
d2

dr2
ln@c0~E0

(0)!#, ~16!

e
d

e
.

9-5
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wheree0<E0
(0) , E0

(0) being the ground state energy ofH0.
WhereasV1 and V0 have the same spectra~except thatV1

does not sustain a two-body ground state atE0
(0)), they are

not phase equivalent. To achieve phase equivalence a se
supersymmetric transformation is needed to obtain
SUSY-2 potential@15#:

V25V022
d2

dr2
ln@c0~E0

(0)!c1~E0
(0)!#. ~17!

The latter potential is fully phase equivalent toV0, except
that the ground state ofV0 has been removed from the spe
trum. The fundamental difference betweenV0 andV2 is that
the latter has a repulsive singular core at short distances

V2;V01
2~2l 13!

r 2
;

~21 l !~31 l !

r 2
, ~18!

instead of an attractive well. It is interesting to note that
differenced l(0)2d l(`) may be a multiple ofp despite the
fact that the ground state is removed, i.e., the Levinson th
rem is not applicable to this type of singular potentials,
shown long ago by Swan@25#.

One may argue here that, as the resulting potential is s
low and singular, it should be expected that no deep bo
state is generated in the three-body system. However, a
three-body bound state collapse was found to be relate
the resonance behavior of the Jost function, we endeav
to go through the three-body calculations once more, as
SUSY transformations might generate a new resonance s
trum @21# that could be of relevance.

We applied the above method to potentials 1 and 2 of S
III, and checked again for three-body binding energies in
region (21000, 0! MeV. Only one three-body bound sta
was found for each potential, namely, at 4.72 MeV for p
tential 1 and at 7.14 MeV for potential 2, i.e., no collap
was detected. Thus the removal of the forbidden state of
two-body system resulted in the disappearance of the se
three-body bound state as well.

V. DISCUSSION AND CONCLUSIONS

The role played by unphysical two-body bound states
the appearance of a collapsed state in the three-body sy
has been investigated. For this purpose three classes o
tentials were employed; local potentials equivalent to non
cal interactions which produce BSC; local interactio
which, in addition to the physical deuteron state, sustai
second bound state with large binding energy; and SU
transformation potentials. We shall discuss these in turn

Rank-1 nonlocal separable potentials with a Yamaguc
type form factor may possess bound states in the continu
i.e., theS matrix has a pole on the real positive-energy ax
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These bound states at positive energies are ca
pseudobound states, because in all respects they behave
larly to negative-energy states. Since the nonlocal poten
cannot be used directly for interpretation purposes, we
sorted to the construction of ELP’s which can provide info
mation about how the underlying nonlocality is manifest
in configuration space. In the present work, we construc
quantal ELP’s to above-rank-1 nonlocal interactions, a
showed that they have a strong attractive well that tend
have ad-function behavior and sustain a deep bound state
a nature similar to the PFS. This implies that bound state
the continuum are mapped, via the localization procedu
onto a positive imaginary energy axis. The three-bo
ground-state energy then becomes extremely large. In o
words, when at a two-body level one has a strong, sh
range attractive potential that generates the Thomas ef
then there is a BSC in the three-body system and, in gen
in N-body system—a finding which is in agreement with th
of Delfino et al. @7,8#.

We have extended our investigations to include pur
local interactions having unphysical two-body bound stat
i.e., PFS’s with large binding energies, and calculated
corresponding three-body binding energies. We have dem
strated that an increase~decrease! of the two-body binding
energy of the unphysical state results in an increa
~decrease! of the three-body binding energy. Thus the BS
of the three-body system is directly connected to the pr
ence of an unphysical two-body state. We wish to ment
further that variations of the binding energy of the unphy
cal two-body state also resulted in variations of the inn
amplitude and the position of the node of the physical d
teron state. This is an indirect proof of the results
Nakaichi-Maeda@11#. Of course, one must be careful abo
the role of the node. The existence of a node in the phys
two-body state wave function, generated by a local or n
local interaction, is also a manifestation of a strong attract
in the interior region.

The PFS is usually present in two-cluster systems, wh
antisymmetrization is used to construct the underlying int
cluster interaction which is, in general, nonlocal. Howev
local potentials can also be constructed to have one PF
more, which in few-cluster systems generate the appeara
of a set of unphysical bound states. One such potential is
a-a potential of Bucket al. @26# employed in Ref.@27# to
study the spectrum of the 3a and 4a systems. It was found
in Ref. @27# that the appearance of a set of unphysical bou
states disappears once the PFS’s are removed from the
trum via SUSY transformations. In the present work w
found a similar result, namely, that the removal of an u
physical bound state from the two-body spectrum also res
in the disappearance of BSC in the three-body system
conclusion, from the above discussion one can safely ar
that the presence of unphysical bound states with large b
ing energies in the two-body system is responsible for B
in the three-body system and, in general, in theN-body sys-
tem.
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